WO2019239923A1 - Image forming method - Google Patents

Image forming method Download PDF

Info

Publication number
WO2019239923A1
WO2019239923A1 PCT/JP2019/021774 JP2019021774W WO2019239923A1 WO 2019239923 A1 WO2019239923 A1 WO 2019239923A1 JP 2019021774 W JP2019021774 W JP 2019021774W WO 2019239923 A1 WO2019239923 A1 WO 2019239923A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
layer
precoat
agent
overcoat
Prior art date
Application number
PCT/JP2019/021774
Other languages
French (fr)
Japanese (ja)
Inventor
伊丹 明彦
拓己 石渡
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020525441A priority Critical patent/JP7367672B2/en
Publication of WO2019239923A1 publication Critical patent/WO2019239923A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/54Inks based on two liquids, one liquid being the ink, the other liquid being a reaction solution, a fixer or a treatment solution for the ink

Definitions

  • the present invention relates to an image forming method.
  • Aluminum pigments and pearl pigments are used for the purpose of expressing metallic luster in recorded materials such as labels, packages, printed announcements and photographs. These pigments are applied on the substrate as an ink composition by analog printing techniques including offset printing, gravure printing, screen printing, and the like, and form a region that emits a metallic gloss color in the image formed product.
  • nano-sized particles containing metal such as gold, silver, and copper are used to produce a recorded material with a high-definition region that emits a metallic luster color.
  • metal nanoparticles such as gold, silver, and copper
  • a method has been developed in which a metallic luster layer containing the above-mentioned metal nanoparticles is formed on a substrate by being applied to the substrate surface.
  • Patent Document 1 describes a method of forming a plurality of metallic glosses having different glossiness on one image formed product in one printing process by an inkjet method.
  • an ink composition ejected by an ink jet method is deposited on a base material to change the arithmetic roughness (Ra) of the base material surface for each region, thereby reducing the surface to a different extent for each region.
  • Ra arithmetic roughness
  • the degree of gloss can be changed only to the extent corresponding to the thickness of one dot, and an image that can be formed by an image forming apparatus.
  • the surface roughness of the substrate cannot be finely adjusted more finely than the resolution. Therefore, when it is desired to finely adjust the surface roughness, there is no choice but to use a substrate having a fine surface roughness.
  • the gloss cannot be changed for each region in the image. As described above, conventionally, it has been difficult to form an image formed product in which gloss is finely changed in an image.
  • the present invention has been made in view of the above-mentioned problems, and can form an image formed product that can express more various metallic luster and finely change the gloss in images formed on the same substrate surface. It is an object of the present invention to provide a possible image forming method.
  • a step of applying a precoat agent to the surface of a substrate to form a precoat layer, and ink jetting a glitter ink containing a glitter pigment on the surface of the precoat layer are performed. And an ink layer formed by gathering dots formed by the glitter ink and forming an ink layer.
  • the film thickness of the precoat layer or the ink layer corresponding to one dot included in the ink layer and the film thickness of the precoat layer or the ink layer corresponding to another dot included in the ink layer are performed.
  • the peak height of the reflected light reflected from the formed image and the height of the baseline, and the areas including the one dot and the other dots with different thicknesses. And different values.
  • Another embodiment of the present invention for solving the above problem is that a glittering ink containing a glittering pigment is applied to the surface of a substrate by an ink jet method, and dots formed by the glittering ink gather. And forming an overcoat layer by applying an overcoat agent to the surface of the dots constituting the ink layer, and forming an overcoat layer.
  • the thickness of the ink layer and the overcoat layer corresponding to one dot included in the ink layer, and the thickness of the ink layer and the overcoat layer corresponding to other dots included in the ink layer The thickness of the film is different from the thickness, and the peak height of the reflected light or the reflected intensity reflected by the formed image and the half width of the peak are set to the region including the one dot and the other. The value differs depending on the area including the dot.
  • an image forming method capable of forming a variety of metallic luster and capable of forming an image formed product in which gloss is finely changed in images formed on the same substrate surface.
  • FIG. 1A is a schematic diagram illustrating a state in which a part of incident light incident on an object is specularly reflected light, and another part is diffusely reflected light.
  • FIG. 1B is a diagram illustrating the state of FIG.
  • FIG. 6 is a schematic diagram illustrating a distribution information graph in which the light reception angle ( ⁇ ) is plotted on the vertical axis and the lightness (L * ) is plotted on the vertical axis.
  • FIG. 2 is a flowchart of the image forming method according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart of an image forming method according to the second embodiment of the present invention.
  • FIG. 4 is a flowchart of another image forming method according to the second embodiment of the present invention.
  • the present inventors have intensively studied in view of the above problems, and the gloss perceived from the image formation is perceived by each of the regular reflection component and the diffuse reflection component when the light reflected by the image formation is perceived. It was found to be influenced by the contributions that contribute to
  • the glossy color direction ally reflects more of the light incident on the object as regular reflection light. For this reason, a large directivity occurs in the spatial distribution of the light reflected and perceived by the glossy color, and it is considered that the influence of this directivity is great on the color tone of the glossy color that humans feel visually.
  • the degree of gloss of an object perceived by an observer is a degree in which the brightness or reflection intensity of reflected light obtained by reflecting light incident on the object is concentrated and distributed at regular reflection angles ( It is influenced by the directivity of the spatial distribution.
  • the incident light I incident on the object is partly specularly reflected light P and partly diffusely reflected light B (in FIG. 1A, specularly reflected light P and diffusely reflected
  • the brightness or reflection intensity of the light B is determined by the distance from the point L where the incident light I is incident (the length of the solid arrow indicating the specularly reflected light P and the length of the broken arrow indicating the diffusely reflected light B). (Note that the lightness or reflection intensity of the light P and the light B is adjusted for easy understanding, and does not accurately reflect the lightness or reflection intensity actually measured and calculated.)
  • FIG. 1B shows distribution information of brightness or reflection intensity (reflectance or luminance) based on data of a plurality of different light reception angles and radiation intensity measured at the light reception angles. It is the graph which plotted the lightness or the reflection intensity on the vertical axis.
  • the directivity of the spatial distribution is expressed by the peak height (H), the baseline height (B), and the peak half-value width (W) in the distribution information shown in FIG.
  • the gloss can also be expressed by the peak height (H), baseline height (B), and peak half-value width (W). For example, the larger the difference between the peak height (H) and the baseline height (B), the stronger the perception of gloss, and the smaller the peak half width (W), the sharper the perception of gloss.
  • the above knowledge if an image is formed such that the height (H) of the peak, the height (B) of the baseline, and the half width (W) of the peak are changed, it is perceived from the formed image.
  • the gloss to be applied can be changed accordingly.
  • Peak height (H) and baseline height (B) can be varied.
  • the peak height (H) and The half width (W) of the peak can be further changed.
  • the present invention has been made on the basis of the above-mentioned new knowledge.
  • the height of the peak (H), the baseline The height (B) and the full width at half maximum (W) of the peak are changed to change the gloss perceived from the formed image.
  • a precoat layer is formed on the surface of a base material using a precoat agent, and ink is applied to the surface of the precoat layer using a glitter ink containing a glitter pigment.
  • the present invention relates to an image forming method for forming a layer.
  • the precoat agent may be any precoat agent such as water-based, solvent-based, and actinic ray curable types, but the film thickness can be easily controlled by curing before the precoat agent is too wet and spread. From the viewpoint of facilitating thickening, it is preferably an actinic ray curable precoat agent capable of forming a plurality of layers by repeating the step of applying and curing the surface of the substrate.
  • the glitter ink may be any ink such as a water-based ink, a solvent-based ink, and an actinic ray curable ink, but the viewpoint of suppressing a decrease in gloss due to the inclusion of components other than the glitter pigment in the ink layer. Is preferably water-based ink.
  • the method for applying the precoat agent is not particularly limited, and the precoat agent may be applied to the surface of the substrate using a roll coater, a spin coater, or the like, spray coating, dipping method, screen printing, gravure printing, offset.
  • the precoat agent may be applied to the surface of the substrate by a method such as printing, or the precoat agent may be landed on the surface of the substrate by an inkjet method.
  • screen printing and an inkjet method are preferable, and an inkjet method is more preferable.
  • the glitter ink is applied to the surface of the precoat layer by an inkjet method. Thereafter, the glitter ink is dried to remove a liquid component, or an actinic ray is applied to the glitter ink to cure the glitter ink, thereby forming dots formed by the glitter ink. An ink layer formed by gathering is formed.
  • the gloss of the image formed product is increased. Change independently for each dot.
  • the precoat layer corresponding to one dot included in the ink layer specifically, the portion of the precoat layer located immediately below the one dot
  • the film thickness of the ink layer is different.
  • the peak height (H) and the baseline height (B) in the distribution information can be made different between the area including the one dot and the area including the other dots.
  • Different degrees of gloss can be perceived from each of the above areas.
  • the glitter ink by the ink jet method, it is possible to change the thickness of the ink layer for each dot and form an image in which the perceived gloss is changed with higher accuracy.
  • the precoat agent is also applied by the ink jet method, it is possible to change the thickness of the precoat layer for each dot and form an image in which the perceived gloss is changed with higher accuracy.
  • the one dot and the other dots are included in the ink layer formed on the same surface of the same substrate. At that time, it is also possible to form an image having a fine glossy gradation by forming a region formed by a plurality of the above-mentioned one dots and a region formed by a plurality of other dots adjacent to each other. It is.
  • the film thickness of the precoat layer includes the solid content concentration (concentration of resin, etc.) in the precoat agent, the number of times the precoat agent is applied to form the precoat layer, and the precoat agent discharged from the nozzle of the inkjet head.
  • the size can be adjusted by the size of the droplets (droplet amount), the number of droplets to be applied to each dot (number of droplets), and the like.
  • the film thickness of the precoat layer can be changed for each corresponding dot included in the ink layer by changing the number of times the precoat layer is formed or the number of droplets and the number of droplets for each region in the image. it can.
  • the thickness of the ink layer is determined by the size of the droplet (droplet amount) and the solid in the glitter ink when the droplet of the glitter ink ejected from the nozzle of the inkjet head is applied to the surface of the precoat layer. It can be adjusted by the partial concentration (concentration of glitter pigment, fixing resin, etc.).
  • the precoat agent (when applied by the ink jet method) or the droplet amount of the glitter ink is adjusted in the range of 0.5 pl to 50 pl. Is more preferably adjusted within a range of 0.5 pl to 20 pl, and further preferably adjusted within a range of 0.5 pl to 10 pl.
  • the number of droplets of the precoat agent (when applied by the inkjet method) is preferably adjusted in the range of 0 to 10 drops, more preferably adjusted in the range of 0 to 5 drops. .
  • the precoat agent is applied by an ink jet method and a region in which the number of droplets of the precoat agent applied by the ink jet method is adjusted in the range of 0 to 5 drops.
  • a region in which the number of droplets of the agent is adjusted in the range of 6 to 10 droplets it is possible to form minute irregularities on the image.
  • the drive frequency when discharging the precoat agent (when applied by the ink jet method) or the glitter ink from the nozzle of the ink jet head is preferably adjusted in the range of 5 kHz to 100 kHz, and adjusted in the range of 5 kHz to 20 kHz. More preferably.
  • the number of dots formed per unit area included in each region is changed by independently changing the drive frequency for each region. It may be changed.
  • the drive frequency is increased to increase the number of dots formed per unit area, a lighter density region is formed, and the drive frequency is decreased to increase the number of dots formed per unit area.
  • the size is reduced, a region having a higher density is formed.
  • the substrate is not particularly limited, and art paper, coated paper, lightweight coated paper, coated paper including fine coated paper and cast paper, and absorbent medium including non-coated paper, polyester, polyvinyl chloride, Non-absorbent recording media (plastic substrates) composed of plastics including polyethylene, polyurethane, polypropylene, acrylic resin, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer, polyethylene terephthalate and polybutadiene terephthalate, and metals and A non-absorbable inorganic recording medium such as glass can be obtained.
  • plastic substrates composed of plastics including polyethylene, polyurethane, polypropylene, acrylic resin, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer, polyethylene terephthalate and polybutadiene terephthalate, and metals and A non-absorbable inorganic recording medium such as glass can be
  • substrates with low surface smoothness such as the above-mentioned absorbent medium have conventionally been difficult to align glitter pigments and have a significantly increased diffuse reflection component. Since it is easy (the height (B) of the baseline tends to be significantly high), it is difficult to adjust the degree of gloss.
  • the diffuse reflection component can be adjusted by adjusting the surface smoothness, and the degree of gloss can be easily adjusted.
  • the distribution information is obtained by independently changing the film thickness of the precoat layer to which the precoat agent is applied and the film thickness of the ink layer to which the glitter ink is applied, for each dot.
  • the height (H) of the peak and the height (B) of the baseline are changed for each dot.
  • the surface roughness of the substrate can be adjusted to be smoother by increasing the film thickness of the precoat layer.
  • the gloss can be adjusted to be low.
  • the film thickness of the precoat layer may be set for each region (or for each dot included in the region) according to the degree of gloss to be formed in each region of the image formed product.
  • the peak height (H) and the baseline height (B) are adjusted in a wider range by adjusting the roughness of the substrate surface with the precoat layer while leaving the surface roughness to some extent. be able to.
  • the amount of the glitter pigment contained in the dots is increased, and the peak height (H) and the base height (B) are adjusted to be increased. Can do.
  • the film thickness of the ink layer may be set for each dot included in the region according to the degree of gloss to be formed in each region of the image formed product.
  • the film thicknesses of the precoat layer and the ink layer are the composition of the precoat agent and the glitter ink, and the time from when the actinic ray curable precoat agent is ejected and landed on the surface of the substrate until irradiation with actinic rays. , Etc. can also be changed. Based on these conditions, the application amount of the precoat agent and the glitter ink may be adjusted so that a desired degree of gloss can be obtained.
  • a plurality of regions having different glossinesses are obtained by changing the surface roughness of the substrate by changing the amount of the ink composition (precoat agent) applied to the substrate surface.
  • the application amount of the ink composition is increased, the surface of the substrate is roughened and the glossiness of the image formed product is decreased.
  • the applicable substrate of the method is almost limited to a substrate having a smooth surface (for example, a resin sheet such as vinyl chloride).
  • the applied amount of the ink composition does not always correspond to the glossiness of the image formed product, and an image having a desired glossiness cannot be formed.
  • the degree of gloss can be changed only to the extent corresponding to the thickness of one dot, and an image that can be formed by an image forming apparatus.
  • the surface roughness of the substrate cannot be finely adjusted more finely than the resolution. Therefore, when it is desired to finely adjust the surface roughness, there is no choice but to use a substrate having a fine surface roughness.
  • the gloss cannot be changed for each region in the image. As described above, conventionally, it has been difficult to form an image formed product in which gloss is finely changed in an image.
  • the present invention it is possible to adjust the gloss more finely by changing the film thickness of each layer.
  • the expression of the metallic luster can be controlled without depending only on the surface roughness of the substrate, different metallic luster can be expressed on the surface with the same surface roughness, or different surface roughness can be expressed. It is possible to express the same metallic luster on the surface.
  • Pre-coating agent may be an ink composition that is applied to the surface of the substrate and can form a layer on the surface.
  • the precoat agent when the precoat agent is a water-based ink, it can contain water, a resin, and optionally a water-soluble organic solvent. Further, when the precoat agent is a solvent-based ink, it can contain an organic solvent and a resin. Further, when the precoat agent is an actinic ray curable ink, it can contain a photopolymerizable compound that polymerizes and crosslinks upon irradiation with actinic rays and optionally a photopolymerization initiator.
  • the precoat agent may further contain a surfactant, a polymerization inhibitor, an ultraviolet absorber, and the like as necessary.
  • a surfactant e.g., a surfactant, a polymerization inhibitor, an ultraviolet absorber, and the like.
  • the precoat agent is applied to the surface of the base material and cured from the viewpoint of facilitating the control of the film thickness by curing before the precoat agent is too wet and spreading, and also facilitating the thickening of the film thickness.
  • An actinic ray curable pre-coating agent capable of forming a plurality of layers by repeating the process is preferred.
  • water-soluble organic solvent when the precoat agent is a water-based ink examples include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, alcohols containing sec-butanol and t-butanol, ethylene glycol, diethylene glycol, triethylene Glycerol, hexanetriol, thiodiglycol, 1,2-butanediol, 1,3-butanediol, including glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, and pentanediol , 2-pentanediol, 1,2-hexanediol and polyhydric alcohols containing 1,2-heptanediol, ethanolamine, diethanolamine , Triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine
  • the content of the water-soluble organic solvent when the precoat agent is water-based ink can be, for example, 5.0% by mass or more and 30% by mass or less with respect to the total mass of the precoat agent.
  • the water-soluble organic solvent is A polyhydric alcohol is preferably included. At this time, it is preferable that content of the polyhydric alcohol in a precoat agent is 1 to 10 mass% with respect to the total mass of a precoat agent.
  • the resin when the precoat agent is a water-based ink examples include polyester resins, polyurethane resins, acrylic resins, polyurethane-acrylic resins, vinyl chloride resins, and vinyl acetate resins.
  • the resin may be a latex that is dispersed in ink to form a dispersion, or is a soluble resin (water-soluble resin or organic solvent-soluble resin) that is dissolved in ink with water or an organic solvent. Also good.
  • the content of the resin when the precoat agent is water-based ink can be, for example, 1% by mass to 20% by mass with respect to the total mass of the precoat agent as a solid content.
  • what is necessary is just to adjust the content of the said resin according to the film thickness of the precoat layer formed by the film thickness of the precoat layer formed by one application
  • Examples of the organic solvent when the precoat agent is a solvent-based ink include a water-soluble organic solvent and a water-insoluble organic solvent that can be used for the water-based ink.
  • water-insoluble organic solvent examples include pentane, hexane, i-hexane, heptane, i-heptane, octane, i-octane, and aliphatic hydrocarbons having 5 to 15 carbon atoms and cyclopentane.
  • the content of the water-insoluble organic solvent when the precoat agent is a solvent-based ink can be, for example, 1.0% by mass or more and 98% by mass or less, and 20% by mass with respect to the total mass of the precoat agent. It is more preferable to set it as 95 mass% or less, and it is still more preferable to set it as 40 mass% or more and 90 mass% or less.
  • the resin when the precoat agent is a solvent-based ink examples include polyester resins, polyurethane resins, acrylic resins, polyurethane-acrylic resins, vinyl chloride resins, and vinyl acetate resins.
  • the resin may be a latex that is dispersed in ink to form a dispersion, or is a soluble resin (water-soluble resin or organic solvent-soluble resin) that is dissolved in ink with water or an organic solvent. Also good.
  • the content of the resin when the precoat agent is a solvent-based ink can be, for example, 1% by mass or more and 20% by mass or less as a solid content with respect to the total mass of the precoat agent.
  • what is necessary is just to adjust the content of the said resin according to the film thickness of the precoat layer formed by the film thickness of the precoat layer formed by one application
  • Examples of the photopolymerizable compound when the precoat agent is an actinic ray curable ink include a radical polymerizable compound and a cationic polymerizable compound.
  • the photopolymerizable compound may be any of a monomer, a polymerizable oligomer, a prepolymer, or a mixture thereof.
  • the radical polymerizable compound is preferably an unsaturated carboxylic acid ester compound, and more preferably (meth) acrylate.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acryl means acryl or methacryl
  • (meth) acryloyl means acryloyl or methacryloyl. means.
  • Examples of monofunctional (meth) acrylates include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, isomustyl (meth) acrylate, isostearyl (Meth) acrylate, 2-ethylhexyl-diglycol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meta ) Acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, phenoxye (Meth) acrylate, t
  • polyfunctional (meth) acrylates include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Dimethylol-tricyclodecane di (meth) acrylate, PO adduct di (meth) acrylate of bisphenol A, neopentyl glycol di (meth) acrylate hydroxypivalate, polytetramethylene glycol di ( A) bifunctional (meth) acrylates including polyethylene acrylate, polyethylene glycol di (
  • the radical polymerizable compound preferably contains (meth) acrylate modified with ethylene oxide or propylene oxide (hereinafter also simply referred to as “modified (meth) acrylate”).
  • modified (meth) acrylate has higher photosensitivity. Further, the modified (meth) acrylate is more compatible with other components even at high temperatures. Furthermore, since the modified (meth) acrylate has little curing shrinkage, curling of the printed matter during irradiation with actinic rays is less likely to occur.
  • Examples of the cationic polymerizable compound include an epoxy compound, a vinyl ether compound, and an oxetane compound.
  • epoxy compounds examples include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclohexene monoepoxide, ⁇ -caprolactone modified 3, 4-epoxycyclohexylmethyl 3 ', 4'-epoxycyclohexanecarboxylate, 1-methyl-4- (2-methyloxiranyl) -7-oxabicyclo [4,1,0] heptane, 2- (3,4 -Epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexanone-cycloaliphatic epoxy resins such as meta-dioxane and bis (2,3-epoxycyclopentyl) ether, diglycidyl ether of 1,4-butanediol 1,6-hexanediol
  • vinyl ether compounds include ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, isopropenyl.
  • Monovinyl ether compounds including ether-o-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, and octadecyl vinyl ether, and the like, as well as ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol dibi Ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, and the like di- or tri-vinyl ether compounds containing a cyclohexane dimethanol divinyl ether and trimethylolpropane trivinyl ether.
  • oxetane compound examples include 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, 3-hydroxymethyl-3-normalbutyloxetane, 3 -Hydroxymethyl-3-phenyloxetane, 3-hydroxymethyl-3-benzyloxetane, 3-hydroxyethyl-3-methyloxetane, 3-hydroxyethyl-3-ethyloxetane, 3-hydroxyethyl-3-propyloxetane, 3 -Hydroxyethyl-3-phenyloxetane, 3-hydroxypropyl-3-methyloxetane, 3-hydroxypropyl-3-ethyloxetane, 3-hydroxypropyl-3-propyloxetane, 3-hydroxypropyl-3-phenyl Xetane, 3-hydroxybutyl-3-methyloxetane, 1,4bis ⁇ [(3-
  • Content of the said photopolymerizable compound in a precoat agent can be 1.0 mass% or more and 97 mass% or less with respect to the total mass of a precoat agent, for example, is 30 mass% or more and 90 mass% or less. It is preferable.
  • the precoat agent may further contain a photopolymerization initiator.
  • the photopolymerization initiator may be any one that can initiate the polymerization of the photopolymerizable compound.
  • the photopolymerization initiator can be a photoradical initiator, and when the precoat agent has a cationically polymerizable compound, the photopolymerization initiator is a photocationic initiator ( Photoacid generator).
  • the content of the photopolymerization initiator can be arbitrarily set within a range where the curing of the precoat agent is started by irradiation with actinic rays.
  • the content of the photopolymerization initiator is 0.1% by mass relative to the total mass of the precoat agent. It can be made 20 mass% or less, preferably 1.0 mass% or more and 12 mass% or less.
  • a photopolymerization initiator is unnecessary.
  • the precoat agent may contain a component that precipitates or aggregates the glitter pigment contained in the glitter ink, such as polyvalent metal ions and polyvalent organic acids. These components can precipitate or aggregate the glitter pigment in the glitter ink, and can further stabilize the dot diameter of the glitter ink.
  • a component that precipitates or aggregates the glitter pigment contained in the glitter ink such as polyvalent metal ions and polyvalent organic acids. These components can precipitate or aggregate the glitter pigment in the glitter ink, and can further stabilize the dot diameter of the glitter ink.
  • the viscosity of the precoat agent is preferably 1 cP or more and less than 100 cP, from the viewpoint of further improving the ejection stability from the nozzles of the inkjet head, and is 1 cP or more and 50 cP or less. More preferably, it is 1 cP or more and 15 cP or less.
  • the glittering ink may be any ink composition that contains a glittering pigment and can be ejected by an inkjet method.
  • the glitter ink when it is a water-based ink, it can contain water and optionally a water-soluble organic solvent.
  • the glitter ink can contain an organic solvent when it is a solvent-based ink.
  • the glitter ink when it is an actinic ray curable ink, it can contain a photopolymerizable compound that polymerizes and crosslinks upon irradiation with an actinic ray and optionally a photopolymerization initiator.
  • the kind and content of the water, water-soluble organic solvent, organic solvent, photopolymerizable compound and photopolymerization initiator that can be contained in the glitter ink can be the same as those of the precoat agent described above.
  • the glitter ink further includes a dispersant for dispersing the glitter pigment, a fixing resin for fixing the glitter pigment to the substrate, a surfactant, a polymerization inhibitor, an ultraviolet absorber, and the like, if necessary. You may contain. In the glitter ink, only one kind of the other component may be contained, or two or more kinds thereof may be contained.
  • the glitter pigment may be a known pigment used to develop gloss in an image, such as an aluminum pigment and a pearl pigment, but from the viewpoint of controlling the reflection of light more precisely by aligning the pigments.
  • the metal particles are preferable.
  • the metal particles are particles having a metal as a main component and are not particularly limited as long as the particles can exhibit a metallic luster.
  • metals constituting the metal particles include gold, silver, copper, nickel, palladium, platinum, aluminum, zinc, chromium, iron, cobalt, molybdenum, zirconium, ruthenium, iridium, tantalum, mercury, indium, tin, lead , And tungsten.
  • gold, silver, copper, nickel, cobalt, tin, lead, chromium, zinc, and aluminum are preferable because they can exhibit high gloss and are inexpensive.
  • Gold, silver, copper, tin Chrome, lead and aluminum are more preferred, gold and silver are more preferred, and silver is particularly preferred.
  • metals can be used singly or in combination of two or more as an alloy or a mixture. Further, two or more kinds of metal particles having different kinds or compositions of metals may be used in combination. The metal particles only need to have these metals as the main component, may contain a small amount of other components inevitably included, and may be surface-treated with citric acid or the like to improve dispersion stability. Good. Moreover, these metals may contain an oxide.
  • the average particle diameter of the metal particles is not particularly limited, but from the viewpoint of improving the dispersion stability and storage stability in the metal ink, and from the viewpoint of improving the visibility of gradation, the metal particles have an average particle diameter of nano-size. Certain metal nanoparticles are preferred.
  • the average particle size of the metal particles is preferably 3 nm or more and 100 nm or less, more preferably 5 nm or more and 80 nm or less, further preferably 10 nm or more and 60 nm or less, and particularly preferably 15 nm or more and 55 nm or less. .
  • the average particle diameter of the metal particles is determined by observing the metal particle dispersion with an SEM and determining the volume average particle diameter of the nanoparticles, and specifically, the following procedure is performed.
  • the content of the metal nanoparticles in the glitter ink is not particularly limited, but is preferably 0.5% by mass to 15% by mass with respect to the total mass of the glitter ink, and is 0.75% by mass to 12. It is more preferably 5% by mass or less, and further preferably 1% by mass or more and 10% by mass or less.
  • the dispersing agent only needs to be able to sufficiently disperse the glitter pigment.
  • the dispersant is preferably a polymer dispersant.
  • the polymer dispersant is a compound having an adsorbing group that can be adsorbed on the surface of the metal nanoparticles and a hydrophilic structure.
  • the adsorbing group include a carboxyl group and a thiol group.
  • the resin constituting the polymer dispersant is preferably a homopolymer or copolymer of a hydrophilic monomer.
  • the copolymer of hydrophilic monomers may be a copolymer of hydrophilic monomers and hydrophobic monomers.
  • hydrophilic monomers include monomers containing carboxyl groups or acid anhydride groups (such as (meth) acrylic acid, unsaturated polyvalent carboxylic acids such as maleic acid, and maleic anhydride), and alkylene oxide modified (meta).
  • Acrylic acid ester monomers such as ethylene oxide-modified (meth) acrylic acid alkyl esters.
  • (meth) acryl means both or one of acrylic and methacrylic.
  • hydrophobic monomers examples include (meth) acrylate monomers such as methyl (meth) acrylate and ethyl (meth) acrylate, styrene monomers such as styrene, ⁇ -methylstyrene and vinyltoluene, ethylene, propylene And ⁇ -olefin monomers such as 1-butene, and vinyl carboxylate monomers such as vinyl acetate and vinyl butyrate.
  • the polymer dispersant when it is a copolymer, it can be a random copolymer, an alternating copolymer, a block copolymer, a comb copolymer, or the like. Among these, from the viewpoint of further improving the dispersibility of the metal nanoparticles, the polymer dispersant is preferably a comb block copolymer.
  • the comb-type block copolymer means a copolymer containing a linear polymer that forms a main chain and another type of polymer that is graft-polymerized to a structural unit derived from a monomer that forms the main chain.
  • a preferable example of the comb block copolymer is a long chain in which the main chain includes a structural unit derived from (meth) acrylic acid ester, and the side chain includes a polyalkylene oxide group (such as an ethylene oxide-propylene oxide copolymer group).
  • Comb-type block copolymers containing a chain polyalkylene oxide group such as an ethylene oxide-propylene oxide copolymer group.
  • the graft-polymerized side chain causes steric hindrance, aggregation of metal nanoparticles can be further suppressed. Thereby, the dispersibility of the metal nanoparticles is increased, and thus it is easier to suppress ejection failure due to the aggregated metal nanoparticles.
  • the content of the polymer dispersant in the glitter ink is not particularly limited, but from the viewpoint of sufficiently enhancing the dispersibility of the metal nanoparticles in the glitter ink and the adhesion to the substrate, It is preferably 1% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 10% by mass or less, and further preferably 3% by mass or more and 8% by mass or less with respect to the total mass.
  • the fixing resin examples include (meth) acrylic resin, epoxy resin, polysiloxane resin, maleic acid resin, vinyl resin, polyamide resin, nitrocellulose, cellulose acetate, ethyl cellulose, ethylene-vinyl acetate copolymer, urethane resin, Polyester resins and alkyd resins are included.
  • the fixing resin is an anionic resin emulsion from the viewpoint of increasing the adhesion of the metal nanoparticles to the substrate by interacting with the polymer dispersant adsorbed on the surface of the metal nanoparticles. Is preferred.
  • the anionic resin is preferably a resin having high affinity with the polymer dispersant, and is a (meth) acrylic resin, urethane resin, polyolefin resin, polyester resin, polyvinyl chloride resin (for example, polyvinyl chloride polymer, Vinyl chloride-vinylidene chloride copolymer), epoxy resin, polysiloxane resin, fluororesin, styrene copolymer (eg, styrene-butadiene copolymer, styrene- (meth) acrylate copolymer), and vinyl acetate A copolymer (for example, ethylene-vinyl acetate copolymer) can be appropriately selected and used.
  • styrene copolymer eg, styrene-butadiene copolymer, styrene- (meth) acrylate copolymer
  • vinyl acetate A copolymer for example, ethylene-vinyl
  • the anionic resin is composed of (meth) acrylic resin, urethane resin, polyolefin resin, polyvinyl chloride resin, epoxy resin, polysiloxane resin, fluorine resin, styrene copolymer. It is preferably selected from a coalescence, a vinyl acetate copolymer and the like, and preferably selected from a urethane resin and a (meth) acrylic resin.
  • the average particle size of the anionic resin emulsion is preferably 10 nm or more and 200 nm or less, and more preferably 30 nm or more and 100 nm or less.
  • the average particle size of the emulsion can be a volume average particle size determined using a particle size distribution measuring apparatus based on a dynamic light scattering method.
  • the solid content of the emulsion in the glitter ink is preferably 0.01% by mass or more and 0.1% by mass or less based on the total mass of the metal nanoparticles and the polymer dispersant.
  • the solid content is 0.01% by mass or more, the abrasion resistance of the formed image can be further improved.
  • the solid content is 0.1% by mass or less, the glitter (reflectance) of the formed image can be further increased.
  • the solid content of the emulsion in the glitter ink is more preferably 0.02% by mass or more and 0.1% by mass or less, and 0.03% by mass or more and 0.1% by mass or less. More preferably.
  • surfactants include anionic surfactants, including dialkyl sulfosuccinates, alkyl naphthalene sulfonates and fatty acid salts, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycols and poly (ethylene glycols).
  • anionic surfactants including oxyethylene / polyoxypropylene block copolymers, cationic surfactants including alkylamine salts and quaternary ammonium salts, silicone surfactants, and fluorine surfactants It is.
  • the content of the surfactant is preferably 0.001% by mass or more and less than 1.0% by mass with respect to the total mass of the glitter ink.
  • the glitter ink is composed of metal nanoparticles substantially adsorbed with the polymer dispersant, an emulsion and solvent of the anionic resin, and optionally a necessary amount of a surfactant.
  • a surfactant Preferably it consists of.
  • the total content of the metal nanoparticles adsorbed by the polymer dispersant, the emulsion of the anionic resin, and the solvent is preferably 90% by mass or more and 100% by mass or less based on the total mass of the glitter ink. More preferably, it is 95 mass% or more and 100 mass% or less.
  • the viscosity of the glitter ink is preferably 1 cP or more and less than 100 cP, more preferably 1 cP or more and 50 cP or less, and 1 cP or more and 15 cP or less. Is more preferable.
  • FIG. 2 is a flowchart of the image forming method according to this embodiment.
  • a precoat layer is formed in contact with the surface of the substrate using the precoat agent (step S110), and an ink layer is formed in contact with the surface of the precoat layer formed using the glitter ink. (Step S120).
  • precoat layer Formation of precoat layer (step S110) First, the said precoat agent is provided to the surface of a base material, and a precoat layer is formed.
  • droplets of the precoat agent are ejected from the nozzles of the ink jet head onto the surface of the substrate that is transported and moved in the transport path.
  • the discharged droplets land on the surface of the substrate.
  • a precoat agent is applied to the surface of the substrate by a known method such as screen printing.
  • the film thickness of the precoat layer to be formed is expressed in a region including corresponding dots included in the ink layer (specifically, dots of the ink layer formed in contact with the portion of the precoat layer). Adjust according to the degree of gloss.
  • the film thickness of the precoat layer is determined in advance according to the relationship between the degree of gloss to be developed and the film thickness of the precoat layer and the ink layer to be formed, which are determined in advance according to the type of the precoat agent and the glitter ink used. It can be determined by referring to the obtained correspondence table.
  • the film thickness of the precoat layer is determined by causing a processing device that has undergone machine learning to calculate the relationship between the degree of gloss to be developed and the film thickness of the precoat layer and the ink layer to be formed. can do.
  • the size of the droplets (the amount of droplets) and the number of droplets applied to each dot (liquid) may be adjusted by the number of droplets) or the number of times screen printing is repeated.
  • the conveyance speed of a base material is not specifically limited, For example, it may be set between 1 m / s or more and 1000 m / s or less. The higher the conveying speed, the faster the image forming speed.
  • the ejection method from the inkjet head may be either an on-demand method or a continuous method.
  • On-demand inkjet heads include electro-mechanical conversion methods such as single cavity type, double cavity type, bender type, piston type, shear mode type and shared wall type, as well as thermal inkjet type and bubble jet. Any of electric-thermal conversion methods such as Canon Inc. registered trademark) may be used.
  • the temperature of the precoat agent to be discharged may be adjusted by heating the ink flow path.
  • the temperature of the precoat agent to be discharged is not particularly limited, but is preferably 50 ° C. or higher and 90 ° C. or lower.
  • the resolution of the formed image can be adjusted by adjusting the discharge conditions of the precoat agent.
  • the resolution of the formed image can be 600 dpi or more and 1440 dpi or less, but from the viewpoint of forming a higher-definition image, it is preferably 1200 dpi or more and 1440 dpi or less.
  • a precoat layer formed by curing the precoat agent is formed by irradiating the droplets of the precoat agent applied to the substrate with actinic rays or drying the precoat agent applied to the substrate.
  • the actinic light is preferably ultraviolet light from an ultraviolet LED.
  • a metal halide lamp or the like is known as a general ultraviolet light source.
  • an ultraviolet LED as a light source, it is possible to suppress the occurrence of curing failure on the surface of the cured film due to melting of the cured film by the radiant heat of the light source.
  • the peak wavelength of the ultraviolet LED is preferably 385 nm or more and 400 nm or less.
  • An example of a light source having an ultraviolet LED includes a water-cooled ultraviolet irradiation unit (peak wavelength: 395 nm) manufactured by Phoseon Technology.
  • the irradiation conditions of actinic rays can be appropriately set according to the composition of the precoat agent.
  • a light source having a UV LED the maximum illuminance on the surface of the droplet on the substrate is 0.5 W / cm 2 or more 10.0 W / cm 2 or less, more preferably 1W / cm 2 or more 5W / cm 2 or less and It can be installed so that.
  • step S120 Formation of ink layer (step S120)
  • the glitter ink is applied to the surface of the dots on which the precoat agent constituting the precoat layer has been cured by an inkjet method for each dot.
  • the liquid component is removed by drying or the like, or when the glitter ink is an actinic ray curable ink
  • the glitter ink is cured by irradiation with actinic rays, and an ink layer formed by gathering dots formed by the glitter ink is formed.
  • the drying conditions and the actinic ray irradiation conditions may be appropriately determined according to the composition of the glitter ink.
  • the actinic ray irradiation conditions may be the same as the conditions for curing the droplets of the precoat agent.
  • the ejection method from the inkjet head is not particularly limited, and may be the same as the conditions for forming the precoat layer.
  • the film thickness of the ink layer to be formed is adjusted in accordance with the degree of gloss to be developed in the region including the dots formed by the applied glittering ink.
  • the thickness of the ink layer is determined in advance according to the relationship between the degree of gloss to be developed and the thickness of the precoat layer and the ink layer to be formed, which are predetermined according to the type of precoat agent and glitter ink to be used. It can be determined by referring to the obtained correspondence table. Alternatively, the thickness of the ink layer is determined by causing a processing device that has undergone machine learning to calculate the relationship between the degree of gloss to be developed and the thickness of the precoat layer and the ink layer to be formed. can do.
  • the thickness of the ink layer to be formed may be adjusted by changing the size of the droplet (droplet amount), the number of droplets applied to each dot (number of droplets), and the like.
  • the amount of the glitter ink applied may be adjusted so that the size of the dots formed by the glitter ink applied is substantially the same as the size of the dots formed by the precoat agent.
  • an overcoat agent is used on the surface of the ink layer.
  • the present invention relates to an image forming method for forming a coat layer.
  • the overcoat agent may be any overcoat agent such as water-based, solvent-based, and actinic ray curable types, but facilitates control of the film thickness by curing before the overcoat agent is too wet and spreads, and From the viewpoint of facilitating the thickening of the film thickness, it is an actinic ray curable overcoat agent capable of forming a plurality of layers by repeating the step of applying to the surface of the substrate and curing. Is preferred.
  • the method for applying the overcoat agent is not particularly limited, and the overcoat agent may be applied to the surface of the ink layer using a roll coater or a spin coater, or spray coating, dipping method, screen printing, gravure printing.
  • the overcoat agent may be applied to the surface of the ink layer by a method such as offset printing, or the overcoat agent may be landed on the surface of the ink layer by an inkjet method.
  • screen printing and an inkjet method are preferable, and an inkjet method is more preferable.
  • the film thickness of the overcoat layer formed by the applied overcoat agent independently for each dot
  • the gloss of the image formation can be further changed independently for each dot. Further, it is possible to form an image in which the gloss is changed with higher accuracy.
  • the film thickness of the overcoat layer corresponding to one dot contained in the ink layer specifically, the portion of the overcoat layer located immediately below the one dot
  • the above By setting the thickness of the overcoat layer corresponding to other dots contained in the ink layer (specifically, the portion of the overcoat layer located immediately below the other dots) to a different thickness.
  • the peak height (H) and the peak half-value width (W) in the distribution information are different between the area containing the one dot and the area containing the other dot, , Different degrees of gloss can be perceived.
  • the overcoat agent by applying the overcoat agent by an ink jet method, it is possible to change the thickness of the overcoat layer for each dot and form an image in which the perceived gloss is changed with higher accuracy.
  • the film thickness of the overcoat layer is determined by the number of times the precoat agent is applied to form the precoat layer, and when the droplets of the overcoat agent discharged from the nozzles of the inkjet head are applied to the surface of the ink layer.
  • the droplet size (droplet amount) and the number of droplets applied to each dot (number of droplets) can be adjusted.
  • the film thickness of the precoat layer can be changed for each corresponding dot included in the ink layer by changing the number of times the precoat layer is formed or the number of droplets and the number of droplets for each region in the image. it can.
  • the amount of droplets of the overcoat agent (when applied by the ink jet method) is preferably adjusted in the range of 0.5 pl to 50 pl, and in order to form a high-definition image, 0.5 pl or more It is more preferable to adjust in the range of 20 pl or less, and it is still more preferable to adjust in the range of 0.5 pl or more and 10 pl or less.
  • the number of droplets of the overcoat agent (when applied by the inkjet method) is preferably adjusted in the range of 0 to 10 drops, more preferably adjusted in the range of 0 to 5 drops. preferable.
  • the drive frequency when discharging the overcoat agent (when applied by the inkjet method) from the nozzle of the inkjet head is preferably adjusted in the range of 5 kHz to 100 kHz, and adjusted in the range of 5 kHz to 20 kHz. Is more preferable.
  • the peak height (H) in the distribution information is obtained by independently changing the film thickness of the overcoat layer provided with an overcoat agent and cured by irradiation with actinic rays for each dot.
  • the half width (W) of the peak is changed for each dot.
  • the amount of specularly reflected light emitted from the dots can be reduced, and the gloss can be adjusted to slightly reduce the peak height (H). Furthermore, by increasing the film thickness of the overcoat layer, the surface of the dots is adjusted to be rougher, making it less likely to concentrate the light emitted from the dots due to the specularly reflected light, thereby increasing the peak half-value width (W). Can be adjusted to widen.
  • the film thickness of the overcoat layer may be set according to the degree of gloss to be formed by the dots.
  • the film thickness of the overcoat layer can also be changed by the time from when the overcoat agent is ejected and landing on the surface of the substrate until irradiation with actinic rays, the composition of the precoat agent and the glitter ink, and the like. it can. Based on these conditions, the application amount of the overcoat agent may be adjusted so that a desired level of gloss can be obtained.
  • the overcoat layer may contain a non-brilliant color material.
  • the non-brilliant colorant can be a known pigment or dye used to form an image exhibiting yellow, red or magenta, blue or cyan and black, and other features.
  • a color can be imparted to the gloss formed, and various gloss colors such as red silver, blue silver, and gold can be expressed.
  • precoat agent and overcoat agent Since the precoat agent and the overcoat agent can be the same as the precoat agent used in the first embodiment, detailed description thereof is omitted.
  • precoat agent and the overcoat agent used to form the same dot may have the same composition or different compositions.
  • the overcoat agent may contain a non-brilliant color material.
  • the non-brilliant color material includes a non-brilliant dye and a non-brilliant pigment.
  • the non-brilliant colorant is preferably a non-brilliant pigment.
  • the non-brilliant pigment can be selected from, for example, a yellow (yellow) pigment, a red or magenta pigment, a blue or cyan pigment, a green pigment, and a black pigment depending on the color of an image to be formed.
  • pigments such as pink, green and orange for forming other special colors may be used.
  • yellow pigments examples include C.I. I. Pigment Yellow (hereinafter, also simply referred to as “PY”) , PY110, PY137, PY138, PY139, PY153, PY154, PY155, PY157, PY166, PY167, PY168, PY180, PY185, and PY193.
  • red or magenta pigments examples include C.I. I.
  • PR Pigment Red
  • PR5 PR5
  • PR19 PR19
  • PR22 PR31, PR38, PR43
  • PR48 1, PR48: 2, PR48: 3, PR48: 4, PR48: 5, PR49: 1 PR53: 1, PR57: 1, PR57: 2, PR58: 4, PR63: 1, PR81, PR81: 1, PR81: 2, PR81: 3, PR81: 4, PR88, PR104, PR108, PR112, PR122, PR123 PR144, PR146, PR149, PR166, PR168, PR169, PR170, PR177, PR178, PR179, PR184, PR185, PR208, PR216, PR226, and PR257, C.I. I.
  • Pigment Violet (hereinafter also simply referred to as “PV”) 3, PV19, PV23, PV29, PV30, PV37, PV50, and PV88, and C.I. I. Pigment Orange (hereinafter, also simply referred to as “PO”) 13, PO16, PO20, and PO36.
  • blue or cyan pigments include C.I. I. Pigment Blue (hereinafter also referred to simply as “PB”) 1, PB15, PB15: 1, PB15: 2, PB15: 3, PB15: 4, PB15: 6, PB16, PB17-1, PB22, PB27, PB28, PB29 , PB36, and PB60.
  • green pigments include C.I. I.
  • Pigment Green (hereinafter also simply referred to as “PG”) 7, PG26, PG36, PG50, and the like.
  • black pigments include C.I. I. Pigment Black (hereinafter also simply referred to as “PBk”) 7, PBk26, PBk28, and the like.
  • Glossy ink As the glitter ink, the same glitter ink as that used in the first embodiment can be used.
  • FIG. 3 is a flowchart of the image forming method according to this embodiment.
  • a precoat layer is formed in contact with the surface of the substrate using the precoat agent (step S110), and an ink layer is formed in contact with the surface of the precoat layer using the glitter ink (step S120). Further, an ink layer is formed using the overcoat agent (step S130).
  • precoat layer step S110 Since the precoat layer can be formed in the same manner as in the first embodiment, detailed description thereof is omitted.
  • the film thickness of the precoat layer to be formed is adjusted according to the degree of gloss to be developed in the region including the corresponding dots included in the ink layer.
  • the film thickness of the precoat layer is determined in advance according to the kind of precoat agent, glitter ink and overcoat agent to be used, the degree of gloss to be expressed, and the precoat agent, glitter ink and overcoat agent to be formed. It is possible to determine by referring to a correspondence table obtained in advance for the relationship between the amount and the amount to be added. Alternatively, the film thickness of the precoat layer is calculated by calculating the relationship between the degree of gloss to be developed and the film thickness of the precoat agent, glitter ink, and overcoat agent to be formed by a processing device that has undergone machine learning or the like. Then, the application amount of the precoat agent for forming the precoat layer having the film thickness can be calculated or determined.
  • the size of the droplets (the amount of droplets) and the number of droplets applied to each dot (liquid) may be adjusted by the number of droplets) or the number of times screen printing is repeated.
  • step S120 Since the ink layer can be formed in the same manner as in the first embodiment, detailed description thereof is omitted.
  • the film thickness of the ink layer to be formed is adjusted according to the degree of gloss to be developed in the region including the dots formed by the applied glittering ink.
  • the thickness of the ink layer is determined according to the type of precoat agent, glitter ink and overcoat agent used, the degree of gloss to be expressed, and the precoat agent, glitter ink and overcoat agent to be formed. It is possible to determine by referring to a correspondence table obtained in advance for the relationship between the given amount and.
  • the film thickness of the ink layer is calculated by calculating the relationship between the degree of gloss to be developed and the film thickness of the precoat agent, glitter ink and overcoat agent to be formed by a processing device that has undergone machine learning or the like. Then, the application amount of the precoat agent for forming the precoat layer having the film thickness can be calculated or determined.
  • the thickness of the ink layer to be formed may be adjusted by changing the size of the droplet (droplet amount), the number of droplets applied to each dot (number of droplets), and the like.
  • the amount of the glitter ink applied may be adjusted so that the size of the dots formed by the glitter ink applied is substantially the same as the size of the dots formed by the precoat agent.
  • step S130 Formation of overcoat layer (step S130) Thereafter, the overcoat agent is applied to the surface of the dots formed by the glitter ink constituting the ink layer to form an overcoat layer.
  • the film thickness of the overcoat layer to be formed is adjusted according to the degree of gloss to be developed in the region including the corresponding dots included in the ink layer.
  • the film thickness of the overcoat layer is determined in accordance with the type of precoat agent, glitter ink and overcoat agent used, the degree of gloss to be expressed, the precoat agent to be formed, glitter ink and overcoat. It can be determined by referring to a correspondence table in which the relationship between the applied amount of the agent and the agent is obtained in advance. Alternatively, the film thickness of the overcoat layer is calculated by calculating the relationship between the degree of gloss to be developed and the film thickness of the precoat agent, glitter ink, and overcoat agent to be formed on a machine that has undergone machine learning. Then, the application amount of the precoat agent for forming the precoat layer having the film thickness can be calculated or determined.
  • the size of the droplet (droplet amount) and the number of droplets to be applied to each dot may be adjusted by the number of droplets) or the number of times screen printing is repeated.
  • the ejection method from the inkjet head may be either an on-demand method or a continuous method.
  • On-demand inkjet heads include electro-mechanical conversion methods such as single cavity type, double cavity type, bender type, piston type, shear mode type and shared wall type, as well as thermal inkjet type and bubble jet. Any of electric-thermal conversion methods such as Canon Inc. registered trademark) may be used.
  • the temperature of the overcoat agent to be discharged may be adjusted by heating the ink flow path.
  • the temperature of the overcoat agent to be discharged is not particularly limited, but is preferably 50 ° C. or higher and 90 ° C. or lower.
  • the resolution of the formed image can be adjusted by adjusting the discharge condition of the overcoat agent.
  • the resolution of the formed image can be 600 dpi or more and 1440 dpi or less, but from the viewpoint of forming a higher-definition image, it is preferably 1200 dpi or more and 1440 dpi or less.
  • the overcoat layer is formed by irradiating the droplets of the overcoat agent landed on the surface of the ink layer with actinic rays or drying the precoat agent applied to the substrate to cure the overcoat agent.
  • the actinic light is preferably ultraviolet light from an ultraviolet LED.
  • a metal halide lamp or the like is known as a general ultraviolet light source.
  • an ultraviolet LED as a light source, it is possible to suppress the occurrence of curing failure on the surface of the cured film due to melting of the cured film by the radiant heat of the light source.
  • the peak wavelength of the ultraviolet LED is preferably 385 nm or more and 400 nm or less.
  • An example of a light source having an ultraviolet LED includes a water-cooled ultraviolet irradiation unit (peak wavelength: 395 nm) manufactured by Phoseon Technology.
  • the irradiation conditions of actinic rays can be appropriately set according to the composition of the overcoat agent.
  • a light source having a UV LED the maximum illuminance on the surface of the droplet on the substrate is 0.5 W / cm 2 or more 10.0 W / cm 2 or less, more preferably 1W / cm 2 or more 5W / cm 2 or less and It can be installed so that.
  • an image having a precoat layer, an ink layer, and an overcoat layer is formed.
  • the precoat layer is not formed and the ink layer and the overcoat layer are provided.
  • An image may be formed (see FIG. 4). Also in this case, by changing the film thickness of the overcoat layer independently for each dot, the peak height (H) and peak half-value width (W) in the distribution information can be changed for each dot. .
  • the obtained reaction solution was put into a stainless cup, and 2 L of ion exchange water was further added, and then the pump was operated to perform ultrafiltration. When the solution in the stainless cup decreased, ion-exchanged water was added again, and purification was repeated until the filtrate had a conductivity of 100 ⁇ S / cm or less. Thereafter, the filtrate was concentrated to obtain a silver nanoparticle dispersion having a solid content of 30 wt%.
  • the ultrafiltration device used was an ultrafiltration module AHP1010 (manufactured by Asahi Kasei Co., Ltd., molecular weight cut-off: 50000, number of membranes used: 400) and a tube pump (manufactured by Masterflex) connected by a Tygon tube .
  • AHP1010 manufactured by Asahi Kasei Co., Ltd., molecular weight cut-off: 50000, number of membranes used: 400
  • a tube pump manufactured by Masterflex
  • emulsion resin particle dispersion 10 parts by weight of terephthalic acid as acid component, 190 parts by weight of isophthalic acid and 170 parts by weight of adipic acid, and 32 parts by weight of ethylene as glycol component in a flask equipped with a dehydrator
  • the condensation reaction is carried out at 220 ° C. until the acid value is 1.0 or less and the water content is 0.05% or less.
  • a glittering ink 2 was obtained in the same manner as the glittering ink 1 except that the blending amount of the silver nanoparticle dispersion was 2.5 parts by mass and the blending amount of the emulsion resin particle dispersion was 0.18 parts by weight. .
  • the glittering ink 3 was obtained in the same manner as the glittering ink 1 except that the blending amount of the silver nanoparticle dispersion was 1.2 parts by mass and the blending amount of the emulsion resin particle dispersion was 0.09 parts by weight. .
  • Precoat agent 1 and overcoat agent 1 The following components were mixed in the following composition to obtain Precoat Agent 1 and Overcoat Agent 1.
  • the precoat agent 1 and the overcoat agent 1 have the same composition.
  • Sensitization aid p-dimethylaminobenzoic acid ethyl ester (Kayacure EPA, Nippon Kayaku Co., Ltd.)) 2 parts by weight Surfactant (KF-352: manufactured by Shin-Etsu Chemical Co., Ltd.) 0.1 parts by weight
  • Precoat agent 2 The following components were mixed in the following composition to obtain Precoat Agent 2.
  • Polyester emulsion Toyobo Co., Ltd., Vironal MD1500 (solid content 30 wt%)) 17.5 parts by weight
  • Triethylene glycol monomethyl ether 8 parts by weight
  • Propylene glycol 2 parts by weight
  • Water 12.5 parts by weight
  • Pigment Yellow 180 (Chromofine Yellow 6280JC, manufactured by Dainichi Seika Co., Ltd.) was added and sealed in a glass bottle with 200 g of zirconia beads having a diameter of 0.5 mm. This was subjected to a dispersion treatment for a predetermined time (pigment 1: 5 hours) with a paint shaker, and then the zirconia beads were removed to obtain a pigment dispersion.
  • Base material 1 OK top coat paper (surface roughness Ra: 0.25 ⁇ m)
  • Base material 2 coated paper (surface roughness Ra: 0.43 ⁇ m)
  • Base material 3 PET film (surface roughness Ra: 0.05 ⁇ m)
  • Precoat Layer Precoat Agent 1 or Precoat Agent 2 was loaded into an ink jet recording apparatus having an ink jet head equipped with a piezo ink jet nozzle.
  • the ink jet recording apparatus has an ink tank, an ink supply pipe, an ink supply tank immediately before the ink jet head, a filter, and a piezo type ink jet head in this order from the upstream side to the downstream side where the ink flows. .
  • Using an ink jet head having a droplet amount of 7 pl it was driven under the conditions of a printing speed of 0.5 m / sec and an injection frequency of 10.5 kHz, and droplets of the precoat agent were discharged and landed on the substrate.
  • an actinic ray (395 nm, 8 W / cm 2 ) was irradiated from an LED lamp with a water cooling unit manufactured by Phoseon Technology to form a precoat layer formed by gathering dots with the precoat agent cured. .
  • the distance from the lamp to the surface of the landed precoat agent was 20 mm.
  • the precoat layer was dried at 60 ° C. for 1 minute to form a precoat layer in which dots with the cured precoat agent were gathered.
  • the number of times the droplets of the precoat agent were ejected was varied between 0 and 7 times.
  • the number of droplets of the precoat agent ejected was 0, irradiation with actinic rays was not performed.
  • the glittering ink was dried at 60 ° C. for about 10 minutes to form an ink layer in which dots formed by the glittering ink were gathered.
  • Overcoat Layer One of the overcoat agent 1 and the overcoat agent 2 was loaded into the same ink jet recording apparatus used when the precoat layer was formed. Using an ink jet head having a droplet amount of 7 pl, driving was performed under conditions of a printing speed of 0.5 m / sec and an ejection frequency of 10.5 kHz, droplets of an overcoat agent were ejected and landed on the ink layer.
  • an active ray (395 nm, 8 W / cm 2 ) was irradiated from an LED lamp equipped with a water cooling unit manufactured by Phoseon Technology to form an overcoat layer in which dots over which the overcoat agent was cured gathered.
  • the distance from the lamp to the surface of the landed overcoat agent was 20 mm.
  • Sample 7 to Sample 8 Sample 7 and Sample 8 were obtained in the same manner as Sample 3, except that the overcoat agent 1 was used as the overcoat agent and the overcoat agent discharge conditions were 1 drop and 2 drop.
  • Sample 9 to Sample 10 Sample 9 and Sample 10 were obtained in the same manner as Sample 1, except that the overcoat agent 1 was used as the overcoat agent and the overcoat agent discharge conditions were 1 drop and 2 drop.
  • Sample 11 to Sample 14 Samples 11 to 14 were obtained in the same manner as Samples 1 to 4 except that the substrate 2 was used as the substrate.
  • Sample 15 to Sample 17 Samples 15 to 17 were obtained in the same manner as Samples 1 to 3, except that the substrate 3 was used as the substrate.
  • Sample 18 to Sample 20 In three regions set on the same surface of the same base material (base material 1), images were formed adjacent to each other in the same manner as Samples 1 to 3, and a gradation image was obtained. Of the three regions on which the image is formed on the same substrate, the region where the image is formed in the same manner as in sample 1 is the sample 18, and the region where the image is formed in the same manner as in sample 2 is the same as in sample 19 and sample 3. The area where the image was formed was designated as Sample 20.
  • Sample 21 to Sample 23 Samples 21 to 23 were obtained in the same manner as Sample 2, Sample 3 and Sample 7, except that the glitter ink 4 was used as the glitter ink.
  • Sample 24 to Sample 25 Samples 24 to 25 are the same as Sample 9 except that the overcoat agent 2 is used as the overcoat agent, the discharge conditions of the precoat agent 1 are 1 drop and 2 drop, and the discharge conditions of the overcoat agent 2 are 2 drops.
  • Sample 26 Sample 26 was obtained in the same manner as Sample 1, except that the precoat agent 1 was discharged at 9 drops.
  • Sample 27 to Sample 28 Samples 27 to 28 were obtained in the same manner as Samples 5 to 6 except that the drive frequency was 21 kHz.
  • Sample 29 Sample 29 was obtained in the same manner as Sample 1, except that a precoat layer having a thickness of 10 ⁇ m was formed by screen printing.
  • Sample 30 to Sample 31 Sample 30 and sample 31 were obtained in the same manner as in sample 2, except that precoat agent 2 was used as the precoat agent and the discharge conditions of precoat agent 1 were 1 drop and 2 drop.
  • Sample 1 to Sample 17 and Sample 21 to Sample 31 are samples in which one image is formed on the surface of a different base material.
  • Samples 18 to 20 are samples in which images are formed in different regions set on the surface of one base material, and three images (samples) are formed on one base material.
  • the shape of the spatial distribution profile of the obtained reflection is fitted to one Lorentz function, and the peak height (H), peak is determined by the least square method and Solver (registered trademark) of Microsoft Excel (registered trademark).
  • the full width at half maximum (W) and the height of the baseline (B) were determined.
  • Table 1 and Table 2 show the formation conditions and evaluation results for each sample.
  • PC agent is the type of precoat agent used for image formation
  • ink is the type of glitter ink used for image formation
  • OC agent is used for image formation. The types of overcoat agents made are shown respectively.
  • the peak height (H) and baseline height (B) of brightness or reflection intensity could be varied. Specifically, when the applied amount of the precoat agent is changed to increase the thickness of the precoat layer to be formed, the peak height (H) in the distribution information is increased, and the base height (B) is increased. It could be lowered (Sample 1 to Sample 4). Further, when the solid content concentration of the glitter ink is changed to increase the thickness of the ink layer to be formed, the peak height (H) in the distribution information is increased, and the base height (B) is increased. High (Sample 3, Sample 5, Sample 6).
  • the film thickness of the overcoat layer it was possible to change the peak height (H) and peak half-value width (W) of the lightness or reflection intensity in the distribution information. Specifically, when the applied amount of the overcoat agent is changed to increase the thickness of the overcoat layer to be formed, the peak height (H) in the above distribution information is lowered, and the peak half width (W ) could be made wider. This tendency was the same when the precoat layer was formed (Sample 3, Sample 7, Sample 8) and when the precoat layer was not formed (Sample 1, Sample 9, Sample 10).
  • the peak height in the above distribution information can be increased by changing the applied amount of the precoat agent and increasing the thickness of the precoat layer to be formed.
  • (H) was higher and the base height (B) was lower (Sample 11 to Sample 17).
  • the peak height (H) in the above distribution information is increased, and the height of the base is increased.
  • (B) can be made lower (sample 21, sample 22), and when the overcoat layer formed is made thicker, the peak height (H) in the above distribution information becomes lower, and the peak half
  • the value width (W) could be made wider (Sample 22, Sample 23).
  • the height from the base material to the image surface could be changed to form an embossed image (Sample 26).
  • the image forming method of the present invention can express various metallic luster depending on the formed image. Therefore, the present invention is expected to expand the range of application of glittering recorded materials and contribute to the advancement and spread of technology in the same field.

