WO2019240003A1 - Optical property control film and display device using same - Google Patents

Optical property control film and display device using same Download PDF

Info

Publication number
WO2019240003A1
WO2019240003A1 PCT/JP2019/022496 JP2019022496W WO2019240003A1 WO 2019240003 A1 WO2019240003 A1 WO 2019240003A1 JP 2019022496 W JP2019022496 W JP 2019022496W WO 2019240003 A1 WO2019240003 A1 WO 2019240003A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical property
layer
property control
control film
Prior art date
Application number
PCT/JP2019/022496
Other languages
French (fr)
Japanese (ja)
Inventor
治加 増田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020525498A priority Critical patent/JPWO2019240003A1/en
Publication of WO2019240003A1 publication Critical patent/WO2019240003A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an optical property control film and a display device using the same. More specifically, it is an optical property control film that is applied to peep prevention films for smartphones and tablets. It has excellent visibility from the front and prevents touch panel malfunction due to moisture condensation in cold regions.
  • the present invention relates to an optical property control film.
  • a peep prevention film for smartphones and tablets as a technology using a dielectric multilayer film, a peep prevention film comprising a dielectric multilayer film using polyester and nylon and an adhesive containing a light-shielding pigment is known. (For example, refer to Patent Document 1).
  • the dielectric multilayer film described in Patent Document 1 When used as a peep prevention film for smartphones and tablets, the dielectric multilayer film described in Patent Document 1 has a small difference in refractive index, so it is necessary to increase the number of layers in order to make the color development when viewed obliquely. Yes, a thick film was necessary. Moreover, since the light-shielding pigment is contained, there is a problem that the screen becomes darker when viewed from the front.
  • the present invention has been made in view of the above problems and situations, and the solution is an optical property control film applied to a peep prevention film for smartphones and tablets, and has excellent visibility from the front, Another object of the present invention is to provide an optical property control film in which the malfunction of the touch panel due to moisture condensation or the like is suppressed in cold regions.
  • the present inventor in the process of examining the cause of the above problems, on the resin substrate, a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles.
  • It is a film having a configured reflection layer unit, and has a visible light transmittance (Tvis (a)) of a specific value or more when viewed from the normal direction of the film surface, and the normal of the film surface
  • Tvis (a)) when viewed from the direction and the visible light transmittance (Tvis (b)) when viewed from a position of 60 ° with respect to the normal direction of the film.
  • An optical property control film having a reflective layer unit composed of a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles on a resin substrate, Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is 83% or more, and Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface and visible light when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film
  • a ratio of transmittance (Tvis (b)) satisfies the following relational expression (1): an optical property control film.
  • Relational expression (1) 1.4 ⁇ Tvis (a) / Tvis (b)
  • Item 1 or Item 2 is characterized in that the thickness of the high refractive index layer of the reflective layer unit is in the range of 95 to 120 nm, and the thickness of the low refractive index layer is in the range of 110 to 135 nm.
  • Item 3 The optical property control film according to Item 2.
  • the refractive index of the high refractive index layer at a light wavelength of 589.3 nm is in the range of 1.63 to 1.83, and the refractive index of the low refractive index layer is in the range of 1.40 to 1.60.
  • a display device comprising the optical property control film according to any one of items 1 to 5.
  • an optical property control film applied to a peep prevention film of a smartphone or a tablet which has excellent visibility from the front, and the occurrence of malfunction of the touch panel due to condensation of moisture in a cold region. Can be provided.
  • the optical property control film of the present invention uses fine particles to adjust the refractive index, the refractive index difference between the high refractive index layer and the low refractive index layer becomes large. It becomes more prominent. As a result, the layer thickness is not increased, and a light-shielding pigment is not required, so that it looks brighter when observed from the front.
  • the minimum value of the spectral transmittance is in the infrared region, and when viewed from an oblique direction.
  • the optical property control film of the present invention is an optical property control film having a reflective layer unit composed of a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles on a resin substrate.
  • the visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is 83% or more, and when viewed from the normal direction of the optical property control film surface.
  • the ratio between the visible light transmittance (Tvis (a)) and the visible light transmittance (Tvis (b)) when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film is the relationship described above.
  • the expression (1) is satisfied. This feature is a technical feature common to or corresponding to the embodiments described below.
  • the hydrophilic polymer is polyvinyl alcohol
  • the fine particles are metal oxide fine particles, from the viewpoint of adjusting water absorption and refractive index. Therefore, it is preferable.
  • the thickness of the high refractive index layer of the reflective layer unit is in the range of 95 to 120 nm, and the thickness of the low refractive index layer is in the range of 110 to 135 nm. It is preferable from the viewpoint.
  • the reflective layer unit has a total number of the high refractive index layer and the low refractive index layer of 20 or more, and the refractive index of the high refractive index layer at a light wavelength of 589.3 nm is 1.63 to 1 .83 and the refractive index of the low refractive index layer is in the range of 1.40 to 1.60, both the visibility from the front and the effect as a peep prevention film are compatible. From the viewpoint, it is preferable.
  • the display device of the present invention is characterized by comprising the optical property control film, and can be suitably used as a peep prevention film for smartphones and tablets.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the optical property control film of the present invention is an optical property control film having a reflective layer unit composed of a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles on a resin substrate.
  • the visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is 83% or more, and when viewed from the normal direction of the optical property control film surface.
  • the ratio of visible light transmittance (Tvis (a)) to visible light transmittance (Tvis (b)) when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film The expression (1) is satisfied.
  • the “visible light transmittance” is a value obtained by a visible light transmittance test defined in JIS S 3107: 2013.
  • the visible light transmittance (Tvis (a)) measured from the normal (90 °) direction with respect to the film specimen and the visible light transmittance (Tvis (a)) measured from a direction inclined by 60 ° from the normal direction is used.
  • the test piece is produced by uniformly attaching a film having the same dimensions to a 3 mm-thick plate glass so that air bubbles do not enter.
  • size shall be a dimension suitable for a measuring instrument.
  • the test piece is pretreated for 24 hours or longer.
  • Visible light transmittance is measured with a spectrophotometer such as the UV-Vis near-infrared spectrophotometer V-670 manufactured by JASCO Corporation, and the transmission spectrum of light wavelengths 380 to 780 nm is measured at different angles.
  • the weighted average is obtained by multiplying the weight coefficient for each light wavelength.
  • the visible light transmittance (Tvis) is determined by the test method defined in ISO 9050 using the above spectrophotometer, and the spectral transmittance of each wavelength 380 to 780 nm defined in Table 8 described in JIS S 3107: 2013.
  • [T ( ⁇ )] is measured and multiplied by the weight distribution coefficient [D ⁇ V ( ⁇ ) ⁇ ] obtained from the spectral distribution of the CIE daylight D 65 , the wavelength distribution of the CIE light adaptation standard relative luminous sensitivity, and the wavelength interval. Obtained by weighted average.
  • Said heavy valence coefficient [D ⁇ V ( ⁇ ) ⁇ ] is, JIS S 3107: using the values specified in Table 8 of 2013.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the optical property control film of the present invention.
  • the optical property control film 1 of the present invention preferably has a configuration in which a low refractive index layer 3a and a high refractive index layer 3b are laminated as a reflective layer unit 3 on a transparent resin substrate 2 as a substrate.
  • An adhesive layer, an antistatic layer, and a backcoat layer may be provided on the back surface of the transparent resin substrate 2, and an undercoat layer may be provided between the transparent resin film 2 and the reflective layer unit 3.
  • a hard coat layer 4 containing fine particles may be laminated on the reflective layer unit 3 if necessary for preventing scratches or slipping.
  • the substrate used in the optical property control film of the present invention is preferably a transparent resin substrate, and is not particularly limited.
  • polyester-type resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and modified polyester, polyethylene (PE), polypropylene (PP), polystyrene ( PS), polyolefin resins such as cyclic olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC ), Polyamide, polyimide resin, acrylic resin, triacetyl cellulose (TAC) and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PS polystyrene
  • vinyl resins such as polyvinyl chloride and polyvinylidene chloride
  • PEEK polyether ether ketone
  • PSF polysulf
  • These resins may be used alone or in combination.
  • the thickness and type of the resin base material are not particularly limited as long as they are selected within a range that satisfies the visible light transmittance characteristics of the optical property control film of the present invention.
  • the thickness of the resin base material is preferably about 5 to 200 ⁇ m, more preferably 15 to 150 ⁇ m.
  • Two or more resin substrates may be stacked, and in this case, the type of the resin substrate may be the same or different.
  • the resin base material preferably has a transmittance in the visible light region represented by JIS R 3106: 1998 of 85% or more, and particularly preferably 90% or more. It is preferable that the resin base material has the above transmittance or more from the viewpoint of easily adjusting the visible light transmittance according to the present invention in the film normal direction to 83% or more.
  • the resin substrate may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the resin base material can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and the like (vertical axis) direction of the base material,
  • stretching base material can be manufactured by extending
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the resin base material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the resin base material may be subjected to relaxation treatment or offline heat treatment from the viewpoint of dimensional stability.
  • the relaxation treatment is preferably carried out in the process from the heat setting in the stretching film-forming process of the resin base material to the winding in the transverse stretching tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., and more preferably at a treatment temperature in the range of 100 to 180 ° C.
  • the relaxation rate is in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is in the range of 2 to 6%.
  • the relaxation-treated resin base material is improved in heat resistance by being subjected to off-line heat treatment, and further has good dimensional stability.
  • the coating liquid for forming the undercoat layer inline on one side or both sides of the resin base material during the film forming process.
  • undercoating during the film forming process is referred to as in-line undercoating.
  • Resins used for the coating solution for forming the undercoat layer useful in the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins, polyvinyl Examples include alcohol resin, modified polyvinyl alcohol resin, gelatin, and the like, and any of them can be preferably used.
  • a conventionally well-known additive can also be added to these undercoat layers.
  • the undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating, or spray coating.
  • the coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
  • the reflective layer unit according to the present invention is a laminate in which two or more layers containing a hydrophilic polymer and fine particles and having different refractive indexes are laminated.
  • the fine particles are preferably metal oxide particles.
  • the reflective layer unit is preferably a laminate in which high refractive index layers and low refractive index layers are alternately laminated.
  • the terms “high refractive index layer” and “low refractive index layer” mean that when a difference in refractive index between two adjacent layers is compared, a layer with a high refractive index is a high refractive index layer and a refractive index is low. It means that the layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that each refractive index layer constituting the light reflecting film has the same refractive index when attention is paid to two adjacent refractive index layers. It includes any form other than the form it has.
  • the low refractive index layer is mainly composed of a hydrophilic polymer and first metal oxide particles
  • the high refractive index layer is mainly composed of a hydrophilic polymer and second metal oxide particles. It is preferable that it is comprised from these.
  • the hydrophilic polymer used in each layer may be the same or different.
  • hydrophilic polymer refers to a polymer that dissolves 0.001 g or more in 100 g of water at 25 ° C.
  • hydrophilic polymers examples include polyvinyl alcohol, polyethyleneimine, gelatin, starch, guar gum, alginate, methylcellulose, ethylcellulose, hydroxyalkylcellulose, carboxyalkylcellulose, polyacrylamide, polyethyleneimine, polyethyleneglycol, polyalkyleneoxide, and polyvinylpyrrolidone (PVP). ), Polyvinyl methyl ether, carboxyvinyl polymer, polyacrylic acid, sodium polyacrylate, naphthalenesulfonic acid condensate, proteins such as albumin and casein, or sugar derivatives such as sodium alginate, dextrin, dextran, dextran sulfate, etc. Among them, polyvinyl alcohol is preferable.
  • the hydrophilic polymer can be used alone or in combination.
  • the polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization in the range of 1500 to 5000.
  • the degree of saponification is preferably in the range of 70 to 100 mol%, particularly preferably in the range of 80 to 99.9 mol%.
  • polyvinyl alcohol a synthetic product or a commercially available product may be used.
  • examples of commercially available products used as polyvinyl alcohol include PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-203, PVA-205, PVA- 210, PVA-217, PVA-220, PVA-224, PVA-235 (above, manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04, JF-05, JP-03, JP-04, JP-05, JP-45 (the above-mentioned, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
  • Each layer constituting the reflective layer unit may contain modified polyvinyl alcohol partially modified in addition to normal polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate, as long as the effects of the present invention are not impaired. .
  • modified polyvinyl alcohol When such a modified polyvinyl alcohol is included, the adhesion, water resistance, and flexibility of the film may be improved.
  • modified polyvinyl alcohol examples include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol-based polymers.
  • vinyl acetate resins for example, “Exeval” manufactured by Kuraray Co., Ltd.
  • polyvinyl acetal resins obtained by reacting polyvinyl alcohol with aldehydes for example, “ESREC” manufactured by Sekisui Chemical Co., Ltd.
  • Modified polyvinyl alcohol for example, “R-1130” manufactured by Kuraray Co., Ltd.
  • modified polyvinyl alcohol resin having an acetoacetyl group in the molecule for example, “Gosefimer (registered trademark) Z / WR series ”
  • Gosefimer (registered trademark) Z / WR series ” examples of the modified polyvinyl alcohol resin.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • the cation-modified polyvinyl alcohol has, for example, primary to tertiary amino groups and quaternary ammonium groups as described in JP-A-61-10483 in the main chain or side chain of the polyvinyl alcohol. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • vinyl alcohol polymer examples include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Each layer constituting the reflective layer unit may contain, in addition to the above-described hydrophilic polymer, other known binder resins as long as the object and effects of the present invention are not impaired.
  • the low refractive index layer and the high refractive index layer preferably contain metal oxide particles.
  • Metal oxide particles in the low refractive index layer first metal oxide particles
  • the metal oxide particles used in the low refractive index layer include synthetic amorphous silica, colloidal silica, and zinc oxide. , Alumina, colloidal alumina and the like.
  • colloidal silica sol, particularly acidic colloidal silica sol is more preferably used, and colloidal silica dispersed in an organic solvent is particularly preferably used.
  • hollow fine particles having voids inside the particles may be used as the metal oxide particles of the low refractive index layer, and hollow fine particles of silicon oxide (silicon dioxide) are particularly preferable.
  • silicon oxide silicon dioxide
  • known metal oxide particles (inorganic oxide particles) other than silicon oxide can be used.
  • the metal oxide particles may be used alone or in combination of two or more.
  • the silicon dioxide particles contained in the low refractive index layer preferably have an average particle diameter (number average: diameter) in the range of 3 to 100 nm.
  • the average particle size of primary particles of silicon dioxide dispersed in the state of primary particles is more preferably in the range of 3 to 50 nm. It is more preferably within the range, particularly preferably within the range of 3 to 20 nm, and most preferably within the range of 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the particle diameter of the silicon dioxide particles contained in the low refractive index layer can be determined by the volume average particle diameter in addition to the primary average particle diameter.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include Snowtex series (Snowtex OS, OXS, S, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries, Ltd.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • hollow particles can be used as the silicon dioxide particles of the low refractive index layer.
  • the average particle pore size is preferably in the range of 3 to 70 nm, more preferably in the range of 5 to 50 nm, and still more preferably in the range of 5 to 45 nm.
  • the average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation. Is obtained.
  • the average particle hole diameter means the minimum distance among the distances between the outer edges of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines.
  • the content of silicon dioxide particles in the low refractive index layer is preferably in the range of 20 to 90% by mass, and in the range of 30 to 85% by mass, based on the total solid content of the low refractive index layer. Is more preferable, and still more preferably in the range of 40 to 80% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, the coatability is good, which is preferable.
  • Metal oxide particles in the high refractive index layer second metal oxide particles
  • the high refractive index layer preferably contains the second metal oxide particles.
  • the second metal oxide particles applied to the high refractive index layer are preferably metal oxide particles different from the first metal oxide particles applied to the low refractive index layer described above.
  • the metal oxide particles used in the high refractive index layer include titanium oxide particles, zirconium oxide particles, zinc oxide particles, alumina particles, colloidal alumina, niobium oxide particles, europium oxide particles, and zircon particles.
  • the metal oxide particles may be used alone or in combination of two or more.
  • the high refractive index layer containing zirconium oxide particles is transparent and can exhibit a higher refractive index. Further, since the photocatalytic activity is low, the light resistance and weather resistance of the high refractive index layer and the adjacent low refractive index layer are increased.
  • zirconium oxide means zirconium dioxide (ZrO 2 ).
  • the zirconium oxide particles may be cubic or tetragonal, or a mixture thereof.
  • the size of the zirconium oxide particles contained in the high refractive index layer is not particularly limited, but can be determined by the volume average particle size or the primary average particle size.
  • the volume average particle diameter of the zirconium oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably in the range of 1 to 100 nm, and still more preferably in the range of 2 to 50 nm. .
  • the primary average particle diameter of the zirconium oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably in the range of 1 to 100 nm, and in the range of 2 to 50 nm. Is more preferable.
  • the volume average particle size or primary average particle size is in the range of 1 to 100 nm, the haze is small and the visible light transmittance is excellent.
  • the volume average particle size refers to a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a particle image appearing on the cross section or surface of the refractive index layer.
  • a volume average particle diameter mv ⁇ (vi ⁇ di) ⁇ / ⁇ (vi ) ⁇
  • mv ⁇ (vi ⁇ di) ⁇ / ⁇ (vi ) ⁇
  • the primary average particle diameter can be measured from an electron micrograph with a transmission electron microscope (TEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
  • TEM transmission electron microscope
  • the primary average particle diameter of the particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, and measuring the particle diameter of 1000 arbitrary particles. And it is calculated
  • the particle size of each particle is represented by a diameter assuming a circle equal to the projected area.
  • zirconium oxide particles particles obtained by modifying the surface of an aqueous zirconium oxide sol so as to be dispersible in an organic solvent or the like may be used.
  • any conventionally known method can be used.
  • a method for preparing zirconium oxide particles or a dispersion thereof any conventionally known method can be used.
  • a method can be used in which a zirconium salt is reacted with an alkali in water to prepare a slurry of zirconium oxide particles, and an organic acid is added to perform hydrothermal treatment. .
  • zirconium oxide particles may be used.
  • SZR-W, SZR-CW, SZR-M, SZR-K, etc. are preferably used.
  • zirconium oxide particles used in the present invention are preferably monodispersed.
  • the content of zirconium oxide particles in the high refractive index layer is not particularly limited, but is preferably in the range of 15 to 95% by mass, and preferably 20 to 90% by mass with respect to the total solid content of the high refractive index layer. More preferably, it is within the range of 30 to 90% by mass. By setting it as the said range, it can be set as the favorable thing of a light reflection characteristic.
  • the total amount of metal oxide particles used in the high refractive index layer (total amount of zirconium oxide particles and high refractive index metal oxide fine particles other than zirconium oxide)
  • the content of zirconium oxide particles is preferably in the range of 80 to 100% by mass, preferably in the range of 90 to 100% by mass, and more preferably 100% by mass.
  • additives applicable to each refractive index layer Various additives applicable to the high refractive index layer and the low refractive index layer are listed below.
  • Lubricants such as fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, pH adjusters such as sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, diethylene glycol, etc.
  • a unit composed of a high refractive index layer and a low refractive index layer can be formed on a resin substrate. Any method can be used.
  • a high refractive index layer and a low refractive index layer are alternately coated on a resin base material and dried to form a laminate.
  • a resin base material e.g., polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl me
  • a high refractive index layer forming coating solution is applied and dried on a resin substrate to form a high refractive index layer, and then a low refractive index layer forming coating solution is applied and dried to form a low refractive index layer.
  • a low refractive index layer is formed on a resin substrate by applying and drying a coating solution for forming a low refractive index layer.
  • a method of forming a reflective layer unit by applying a coating solution for forming a refractive index layer and drying to form a high refractive index layer and sequentially repeating this process.
  • (Iii) Coating for forming a high refractive index layer on a resin substrate A method of forming a reflective layer unit composed of a high refractive index layer and a low refractive index layer having a predetermined number of layers (iv) ) A plurality of layers of a coating solution for forming a high refractive index layer and a coating solution for forming a low refractive index layer are laminated in a wet state on a resin substrate.
  • the method (iv) above which is a simpler manufacturing process, is preferred. That is, the method for forming the reflective layer unit preferably includes laminating a plurality of high refractive index layers and low refractive index layers by an aqueous simultaneous multilayer coating method.
  • Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, a slide using a hopper described in U.S. Pat. Nos. 2,761,419 and 2,761791.
  • a bead coating method or an extrusion coating method is preferably used.
  • the solvent for preparing the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • the present invention it is preferable to add two or more kinds of cationic polymers to the low refractive index layer coating solution in order to reduce haze and suppress cracks.
  • the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the content of the two or more kinds of cationic polymers is, for example, in the range of 0.5 to 20% by mass with respect to the total mass of the metal oxide particles including the silicon oxide particles, and 2 to 20% by mass. %, Preferably 3 to 10% by weight, more preferably 1 to 10% by weight, and more preferably 2 to 5% by weight. It is particularly preferred.
  • organic solvent examples include alcohols such as methanol and ethanol, esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate, ethers such as diethyl ether and propylene glycol monomethyl ether, amides such as dimethylformamide, Or ketones, such as acetone and methyl ethyl ketone, are mentioned.
  • alcohols such as methanol and ethanol
  • esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate
  • ethers such as diethyl ether and propylene glycol monomethyl ether
  • amides such as dimethylformamide
  • ketones such as acetone and methyl ethyl ketone
  • the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
  • the content of water in the mixed solvent is preferably in the range of 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, More preferably, it is within the range of 85 to 99.5% by mass.
  • the concentration of the resin in the coating solution for forming a high refractive index layer is preferably in the range of 0.5 to 10% by mass.
  • the total concentration of the metal oxide particles in the coating solution for forming a high refractive index layer is preferably in the range of 1 to 50% by mass.
  • the concentration of the resin in the coating solution for forming the low refractive index layer is preferably in the range of 0.5 to 10% by mass.
  • the total concentration of the metal oxide particles in the coating solution for forming the low refractive index layer is preferably in the range of 1 to 50% by mass.
  • the method for preparing the coating solution for forming a high refractive index layer is not particularly limited, and for example, metal oxide particles, hydrophilic polymer, for example, polyvinyl alcohol, and other additives that are added as necessary,
  • the method of stirring and mixing is mentioned.
  • the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
  • the method for preparing the coating solution for forming the low refractive index layer is not particularly limited, and for example, metal oxide particles, a hydrophilic polymer, for example, polyvinyl alcohol, and other additives that are added as necessary,
  • the method of stirring and mixing is mentioned.
  • the order of addition of the components is not particularly limited, and the components may be added and mixed sequentially with stirring, or may be added and mixed at one time with stirring.
  • the saponification degrees of polyvinyl alcohol used in the coating solution for forming a high refractive index layer and the coating solution for forming a low refractive index layer are different. By different saponification degrees, mixing of layers can be suppressed in each step of coating and drying.
  • the temperature of the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer in the simultaneous multilayer coating is preferably in the temperature range of 25 to 60 ° C. when using the slide hopper coating method, and is preferably 30 to 45. A temperature range of ° C is more preferred. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
  • the viscosity of the coating solution for forming a high refractive index layer and the coating solution for forming a low refractive index layer during simultaneous multilayer coating is not particularly limited.
  • the slide bead coating method it is preferably in the range of 5 to 160 mPa ⁇ s, more preferably in the range of 60 to 140 mPa ⁇ s, in the preferred temperature range of the coating solution.
  • the curtain coating method it is preferably within the range of 5 to 1200 mPa ⁇ s, and more preferably within the range of 25 to 500 mPa ⁇ s, in the preferable temperature range of the coating solution.
  • the conditions for the coating and drying method are not particularly limited.
  • the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer heated to 30 to 60 ° C. Either one is applied onto a resin substrate and dried to form a layer, and then the other coating solution is applied onto this layer and dried to form a laminated film precursor (unit).
  • drying is preferably performed in the range of wet bulb temperature 5 to 50 ° C. and film surface temperature 5 to 100 ° C. (preferably 10 to 50 ° C.).
  • hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
  • the conditions for the coating and drying method when performing simultaneous multilayer coating are as follows.
  • the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer are heated to 30 to 60 ° C., and then applied onto the resin substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C., and then 10 ° C. It is preferable to dry by the above. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C.
  • the total number of layers of the high-refractive index layer and the low-refractive index layer of the reflective layer unit according to the present invention is 50 layers from the viewpoint of improving visibility (Tvis (a)) from the front. Below, more preferably 45 layers or less. Further, from the viewpoint of peep prevention, the lower limit of the total number of high refractive index layers and low refractive index layers is preferably 15 layers or more, more preferably 20 layers or more.
  • the difference in refractive index between at least two adjacent layers is preferably 0.15 or more, more preferably 0.2 or more, and particularly preferably 0. .21 or more.
  • the upper limit is not particularly limited, but is usually 0.5 or less.
  • This refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain a near-infrared reflectance of 90% or more, if the difference in refractive index is smaller than 0.1, it is necessary to laminate 200 layers or more, which not only lowers productivity but also causes scattering at the lamination interface. Larger, less transparent, and very difficult to manufacture without failure.
  • the refractive index difference between the high refractive index layer and the low refractive index layer is within the range of the preferred refractive index difference. It is preferable. However, for example, in the case where the lowermost layer is formed as an adhesion improving layer with the resin substrate, the lowermost layer may have a configuration outside the range of the preferable refractive index difference.
  • the optical property control film of the present invention has a visible light transmittance (Tvis (a)) of 83% or more when viewed from the normal direction of the optical property control film surface, and the optical property control film surface Visible light transmittance (Tvis (a)) when viewed from the normal direction and visible light transmittance (Tvis (b) when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film ) Ratio satisfies the following relational expression (1) to achieve both visibility when viewed from the front and prevention of peeping.
  • Relational expression (1) 1.4 ⁇ Tvis (a) / Tvis (b) Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is preferably 85% or more, more preferably 87% or more, and visibility when viewed from the front. Excellent.
  • Peep prevention is achieved by adjusting the wavelength of optical interference with a multilayer film in which a high-refractive index layer and a low-refractive index layer are stacked, so that when viewed from the front, the minimum value of the transmission spectrum is viewed in the infrared region and obliquely.
  • the minimum value of the transmission spectrum By designing the minimum value of the transmission spectrum to be in the visible light range, the visibility when viewed from an oblique angle is lowered, and the effect of preventing peeping is exhibited.
  • the preferred range of Tvis (a) / Tvis (b) is within the range of 1.4 to 2.0, more preferably 1.5 to 1. Is within the range of 7.
  • the high refractive index layer preferably has a refractive index in the range of 1.63-1.83, more preferably in the range of 1.70-1.80 at a light wavelength of 589.3 nm.
  • the low refractive index layer preferably has a refractive index in the range of 1.10 to 1.60 at a light wavelength of 589.3 nm, more preferably in the range of 1.40 to 1.60.
  • the thickness per layer (excluding the lowermost layer and the outermost layer) of the refractive index layer is preferably in the range of 20 to 1000 nm, and preferably in the range of 50 to 500 nm. More preferably, it is particularly preferably in the range of 50 to 350 nm.
  • the high refractive index layer of the reflective layer unit It is preferable to adjust the layer thickness within the range of 95 to 120 nm and the thickness of the low refractive index layer within the range of 110 to 135 nm.
  • the optical property control film of the present invention is a conductive layer, antistatic layer for the purpose of adding further functions on the outermost surface facing the reflective layer unit of the resin base material or on the semi-wildflower unit.
  • Layer gas barrier layer, easy adhesion layer (adhesion layer), antifouling layer, deodorant layer, droplet layer, slippery layer, hard coat layer, wear-resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorption layer , Infrared absorbing layer, printed layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, or infrared cut layer (metal layer, liquid crystal layer) other than the above high refractive index layer and low refractive index layer, colored layer (visible light)
  • One or more functional layers such as an absorbing layer may be included.
  • the optical property control film may have a hard coat layer containing a resin that is cured by heat, ultraviolet rays, or the like as a surface protective layer for enhancing the scratch resistance.
  • curable resin used in the hard coat layer examples include a thermosetting resin and an ultraviolet curable resin, but an ultraviolet curable resin is preferable because it is easy to mold, and among them, those having a pencil hardness of at least 2H. More preferred.
  • curable resins can be used singly or in combination of two or more.
  • ultraviolet curable resin examples include (meth) acrylate, urethane acrylate, polyester acrylate, epoxy acrylate, epoxy resin, and oxetane resin, and these can also be used as a solvent-free resin composition.
  • the ultraviolet curable resin it is preferable to add a photopolymerization initiator to accelerate curing.
  • photopolymerization initiators acetophenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, thiuram compounds, or fluoroamines A compound or the like is used.
  • Specific examples of the photopolymerization initiator include 2,2′-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1-hydroxydimethylphenyl ketone, 2-methyl-4′-methylthio-2-mori.
  • Acetophenones such as holinopropiophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone 1, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethylletal, etc.
  • Benzoins benzophenone, 2,4'-dichlorobenzophenone, 4,4'-dichlorobenzophenone, benzophenones such as p-chlorobenzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, an Rakinon acids, or the like thioxanthones.
  • photopolymerization initiators may be used alone, or may be a combination of two or more or a eutectic mixture.
  • acetophenones are preferably used from the viewpoints of stability of the curable composition and polymerization reactivity.
  • photopolymerization initiators Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure (registered trademark) 819, 184, 907, 651 manufactured by BASF Japan.
  • additives for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorants, dyes Alternatively, an adhesion adjusting agent or the like can be contained.
  • the thickness of the hard coat layer is preferably in the range of 0.1 to 50 ⁇ m, preferably in the range of 1 to 20 ⁇ m, from the viewpoints of improving the hard coat properties and improving the transparency of the light reflecting film. Is more preferable.
  • the method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for forming a hard coat layer containing the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured with heat or ultraviolet rays. And a method of forming a hard coat layer.
  • the optical property control film may have layers (other layers) other than the layers described above.
  • an intermediate layer can be provided as the other layer.
  • the intermediate layer means a layer between the resin substrate and the reflective layer unit (the undercoat layer) or a layer between the resin substrate and the hard coat layer.
  • the constituent material of the intermediate layer include polyester resin, polyvinyl alcohol resin, polyvinyl acetate resin, polyvinyl acetal resin, acrylic resin, urethane resin, and the like. Any of them may be used as long as they are satisfied.
  • the glass transition temperature (Tg) of the intermediate layer is preferably in the range of 30 to 120 ° C because sufficient weather resistance can be obtained, and more preferably in the range of 30 to 90 ° C.
  • additives for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorants, pigments, An adhesion regulator or the like can also be contained.
  • the optical property control film of this invention is bonded on the touch panel of the said smart phone or tablet as a peep prevention film of a smart phone or a tablet.
  • an adhesive layer is formed on the surface of the resin substrate of the present invention opposite to the reflective layer unit, and the adhesive layer is pasted to the touch panel via the adhesive layer.
  • Adhesives used in the adhesive layer are urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, polyether methacrylate types, ester methacrylate types. Alternatively, an anaerobic adhesive such as oxidized polyether methacrylate can be used.
  • the pressure-sensitive adhesive may be a one-component type or a two-component type in which two or more components are mixed before use. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the layer thickness after bonding, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed and the like.
  • Specific materials used for the adhesive layer include, for example, “SK Dyne Series” manufactured by Soken Chemical Co., Ltd. “Oribain BPW Series, BPS Series” manufactured by Toyo Ink Co., Ltd. “Arcon” “Superester” “High Pale” manufactured by Arakawa Chemical Co., Ltd. Etc. can be suitably used.
  • PES-M-1 weight average molecular weight 20000, 50% by mass
  • Aqueous solution manufactured by Nitto Bo Medical Co., Ltd.
  • the refractive index at a light wavelength of 589.3 nm of a single layer produced using the coating liquid 1 for forming a low refractive index layer was 1.50.
  • the measuring method of a refractive index is as follows (Hereinafter, in the Example, the refractive index was measured similarly.). (Measurement of single-film refractive index)
  • a sample in which the coating liquid 1 for forming a low refractive index layer is applied as a single layer on a substrate is prepared, and after cutting this sample into 10 cm ⁇ 10 cm, the refractive index is obtained according to the following method. It was.
  • the lowermost layer (resin substrate side) and the uppermost layer are a low refractive index layer (thickness after drying: 108 nm), and the other layers are a low refractive index layer (thickness after drying: 117 nm) and a high refractive index.
  • a reflective layer unit composed of a total of 21 layers was formed so that the layers (thickness after drying: 101 nm) were alternately laminated.
  • ⁇ Preparation of optical property control film 2> (1) Preparation of coating solution 2 for forming a low refractive index layer Methyldiallylamine hydrochloride polymer (including tertiary amine salt) as a cationic polymer in a stirring vessel (PAS-M-1, weight average molecular weight 20000, 50% by mass) Aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 4.0 g, diallyldimethylammonium chloride polymer (including quaternary ammonium group) (PAS-H-5L, weight average molecular weight 30000, 28% by weight aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 5.0 g, 31 g of rinse water, and 31.9 g of boric acid (3 mass% aqueous solution) were mixed.
  • PES-M-1 weight average molecular weight 20000, 50% by mass
  • Aqueous solution manufactured by Nitto Bo Medical Co., Ltd.
  • a microreactor Interdigital single mixing device having a channel width of 40 ⁇ m and a depth of 200 ⁇ m made by IMM (Institue for Microtechnique Milan) is used, the contact interface in the flow direction is 4 mm, and the contact time by the laminar flow is about 1 In milliseconds, zinc sulfide particles were prepared to obtain a dispersion having a solid content of 30% by mass. The obtained particles had an average particle size of 5 nm and a coefficient of variation of 18%.
  • the refractive index of the single layer produced using the coating liquid 2 for forming a high refractive index layer was 1.73.
  • the lowermost layer (resin substrate side) and the uppermost layer are low refractive index layers (thickness after drying: 108 nm), and other layers are low refractive index layers (thickness after drying: 113 nm) and high refractive index.
  • a reflective layer unit composed of a total of 21 layers was formed so that the layers (thickness after drying: 98 nm) were alternately laminated.
  • Preparation of optical property control film 3> (1) Preparation of coating solution 3 for forming a low refractive index layer Methyldiallylamine hydrochloride polymer (including tertiary amine salt) as a cationic polymer in a stirring vessel (PAS-M-1, weight average molecular weight 20000, 50% by mass) Aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 4.0 g, diallyldimethylammonium chloride polymer (including quaternary ammonium group) (PAS-H-5L, weight average molecular weight 30000, 28% by weight aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 5.0 g, 31 g of rinse water, and 31.9 g of boric acid (3 mass% aqueous solution) were mixed.
  • PES-M-1 weight average molecular weight 20000, 50% by mass
  • Aqueous solution manufactured by Nitto Bo Medical Co., Ltd.
  • a dispersion of silica-modified titanium oxide particles was prepared as follows.
  • the titanium sulfate aqueous solution was thermally hydrolyzed by a known method to obtain titanium oxide hydrate.
  • the obtained titanium oxide hydrate was suspended in water to obtain 10 L of an aqueous suspension of titanium oxide hydrate (TiO 2 concentration: 100 g / L).
  • 30 L of an aqueous sodium hydroxide solution (concentration 10 mol / L) was added with stirring, the temperature was raised to 90 ° C., and the mixture was aged for 5 hours.
  • the obtained solution was neutralized with hydrochloric acid, filtered and washed with water to obtain a base-treated titanium compound.
  • the base-treated titanium compound was suspended in pure water and stirred so that the TiO 2 concentration was 20 g / L. Under stirring TiO 2 amount to the addition of 0.4 mole% of the amount of citric acid. The temperature was raised to 95 ° C., concentrated hydrochloric acid was added so that the hydrochloric acid concentration was 30 g / L, and the solution temperature was maintained, followed by stirring for 3 hours.
  • the pH and zeta potential of the obtained mixed liquid were measured, the pH at 25 ° C. was 1.4, and the zeta potential was +40 mV.
  • the particle size was measured by Zetasizer Nano (manufactured by Malvern), the volume average particle size was 35 nm and the monodispersity was 16%. Further, the titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain a particle powder, and X-ray diffraction measurement was performed using JDX-3530 type manufactured by JEOL Datum Co., Ltd. confirmed.
  • silica-modified titanium oxide particles (rutile type) was measured using Zetasizer Nano (manufactured by Malvern), the volume average particle size was 35 nm and the monodispersity was 16%.
  • the refractive index of the single layer produced using the coating liquid 3 for forming a high refractive index layer was 1.73.
  • the lowermost layer (resin substrate side) and the uppermost layer are low refractive index layers (thickness after drying: 108 nm), and other layers are low refractive index layers (thickness after drying: 121 nm) and high refractive index.
  • a reflective layer unit composed of a total of 21 layers was formed such that the layers (thickness after drying: 105 nm) were alternately laminated.
  • optical property control film 4 was similarly prepared except that the layer thickness of the low refractive index layer was changed to 109 nm and the layer thickness of the high refractive index layer was changed to 94 nm and TAC was used as the substrate. Got.
  • optical property control film 7 ⁇ Preparation of optical property control film 7>
  • a polyethylene terephthalate (PET) film Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.
  • PET polyethylene terephthalate
  • the optical characteristic control film 7 was obtained by alternately laminating 60 layers of two different refractive indexes of nylon (refractive index 1.53) and polyester (refractive index 1.57) as a high refractive index layer.
  • the produced optical property control films 1 to 7 were subjected to a visible light transmittance (Tvis () measured from a normal (90 °) direction with respect to a film test piece by a visible light transmittance test defined in JIS S 3107: 2013. a)) and a visible light transmittance (Tvis (b)) measured from a direction inclined by 60 ° from the normal direction.
  • Tvis visible light transmittance
  • the visible light transmittance test was performed based on JIS S 3107: 2013.
  • the measurement of the spectral transmittance was carried out using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO.
  • One application of the film of the present invention is a peep prevention film.
  • When viewing from an angle of 60 °, the characters cannot be read at all, and the effect of preventing peeping is very high. ⁇ : When viewed from an angle of 60 °, the characters are difficult to read, and an effect of preventing peeping is exhibited. ⁇ : Characters can be read even when viewed from an angle of 60 °, and there is no peep prevention effect
  • the optical property control film of the present invention is excellent in visibility from the front (Tvis (a)) and peep prevention, and prevents condensation of moisture assuming a cold region, It is considered that the malfunction of the touch panel is suppressed.
  • the optical property control film of the present invention has excellent visibility from the front and anti-peeping properties, and prevents condensation due to moisture in cold regions. It is used as an optical film.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention addresses the problem of providing an optical property control film which is used in a peep-preventing film for a smartphone or tablet and which has an excellent visibility from the front and suppresses the occurrence of malfunctions in a touch panel caused by moisture condensation, etc. in a cold region. This optical property control film is characterized in that: a reflection layer unit is formed on a resin substrate by laminating a plurality of high-refractive-index layers and low-refractive-index layers which contain hydrophilic polymers and fine particles; the visible light transmittance (Tvis(a)) as seen in a normal direction of the optical property control film surface is 83% or higher; and the ratio of the visible light transmission (Tvis(a)) as seen in a normal direction of the optical property control film surface and the visible light transmission (Tvis(b)) as seen in a direction inclined by 60° with respect to the normal direction of the optical property control film surface satisfies relational expression (1). Relational expression (1) 1.4≤(Tvis(a))/(Tvis(b))