Abstract

The purpose of the present invention is to provide an image forming method by which a greater variety of metallic glazes can be expressed. This purpose is attained by an image forming method including: a step for, by providing a pre-coating agent to a surface of a base material, forming a pre-coating layer; and a step for, by providing a brilliant ink including a brilliant pigment to a surface of the pre-coating layer by an inkjet method, forming an ink layer obtained by aggregation of dots formed by the brilliant ink. In this method, a film thickness of the ink layer or the pre-coating layer corresponding to one dot included in the ink layer is made different from a film thickness of the ink layer or the pre-coating layer corresponding to another dot included in the ink layer. Values of the height of a baseline and the height of a peak of reflection intensity or the brightness of reflected light reflected on the formed image are made different between a region including the one dot and a region including the other dot.

Description

画像形成方法Image forming method
 本発明は、画像形成方法に関する。 The present invention relates to an image forming method.
 ラベル、パッケージ、公告印刷物および写真などの記録物に金属光沢を発現させる目的で、アルミニウム顔料およびパール顔料などが用いられている。これらの顔料は、インク組成物として、オフセット印刷、グラビア印刷およびスクリーン印刷などを含むアナログ印刷技術によって基材上に付与され、画像形成物中に金属光沢色を発する領域を形成する。 Aluminum pigments and pearl pigments are used for the purpose of expressing metallic luster in recorded materials such as labels, packages, printed announcements and photographs. These pigments are applied on the substrate as an ink composition by analog printing techniques including offset printing, gravure printing, screen printing, and the like, and form a region that emits a metallic gloss color in the image formed product.
 近年は、金属光沢色を発する領域をより高精細にした記録物を作製するため、金、銀および銅などの金属を含むナノサイズの粒子(以下、単に「金属ナノ粒子」ともいう。)を基材表面に付与して、上記金属ナノ粒子を含む金属光沢層を基材上に形成する方法が開発されている。 In recent years, nano-sized particles containing metal such as gold, silver, and copper (hereinafter, also simply referred to as “metal nanoparticles”) are used to produce a recorded material with a high-definition region that emits a metallic luster color. A method has been developed in which a metallic luster layer containing the above-mentioned metal nanoparticles is formed on a substrate by being applied to the substrate surface.
 また、特許文献1には、インクジェット法により、1つの印刷工程で、1つの画像形成物に光沢度が異なる複数の金属光沢を形成する方法が記載されている。特許文献1によると、インクジェット法により吐出したインク組成物を基材上に付着させて基材表面の算術粗さ(Ra)を領域ごとに変化させ、これにより領域ごとに異なる程度に疎面化させた基材に、平板状粒子を含む光沢インク組成物を付着させることで、当該領域ごとに異なる光沢度を発現させ得るとされている。 Further, Patent Document 1 describes a method of forming a plurality of metallic glosses having different glossiness on one image formed product in one printing process by an inkjet method. According to Patent Document 1, an ink composition ejected by an ink jet method is deposited on a base material to change the arithmetic roughness (Ra) of the base material surface for each region, thereby reducing the surface to a different extent for each region. By attaching a glossy ink composition containing tabular grains to the base material, it is said that different glossiness can be expressed for each region.
特開2010-030139号公報JP 2010-030139 A
 特許文献1に記載の方法によれば、基材表面へのインク組成物(プレコート剤)の付与量を多くするほど、基材表面はより粗面化されて、画像形成物の光沢度は低下するとされている。しかし、金属光沢には明るい光沢からくすんだ光沢まで様々な度合いの光沢が存在するところ、特許文献1に記載の方法で光沢度を変化させても、上記様々な度合いの光沢を十分に再現しきれてはいなかった。 According to the method described in Patent Document 1, as the amount of the ink composition (precoat agent) applied to the substrate surface is increased, the substrate surface is more roughened and the glossiness of the image-formed product is lowered. It is said that. However, metal gloss has various levels of gloss from bright gloss to dull gloss. Even if the gloss level is changed by the method described in Patent Document 1, the above various levels of gloss are sufficiently reproduced. It wasn't clear.
 また、特許文献1に記載の方法のように基材表面を粗面化する方法では、ひとつのドットの厚みに応じた程度にしか光沢の度合いを変更できなく、画像形成装置により形成可能な画像の解像度よりも細かく基材表面の粗さを微調整することができない。そのため、表面粗さをさらに細かく調整したいときには、微細な表面粗さを有する基材を使用するほかなかった。しかし、基材によって表面粗さを調整しようとすると、画像中で領域ごとに光沢を変更することができない。このように、従来、画像中で光沢を微細に変更させた画像形成物の形成は困難であった。 Further, in the method of roughening the surface of the substrate as in the method described in Patent Document 1, the degree of gloss can be changed only to the extent corresponding to the thickness of one dot, and an image that can be formed by an image forming apparatus. The surface roughness of the substrate cannot be finely adjusted more finely than the resolution. Therefore, when it is desired to finely adjust the surface roughness, there is no choice but to use a substrate having a fine surface roughness. However, if the surface roughness is adjusted by the base material, the gloss cannot be changed for each region in the image. As described above, conventionally, it has been difficult to form an image formed product in which gloss is finely changed in an image.
 本発明は、上記課題に鑑みなされたものであり、より多様な金属光沢を発現可能であり、かつ、同一の基材表面に形成した画像中で光沢を微細に変更させた画像形成物を形成可能な画像形成方法を提供することを、その目的とする。 The present invention has been made in view of the above-mentioned problems, and can form an image formed product that can express more various metallic luster and finely change the gloss in images formed on the same substrate surface. It is an object of the present invention to provide a possible image forming method.
 上記課題を解決するための本発明の一形態は、プレコート剤を基材の表面に付与し、プレコート層を形成する工程と、前記プレコート層の表面に、光輝性顔料を含む光輝性インクをインクジェット法で付与し、前記光輝性インクにより形成されたドットが集合してなるインク層を形成する工程と、を含む、画像の形成方法である。上記方法では、前記インク層に含まれる一のドットに対応する前記プレコート層または前記インク層の膜厚と、前記インク層に含まれる他のドットに対応する前記プレコート層または前記インク層の膜厚と、を異なる厚みとして、形成された画像で反射された反射光の明度または反射強度のピークの高さおよびベースラインの高さを、前記一のドットを含む領域と前記他のドットを含む領域とで異なる値とする。 In one embodiment of the present invention for solving the above-described problems, a step of applying a precoat agent to the surface of a substrate to form a precoat layer, and ink jetting a glitter ink containing a glitter pigment on the surface of the precoat layer are performed. And an ink layer formed by gathering dots formed by the glitter ink and forming an ink layer. In the above method, the film thickness of the precoat layer or the ink layer corresponding to one dot included in the ink layer and the film thickness of the precoat layer or the ink layer corresponding to another dot included in the ink layer. And the peak height of the reflected light reflected from the formed image and the height of the baseline, and the areas including the one dot and the other dots, with different thicknesses. And different values.
 また、上記課題を解決するための本発明の別の形態は、基材の表面に、光輝性顔料を含む光輝性インクをインクジェット法で付与し、前記光輝性インクにより形成されたドットが集合してなるインク層を形成する工程と、前記インク層を構成する前記ドットの表面にオーバーコート剤を付与し、オーバーコート層を形成する工程と、を含む、画像の形成方法である。上記方法では、前記インク層に含まれる一のドットに対応する前記インク層および前記オーバーコート層の膜厚と、前記インク層に含まれる他のドットに対応する前記インク層および前記オーバーコート層の膜厚と、を異なる厚みとして、形成された画像で反射された反射光の明度または反射強度のピークの高さおよび前記ピークの半値幅の大きさを、前記一のドットを含む領域と前記他のドットを含む領域とで異なる値とする。 Another embodiment of the present invention for solving the above problem is that a glittering ink containing a glittering pigment is applied to the surface of a substrate by an ink jet method, and dots formed by the glittering ink gather. And forming an overcoat layer by applying an overcoat agent to the surface of the dots constituting the ink layer, and forming an overcoat layer. In the above method, the thickness of the ink layer and the overcoat layer corresponding to one dot included in the ink layer, and the thickness of the ink layer and the overcoat layer corresponding to other dots included in the ink layer The thickness of the film is different from the thickness, and the peak height of the reflected light or the reflected intensity reflected by the formed image and the half width of the peak are set to the region including the one dot and the other. The value differs depending on the area including the dot.
 本発明により、より多様な金属光沢を発現可能であり、かつ、同一の基材表面に形成した画像中で光沢を微細に変更させた画像形成物を形成可能な画像形成方法が提供される。 According to the present invention, there is provided an image forming method capable of forming a variety of metallic luster and capable of forming an image formed product in which gloss is finely changed in images formed on the same substrate surface.
図1Aは、物体に入射した入射光の一部が正反射した光となり、他の一部が拡散反射した光となる様子を示す模式図であり、図1Bは、図1Aの様子を、軸に受光角度(θ)を、縦軸に明度(L)をプロットした分布情報のグラフにおいて説明する模式図である。FIG. 1A is a schematic diagram illustrating a state in which a part of incident light incident on an object is specularly reflected light, and another part is diffusely reflected light. FIG. 1B is a diagram illustrating the state of FIG. FIG. 6 is a schematic diagram illustrating a distribution information graph in which the light reception angle (θ) is plotted on the vertical axis and the lightness (L * ) is plotted on the vertical axis. 図2は、本発明の第1の実施形態に関する画像形成方法のフローチャートである。FIG. 2 is a flowchart of the image forming method according to the first embodiment of the present invention. 図3は、本発明の第2の実施形態に関する画像形成方法のフローチャートである。FIG. 3 is a flowchart of an image forming method according to the second embodiment of the present invention. 図4は、本発明の第2の実施形態に関する別の画像形成方法のフローチャートである。FIG. 4 is a flowchart of another image forming method according to the second embodiment of the present invention.
 本発明者らは上記課題に鑑み鋭意検討を行い、画像形成物から知覚される光沢は、上記画像形成物で反射された光を知覚する際に、正反射成分および拡散反射成分のそれぞれが知覚に寄与する寄与分に影響されることを見出した。 The present inventors have intensively studied in view of the above problems, and the gloss perceived from the image formation is perceived by each of the regular reflection component and the diffuse reflection component when the light reflected by the image formation is perceived. It was found to be influenced by the contributions that contribute to
 つまり、一般の色と比較して、光沢色は、物体に入射した光のうち、より多くを正反射光として指向的に反射する。そのため、光沢色で反射されて知覚される光の空間分布には大きな指向性が生じ、人が目視で感じる光沢色の色調にはこの指向性の影響が大きいと考えられる。 That is, as compared with a general color, the glossy color directionally reflects more of the light incident on the object as regular reflection light. For this reason, a large directivity occurs in the spatial distribution of the light reflected and perceived by the glossy color, and it is considered that the influence of this directivity is great on the color tone of the glossy color that humans feel visually.
 具体的には、観察者によって知覚される物体の光沢の程度は、当該物体に入射した光が反射してなる反射光の明度または反射強度の、正反射する角度へ集中して分布する度合い(空間分布の指向性)に影響される。図1Aに示すように、物体に入射した入射光Iは、一部が正反射した光Pとなり、一部が拡散反射した光Bとなる(図1Aでは、正反射した光Pおよび拡散反射した光Bの明度または反射強度を、入射光Iが入射した地点Lからの距離(正反射した光Pを示す実線の矢印の長さおよび拡散反射した光Bを示す破線の矢印の長さ)で示す。なお、光Pおよび光Bの明度または反射強度は、理解を容易にするため調整されており、実際に測定されて算出される明度または反射強度を正確には反映していない。)。 Specifically, the degree of gloss of an object perceived by an observer is a degree in which the brightness or reflection intensity of reflected light obtained by reflecting light incident on the object is concentrated and distributed at regular reflection angles ( It is influenced by the directivity of the spatial distribution. As shown in FIG. 1A, the incident light I incident on the object is partly specularly reflected light P and partly diffusely reflected light B (in FIG. 1A, specularly reflected light P and diffusely reflected The brightness or reflection intensity of the light B is determined by the distance from the point L where the incident light I is incident (the length of the solid arrow indicating the specularly reflected light P and the length of the broken arrow indicating the diffusely reflected light B). (Note that the lightness or reflection intensity of the light P and the light B is adjusted for easy understanding, and does not accurately reflect the lightness or reflection intensity actually measured and calculated.)
 図1Bは、異なる複数の受光角度と、当該受光角度で測定した放射強度と、のデータをもとに、明度または反射強度(反射率もしくは輝度)の分布情報を示す、横軸に受光角度を、縦軸に明度または反射強度をプロットしたグラフである。このとき、上記空間分布の指向性は、図1Bに示す分布情報における、ピークの高さ(H)、ベースラインの高さ(B)、およびピークの半値幅(W)によって表現され、物体の光沢も、上記ピークの高さ(H)、ベースラインの高さ(B)、およびピークの半値幅(W)によって表現することができる。たとえば、ピークの高さ(H)とベースラインの高さ(B)との差が大きいほど光沢は強く知覚され、また、ピークの半値幅(W)が小さいほど光沢は鋭く知覚される。上記知見によれば、上記ピークの高さ(H)、ベースラインの高さ(B)、およびピークの半値幅(W)が変化されるように画像を形成すれば、形成される画像から知覚される光沢もそれに応じて変化させることができる。 FIG. 1B shows distribution information of brightness or reflection intensity (reflectance or luminance) based on data of a plurality of different light reception angles and radiation intensity measured at the light reception angles. It is the graph which plotted the lightness or the reflection intensity on the vertical axis. At this time, the directivity of the spatial distribution is expressed by the peak height (H), the baseline height (B), and the peak half-value width (W) in the distribution information shown in FIG. The gloss can also be expressed by the peak height (H), baseline height (B), and peak half-value width (W). For example, the larger the difference between the peak height (H) and the baseline height (B), the stronger the perception of gloss, and the smaller the peak half width (W), the sharper the perception of gloss. According to the above knowledge, if an image is formed such that the height (H) of the peak, the height (B) of the baseline, and the half width (W) of the peak are changed, it is perceived from the formed image. The gloss to be applied can be changed accordingly.
 本発明者らのさらなる検討によると、プレコート層と、光輝性顔料を含むインク層と、を有する画像形成物において、プレコート層の膜厚とインク層の膜厚とを独立して変化させることによって、ピークの高さ(H)およびベースラインの高さ(B)を変化させることができる。また、プレコート層と、光輝性顔料を含むインク層と、オーバーコート層と、を有する画像形成物において、オーバーコート層の膜厚を独立して変化させることによって、ピークの高さ(H)およびピークの半値幅(W)をさらに変化させることができる。 According to further studies by the present inventors, in an image formed product having a precoat layer and an ink layer containing a bright pigment, by independently changing the film thickness of the precoat layer and the film thickness of the ink layer. , Peak height (H) and baseline height (B) can be varied. In addition, in an image formed product having a precoat layer, an ink layer containing a glitter pigment, and an overcoat layer, by changing the film thickness of the overcoat layer independently, the peak height (H) and The half width (W) of the peak can be further changed.
 本発明は、上記新たな知見に基づいてなされたものであり、プレコート層、インク層およびオーバーコート層の膜厚を独立して変化させることで、上記ピークの高さ(H)、ベースラインの高さ(B)、およびピークの半値幅(W)を変化させ、形成された画像から知覚される光沢をこれにより変化させるものである。 The present invention has been made on the basis of the above-mentioned new knowledge. By independently changing the film thicknesses of the precoat layer, the ink layer, and the overcoat layer, the height of the peak (H), the baseline The height (B) and the full width at half maximum (W) of the peak are changed to change the gloss perceived from the formed image.
 1.第1の実施形態
 本発明の第1の実施形態は、プレコート剤を用いてプレコート層を基材の表面に形成し、上記プレコート層の表面に、光輝性顔料を含む光輝性インクを用いてインク層を形成する、画像形成方法に関する。なお、プレコート剤は、水系、溶剤系および活性光線硬化型などのいずれのプレコート剤でもよいが、プレコート剤が濡れ広がりすぎる前に硬化させることによって膜厚の制御を容易とし、かつ、膜厚をより厚くすることも容易とする観点から、基材の表面に付与して硬化させる工程を繰り返して複数の層を形成することが可能な、活性光線硬化型のプレコート剤であることが好ましい。また、光輝性インクは、水系インク、溶剤系インクおよび活性光線硬化型インクなどのいずれのインクでもよいが、光輝性顔料以外の成分がインク層に含有されることによる光沢の低下を抑制する観点からは、水系インクであることが好ましい。
1. First Embodiment In the first embodiment of the present invention, a precoat layer is formed on the surface of a base material using a precoat agent, and ink is applied to the surface of the precoat layer using a glitter ink containing a glitter pigment. The present invention relates to an image forming method for forming a layer. The precoat agent may be any precoat agent such as water-based, solvent-based, and actinic ray curable types, but the film thickness can be easily controlled by curing before the precoat agent is too wet and spread. From the viewpoint of facilitating thickening, it is preferably an actinic ray curable precoat agent capable of forming a plurality of layers by repeating the step of applying and curing the surface of the substrate. The glitter ink may be any ink such as a water-based ink, a solvent-based ink, and an actinic ray curable ink, but the viewpoint of suppressing a decrease in gloss due to the inclusion of components other than the glitter pigment in the ink layer. Is preferably water-based ink.
 上記プレコート剤の付与方法は特に限定されず、ロールコーターやスピンコーターなどを用いて上記プレコート剤を基材の表面に塗布してもよいし、スプレー塗布、浸漬法、スクリーン印刷、グラビア印刷、オフセット印刷などの方法で上記プレコート剤を基材の表面に付与してもよいし、インクジェット法で上記プレコート剤を基材の表面に着弾させてもよい。これらのうち、より精細な記録物を形成する観点からは、スクリーン印刷およびインクジェット法が好ましく、インクジェット法がより好ましい。 The method for applying the precoat agent is not particularly limited, and the precoat agent may be applied to the surface of the substrate using a roll coater, a spin coater, or the like, spray coating, dipping method, screen printing, gravure printing, offset. The precoat agent may be applied to the surface of the substrate by a method such as printing, or the precoat agent may be landed on the surface of the substrate by an inkjet method. Among these, from the viewpoint of forming a finer recorded matter, screen printing and an inkjet method are preferable, and an inkjet method is more preferable.
 一方で、上記光輝性インクは、インクジェット法で前記プレコート層の表面に付与される。その後、上記光輝性インクを乾燥させて液体成分を除去するか、あるいは上記光輝性インクに活性光線を付与して上記光輝性インクを硬化させるなどすることにより、上記光輝性インクにより形成されたドットが集合してなるインク層が形成される。 Meanwhile, the glitter ink is applied to the surface of the precoat layer by an inkjet method. Thereafter, the glitter ink is dried to remove a liquid component, or an actinic ray is applied to the glitter ink to cure the glitter ink, thereby forming dots formed by the glitter ink. An ink layer formed by gathering is formed.
 このとき、付与されるプレコート剤または光輝性インクによってそれぞれ形成されるプレコート層またはインク層の膜厚を、上記インク層を構成するドットごとに独立して変化させることにより、画像形成物の光沢をドットごとに独立して変化させる。このようにして、上記インク層に含まれる一のドットに対応する上記プレコート層(具体的には、プレコート層のうち、上記一のドットの直下に位置する部分)または上記インク層の膜厚と、上記インク層に含まれる他のドットに対応する上記プレコート層(具体的には、プレコート層のうち、上記他のドットの直下に位置する部分)または上記インク層の膜厚と、を異なる厚みとすることで、上記一のドットを含む領域と上記他のドットを含む領域との間で、上記分布情報におけるピークの高さ(H)とベースラインの高さ(B)を異なる値として、上記それぞれの領域から、異なる度合いの光沢を知覚させることができる。光輝性インクをインクジェット法によって付与することで、上記インク層の厚みをドットごとに変化させて、知覚される光沢をより高精度に変化させた画像を形成することが可能である。さらには、プレコート剤もインクジェット法によって付与すると、上記プレコート層の厚みもドットごとに変化させて、知覚される光沢をさらに高精度に変化させた画像を形成することが可能である。なお、上記一のドットと他のドットとは、同一の基材の同一の表面に形成されたインク層に含まれる。その際、複数個の上記一のドットにより形成される領域と複数個の他のドットにより形成される領域とを、隣接して形成して、微細な光沢グラデーションを有する画像を形成することも可能である。 At this time, by changing the film thickness of the precoat layer or ink layer formed by the applied precoat agent or glitter ink independently for each dot constituting the ink layer, the gloss of the image formed product is increased. Change independently for each dot. In this way, the precoat layer corresponding to one dot included in the ink layer (specifically, the portion of the precoat layer located immediately below the one dot) or the film thickness of the ink layer The thickness of the precoat layer corresponding to other dots contained in the ink layer (specifically, the portion of the precoat layer located immediately below the other dots) or the thickness of the ink layer is different. By making the peak height (H) and the baseline height (B) in the distribution information different between the area including the one dot and the area including the other dots, Different degrees of gloss can be perceived from each of the above areas. By applying the glitter ink by the ink jet method, it is possible to change the thickness of the ink layer for each dot and form an image in which the perceived gloss is changed with higher accuracy. Furthermore, when the precoat agent is also applied by the ink jet method, it is possible to change the thickness of the precoat layer for each dot and form an image in which the perceived gloss is changed with higher accuracy. The one dot and the other dots are included in the ink layer formed on the same surface of the same substrate. At that time, it is also possible to form an image having a fine glossy gradation by forming a region formed by a plurality of the above-mentioned one dots and a region formed by a plurality of other dots adjacent to each other. It is.
 具体的には、プレコート層の膜厚は、プレコート剤中の固形分濃度(樹脂などの濃度)、プレコート剤を塗布してプレコート層を形成する回数、ならびに、インクジェットヘッドのノズルから吐出したプレコート剤の液滴を基材の表面に付与する際の、上記液滴のサイズ(液滴量)およびドットごとに付与する液滴の数(液滴数)などによって調整することができる。たとえば、画像中の領域ごとに、上記プレコート層を形成する回数または液滴量および液滴数を変えることで、インク層に含まれる対応するドットごとに、プレコート層の膜厚を変化させることができる。また、インク層の膜厚は、インクジェットヘッドのノズルから吐出した光輝性インクの液滴をプレコート層の表面に付与する際の、上記液滴のサイズ(液滴量)および光輝性インク中の固形分濃度(光輝性顔料および定着樹脂などの濃度)によって調整することができる。 Specifically, the film thickness of the precoat layer includes the solid content concentration (concentration of resin, etc.) in the precoat agent, the number of times the precoat agent is applied to form the precoat layer, and the precoat agent discharged from the nozzle of the inkjet head. When the above droplets are applied to the surface of the substrate, the size can be adjusted by the size of the droplets (droplet amount), the number of droplets to be applied to each dot (number of droplets), and the like. For example, the film thickness of the precoat layer can be changed for each corresponding dot included in the ink layer by changing the number of times the precoat layer is formed or the number of droplets and the number of droplets for each region in the image. it can. The thickness of the ink layer is determined by the size of the droplet (droplet amount) and the solid in the glitter ink when the droplet of the glitter ink ejected from the nozzle of the inkjet head is applied to the surface of the precoat layer. It can be adjusted by the partial concentration (concentration of glitter pigment, fixing resin, etc.).
 上記プレコート剤(インクジェット法により付与されるとき)または光輝性インクの液滴量は、いずれも、0.5pl以上50pl以下の範囲で調整されることが好ましく、高精細の画像を形成するためには、0.5pl以上20pl以下の範囲で調整されることがより好ましく、0.5pl以上10pl以下の範囲で調整されることがさらに好ましい。 In order to form a high-definition image, it is preferable that the precoat agent (when applied by the ink jet method) or the droplet amount of the glitter ink is adjusted in the range of 0.5 pl to 50 pl. Is more preferably adjusted within a range of 0.5 pl to 20 pl, and further preferably adjusted within a range of 0.5 pl to 10 pl.
 上記プレコート剤(インクジェット法により付与されるとき)の液滴数は、0滴以上10滴以下の範囲で調整されることが好ましく、0滴以上5滴以下の範囲で調整されることがより好ましい。 The number of droplets of the precoat agent (when applied by the inkjet method) is preferably adjusted in the range of 0 to 10 drops, more preferably adjusted in the range of 0 to 5 drops. .
 なお、エンボス調の画像を形成するときなどには、インクジェット法により付与される上記プレコート剤の液滴数を0滴以上5滴以下の範囲で調整した領域と、インクジェット法により付与される上記プレコート剤の液滴数を6滴以上10滴以下の範囲で調整した領域と、を画像中に形成することで、画像に微小な凹凸を形成することが可能である。 When an embossed image is formed, the precoat agent is applied by an ink jet method and a region in which the number of droplets of the precoat agent applied by the ink jet method is adjusted in the range of 0 to 5 drops. By forming in the image a region in which the number of droplets of the agent is adjusted in the range of 6 to 10 droplets, it is possible to form minute irregularities on the image.
 上記プレコート剤(インクジェット法により付与されるとき)または光輝性インクをインクジェットヘッドのノズルから吐出するときの駆動周波数は、5kHz以上100kHzの範囲で調整されることが好ましく、5kHz以上20kHzの範囲で調整されることがより好ましい。 The drive frequency when discharging the precoat agent (when applied by the ink jet method) or the glitter ink from the nozzle of the ink jet head is preferably adjusted in the range of 5 kHz to 100 kHz, and adjusted in the range of 5 kHz to 20 kHz. More preferably.
 なお、濃度が異なる複数の領域を含む画像を形成するときなどには、領域ごとに駆動周波数を独立して変化させることにより、それぞれの領域に含まれる単位面積あたりに形成されるドットの数を変化させてもよい。駆動周波数をより大きくして単位面積あたりに形成されるドットの数をより大きくすると、より濃度が薄い領域が形成され、駆動周波数をより小さくして単位面積あたりに形成されるドットの数をより小さくすると、より濃度が濃い領域が形成される。 When forming an image including a plurality of regions having different densities, the number of dots formed per unit area included in each region is changed by independently changing the drive frequency for each region. It may be changed. When the drive frequency is increased to increase the number of dots formed per unit area, a lighter density region is formed, and the drive frequency is decreased to increase the number of dots formed per unit area. When the size is reduced, a region having a higher density is formed.
 また、基材は特に限定されず、アート紙、コート紙、軽量コート紙、微塗工紙およびキャスト紙を含む塗工紙ならびに非塗工紙を含む吸収性の媒体、ポリエステル、ポリ塩化ビニル、ポリエチレン、ポリウレタン、ポリプロピレン、アクリル樹脂、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエチレンテレフタレートおよびポリブタジエンテレフタレートを含むプラスチックで構成される非吸収性の記録媒体(プラスチック基材)、ならびに金属類およびガラス等の非吸収性の無機記録媒体とすることができる。これらのうち、上記吸収性の媒体などの、表面の平滑性が低い基材(表面が粗面である基材)は、従来は光輝性顔料が整列しにくく、拡散反射成分が顕著に多くなりやすい(ベースラインの高さ(B)が顕著に高くなりやすい)ため、光沢の度合いの調整が困難であった。しかし、本実施形態によれば、このような表面の平滑性が低い基材でも、表面の平滑性を調整することによって拡散反射成分を調整し、光沢の度合いを容易に調整することができる。 Further, the substrate is not particularly limited, and art paper, coated paper, lightweight coated paper, coated paper including fine coated paper and cast paper, and absorbent medium including non-coated paper, polyester, polyvinyl chloride, Non-absorbent recording media (plastic substrates) composed of plastics including polyethylene, polyurethane, polypropylene, acrylic resin, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer, polyethylene terephthalate and polybutadiene terephthalate, and metals and A non-absorbable inorganic recording medium such as glass can be obtained. Of these, substrates with low surface smoothness (substrates with a rough surface) such as the above-mentioned absorbent medium have conventionally been difficult to align glitter pigments and have a significantly increased diffuse reflection component. Since it is easy (the height (B) of the baseline tends to be significantly high), it is difficult to adjust the degree of gloss. However, according to this embodiment, even with such a substrate having a low surface smoothness, the diffuse reflection component can be adjusted by adjusting the surface smoothness, and the degree of gloss can be easily adjusted.
 本実施形態では、プレコート剤が付与されてなるプレコート層の膜厚と、光輝性インクが付与されてなるインク層の膜厚とを、それぞれ独立してドットごとに変化させることにより、上記分布情報におけるピークの高さ(H)およびベースラインの高さ(B)をドットごとに変化させる。 In the present embodiment, the distribution information is obtained by independently changing the film thickness of the precoat layer to which the precoat agent is applied and the film thickness of the ink layer to which the glitter ink is applied, for each dot. The height (H) of the peak and the height (B) of the baseline are changed for each dot.
 具体的には、上記吸収性の媒体などの表面の平滑性が低い基材では、プレコート層の膜厚を高めることにより、より平滑になるように基材表面の粗さを調整できる。これにより、光輝性顔料をより緻密に配列させやすくして、正反射成分を増加させてピークの高さ(H)を高くし、拡散反射成分を減少させてベースラインの高さ(B)を低くするように光沢を調整することができる。 Specifically, in the case of a substrate having a low surface smoothness such as the above-mentioned absorbent medium, the surface roughness of the substrate can be adjusted to be smoother by increasing the film thickness of the precoat layer. This makes it possible to arrange the glitter pigment more precisely, increase the specular reflection component to increase the peak height (H), and decrease the diffuse reflection component to reduce the baseline height (B). The gloss can be adjusted to be low.
 プレコート層の膜厚は、画像形成物の各領域に形成しようとする光沢の度合いに応じて上記領域ごと(または上記領域に含まれるドットごと)に設定すればよい。なお、上記吸収性の媒体などの表面の平滑性が低い基材では、プレコート層が基材の表面を完全に被覆しないように、プレコート剤の付与量を調整することが好ましい。このようにして、上記一のドットまたは他のドットを含む領域において、プレコート層が基材の表面を完全には被覆せず、基材の表面の一部が露出するようにして、基材に由来する表面の粗さをある程度は残しながら、プレコート層によって基材表面の粗さを調整することで、ピークの高さ(H)およびベースラインの高さ(B)をより広い範囲で調整することができる。 The film thickness of the precoat layer may be set for each region (or for each dot included in the region) according to the degree of gloss to be formed in each region of the image formed product. In addition, in the base material with low surface smoothness such as the above-described absorbent medium, it is preferable to adjust the application amount of the precoat agent so that the precoat layer does not completely cover the surface of the base material. In this manner, in the region including the one dot or the other dots, the precoat layer does not completely cover the surface of the base material, and a part of the surface of the base material is exposed, so that the base material is exposed. The peak height (H) and the baseline height (B) are adjusted in a wider range by adjusting the roughness of the substrate surface with the precoat layer while leaving the surface roughness to some extent. be able to.
 また、インク層の膜厚を高めることにより、ドットに含まれる光輝性顔料の量をより多くして、ピークの高さ(H)およびベースの高さ(B)を高くするように調整することができる。 In addition, by increasing the film thickness of the ink layer, the amount of the glitter pigment contained in the dots is increased, and the peak height (H) and the base height (B) are adjusted to be increased. Can do.
 インク層の膜厚は、画像形成物の各領域に形成しようとする光沢の度合いに応じて上記領域に含まれるドットごとに設定すればよい。 The film thickness of the ink layer may be set for each dot included in the region according to the degree of gloss to be formed in each region of the image formed product.
 なお、プレコート層およびインク層の膜厚は、プレコート剤および光輝性インクの組成や、活性光線硬化型であるプレコート剤が吐出されて基材表面に着弾してから活性光線を照射するまでの時間、などによっても変化させることができる。これらの条件をもとに、所望の度合いの光沢が得られるように、プレコート剤および光輝性インクの付与量を調整すればよい。 The film thicknesses of the precoat layer and the ink layer are the composition of the precoat agent and the glitter ink, and the time from when the actinic ray curable precoat agent is ejected and landed on the surface of the substrate until irradiation with actinic rays. , Etc. can also be changed. Based on these conditions, the application amount of the precoat agent and the glitter ink may be adjusted so that a desired degree of gloss can be obtained.
 特許文献1に記載の方法によれば、基材表面へのインク組成物(プレコート剤)の付与量を変更して、基材の表面粗さを変化させることで、光沢度が異なる複数の領域を画像形成物に形成することができる。具体的には、上記インク組成物の付与量を多くするほど、基材表面はより粗面化されて、画像形成物の光沢度は低下するとされている。しかし、当該方法は、その適用可能な基材が、表面が平滑な基材(たとえば塩化ビニルなどの樹脂シート)にほぼ限定されている。紙基材などの表面が粗い基材では、インク組成物の付与量と画像形成物の光沢度とは必ずしも対応せず、所望の光沢を有する画像を形成することはできない。これに対し、本発明によれば、基材の表面粗さを問わず、所望の程度の光沢を有する画像を形成することが可能である。 According to the method described in Patent Document 1, a plurality of regions having different glossinesses are obtained by changing the surface roughness of the substrate by changing the amount of the ink composition (precoat agent) applied to the substrate surface. Can be formed into an image-formed product. Specifically, as the application amount of the ink composition is increased, the surface of the substrate is roughened and the glossiness of the image formed product is decreased. However, the applicable substrate of the method is almost limited to a substrate having a smooth surface (for example, a resin sheet such as vinyl chloride). For a substrate having a rough surface such as a paper substrate, the applied amount of the ink composition does not always correspond to the glossiness of the image formed product, and an image having a desired glossiness cannot be formed. On the other hand, according to the present invention, it is possible to form an image having a desired degree of gloss regardless of the surface roughness of the substrate.
 また、特許文献1に記載の方法のように基材表面を粗面化する方法では、ひとつのドットの厚みに応じた程度にしか光沢の度合いを変更できなく、画像形成装置により形成可能な画像の解像度よりも細かく基材表面の粗さを微調整することができない。そのため、表面粗さをさらに細かく調整したいときには、微細な表面粗さを有する基材を使用するほかなかった。しかし、基材によって表面粗さを調整しようとすると、画像中で領域ごとに光沢を変更することができない。このように、従来、画像中で光沢を微細に変更させた画像形成物の形成は困難であった。これに対し、本発明では、各層の膜厚を変化させることで、より細かく光沢を調整することが可能である。また、本発明によれば、基材の表面粗さのみに依存せずに金属光沢の表現を制御できることから、同じ表面粗さの表面において異なる金属光沢を表現したり、また異なる表面粗さの表面において同じ金属光沢を表現したりすることが可能となる。 Further, in the method of roughening the surface of the substrate as in the method described in Patent Document 1, the degree of gloss can be changed only to the extent corresponding to the thickness of one dot, and an image that can be formed by an image forming apparatus. The surface roughness of the substrate cannot be finely adjusted more finely than the resolution. Therefore, when it is desired to finely adjust the surface roughness, there is no choice but to use a substrate having a fine surface roughness. However, if the surface roughness is adjusted by the base material, the gloss cannot be changed for each region in the image. As described above, conventionally, it has been difficult to form an image formed product in which gloss is finely changed in an image. On the other hand, in the present invention, it is possible to adjust the gloss more finely by changing the film thickness of each layer. In addition, according to the present invention, since the expression of the metallic luster can be controlled without depending only on the surface roughness of the substrate, different metallic luster can be expressed on the surface with the same surface roughness, or different surface roughness can be expressed. It is possible to express the same metallic luster on the surface.
 1-1.プレコート剤
 プレコート剤は、基材の表面に付与されて、上記表面に層を形成できるインク組成物であればよい。
1-1. Pre-coating agent The pre-coating agent may be an ink composition that is applied to the surface of the substrate and can form a layer on the surface.
 たとえば、プレコート剤は、水系インクであるときは、水、樹脂および任意に水溶性有機溶剤を含有することができる。また、プレコート剤は、溶剤系インクであるときは、有機溶剤および樹脂を含有することができる。また、プレコート剤は、活性光線硬化型インクであるときは、活性光線の照射によって重合および架橋する光重合性化合物および任意に光重合開始剤を含有することができる。 For example, when the precoat agent is a water-based ink, it can contain water, a resin, and optionally a water-soluble organic solvent. Further, when the precoat agent is a solvent-based ink, it can contain an organic solvent and a resin. Further, when the precoat agent is an actinic ray curable ink, it can contain a photopolymerizable compound that polymerizes and crosslinks upon irradiation with actinic rays and optionally a photopolymerization initiator.
 プレコート剤は、さらに、必要に応じて、界面活性剤、重合禁止剤および紫外線吸収剤などを含有してもよい。上記その他の成分は、プレコート剤中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。 The precoat agent may further contain a surfactant, a polymerization inhibitor, an ultraviolet absorber, and the like as necessary. As for the above-mentioned other components, only one kind may be contained in the precoat agent, or two or more kinds may be contained.
 プレコート剤は、プレコート剤が濡れ広がりすぎる前に硬化させることによって膜厚の制御を容易とし、かつ、膜厚をより厚くすることも容易とする観点から、基材の表面に付与して硬化させる工程を繰り返して複数の層を形成することが可能な、活性光線硬化型のプレコート剤であることが好ましい。 The precoat agent is applied to the surface of the base material and cured from the viewpoint of facilitating the control of the film thickness by curing before the precoat agent is too wet and spreading, and also facilitating the thickening of the film thickness. An actinic ray curable pre-coating agent capable of forming a plurality of layers by repeating the process is preferred.
 プレコート剤が水系インクであるときの上記水溶性有機溶剤の例には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノールおよびt-ブタノールを含むアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、およびペンタンジオールを含むグリセリン、ヘキサントリオール、チオジグリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-ペンタンジオール、1,2-ヘキサンジオールおよび1,2-ヘプタンジオールを含む多価アルコール、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミンおよびテトラメチルプロピレンジアミンを含むアミン、ホルムアミド、N,N-ジメチルホルムアミドおよびN,N-ジメチルアセトアミドを含むアミド、2-ピロリドン、N-メチル-2-ピロリドン、シクロヘキシルピロリドン、2-オキサゾリドンおよび1,3-ジメチル-2-イミダゾリジノンを含む複素環化合物、ジメチルスルホキシドを含むスルホキシド、ならびにエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、エチレングリコールモノメチルアセテート、エチレングリコールモノエチルアセテート、エチレングリコールモノブチルアセテート、ジエチレングリコールモノメチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルアセテート、ジエチレングリコールモノブチルアセテート、トリエチレングリコールモノブチルエーテルを含むグリコールエーテルが含まれる。 Examples of the water-soluble organic solvent when the precoat agent is a water-based ink include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, alcohols containing sec-butanol and t-butanol, ethylene glycol, diethylene glycol, triethylene Glycerol, hexanetriol, thiodiglycol, 1,2-butanediol, 1,3-butanediol, including glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, and pentanediol , 2-pentanediol, 1,2-hexanediol and polyhydric alcohols containing 1,2-heptanediol, ethanolamine, diethanolamine , Triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine and tetramethylpropylenediamine Amides including amines, formamide, N, N-dimethylformamide and N, N-dimethylacetamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexylpyrrolidone, 2-oxazolidone and 1,3-dimethyl-2-imidazolide Non-containing heterocyclic compounds, dimethyl sulfoxide-containing sulfoxides, ethylene glycol monomethyl ether, ethylene glycol monoethyl Ether, ethylene glycol monobutyl ether, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol monomethyl ether , Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether Chill ether, dipropylene glycol dimethyl ether, propylene glycol diethyl ether, dipropylene glycol diethyl ether, ethylene glycol monomethyl acetate, ethylene glycol monoethyl acetate, ethylene glycol monobutyl acetate, diethylene glycol monomethyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether Contains acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monoethyl acetate, diethylene glycol monobutyl acetate, triethylene glycol monobutyl ether Include glycol ethers.
 プレコート剤が水系インクであるときの上記水溶性有機溶剤の含有量は、たとえば、プレコート剤の全質量に対して5.0質量%以上30質量%以下とすることができる。 The content of the water-soluble organic solvent when the precoat agent is water-based ink can be, for example, 5.0% by mass or more and 30% by mass or less with respect to the total mass of the precoat agent.
 また、プレコート剤をインクジェット法で基材に付与する際に、インクジェットヘッドからの吐出時にノズル近傍で水系インクが乾燥することによるノズル詰まりの発生を抑制する観点からは、上記水溶性有機溶媒は、多価アルコールを含むことが好ましい。このとき、プレコート剤中の多価アルコールの含有量は、プレコート剤の全質量に対して1質量%以上10質量%以下であることが好ましい。 In addition, when applying the precoat agent to the substrate by the inkjet method, from the viewpoint of suppressing the occurrence of nozzle clogging due to drying of the water-based ink in the vicinity of the nozzle during ejection from the inkjet head, the water-soluble organic solvent is A polyhydric alcohol is preferably included. At this time, it is preferable that content of the polyhydric alcohol in a precoat agent is 1 to 10 mass% with respect to the total mass of a precoat agent.
 プレコート剤が水系インクであるときの上記樹脂の例には、ポリエステル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、ポリウレタン-アクリル系樹脂、塩化ビニル系樹脂、および酢酸ビニル系樹脂などが含まれる。上記樹脂は、インク中に分散して分散体を形成するラテックスであってもよいし、水または有機溶剤によりインク中に溶解する溶解性樹脂(水溶性樹脂または有機溶剤溶解性樹脂)であってもよい。 Examples of the resin when the precoat agent is a water-based ink include polyester resins, polyurethane resins, acrylic resins, polyurethane-acrylic resins, vinyl chloride resins, and vinyl acetate resins. The resin may be a latex that is dispersed in ink to form a dispersion, or is a soluble resin (water-soluble resin or organic solvent-soluble resin) that is dissolved in ink with water or an organic solvent. Also good.
 プレコート剤が水系インクであるときの上記樹脂の含有量は、たとえば、固形分量としてプレコート剤の全質量に対して1質量%以上20質量%以下とすることができる。なお、上記樹脂の含有量は、1回の塗布によって形成されるプレコート層の膜厚およびインクジェット法により付与される1回の液体によって形成されるプレコート層の膜厚などに応じて調整すればよい。 The content of the resin when the precoat agent is water-based ink can be, for example, 1% by mass to 20% by mass with respect to the total mass of the precoat agent as a solid content. In addition, what is necessary is just to adjust the content of the said resin according to the film thickness of the precoat layer formed by the film thickness of the precoat layer formed by one application | coating, and the liquid applied once by the inkjet method. .
 プレコート剤が溶剤系インクであるときの上記有機溶剤の例には、上記水系インクに用いられ得る水溶性有機溶剤および非水溶性有機溶剤が含まれる。 Examples of the organic solvent when the precoat agent is a solvent-based ink include a water-soluble organic solvent and a water-insoluble organic solvent that can be used for the water-based ink.
 上記非水溶性有機溶剤の例には、ペンタン、ヘキサン、i-ヘキサン、ヘプタン、i-ヘプタン、オクタン、i-オクタン、およびデカンを含む炭素数が5以上15以下の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、シクロヘプタン、およびシクロオクタンを含む炭素数が5以上15以下の脂環族炭化水素、シクロヘキセン、シクロヘプテン、シクロオクテン、1,1,3,5,7-シクロオクタテトラエン、シクロドデセンを含む炭素数が5以上15以下の環状不飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、クメン、o-キシレン、m-キシレンおよびp-キシレンを含む炭素数が6以上12以下の芳香族炭化水素、ヘプタノール、ヘキサノール、メチルヘキサノール、エチルヘキサノール、ヘプタノール、オクタノール、デカノール、ウンデシルアルコール、およびラウリルアルコールを含む炭素数が5以上15以下の1価のアルコール、メチル-i-ブチルケトン、ジ-i-ブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、シクロヘプタノン、およびシクロオクタノンを含む炭素数が5以上15以下の脂環族ケトン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸-i-プロピル、酢酸ブチル、酢酸ヘキシル、酢酸アミル、酢酸-i-アミル、酢酸2-エチルヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸ヘキシル、プロピオン酸アミル、吉草酸エチル、ヘキサン酸エチル、ヘプタン酸エチル、オクタン酸エチル、デカン酸エチル、酢酸シクロヘキシル、酢酸シクロオクチル、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸ブチル、フタル酸ジメチル、フタル酸ジエチル、およびフタル酸ジブチルを含むエステル化合物、ニトロエタン、ニトロプロパン、ニトロペンタン、ニトロベンゼン、ジニトロベンゼン、ニトロトルエン、およびニトロキシレンを含むニトロ化合物、アセトニトリル、ベンゾニトリルを含むニトリル類、ならびにγ-ブチロラクトン、およびε-カプロラクトンを含むラクトン類が含まれる。 Examples of the water-insoluble organic solvent include pentane, hexane, i-hexane, heptane, i-heptane, octane, i-octane, and aliphatic hydrocarbons having 5 to 15 carbon atoms and cyclopentane. , Cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, cycloheptane, and cycloaliphatic hydrocarbons having 5 to 15 carbon atoms, cyclohexene, cycloheptene, cyclooctene, 1,1,3,5,7 —Cyclooctatetraene, cyclododecene-containing cyclic unsaturated hydrocarbons having 5 to 15 carbon atoms, benzene, toluene, ethylbenzene, cumene, o-xylene, m-xylene and p-xylene having 6 to 12 carbon atoms The following aromatic hydrocarbons, heptanol, hexano , Methyl hexanol, ethyl hexanol, heptanol, octanol, decanol, undecyl alcohol, and monohydric alcohol having 5 to 15 carbon atoms, methyl-i-butyl ketone, di-i-butyl ketone, cyclohexanone, An alicyclic ketone having 5 to 15 carbon atoms, including methylcyclohexanone, cycloheptanone, and cyclooctanone, methyl acetate, ethyl acetate, propyl acetate, i-propyl acetate, butyl acetate, hexyl acetate, amyl acetate, Acetic acid-i-amyl, 2-ethylhexyl acetate, methyl propionate, ethyl propionate, butyl propionate, hexyl propionate, amyl propionate, ethyl valerate, ethyl hexanoate, ethyl heptanoate, ethyl octanoate, decane Ester compounds including ethyl, cyclohexyl acetate, cyclooctyl acetate, phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, butyl benzoate, dimethyl phthalate, diethyl phthalate, and dibutyl phthalate, nitroethane, nitropropane, Nitro compounds including nitropentane, nitrobenzene, dinitrobenzene, nitrotoluene, and nitroxylene, nitrites including acetonitrile, benzonitrile, and lactones including γ-butyrolactone and ε-caprolactone.
 プレコート剤が溶剤系インクであるときの上記非水溶性有機溶剤の含有量は、たとえば、プレコート剤の全質量に対して1.0質量%以上98質量%以下とすることができ、20質量%以上95質量%以下とすることがより好ましく、40質量%以上90質量%以下とすることがさらに好ましい。 The content of the water-insoluble organic solvent when the precoat agent is a solvent-based ink can be, for example, 1.0% by mass or more and 98% by mass or less, and 20% by mass with respect to the total mass of the precoat agent. It is more preferable to set it as 95 mass% or less, and it is still more preferable to set it as 40 mass% or more and 90 mass% or less.
 プレコート剤が溶剤系インクであるときの上記樹脂の例には、ポリエステル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、ポリウレタン-アクリル系樹脂、塩化ビニル系樹脂、および酢酸ビニル系樹脂などが含まれる。上記樹脂は、インク中に分散して分散体を形成するラテックスであってもよいし、水または有機溶剤によりインク中に溶解する溶解性樹脂(水溶性樹脂または有機溶剤溶解性樹脂)であってもよい。 Examples of the resin when the precoat agent is a solvent-based ink include polyester resins, polyurethane resins, acrylic resins, polyurethane-acrylic resins, vinyl chloride resins, and vinyl acetate resins. The resin may be a latex that is dispersed in ink to form a dispersion, or is a soluble resin (water-soluble resin or organic solvent-soluble resin) that is dissolved in ink with water or an organic solvent. Also good.
 プレコート剤が溶剤系インクであるときの上記樹脂の含有量は、たとえば、固形分量としてプレコート剤の全質量に対して1質量%以上20質量%以下とすることができる。なお、上記樹脂の含有量は、1回の塗布によって形成されるプレコート層の膜厚およびインクジェット法により付与される1回の液体によって形成されるプレコート層の膜厚などに応じて調整すればよい。 The content of the resin when the precoat agent is a solvent-based ink can be, for example, 1% by mass or more and 20% by mass or less as a solid content with respect to the total mass of the precoat agent. In addition, what is necessary is just to adjust the content of the said resin according to the film thickness of the precoat layer formed by the film thickness of the precoat layer formed by one application | coating, and the liquid applied once by the inkjet method. .
 プレコート剤が活性光線硬化型インクであるときの上記光重合性化合物の例には、ラジカル重合性化合物およびカチオン重合性化合物が含まれる。光重合性化合物は、モノマー、重合性オリゴマー、プレポリマーあるいはこれらの混合物のいずれであってもよい。 Examples of the photopolymerizable compound when the precoat agent is an actinic ray curable ink include a radical polymerizable compound and a cationic polymerizable compound. The photopolymerizable compound may be any of a monomer, a polymerizable oligomer, a prepolymer, or a mixture thereof.
 ラジカル重合性化合物は、不飽和カルボン酸エステル化合物であることが好ましく、(メタ)アクリレートであることがより好ましい。なお、本明細書において、「(メタ)アクリレート」は、アクリレートまたはメタアクリレートを意味し、「(メタ)アクリル」は、アクリルまたはメタクリルを意味し、「(メタ)アクリロイル」は、アクリロイルまたはメタクリロイルを意味する。 The radical polymerizable compound is preferably an unsaturated carboxylic acid ester compound, and more preferably (meth) acrylate. In the present specification, “(meth) acrylate” means acrylate or methacrylate, “(meth) acryl” means acryl or methacryl, and “(meth) acryloyl” means acryloyl or methacryloyl. means.
 単官能の(メタ)アクリレートの例には、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソミルスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸およびt-ブチルシクロヘキシル(メタ)アクリレートが含まれる。 Examples of monofunctional (meth) acrylates include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, isomustyl (meth) acrylate, isostearyl (Meth) acrylate, 2-ethylhexyl-diglycol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meta ) Acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, phenoxye (Meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxyethyl-2-hydroxyethyl-phthalic acid and t-butylcyclohexyl (meth) Acrylate is included.
 多官能の(メタ)アクリレートの例には、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジアクリレートおよびトリプロピレングリコールジアクリレートを含む2官能の(メタ)アクリレート、ならびに、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレートおよびペンタエリスリトールエトキシテトラ(メタ)アクリレートを含む3官能以上の(メタ)アクリレートが含まれる。 Examples of polyfunctional (meth) acrylates include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Dimethylol-tricyclodecane di (meth) acrylate, PO adduct di (meth) acrylate of bisphenol A, neopentyl glycol di (meth) acrylate hydroxypivalate, polytetramethylene glycol di ( A) bifunctional (meth) acrylates including polyethylene acrylate, polyethylene glycol diacrylate and tripropylene glycol diacrylate, and trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate , Tri- or higher functional (meth) acrylates including dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerin propoxytri (meth) acrylate and pentaerythritol ethoxytetra (meth) acrylate.
 ラジカル重合性化合物は、エチレンオキサイドまたはプロピレンオキサイドで変性された(メタ)アクリレート(以下、単に「変性(メタ)アクリレート」ともいう。)を含むことが好ましい。変性(メタ)アクリレートは、感光性がより高い。また、変性(メタ)アクリレートは、高温下でも他の成分とより相溶しやすい。さらには、変性(メタ)アクリレートは、硬化収縮が少ないため活性光線照射時の印刷物のカールがより生じにくい。 The radical polymerizable compound preferably contains (meth) acrylate modified with ethylene oxide or propylene oxide (hereinafter also simply referred to as “modified (meth) acrylate”). The modified (meth) acrylate has higher photosensitivity. Further, the modified (meth) acrylate is more compatible with other components even at high temperatures. Furthermore, since the modified (meth) acrylate has little curing shrinkage, curling of the printed matter during irradiation with actinic rays is less likely to occur.
 カチオン重合性化合物の例には、エポキシ化合物、ビニルエーテル化合物およびオキセタン化合物が含まれる。 Examples of the cationic polymerizable compound include an epoxy compound, a vinyl ether compound, and an oxetane compound.
 上記エポキシ化合物の例には、3,4-エポキシシクロヘキシルメチル-3′,4′-エポキシシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンモノエポキサイド、ε-カプロラクトン変性3,4-エポキシシクロヘキシルメチル3′,4′-エポキシシクロヘキサンカルボキシレート、1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4,1,0]ヘプタン、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサノン-メタ-ジオキサンおよびビス(2,3-エポキシシクロペンチル)エーテルなどの脂環式エポキシ樹脂、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、エチレングリコール、プロピレングリコール、およびグリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイド(エチレンオキサイドおよびプロピレンオキサイドなど)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテルなどを含む脂肪族エポキシ化合物、ならびに、ビスフェノールAまたはそのアルキレンオキサイド付加体のジまたはポリグリシジルエーテル、水素添加ビスフェノールAまたはそのアルキレンオキサイド付加体のジまたはポリグリシジルエーテル、およびノボラック型エポキシ樹脂などを含む芳香族エポキシ化合物などが含まれる。 Examples of the epoxy compounds include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclohexene monoepoxide, ε-caprolactone modified 3, 4-epoxycyclohexylmethyl 3 ', 4'-epoxycyclohexanecarboxylate, 1-methyl-4- (2-methyloxiranyl) -7-oxabicyclo [4,1,0] heptane, 2- (3,4 -Epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexanone-cycloaliphatic epoxy resins such as meta-dioxane and bis (2,3-epoxycyclopentyl) ether, diglycidyl ether of 1,4-butanediol 1,6-hexanediol One kind of aliphatic polyhydric alcohols such as glycidyl ether, triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, diglycidyl ether of polyethylene glycol, diglycidyl ether of propylene glycol, ethylene glycol, propylene glycol, and glycerin Aliphatic epoxy compounds containing polyglycidyl ethers of polyether polyols obtained by adding two or more types of alkylene oxides (such as ethylene oxide and propylene oxide), and di- or poly- of bisphenol A or its alkylene oxide adducts Di- or polyglycidyl ether of glycidyl ether, hydrogenated bisphenol A or its alkylene oxide adduct And aromatic epoxy compounds including novolac-type epoxy resins and the like.
 上記ビニルエーテル化合物の例には、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクタデシルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、イソプロペニルエーテル-o-プロピレンカーボネート、ドデシルビニルエーテル、ジエチレングリコールモノビニルエーテル、およびオクタデシルビニルエーテルなどを含むモノビニルエーテル化合物、ならびにエチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、およびトリメチロールプロパントリビニルエーテルなどを含むジまたはトリビニルエーテル化合物などが含まれる。 Examples of the vinyl ether compounds include ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, isopropenyl. Monovinyl ether compounds including ether-o-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, and octadecyl vinyl ether, and the like, as well as ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol dibi Ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, and the like di- or tri-vinyl ether compounds containing a cyclohexane dimethanol divinyl ether and trimethylolpropane trivinyl ether.
 上記オキセタン化合物の例には、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタン、3-ヒドロキシメチル-3-ノルマルブチルオキセタン、3-ヒドロキシメチル-3-フェニルオキセタン、3-ヒドロキシメチル-3-ベンジルオキセタン、3-ヒドロキシエチル-3-メチルオキセタン、3-ヒドロキシエチル-3-エチルオキセタン、3-ヒドロキシエチル-3-プロピルオキセタン、3-ヒドロキシエチル-3-フェニルオキセタン、3-ヒドロキシプロピル-3-メチルオキセタン、3-ヒドロキシプロピル-3-エチルオキセタン、3-ヒドロキシプロピル-3-プロピルオキセタン、3-ヒドロキシプロピル-3-フェニルオキセタン、3-ヒドロキシブチル-3-メチルオキセタン、1,4ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタンおよびジ[1-エチル(3-オキセタニル)]メチルエーテルなどが含まれる。 Examples of the oxetane compound include 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, 3-hydroxymethyl-3-normalbutyloxetane, 3 -Hydroxymethyl-3-phenyloxetane, 3-hydroxymethyl-3-benzyloxetane, 3-hydroxyethyl-3-methyloxetane, 3-hydroxyethyl-3-ethyloxetane, 3-hydroxyethyl-3-propyloxetane, 3 -Hydroxyethyl-3-phenyloxetane, 3-hydroxypropyl-3-methyloxetane, 3-hydroxypropyl-3-ethyloxetane, 3-hydroxypropyl-3-propyloxetane, 3-hydroxypropyl-3-phenyl Xetane, 3-hydroxybutyl-3-methyloxetane, 1,4bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane and di [1-ethyl (3-oxetanyl)] methyl ether and the like are included.
 プレコート剤中の上記光重合性化合物の含有量は、たとえば、プレコート剤の全質量に対して1.0質量%以上97質量%以下とすることができ、30質量%以上90質量%以下とすることが好ましい。 Content of the said photopolymerizable compound in a precoat agent can be 1.0 mass% or more and 97 mass% or less with respect to the total mass of a precoat agent, for example, is 30 mass% or more and 90 mass% or less. It is preferable.
 上記プレコート剤は、光重合開始剤をさらに含有してもよい。上記光重合開始剤は、上記光重合性化合物の重合を開始できるものであればよい。たとえばプレコート剤がラジカル重合性化合物を有するときは、光重合開始剤は光ラジカル開始剤とすることができ、プレコート剤がカチオン重合性化合物を有するときは、光重合開始剤は光カチオン開始剤(光酸発生剤)とすることができる。 The precoat agent may further contain a photopolymerization initiator. The photopolymerization initiator may be any one that can initiate the polymerization of the photopolymerizable compound. For example, when the precoat agent has a radically polymerizable compound, the photopolymerization initiator can be a photoradical initiator, and when the precoat agent has a cationically polymerizable compound, the photopolymerization initiator is a photocationic initiator ( Photoacid generator).
 上記光重合開始剤の含有量は、活性光線の照射によってプレコート剤の硬化が開始される範囲において、任意に設定することができ、たとえば、プレコート剤の全質量に対して、0.1質量%以上20質量%以下、好ましくは1.0質量%以上12質量%以下とすることができる。なお、電子線の照射によりプレコート剤を半硬化させるときなど、光重合開始剤がなくてもプレコート剤の硬化が開始されるときは、光重合開始剤は不要である。 The content of the photopolymerization initiator can be arbitrarily set within a range where the curing of the precoat agent is started by irradiation with actinic rays. For example, the content of the photopolymerization initiator is 0.1% by mass relative to the total mass of the precoat agent. It can be made 20 mass% or less, preferably 1.0 mass% or more and 12 mass% or less. In addition, when hardening of a precoat agent is started even if there is no photopolymerization initiator, such as when a precoat agent is semi-cured by irradiation of an electron beam, a photopolymerization initiator is unnecessary.