Description

光学特性制御フィルム及びそれを用いた表示装置Optical property control film and display device using the same
 本発明は、光学特性制御フィルム及びそれを用いた表示装置に関する。より詳しくは、スマートフォンやタブレットの覗き見防止フィルムに適用される光学特性制御フィルムであって、正面からの視認性に優れ、かつ寒冷地において水分の凝結等によるタッチパネルの誤作動の発生が抑制された光学特性制御フィルム等に関する。 The present invention relates to an optical property control film and a display device using the same. More specifically, it is an optical property control film that is applied to peep prevention films for smartphones and tablets. It has excellent visibility from the front and prevents touch panel malfunction due to moisture condensation in cold regions. The present invention relates to an optical property control film.
 スマートフォンやタブレットの覗き見防止フィルムとしては、誘電体多層膜を使用した技術として、ポリエステルとナイロンを用いた誘電体多層膜と遮光性の顔料を含む接着剤とからなる覗き見防止フィルムが知られている(例えば、特許文献1参照。)。 As a peep prevention film for smartphones and tablets, as a technology using a dielectric multilayer film, a peep prevention film comprising a dielectric multilayer film using polyester and nylon and an adhesive containing a light-shielding pigment is known. (For example, refer to Patent Document 1).
 スマートフォンやタブレットの覗き見防止フィルムとして用いる場合、特許文献1に記載の誘電体多層膜では屈折率差が小さいため、斜めから見た際の発色を顕著にするためには積層数を増やす必要があり、厚い膜厚が必要であった。また、遮光性顔料を含有するため、正面から見た際に画面がより暗くなってしまうという問題があった。 When used as a peep prevention film for smartphones and tablets, the dielectric multilayer film described in Patent Document 1 has a small difference in refractive index, so it is necessary to increase the number of layers in order to make the color development when viewed obliquely. Yes, a thick film was necessary. Moreover, since the light-shielding pigment is contained, there is a problem that the screen becomes darker when viewed from the front.
 さらに、本発明者の検討によれば、前記誘電体多層膜を使用した覗き見防止フィルムを具備した表示装置では、寒い場所ではタッチパネルの誤作動が起こることが分かった。この原因について調べてみると、近年のスマートフォンやタブレットの画面は高精細化が進んでおり、顔を近づけて操作する場面が増えてきたため、寒い場所では画面にかかった息が、温度の下がっている画面表面で露点に達し、水の微細な凝結が起こる。スマートフォンやタブレットで多く採用されている静電容量式のタッチパネルでは、その微細に凝結した水による静電容量の変化によるものか、タッチしたことによる静電容量の変化なのかを区別できず、誤作動が起こることが分かった。 Further, according to the study of the present inventor, it was found that in a display device equipped with a peep prevention film using the dielectric multilayer film, the touch panel malfunctions in a cold place. Examining this cause, the screens of smartphones and tablets in recent years have become increasingly high-definition, and the number of scenes that can be operated close to the face has increased, so the breath on the screen has dropped in cold places. The dew point is reached on the surface of the screen, and fine condensation of water occurs. Capacitive touch panels often used in smartphones and tablets cannot distinguish whether it is due to changes in capacitance due to finely condensed water or changes in capacitance due to touch. It was found that the operation occurred.
特開2006-168335号公報JP 2006-168335 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、スマートフォンやタブレットの覗き見防止フィルムに適用される光学特性制御フィルムであって、正面からの視認性に優れ、かつ寒冷地において水分の凝結等によるタッチパネルの誤作動の発生が抑制された光学特性制御フィルムを提供することである。 The present invention has been made in view of the above problems and situations, and the solution is an optical property control film applied to a peep prevention film for smartphones and tablets, and has excellent visibility from the front, Another object of the present invention is to provide an optical property control film in which the malfunction of the touch panel due to moisture condensation or the like is suppressed in cold regions.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、樹脂基材上に、親水性ポリマーと微粒子を含有する複数の高屈折率層と低屈折率層とで構成された反射層ユニットを有するフィルムであり、前記フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))が特定の値以上であり、かつ、前記フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))と、前記フィルムの法線方向に対し60°の位置から見たときの可視光線透過率(Tvis(b))の比率が、特定の関係式を満たすことによって、スマートフォンやタブレットの覗き見防止フィルムに適用されたときに、正面からの視認性に優れ、かつ寒冷地において水分の凝結等によるタッチパネルの誤作動の発生が抑制された光学特性制御フィルムが得られることを見出した。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, on the resin substrate, a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles. It is a film having a configured reflection layer unit, and has a visible light transmittance (Tvis (a)) of a specific value or more when viewed from the normal direction of the film surface, and the normal of the film surface The ratio of the visible light transmittance (Tvis (a)) when viewed from the direction and the visible light transmittance (Tvis (b)) when viewed from a position of 60 ° with respect to the normal direction of the film is specified. By satisfying this relational expression, when applied to a peep prevention film for smartphones and tablets, it is highly visible from the front and prevents touch panel malfunction due to moisture condensation in cold regions. Controlling an optical property films were found to be obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.樹脂基材上に、親水性ポリマーと微粒子を含有する複数の高屈折率層と低屈折率層とで構成された反射層ユニットを有する光学特性制御フィルムであって、
 前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))が83%以上であり、かつ、
 前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))と、前記光学特性制御フィルムの法線方向に対し60°傾けた方向から見たときの可視光線透過率(Tvis(b))の比率が、下記関係式(1)を満たすことを特徴とする光学特性制御フィルム。
 関係式(1) 1.4≦Tvis(a)/Tvis(b)
1. An optical property control film having a reflective layer unit composed of a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles on a resin substrate,
Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is 83% or more, and
Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface and visible light when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film A ratio of transmittance (Tvis (b)) satisfies the following relational expression (1): an optical property control film.
Relational expression (1) 1.4 ≦ Tvis (a) / Tvis (b)
 2.前記親水性ポリマーがポリビニルアルコールであり、かつ、前記微粒子が金属酸化物微粒子であることを特徴とする第1項に記載の光学特性制御フィルム。 2. 2. The optical property control film according to item 1, wherein the hydrophilic polymer is polyvinyl alcohol, and the fine particles are metal oxide fine particles.
 3.前記反射層ユニットの高屈折率層の層厚が95~120nmの範囲内であり、かつ、低屈折率層の層厚が110~135nmの範囲内であることを特徴とする第1項又は第2項に記載の光学特性制御フィルム。 3. Item 1 or Item 2 is characterized in that the thickness of the high refractive index layer of the reflective layer unit is in the range of 95 to 120 nm, and the thickness of the low refractive index layer is in the range of 110 to 135 nm. Item 3. The optical property control film according to Item 2.
 4.前記高屈折率層と低屈折率層の合計層数が、20層以上である反射層ユニットを有することを特徴とする第1項から第3項までのいずれか一項に記載の光学特性制御フィルム。 4. The optical characteristic control according to any one of Items 1 to 3, further comprising a reflective layer unit in which the total number of the high refractive index layer and the low refractive index layer is 20 or more. the film.
 5.光波長589.3nmにおける前記高屈折率層の屈折率が1.63~1.83の範囲内であり、かつ、前記低屈折率層の屈折率が1.40~1.60の範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載の光学特性制御フィルム。 5. The refractive index of the high refractive index layer at a light wavelength of 589.3 nm is in the range of 1.63 to 1.83, and the refractive index of the low refractive index layer is in the range of 1.40 to 1.60. The optical property control film according to any one of items 1 to 4, which is characterized in that it exists.
 6.第1項から第5項までのいずれか一項に記載の光学特性制御フィルムを具備したことを特徴とする表示装置。 6. A display device comprising the optical property control film according to any one of items 1 to 5.
 本発明の上記手段により、スマートフォンやタブレットの覗き見防止フィルムに適用される光学特性制御フィルムであって、正面からの視認性に優れ、かつ寒冷地において水分の凝結等によるタッチパネルの誤作動の発生が抑制された光学特性制御フィルムを提供することができる。 By the above means of the present invention, an optical property control film applied to a peep prevention film of a smartphone or a tablet, which has excellent visibility from the front, and the occurrence of malfunction of the touch panel due to condensation of moisture in a cold region. Can be provided.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明の光学特性制御フィルムは、屈折率調整に微粒子を用いることで、高屈折率層と低屈折率層との屈折率差が大きくなるため、同じ層厚でも斜めから見た時の発色がより顕著となる。これにより、層厚を厚くせず、かつ遮光性の顔料も不要となるため、正面から観察した際により明るく見えるようになる。 Since the optical property control film of the present invention uses fine particles to adjust the refractive index, the refractive index difference between the high refractive index layer and the low refractive index layer becomes large. It becomes more prominent. As a result, the layer thickness is not increased, and a light-shielding pigment is not required, so that it looks brighter when observed from the front.
 また、高屈折率層と低屈折率層とを積層した多層膜により光干渉の波長を調整することで、正面から見た時には分光透過率の極小値を赤外域に、斜めから見た時は分光透過率の極小値を可視光域になるように設計することで、覗き見防止効果を発現するものと推察される。 In addition, by adjusting the wavelength of optical interference with a multilayer film in which a high refractive index layer and a low refractive index layer are laminated, when viewed from the front, the minimum value of the spectral transmittance is in the infrared region, and when viewed from an oblique direction. By designing the minimum value of the spectral transmittance to be in the visible light range, it is presumed that a peep prevention effect is exhibited.
 さらに、親水性ポリマーを使用しているため、付着した水分を吸水して水滴を形成させないことでフィルム上への水の凝結を防止し、水滴の形成による静電容量の変化を引き起こさないことにより、タッチパネルの誤作動を防止できるものと推察される。 In addition, because it uses a hydrophilic polymer, it prevents water from condensing on the film by absorbing the adhering water and not forming water droplets, and does not cause a change in capacitance due to water droplet formation. It is assumed that malfunction of the touch panel can be prevented.
本発明の光学特性制御フィルムの構成の一例を示す模式図The schematic diagram which shows an example of a structure of the optical characteristic control film of this invention
 本発明の光学特性制御フィルムは、樹脂基材上に、親水性ポリマーと微粒子を含有する複数の高屈折率層と低屈折率層とで構成された反射層ユニットを有する光学特性制御フィルムであって、前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))が83%以上であり、かつ、前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))と、前記光学特性制御フィルムの法線方向に対し60°傾けた方向から見たときの可視光線透過率(Tvis(b))の比率が、前記関係式(1)を満たすことを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The optical property control film of the present invention is an optical property control film having a reflective layer unit composed of a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles on a resin substrate. The visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is 83% or more, and when viewed from the normal direction of the optical property control film surface The ratio between the visible light transmittance (Tvis (a)) and the visible light transmittance (Tvis (b)) when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film is the relationship described above. The expression (1) is satisfied. This feature is a technical feature common to or corresponding to the embodiments described below.
 本発明の実施態様としては、本発明の効果発現の観点から、前記親水性ポリマーがポリビニルアルコールであり、かつ、前記微粒子が金属酸化物微粒子であることが、吸水性と屈折率を調整する観点から、好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, the hydrophilic polymer is polyvinyl alcohol, and the fine particles are metal oxide fine particles, from the viewpoint of adjusting water absorption and refractive index. Therefore, it is preferable.
 前記反射層ユニットの高屈折率層の層厚が95~120nmの範囲内であり、かつ、低屈折率層の層厚が110~135nmの範囲内であることが、屈折率調整と薄膜化の観点から好ましい。 The thickness of the high refractive index layer of the reflective layer unit is in the range of 95 to 120 nm, and the thickness of the low refractive index layer is in the range of 110 to 135 nm. It is preferable from the viewpoint.
 また、前記高屈折率層と低屈折率層の合計層数が、20層以上である反射層ユニットを有し、光波長589.3nmにおける前記高屈折率層の屈折率が1.63~1.83の範囲内であり、かつ、前記低屈折率層の屈折率が1.40~1.60の範囲内であることが、正面からの視認性と覗き見防止フィルムとしての効果を両立する観点から、好ましい。 Further, the reflective layer unit has a total number of the high refractive index layer and the low refractive index layer of 20 or more, and the refractive index of the high refractive index layer at a light wavelength of 589.3 nm is 1.63 to 1 .83 and the refractive index of the low refractive index layer is in the range of 1.40 to 1.60, both the visibility from the front and the effect as a peep prevention film are compatible. From the viewpoint, it is preferable.
 本発明の表示装置は、前記光学特性制御フィルムを具備したことを特徴とし、スマートフォンやタブレットの覗き見防止フィルムとして好適に用いることができる。 The display device of the present invention is characterized by comprising the optical property control film, and can be suitably used as a peep prevention film for smartphones and tablets.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明の光学特性制御フィルムの概要≫
 本発明の光学特性制御フィルムは、樹脂基材上に、親水性ポリマーと微粒子を含有する複数の高屈折率層と低屈折率層とで構成された反射層ユニットを有する光学特性制御フィルムであって、前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))が83%以上であり、かつ、前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))と、前記光学特性制御フィルムの法線方向に対し60°傾けた方向から見たときの可視光線透過率(Tvis(b))の比率が、下記関係式(1)を満たすことを特徴とする。
<< Outline of Optical Property Control Film of the Present Invention >>
The optical property control film of the present invention is an optical property control film having a reflective layer unit composed of a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles on a resin substrate. The visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is 83% or more, and when viewed from the normal direction of the optical property control film surface The ratio of visible light transmittance (Tvis (a)) to visible light transmittance (Tvis (b)) when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film The expression (1) is satisfied.
 関係式(1) 1.4≦Tvis(a)/Tvis(b)
 ここで、「可視光線透過率」とは、JIS S 3107:2013に規定される可視光線透過率試験によって得られる値である。本発明では、フィルム試験片に対して法線(90°)方向から測定した可視光線透過率(Tvis(a))と、当該法線方向から60°傾けた方向から測定した可視光線透過率(Tvis(b))の値を用いる。
Relational expression (1) 1.4 ≦ Tvis (a) / Tvis (b)
Here, the “visible light transmittance” is a value obtained by a visible light transmittance test defined in JIS S 3107: 2013. In the present invention, the visible light transmittance (Tvis (a)) measured from the normal (90 °) direction with respect to the film specimen and the visible light transmittance (Tvis (a)) measured from a direction inclined by 60 ° from the normal direction ( The value of Tvis (b)) is used.
 <可視光線透過率試験概要>
 試験片は、厚さ3mmの板ガラスにこれと同じ寸法のフィルムを気泡が入らないように均一に貼り付けて作製する。なお、その大きさは、測定機器に適した寸法とする。試験片の前処理は、24時間以上静置する。
<Outline of visible light transmittance test>
The test piece is produced by uniformly attaching a film having the same dimensions to a 3 mm-thick plate glass so that air bubbles do not enter. In addition, the magnitude | size shall be a dimension suitable for a measuring instrument. The test piece is pretreated for 24 hours or longer.
 可視光線透過率(Tvis)は、例えば、日本分光(株)製紫外可視近赤外分光光度計V-670等の分光光度計用い、角度を変えて光波長380~780nmの透過スペクトルをそれぞれ測定し、光波長ごとに重価係数をかけて加重平均して求める。 Visible light transmittance (Tvis) is measured with a spectrophotometer such as the UV-Vis near-infrared spectrophotometer V-670 manufactured by JASCO Corporation, and the transmission spectrum of light wavelengths 380 to 780 nm is measured at different angles. The weighted average is obtained by multiplying the weight coefficient for each light wavelength.
 詳しくは、可視光線透過率(Tvis)は上記分光光度計を用い、ISO 9050に規定する試験方法によって求める当該JIS S 3107:2013に記載の表8に規定する各波長380~780nmの分光透過率[T(λ)]を測定し、CIE昼光D65の分光分布、CIE明順応標準比視感度の波長分布及び波長間隔から得られる重価係数[DλV(λ)Δλ]を乗じて加重平均して求める。前記重価係数[DλV(λ)Δλ]は、JIS S 3107:2013の前記表8に規定する値を用いる。 Specifically, the visible light transmittance (Tvis) is determined by the test method defined in ISO 9050 using the above spectrophotometer, and the spectral transmittance of each wavelength 380 to 780 nm defined in Table 8 described in JIS S 3107: 2013. [T (λ)] is measured and multiplied by the weight distribution coefficient [D λ V (λ) Δλ] obtained from the spectral distribution of the CIE daylight D 65 , the wavelength distribution of the CIE light adaptation standard relative luminous sensitivity, and the wavelength interval. Obtained by weighted average. Said heavy valence coefficient [D λ V (λ) Δλ ] is, JIS S 3107: using the values specified in Table 8 of 2013.
 本発明の光学特性制御フィルムの構成の一例を図によって説明する。 An example of the configuration of the optical property control film of the present invention will be described with reference to the drawings.
 図1は、本発明の光学特性制御フィルムの構成の一例を示す模式図である。 FIG. 1 is a schematic diagram showing an example of the configuration of the optical property control film of the present invention.
 本発明の光学特性制御フィルム1は、基材である透明樹脂基材2上に、反射層ユニット3として、低屈折率層3a及び高屈折率層3bを積層した構成であることが好ましい。透明樹脂基材2の裏面には、粘着層、帯電防止層やバックコート層を設けてもよく、透明樹脂フィルム2と反射層ユニット3の間には下引層を設けてもよい。また、反射層ユニット3上に傷付き防止のためや滑り性のために、必要であれば微粒子を含有するハードコート層4等を積層してもよい。 The optical property control film 1 of the present invention preferably has a configuration in which a low refractive index layer 3a and a high refractive index layer 3b are laminated as a reflective layer unit 3 on a transparent resin substrate 2 as a substrate. An adhesive layer, an antistatic layer, and a backcoat layer may be provided on the back surface of the transparent resin substrate 2, and an undercoat layer may be provided between the transparent resin film 2 and the reflective layer unit 3. Further, a hard coat layer 4 containing fine particles may be laminated on the reflective layer unit 3 if necessary for preventing scratches or slipping.
 ≪光学特性制御フィルムの構成≫
 1.透明樹脂基材
 本発明の光学特性制御フィルムに用いられる基材としては、透明樹脂基材であることが好ましく、特に限定されるものではない。
≪Configuration of optical property control film≫
1. Transparent resin substrate The substrate used in the optical property control film of the present invention is preferably a transparent resin substrate, and is not particularly limited.
 透明樹脂基材として使用できる樹脂としては特に制限はなく、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、環状オレフィン系樹脂等のポリオレフィン類樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルフォン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド樹脂、アクリル樹脂、トリアセチルセルロース(TAC)等が挙げられる。 There is no restriction | limiting in particular as resin which can be used as a transparent resin base material, For example, polyester-type resins, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and modified polyester, polyethylene (PE), polypropylene (PP), polystyrene ( PS), polyolefin resins such as cyclic olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC ), Polyamide, polyimide resin, acrylic resin, triacetyl cellulose (TAC) and the like.
 これらの樹脂は、単独で使用してもよいし、複数を併用してもよい。 These resins may be used alone or in combination.
 樹脂基材の厚さ、種類は、本発明の光学特性制御フィルムの可視光線透過率の特性を満たす範囲で選択されるものであれば、特に限定されるものではない。 The thickness and type of the resin base material are not particularly limited as long as they are selected within a range that satisfies the visible light transmittance characteristics of the optical property control film of the present invention.
 樹脂基材の厚さは、5~200μm程度が好ましく、更に好ましくは15~150μmである。樹脂基材は、2枚以上を重ねたものであってもよく、この際、樹脂基材の種類は同じでもよいし異なっていてもよい。 The thickness of the resin base material is preferably about 5 to 200 μm, more preferably 15 to 150 μm. Two or more resin substrates may be stacked, and in this case, the type of the resin substrate may be the same or different.
 また、樹脂基材は、JIS R 3106:1998で示される可視光領域の透過率としては85%以上であることが好ましく、特に90%以上であることが好ましい。樹脂基材が上記透過率以上であることは、フィルム法線方向での本発明に係る可視光線透過率を、83%以上に調整しやすくする観点から、好ましい。 Further, the resin base material preferably has a transmittance in the visible light region represented by JIS R 3106: 1998 of 85% or more, and particularly preferably 90% or more. It is preferable that the resin base material has the above transmittance or more from the viewpoint of easily adjusting the visible light transmittance according to the present invention in the film normal direction to 83% or more.
 また、上記樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。 The resin substrate may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