 プレコート剤は、多価金属イオンおよび多価有機酸などの、光輝性インクが含有する光輝性顔料を析出または凝集させる成分を含んでもよい。これらの成分は、光輝性インク中の光輝性顔料を析出または凝集させて、光輝性インクのドット径をより安定化させることができる。 The precoat agent may contain a component that precipitates or aggregates the glitter pigment contained in the glitter ink, such as polyvalent metal ions and polyvalent organic acids. These components can precipitate or aggregate the glitter pigment in the glitter ink, and can further stabilize the dot diameter of the glitter ink.
 プレコート剤をインクジェット法で基材に付与する際に、インクジェットヘッドのノズルからの吐出安定性をより高める観点からは、プレコート剤の粘度は1cP以上100cP未満であることが好ましく、1cP以上50cP以下であることがより好ましく、1cP以上15cP以下であることがさらに好ましい。 When applying the precoat agent to the substrate by the inkjet method, the viscosity of the precoat agent is preferably 1 cP or more and less than 100 cP, from the viewpoint of further improving the ejection stability from the nozzles of the inkjet head, and is 1 cP or more and 50 cP or less. More preferably, it is 1 cP or more and 15 cP or less.
 1-2.光輝性インク
 光輝性インクは、光輝性顔料を含有する、インクジェット法で吐出可能なインク組成物であればよい。
1-2. Glittering ink The glittering ink may be any ink composition that contains a glittering pigment and can be ejected by an inkjet method.
 たとえば、光輝性インクは、水系インクであるときは、水および任意に水溶性有機溶剤を含有することができる。また、光輝性インクは、溶剤系インクであるときは、有機溶剤を含有することができる。また、光輝性インクは、活性光線硬化型インクであるときは、活性光線の照射によって重合および架橋する光重合性化合物および任意に光重合開始剤を含有することができる。光輝性インクが含有し得る上記水、水溶性有機溶剤、有機溶剤、光重合性化合物および光重合開始剤の種類および含有量は、上述したプレコート剤と同様とし得る。 For example, when the glitter ink is a water-based ink, it can contain water and optionally a water-soluble organic solvent. The glitter ink can contain an organic solvent when it is a solvent-based ink. Further, when the glitter ink is an actinic ray curable ink, it can contain a photopolymerizable compound that polymerizes and crosslinks upon irradiation with an actinic ray and optionally a photopolymerization initiator. The kind and content of the water, water-soluble organic solvent, organic solvent, photopolymerizable compound and photopolymerization initiator that can be contained in the glitter ink can be the same as those of the precoat agent described above.
 光輝性インクは、さらに、必要に応じて、光輝性顔料を分散させるための分散剤、光輝性顔料を基材に定着させるための定着樹脂、界面活性剤、重合禁止剤および紫外線吸収剤などを含有してもよい。上記その他の成分は、光輝性インク中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。 The glitter ink further includes a dispersant for dispersing the glitter pigment, a fixing resin for fixing the glitter pigment to the substrate, a surfactant, a polymerization inhibitor, an ultraviolet absorber, and the like, if necessary. You may contain. In the glitter ink, only one kind of the other component may be contained, or two or more kinds thereof may be contained.
 上記光輝性顔料は、アルミニウム顔料およびパール顔料などの、画像に光沢を発現させるために用いられる公知の顔料であればよいが、顔料を整列させて光の反射をより精密に制御する観点からは、金属粒子であることが好ましい。 The glitter pigment may be a known pigment used to develop gloss in an image, such as an aluminum pigment and a pearl pigment, but from the viewpoint of controlling the reflection of light more precisely by aligning the pigments. The metal particles are preferable.
 金属粒子は、金属を主成分とする粒子であり、金属光沢を発現することができる粒子であれば特に制限されない。金属粒子を構成する金属の例には、金、銀、銅、ニッケル、パラジウム、白金、アルミニウム、亜鉛、クロム、鉄、コバルト、モリブデン、ジルコニウム、ルテニウム、イリジウム、タンタル、水銀、インジウム、スズ、鉛、およびタングステンなどが含まれる。これらの中で、高い光沢を発現可能であり、かつ、安価であることから、金、銀、銅、ニッケル、コバルト、スズ、鉛、クロム、亜鉛およびアルミニウムが好ましく、金、銀、銅、スズ、クロム、鉛およびアルミニウムがより好ましく、金および銀がさらに好ましく、銀が特に好ましい。これらの金属は、1種を単独で、または2種類以上を合金または混合物として用いることができる。また、金属の種類または組成が異なる2種類以上の金属粒子を組み合わせて用いてもよい。金属粒子は、これらの金属を主成分とすればよく、不可避的に含まれる他の成分を微量に含んでいてもよいし、分散安定性を高めるためにクエン酸などで表面処理されていてもよい。また、これらの金属は、酸化物を含有してもよい。 The metal particles are particles having a metal as a main component and are not particularly limited as long as the particles can exhibit a metallic luster. Examples of metals constituting the metal particles include gold, silver, copper, nickel, palladium, platinum, aluminum, zinc, chromium, iron, cobalt, molybdenum, zirconium, ruthenium, iridium, tantalum, mercury, indium, tin, lead , And tungsten. Among these, gold, silver, copper, nickel, cobalt, tin, lead, chromium, zinc, and aluminum are preferable because they can exhibit high gloss and are inexpensive. Gold, silver, copper, tin Chrome, lead and aluminum are more preferred, gold and silver are more preferred, and silver is particularly preferred. These metals can be used singly or in combination of two or more as an alloy or a mixture. Further, two or more kinds of metal particles having different kinds or compositions of metals may be used in combination. The metal particles only need to have these metals as the main component, may contain a small amount of other components inevitably included, and may be surface-treated with citric acid or the like to improve dispersion stability. Good. Moreover, these metals may contain an oxide.
 金属粒子の平均粒子径は特に限定されないが、金属インク中での分散安定性および保存安定性を高める観点、ならびにグラデーションの視認性を高める観点からは、金属粒子は、平均粒子径がナノサイズである金属ナノ粒子であることが好ましい。金属粒子の平均粒子径は、3nm以上100nm以下であることが好ましく、5nm以上80nm以下であることがより好ましく、10nm以上60nm以下であることがさらに好ましく、15nm以上55nm以下であることが特に好ましい。 The average particle diameter of the metal particles is not particularly limited, but from the viewpoint of improving the dispersion stability and storage stability in the metal ink, and from the viewpoint of improving the visibility of gradation, the metal particles have an average particle diameter of nano-size. Certain metal nanoparticles are preferred. The average particle size of the metal particles is preferably 3 nm or more and 100 nm or less, more preferably 5 nm or more and 80 nm or less, further preferably 10 nm or more and 60 nm or less, and particularly preferably 15 nm or more and 55 nm or less. .
 金属粒子の平均粒子径は、金属粒子分散液をSEMにより観察し、ナノ粒子の体積平均粒子径を求めることで行い、具体的には、以下の手順で実施する。 The average particle diameter of the metal particles is determined by observing the metal particle dispersion with an SEM and determining the volume average particle diameter of the nanoparticles, and specifically, the following procedure is performed.
 1)ガラス板上に分散液を塗布した後、真空脱気して溶媒成分を揮発させてサンプルを得る。得られたサンプルの分散液について、走査電子顕微鏡JSM-7401F(日本電子株式会社製)を用いてSEM観察を行い、任意の300個の金属粒子の粒子径をそれぞれ測定する。
 2)得られた測定データに基づいて、画像処理ソフトImage Jを用いて体積基準の粒度分布を求め、そのD50(メジアン径)を体積換算の平均粒子径(体積平均粒子径)とする。
1) After applying the dispersion on a glass plate, vacuum degassing to volatilize the solvent component to obtain a sample. The obtained sample dispersion is subjected to SEM observation using a scanning electron microscope JSM-7401F (manufactured by JEOL Ltd.), and the particle diameters of arbitrary 300 metal particles are measured.
2) Based on the obtained measurement data, a volume-based particle size distribution is obtained using image processing software Image J, and its D50 (median diameter) is defined as an average particle diameter in terms of volume (volume average particle diameter).
 光輝性インク中の金属ナノ粒子の含有量は特に限定されないが、光輝性インクの全質量に対して0.5質量%以上15質量%以下であることが好ましく、0.75質量%以上12.5質量%以下であることがより好ましく、1質量%以上10質量%以下であることがさらに好ましい。 The content of the metal nanoparticles in the glitter ink is not particularly limited, but is preferably 0.5% by mass to 15% by mass with respect to the total mass of the glitter ink, and is 0.75% by mass to 12. It is more preferably 5% by mass or less, and further preferably 1% by mass or more and 10% by mass or less.
 上記分散剤は、上記光輝性顔料を十分に分散させることができればよい。特に、光輝性顔料が金属ナノ粒子であるときは、上記分散剤は、高分子分散剤であることが好ましい。 The dispersing agent only needs to be able to sufficiently disperse the glitter pigment. In particular, when the glitter pigment is metal nanoparticles, the dispersant is preferably a polymer dispersant.
 高分子分散剤は、上記金属ナノ粒子の表面に吸着可能な吸着基および親水性の構造を有する化合物である。上記吸着基の例には、カルボキシル基およびチオール基などが含まれる。 The polymer dispersant is a compound having an adsorbing group that can be adsorbed on the surface of the metal nanoparticles and a hydrophilic structure. Examples of the adsorbing group include a carboxyl group and a thiol group.
 高分子分散剤を構成する樹脂は、親水性モノマーの単独重合体または共重合体が好ましい。親水性モノマーの共重合体は、親水性モノマーと疎水性モノマーとの共重合体であってもよい。 The resin constituting the polymer dispersant is preferably a homopolymer or copolymer of a hydrophilic monomer. The copolymer of hydrophilic monomers may be a copolymer of hydrophilic monomers and hydrophobic monomers.
 親水性モノマーの例には、カルボキシル基または酸無水物基を含有するモノマー((メタ)アクリル酸、マレイン酸などの不飽和多価カルボン酸、ならびに無水マレイン酸など)、ならびにアルキレンオキサイド変性(メタ)アクリル酸エステルモノマー(エチレンオキサイド変性(メタ)アクリル酸アルキルエステルなど)などが含まれる。なお、本発明において、(メタ)アクリルとは、アクリルおよびメタクリルの双方またはいずれかを意味する。 Examples of hydrophilic monomers include monomers containing carboxyl groups or acid anhydride groups (such as (meth) acrylic acid, unsaturated polyvalent carboxylic acids such as maleic acid, and maleic anhydride), and alkylene oxide modified (meta). ) Acrylic acid ester monomers (such as ethylene oxide-modified (meth) acrylic acid alkyl esters). In the present invention, (meth) acryl means both or one of acrylic and methacrylic.
 疎水性モノマーの例には、(メタ)アクリル酸メチルおよび(メタ)アクリル酸エチルなどの(メタ)アクリル酸エステル系モノマー、スチレン、α-メチルスチレンおよびビニルトルエンなどのスチレン系モノマー、エチレン、プロピレン、および1-ブテンなどのα-オレフィン系モノマー、ならびに、酢酸ビニルおよび酪酸ビニルなどのカルボン酸ビニルエステル系モノマーなどが含まれる。 Examples of hydrophobic monomers include (meth) acrylate monomers such as methyl (meth) acrylate and ethyl (meth) acrylate, styrene monomers such as styrene, α-methylstyrene and vinyltoluene, ethylene, propylene And α-olefin monomers such as 1-butene, and vinyl carboxylate monomers such as vinyl acetate and vinyl butyrate.
 高分子分散剤は、共重合体である場合、ランダム共重合体、交互共重合体、ブロック共重合体およびくし型共重合体などとすることができる。中でも、金属ナノ粒子の分散性をより高める観点からは、高分子分散剤は、くし型ブロック共重合体であることが好ましい。 When the polymer dispersant is a copolymer, it can be a random copolymer, an alternating copolymer, a block copolymer, a comb copolymer, or the like. Among these, from the viewpoint of further improving the dispersibility of the metal nanoparticles, the polymer dispersant is preferably a comb block copolymer.
 くし型ブロック共重合体とは、主鎖を形成する直鎖状のポリマーと、主鎖を構成するモノマー由来の構成単位に対してグラフト重合した別の種類のポリマーとを含むコポリマーを意味する。くし型ブロック共重合体の好ましい例には、主鎖が(メタ)アクリル酸エステル由来の構成単位を含み、かつ、側鎖がポリアルキレンオキサイド基(エチレンオキサイド-プロピレンオキサイド共重合基などを含む長鎖ポリアルキレンオキサイド基)を含む、くし型ブロック共重合体が含まれる。くし型ブロックコポリマーは、グラフト重合した側鎖が立体障害を生じるため、金属ナノ粒子同士の凝集をより高度に抑制し得る。それにより、金属ナノ粒子の分散性が高まるので、凝集した金属ナノ粒子による吐出不良をより抑制しやすい。 The comb-type block copolymer means a copolymer containing a linear polymer that forms a main chain and another type of polymer that is graft-polymerized to a structural unit derived from a monomer that forms the main chain. A preferable example of the comb block copolymer is a long chain in which the main chain includes a structural unit derived from (meth) acrylic acid ester, and the side chain includes a polyalkylene oxide group (such as an ethylene oxide-propylene oxide copolymer group). Comb-type block copolymers containing a chain polyalkylene oxide group). In the comb-type block copolymer, since the graft-polymerized side chain causes steric hindrance, aggregation of metal nanoparticles can be further suppressed. Thereby, the dispersibility of the metal nanoparticles is increased, and thus it is easier to suppress ejection failure due to the aggregated metal nanoparticles.
 光輝性インク中の上記高分子分散剤の含有量は特に限定されないが、光輝性インク中での金属ナノ粒子の分散性および基材への密着性を十分に高める観点からは、金属ナノ粒子の総質量に対して、1質量%以上15質量%以下であることが好ましく、2質量%以上10質量%以下であることがより好ましく、3質量%以上8質量%以下であることがさらに好ましい。 The content of the polymer dispersant in the glitter ink is not particularly limited, but from the viewpoint of sufficiently enhancing the dispersibility of the metal nanoparticles in the glitter ink and the adhesion to the substrate, It is preferably 1% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 10% by mass or less, and further preferably 3% by mass or more and 8% by mass or less with respect to the total mass.
 上記定着樹脂の例には、(メタ)アクリル樹脂、エポキシ樹脂、ポリシロキサン樹脂、マレイン酸樹脂、ビニル樹脂、ポリアミド樹脂、ニトロセルロース、酢酸セルロース、エチルセルロース、エチレン-酢酸ビニル共重合体、ウレタン樹脂、ポリエステル樹脂、およびアルキド樹脂が含まれる。 Examples of the fixing resin include (meth) acrylic resin, epoxy resin, polysiloxane resin, maleic acid resin, vinyl resin, polyamide resin, nitrocellulose, cellulose acetate, ethyl cellulose, ethylene-vinyl acetate copolymer, urethane resin, Polyester resins and alkyd resins are included.
 これらのうち、上記金属ナノ粒子の表面に吸着した高分子分散剤と相互作用して、金属ナノ粒子の基材への密着性を高める観点からは、定着樹脂はアニオン性樹脂のエマルションであることが好ましい。 Among these, the fixing resin is an anionic resin emulsion from the viewpoint of increasing the adhesion of the metal nanoparticles to the substrate by interacting with the polymer dispersant adsorbed on the surface of the metal nanoparticles. Is preferred.
 上記アニオン性樹脂は、高分子分散剤との親和性が高い樹脂であることが好ましく、(メタ)アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂(例えばポリ塩化ビニル重合体、塩化ビニル-塩化ビニリデン共重合体)、エポキシ樹脂、ポリシロキサン樹脂、フッ素樹脂、スチレン共重合体(例えばスチレン-ブタジエン共重合体、スチレン-(メタ)アクリル酸エステル共重合体等)、および酢酸ビニル共重合体(例えばエチレン-酢酸ビニル共重合体等)などから適宜選択して使用することができる。形成される画像の耐水性をより高める観点からは、上記アニオン性樹脂は、(メタ)アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、エポキシ樹脂、ポリシロキサン樹脂、フッ素樹脂、スチレン共重合体、および酢酸ビニル共重合体などから選択されることが好ましく、ウレタン樹脂および(メタ)アクリル樹脂から選択されることが好ましい。 The anionic resin is preferably a resin having high affinity with the polymer dispersant, and is a (meth) acrylic resin, urethane resin, polyolefin resin, polyester resin, polyvinyl chloride resin (for example, polyvinyl chloride polymer, Vinyl chloride-vinylidene chloride copolymer), epoxy resin, polysiloxane resin, fluororesin, styrene copolymer (eg, styrene-butadiene copolymer, styrene- (meth) acrylate copolymer), and vinyl acetate A copolymer (for example, ethylene-vinyl acetate copolymer) can be appropriately selected and used. From the viewpoint of further improving the water resistance of the formed image, the anionic resin is composed of (meth) acrylic resin, urethane resin, polyolefin resin, polyvinyl chloride resin, epoxy resin, polysiloxane resin, fluorine resin, styrene copolymer. It is preferably selected from a coalescence, a vinyl acetate copolymer and the like, and preferably selected from a urethane resin and a (meth) acrylic resin.
 アニオン性樹脂のエマルションの平均粒子径は、10nm以上200nm以下であることが好ましく、30nm以上100nm以下であることがより好ましい。エマルションの平均粒子径は、動的光散乱法に基づく粒子径分布測定装置を使用して求めた体積平均粒子径とすることができる。 The average particle size of the anionic resin emulsion is preferably 10 nm or more and 200 nm or less, and more preferably 30 nm or more and 100 nm or less. The average particle size of the emulsion can be a volume average particle size determined using a particle size distribution measuring apparatus based on a dynamic light scattering method.
 光輝性インク中の上記エマルションの固形分含有量は、金属ナノ粒子および高分子分散剤を合計した全質量に対して、0.01質量%以上0.1質量%以下であることが好ましい。上記固形分含有量が0.01質量%以上だと、形成される画像の耐擦性をより高めることができる。上記固形分含有量が0.1質量%以下だと、形成される画像の光輝性(反射率)をより高めることができる。上記観点から、光輝性インク中の上記エマルションの固形分含有量は、0.02質量%以上0.1質量%以下であることがより好ましく、0.03質量%以上0.1質量%以下であることがより好ましい。 The solid content of the emulsion in the glitter ink is preferably 0.01% by mass or more and 0.1% by mass or less based on the total mass of the metal nanoparticles and the polymer dispersant. When the solid content is 0.01% by mass or more, the abrasion resistance of the formed image can be further improved. When the solid content is 0.1% by mass or less, the glitter (reflectance) of the formed image can be further increased. From the above viewpoint, the solid content of the emulsion in the glitter ink is more preferably 0.02% by mass or more and 0.1% by mass or less, and 0.03% by mass or more and 0.1% by mass or less. More preferably.
 上記界面活性剤の例には、ジアルキルスルホコハク酸塩類、アルキルナフタレンスルホン酸塩類および脂肪酸塩類を含むアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、アセチレングリコール類およびポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類を含むノニオン性界面活性剤、アルキルアミン塩類および第四級アンモニウム塩類を含むカチオン性界面活性剤、シリコーン系の界面活性剤、ならびにフッ素系の界面活性剤が含まれる。 Examples of such surfactants include anionic surfactants, including dialkyl sulfosuccinates, alkyl naphthalene sulfonates and fatty acid salts, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycols and poly (ethylene glycols). Includes nonionic surfactants including oxyethylene / polyoxypropylene block copolymers, cationic surfactants including alkylamine salts and quaternary ammonium salts, silicone surfactants, and fluorine surfactants It is.
 界面活性剤の含有量は、光輝性インクの全質量に対して、0.001質量%以上1.0質量%未満であることが好ましい。 The content of the surfactant is preferably 0.001% by mass or more and less than 1.0% by mass with respect to the total mass of the glitter ink.
 インク層の反射率をより高める観点からは、光輝性インクは、実質的に上記高分子分散剤が吸着した金属ナノ粒子、上記アニオン性樹脂のエマルションおよび溶媒、ならびに任意に必要量の界面活性剤からなることが好ましい。上記高分子分散剤が吸着した金属ナノ粒子、上記アニオン性樹脂のエマルションおよび溶媒の含有量の合計は、光輝性インクの全質量に対して90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましい。 From the viewpoint of further increasing the reflectance of the ink layer, the glitter ink is composed of metal nanoparticles substantially adsorbed with the polymer dispersant, an emulsion and solvent of the anionic resin, and optionally a necessary amount of a surfactant. Preferably it consists of. The total content of the metal nanoparticles adsorbed by the polymer dispersant, the emulsion of the anionic resin, and the solvent is preferably 90% by mass or more and 100% by mass or less based on the total mass of the glitter ink. More preferably, it is 95 mass% or more and 100 mass% or less.
 インクジェットヘッドのノズルからの吐出安定性をより高める観点からは、光輝性インクの粘度は1cP以上100cP未満であることが好ましく、1cP以上50cP以下であることがより好ましく、1cP以上15cP以下であることがさらに好ましい。 From the viewpoint of further improving the ejection stability from the nozzles of the inkjet head, the viscosity of the glitter ink is preferably 1 cP or more and less than 100 cP, more preferably 1 cP or more and 50 cP or less, and 1 cP or more and 15 cP or less. Is more preferable.
 1-3.画像形成方法
 図2は、本実施形態に関する画像形成方法のフローチャートである。本実施形態では、上記プレコート剤を用いて基材の表面に接してプレコート層を形成し(工程S110)、上記光輝性インクを用いて形成されたプレコート層の表面に接してインク層を形成する(工程S120)。
1-3. Image Forming Method FIG. 2 is a flowchart of the image forming method according to this embodiment. In the present embodiment, a precoat layer is formed in contact with the surface of the substrate using the precoat agent (step S110), and an ink layer is formed in contact with the surface of the precoat layer formed using the glitter ink. (Step S120).
 1-3-1.プレコート層の形成(工程S110)
 まず、上記プレコート剤を基材の表面に付与し、プレコート層を形成する。
1-3-1. Formation of precoat layer (step S110)
First, the said precoat agent is provided to the surface of a base material, and a precoat layer is formed.
 たとえば、搬送路を搬送され、移動させられている基材の表面に対して、インクジェットヘッドのノズルから上記プレコート剤の液滴を吐出する。吐出された液滴は、基材の表面に着弾する。あるいは、スクリーン印刷などの公知の方法で、基材の表面にプレコート剤を付与する。 For example, droplets of the precoat agent are ejected from the nozzles of the ink jet head onto the surface of the substrate that is transported and moved in the transport path. The discharged droplets land on the surface of the substrate. Alternatively, a precoat agent is applied to the surface of the substrate by a known method such as screen printing.
 このとき、形成されるプレコート層の膜厚を、インク層に含まれる対応するドット(具体的には、プレコート層の当該部分に接して形成されるインク層のドット)を含む領域において発現されるべき光沢の度合いに応じて調整する。プレコート層の膜厚は、使用するプレコート剤および光輝性インクの種類に応じて予め定められた、発現すべき光沢の度合いと、形成すべきプレコート層およびインク層の膜厚と、の関係を予め求めた対応表を参照するなどして、決定することができる。あるいは、プレコート層の膜厚は、機械学習などを施した処理装置に、発現すべき光沢の度合いと、形成すべきプレコート層およびインク層の膜厚と、の関係を算出させたりして、決定することができる。 At this time, the film thickness of the precoat layer to be formed is expressed in a region including corresponding dots included in the ink layer (specifically, dots of the ink layer formed in contact with the portion of the precoat layer). Adjust according to the degree of gloss. The film thickness of the precoat layer is determined in advance according to the relationship between the degree of gloss to be developed and the film thickness of the precoat layer and the ink layer to be formed, which are determined in advance according to the type of the precoat agent and the glitter ink used. It can be determined by referring to the obtained correspondence table. Alternatively, the film thickness of the precoat layer is determined by causing a processing device that has undergone machine learning to calculate the relationship between the degree of gloss to be developed and the film thickness of the precoat layer and the ink layer to be formed. can do.
 具体的には、インクジェットヘッドのノズルから吐出したプレコート剤の液滴を基材の表面に付与する際の、上記液滴のサイズ(液滴量)およびドットごとに付与する液滴の数(液滴数)、あるいはスクリーン印刷などを繰り返し行う回数などによって、形成されるプレコート層の膜厚を調整すればよい。 Specifically, when the droplets of the precoat agent ejected from the nozzles of the inkjet head are applied to the surface of the substrate, the size of the droplets (the amount of droplets) and the number of droplets applied to each dot (liquid The film thickness of the precoat layer formed may be adjusted by the number of droplets) or the number of times screen printing is repeated.
 基材の搬送速度は、特に限定されないが、例えば1m/s以上1000m/s以下の間で設定され得る。搬送速度が速いほど画像形成速度が速まる。 Although the conveyance speed of a base material is not specifically limited, For example, it may be set between 1 m / s or more and 1000 m / s or less. The higher the conveying speed, the faster the image forming speed.
 プレコート剤をインクジェット法で基材に付与する際の、インクジェットヘッドからの吐出方式は、オンデマンド方式およびコンティニュアス方式のいずれでもよい。オンデマンド方式のインクジェットヘッドは、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型およびシェアードウォール型等の電気-機械変換方式、ならびにサーマルインクジェット型およびバブルジェット(バブルジェットはキヤノン社の登録商標)型等の電気-熱変換方式等のいずれでもよい。 When the precoat agent is applied to the substrate by the inkjet method, the ejection method from the inkjet head may be either an on-demand method or a continuous method. On-demand inkjet heads include electro-mechanical conversion methods such as single cavity type, double cavity type, bender type, piston type, shear mode type and shared wall type, as well as thermal inkjet type and bubble jet. Any of electric-thermal conversion methods such as Canon Inc. registered trademark) may be used.
 このとき、インク流路を加熱して、吐出されるプレコート剤の温度を調整してもよい。吐出されるプレコート剤の温度は、特に限定されないが、50℃以上90℃以下であることが好ましい。 At this time, the temperature of the precoat agent to be discharged may be adjusted by heating the ink flow path. The temperature of the precoat agent to be discharged is not particularly limited, but is preferably 50 ° C. or higher and 90 ° C. or lower.
 また、プレコート剤の吐出条件を調整することで、形成される画像の解像度を調整することもできる。形成される画像の解像度は、600dpi以上1440dpi以下とすることができるが、より高精細な画像を形成する観点からは、1200dpi以上1440dpi以下とすることが好ましい。 Also, the resolution of the formed image can be adjusted by adjusting the discharge conditions of the precoat agent. The resolution of the formed image can be 600 dpi or more and 1440 dpi or less, but from the viewpoint of forming a higher-definition image, it is preferably 1200 dpi or more and 1440 dpi or less.
 その後、基材に付与されたプレコート剤の液滴に活性光線を照射したり、基材に付与されたプレコート剤を乾燥させたりして、プレコート剤が硬化してなるプレコート層を形成する。 Thereafter, a precoat layer formed by curing the precoat agent is formed by irradiating the droplets of the precoat agent applied to the substrate with actinic rays or drying the precoat agent applied to the substrate.
 上記活性光線は、紫外線LEDからの紫外線であることが好ましい。一般的な紫外線の光源として、メタルハライドランプなどが知られているが、紫外線LEDを光源とすることで、光源の輻射熱によって硬化膜が溶けることによる硬化膜表面に硬化不良が生じることを抑制できる。上記液滴を適切に硬化させる観点からは、紫外線LEDのピーク波長は、385nm以上400nm以下であることが好ましい。紫外線LEDを有する光源の例には、Phoseon Technology社製の水冷式の紫外線照射ユニット(ピーク波長:395nm)が含まれる。 The actinic light is preferably ultraviolet light from an ultraviolet LED. A metal halide lamp or the like is known as a general ultraviolet light source. However, by using an ultraviolet LED as a light source, it is possible to suppress the occurrence of curing failure on the surface of the cured film due to melting of the cured film by the radiant heat of the light source. From the viewpoint of appropriately curing the droplets, the peak wavelength of the ultraviolet LED is preferably 385 nm or more and 400 nm or less. An example of a light source having an ultraviolet LED includes a water-cooled ultraviolet irradiation unit (peak wavelength: 395 nm) manufactured by Phoseon Technology.
 活性光線の照射条件は、プレコート剤の組成などに応じて適宜設定され得る。たとえば、紫外線LEDを有する光源を、基材上の液滴の表面における最高照度が0.5W/cm以上10.0W/cm以下、より好ましくは1W/cm以上5W/cm以下となるように設置すればよい。 The irradiation conditions of actinic rays can be appropriately set according to the composition of the precoat agent. For example, a light source having a UV LED, the maximum illuminance on the surface of the droplet on the substrate is 0.5 W / cm 2 or more 10.0 W / cm 2 or less, more preferably 1W / cm 2 or more 5W / cm 2 or less and It can be installed so that.
 1-3-2.インク層の形成(工程S120)
 次に、上記光輝性インクを、上記プレコート層を構成する上記プレコート剤が硬化したドットの表面に、ドットごとにインクジェット法で付与する。その後、光輝性インクの種類に応じて、たとえば光輝性インクが水系インクまたは溶剤系インクであるときは乾燥などにより液体成分を除去したり、あるいは光輝性インクが活性光線硬化型インクであるときは活性光線の照射により光輝性インクを硬化させたりして、光輝性インクにより形成されたドットが集合してなるインク層を形成する。上記乾燥条件および上記活性光線の照射条件は、光輝性インクの組成に応じて適宜定めればよい。たとえば、上記活性光線の照射条件は、プレコート剤の液滴を硬化させるときの条件と同一とし得る。
1-3-2. Formation of ink layer (step S120)
Next, the glitter ink is applied to the surface of the dots on which the precoat agent constituting the precoat layer has been cured by an inkjet method for each dot. Thereafter, depending on the type of the glitter ink, for example, when the glitter ink is a water-based ink or a solvent-based ink, the liquid component is removed by drying or the like, or when the glitter ink is an actinic ray curable ink The glitter ink is cured by irradiation with actinic rays, and an ink layer formed by gathering dots formed by the glitter ink is formed. The drying conditions and the actinic ray irradiation conditions may be appropriately determined according to the composition of the glitter ink. For example, the actinic ray irradiation conditions may be the same as the conditions for curing the droplets of the precoat agent.
 また、インクジェットヘッドからの吐出方式は、特に限定されず、プレコート層を形成する際の条件と同様とし得る。 Also, the ejection method from the inkjet head is not particularly limited, and may be the same as the conditions for forming the precoat layer.
 このとき、形成されるインク層の膜厚を、付与される光輝性インクによって形成されるドットを含む領域において発現されるべき光沢の度合いに応じて調整する。インク層の膜厚は、使用するプレコート剤および光輝性インクの種類に応じて予め定められた、発現すべき光沢の度合いと、形成すべきプレコート層およびインク層の膜厚と、の関係を予め求めた対応表を参照するなどして、決定することができる。あるいは、インク層の膜厚は、機械学習などを施した処理装置に、発現すべき光沢の度合いと、形成すべきプレコート層およびインク層の膜厚と、の関係を算出させたりして、決定することができる。 At this time, the film thickness of the ink layer to be formed is adjusted in accordance with the degree of gloss to be developed in the region including the dots formed by the applied glittering ink. The thickness of the ink layer is determined in advance according to the relationship between the degree of gloss to be developed and the thickness of the precoat layer and the ink layer to be formed, which are predetermined according to the type of precoat agent and glitter ink to be used. It can be determined by referring to the obtained correspondence table. Alternatively, the thickness of the ink layer is determined by causing a processing device that has undergone machine learning to calculate the relationship between the degree of gloss to be developed and the thickness of the precoat layer and the ink layer to be formed. can do.