 樹脂基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を1軸延伸、テンター式逐次2軸延伸、テンター式同時2軸延伸、チューブラー式同時2軸延伸などの公知の方法により、基材の流れ(縦軸)方向、又は基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、樹脂基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 The resin base material can be manufactured by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and the like (vertical axis) direction of the base material, Or the extending | stretching base material can be manufactured by extending | stretching in the orthogonal | vertical (horizontal axis) direction with the flow direction of a base material. The draw ratio in this case can be appropriately selected according to the resin as the raw material of the resin base material, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 また、樹脂基材は、寸法安定性の観点から、弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は樹脂基材の延伸製膜工程中の熱固定した後、横延伸のテンター内、又はテンターを出た後の巻き取りまでの工程で行われるのが好ましい。 In addition, the resin base material may be subjected to relaxation treatment or offline heat treatment from the viewpoint of dimensional stability. The relaxation treatment is preferably carried out in the process from the heat setting in the stretching film-forming process of the resin base material to the winding in the transverse stretching tenter or after exiting the tenter.
 弛緩処理は、処理温度が80~200℃の範囲内で行われることが好ましく、より好ましくは処理温度が100~180℃の範囲内である。 The relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., and more preferably at a treatment temperature in the range of 100 to 180 ° C.
 また、長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲内で行われることが好ましく、より好ましくは弛緩率が2~6%の範囲内で処理されることである。 Further, it is preferable that the relaxation rate is in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is in the range of 2 to 6%.
 弛緩処理された樹脂基材は、オフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。 The relaxation-treated resin base material is improved in heat resistance by being subjected to off-line heat treatment, and further has good dimensional stability.
 樹脂基材は、製膜過程で片面又は両面にインラインで下引層形成用塗布液を塗布することが、好ましい。本発明においては、製膜工程中での下引塗布をインライン下引という。本発明に有用な下引層形成用塗布液に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂、又はゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、又はスプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01~2g/m(乾燥状態)程度が好ましい。 It is preferable to apply the coating liquid for forming the undercoat layer inline on one side or both sides of the resin base material during the film forming process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating. Resins used for the coating solution for forming the undercoat layer useful in the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins, polyvinyl Examples include alcohol resin, modified polyvinyl alcohol resin, gelatin, and the like, and any of them can be preferably used. A conventionally well-known additive can also be added to these undercoat layers. The undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating, or spray coating. The coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
 2.反射層ユニット
 本発明に係る反射層ユニットは、親水性ポリマーと微粒子を含有し、かつ屈折率の異なる層が2層以上積層されたものである。当該微粒子は金属酸化物粒子を用いることが好ましい。
2. Reflective Layer Unit The reflective layer unit according to the present invention is a laminate in which two or more layers containing a hydrophilic polymer and fine particles and having different refractive indexes are laminated. The fine particles are preferably metal oxide particles.
 反射層ユニットは、高屈折率層と低屈折率層とが交互に積層された積層体であることが好ましい形態である。ここで、「高屈折率層」及び「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い層を高屈折率層とし、屈折率が低い層を低屈折率層とすることを意味する。したがって、「高屈折率層」及び「低屈折率層」なる用語は、光反射フィルムを構成する各屈折率層において、隣接する二つの屈折率層に着目した場合に、各層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。 The reflective layer unit is preferably a laminate in which high refractive index layers and low refractive index layers are alternately laminated. Here, the terms “high refractive index layer” and “low refractive index layer” mean that when a difference in refractive index between two adjacent layers is compared, a layer with a high refractive index is a high refractive index layer and a refractive index is low. It means that the layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” mean that each refractive index layer constituting the light reflecting film has the same refractive index when attention is paid to two adjacent refractive index layers. It includes any form other than the form it has.
 反射層ユニットにおいて、低屈折率層は、主には親水性ポリマーと第1の金属酸化物粒子とから構成され、高屈折率層は、主には親水性ポリマーと第2の金属酸化物粒子とから構成されていることが好ましい。各層において用いられる親水性ポリマーは、同一であっても異なっていてもよい。 In the reflective layer unit, the low refractive index layer is mainly composed of a hydrophilic polymer and first metal oxide particles, and the high refractive index layer is mainly composed of a hydrophilic polymer and second metal oxide particles. It is preferable that it is comprised from these. The hydrophilic polymer used in each layer may be the same or different.
 〔1〕親水性ポリマー
 本発明において、親水性ポリマーとは、25℃の水100gに0.001g以上溶解するポリマーのことをいう。
[1] Hydrophilic polymer In the present invention, the hydrophilic polymer refers to a polymer that dissolves 0.001 g or more in 100 g of water at 25 ° C.
 親水性ポリマーとしては、ポリビニルアルコール、ポリエチレンイミン、ゼラチン、デンプン、グアーガム、アルギン酸塩、メチルセルロース、エチルセルロース、ヒドロキシアルキルセルロース、カルボキシアルキルセルロース、ポリアクリルアミド、ポリエチレンイミン、ポリエチレングリコール、ポリアルキレンオキサイド、ポリビニルピロリドン(PVP)、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸、ポリアクリル酸ナトリウム、ナフタリンスルホン酸縮合物や、アルブミン、カゼイン等の蛋白質、又はアルギン酸ソーダ、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体などを挙げられ、中でも、ポリビニルアルコールが好ましい。 Examples of hydrophilic polymers include polyvinyl alcohol, polyethyleneimine, gelatin, starch, guar gum, alginate, methylcellulose, ethylcellulose, hydroxyalkylcellulose, carboxyalkylcellulose, polyacrylamide, polyethyleneimine, polyethyleneglycol, polyalkyleneoxide, and polyvinylpyrrolidone (PVP). ), Polyvinyl methyl ether, carboxyvinyl polymer, polyacrylic acid, sodium polyacrylate, naphthalenesulfonic acid condensate, proteins such as albumin and casein, or sugar derivatives such as sodium alginate, dextrin, dextran, dextran sulfate, etc. Among them, polyvinyl alcohol is preferable.
 その他、親水性ポリマーとしては、特開2012-27288号公報、特開2012-139938号公報、特開2012-185342号公報、特開2012-215733号公報、特開2012-220708号公報、特開2012-242644号公報、特開2012-252137号公報、特開2013-4916号公報、特開2013-97248号公報、特開2013-148849号公報、特開2014-89347号公報、特開2014-201450号公報、特開2014-215513号公報等に記載のものが挙げられる。 In addition, as the hydrophilic polymer, JP 2012-27288 A, JP 2012-139938 A, JP 2012-185342 A, JP 2012-215733 A, JP 2012-220708 A, JP JP2012-242644, JP2012-252137, JP2013-4916, JP2013-97248, JP2013-148849, JP2014-89347, JP2014 Examples described in JP2013450A, JP2014215513A, and the like.
 親水性ポリマーは、単独で、又は併用することができる。 The hydrophilic polymer can be used alone or in combination.
 ポリ酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1000以上であることが好ましく、平均重合度が1500~5000の範囲内であることが特に好ましい。 The polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate preferably has an average degree of polymerization of 1000 or more, and particularly preferably has an average degree of polymerization in the range of 1500 to 5000.
 また、ケン化度は、70~100mol%の範囲内であることが好ましく、80~99.9mol%の範囲内であることが特に好ましい。 The degree of saponification is preferably in the range of 70 to 100 mol%, particularly preferably in the range of 80 to 99.9 mol%.
 ポリビニルアルコールとしては、合成品を用いてもよいし市販品を用いてもよい。ポリビニルアルコールとして用いられる市販品の例としては、PVA-102、PVA-103、PVA-105、PVA-110、PVA-117、PVA-120、PVA-124、PVA-203、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-235(以上、株式会社クラレ製)、JC-25、JC-33、JF-03、JF-04、JF-05、JP-03、JP-04、JP-05、JP-45(以上、日本酢ビ・ポバール株式会社製)等が挙げられる。 As the polyvinyl alcohol, a synthetic product or a commercially available product may be used. Examples of commercially available products used as polyvinyl alcohol include PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-203, PVA-205, PVA- 210, PVA-217, PVA-220, PVA-224, PVA-235 (above, manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04, JF-05, JP-03, JP-04, JP-05, JP-45 (the above-mentioned, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
 反射層ユニットを構成する各層は、本発明の効果を損なわない範囲で、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、一部が変性された変性ポリビニルアルコールを含んでもよい。このような変性ポリビニルアルコールを含むと、膜の密着性や耐水性、柔軟性が改良される場合がある。 Each layer constituting the reflective layer unit may contain modified polyvinyl alcohol partially modified in addition to normal polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate, as long as the effects of the present invention are not impaired. . When such a modified polyvinyl alcohol is included, the adhesion, water resistance, and flexibility of the film may be improved.
 変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、又はビニルアルコール系ポリマーが挙げられる。また、酢酸ビニル系樹脂(例えば、株式会社クラレ製「エクセバール」)、ポリビニルアルコールにアルデヒドを反応させて得られるポリビニルアセタール樹脂(例えば、積水化学工業株式会社製「エスレック」)、シラノール基を有するシラノール変性ポリビニルアルコール(例えば、株式会社クラレ製「R-1130」)、分子内にアセトアセチル基を有する変性ポリビニルアルコール系樹脂(例えば、日本合成化学工業株式会社製「ゴーセファイマー(登録商標)Z/WRシリーズ」)等もポリビニルアルコール系樹脂に含まれる。 Examples of the modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonion-modified polyvinyl alcohol, and vinyl alcohol-based polymers. Also, vinyl acetate resins (for example, “Exeval” manufactured by Kuraray Co., Ltd.), polyvinyl acetal resins obtained by reacting polyvinyl alcohol with aldehydes (for example, “ESREC” manufactured by Sekisui Chemical Co., Ltd.), silanols having silanol groups Modified polyvinyl alcohol (for example, “R-1130” manufactured by Kuraray Co., Ltd.), modified polyvinyl alcohol resin having an acetoacetyl group in the molecule (for example, “Gosefimer (registered trademark) Z / WR series ") and the like are also included in the polyvinyl alcohol resin.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び同63-307979号公報に記載されているようなビニルアルコールと水溶性基を有するビニル化合物との共重合体、及び特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されているような疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、又はアセトアセチル基やカルボニル基、カルボキシ基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. A block copolymer of a vinyl compound having a hydrophobic group and vinyl alcohol as described, a silanol-modified polyvinyl alcohol having a silanol group, or a reaction having a reactive group such as an acetoacetyl group, a carbonyl group, or a carboxy group And a functional group-modified polyvinyl alcohol.
 カチオン変性ポリビニルアルコールは、例えば、特開昭61-10483号公報に記載されているような、第1級~第3級アミノ基や第4級アンモニウム基を上記ポリビニルアルコールの主鎖又は側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 The cation-modified polyvinyl alcohol has, for example, primary to tertiary amino groups and quaternary ammonium groups as described in JP-A-61-10483 in the main chain or side chain of the polyvinyl alcohol. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 ビニルアルコール系ポリマーとしては、エクセバール(商品名:株式会社クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業株式会社製)などが挙げられる。 Examples of the vinyl alcohol polymer include EXEVAL (trade name: manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 反射層ユニットを構成する各層は、上記説明した親水性ポリマー以外に、本発明の目的効果を損なわない範囲でその他公知のバインダー樹脂を含んでいてもよい。 Each layer constituting the reflective layer unit may contain, in addition to the above-described hydrophilic polymer, other known binder resins as long as the object and effects of the present invention are not impaired.
 〔2〕金属酸化物粒子
 本発明において、低屈折率層及び高屈折率層は、金属酸化物粒子を含有することが好ましい。
[2] Metal oxide particles In the present invention, the low refractive index layer and the high refractive index layer preferably contain metal oxide particles.
 〔2.1〕低屈折率層中の金属酸化物粒子:第1の金属酸化物粒子
 低屈折率層に用いられる金属酸化物粒子としては、例えば、合成非晶質シリカ、コロイダルシリカ、酸化亜鉛、アルミナ、コロイダルアルミナ等が挙げられる。これらのうち、コロイダルシリカゾル、特に酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカを用いることが特に好ましい。
[2.1] Metal oxide particles in the low refractive index layer: first metal oxide particles Examples of the metal oxide particles used in the low refractive index layer include synthetic amorphous silica, colloidal silica, and zinc oxide. , Alumina, colloidal alumina and the like. Of these, colloidal silica sol, particularly acidic colloidal silica sol is more preferably used, and colloidal silica dispersed in an organic solvent is particularly preferably used.
 また、屈折率をより低減させるために、低屈折率層の金属酸化物粒子として、粒子の内部に空孔を有する中空微粒子を用いてもよく、特に酸化ケイ素(二酸化ケイ素)の中空微粒子が好ましい。また、酸化ケイ素以外の公知の金属酸化物粒子(無機酸化物粒子)も使用することができる。 In order to further reduce the refractive index, hollow fine particles having voids inside the particles may be used as the metal oxide particles of the low refractive index layer, and hollow fine particles of silicon oxide (silicon dioxide) are particularly preferable. . Also, known metal oxide particles (inorganic oxide particles) other than silicon oxide can be used.
 屈折率を調整するため、金属酸化物粒子は、1種単独で用いてもよいし、2種以上を併用してもよい。 In order to adjust the refractive index, the metal oxide particles may be used alone or in combination of two or more.
 低屈折率層に含まれる二酸化ケイ素粒子は、その平均粒径(個数平均:直径)が3~100nmの範囲内であることが好ましい。1次粒子の状態で分散された二酸化ケイ素の1次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmの範囲内であることがより好ましく、3~40nmの範囲内であることが更に好ましく、3~20nmの範囲内であることが特に好ましく、4~10nmの範囲内であることが最も好ましい。また、2次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The silicon dioxide particles contained in the low refractive index layer preferably have an average particle diameter (number average: diameter) in the range of 3 to 100 nm. The average particle size of primary particles of silicon dioxide dispersed in the state of primary particles (particle size in the dispersion state before coating) is more preferably in the range of 3 to 50 nm. It is more preferably within the range, particularly preferably within the range of 3 to 20 nm, and most preferably within the range of 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 また、低屈折率層に含まれる二酸化ケイ素粒子の粒径は、1次平均粒径の他に、体積平均粒径により求めることもできる。 Further, the particle diameter of the silicon dioxide particles contained in the low refractive index layer can be determined by the volume average particle diameter in addition to the primary average particle diameter.
 本発明で用いられるコロイダルシリカは、ケイ酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、国際公開第94/26530号などに記載されているものである。 The colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091 JP, 60-219083, JP 60-218904, JP 61-20792, JP 61-188183, JP 63-17807, JP 4-207 No. 93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 Described in Japanese Patent Laid-Open No. 7-179029, Japanese Patent Laid-Open No. 7-137431, International Publication No. 94/26530, etc. A.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業株式会社から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include Snowtex series (Snowtex OS, OXS, S, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries, Ltd.
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、Mg又はBa等で処理されたものであってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 また、低屈折率層の二酸化ケイ素粒子としては、上述のように、中空粒子を用いることもできる。中空微粒子を用いる場合には、平均粒子空孔径が、3~70nmの範囲内であると好ましく、5~50nmの範囲内であるとより好ましく、5~45nmの範囲内であると更に好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。 Moreover, as described above, hollow particles can be used as the silicon dioxide particles of the low refractive index layer. When hollow fine particles are used, the average particle pore size is preferably in the range of 3 to 70 nm, more preferably in the range of 5 to 50 nm, and still more preferably in the range of 5 to 45 nm. The average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. If the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered.
 平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形又は実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径は、円形、楕円形又は実質的に円形若しくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation. Is obtained. The average particle hole diameter means the minimum distance among the distances between the outer edges of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines.
 低屈折率層における二酸化ケイ素粒子の含有量は、低屈折率層の全固形分に対して、20~90質量%の範囲内であることが好ましく、30~85質量%の範囲内であることがより好ましく、40~80質量%の範囲内であることが更に好ましい。20質量%以上であると、所望の屈折率が得られ90質量%以下であると塗布性が良好となり好ましい。 The content of silicon dioxide particles in the low refractive index layer is preferably in the range of 20 to 90% by mass, and in the range of 30 to 85% by mass, based on the total solid content of the low refractive index layer. Is more preferable, and still more preferably in the range of 40 to 80% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 90% by mass or less, the coatability is good, which is preferable.
 〔2.2〕高屈折率層中の金属酸化物粒子:第2の金属酸化物粒子
 高屈折率層においては、第2の金属酸化物粒子を含有することが好ましい。高屈折率層に適用する第2の金属酸化物粒子としては、上記説明した低屈折率層に適用する第1の金属酸化物粒子とは異なる金属酸化物粒子であることが好ましい。
[2.2] Metal oxide particles in the high refractive index layer: second metal oxide particles The high refractive index layer preferably contains the second metal oxide particles. The second metal oxide particles applied to the high refractive index layer are preferably metal oxide particles different from the first metal oxide particles applied to the low refractive index layer described above.
 高屈折率層に用いられる金属酸化物粒子としては、酸化チタン粒子、酸化ジルコニウム粒子、酸化亜鉛粒子、アルミナ粒子、コロイダルアルミナ、酸化ニオブ粒子、酸化ユウロピウム粒子、ジルコン粒子等を挙げられる。上記金属酸化物粒子は、それぞれ1種単独で用いても、又は2種以上混合して用いてもよい。上記金属酸化物粒子の中でも、酸化ジルコニウム粒子を含有することが好ましい。酸化ジルコニウム粒子を含む高屈折率層は、透明でより高い屈折率を発現することができる。また、光触媒活性が低いことから、高屈折率層や隣接した低屈折率層の耐光性、耐候性が高くなる。なお、本発明において、酸化ジルコニウムとは二酸化ジルコニウム(ZrO)を意味する。 Examples of the metal oxide particles used in the high refractive index layer include titanium oxide particles, zirconium oxide particles, zinc oxide particles, alumina particles, colloidal alumina, niobium oxide particles, europium oxide particles, and zircon particles. The metal oxide particles may be used alone or in combination of two or more. Among the metal oxide particles, it is preferable to contain zirconium oxide particles. The high refractive index layer containing zirconium oxide particles is transparent and can exhibit a higher refractive index. Further, since the photocatalytic activity is low, the light resistance and weather resistance of the high refractive index layer and the adjacent low refractive index layer are increased. In the present invention, zirconium oxide means zirconium dioxide (ZrO 2 ).
 酸化ジルコニウム粒子は、立方晶でも正方晶であってもよく、また、それらの混合物であってもよい。 The zirconium oxide particles may be cubic or tetragonal, or a mixture thereof.
 高屈折率層に含まれる酸化ジルコニウム粒子の大きさは、特に制限されるものではないが、体積平均粒径又は1次平均粒径により求めることができる。高屈折率層で用いられる酸化ジルコニウム粒子の体積平均粒径は、100nm以下であることが好ましく、1~100nmの範囲内であることがより好ましく、2~50nmの範囲内であることが更に好ましい。 The size of the zirconium oxide particles contained in the high refractive index layer is not particularly limited, but can be determined by the volume average particle size or the primary average particle size. The volume average particle diameter of the zirconium oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably in the range of 1 to 100 nm, and still more preferably in the range of 2 to 50 nm. .
 また、高屈折率層で用いられる酸化ジルコニウム粒子の1次平均粒径は、100nm以下であることが好ましく、1~100nmの範囲内であることがより好ましく、2~50nmの範囲内であることが更に好ましい。 The primary average particle diameter of the zirconium oxide particles used in the high refractive index layer is preferably 100 nm or less, more preferably in the range of 1 to 100 nm, and in the range of 2 to 50 nm. Is more preferable.
 体積平均粒径又は1次平均粒径が1~100nmの範囲内であれば、ヘイズが少なく可視光透過性に優れている。 When the volume average particle size or primary average particle size is in the range of 1 to 100 nm, the haze is small and the visible light transmittance is excellent.
 なお、本発明において、体積平均粒径は、粒子そのものをレーザー回折散乱法、動的光散乱法、又は電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1000個の任意の粒子の粒径を測定し、それぞれd1、d2、・・・、di、・・・、dkの粒径を持つ粒子がそれぞれn1、n2、・・・、ni、・・・、nk個存在する粒子の集団において、粒子1個あたりの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径を算出することによって求めることができる。 In the present invention, the volume average particle size refers to a method of observing the particle itself using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, or a particle image appearing on the cross section or surface of the refractive index layer. By measuring with an electron microscope, the particle size of 1000 arbitrary particles is measured, and particles having particle sizes of d1, d2,..., Di,. .., Ni,..., Nk, a volume average particle diameter mv = {Σ (vi · di)} / {Σ (vi )} Can be obtained by calculating the average particle size weighted by the volume.
 また、1次平均粒径は、透過型電子顕微鏡(TEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。 Further, the primary average particle diameter can be measured from an electron micrograph with a transmission electron microscope (TEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
 透過型電子顕微鏡から求める場合、粒子の1次平均粒径は、粒子そのもの、又は屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで、個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 When obtained from a transmission electron microscope, the primary average particle diameter of the particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, and measuring the particle diameter of 1000 arbitrary particles. And it is calculated | required as the simple average value (number average). Here, the particle size of each particle is represented by a diameter assuming a circle equal to the projected area.
 また、酸化ジルコニウム粒子としては、水系の酸化ジルコニウムゾルの表面を変性して有機溶剤等に分散可能な状態にしたものを用いてもよい。 Further, as the zirconium oxide particles, particles obtained by modifying the surface of an aqueous zirconium oxide sol so as to be dispersible in an organic solvent or the like may be used.
 酸化ジルコニウム粒子又はその分散液の調製方法としては、従来公知のいずれの方法も用いることができる。例えば、特開2014-80361号公報に記載されるように、ジルコニウム塩を水中にてアルカリと反応させて、酸化ジルコニウム粒子のスラリーを調製し、有機酸を加えて水熱処理する方法が用いられうる。 As a method for preparing zirconium oxide particles or a dispersion thereof, any conventionally known method can be used. For example, as described in JP-A-2014-80361, a method can be used in which a zirconium salt is reacted with an alkali in water to prepare a slurry of zirconium oxide particles, and an organic acid is added to perform hydrothermal treatment. .
 酸化ジルコニウム粒子は、市販のものを使用してもよく、例えば、SZR-W、SZR-CW、SZR-M、及びSZR-K等(以上、堺化学工業株式会社製)を好適に使用することができる。 Commercially available zirconium oxide particles may be used. For example, SZR-W, SZR-CW, SZR-M, SZR-K, etc. (above, manufactured by Sakai Chemical Industry Co., Ltd.) are preferably used. Can do.
 さらに、本発明で用いられる酸化ジルコニウム粒子は、単分散であることが好ましい。 Furthermore, the zirconium oxide particles used in the present invention are preferably monodispersed.
 高屈折率層における酸化ジルコニウム粒子の含有量としては、特に制限されないが、高屈折率層の全固形分に対して、15~95質量%の範囲内であることが好ましく、20~90質量%の範囲内であることがより好ましく、30~90質量%の範囲内であることが更に好ましい。上記範囲とすることで、光反射特性の良好なものとできる。 The content of zirconium oxide particles in the high refractive index layer is not particularly limited, but is preferably in the range of 15 to 95% by mass, and preferably 20 to 90% by mass with respect to the total solid content of the high refractive index layer. More preferably, it is within the range of 30 to 90% by mass. By setting it as the said range, it can be set as the favorable thing of a light reflection characteristic.
 なお、酸化ジルコニウムと他の金属酸化物微粒子を組み合わせる場合、高屈折率層に用いられる金属酸化物粒子の総量(酸化ジルコニウム粒子と上記酸化ジルコニウム以外の高屈折率金属酸化物微粒子との合計量)に対して、酸化ジルコニウム粒子の含有量は80~100質量%の範囲内であることが好ましく、90~100質量%の範囲内であることが好ましく、100質量%であることが更に好ましい。 When combining zirconium oxide with other metal oxide fine particles, the total amount of metal oxide particles used in the high refractive index layer (total amount of zirconium oxide particles and high refractive index metal oxide fine particles other than zirconium oxide) On the other hand, the content of zirconium oxide particles is preferably in the range of 80 to 100% by mass, preferably in the range of 90 to 100% by mass, and more preferably 100% by mass.
 〔2.3〕各屈折率層に適用可能なその他の添加剤
 高屈折率層及び低屈折率層に適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、特開昭62-261476号公報等に記載の紫外線吸収剤、特開昭57-74192号、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、特開平3-13376号公報等に記載の退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、特開平4-219266号公報等に記載の蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、ポリエステル樹脂、減粘剤、滑剤、赤外線吸収剤、色素、又は顔料等の公知の各種添加剤などが挙げられる。
[2.3] Other additives applicable to each refractive index layer Various additives applicable to the high refractive index layer and the low refractive index layer are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, JP-A-62-261476, JP-A-57-74192, JP-A-57-87989 Of fading inhibitors, anions, cations or nonions described in JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Various surfactants, such as JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771, JP-A-4-219266, etc. Lubricants such as fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, pH adjusters such as sodium hydroxide, potassium hydroxide, potassium carbonate, antifoaming agents, diethylene glycol, etc. , Antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, polyester resins, viscosity reducers, lubricants, infrared absorbers, dyes Or various known additives such as pigments.
 〔3〕反射層ユニットの形成方法
 反射層ユニットの形成方法としては、前述のように、樹脂基材上に、高屈折率層と低屈折率層とから構成されるユニットを形成することができる方法であれば、いかなる方法でも用いられ得る。
[3] Method for Forming Reflective Layer Unit As a method for forming the reflective layer unit, as described above, a unit composed of a high refractive index layer and a low refractive index layer can be formed on a resin substrate. Any method can be used.
 具体的には、樹脂基材上に、高屈折率層と低屈折率層とを交互に塗布、乾燥して積層体を形成することが好ましい。具体的には以下の形態が挙げられる。 Specifically, it is preferable that a high refractive index layer and a low refractive index layer are alternately coated on a resin base material and dried to form a laminate. Specifically, the following forms are mentioned.
 (i)樹脂基材上に、高屈折率層形成用塗布液を塗布・乾燥して高屈折率層を形成した後、低屈折率層形成用塗布液を塗布・乾燥して低屈折率層を形成し、これを順次繰り返し行い、反射層ユニットを形成する方法
 (ii)樹脂基材上に、低屈折率層形成用塗布液を塗布・乾燥して低屈折率層を形成した後、高屈折率層形成用塗布液を塗布・乾燥して高屈折率層を形成し、これを順次繰り返し行い、反射層ユニットを形成する方法
 (iii)樹脂基材上に、高屈折率層形成用塗布液と、低屈折率層形成用塗布液とを逐次重層塗布した後乾燥して、所定の層数の高屈折率層及び低屈折率層で構成されている反射層ユニットを形成する方法
 (iv)樹脂基材上に、高屈折率層形成用塗布液と、低屈折率層形成用塗布液とをウェット状態で複数層積層し、所定の層数を同時重層塗布・乾燥して、高屈折率層及び低屈折率層を含む反射層ユニットを形成する方法
 中でも、より簡便な製造プロセスとなる上記(iv)の方法が好ましい。すなわち、反射層ユニットの形成方法としては、水系同時重層塗布法により、高屈折率層及び低屈折率層とを複数層積層することを含むことが好ましい。
(I) A high refractive index layer forming coating solution is applied and dried on a resin substrate to form a high refractive index layer, and then a low refractive index layer forming coating solution is applied and dried to form a low refractive index layer. (Ii) A low refractive index layer is formed on a resin substrate by applying and drying a coating solution for forming a low refractive index layer. A method of forming a reflective layer unit by applying a coating solution for forming a refractive index layer and drying to form a high refractive index layer and sequentially repeating this process. (Iii) Coating for forming a high refractive index layer on a resin substrate A method of forming a reflective layer unit composed of a high refractive index layer and a low refractive index layer having a predetermined number of layers (iv) ) A plurality of layers of a coating solution for forming a high refractive index layer and a coating solution for forming a low refractive index layer are laminated in a wet state on a resin substrate. Among the methods of forming a reflective layer unit including a high refractive index layer and a low refractive index layer by simultaneously applying and drying a certain number of layers, the method (iv) above, which is a simpler manufacturing process, is preferred. That is, the method for forming the reflective layer unit preferably includes laminating a plurality of high refractive index layers and low refractive index layers by an aqueous simultaneous multilayer coating method.
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、米国特許第2761419号明細書、同第2761791号明細書に記載のホッパーを使用するスライドビード塗布方法、又はエクストルージョンコート法等が好ましく用いられる。 Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, a slide using a hopper described in U.S. Pat. Nos. 2,761,419 and 2,761791. A bead coating method or an extrusion coating method is preferably used.
 高屈折率層形成用塗布液及び低屈折率層形成用塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、又はその混合溶媒が好ましい。本発明においては、各屈折率層の構成バインダー樹脂としてポリビニルアルコールを主として用いることが好ましいが、ポリビニルアルコールを用いることにより水系溶媒による塗布が可能となる。 The solvent for preparing the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In the present invention, it is preferable to mainly use polyvinyl alcohol as the constituent binder resin of each refractive index layer, but application with an aqueous solvent is possible by using polyvinyl alcohol.
 さらに、本発明では、ヘイズの低減やクラックの抑制のため、2種以上のカチオンポリマーを低屈折率層塗布液に添加することが好ましい。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。 Furthermore, in the present invention, it is preferable to add two or more kinds of cationic polymers to the low refractive index layer coating solution in order to reduce haze and suppress cracks. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
 2種以上のカチオンポリマーの含有量は、各カチオンポリマーが、酸化ケイ素粒子を含む金属酸化物粒子の合計質量に対して、例えば0.5~20質量%の範囲内であり、2~20質量%の範囲内であることが好ましく、3~10質量%の範囲内であることがより好ましく、1~10質量%の範囲内であることが更に好ましく、2~5質量%の範囲内であることが特に好ましい。 The content of the two or more kinds of cationic polymers is, for example, in the range of 0.5 to 20% by mass with respect to the total mass of the metal oxide particles including the silicon oxide particles, and 2 to 20% by mass. %, Preferably 3 to 10% by weight, more preferably 1 to 10% by weight, and more preferably 2 to 5% by weight. It is particularly preferred.
 有機溶媒としては、例えば、メタノール、エタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテルなどのエーテル類、ジメチルホルムアミドなどのアミド類、又はアセトン、メチルエチルケトンなどのケトン類などが挙げられる。 Examples of the organic solvent include alcohols such as methanol and ethanol, esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate, ethers such as diethyl ether and propylene glycol monomethyl ether, amides such as dimethylformamide, Or ketones, such as acetone and methyl ethyl ketone, are mentioned.
 これら有機溶媒は、単独でも又は2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水系溶媒が好ましく、水、又は水とメタノール、エタノール、若しくは酢酸エチルとの混合溶媒がより好ましく、水が特に好ましい。 These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
 水と少量の有機溶媒との混合溶媒を用いる際、当該混合溶媒中の水の含有量は、混合溶媒全体を100質量%として、80~99.9質量%の範囲内であることが好ましく、85~99.5質量%の範囲内であることがより好ましい。混合溶媒中の水の含有量を80質量%以上にすることで、溶媒の揮発による体積変動が低減でき、ハンドリングが向上し、また、99.9質量%以下にすることで、液添加時の均質性が増し、安定した液物性を得ることができる。 When using a mixed solvent of water and a small amount of an organic solvent, the content of water in the mixed solvent is preferably in the range of 80 to 99.9% by mass, based on 100% by mass of the entire mixed solvent, More preferably, it is within the range of 85 to 99.5% by mass. By making the content of water in the mixed solvent 80% by mass or more, volume fluctuation due to volatilization of the solvent can be reduced, handling is improved, and by making the content 99.9% by mass or less, Homogeneity increases and stable liquid properties can be obtained.
 高屈折率層形成用塗布液中の樹脂の濃度(複数種類の樹脂を用いる場合は、その合計濃度)は、0.5~10質量%の範囲内であることが好ましい。 The concentration of the resin in the coating solution for forming a high refractive index layer (when using a plurality of types of resins, the total concentration) is preferably in the range of 0.5 to 10% by mass.
 また、高屈折率層形成用塗布液中の金属酸化物粒子の合計濃度は、1~50質量%の範囲内であることが好ましい。 The total concentration of the metal oxide particles in the coating solution for forming a high refractive index layer is preferably in the range of 1 to 50% by mass.
 低屈折率層形成用塗布液中の樹脂の濃度は、0.5~10質量%の範囲内であることが好ましい。 The concentration of the resin in the coating solution for forming the low refractive index layer is preferably in the range of 0.5 to 10% by mass.
 また、低屈折率層形成用塗布液中の金属酸化物粒子の合計濃度は、1~50質量%の範囲内であることが好ましい。 Further, the total concentration of the metal oxide particles in the coating solution for forming the low refractive index layer is preferably in the range of 1 to 50% by mass.
 高屈折率層形成用塗布液の調製方法は、特に制限されず、例えば、金属酸化物粒子、親水性ポリマー、例えば、ポリビニルアルコール、更に必要に応じて添加されるその他の添加剤を添加し、撹拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、撹拌しながら各成分を順次添加し混合してもよいし、撹拌しながら一度に添加し混合してもよい。 The method for preparing the coating solution for forming a high refractive index layer is not particularly limited, and for example, metal oxide particles, hydrophilic polymer, for example, polyvinyl alcohol, and other additives that are added as necessary, The method of stirring and mixing is mentioned. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring.
 低屈折率層形成用塗布液の調製方法も、特に制限されず、例えば、金属酸化物粒子、親水性ポリマー、例えば、ポリビニルアルコール、更に必要に応じて添加されるその他の添加剤を添加し、撹拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、撹拌しながら各成分を順次添加し混合してもよいし、撹拌しながら一度に添加し混合してもよい。 The method for preparing the coating solution for forming the low refractive index layer is not particularly limited, and for example, metal oxide particles, a hydrophilic polymer, for example, polyvinyl alcohol, and other additives that are added as necessary, The method of stirring and mixing is mentioned. At this time, the order of addition of the components is not particularly limited, and the components may be added and mixed sequentially with stirring, or may be added and mixed at one time with stirring.
 また、本発明において、同時重層塗布を行う場合、高屈折率層形成用塗布液及び低屈折率層形成用塗布液に用いるポリビニルアルコールのケン化度が異なることが好ましい。ケン化度が異なることによって塗布、乾燥工程の各工程において層の混合を抑制することができる。 In the present invention, when simultaneous multilayer coating is performed, it is preferable that the saponification degrees of polyvinyl alcohol used in the coating solution for forming a high refractive index layer and the coating solution for forming a low refractive index layer are different. By different saponification degrees, mixing of layers can be suppressed in each step of coating and drying.
 同時重層塗布を行う際の高屈折率層形成用塗布液及び低屈折率層形成用塗布液の温度は、スライドホッパー塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。また、カーテン塗布方式を用いる場合は、25~60℃の温度範囲が好ましく、30~45℃の温度範囲がより好ましい。 The temperature of the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer in the simultaneous multilayer coating is preferably in the temperature range of 25 to 60 ° C. when using the slide hopper coating method, and is preferably 30 to 45. A temperature range of ° C is more preferred. When the curtain coating method is used, a temperature range of 25 to 60 ° C. is preferable, and a temperature range of 30 to 45 ° C. is more preferable.
 同時重層塗布を行う際の高屈折率層形成用塗布液と低屈折率層形成用塗布液の粘度は、特に制限されない。しかしながら、スライドビード塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~160mPa・sの範囲内が好ましく、更に好ましくは60~140mPa・sの範囲内である。また、カーテン塗布方式を用いる場合には、上記の塗布液の好ましい温度の範囲において、5~1200mPa・sの範囲内が好ましく、更に好ましくは25~500mPa・sの範囲内である。 The viscosity of the coating solution for forming a high refractive index layer and the coating solution for forming a low refractive index layer during simultaneous multilayer coating is not particularly limited. However, when the slide bead coating method is used, it is preferably in the range of 5 to 160 mPa · s, more preferably in the range of 60 to 140 mPa · s, in the preferred temperature range of the coating solution. When the curtain coating method is used, it is preferably within the range of 5 to 1200 mPa · s, and more preferably within the range of 25 to 500 mPa · s, in the preferable temperature range of the coating solution.
 このような粘度の範囲であれば、効率よく同時重層塗布を行うことができる。 In such a viscosity range, simultaneous multi-layer coating can be performed efficiently.
 塗布及び乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、30~60℃に加温した高屈折率層形成用塗布液及び低屈折率層形成用塗布液のいずれか一方を樹脂基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して積層膜前駆体(ユニット)を形成する。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度5~100℃(好ましくは10~50℃)の範囲で乾燥することが好ましく、例えば、40~60℃の温風を1~5秒吹き付けて乾燥する。 The conditions for the coating and drying method are not particularly limited. For example, in the case of the sequential coating method, first, the coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer heated to 30 to 60 ° C. Either one is applied onto a resin substrate and dried to form a layer, and then the other coating solution is applied onto this layer and dried to form a laminated film precursor (unit). When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, drying is preferably performed in the range of wet bulb temperature 5 to 50 ° C. and film surface temperature 5 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
 また、同時重層塗布を行う場合の塗布及び乾燥方法の条件は、高屈折率層形成用塗布液及び低屈折率層形成用塗布液を30~60℃に加温して、樹脂基材上に高屈折率層形成用塗布液及び低屈折率層形成用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃に一旦冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、40~80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 In addition, the conditions for the coating and drying method when performing simultaneous multilayer coating are as follows. The coating solution for forming the high refractive index layer and the coating solution for forming the low refractive index layer are heated to 30 to 60 ° C., and then applied onto the resin substrate. After simultaneous multi-layer coating of a coating solution for forming a high refractive index layer and a coating solution for forming a low refractive index layer, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C., and then 10 ° C. It is preferable to dry by the above. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air of 40 to 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 〔4〕層構成の設計
 本発明に係る反射層ユニットの好ましい高屈折率層及び低屈折率層の合計層数は、正面からの視認性(Tvis(a))を向上する観点から、50層以下、より好ましくは45層以下である。また、覗き見防止性の観点から、高屈折率層及び低屈折率層の合計層数の下限は15層以上、より好ましくは20層以上であることが好ましい。
[4] Design of layer structure The total number of layers of the high-refractive index layer and the low-refractive index layer of the reflective layer unit according to the present invention is 50 layers from the viewpoint of improving visibility (Tvis (a)) from the front. Below, more preferably 45 layers or less. Further, from the viewpoint of peep prevention, the lower limit of the total number of high refractive index layers and low refractive index layers is preferably 15 layers or more, more preferably 20 layers or more.
 反射層ユニットにおいて、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で所望の光線に対する反射率を高くすることができるという観点から好ましい。本発明においては、少なくとも隣接した2層(高屈折率層及び低屈折率層)の屈折率差が0.15以上であることが好ましく、より好ましくは0.2以上であり、特に好ましくは0.21以上である。また、上限は特に制限はないが通常0.5以下である。 In the reflective layer unit, it is preferable to design a large difference in refractive index between the high refractive index layer and the low refractive index layer from the viewpoint that the reflectance with respect to a desired light beam can be increased with a small number of layers. In the present invention, the difference in refractive index between at least two adjacent layers (high refractive index layer and low refractive index layer) is preferably 0.15 or more, more preferably 0.2 or more, and particularly preferably 0. .21 or more. The upper limit is not particularly limited, but is usually 0.5 or less.
 この屈折率差及び必要な層数は、市販の光学設計ソフトを用いて計算することができる。例えば、近赤外線反射率90%以上を得るためには、屈折率差が0.1より小さいと200層以上の積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下し、故障なく製造することも非常に困難になる場合がある。 This refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain a near-infrared reflectance of 90% or more, if the difference in refractive index is smaller than 0.1, it is necessary to laminate 200 layers or more, which not only lowers productivity but also causes scattering at the lamination interface. Larger, less transparent, and very difficult to manufacture without failure.
 反射層ユニットにおいて、高屈折率層及び低屈折率層を交互に積層する場合には、高屈折率層と低屈折率層との屈折率差が、上記好適な屈折率差の範囲内にあることが好ましい。ただし、例えば、最下層が樹脂基板との接着性改良層として形成される場合などにおいて、最下層に関しては上記好適な屈折率差の範囲外の構成であってもよい。 In the reflective layer unit, when the high refractive index layer and the low refractive index layer are alternately laminated, the refractive index difference between the high refractive index layer and the low refractive index layer is within the range of the preferred refractive index difference. It is preferable. However, for example, in the case where the lowermost layer is formed as an adhesion improving layer with the resin substrate, the lowermost layer may have a configuration outside the range of the preferable refractive index difference.
 本発明の光学特性制御フィルムは、当該光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))が83%以上であり、かつ、前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))と、前記光学特性制御フィルムの法線方向に対し60°傾けた方向から見たときの可視光線透過率(Tvis(b))の比率が、下記関係式(1)を満たすことによって、正面から見たときの視認性と覗き見防止性との両立を図ること特徴とする。 The optical property control film of the present invention has a visible light transmittance (Tvis (a)) of 83% or more when viewed from the normal direction of the optical property control film surface, and the optical property control film surface Visible light transmittance (Tvis (a)) when viewed from the normal direction and visible light transmittance (Tvis (b) when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film ) Ratio satisfies the following relational expression (1) to achieve both visibility when viewed from the front and prevention of peeping.