 具体的には、光輝性インクの固形分濃度と、形成されるドットの大きさと、などに応じて、インクジェットヘッドのノズルから吐出したプレコート剤の液滴を基材の表面に付与する際の、上記液滴のサイズ(液滴量)およびドットごとに付与する液滴の数(液滴数)などを変化させて、形成されるインク層の膜厚を調整すればよい。 Specifically, depending on the solid content concentration of the glitter ink, the size of the dots to be formed, and the like, when applying a droplet of the precoat agent discharged from the nozzle of the inkjet head to the surface of the substrate, The thickness of the ink layer to be formed may be adjusted by changing the size of the droplet (droplet amount), the number of droplets applied to each dot (number of droplets), and the like.
 また、このとき、光輝性インクの付与量は、付与される光輝性インクによって形成されるドットの大きさがプレコート剤によって形成されたドットの大きさと略同一になるように調整すればよい。 Further, at this time, the amount of the glitter ink applied may be adjusted so that the size of the dots formed by the glitter ink applied is substantially the same as the size of the dots formed by the precoat agent.
 2.第2の実施形態
 本発明の第2の実施形態は、上述した第1の実施形態と同様にしてプレコート層およびインク層を形成した後に、上記インク層の表面に、オーバーコート剤を用いてオーバーコート層を形成する、画像形成方法に関する。なお、オーバーコート剤は、水系、溶剤系および活性光線硬化型などのいずれのオーバーコート剤でもよいが、オーバーコート剤が濡れ広がりすぎる前に硬化させることによって膜厚の制御を容易とし、かつ、膜厚をより厚くすることも容易とする観点から、基材の表面に付与して硬化させる工程を繰り返して複数の層を形成することが可能な、活性光線硬化型のオーバーコート剤であることが好ましい。
2. Second Embodiment In the second embodiment of the present invention, after a precoat layer and an ink layer are formed in the same manner as in the first embodiment described above, an overcoat agent is used on the surface of the ink layer. The present invention relates to an image forming method for forming a coat layer. The overcoat agent may be any overcoat agent such as water-based, solvent-based, and actinic ray curable types, but facilitates control of the film thickness by curing before the overcoat agent is too wet and spreads, and From the viewpoint of facilitating the thickening of the film thickness, it is an actinic ray curable overcoat agent capable of forming a plurality of layers by repeating the step of applying to the surface of the substrate and curing. Is preferred.
 上記オーバーコート剤の付与方法は特に限定されず、ロールコーターやスピンコーターなどを用いて上記オーバーコート剤をインク層の表面に塗布してもよいし、スプレー塗布、浸漬法、スクリーン印刷、グラビア印刷、オフセット印刷などの方法で上記オーバーコート剤をインク層の表面に付与してもよいし、インクジェット法で上記オーバーコート剤をインク層の表面に着弾させてもよい。これらのうち、より精細な記録物を形成する観点からは、スクリーン印刷およびインクジェット法が好ましく、インクジェット法がより好ましい。 The method for applying the overcoat agent is not particularly limited, and the overcoat agent may be applied to the surface of the ink layer using a roll coater or a spin coater, or spray coating, dipping method, screen printing, gravure printing. The overcoat agent may be applied to the surface of the ink layer by a method such as offset printing, or the overcoat agent may be landed on the surface of the ink layer by an inkjet method. Among these, from the viewpoint of forming a finer recorded matter, screen printing and an inkjet method are preferable, and an inkjet method is more preferable.
 このとき、付与されるオーバーコート剤によって形成されるオーバーコート層の膜厚を、ドットごとに独立して変化させることにより、画像形成物の光沢をドットごとに独立してさらに変化させることができ、光沢をより高精度に変化させた画像を形成することが可能である。このようにして、上記インク層に含まれる一のドットに対応する上記オーバーコート層(具体的には、オーバーコート層のうち、上記一のドットの直下に位置する部分)の膜厚と、上記インク層に含まれる他のドットに対応する上記オーバーコート層(具体的には、オーバーコート層のうち、上記他のドットの直下に位置する部分)の膜厚と、を異なる厚みとすることで、上記一のドットを含む領域と上記他のドットを含む領域との間で、上記分布情報におけるピークの高さ(H)およびピークの半値幅(W)を異なる値として、上記それぞれの領域から、異なる度合いの光沢を知覚させることができる。また、オーバーコート剤をインクジェット法によって付与することで、上記オーバーコート層の厚みをドットごとに変化させて、知覚される光沢をより高精度に変化させた画像を形成することも可能である。 At this time, by changing the film thickness of the overcoat layer formed by the applied overcoat agent independently for each dot, the gloss of the image formation can be further changed independently for each dot. Further, it is possible to form an image in which the gloss is changed with higher accuracy. Thus, the film thickness of the overcoat layer corresponding to one dot contained in the ink layer (specifically, the portion of the overcoat layer located immediately below the one dot) and the above By setting the thickness of the overcoat layer corresponding to other dots contained in the ink layer (specifically, the portion of the overcoat layer located immediately below the other dots) to a different thickness. The peak height (H) and the peak half-value width (W) in the distribution information are different between the area containing the one dot and the area containing the other dot, , Different degrees of gloss can be perceived. In addition, by applying the overcoat agent by an ink jet method, it is possible to change the thickness of the overcoat layer for each dot and form an image in which the perceived gloss is changed with higher accuracy.
 具体的には、オーバーコート層の膜厚は、プレコート剤を塗布してプレコート層を形成する回数、ならびに、インクジェットヘッドのノズルから吐出したオーバーコート剤の液滴をインク層の表面に付与する際の、上記液滴のサイズ(液滴量)およびドットごとに付与する液滴の数(液滴数)によって調整することができる。たとえば、画像中の領域ごとに、上記プレコート層を形成する回数または液滴量および液滴数を変えることで、インク層に含まれる対応するドットごとに、プレコート層の膜厚を変化させることができる。 Specifically, the film thickness of the overcoat layer is determined by the number of times the precoat agent is applied to form the precoat layer, and when the droplets of the overcoat agent discharged from the nozzles of the inkjet head are applied to the surface of the ink layer. The droplet size (droplet amount) and the number of droplets applied to each dot (number of droplets) can be adjusted. For example, the film thickness of the precoat layer can be changed for each corresponding dot included in the ink layer by changing the number of times the precoat layer is formed or the number of droplets and the number of droplets for each region in the image. it can.
 上記オーバーコート剤(インクジェット法により付与されるとき)の液滴量は、0.5pl以上50pl以下の範囲で調整されることが好ましく、高精細の画像を形成するためには、0.5pl以上20pl以下の範囲で調整されることがより好ましく、0.5pl以上10pl以下の範囲で調整されることがさらに好ましい。 The amount of droplets of the overcoat agent (when applied by the ink jet method) is preferably adjusted in the range of 0.5 pl to 50 pl, and in order to form a high-definition image, 0.5 pl or more It is more preferable to adjust in the range of 20 pl or less, and it is still more preferable to adjust in the range of 0.5 pl or more and 10 pl or less.
 上記オーバーコート剤(インクジェット法により付与されるとき)の液滴数は、0滴以上10滴以下の範囲で調整されることが好ましく、0滴以上5滴以下の範囲で調整されることがより好ましい。 The number of droplets of the overcoat agent (when applied by the inkjet method) is preferably adjusted in the range of 0 to 10 drops, more preferably adjusted in the range of 0 to 5 drops. preferable.
 上記オーバーコート剤(インクジェット法により付与されるとき)をインクジェットヘッドのノズルから吐出するときの駆動周波数は、5kHz以上100kHzの範囲で調整されることが好ましく、5kHz以上20kHzの範囲で調整されることがより好ましい。 The drive frequency when discharging the overcoat agent (when applied by the inkjet method) from the nozzle of the inkjet head is preferably adjusted in the range of 5 kHz to 100 kHz, and adjusted in the range of 5 kHz to 20 kHz. Is more preferable.
 本実施形態では、オーバーコート剤が付与されて活性光線の照射によって硬化されてなるオーバーコート層の膜厚を独立してドットごとに変化させることにより、上記分布情報におけるピークの高さ(H)およびピークの半値幅(W)をドットごとに変化させる。 In the present embodiment, the peak height (H) in the distribution information is obtained by independently changing the film thickness of the overcoat layer provided with an overcoat agent and cured by irradiation with actinic rays for each dot. In addition, the half width (W) of the peak is changed for each dot.
 具体的には、オーバーコート層の膜厚を高めることにより、ドットから出射する正反射光の光量を少なくして、ピークの高さ(H)を微減させるように光沢を調整することができる。さらに、オーバーコート層の膜厚を高めることにより、ドットの表面をより粗くなるように調整し、ドットから出射する光が正反射光により集中しにくくして、ピークの半値幅(W)をより広げるように調整することができる。 Specifically, by increasing the film thickness of the overcoat layer, the amount of specularly reflected light emitted from the dots can be reduced, and the gloss can be adjusted to slightly reduce the peak height (H). Furthermore, by increasing the film thickness of the overcoat layer, the surface of the dots is adjusted to be rougher, making it less likely to concentrate the light emitted from the dots due to the specularly reflected light, thereby increasing the peak half-value width (W). Can be adjusted to widen.
 オーバーコート層の膜厚は、当該ドットにより形成しようとする光沢の度合いに応じて設定すればよい。 The film thickness of the overcoat layer may be set according to the degree of gloss to be formed by the dots.
 なお、オーバーコート層の膜厚は、オーバーコート剤が吐出されて基材表面に着弾してから活性光線を照射するまでの時間、プレコート剤および光輝性インクの組成、などによっても変化させることができる。これらの条件をもとに、所望の度合いの光沢が得られるように、オーバーコート剤の付与量を調整すればよい。 The film thickness of the overcoat layer can also be changed by the time from when the overcoat agent is ejected and landing on the surface of the substrate until irradiation with actinic rays, the composition of the precoat agent and the glitter ink, and the like. it can. Based on these conditions, the application amount of the overcoat agent may be adjusted so that a desired level of gloss can be obtained.
 オーバーコート層は、非光輝性の色材を含有してもよい。非光輝性の色材は、黄(イエロー)、赤またはマゼンタ、青またはシアンおよびブラック、ならびにその他の特色を呈する画像を形成するために用いる公知の顔料または染料とすることができる。オーバーコート層が非光輝性の色材を含有することにより、形成された光沢に色味を付与して、たとえば赤銀、青銀、金などの様々な光沢色を発現させることができる。 The overcoat layer may contain a non-brilliant color material. The non-brilliant colorant can be a known pigment or dye used to form an image exhibiting yellow, red or magenta, blue or cyan and black, and other features. When the overcoat layer contains a non-brilliant color material, a color can be imparted to the gloss formed, and various gloss colors such as red silver, blue silver, and gold can be expressed.
 2-1.プレコート剤およびオーバーコート剤
 プレコート剤およびオーバーコート剤は、第1の実施形態で使用するプレコート剤と同様のものを使用できるので、詳しい説明は省略する。
2-1. Precoat agent and overcoat agent Since the precoat agent and the overcoat agent can be the same as the precoat agent used in the first embodiment, detailed description thereof is omitted.
 なお、同一のドットを形成するために使用されるプレコート剤およびオーバーコート剤は、同一の組成を有していてもよいし、互いに異なる組成を有していてもよい。 Note that the precoat agent and the overcoat agent used to form the same dot may have the same composition or different compositions.
 オーバーコート剤は、非光輝性の色材を含有してもよい。 The overcoat agent may contain a non-brilliant color material.
 上記非光輝性の色材には、非光輝性の染料および非光輝性の顔料が含まれる。 The non-brilliant color material includes a non-brilliant dye and a non-brilliant pigment.
 耐候性の良好な画像を得る観点からは、上記非光輝性の色材は非光輝性の顔料であることが好ましい。非光輝性の顔料は、形成すべき画像の色彩などに応じて、たとえば、黄(イエロー)顔料、赤またはマゼンタ顔料、青またはシアン顔料、緑顔料および黒顔料から選択することができる。また、その他の特色を形成するための、ピンク、グリーン、オレンジなどの顔料を用いてもよい。 From the viewpoint of obtaining an image having good weather resistance, the non-brilliant colorant is preferably a non-brilliant pigment. The non-brilliant pigment can be selected from, for example, a yellow (yellow) pigment, a red or magenta pigment, a blue or cyan pigment, a green pigment, and a black pigment depending on the color of an image to be formed. In addition, pigments such as pink, green and orange for forming other special colors may be used.
 黄顔料の例には、C.I.Pigment Yellow(以下、単に「PY」ともいう。) 1、PY3、PY12、PY13、PY14、PY17、PY34、PY35、PY37、PY55、PY74、PY81、PY83、PY93、PY94,PY95、PY97、PY108、PY109、PY110、PY137、PY138、PY139、PY153、PY154、PY155、PY157、PY166、PY167、PY168、PY180、PY185、およびPY193などが含まれる。
 赤あるいはマゼンタ顔料の例には、C.I.Pigment Red(以下、単に「PR」ともいう。) 3、PR5、PR19、PR22、PR31、PR38、PR43、PR48:1、PR48:2、PR48:3、PR48:4、PR48:5、PR49:1、PR53:1、PR57:1、PR57:2、PR58:4、PR63:1、PR81、PR81:1、PR81:2、PR81:3、PR81:4、PR88、PR104、PR108、PR112、PR122、PR123、PR144、PR146、PR149、PR166、PR168、PR169、PR170、PR177、PR178、PR179、PR184、PR185、PR208、PR216、PR226、およびPR257、C.I.Pigment Violet(以下、単に「PV」ともいう。) 3、PV19、PV23、PV29、PV30、PV37、PV50、およびPV88、ならびに、C.I.Pigment Orange(以下、単に「PO」ともいう。) 13、PO16、PO20、およびPO36などが含まれる。
 青またはシアン顔料の例には、C.I.Pigment Blue(以下、単に「PB」ともいう。) 1、PB15、PB15:1、PB15:2、PB15:3、PB15:4、PB15:6、PB16、PB17-1、PB22、PB27、PB28、PB29、PB36、およびPB60などが含まれる。
 緑顔料の例には、C.I.Pigment Green(以下、単に「PG」ともいう。) 7、PG26、PG36、およびPG50などが含まれる。
 黒顔料の例には、C.I.Pigment Black(以下、単に「PBk」ともいう。) 7、PBk26、およびPBk28などが含まれる。
Examples of yellow pigments include C.I. I. Pigment Yellow (hereinafter, also simply referred to as “PY”) , PY110, PY137, PY138, PY139, PY153, PY154, PY155, PY157, PY166, PY167, PY168, PY180, PY185, and PY193.
Examples of red or magenta pigments include C.I. I. Pigment Red (hereinafter also referred to simply as “PR”) 3, PR5, PR19, PR22, PR31, PR38, PR43, PR48: 1, PR48: 2, PR48: 3, PR48: 4, PR48: 5, PR49: 1 PR53: 1, PR57: 1, PR57: 2, PR58: 4, PR63: 1, PR81, PR81: 1, PR81: 2, PR81: 3, PR81: 4, PR88, PR104, PR108, PR112, PR122, PR123 PR144, PR146, PR149, PR166, PR168, PR169, PR170, PR177, PR178, PR179, PR184, PR185, PR208, PR216, PR226, and PR257, C.I. I. Pigment Violet (hereinafter also simply referred to as “PV”) 3, PV19, PV23, PV29, PV30, PV37, PV50, and PV88, and C.I. I. Pigment Orange (hereinafter, also simply referred to as “PO”) 13, PO16, PO20, and PO36.
Examples of blue or cyan pigments include C.I. I. Pigment Blue (hereinafter also referred to simply as “PB”) 1, PB15, PB15: 1, PB15: 2, PB15: 3, PB15: 4, PB15: 6, PB16, PB17-1, PB22, PB27, PB28, PB29 , PB36, and PB60.
Examples of green pigments include C.I. I. Pigment Green (hereinafter also simply referred to as “PG”) 7, PG26, PG36, PG50, and the like.
Examples of black pigments include C.I. I. Pigment Black (hereinafter also simply referred to as “PBk”) 7, PBk26, PBk28, and the like.
 2-2.光輝性インク
 光輝性インクは、第1の実施形態で使用する光輝性インクと同様のものを使用できるので、詳しい説明は省略する。
2-2. Glossy ink As the glitter ink, the same glitter ink as that used in the first embodiment can be used.
 2-3.画像形成方法
 図3は、本実施形態に関する画像形成方法のフローチャートである。本実施形態では、上記プレコート剤を用いて基材の表面に接してプレコート層を形成し(工程S110)、上記光輝性インクを用いてプレコート層の表面に接してインク層を形成し(工程S120)、さらに、上記オーバーコート剤を用いてインク層を形成する(工程S130)。
2-3. Image Forming Method FIG. 3 is a flowchart of the image forming method according to this embodiment. In the present embodiment, a precoat layer is formed in contact with the surface of the substrate using the precoat agent (step S110), and an ink layer is formed in contact with the surface of the precoat layer using the glitter ink (step S120). Further, an ink layer is formed using the overcoat agent (step S130).
 2-3-1.プレコート層の形成(工程S110)
 プレコート層は、第1の実施形態と同様に形成できるので、詳しい説明を省略する。
2-3-1. Formation of precoat layer (step S110)
Since the precoat layer can be formed in the same manner as in the first embodiment, detailed description thereof is omitted.
 なお、このとき、形成されるプレコート層の膜厚を、インク層に含まれる対応するドットを含む領域において発現されるべき光沢の度合いに応じて調整する。プレコート層の膜厚は、使用するプレコート剤、光輝性インクおよびオーバーコート剤の種類に応じて予め定められた、発現すべき光沢の度合いと、形成すべきプレコート剤、光輝性インクおよびオーバーコート剤の付与量と、の関係を予め求めた対応表を参照するなどして、決定することができる。あるいは、プレコート層の膜厚は、機械学習などを施した処理装置に、発現すべき光沢の度合いと、形成すべきプレコート剤、光輝性インクおよびオーバーコート剤の膜厚と、の関係を算出させた後に、当該膜厚のプレコート層を形成するためのプレコート剤の付与量を算出したりして、決定することができる。 At this time, the film thickness of the precoat layer to be formed is adjusted according to the degree of gloss to be developed in the region including the corresponding dots included in the ink layer. The film thickness of the precoat layer is determined in advance according to the kind of precoat agent, glitter ink and overcoat agent to be used, the degree of gloss to be expressed, and the precoat agent, glitter ink and overcoat agent to be formed. It is possible to determine by referring to a correspondence table obtained in advance for the relationship between the amount and the amount to be added. Alternatively, the film thickness of the precoat layer is calculated by calculating the relationship between the degree of gloss to be developed and the film thickness of the precoat agent, glitter ink, and overcoat agent to be formed by a processing device that has undergone machine learning or the like. Then, the application amount of the precoat agent for forming the precoat layer having the film thickness can be calculated or determined.
 具体的には、インクジェットヘッドのノズルから吐出したプレコート剤の液滴を基材の表面に付与する際の、上記液滴のサイズ(液滴量)およびドットごとに付与する液滴の数(液滴数)、あるいはスクリーン印刷などを繰り返し行う回数などによって、形成されるプレコート層の膜厚を調整すればよい。 Specifically, when the droplets of the precoat agent ejected from the nozzles of the inkjet head are applied to the surface of the substrate, the size of the droplets (the amount of droplets) and the number of droplets applied to each dot (liquid The film thickness of the precoat layer formed may be adjusted by the number of droplets) or the number of times screen printing is repeated.
 2-3-2.インク層の形成(工程S120)
 インク層も、第1の実施形態と同様に形成できるので、詳しい説明を省略する。
2-3-2. Formation of ink layer (step S120)
Since the ink layer can be formed in the same manner as in the first embodiment, detailed description thereof is omitted.
 なお、このとき、形成されるインク層の膜厚を、付与される光輝性インクによって形成されるドットを含む領域において発現されるべき光沢の度合いに応じて調整する。インク層の膜厚は、使用するプレコート剤、光輝性インクおよびオーバーコート剤の種類に応じて予め定められた、発現すべき光沢の度合いと、形成すべきプレコート剤、光輝性インクおよびオーバーコート剤の付与量と、の関係を予め求めた対応表を参照するなどして、決定することができる。あるいは、インク層の膜厚は、機械学習などを施した処理装置に、発現すべき光沢の度合いと、形成すべきプレコート剤、光輝性インクおよびオーバーコート剤の膜厚と、の関係を算出させた後に、当該膜厚のプレコート層を形成するためのプレコート剤の付与量を算出したりして、決定することができる。 At this time, the film thickness of the ink layer to be formed is adjusted according to the degree of gloss to be developed in the region including the dots formed by the applied glittering ink. The thickness of the ink layer is determined according to the type of precoat agent, glitter ink and overcoat agent used, the degree of gloss to be expressed, and the precoat agent, glitter ink and overcoat agent to be formed. It is possible to determine by referring to a correspondence table obtained in advance for the relationship between the given amount and. Alternatively, the film thickness of the ink layer is calculated by calculating the relationship between the degree of gloss to be developed and the film thickness of the precoat agent, glitter ink and overcoat agent to be formed by a processing device that has undergone machine learning or the like. Then, the application amount of the precoat agent for forming the precoat layer having the film thickness can be calculated or determined.
 具体的には、光輝性インクの固形分濃度と、形成されるドットの大きさと、などに応じて、インクジェットヘッドのノズルから吐出したプレコート剤の液滴を基材の表面に付与する際の、上記液滴のサイズ(液滴量)およびドットごとに付与する液滴の数(液滴数)などを変化させて、形成されるインク層の膜厚を調整すればよい。 Specifically, depending on the solid content concentration of the glitter ink, the size of the dots to be formed, and the like, when applying a droplet of the precoat agent discharged from the nozzle of the inkjet head to the surface of the substrate, The thickness of the ink layer to be formed may be adjusted by changing the size of the droplet (droplet amount), the number of droplets applied to each dot (number of droplets), and the like.
 また、このとき、光輝性インクの付与量は、付与される光輝性インクによって形成されるドットの大きさがプレコート剤によって形成されたドットの大きさと略同一になるように調整すればよい。 Further, at this time, the amount of the glitter ink applied may be adjusted so that the size of the dots formed by the glitter ink applied is substantially the same as the size of the dots formed by the precoat agent.
 2-3-3.オーバーコート層の形成(工程S130)
 その後、上記オーバーコート剤を、上記インク層を構成する上記光輝性インクにより形成されたドットの表面に付与し、オーバーコート層を形成する。
2-3-3. Formation of overcoat layer (step S130)
Thereafter, the overcoat agent is applied to the surface of the dots formed by the glitter ink constituting the ink layer to form an overcoat layer.
 このとき、形成されるオーバーコート層の膜厚を、インク層に含まれる対応するドットを含む領域において発現されるべき光沢の度合いに応じて調整する。オーバーコート層の膜厚は、使用するプレコート剤、光輝性インクおよびオーバーコート剤の種類に応じて予め定められた、発現すべき光沢の度合いと、形成すべきプレコート剤、光輝性インクおよびオーバーコート剤の付与量と、の関係を予め求めた対応表を参照するなどして、決定することができる。あるいは、オーバーコート層の膜厚は、機械学習などを施した処理装置に、発現すべき光沢の度合いと、形成すべきプレコート剤、光輝性インクおよびオーバーコート剤の膜厚と、の関係を算出させた後に、当該膜厚のプレコート層を形成するためのプレコート剤の付与量を算出したりして、決定することができる。 At this time, the film thickness of the overcoat layer to be formed is adjusted according to the degree of gloss to be developed in the region including the corresponding dots included in the ink layer. The film thickness of the overcoat layer is determined in accordance with the type of precoat agent, glitter ink and overcoat agent used, the degree of gloss to be expressed, the precoat agent to be formed, glitter ink and overcoat. It can be determined by referring to a correspondence table in which the relationship between the applied amount of the agent and the agent is obtained in advance. Alternatively, the film thickness of the overcoat layer is calculated by calculating the relationship between the degree of gloss to be developed and the film thickness of the precoat agent, glitter ink, and overcoat agent to be formed on a machine that has undergone machine learning. Then, the application amount of the precoat agent for forming the precoat layer having the film thickness can be calculated or determined.
 具体的には、インクジェットヘッドのノズルから吐出したオーバーコート剤の液滴を基材の表面に付与する際の、上記液滴のサイズ(液滴量)およびドットごとに付与する液滴の数(液滴数)、あるいはスクリーン印刷などを繰り返し行う回数などによって、形成されるオーバーコート層の膜厚を調整すればよい。 Specifically, when the droplet of the overcoat agent discharged from the nozzle of the inkjet head is applied to the surface of the substrate, the size of the droplet (droplet amount) and the number of droplets to be applied to each dot ( The film thickness of the overcoat layer formed may be adjusted by the number of droplets) or the number of times screen printing is repeated.
 オーバーコート剤をインクジェット法で基材に付与する際の、インクジェットヘッドからの吐出方式は、オンデマンド方式およびコンティニュアス方式のいずれでもよい。オンデマンド方式のインクジェットヘッドは、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型およびシェアードウォール型等の電気-機械変換方式、ならびにサーマルインクジェット型およびバブルジェット(バブルジェットはキヤノン社の登録商標)型等の電気-熱変換方式等のいずれでもよい。 When the overcoat agent is applied to the substrate by the inkjet method, the ejection method from the inkjet head may be either an on-demand method or a continuous method. On-demand inkjet heads include electro-mechanical conversion methods such as single cavity type, double cavity type, bender type, piston type, shear mode type and shared wall type, as well as thermal inkjet type and bubble jet. Any of electric-thermal conversion methods such as Canon Inc. registered trademark) may be used.
 このとき、インク流路を加熱して、吐出されるオーバーコート剤の温度を調整してもよい。吐出されるオーバーコート剤の温度は、特に限定されないが、50℃以上90℃以下であることが好ましい。 At this time, the temperature of the overcoat agent to be discharged may be adjusted by heating the ink flow path. The temperature of the overcoat agent to be discharged is not particularly limited, but is preferably 50 ° C. or higher and 90 ° C. or lower.
 また、オーバーコート剤の吐出条件を調整することで、形成される画像の解像度を調整することもできる。形成される画像の解像度は、600dpi以上1440dpi以下とすることができるが、より高精細な画像を形成する観点からは、1200dpi以上1440dpi以下とすることが好ましい。 Also, the resolution of the formed image can be adjusted by adjusting the discharge condition of the overcoat agent. The resolution of the formed image can be 600 dpi or more and 1440 dpi or less, but from the viewpoint of forming a higher-definition image, it is preferably 1200 dpi or more and 1440 dpi or less.
 その後、インク層の表面に着弾したオーバーコート剤の液滴に活性光線を照射したり、基材に付与されたプレコート剤を乾燥させたりして、上記オーバーコート剤が硬化してなるオーバーコート層を形成する。 Thereafter, the overcoat layer is formed by irradiating the droplets of the overcoat agent landed on the surface of the ink layer with actinic rays or drying the precoat agent applied to the substrate to cure the overcoat agent. Form.
 上記活性光線は、紫外線LEDからの紫外線であることが好ましい。一般的な紫外線の光源として、メタルハライドランプなどが知られているが、紫外線LEDを光源とすることで、光源の輻射熱によって硬化膜が溶けることによる硬化膜表面に硬化不良が生じることを抑制できる。上記液滴を適切に硬化させる観点からは、紫外線LEDのピーク波長は、385nm以上400nm以下であることが好ましい。紫外線LEDを有する光源の例には、Phoseon Technology社製の水冷式の紫外線照射ユニット(ピーク波長:395nm)が含まれる。 The actinic light is preferably ultraviolet light from an ultraviolet LED. A metal halide lamp or the like is known as a general ultraviolet light source. However, by using an ultraviolet LED as a light source, it is possible to suppress the occurrence of curing failure on the surface of the cured film due to melting of the cured film by the radiant heat of the light source. From the viewpoint of appropriately curing the droplets, the peak wavelength of the ultraviolet LED is preferably 385 nm or more and 400 nm or less. An example of a light source having an ultraviolet LED includes a water-cooled ultraviolet irradiation unit (peak wavelength: 395 nm) manufactured by Phoseon Technology.
 活性光線の照射条件は、オーバーコート剤の組成などに応じて適宜設定され得る。たとえば、紫外線LEDを有する光源を、基材上の液滴の表面における最高照度が0.5W/cm以上10.0W/cm以下、より好ましくは1W/cm以上5W/cm以下となるように設置すればよい。 The irradiation conditions of actinic rays can be appropriately set according to the composition of the overcoat agent. For example, a light source having a UV LED, the maximum illuminance on the surface of the droplet on the substrate is 0.5 W / cm 2 or more 10.0 W / cm 2 or less, more preferably 1W / cm 2 or more 5W / cm 2 or less and It can be installed so that.
 なお、本実施形態では、プレコート層、インク層およびオーバーコート層を有する画像を形成したが、形成すべき画像の光沢に応じて、プレコート層を形成せずに、インク層およびオーバーコート層を有する画像を形成してもよい(図4参照)。このときも、オーバーコート層の膜厚を独立してドットごとに変化させることにより、上記分布情報におけるピークの高さ(H)およびピークの半値幅(W)をドットごとに変化させることができる。 In this embodiment, an image having a precoat layer, an ink layer, and an overcoat layer is formed. However, according to the gloss of the image to be formed, the precoat layer is not formed and the ink layer and the overcoat layer are provided. An image may be formed (see FIG. 4). Also in this case, by changing the film thickness of the overcoat layer independently for each dot, the peak height (H) and peak half-value width (W) in the distribution information can be changed for each dot. .
 以下、本発明の具体的な実施例を比較例とともに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, specific examples of the present invention will be described together with comparative examples, but the present invention is not limited thereto.
 1.光輝性インクの調製
 1-1.銀ナノ粒子分散液の調製
 平板状の撹拌翼と邪魔板を有する、1Lのセパラブルフラスコに、8.6gのDISPERBYK-190(ビックケミー社製)、および269gのイオン交換水を投入し、撹拌を行ってDISPERBYK-190を溶解させた。続いて、上記セパラブルフラスコに、269gのイオン交換水に溶解させた55gの硝酸銀を攪拌しながら投入した。さらに、70gのアンモニア水を添加して撹拌を行い、その後、上記セパラブルフラスコをウォーターバスに入れ、溶液の温度が80℃に安定するまで加熱撹拌した。その後、144gのジメチルアミノエタノールをセパラブルフラスコに添加し、更に80℃に保ちながら6時間攪拌を続け、銀ナノ粒子を含む反応液を得た。
1. 1. Preparation of glitter ink 1-1. Preparation of silver nanoparticle dispersion liquid To a 1 L separable flask having a flat stirring blade and baffle plate, 8.6 g of DISPERBYK-190 (manufactured by BYK Chemie) and 269 g of ion-exchanged water were added and stirred. Go to dissolve DISPERBYK-190. Subsequently, 55 g of silver nitrate dissolved in 269 g of ion exchange water was added to the separable flask while stirring. Further, 70 g of ammonia water was added and stirred, and then the separable flask was placed in a water bath and heated and stirred until the temperature of the solution was stabilized at 80 ° C. Thereafter, 144 g of dimethylaminoethanol was added to the separable flask, and the mixture was further stirred for 6 hours while maintaining at 80 ° C. to obtain a reaction solution containing silver nanoparticles.