 関係式(1) 1.4≦Tvis(a)/Tvis(b)
 光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))は、好ましくは85%以上、より好ましくは87%以上であると、正面から見たときの視認性に優れる。
Relational expression (1) 1.4 ≦ Tvis (a) / Tvis (b)
Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is preferably 85% or more, more preferably 87% or more, and visibility when viewed from the front. Excellent.
 覗き見防止性は、高屈折率層と低屈折率層とを積層した多層膜により光干渉の波長を調整することで、正面から見た時には透過スペクトルの極小値を赤外域に、斜めから見た時は透過スペクトルの極小値を可視光域になるように設計することで、斜めから見た時の視認性を低下させ、覗き見防止効果を発現する。 Peep prevention is achieved by adjusting the wavelength of optical interference with a multilayer film in which a high-refractive index layer and a low-refractive index layer are stacked, so that when viewed from the front, the minimum value of the transmission spectrum is viewed in the infrared region and obliquely. By designing the minimum value of the transmission spectrum to be in the visible light range, the visibility when viewed from an oblique angle is lowered, and the effect of preventing peeping is exhibited.
 覗き見防止性を高めるには、関係式(1)において、Tvis(a)/Tvis(b)の好ましい範囲としては1.4~2.0の範囲内、より好ましくは1.5~1.7の範囲内である。 In order to enhance the peep prevention property, in the relational expression (1), the preferred range of Tvis (a) / Tvis (b) is within the range of 1.4 to 2.0, more preferably 1.5 to 1. Is within the range of 7.
 このような機能を発現するのに必要となる多層膜構造を光学シミュレーション(FTG Software Associates Film DESIGN Version 2.23.3700)で求めた結果、1.7以上、望ましくは1.73以上の高屈折率層を利用し、高屈折率層と低屈折率層の合計層数を20層以上積層した場合に、優れた特性が得られることが分かった。例えば、高屈折率層と低屈折率層(屈折率=1.45)とを交互に20層積層したモデルのシミュレーション結果を見ると、高屈折率層の屈折率が1.6では反射率が30%にも達しないが、1.7になると約60%の反射率が得られる。 As a result of obtaining the multilayer structure necessary for developing such a function by optical simulation (FTG Software Associates Film DESIGN Version 2.23.3700), a high refraction of 1.7 or higher, preferably 1.73 or higher. It has been found that when the refractive index layer is used and the total number of layers of the high refractive index layer and the low refractive index layer is 20 or more, excellent characteristics can be obtained. For example, looking at the simulation results of a model in which 20 layers of high refractive index layers and low refractive index layers (refractive index = 1.45) are alternately stacked, the reflectance is 1.6 when the refractive index of the high refractive index layer is 1.6. Although it does not reach 30%, a reflectance of about 60% is obtained at 1.7.
 高屈折率層は、光波長589.3nmにおける屈折率が1.63~1.83の範囲内であることが好ましく、より好ましくは1.70~1.80の範囲内である。 The high refractive index layer preferably has a refractive index in the range of 1.63-1.83, more preferably in the range of 1.70-1.80 at a light wavelength of 589.3 nm.
 低屈折率層は、光波長589.3nmにおける屈折率が1.10~1.60の範囲内であることが好ましく、より好ましくは1.40~1.60の範囲内である。 The low refractive index layer preferably has a refractive index in the range of 1.10 to 1.60 at a light wavelength of 589.3 nm, more preferably in the range of 1.40 to 1.60.
 屈折率層の1層(最下層、最表層を除く)あたりの厚さ(乾燥後の厚さ)は、20~1000nmの範囲内であることが好ましく、50~500nmの範囲内であることがより好ましく、50~350nmの範囲内であることが中でも好ましい。 The thickness per layer (excluding the lowermost layer and the outermost layer) of the refractive index layer (thickness after drying) is preferably in the range of 20 to 1000 nm, and preferably in the range of 50 to 500 nm. More preferably, it is particularly preferably in the range of 50 to 350 nm.
 特に、上記光学シミュレーションによれば、本発明の光学特性制御フィルムを覗き見防止フィルムとして用いることを考慮して、前記関係式(1)を満たすには、前記反射層ユニットの高屈折率層の層厚としては、が95~120nmの範囲内に調整し、かつ、低屈折率層の膜厚を110~135nmの範囲内に調整することが、好ましい。 In particular, according to the optical simulation, considering the use of the optical property control film of the present invention as a peep prevention film, in order to satisfy the relational expression (1), the high refractive index layer of the reflective layer unit It is preferable to adjust the layer thickness within the range of 95 to 120 nm and the thickness of the low refractive index layer within the range of 110 to 135 nm.
 3.その他の構成層
 本発明の光学特性制御フィルムは、樹脂基材の反射層ユニットと対向する最表面上、又は前記半野草ユニット上に、更なる機能の付加を目的として、導電性層、帯電防止層、ガスバリアー層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、又は上記高屈折率層及び低屈折率層以外の赤外線カット層(金属層、液晶層)、着色層(可視光線吸収層)などの機能層の一つ以上を有していてもよい。
3. Other Constituent Layers The optical property control film of the present invention is a conductive layer, antistatic layer for the purpose of adding further functions on the outermost surface facing the reflective layer unit of the resin base material or on the semi-wildflower unit. Layer, gas barrier layer, easy adhesion layer (adhesion layer), antifouling layer, deodorant layer, droplet layer, slippery layer, hard coat layer, wear-resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorption layer , Infrared absorbing layer, printed layer, fluorescent light emitting layer, hologram layer, release layer, adhesive layer, or infrared cut layer (metal layer, liquid crystal layer) other than the above high refractive index layer and low refractive index layer, colored layer (visible light) One or more functional layers such as an absorbing layer may be included.
 〔3.1〕ハードコート層
 光学特性制御フィルムは、耐擦過性を高めるための表面保護層として、熱や紫外線などで硬化する樹脂を含むハードコート層を有していてもよい。
[3.1] Hard Coat Layer The optical property control film may have a hard coat layer containing a resin that is cured by heat, ultraviolet rays, or the like as a surface protective layer for enhancing the scratch resistance.
 ハードコート層で使用される硬化樹脂としては、熱硬化型樹脂や紫外線硬化型樹脂が挙げられるが、成型が容易なことから、紫外線硬化型樹脂が好ましく、その中でも鉛筆硬度が少なくとも2Hのものがより好ましい。このような硬化型樹脂は、単独でも又は2種以上組み合わせても用いることができる。 Examples of the curable resin used in the hard coat layer include a thermosetting resin and an ultraviolet curable resin, but an ultraviolet curable resin is preferable because it is easy to mold, and among them, those having a pencil hardness of at least 2H. More preferred. Such curable resins can be used singly or in combination of two or more.
 紫外線硬化型樹脂としては(メタ)アクリレート、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、エポキシ樹脂、又はオキセタン樹脂が挙げられ、これらは無溶剤型の樹脂組成物としても使用できる。 Examples of the ultraviolet curable resin include (meth) acrylate, urethane acrylate, polyester acrylate, epoxy acrylate, epoxy resin, and oxetane resin, and these can also be used as a solvent-free resin composition.
 上記紫外線硬化型樹脂を用いる場合、硬化促進のために、光重合開始剤を添加することが好ましい。 When using the ultraviolet curable resin, it is preferable to add a photopolymerization initiator to accelerate curing.
 光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、チウラム化合物類、又はフルオロアミン化合物などが用いられる。光重合開始剤の具体例としては、2,2′-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-ヒドロキシジメチルフェニルケトン、2-メチル-4′-メチルチオ-2-モリホリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モリホリノフェニル)-ブタノン1などのアセトフェノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルレタールなどのベンゾイン類、ベンゾフェノン、2,4′-ジクロロベンゾフェノン、4,4′-ジクロロベンゾフェノン、p-クロロベンゾフェノンなどのベンゾフェノン類、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、アントラキノン類、又はチオキサントン類などがある。 As photopolymerization initiators, acetophenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, thiuram compounds, or fluoroamines A compound or the like is used. Specific examples of the photopolymerization initiator include 2,2′-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1-hydroxydimethylphenyl ketone, 2-methyl-4′-methylthio-2-mori. Acetophenones such as holinopropiophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone 1, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethylletal, etc. Benzoins, benzophenone, 2,4'-dichlorobenzophenone, 4,4'-dichlorobenzophenone, benzophenones such as p-chlorobenzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, an Rakinon acids, or the like thioxanthones.
 これらの光重合開始剤は単独で用いてもよいし、2種以上の組合せや、共融混合物であってもよい。特に、硬化性組成物の安定性や重合反応性等からアセトフェノン類を用いることが好ましい。 These photopolymerization initiators may be used alone, or may be a combination of two or more or a eutectic mixture. In particular, acetophenones are preferably used from the viewpoints of stability of the curable composition and polymerization reactivity.
 このような光重合開始剤は市販品を用いてもよく、例えば、BASFジャパン社製のイルガキュア(登録商標)819、184、907、651などが好ましい例示として挙げられる。 Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure (registered trademark) 819, 184, 907, 651 manufactured by BASF Japan.
 ハードコート層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、又は接着調整剤等を含有させることもできる。 In the hard coat layer, as additives, for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorants, dyes Alternatively, an adhesion adjusting agent or the like can be contained.
 ハードコート層の厚さは、ハードコート性の向上と、光反射フィルムの透明性の向上という観点から、0.1~50μmの範囲内であることが好ましく、1~20μmの範囲内であることがより好ましい。 The thickness of the hard coat layer is preferably in the range of 0.1 to 50 μm, preferably in the range of 1 to 20 μm, from the viewpoints of improving the hard coat properties and improving the transparency of the light reflecting film. Is more preferable.
 ハードコート層の形成方法は特に制限されず、例えば、上記各成分を含むハードコート層形成用塗布液を調製した後、塗布液をワイヤーバー等により塗布し、熱又は紫外線で塗布液を硬化させ、ハードコート層を形成する方法などが挙げられる。 The method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for forming a hard coat layer containing the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured with heat or ultraviolet rays. And a method of forming a hard coat layer.
 〔3.2〕その他の層
 光学特性制御フィルムは、上述した層以外の層(その他の層)を有していてもよい。例えば、その他の層として、中間層を設けることができる。ここで、中間層とは、樹脂基材と反射層ユニットとの間の層(前記下引層)や、樹脂基材とハードコート層との間の層を意味する。中間層の構成材料としては、ポリエステル樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアセタール樹脂、アクリル樹脂、ウレタン樹脂などが挙げられ、添加剤の相溶性、Tgが低い物質が好ましいが、それを満たしていればいずれを用いてもよい。
[3.2] Other layers The optical property control film may have layers (other layers) other than the layers described above. For example, an intermediate layer can be provided as the other layer. Here, the intermediate layer means a layer between the resin substrate and the reflective layer unit (the undercoat layer) or a layer between the resin substrate and the hard coat layer. Examples of the constituent material of the intermediate layer include polyester resin, polyvinyl alcohol resin, polyvinyl acetate resin, polyvinyl acetal resin, acrylic resin, urethane resin, and the like. Any of them may be used as long as they are satisfied.
 中間層のガラス転移温度(Tg)は、30~120℃の範囲内であれば、十分な耐候性が得られるため好ましく、より好ましくは30~90℃の範囲内である。 The glass transition temperature (Tg) of the intermediate layer is preferably in the range of 30 to 120 ° C because sufficient weather resistance can be obtained, and more preferably in the range of 30 to 90 ° C.
 中間層には、添加剤として、例えば安定剤、界面活性剤、赤外線吸収剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色剤、色素、接着調整剤等を含有させることもできる。 In the intermediate layer, as additives, for example, stabilizers, surfactants, infrared absorbers, ultraviolet absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, colorants, pigments, An adhesion regulator or the like can also be contained.
 4.貼合対象
 本発明の光学特性制御フィルムは、スマートフォンやタブレットの覗き見防止フィルムとして、当該スマートフォンやタブレットのタッチパネル上に貼合される。
4). The optical property control film of this invention is bonded on the touch panel of the said smart phone or tablet as a peep prevention film of a smart phone or a tablet.
 貼合する場合は、本発明の樹脂基材の反射層ユニットとは反対側の面に粘着層を形成し、当該粘着層を介してタッチパネルに貼合されることが好ましい。 In the case of pasting, it is preferable that an adhesive layer is formed on the surface of the resin substrate of the present invention opposite to the reflective layer unit, and the adhesive layer is pasted to the touch panel via the adhesive layer.
 粘着層に用いられる粘着剤は、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、又は酸化型ポリエーテルメタクリレート等の嫌気性粘着剤などを用いることができる。上記粘着剤としては1液型であってもよいし、使用前に2液以上を混合して使用する2液型であってもよい。粘着剤液の濃度は、接着後の層厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。 Adhesives used in the adhesive layer are urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, polyether methacrylate types, ester methacrylate types. Alternatively, an anaerobic adhesive such as oxidized polyether methacrylate can be used. The pressure-sensitive adhesive may be a one-component type or a two-component type in which two or more components are mixed before use. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the layer thickness after bonding, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~50μm程度の範囲であることが好ましい。粘着層に用いる具体的な材料としては、例えば、綜研化学社製「SKダインシリーズ」、東洋インキ社製「Oribain BPWシリーズ、BPSシリーズ」、荒川化学社製「アルコン」「スーパーエステル」「ハイペール」等の粘着剤を好適に用いることができる。 The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed and the like. Specific materials used for the adhesive layer include, for example, “SK Dyne Series” manufactured by Soken Chemical Co., Ltd. “Oribain BPW Series, BPS Series” manufactured by Toyo Ink Co., Ltd. “Arcon” “Superester” “High Pale” manufactured by Arakawa Chemical Co., Ltd. Etc. can be suitably used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 ≪光学特性制御フィルムの作製≫
 〈光学特性制御フィルム1の作製〉
(1)低屈折率層形成用塗布液1の調製
 撹拌容器にカチオンポリマーとしてメチルジアリルアミン塩酸塩重合体(3級アミン塩を含む。)(PAS-M-1、重量平均分子量20000、50質量%水溶液、ニットーボーメディカル株式会社製)4.0g、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む。)(PAS-H-5L、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.0g、ゆすぎ水31g、及びホウ酸(3質量%水溶液)31.9gを混合した。ここに、10質量%の酸性コロイダルシリカの水溶液(ST-OXS、濃度10%、平均1次粒径:4~6nm、日産化学工業株式会社製、表中SiOと表記)を489.9g加えた。これを撹拌しながら40℃まで加温した。ここに、親水性ポリマーとしてのポリビニルアルコールの8質量%水溶液(JP-45、重合度4500、ケン化度88mol%、日本酢ビ・ポバール株式会社製)386.3g、エマルジョン樹脂(スーパーフレックス650、第一工業製薬株式会社)30.5g、及び5質量%の界面活性剤の溶液(ソフタゾリンLMEB-R、川研ファインケミカル株式会社)6.3g、及び純水15gの混合液を加え、40℃で撹拌、混合し、低屈折率層形成用塗布液1を得た。
≪Preparation of optical property control film≫
<Preparation of optical property control film 1>
(1) Preparation of Coating Solution 1 for Forming Low Refractive Index Layer Methyldiallylamine hydrochloride polymer (including tertiary amine salt) as a cationic polymer in a stirring vessel (PAS-M-1, weight average molecular weight 20000, 50% by mass) Aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 4.0 g, diallyldimethylammonium chloride polymer (including quaternary ammonium group) (PAS-H-5L, weight average molecular weight 30000, 28% by weight aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 5.0 g, 31 g of rinse water, and 31.9 g of boric acid (3 mass% aqueous solution) were mixed. To this was added 489.9 g of an aqueous solution of 10% by mass acidic colloidal silica (ST-OXS, concentration 10%, average primary particle size: 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd., indicated as SiO 2 in the table). It was. This was heated to 40 ° C. with stirring. Here, 386.3 g of an 8% by mass aqueous solution of polyvinyl alcohol as a hydrophilic polymer (JP-45, polymerization degree 4500, saponification degree 88 mol%, manufactured by Nippon Acetate / Poval Co., Ltd.), emulsion resin (Superflex 650, Daiichi Kogyo Seiyaku Co., Ltd.) 30.5 g and a 5% by weight surfactant solution (SOFTAZOLIN LMEB-R, Kawaken Fine Chemical Co., Ltd.) 6.3 g and pure water 15 g were added and mixed at 40 ° C. The mixture was stirred and mixed to obtain a coating solution 1 for forming a low refractive index layer.
 低屈折率層形成用塗布液1を用いて作製した単層の光波長589.3nmにおける屈折率は、1.50であった。なお、屈折率の測定方法は下記のとおりである(以下、実施例において、屈折率は同様に測定した。)。
(単膜屈折率の測定)
 屈折率を測定するため、基材上に低屈折率層形成用塗布液1を単層で塗布したサンプルを作製し、このサンプルを10cm×10cmに裁断した後、下記の方法に従って屈折率を求めた。日立製の分光光度計 U-4100(固体試料測定システム)を用いて、各サンプルの測定面とは反対側の面(裏面)を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5°正反射の条件にて589.3nmの反射率の測定を行い、その結果より屈折率を求めた。
The refractive index at a light wavelength of 589.3 nm of a single layer produced using the coating liquid 1 for forming a low refractive index layer was 1.50. In addition, the measuring method of a refractive index is as follows (Hereinafter, in the Example, the refractive index was measured similarly.).
(Measurement of single-film refractive index)
In order to measure the refractive index, a sample in which the coating liquid 1 for forming a low refractive index layer is applied as a single layer on a substrate is prepared, and after cutting this sample into 10 cm × 10 cm, the refractive index is obtained according to the following method. It was. Using Hitachi spectrophotometer U-4100 (solid sample measurement system), the surface opposite to the measurement surface (back surface) of each sample is roughened and then light absorption is performed with a black spray. Then, reflection of light on the back surface was prevented, and a reflectance of 589.3 nm was measured under the condition of 5 ° regular reflection, and the refractive index was obtained from the result.
(2)高屈折率層形成用塗布液1の調製
 30質量%の酸化ジルコニウム粒子の分散液(SZR-W、ジルコニアゾル、粒度分布:D50 3~5nm、堺化学工業株式会社製、表中ZrOと表記)384.8gに対してクエン酸水溶液(1.9質量%)を175.4g加えた。これに界面活性剤(ソフタゾリンLMEB-R、川研ファインケミカル株式会社製)の5質量%水溶液を1.94g添加し、これを40℃まで加温した。次いで、更にエチレン変性ポリビニルアルコールの8質量%水溶液(株式会社クラレ製、エクセバールRS2117、ケン化度:97.5~99mol%)を120.4g加え、更に純水9.9gを加えた。これを10分撹拌後、親水性ポリマーとしてのポリビニルアルコールの6質量%水溶液(JC-40、ケン化度:99mol%以上、日本酢ビ・ポバール株式会社製)240.8g及び純水66.7gを加えた。この後、40℃で180分間撹拌し、高屈折率層形成用塗布液1を得た。高屈折率層形成用塗布液1を用いて作製した単層の屈折率は、1.73であった。
(2) Preparation of Coating Solution 1 for Forming High Refractive Index Layer 30% by Mass of Zirconium Oxide Particle Dispersion (SZR-W, Zirconia Sol, Particle Size Distribution: D50 3-5 nm, Sakai Chemical Industry Co., Ltd., ZrO in Table It was added 175.4g of an aqueous solution of citric acid (1.9 wt%) with respect to 2 and notation) 384.8G. To this was added 1.94 g of a 5% by mass aqueous solution of a surfactant (SOFTAZOLINE LMEB-R, manufactured by Kawaken Fine Chemical Co., Ltd.), and this was heated to 40 ° C. Next, 120.4 g of an 8% by mass aqueous solution of ethylene-modified polyvinyl alcohol (manufactured by Kuraray Co., Ltd., EXVAL RS2117, saponification degree: 97.5 to 99 mol%) was further added, and 9.9 g of pure water was further added. After stirring this for 10 minutes, 60.8% aqueous solution of polyvinyl alcohol as a hydrophilic polymer (JC-40, saponification degree: 99 mol% or more, manufactured by Nihon Acetate / Poval Co., Ltd.) 240.8 g and pure water 66.7 g Was added. Then, it stirred for 180 minutes at 40 degreeC, and obtained the coating liquid 1 for high refractive index layer formation. The refractive index of the single layer produced using the coating liquid 1 for forming a high refractive index layer was 1.73.
(3)反射層ユニットの形成
 32層同時塗布が可能なスライドホッパー方式の塗布装置を用い、上記調製した低屈折率層形成用塗布液1及び高屈折率層形成用塗布液1を45℃に保温しながら、45℃に加温した長尺の樹脂基材(長さ1000m、厚さ50μmのポリエチレンテレフタレート(PET)フィルム:東洋紡株式会社製、コスモシャインA4300)上に、21層同時重層塗布(低屈折率層及び高屈折率層を交互に合計21層積層)を行った。この際、最下層(樹脂基材側)及び最上層は低屈折率層(乾燥後の厚さ:108nm)とし、それ以外は低屈折率層(乾燥後の厚さ:117nm)及び高屈折率層(乾燥後の厚さ:101nm)がそれぞれ交互に積層されるようにして、合計21層から構成される反射層ユニットを形成した。
(3) Formation of reflection layer unit Using a slide hopper type coating apparatus capable of simultaneous coating of 32 layers, the prepared coating liquid 1 for forming a low refractive index layer and coating liquid 1 for forming a high refractive index layer at 45 ° C. On a long resin substrate (1000 m long, 50 μm thick polyethylene terephthalate (PET) film: Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) while being kept warm, 21 layers are simultaneously applied ( A total of 21 layers of low refractive index layers and high refractive index layers were alternately laminated). At this time, the lowermost layer (resin substrate side) and the uppermost layer are a low refractive index layer (thickness after drying: 108 nm), and the other layers are a low refractive index layer (thickness after drying: 117 nm) and a high refractive index. A reflective layer unit composed of a total of 21 layers was formed so that the layers (thickness after drying: 101 nm) were alternately laminated.
 〈光学特性制御フィルム2の作製〉
(1)低屈折率層形成用塗布液2の調製
 撹拌容器にカチオンポリマーとしてメチルジアリルアミン塩酸塩重合体(3級アミン塩を含む。)(PAS-M-1、重量平均分子量20000、50質量%水溶液、ニットーボーメディカル株式会社製)4.0g、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む。)(PAS-H-5L、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.0g、ゆすぎ水31g、及びホウ酸(3質量%水溶液)31.9gを混合した。ここに、10質量%のフッ化マグネシウム水溶液(ステラケミファ株式会社製、D50 30nm、表中MgFと表記)を489.9g加えた。これを撹拌しながら40℃まで加温した。ここに、親水性ポリマーとしてのポリアクリル酸ナトリウム18.9g、エマルジョン樹脂(スーパーフレックス650、第一工業製薬株式会社)30.5g、5質量%の界面活性剤の溶液(ソフタゾリンLMEB-R、川研ファインケミカル株式会社)6.3g、及び純水15gの混合液を加え、40℃で撹拌、混合し、低屈折率層形成用塗布液2を得た。
 低屈折率層形成用塗布液2を用いて作製した単層の屈折率は、1.50であった。
<Preparation of optical property control film 2>
(1) Preparation of coating solution 2 for forming a low refractive index layer Methyldiallylamine hydrochloride polymer (including tertiary amine salt) as a cationic polymer in a stirring vessel (PAS-M-1, weight average molecular weight 20000, 50% by mass) Aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 4.0 g, diallyldimethylammonium chloride polymer (including quaternary ammonium group) (PAS-H-5L, weight average molecular weight 30000, 28% by weight aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 5.0 g, 31 g of rinse water, and 31.9 g of boric acid (3 mass% aqueous solution) were mixed. 489.9 g of a 10% by mass magnesium fluoride aqueous solution (manufactured by Stella Chemifa Corporation, D50 30 nm, indicated as MgF 2 in the table) was added thereto. This was heated to 40 ° C. with stirring. Here, 18.9 g of sodium polyacrylate as a hydrophilic polymer, 30.5 g of emulsion resin (Superflex 650, Daiichi Kogyo Seiyaku Co., Ltd.), a solution of 5% by mass of a surfactant (SOFTAZOLINE LMEB-R, Kawasaki) Ken Fine Chemical Co., Ltd.) 6.3 g and 15 g of pure water were added and stirred and mixed at 40 ° C. to obtain a coating solution 2 for forming a low refractive index layer.
The refractive index of a single layer produced using the coating solution 2 for forming a low refractive index layer was 1.50.
(2)高屈折率層形成用塗布液2の調製
 30質量%の硫化亜鉛粒子の分散液(下記方法により硫化亜鉛粒子を調製、表中ZnSと表記)384.8gに対してクエン酸水溶液(1.9質量%)を175.4g加えた。これに界面活性剤(ソフタゾリンLMEB-R、川研ファインケミカル株式会社製)の5質量%水溶液を1.94g添加し、これを40℃まで加温した。次いで、親水性ポリマーとしてのポリアクリル酸ナトリウム14.3g及び純水66.7gを加えた。この後、40℃で180分間撹拌し、高屈折率層形成用塗布液2を得た。
(2) Preparation of coating solution 2 for forming a high refractive index layer 30% by mass of a zinc sulfide particle dispersion (prepared by the following method, zinc sulfide particles are indicated as ZnS in the table) 384.8 g of citric acid aqueous solution ( 1.9% by mass) was added. To this was added 1.94 g of a 5% by mass aqueous solution of a surfactant (SOFTAZOLINE LMEB-R, manufactured by Kawaken Fine Chemical Co., Ltd.), and this was heated to 40 ° C. Next, 14.3 g of sodium polyacrylate as a hydrophilic polymer and 66.7 g of pure water were added. Then, it stirred at 40 degreeC for 180 minutes, and obtained the coating liquid 2 for high refractive index layer formation.
 (硫化亜鉛粒子の調製)
 硫化亜鉛ナノ粒子の調製硫化リチウム0.7gを水500mLに溶解して硫化リチウム水溶液を調液した。また、酢酸亜鉛2.7g及びヒドロキシエチルセルロース(重合度600)5gを水500mLに溶解して酢酸亜鉛水溶液を調液した。混合器として、IMM(Institute fur Mikrotechnik Mianz)製のチャンネルの幅が40μm、深さが200μmのマイクロリアクター(Interdigital single mixing device)を用い、流れ方向の接触界面4mm、層流による接触時間は約1ミリ秒として、硫化亜鉛粒子を調製し、固形分30質量%の分散液とした。得られた粒子は、平均粒子サイズが5nmで変動係数が18%であった。
 高屈折率層形成用塗布液2を用いて作製した単層の屈折率は、1.73であった。
(Preparation of zinc sulfide particles)
Preparation of Zinc Sulfide Nanoparticles 0.7 g of lithium sulfide was dissolved in 500 mL of water to prepare a lithium sulfide aqueous solution. Further, 2.7 g of zinc acetate and 5 g of hydroxyethyl cellulose (polymerization degree 600) were dissolved in 500 mL of water to prepare a zinc acetate aqueous solution. As a mixer, a microreactor (Interdigital single mixing device) having a channel width of 40 μm and a depth of 200 μm made by IMM (Institue for Microtechnique Milan) is used, the contact interface in the flow direction is 4 mm, and the contact time by the laminar flow is about 1 In milliseconds, zinc sulfide particles were prepared to obtain a dispersion having a solid content of 30% by mass. The obtained particles had an average particle size of 5 nm and a coefficient of variation of 18%.
The refractive index of the single layer produced using the coating liquid 2 for forming a high refractive index layer was 1.73.
(3)反射層ユニットの形成
 32層同時塗布が可能なスライドホッパー方式の塗布装置を用い、上記調製した低屈折率層形成用塗布液2及び高屈折率層形成用塗布液2を45℃に保温しながら、45℃に加温した長尺の樹脂基材(長さ1000m、厚さ40μmのトリアセテート(TAC)フィルム:コニカミノルタ株式会社製、コニカミノルタTAC、KC4UA)上に、21層同時重層塗布(低屈折率層及び高屈折率層を交互に合計21層積層)を行った。この際、最下層(樹脂基材側)及び最上層は低屈折率層(乾燥後の厚さ:108nm)とし、それ以外は低屈折率層(乾燥後の厚さ:113nm)及び高屈折率層(乾燥後の厚さ:98nm)がそれぞれ交互に積層されるようにして、合計21層から構成される反射層ユニットを形成した。
(3) Formation of reflection layer unit Using a slide hopper type coating apparatus capable of simultaneous coating of 32 layers, the above-prepared coating solution 2 for forming a low refractive index layer and coating solution 2 for forming a high refractive index layer are heated to 45 ° C. Simultaneously layered 21 layers on a long resin base material (1000 m long, 40 μm thick triacetate (TAC) film: Konica Minolta, Konica Minolta TAC, KC4UA) heated to 45 ° C. while keeping warm. Application (a total of 21 layers of low refractive index layers and high refractive index layers alternately) was performed. At this time, the lowermost layer (resin substrate side) and the uppermost layer are low refractive index layers (thickness after drying: 108 nm), and other layers are low refractive index layers (thickness after drying: 113 nm) and high refractive index. A reflective layer unit composed of a total of 21 layers was formed so that the layers (thickness after drying: 98 nm) were alternately laminated.
 〈光学特性制御フィルム3の作製〉
(1)低屈折率層形成用塗布液3の調製
 撹拌容器にカチオンポリマーとしてメチルジアリルアミン塩酸塩重合体(3級アミン塩を含む。)(PAS-M-1、重量平均分子量20000、50質量%水溶液、ニットーボーメディカル株式会社製)4.0g、ジアリルジメチルアンモニウムクロライド重合体(4級アンモニウム基を含む。)(PAS-H-5L、重量平均分子量30000、28質量%水溶液、ニットーボーメディカル株式会社製)5.0g、ゆすぎ水31g、及びホウ酸(3質量%水溶液)31.9gを混合した。ここに、10質量%の酸性コロイダルシリカの水溶液(ST-OXS、濃度10%、平均1次粒径:4~6nm、日産化学工業株式会社製、表中SiOと表記)を489.9g加えた。これを撹拌しながら40℃まで加温した。ここに、親水性ポリマーとしてのポリビニルピロリドンの8質量%水溶液(ポリビニルピロリドンK-85W(日本触媒製)を純水で希釈)386.3g、エマルジョン樹脂(スーパーフレックス650、第一工業製薬株式会社)30.5g、及び5質量%の界面活性剤の溶液(ソフタゾリンLMEB-R、川研ファインケミカル株式会社)6.3g、及び純水15gの混合液を加え、40℃で撹拌、混合し、低屈折率層形成用塗布液3を得た。
 低屈折率層形成用塗布液3を用いて作製した単層の屈折率は、1.50であった。
<Preparation of optical property control film 3>
(1) Preparation of coating solution 3 for forming a low refractive index layer Methyldiallylamine hydrochloride polymer (including tertiary amine salt) as a cationic polymer in a stirring vessel (PAS-M-1, weight average molecular weight 20000, 50% by mass) Aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 4.0 g, diallyldimethylammonium chloride polymer (including quaternary ammonium group) (PAS-H-5L, weight average molecular weight 30000, 28% by weight aqueous solution, manufactured by Nitto Bo Medical Co., Ltd.) 5.0 g, 31 g of rinse water, and 31.9 g of boric acid (3 mass% aqueous solution) were mixed. To this was added 489.9 g of an aqueous solution of 10% by mass acidic colloidal silica (ST-OXS, concentration 10%, average primary particle size: 4 to 6 nm, manufactured by Nissan Chemical Industries, Ltd., indicated as SiO 2 in the table). It was. This was heated to 40 ° C. with stirring. Here, 386.3 g of an 8% by weight aqueous solution of polyvinylpyrrolidone as a hydrophilic polymer (polyvinylpyrrolidone K-85W (manufactured by Nippon Shokubai) diluted with pure water), emulsion resin (Superflex 650, Daiichi Kogyo Seiyaku Co., Ltd.) Add 36.3 g and 5% by weight surfactant solution (Softazolin LMEB-R, Kawaken Fine Chemical Co., Ltd.) 6.3 g and pure water 15 g, stir and mix at 40 ° C., low refraction A coating liquid 3 for forming a rate layer was obtained.
The refractive index of a single layer produced using the coating solution 3 for forming a low refractive index layer was 1.50.
(2)高屈折率層形成用塗布液3の調製
 20質量%のシリカ変性酸化チタンの分散液(下記方法により酸化チタン粒子を調製、表中TiOと表記)384.8gに対してクエン酸水溶液(1.9質量%)を175.4g加えた。これに界面活性剤(ソフタゾリンLMEB-R、川研ファインケミカル株式会社製)の5質量%水溶液を1.94g添加し、これを40℃まで加温した。次いで、親水性ポリマーとしてのポリビニルピロリドン14.3g及び純水66.7gを加えた。この後、40℃で180分間撹拌し、高屈折率層形成用塗布液3を得た。
(2) Preparation of coating solution 3 for forming a high refractive index layer Citric acid with respect to 384.8 g of a dispersion of 20% by mass of silica-modified titanium oxide (prepared titanium oxide particles by the following method, expressed as TiO 2 in the table) 175.4g of aqueous solution (1.9 mass%) was added. To this was added 1.94 g of a 5% by mass aqueous solution of a surfactant (SOFTAZOLINE LMEB-R, manufactured by Kawaken Fine Chemical Co., Ltd.), and this was heated to 40 ° C. Subsequently, 14.3 g of polyvinylpyrrolidone as a hydrophilic polymer and 66.7 g of pure water were added. Then, it stirred for 180 minutes at 40 degreeC, and obtained the coating liquid 3 for high refractive index layer formation.
 (シリカ変性酸化チタン粒子の分散液の調製)
 シリカ変性酸化チタン粒子(ルチル型)の分散液を、以下のように調製した。
(Preparation of silica-modified titanium oxide particle dispersion)
A dispersion of silica-modified titanium oxide particles (rutile type) was prepared as follows.
 硫酸チタン水溶液を公知の方法により熱加水分解して、酸化チタン水和物を得た。得られた酸化チタン水和物を水に懸濁させて、酸化チタン水和物の水性懸濁液(TiO濃度:100g/L)10Lを得た。これに、水酸化ナトリウム水溶液(濃度10mol/L)30Lを撹拌下で添加し、90℃に昇温して、5時間熟成した。得られた溶液を塩酸で中和し、濾過、水洗することで、塩基処理チタン化合物を得た。 The titanium sulfate aqueous solution was thermally hydrolyzed by a known method to obtain titanium oxide hydrate. The obtained titanium oxide hydrate was suspended in water to obtain 10 L of an aqueous suspension of titanium oxide hydrate (TiO 2 concentration: 100 g / L). To this, 30 L of an aqueous sodium hydroxide solution (concentration 10 mol / L) was added with stirring, the temperature was raised to 90 ° C., and the mixture was aged for 5 hours. The obtained solution was neutralized with hydrochloric acid, filtered and washed with water to obtain a base-treated titanium compound.
 次に、塩基処理チタン化合物をTiO濃度20g/Lになるよう純水に懸濁させて撹拌した。撹拌下、TiO量に対し0.4モル%の量のクエン酸を添加した。95℃まで昇温し、濃塩酸を塩酸濃度が30g/Lとなるように加え、液温を維持して3時間撹拌した。ここで、得られた混合液のpH及びゼータ電位を測定したところ、25℃におけるpHは1.4、ゼータ電位は+40mVであった。また、ゼータサイザーナノ(マルバーン社製)により粒径測定を行ったところ、体積平均粒子径は35nm、単分散度は16%であった。また、酸化チタンゾル液を105℃で3時間乾燥させて粒子粉体を得て、日本電子データム株式会社製、JDX-3530型を用いてX線回折の測定を行い、ルチル型粒子であることを確認した。 Next, the base-treated titanium compound was suspended in pure water and stirred so that the TiO 2 concentration was 20 g / L. Under stirring TiO 2 amount to the addition of 0.4 mole% of the amount of citric acid. The temperature was raised to 95 ° C., concentrated hydrochloric acid was added so that the hydrochloric acid concentration was 30 g / L, and the solution temperature was maintained, followed by stirring for 3 hours. Here, when the pH and zeta potential of the obtained mixed liquid were measured, the pH at 25 ° C. was 1.4, and the zeta potential was +40 mV. Further, when the particle size was measured by Zetasizer Nano (manufactured by Malvern), the volume average particle size was 35 nm and the monodispersity was 16%. Further, the titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain a particle powder, and X-ray diffraction measurement was performed using JDX-3530 type manufactured by JEOL Datum Co., Ltd. confirmed.
 上記ルチル型酸化チタン粒子を含む20.0質量%の酸化チタンゾル水系分散液1kgに純水1kgを添加して、10.0質量%の酸化チタンゾル水系分散液を調製した。 1 kg of pure water was added to 1 kg of a 20.0 mass% titanium oxide sol aqueous dispersion containing the rutile-type titanium oxide particles to prepare a 10.0 mass% titanium oxide sol aqueous dispersion.
 上記10.0質量%の酸化チタンゾル水系分散液の0.5kgに、純水2kgを加えた後、90℃に加熱した。その後、SiO濃度が2.0質量%のケイ酸水溶液0.1kgを徐々に添加した。得られた分散液をオートクレーブ中、175℃で18時間加熱処理を行い、限外濾過を用いて脱塩、さらに濃縮することで、SiOで被覆されたルチル型構造を有する酸化チタンを含む、20質量%のシリカ変性酸化チタン粒子の分散液(ゾル水分散液)を得た。このとき、シリカの被覆量は酸化チタン粒子に対して4質量%であった。また、ゼータサイザーナノ(マルバーン社製)によりシリカ変性酸化チタン粒子(ルチル型)の粒径測定を行ったところ、体積平均粒子径は35nm、単分散度は16%であった。
 高屈折率層形成用塗布液3を用いて作製した単層の屈折率は、1.73であった。
2 kg of pure water was added to 0.5 kg of the 10.0 mass% titanium oxide sol aqueous dispersion, followed by heating to 90 ° C. Thereafter, 0.1 kg of an aqueous silicic acid solution having a SiO 2 concentration of 2.0 mass% was gradually added. The resulting dispersion is subjected to heat treatment at 175 ° C. for 18 hours in an autoclave, desalted using ultrafiltration, and further concentrated to contain titanium oxide having a rutile structure coated with SiO 2 . A dispersion (sol aqueous dispersion) of 20% by mass of silica-modified titanium oxide particles was obtained. At this time, the coating amount of silica was 4% by mass with respect to the titanium oxide particles. Further, when the particle size of silica-modified titanium oxide particles (rutile type) was measured using Zetasizer Nano (manufactured by Malvern), the volume average particle size was 35 nm and the monodispersity was 16%.
The refractive index of the single layer produced using the coating liquid 3 for forming a high refractive index layer was 1.73.
(3)反射層ユニットの形成
 32層同時塗布が可能なスライドホッパー方式の塗布装置を用い、上記調製した低屈折率層形成用塗布液3及び高屈折率層形成用塗布液3を45℃に保温しながら、45℃に加温した長尺の樹脂基材(長さ1000m、厚さ50μmのポリエチレンテレフタレート(PET)フィルム:東洋紡株式会社製、コスモシャインA4300)上に、21層同時重層塗布(低屈折率層及び高屈折率層を交互に合計21層積層)を行った。この際、最下層(樹脂基材側)及び最上層は低屈折率層(乾燥後の厚さ:108nm)とし、それ以外は低屈折率層(乾燥後の厚さ:121nm)及び高屈折率層(乾燥後の厚さ:105nm)がそれぞれ交互に積層されるようにして、合計21層から構成される反射層ユニットを形成した。
(3) Formation of reflection layer unit Using a slide hopper type coating apparatus capable of simultaneous coating of 32 layers, the above-prepared coating solution 3 for forming a low refractive index layer and coating solution 3 for forming a high refractive index layer are heated to 45 ° C. On a long resin substrate (1000 m long, 50 μm thick polyethylene terephthalate (PET) film: Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) while being kept warm, 21 layers are simultaneously applied ( A total of 21 layers of low refractive index layers and high refractive index layers were alternately laminated). At this time, the lowermost layer (resin substrate side) and the uppermost layer are low refractive index layers (thickness after drying: 108 nm), and other layers are low refractive index layers (thickness after drying: 121 nm) and high refractive index. A reflective layer unit composed of a total of 21 layers was formed such that the layers (thickness after drying: 105 nm) were alternately laminated.
 〈光学特性制御フィルム4の作製〉
 光学特性制御フィルム1の作製において、低屈折率層の層厚を109nm及び高屈折率層の層厚を94nmに変更し、基材としてTACを用いた以外は同様にして、光学特性制御フィルム4を得た。
<Preparation of optical property control film 4>
In the production of the optical property control film 1, the optical property control film 4 was similarly prepared except that the layer thickness of the low refractive index layer was changed to 109 nm and the layer thickness of the high refractive index layer was changed to 94 nm and TAC was used as the substrate. Got.
 〈光学特性制御フィルム5の作製〉
 光学特性制御フィルム2の作製において、基材としてTACを用い、親水性ポリマーとしてポリビニルピロリドンを用い、低屈折率層の層厚を125nm及び高屈折率層の層厚を109nmに変更した以外は同様にして、光学特性制御フィルム5を得た。
<Preparation of optical property control film 5>
In preparation of the optical property control film 2, the same except that TAC is used as the base material, polyvinylpyrrolidone is used as the hydrophilic polymer, the layer thickness of the low refractive index layer is changed to 125 nm, and the layer thickness of the high refractive index layer is changed to 109 nm. Thus, an optical property control film 5 was obtained.
 〈光学特性制御フィルム6の作製〉
 光学特性制御フィルム1の作製において、親水性ポリマーとしてポリアクリル酸ナトリウムを用い、低屈折率層の層厚を140nm及び高屈折率層の層厚を121nmに変更した以外は同様にして、光学特性制御フィルム6を得た。
<Preparation of optical property control film 6>
In the production of the optical property control film 1, sodium acrylate was used as the hydrophilic polymer, except that the layer thickness of the low refractive index layer was changed to 140 nm and the layer thickness of the high refractive index layer was changed to 121 nm. A control film 6 was obtained.
 〈光学特性制御フィルム7の作製〉
 特開2006-168335号公報段落番号〔0011〕及び〔0013〕の記載内容に沿って、基材としてポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、コスモシャインA4300)上に、低屈折率層としてナイロン(屈折率1.53)と高屈折率層としてポリエステル(屈折率1.57)の2種類の屈折率の異なるフィルムを交互に合計60層積層して、光学特性制御フィルム7を得た。
<Preparation of optical property control film 7>
In accordance with the description in paragraphs [0011] and [0013] of JP-A-2006-168335, on a polyethylene terephthalate (PET) film (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) as a substrate, as a low refractive index layer The optical characteristic control film 7 was obtained by alternately laminating 60 layers of two different refractive indexes of nylon (refractive index 1.53) and polyester (refractive index 1.57) as a high refractive index layer.
 《評価》
 作製した光学特性制御フィルム1~7について、下記各評価を行った。
<Evaluation>
The following evaluations were performed on the produced optical property control films 1 to 7.
 評価結果を表Iに示す。 Evaluation results are shown in Table I.
 〈可視光線透過率〉
 作製した光学特性制御フィルム1~7について、JIS S 3107:2013に規定される可視光線透過率試験によって、フィルム試験片に対して法線(90°)方向から測定した可視光線透過率(Tvis(a))と、当該法線方向から60°傾けた方向から測定した可視光線透過率(Tvis(b))を求めた。
<Visible Light Transmittance>
The produced optical property control films 1 to 7 were subjected to a visible light transmittance (Tvis () measured from a normal (90 °) direction with respect to a film test piece by a visible light transmittance test defined in JIS S 3107: 2013. a)) and a visible light transmittance (Tvis (b)) measured from a direction inclined by 60 ° from the normal direction.
 可視光線透過率試験は、JIS S 3107:2013に基づいて行った。 The visible light transmittance test was performed based on JIS S 3107: 2013.
 分光透過率の測定は、日本分光製紫外可視近赤外分光光度計V-670を用いた。 The measurement of the spectral transmittance was carried out using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO.
 〈凝結評価〉
 作製した光学特性制御フィルムを5℃の恒温槽中に30分間放置した後、温度20℃、湿度65%RHの室内に取り出し、フィルム面の凝結を目視で評価した。
<Condensation evaluation>
The produced optical property control film was left in a constant temperature bath at 5 ° C. for 30 minutes, and then taken out into a room at a temperature of 20 ° C. and a humidity of 65% RH, and the condensation on the film surface was visually evaluated.
 ◎:フィルム面の凝結は見られない
 ○:フィルム面の凝結はわずかに見られる
 ×:フィルム面の凝結が明らかに見られる
 〈覗き見防止評価〉
 本発明のフィルムのアプリケーションの一つとして覗き見防止フィルムがあげられる。
◎: Condensation on the film surface is not observed ○: Condensation on the film surface is slightly observed ×: Condensation on the film surface is clearly seen <Evaluation for peep prevention>
One application of the film of the present invention is a peep prevention film.
 作製した光学特性制御フィルムの反射層ユニットと対向する面の基材にエポキシ系粘着剤を含有する粘着層を形成した後、スマートフォンの画面に貼り付け、正面(フィルム面の法線方向)から見た時と、斜め方向(フィルム面の法線方向から60°傾けた方向)から見た時の文字の視認性を評価した。 After forming an adhesive layer containing an epoxy adhesive on the base of the optical property control film that faces the reflective layer unit, paste it on the smartphone screen and view it from the front (normal direction of the film surface). And the visibility of characters when viewed from an oblique direction (a direction inclined by 60 ° from the normal direction of the film surface) was evaluated.
 ◎:60°の角度から見た時は全く文字が読めず、覗き見防止効果が非常に高い
 ○:60°の角度から見た時は文字が読みにくく、覗き見防止効果を発現している
 ×:60°の角度から見た時にも文字を読むことができ、覗き見防止効果がない
◎: When viewing from an angle of 60 °, the characters cannot be read at all, and the effect of preventing peeping is very high. ○: When viewed from an angle of 60 °, the characters are difficult to read, and an effect of preventing peeping is exhibited. ×: Characters can be read even when viewed from an angle of 60 °, and there is no peep prevention effect
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表Iの結果から、本発明の光学特性制御フィルムは、正面からの視認性(Tvis(a))と覗き見防止性に優れ、かつ、寒冷地を想定した水分の凝結が防止されており、タッチパネルの誤作動の発生が抑制されるものと考えられる。 From the results of Table I, the optical property control film of the present invention is excellent in visibility from the front (Tvis (a)) and peep prevention, and prevents condensation of moisture assuming a cold region, It is considered that the malfunction of the touch panel is suppressed.
本発明の光学特性制御フィルムは、正面からの視認性と覗き見防止性に優れ、かつ、寒冷地を想定した水分の凝結が防止されていることから、誤作動の発生が抑制されるタッチパネル用途の光学フィルムとして利用される。 The optical property control film of the present invention has excellent visibility from the front and anti-peeping properties, and prevents condensation due to moisture in cold regions. It is used as an optical film.
 1 光学特性制御フィルム
 2 透明樹脂基材
 3 反射層ユニット
 3a 低屈折率層
 3b 高屈折率層
 4 ハードコート層
DESCRIPTION OF SYMBOLS 1 Optical characteristic control film 2 Transparent resin base material 3 Reflective layer unit 3a Low refractive index layer 3b High refractive index layer 4 Hard-coat layer