 得られた反応液をステンレスカップに入れて、さらに2Lのイオン交換水を加えてから、ポンプを稼働して限外濾過を行った。ステンレスカップ内の溶液が減少したら、再びイオン交換水を入れて、ろ液の伝導度が100μS/cm以下になるまで精製を繰り返し行った。その後、ろ液を濃縮して、固形分30wt%の銀ナノ粒子分散液を得た。 The obtained reaction solution was put into a stainless cup, and 2 L of ion exchange water was further added, and then the pump was operated to perform ultrafiltration. When the solution in the stainless cup decreased, ion-exchanged water was added again, and purification was repeated until the filtrate had a conductivity of 100 μS / cm or less. Thereafter, the filtrate was concentrated to obtain a silver nanoparticle dispersion having a solid content of 30 wt%.
 なお、限外濾過装置は、限外濾過モジュールAHP1010(旭化成株式会社製、分画分子量:50000、使用膜本数:400本)、チューブポンプ(Masterflex社製)をタイゴンチューブでつないだものを使用した。 The ultrafiltration device used was an ultrafiltration module AHP1010 (manufactured by Asahi Kasei Co., Ltd., molecular weight cut-off: 50000, number of membranes used: 400) and a tube pump (manufactured by Masterflex) connected by a Tygon tube .
 1-2.エマルション樹脂粒子分散液の調製
 脱水装置を備えたフラスコ中に酸成分としての10質量部のテレフタル酸、190質量部のイソフタル酸および170質量部のアジピン酸と、グリコール成分としての32質量部のエチレングリコールおよび510質量部のネオペンチルグリコールとを仕込み、反応触媒として0.2質量部のテトライソプロピルチタネート添加した後、酸価1.0以下、水分0.05%以下となるまで220℃で縮合反応を行い、ポリエステルグリコールを得た。
1-2. Preparation of emulsion resin particle dispersion 10 parts by weight of terephthalic acid as acid component, 190 parts by weight of isophthalic acid and 170 parts by weight of adipic acid, and 32 parts by weight of ethylene as glycol component in a flask equipped with a dehydrator After adding glycol and 510 parts by mass of neopentyl glycol and adding 0.2 parts by mass of tetraisopropyl titanate as a reaction catalyst, the condensation reaction is carried out at 220 ° C. until the acid value is 1.0 or less and the water content is 0.05% or less. To obtain polyester glycol.
 攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、488質量部の上記得られたポリエステルグリコール、13質量部のトリメチロールプロパン、88質量部のジメチロールプロピオン酸、252質量部のイソホロンジイソシアネート、および670質量部のメチルエチルケトンを加え、75℃で4時間反応させて、ウレタンプレポリマーのメチルエチルケトン溶液を得た。この溶液を40℃まで冷却し、そこに40質量部のトリエチルアミンを加えて中和した。その後、1850質量部のイオン交換水を徐々に加え、ホモジナイザーを使用して乳化分散し、1時間攪拌した。これを減圧下、50℃で脱溶剤を行い、さらにイオン交換水を加えて、不揮発分約20%のポリウレタンからなるエマルション樹脂粒子分散液を得た。 In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, 488 parts by mass of the obtained polyester glycol, 13 parts by mass of trimethylolpropane, 88 parts by mass of dimethylolpropionic acid, 252 Part by mass of isophorone diisocyanate and 670 parts by mass of methyl ethyl ketone were added and reacted at 75 ° C. for 4 hours to obtain a methyl ethyl ketone solution of a urethane prepolymer. The solution was cooled to 40 ° C. and neutralized by adding 40 parts by mass of triethylamine. Thereafter, 1850 parts by mass of ion-exchanged water was gradually added, emulsified and dispersed using a homogenizer, and stirred for 1 hour. The solvent was removed at 50 ° C. under reduced pressure, and ion-exchanged water was further added to obtain an emulsion resin particle dispersion made of polyurethane having a nonvolatile content of about 20%.
 1-3.光輝性インク1~光輝性インク3の調製
 (光輝性インク1)
 以下の成分を以下の組成で混合して、光輝性インク1を得た。
  銀ナノ粒子分散液                 5   質量部
  エマルション樹脂粒子分散液            0.35質量部
  水                       59.2 質量部
  プロピレングリコール              10   質量部
  トリエチレングリコールモノメチルエーテル    25.4 質量部
  界面活性剤(BYK-348:ビックケミー社製)  0.1 質量部
1-3. Preparation of glitter ink 1 to glitter ink 3 (shin glitter ink 1)
The following components were mixed in the following composition to obtain glitter ink 1.
Silver nanoparticle dispersion 5 parts by weight Emulsion resin particle dispersion 0.35 parts by weight Water 59.2 parts by weight Propylene glycol 10 parts by weight Triethylene glycol monomethyl ether 25.4 parts by weight Surfactant (BYK-348: manufactured by Big Chemie) 0.1 parts by mass
 (光輝性インク2)
 銀ナノ粒子分散液の配合量を2.5質量部とし、エマルション樹脂粒子分散液の配合量を0.18重量部とした以外は光輝性インク1と同様にして、光輝性インク2を得た。
(Bright ink 2)
A glittering ink 2 was obtained in the same manner as the glittering ink 1 except that the blending amount of the silver nanoparticle dispersion was 2.5 parts by mass and the blending amount of the emulsion resin particle dispersion was 0.18 parts by weight. .
 (光輝性インク3)
 銀ナノ粒子分散液の配合量を1.2質量部とし、エマルション樹脂粒子分散液の配合量を0.09重量部とした以外は光輝性インク1と同様にして、光輝性インク3を得た。
(Bright ink 3)
The glittering ink 3 was obtained in the same manner as the glittering ink 1 except that the blending amount of the silver nanoparticle dispersion was 1.2 parts by mass and the blending amount of the emulsion resin particle dispersion was 0.09 parts by weight. .
 (光輝性インク4)
 特開2005-123456号公報に記載された方法で、アルミニウム顔料を含有する光輝性インク4を得た。
(Glitter ink 4)
A glittering ink 4 containing an aluminum pigment was obtained by the method described in JP-A-2005-123456.
 2.プレコート剤およびオーバーコート剤の調製
 (プレコート剤1およびオーバーコート剤1)
 以下の成分を以下の組成で混合して、プレコート剤1およびオーバーコート剤1を得た。プレコート剤1とオーバーコート剤1とは同じ組成を有する。
 ポリエチレングリコール#400ジアクリレート    34  重量部
 4EO変性ペンタエリスリトールテトラアクリレート  23  重量部
 6EO変性トリメチロールプロパントリアクリレート  31  重量部
 光重合開始剤(ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド(DAROCUR TPO、BASF社製))
                            7  重量部
 増感助剤(p-ジメチルアミノ安息香酸エチルエステル(KayacureEPA、日本化薬社製))
                            2  重量部
 界面活性剤(KF-352:信越化学工業株式会社製)  0.1重量部
2. Preparation of precoat agent and overcoat agent (Precoat agent 1 and overcoat agent 1)
The following components were mixed in the following composition to obtain Precoat Agent 1 and Overcoat Agent 1. The precoat agent 1 and the overcoat agent 1 have the same composition.
Polyethylene glycol # 400 diacrylate 34 parts by weight 4EO-modified pentaerythritol tetraacrylate 23 parts by weight 6EO-modified trimethylolpropane triacrylate 31 parts by weight Photopolymerization initiator (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (DAROCUR TPO, BASF)))
7 parts by weight Sensitization aid (p-dimethylaminobenzoic acid ethyl ester (Kayacure EPA, Nippon Kayaku Co., Ltd.))
2 parts by weight Surfactant (KF-352: manufactured by Shin-Etsu Chemical Co., Ltd.) 0.1 parts by weight
 (プレコート剤2)
 以下の成分を以下の組成で混合して、プレコート剤2を得た。
 ポリエステルエマルション(東洋紡株式会社製、バイロナール MD1500(固形分30wt%))
                           17.5重量部
 トリエチレングリコールモノメチルエーテル       8  重量部
 プロピレングリコール                 2  重量部
 水                         12.5重量部
(Precoat agent 2)
The following components were mixed in the following composition to obtain Precoat Agent 2.
Polyester emulsion (Toyobo Co., Ltd., Vironal MD1500 (solid content 30 wt%))
17.5 parts by weight Triethylene glycol monomethyl ether 8 parts by weight Propylene glycol 2 parts by weight Water 12.5 parts by weight
 (オーバーコート剤2)
 9質量部のアジスパーPB824および71質量部のトリプロピレングリコールジアクリレートを、ステンレスビーカーに入れ、65℃のホットプレート上で加熱しながら1時間加熱攪拌して溶解させた。
(Overcoat agent 2)
9 parts by mass of Ajisper PB824 and 71 parts by mass of tripropylene glycol diacrylate were placed in a stainless beaker and dissolved by heating and stirring for 1 hour while heating on a 65 ° C. hot plate.
 上記溶液を室温まで冷却した後、20質量部のPigment Yellow 180(クロモファインイエロー6280JC、大日精化社製)を添加し、直径0.5mmのジルコニアビーズ200gと共にガラス瓶に入れて密栓した。これをペイントシェーカーにて所定の時間(顔料1:5時間)分散処理した後、ジルコニアビーズを除去して、顔料分散液を得た。 After cooling the above solution to room temperature, 20 parts by mass of Pigment Yellow 180 (Chromofine Yellow 6280JC, manufactured by Dainichi Seika Co., Ltd.) was added and sealed in a glass bottle with 200 g of zirconia beads having a diameter of 0.5 mm. This was subjected to a dispersion treatment for a predetermined time (pigment 1: 5 hours) with a paint shaker, and then the zirconia beads were removed to obtain a pigment dispersion.
 12重量部の上記得られた顔料分散液をオーバーコート剤1に添加し、80℃に加熱して攪拌した。得られた溶液を加熱下、ADVATEC社製テフロン(登録商標)3μmメンブランフィルターで濾過して、オーバーコート剤2を得た。 12 parts by weight of the obtained pigment dispersion was added to the overcoat agent 1, heated to 80 ° C. and stirred. The obtained solution was filtered through a Teflon (registered trademark) 3 μm membrane filter manufactured by ADVATEC under heating to obtain an overcoat agent 2.
 3.画像形成
 3-1.基材
 以下の基材に画像を形成した。
 基材1: OKトップコート紙(表面粗さRa:0.25μm)
 基材2: コート紙(表面粗さRa:0.43μm)
 基材3: PETフィルム(表面粗さRa:0.05μm)
3. Image formation 3-1. Substrate Images were formed on the following substrates.
Base material 1: OK top coat paper (surface roughness Ra: 0.25 μm)
Base material 2: coated paper (surface roughness Ra: 0.43 μm)
Base material 3: PET film (surface roughness Ra: 0.05 μm)
 3-2.プレコート層の形成
 プレコート剤1またはプレコート剤2を、ピエゾ型インクジェットノズルを備えたインクジェットヘッドを有するインクジェット記録装置に装填した。インクジェット記録装置は、インクタンク、インク供給配管、インクジェットヘッド直前のインク供給タンク、フィルター、およびピエゾ型のインクジェットヘッドを、インクが流通する上流側から下流側に向けて、この順で有していた。液滴量7plのインクジェットヘッドを用い、印字速度0.5m/sec、射出周波数10.5kHzの条件で駆動して、プレコート剤の液滴を吐出して基材上に着弾させた。
3-2. Formation of Precoat Layer Precoat Agent 1 or Precoat Agent 2 was loaded into an ink jet recording apparatus having an ink jet head equipped with a piezo ink jet nozzle. The ink jet recording apparatus has an ink tank, an ink supply pipe, an ink supply tank immediately before the ink jet head, a filter, and a piezo type ink jet head in this order from the upstream side to the downstream side where the ink flows. . Using an ink jet head having a droplet amount of 7 pl, it was driven under the conditions of a printing speed of 0.5 m / sec and an injection frequency of 10.5 kHz, and droplets of the precoat agent were discharged and landed on the substrate.
 プレコート剤1については、着弾後、Phoseon Technology社製水冷ユニット付きのLEDランプから活性光線(395nm、8W/cm)を照射し、プレコート剤が硬化したドットが集合してなるプレコート層を形成した。ランプから着弾したプレコート剤の表面までの距離は20mmとした。 For the precoat agent 1, after landing, an actinic ray (395 nm, 8 W / cm 2 ) was irradiated from an LED lamp with a water cooling unit manufactured by Phoseon Technology to form a precoat layer formed by gathering dots with the precoat agent cured. . The distance from the lamp to the surface of the landed precoat agent was 20 mm.
 プレコート剤2については、着弾後、60℃で1分間乾燥させて、プレコート剤が硬化したドットが集合してなるプレコート層を形成した。 For the precoat agent 2, after landing, the precoat layer was dried at 60 ° C. for 1 minute to form a precoat layer in which dots with the cured precoat agent were gathered.
 このとき、プレコート剤の液滴を吐出する回数(液滴数)を、0回~7回の間で変化させた。プレコート剤の液滴を吐出する回数(液滴数)が0回のときは、活性光線の照射を行わなかった。 At this time, the number of times the droplets of the precoat agent were ejected (number of droplets) was varied between 0 and 7 times. When the number of droplets of the precoat agent ejected (number of droplets) was 0, irradiation with actinic rays was not performed.
 3-3.インク層の形成
 上記光輝性インク1~光輝性インク3のいずれかを、上記プレコート層を形成したときに使用したものと同一のインクジェット記録装置に装填した。液滴量7plのインクジェットヘッドを用い、印字速度0.5m/sec、射出周波数10.5kHzの条件で駆動して、光輝性インクの液滴を1回吐出して、プレコート層の上に着弾させた。
3-3. Formation of ink layer Any one of the glitter ink 1 to glitter ink 3 was loaded in the same ink jet recording apparatus used when the precoat layer was formed. Using an inkjet head with a droplet volume of 7 pl, driven under the conditions of a printing speed of 0.5 m / sec and an ejection frequency of 10.5 kHz, droplets of glitter ink are ejected once and landed on the precoat layer. It was.
 着弾後、60℃で10分程度、光輝性インクの乾燥処理を行い、光輝性インクにより形成されたドットが集合してなるインク層を形成した。 After landing, the glittering ink was dried at 60 ° C. for about 10 minutes to form an ink layer in which dots formed by the glittering ink were gathered.
 3-4.オーバーコート層の形成
 上記オーバーコート剤1およびオーバーコート剤2のいずれかを、上記プレコート層を形成したときに使用したものと同一のインクジェット記録装置に装填した。液滴量7plのインクジェットヘッドを用い、印字速度0.5m/sec、射出周波数10.5kHzの条件で駆動して、オーバーコート剤の液滴を吐出して、インク層の上に着弾させた。
3-4. Formation of Overcoat Layer One of the overcoat agent 1 and the overcoat agent 2 was loaded into the same ink jet recording apparatus used when the precoat layer was formed. Using an ink jet head having a droplet amount of 7 pl, driving was performed under conditions of a printing speed of 0.5 m / sec and an ejection frequency of 10.5 kHz, droplets of an overcoat agent were ejected and landed on the ink layer.
 着弾後、Phoseon Technology社製水冷ユニット付きのLEDランプから活性光線(395nm、8W/cm)を照射し、オーバーコート剤が硬化したドットが集合してなるオーバーコート層を形成した。ランプから着弾したオーバーコート剤の表面までの距離は20mmとした。 After landing, an active ray (395 nm, 8 W / cm 2 ) was irradiated from an LED lamp equipped with a water cooling unit manufactured by Phoseon Technology to form an overcoat layer in which dots over which the overcoat agent was cured gathered. The distance from the lamp to the surface of the landed overcoat agent was 20 mm.
 3-5.各層の形成条件
 3-5-1.サンプル1~サンプル4
 光輝性インクとして光輝性インク1を用い、基材として基材1を用い、インク層の厚みを0.2μmに固定し、プレコート剤1の吐出条件を0drop(吐出せず)~3dropの4水準で変化させて画像形成を行い、それぞれ、サンプル1~サンプル4を得た。
3-5. Formation conditions of each layer 3-5-1. Sample 1 to Sample 4
The glitter ink 1 is used as the glitter ink, the substrate 1 is used as the substrate, the thickness of the ink layer is fixed to 0.2 μm, and the discharge conditions of the precoat agent 1 are 4 levels from 0 drop (not discharged) to 3 drops. Then, image formation was carried out by changing the number of samples, and Samples 1 to 4 were obtained, respectively.
 3-5-2.サンプル5~サンプル6
 光輝性インクとして光輝性インク2および光輝性インク3を用いてインク層の厚みを変更した以外はサンプル3と同様にして、それぞれ、サンプル5およびサンプル6を得た。
3-5-2. Sample 5 to Sample 6
Sample 5 and Sample 6 were obtained in the same manner as Sample 3, except that the thickness of the ink layer was changed using the glitter ink 2 and the glitter ink 3 as the glitter ink.
 3-5-3.サンプル7~サンプル8
 オーバーコート剤としてオーバーコート剤1を用い、オーバーコート剤の吐出条件を1dropおよび2dropとした以外はサンプル3と同様にして、それぞれ、サンプル7およびサンプル8を得た。
3-5-3. Sample 7 to Sample 8
Sample 7 and Sample 8 were obtained in the same manner as Sample 3, except that the overcoat agent 1 was used as the overcoat agent and the overcoat agent discharge conditions were 1 drop and 2 drop.
 3-5-4.サンプル9~サンプル10
 オーバーコート剤としてオーバーコート剤1を用い、オーバーコート剤の吐出条件を1dropおよび2dropとした以外はサンプル1と同様にして、それぞれ、サンプル9およびサンプル10を得た。
3-5-4. Sample 9 to Sample 10
Sample 9 and Sample 10 were obtained in the same manner as Sample 1, except that the overcoat agent 1 was used as the overcoat agent and the overcoat agent discharge conditions were 1 drop and 2 drop.
 3-5-5.サンプル11~サンプル14
 基材として基材2を用いた以外はサンプル1~サンプル4と同様にして、それぞれ、サンプル11~サンプル14を得た。
3-5-5. Sample 11 to Sample 14
Samples 11 to 14 were obtained in the same manner as Samples 1 to 4 except that the substrate 2 was used as the substrate.
 3-5-6.サンプル15~サンプル17
 基材として基材3を用いた以外はサンプル1~サンプル3と同様にして、それぞれ、サンプル15~サンプル17を得た。
3-5-6. Sample 15 to Sample 17
Samples 15 to 17 were obtained in the same manner as Samples 1 to 3, except that the substrate 3 was used as the substrate.
 3-5-7.サンプル18~サンプル20
 同一の基材(基材1)の同一の表面上に設定した3つの領域に、それぞれサンプル1~サンプル3と同様にして画像を隣接させて形成し、階調画像を得た。同一基材に画像を形成した3つの領域のうち、サンプル1と同様にして画像を形成した領域をサンプル18、サンプル2と同様にして画像を形成した領域をサンプル19、サンプル3と同様にして画像を形成した領域をサンプル20とした。
3-5-7. Sample 18 to Sample 20
In three regions set on the same surface of the same base material (base material 1), images were formed adjacent to each other in the same manner as Samples 1 to 3, and a gradation image was obtained. Of the three regions on which the image is formed on the same substrate, the region where the image is formed in the same manner as in sample 1 is the sample 18, and the region where the image is formed in the same manner as in sample 2 is the same as in sample 19 and sample 3. The area where the image was formed was designated as Sample 20.
 3-5-8.サンプル21~サンプル23
 光輝性インクを光輝性インク4とした以外はサンプル2、サンプル3およびサンプル7と同様にして、それぞれ、サンプル21~サンプル23を得た。
3-5-8. Sample 21 to Sample 23
Samples 21 to 23 were obtained in the same manner as Sample 2, Sample 3 and Sample 7, except that the glitter ink 4 was used as the glitter ink.
 3-5-9.サンプル24~サンプル25
 オーバーコート剤としてオーバーコート剤2を用い、プレコート剤1の吐出条件を1dropおよび2dropとし、オーバーコート剤2の吐出条件を2dropとした以外はサンプル9と同様にして、それぞれ、サンプル24~サンプル25を得た。
3-5-9. Sample 24 to Sample 25
Samples 24 to 25 are the same as Sample 9 except that the overcoat agent 2 is used as the overcoat agent, the discharge conditions of the precoat agent 1 are 1 drop and 2 drop, and the discharge conditions of the overcoat agent 2 are 2 drops. Got.
 3-5-10.サンプル26
 プレコート剤1の吐出条件を9dropとした以外はサンプル1と同様にして、サンプル26を得た。
3-5-10. Sample 26
Sample 26 was obtained in the same manner as Sample 1, except that the precoat agent 1 was discharged at 9 drops.
 3-5-11.サンプル27~サンプル28
 駆動周波数を21kHzとした以外はサンプル5~サンプル6と同様にして、それぞれ、サンプル27~サンプル28を得た。
3-5-11. Sample 27 to Sample 28
Samples 27 to 28 were obtained in the same manner as Samples 5 to 6 except that the drive frequency was 21 kHz.
 3-5-12.サンプル29
 スクリーン印刷により、膜厚が10μmであるプレコート層を形成した以外はサンプル1と同様にして、サンプル29を得た。
3-5-12. Sample 29
Sample 29 was obtained in the same manner as Sample 1, except that a precoat layer having a thickness of 10 μm was formed by screen printing.
 3-5-13.サンプル30~サンプル31
 プレコート剤としてプレコート剤2を用い、プレコート剤1の吐出条件を1dropおよび2dropとした以外はサンプル2と同様にして、それぞれ、サンプル30およびサンプル31を得た。
3-5-13. Sample 30 to Sample 31
Sample 30 and sample 31 were obtained in the same manner as in sample 2, except that precoat agent 2 was used as the precoat agent and the discharge conditions of precoat agent 1 were 1 drop and 2 drop.
 なお、サンプル1~サンプル17およびサンプル21~サンプル31は、それぞれ別の基材の表面に形成されて、ひとつの基材上にひとつの画像が形成されたサンプルである。サンプル18~サンプル20は、ひとつの基材の表面に設定した異なる領域に画像を形成して、ひとつの基材上に3つの画像(サンプル)が形成されたサンプルである。 Note that Sample 1 to Sample 17 and Sample 21 to Sample 31 are samples in which one image is formed on the surface of a different base material. Samples 18 to 20 are samples in which images are formed in different regions set on the surface of one base material, and three images (samples) are formed on one base material.
 4.評価
 それぞれのサンプルにおける画像を15mm×50mmのサイズに裁断した。変角光度計(株式会社村上色彩技術研究所社製、製品名GCMS-4)を用いて、受光角度を変化させながら、それぞれの光沢値測定法サンプルに45°の入射角で入射光を照射して、0°~50°の反射強度を5°ごとに測定した。それぞれの受光角度における得られた反射強度から反射率を算出して、受光角度と反射率との関係を示す、反射の空間分布プロフィールを得た。
4). Evaluation The image in each sample was cut into a size of 15 mm × 50 mm. Using a variable angle photometer (product name: GCMS-4, manufactured by Murakami Color Research Laboratory Co., Ltd.), illuminate each gloss value measurement method sample with incident light at an incident angle of 45 ° while changing the light receiving angle. Then, the reflection intensity from 0 ° to 50 ° was measured every 5 °. The reflectance was calculated from the obtained reflection intensity at each light receiving angle, and a spatial distribution profile of reflection indicating the relationship between the light receiving angle and the reflectance was obtained.
 得られた反射の空間分布プロフィールの形状を、1つのローレンツ関数にフィッティングさせ、最小二乗法およびマイクロソフト社製エクセル(登録商標)が有するソルバー(登録商標)により、ピークの高さ(H)、ピークの半値幅(W)、およびベースラインの高さ(B)を求めた。 The shape of the spatial distribution profile of the obtained reflection is fitted to one Lorentz function, and the peak height (H), peak is determined by the least square method and Solver (registered trademark) of Microsoft Excel (registered trademark). The full width at half maximum (W) and the height of the baseline (B) were determined.
 各サンプルの形成条件および評価の結果を表1および表2に示す。なお、表1および表2において、「PC剤」は画像形成に使用したプレコート剤の種類を、「インク」は画像形成に使用した光輝性インクの種類を、「OC剤」は画像形成に使用したオーバーコート剤の種類を、それぞれ示す。 Table 1 and Table 2 show the formation conditions and evaluation results for each sample. In Tables 1 and 2, “PC agent” is the type of precoat agent used for image formation, “ink” is the type of glitter ink used for image formation, and “OC agent” is used for image formation. The types of overcoat agents made are shown respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 プレコート層およびインク層の膜厚を変化させることにより、形成された画像に照射された測定光が反射してなる反射光を測定して得られる受光角度に対する明度または反射強度の分布情報における、前記明度または反射強度のピークの高さ(H)およびベースラインの高さ(B)を、変化させることができた。具体的には、プレコート剤の付与量を変化させて、形成されるプレコート層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより高く、ベースの高さ(B)をより低くすることができた(サンプル1~サンプル4)。また、光輝性インクの固形分濃度を変化させて、形成されるインク層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより高く、ベースの高さ(B)をより高くすることができた(サンプル3、サンプル5、サンプル6)。 In the distribution information of the lightness or reflection intensity with respect to the light receiving angle obtained by measuring the reflected light formed by reflecting the measurement light irradiated on the formed image by changing the film thickness of the precoat layer and the ink layer, The peak height (H) and baseline height (B) of brightness or reflection intensity could be varied. Specifically, when the applied amount of the precoat agent is changed to increase the thickness of the precoat layer to be formed, the peak height (H) in the distribution information is increased, and the base height (B) is increased. It could be lowered (Sample 1 to Sample 4). Further, when the solid content concentration of the glitter ink is changed to increase the thickness of the ink layer to be formed, the peak height (H) in the distribution information is increased, and the base height (B) is increased. High (Sample 3, Sample 5, Sample 6).
 さらに、オーバーコート層の膜厚を変化させることにより、上記分布情報における、前記明度または反射強度のピークの高さ(H)およびピークの半値幅(W)を、変化させることができた。具体的には、オーバーコート剤の付与量を変化させて、形成されるオーバーコート層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより低く、ピークの半値幅(W)をより広くすることができた。この傾向は、プレコート層を形成したとき(サンプル3、サンプル7、サンプル8)も、プレコート層を形成しなかったとき(サンプル1、サンプル9、サンプル10)も、同様だった。 Furthermore, by changing the film thickness of the overcoat layer, it was possible to change the peak height (H) and peak half-value width (W) of the lightness or reflection intensity in the distribution information. Specifically, when the applied amount of the overcoat agent is changed to increase the thickness of the overcoat layer to be formed, the peak height (H) in the above distribution information is lowered, and the peak half width (W ) Could be made wider. This tendency was the same when the precoat layer was formed (Sample 3, Sample 7, Sample 8) and when the precoat layer was not formed (Sample 1, Sample 9, Sample 10).
 なお、表面粗さRaが異なる基材に同様に画像を形成しても、プレコート剤の付与量を変化させて、形成されるプレコート層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより高く、ベースの高さ(B)をより低くすることができた(サンプル11~サンプル17)。 Even if images are similarly formed on substrates having different surface roughness Ra, the peak height in the above distribution information can be increased by changing the applied amount of the precoat agent and increasing the thickness of the precoat layer to be formed. (H) was higher and the base height (B) was lower (Sample 11 to Sample 17).
 また、同一の基材の同一の表面に含まれる異なる領域に、プレコート層の膜厚が異なる複数の領域を隣接して形成することにより、光沢が異なる複数の領域を隣接して形成することができた(サンプル18~サンプル20)。 In addition, by forming a plurality of regions having different thicknesses of the precoat layer adjacent to different regions included in the same surface of the same substrate, a plurality of regions having different glosses can be formed adjacent to each other. (Sample 18 to Sample 20).
 また、金属ナノ粒子以外のみならず、公知のアルミニウム顔料を用いたときも、形成されるプレコート層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより高く、ベースの高さ(B)をより低くすることができ(サンプル21、サンプル22)、形成されるオーバーコート層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより低く、ピークの半値幅(W)をより広くすることができた(サンプル22、サンプル23)。 Further, not only in the case of using metal nanoparticles but also when using a known aluminum pigment, if the thickness of the precoat layer formed is increased, the peak height (H) in the above distribution information is increased, and the height of the base is increased. (B) can be made lower (sample 21, sample 22), and when the overcoat layer formed is made thicker, the peak height (H) in the above distribution information becomes lower, and the peak half The value width (W) could be made wider (Sample 22, Sample 23).
 さらには、オーバーコート層に色材を含有させることで、黄色に着色した光沢を有する画像を形成することができた。このときも、プレコート剤の付与量を変化させて、形成されるプレコート層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより高く、ベースの高さ(B)をより低くすることができた(サンプル24、サンプル25)。 Furthermore, by adding a color material to the overcoat layer, a yellow colored glossy image could be formed. Also at this time, if the applied amount of the precoat agent is changed to increase the thickness of the precoat layer to be formed, the peak height (H) in the distribution information is increased, and the base height (B) is increased. It could be lowered (Sample 24, Sample 25).
 また、プレコート層の厚みを変化させることで、基材から画像表面までの高さを変化させて、エンボス調の画像を形成することもできた(サンプル26)。 Also, by changing the thickness of the precoat layer, the height from the base material to the image surface could be changed to form an embossed image (Sample 26).
 また、射出周波数を変化させて単位面積あたりに形成されるドットの数を変化させることで、濃度を変化させたうえで、光沢も変化させた画像を形成することができた(サンプル3、サンプル27、サンプル28)。 In addition, by changing the emission frequency and changing the number of dots formed per unit area, it was possible to form an image in which the gloss was changed while changing the density (sample 3, sample). 27, sample 28).
 また、プレコート層をスクリーン印刷で形成したときも、インクジェット法により略同程度の膜厚のプレコート層を作製したとき(サンプル14)と同様の光沢を有する画像を得ることができた(サンプル29)。 In addition, even when the precoat layer was formed by screen printing, an image having the same glossiness as that obtained when the precoat layer having substantially the same film thickness was prepared by the inkjet method (sample 14) could be obtained (sample 29). .
 また、プレコート剤を水系インクとして、インクジェット法によりプレコート層を作製したときも、形成されるプレコート層の膜厚を厚くすると、上記分布情報におけるピークの高さ(H)をより高く、ベースの高さ(B)をより低くすることができた(サンプル30~サンプル31)。なお、プレコート剤2を用いたサンプル30、サンプル31と、プレコート剤1を用いたサンプル2、サンプル3との間で光沢指標(特に上記分布情報におけるピークの高さ(H)およびベースの高さ(B))が異なるのは、これらのプレコート剤の1滴あたり形成されるプレコート層の厚みが異なるからだと考えられる。 In addition, when a precoat layer is formed by an ink jet method using a precoat agent as a water-based ink, increasing the thickness of the precoat layer to be formed increases the peak height (H) in the above distribution information and increases the base height. (B) could be further reduced (Sample 30 to Sample 31). Note that the gloss index (particularly the peak height (H) and the base height in the above distribution information) between the sample 30 and the sample 31 using the precoat agent 2 and the sample 2 and the sample 3 using the precoat agent 1 is used. (B)) is different because the thickness of the precoat layer formed per drop of these precoat agents is different.
 本出願は、2018年6月13日出願の日本国出願番号2018-112756号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲、明細書および図面に記載された内容は本出願に援用される。 This application claims priority based on Japanese Patent Application No. 2018-1212756 filed on June 13, 2018, and the contents described in the claims, specification and drawings of this application are Incorporated into the application.
 本発明の画像形成方法は、形成される画像により多様な金属光沢を発現させることができる。そのため、本発明は、光輝性を有する記録物の適用の幅を広げ、同分野の技術の進展および普及に貢献することが期待される。 The image forming method of the present invention can express various metallic luster depending on the formed image. Therefore, the present invention is expected to expand the range of application of glittering recorded materials and contribute to the advancement and spread of technology in the same field.