Claims (6)

  1.  樹脂基材上に、親水性ポリマーと微粒子を含有する複数の高屈折率層と低屈折率層とで構成された反射層ユニットを有する光学特性制御フィルムであって、
     前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))が83%以上であり、かつ、
     前記光学特性制御フィルム面の法線方向から見たときの可視光線透過率(Tvis(a))と、前記光学特性制御フィルムの法線方向に対し60°傾けた方向から見たときの可視光線透過率(Tvis(b))の比率が、下記関係式(1)を満たすことを特徴とする光学特性制御フィルム。
     関係式(1) 1.4≦Tvis(a)/Tvis(b)
    An optical property control film having a reflective layer unit composed of a plurality of high refractive index layers and low refractive index layers containing a hydrophilic polymer and fine particles on a resin substrate,
    Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface is 83% or more, and
    Visible light transmittance (Tvis (a)) when viewed from the normal direction of the optical property control film surface and visible light when viewed from a direction inclined by 60 ° with respect to the normal direction of the optical property control film A ratio of transmittance (Tvis (b)) satisfies the following relational expression (1): an optical property control film.
    Relational expression (1) 1.4 ≦ Tvis (a) / Tvis (b)
  2.  前記親水性ポリマーがポリビニルアルコールであり、かつ、前記微粒子が金属酸化物微粒子であることを特徴とする請求項1に記載の光学特性制御フィルム。 2. The optical property control film according to claim 1, wherein the hydrophilic polymer is polyvinyl alcohol, and the fine particles are metal oxide fine particles.
  3.  前記反射層ユニットの高屈折率層の層厚が95~120nmの範囲内であり、かつ、低屈折率層の層厚が110~135nmの範囲内であることを特徴とする請求項1又は請求項2に記載の光学特性制御フィルム。 The thickness of the high refractive index layer of the reflective layer unit is in the range of 95 to 120 nm, and the thickness of the low refractive index layer is in the range of 110 to 135 nm. Item 3. The optical property control film according to Item 2.
  4.  前記高屈折率層と低屈折率層の合計層数が、20層以上である反射層ユニットを有することを特徴とする請求項1から請求項3までのいずれか一項に記載の光学特性制御フィルム。 4. The optical property control according to claim 1, further comprising a reflective layer unit in which a total number of the high refractive index layer and the low refractive index layer is 20 or more. 5. the film.
  5.  光波長589.3nmにおける前記高屈折率層の屈折率が1.63~1.83の範囲内であり、かつ、前記低屈折率層の屈折率が1.40~1.60の範囲内であることを特徴とする請求項1から請求項4までのいずれか一項に記載の光学特性制御フィルム。 The refractive index of the high refractive index layer at a light wavelength of 589.3 nm is in the range of 1.63 to 1.83, and the refractive index of the low refractive index layer is in the range of 1.40 to 1.60. The optical property control film according to any one of claims 1 to 4, wherein the optical property control film is provided.
  6.  請求項1から請求項5までのいずれか一項に記載光学特性制御フィルムを具備したことを特徴とする表示装置。 A display device comprising the optical property control film according to any one of claims 1 to 5.
PCT/JP2019/022496 2018-06-14 2019-06-06 Optical property control film and display device using same WO2019240003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525498A JPWO2019240003A1 (en) 2018-06-14 2019-06-06 Optical property control film and display device using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018113332 2018-06-14
JP2018-113332 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019240003A1 true WO2019240003A1 (en) 2019-12-19