Claims (15)

  1.  プレコート剤を基材の表面に付与し、プレコート層を形成する工程と、
     前記プレコート層の表面に、光輝性顔料を含む光輝性インクをインクジェット法で付与し、前記光輝性インクにより形成されたドットが集合してなるインク層を形成する工程と、
     を含む、画像の形成方法であって、
     前記インク層に含まれる一のドットに対応する前記プレコート層または前記インク層の膜厚と、
     前記インク層に含まれる他のドットに対応する前記プレコート層または前記インク層の膜厚と、を異なる厚みとして、
     形成された画像で反射された反射光の明度または反射強度のピークの高さおよびベースラインの高さを、前記一のドットを含む領域と前記他のドットを含む領域とで異なる値とする、
     画像形成方法。
    Applying a precoat agent to the surface of the substrate and forming a precoat layer;
    A step of applying a glittering ink containing a glittering pigment to the surface of the precoat layer by an inkjet method to form an ink layer in which dots formed by the glittering ink are assembled;
    An image forming method comprising:
    The film thickness of the precoat layer or the ink layer corresponding to one dot contained in the ink layer,
    The thickness of the precoat layer or the ink layer corresponding to the other dots contained in the ink layer is different from the thickness,
    The height of the lightness or reflection intensity peak reflected by the formed image and the height of the baseline are set to different values in the region including the one dot and the region including the other dot,
    Image forming method.
  2.  前記インク層の膜厚は、前記インク層に含まれるドットごとに独立して変化される、請求項1に記載の画像形成方法。 The image forming method according to claim 1, wherein the film thickness of the ink layer is changed independently for each dot included in the ink layer.
  3.  前記プレコート層を形成する工程は、前記プレコート剤をインクジェット法により前記基材の表面に付与して、前記付与されたプレコート剤により形成されたドットが集合してなるプレコート層を形成する工程であり、
     前記インク層を形成する工程は、前記プレコート層を構成する前記ドットの表面に、前記光輝性インクを付与する工程である、
     請求項1または2に記載の画像形成方法。
    The step of forming the precoat layer is a step of applying the precoat agent to the surface of the substrate by an ink jet method and forming a precoat layer in which dots formed by the applied precoat agent are gathered. ,
    The step of forming the ink layer is a step of applying the glitter ink to the surface of the dots constituting the precoat layer.
    The image forming method according to claim 1.
  4.  前記プレコート層の膜厚は、前記プレコート層を構成する前記ドットごとに独立して変化される、請求項3に記載の画像形成方法。 4. The image forming method according to claim 3, wherein the film thickness of the precoat layer is changed independently for each of the dots constituting the precoat layer.
  5.  前記プレコート剤は、活性光線硬化型のプレコート剤である、請求項1~4のいずれか1項に記載の画像形成方法。 The image forming method according to any one of claims 1 to 4, wherein the precoat agent is an actinic ray curable precoat agent.
  6.  さらに、前記インク層を構成する前記ドットの表面にオーバーコート剤を付与して、オーバーコート層を形成する工程を含み、
     前記一のドットを形成に対応する前記オーバーコート層の膜厚と、
     前記他のドットを形成に対応する前記オーバーコート層の膜厚と、を異なる厚みとして、
     前記明度または反射強度のピークの高さおよび前記ピークの半値幅の大きさを、前記一のドットを含む領域と前記他のドットを含む領域とで異なる値とする、
     請求項1~5のいずれか1項に記載の画像形成方法。
    Furthermore, it includes a step of forming an overcoat layer by applying an overcoat agent to the surface of the dots constituting the ink layer,
    A film thickness of the overcoat layer corresponding to forming the one dot;
    The thickness of the overcoat layer corresponding to the formation of the other dots, and a different thickness,
    The height of the lightness or reflection intensity peak and the half width of the peak are different values in the region including the one dot and the region including the other dot,
    The image forming method according to any one of claims 1 to 5.
  7.  基材の表面に、光輝性顔料を含む光輝性インクをインクジェット法で付与し、前記光輝性インクにより形成されたドットが集合してなるインク層を形成する工程と、
     前記インク層を構成する前記ドットの表面にオーバーコート剤を付与し、オーバーコート層を形成する工程と、
     を含む、画像の形成方法であって、
     前記インク層に含まれる一のドットに対応する前記インク層および前記オーバーコート層の膜厚と、
     前記インク層に含まれる他のドットに対応する前記インク層および前記オーバーコート層の膜厚と、を異なる厚みとして、
     形成された画像で反射された反射光の明度または反射強度のピークの高さおよび前記ピークの半値幅の大きさを、前記一のドットを含む領域と前記他のドットを含む領域とで異なる値とする、
     画像形成方法。
    Applying a glittering ink containing a glittering pigment to the surface of the substrate by an inkjet method, and forming an ink layer in which dots formed by the glittering ink are assembled; and
    Providing an overcoat agent on the surface of the dots constituting the ink layer, and forming an overcoat layer;
    An image forming method comprising:
    The film thickness of the ink layer and the overcoat layer corresponding to one dot contained in the ink layer,
    The thicknesses of the ink layer and the overcoat layer corresponding to other dots included in the ink layer are different thicknesses,
    The value of the peak of the brightness or reflection intensity of the reflected light reflected by the formed image and the half-value width of the peak are different values for the region including the one dot and the region including the other dot. And
    Image forming method.
  8.  前記オーバーコート層を形成する工程は、前記オーバーコート剤をインクジェット法により前記インク層を構成する前記ドットの表面に付与して、前記付与されたオーバーコート剤により形成されたドットが集合してなるオーバーコート層を形成する工程である、
     請求項6または7に記載の画像形成方法。
    In the step of forming the overcoat layer, the overcoat agent is applied to the surface of the dots constituting the ink layer by an inkjet method, and the dots formed by the applied overcoat agent are assembled. A step of forming an overcoat layer;
    The image forming method according to claim 6 or 7.
  9.  前記オーバーコート剤の膜厚は、前記オーバーコート層を構成する前記ドットごとに独立して変化される、請求項8に記載の画像形成方法。 The image forming method according to claim 8, wherein the film thickness of the overcoat agent is independently changed for each of the dots constituting the overcoat layer.
  10.  前記オーバーコート剤は、活性光線硬化型のオーバーコート剤である、請求項6~9のいずれか1項に記載の画像形成方法。 The image forming method according to any one of claims 6 to 9, wherein the overcoat agent is an actinic ray curable overcoat agent.
  11.  前記オーバーコート剤は、非光輝性の色材を含有する、請求項6~10のいずれか1項に記載の画像形成方法。 The image forming method according to any one of claims 6 to 10, wherein the overcoat agent contains a non-brilliant color material.
  12.  前記一のドットおよび前記他のドットは、同一の基材の同一の表面に付与される、請求項1~11のいずれか1項に記載の画像形成方法。 12. The image forming method according to claim 1, wherein the one dot and the other dot are applied to the same surface of the same substrate.
  13.  単位面積あたりに形成される前記ドットの数が異なる複数の領域を形成する、
     請求項1~12のいずれか1項に記載の画像形成方法。
    Forming a plurality of regions having different numbers of dots formed per unit area;
    The image forming method according to any one of claims 1 to 12.
  14.  複数個の前記一のドットが形成されて、複数個の前記一のドットにより発現された光沢を有する一の領域と、
     複数個の前記他のドットが形成されて、複数個の前記他のドットにより発現された光沢を有する他の領域と、
     を隣接して形成する、
     請求項1~13のいずれか1項に記載の画像形成方法。
    A plurality of the one dots are formed, and one region having gloss expressed by the plurality of the one dots;
    A plurality of the other dots are formed, and other regions having gloss expressed by the plurality of other dots,
    Forming adjacent to each other,
    The image forming method according to any one of claims 1 to 13.
  15.  前記光輝性顔料は、金属ナノ粒子である、請求項1~14のいずれか1項に記載の画像形成方法。
     