Family

ID=68843320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022496 WO2019240003A1 (en) 2018-06-14 2019-06-06 Optical property control film and display device using same

Country Status (2)

Country Link
JP (1) JPWO2019240003A1 (en)
WO (1) WO2019240003A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135750A1 (en) * 2010-08-05 2013-05-30 3M Innovative Properties Company Multilayer film comprising matte surface layer and articles
JP2013171097A (en) * 2012-02-20 2013-09-02 Dainippon Printing Co Ltd Heat shield film including hologram
WO2013179902A1 (en) * 2012-05-31 2013-12-05 コニカミノルタ株式会社 Infrared-shielding object
JP2014142636A (en) * 2012-12-27 2014-08-07 Nitto Denko Corp Privacy filter
JP2016118632A (en) * 2014-12-19 2016-06-30 コニカミノルタ株式会社 Method for manufacturing optical control film
US20170336665A1 (en) * 2016-05-20 2017-11-23 Au Optronics Corporation Touch display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135750A1 (en) * 2010-08-05 2013-05-30 3M Innovative Properties Company Multilayer film comprising matte surface layer and articles
JP2013171097A (en) * 2012-02-20 2013-09-02 Dainippon Printing Co Ltd Heat shield film including hologram
WO2013179902A1 (en) * 2012-05-31 2013-12-05 コニカミノルタ株式会社 Infrared-shielding object
JP2014142636A (en) * 2012-12-27 2014-08-07 Nitto Denko Corp Privacy filter
JP2016118632A (en) * 2014-12-19 2016-06-30 コニカミノルタ株式会社 Method for manufacturing optical control film
US20170336665A1 (en) * 2016-05-20 2017-11-23 Au Optronics Corporation Touch display apparatus

Also Published As

Publication number Publication date
JPWO2019240003A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
WO2014156822A1 (en) Laminated glass
US9519081B2 (en) Optical laminate film, infrared shielding film and infrared shielding body
WO2014162864A1 (en) Heat ray shielding laminated glass and manufacturing method for heat ray shielding laminated glass
WO2016208548A1 (en) Optical film and optical laminate containing same
JP5949910B2 (en) Method for producing multilayer laminated film
JP2016139158A (en) Optical reflective film and optical reflector using the same
WO2013168714A1 (en) Laminated glass
WO2013111735A1 (en) Optical film
WO2015104981A1 (en) Infrared-reflecting film, method for producing infrared-reflecting film, and method for producing laminated glass
WO2018207563A1 (en) Light-reflecting film and method for producing light-reflecting film
WO2015056594A1 (en) Infrared shielding film and laminated glass
WO2014171494A1 (en) Optical reflective film, method for manufacturing same, and optical reflector using same
WO2017110651A1 (en) Optical reflection film
WO2016017513A1 (en) Infrared reflective film and laminated glass
WO2016152458A1 (en) Optical film and method for manufacturing optical film
JPWO2016076333A1 (en) Manufacturing method of optical reflection film
WO2019240003A1 (en) Optical property control film and display device using same
US10328454B2 (en) Method for producing optical film
WO2017077810A1 (en) Light reflecting film
JP6406248B2 (en) Infrared shielding film manufacturing method
JP6326780B2 (en) Window pasting film
JP2013125076A (en) Near-infrared shielding film and near-infrared shielding body
WO2014185386A1 (en) Production method for infrared shielding film
JPWO2015104895A1 (en) Manufacturing method of optical reflection film
WO2019193907A1 (en) Method for manufacturing optical article, and optical article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819712

Country of ref document: EP

Kind code of ref document: A1