     
    The image forming method according to any one of claims 1 to 14, wherein the glitter pigment is a metal nanoparticle.

PCT/JP2019/021774 2018-06-13 2019-05-31 Image forming method WO2019239923A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525441A JP7367672B2 (en) 2018-06-13 2019-05-31 Image forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112756 2018-06-13
JP2018112756 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019239923A1 true WO2019239923A1 (en) 2019-12-19

Family

ID=68843367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021774 WO2019239923A1 (en) 2018-06-13 2019-05-31 Image forming method

Country Status (2)

Country Link
JP (1) JP7367672B2 (en)
WO (1) WO2019239923A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452313B2 (en) 2020-07-30 2024-03-19 コニカミノルタ株式会社 Bending characteristic acquisition method, image processing method, image display method, bending characteristic acquisition device, and bending characteristic acquisition condition determination program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030139A (en) * 2008-07-29 2010-02-12 Seiko Epson Corp Recording method, recorded material, inkjet recording device and discriminating method
JP2012035590A (en) * 2010-08-11 2012-02-23 Seiko Epson Corp Ink jet recording method, ink set, and recorded matter
JP2012179756A (en) * 2011-02-28 2012-09-20 Fujifilm Corp Inkjet recording method and printed matter
JP2013091761A (en) * 2011-10-27 2013-05-16 Seiko Epson Corp Inkjet resin ink composition, inkjet recording method, and recorded matter
JP2015074122A (en) * 2013-10-07 2015-04-20 株式会社ミマキエンジニアリング Manufacturing method of lamination body
JP2016002729A (en) * 2014-06-18 2016-01-12 セイコーエプソン株式会社 Recording method and printer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030139A (en) * 2008-07-29 2010-02-12 Seiko Epson Corp Recording method, recorded material, inkjet recording device and discriminating method
JP2012035590A (en) * 2010-08-11 2012-02-23 Seiko Epson Corp Ink jet recording method, ink set, and recorded matter
JP2012179756A (en) * 2011-02-28 2012-09-20 Fujifilm Corp Inkjet recording method and printed matter
JP2013091761A (en) * 2011-10-27 2013-05-16 Seiko Epson Corp Inkjet resin ink composition, inkjet recording method, and recorded matter
JP2015074122A (en) * 2013-10-07 2015-04-20 株式会社ミマキエンジニアリング Manufacturing method of lamination body
JP2016002729A (en) * 2014-06-18 2016-01-12 セイコーエプソン株式会社 Recording method and printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452313B2 (en) 2020-07-30 2024-03-19 コニカミノルタ株式会社 Bending characteristic acquisition method, image processing method, image display method, bending characteristic acquisition device, and bending characteristic acquisition condition determination program

Also Published As

Publication number Publication date
JPWO2019239923A1 (en) 2021-07-29
JP7367672B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
US8814346B2 (en) Metallic ink jet printing system and method for graphics applications
JP4898618B2 (en) Inkjet recording method
EP1702961B1 (en) Ink-jet ink, ink-jet ink set, and ink-jet recording method
JP6018921B2 (en) Inkjet recording primer
JP6068793B2 (en) Energy ray curable primer ink
JP2006273891A (en) Ink composition, recording method and recorded material using the same
CN101823364A (en) Ink jet recording method, recorded matter, ink set, ink cartridge, and ink jet recording apparatus
JP2017140845A (en) Primer for ink jet printing
US20070032571A1 (en) Ink-jet ink, ink-jet ink set, and ink-jet recording method
JP5213346B2 (en) Ink set for inkjet recording and inkjet recording method
JP5227530B2 (en) Ink set for inkjet recording and inkjet recording method
JP6170210B2 (en) Energy ray curable primer ink
WO2019239923A1 (en) Image forming method
JP2007084784A (en) Ink-jet ink, ink-jet ink set and ink-jet recording method
JP6392941B2 (en) Energy ray curable primer ink
JP2003105241A (en) Ink for ink-jet recording and method for ink-jet recording
JP2007070604A (en) Ink for inkjet, ink set for inkjet and method for inkjet recording
JP4474823B2 (en) Inkjet recording method
JP7463608B1 (en) Water-based inkjet inks and printed matter
JP2020082676A (en) Image forming method and image-formed matter
JP2022135921A (en) Set of process liquid and ink, image forming method, and image forming apparatus
JP2020089987A (en) Lustrous image forming product and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820521

Country of ref document: EP

Kind code of ref document: A1