WO2019239801A1 - Substrate processing system, and substrate processing method - Google Patents

Substrate processing system, and substrate processing method Download PDF

Info

Publication number
WO2019239801A1
WO2019239801A1 PCT/JP2019/019883 JP2019019883W WO2019239801A1 WO 2019239801 A1 WO2019239801 A1 WO 2019239801A1 JP 2019019883 W JP2019019883 W JP 2019019883W WO 2019239801 A1 WO2019239801 A1 WO 2019239801A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processed
gettering layer
laser beam
irradiation point
Prior art date
Application number
PCT/JP2019/019883
Other languages
French (fr)
Japanese (ja)
Inventor
隼斗 田之上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2019239801A1 publication Critical patent/WO2019239801A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections

Definitions

  • the present disclosure relates to a substrate processing system and a substrate processing method.
  • the semiconductor device manufacturing method of Patent Document 1 includes a thinning process, a back surface polishing process, a heavy metal capture layer forming process, and a dicing process in this order.
  • a thinning step a part of the silicon substrate having a semiconductor element formed on the front surface is removed from the back surface side, so that the thickness of the silicon substrate is 100 ⁇ m or less.
  • the back surface polishing step the back surface of the thinned silicon substrate is polished.
  • the heavy metal capturing layer forming step a heavy metal capturing layer is formed by irradiating a part or the entire surface of the back surface side of the silicon substrate with laser light.
  • the dicing process the silicon substrate is divided into chips.
  • One embodiment of the present disclosure provides a technique capable of improving the bending strength of the chip and the cleanliness of the chip, and reducing the defective characteristics of the chip.
  • a substrate processing system includes: A thinning device for thinning the substrate to be processed; A dividing device for dividing the thinned substrate to be processed into a plurality of chips; An etching apparatus for etching both the thinned surface of the chip and the divided surface of the chip; A gettering layer forming apparatus for forming a gettering layer in the chip at a predetermined depth from the thinned and etched surface of the chip or from the surface; A transport device that transports the substrate to be processed to the thinning device, the dividing device, the etching device, and the gettering layer forming device; A control device that controls the thinning device, the dividing device, the etching device, the gettering layer forming device, and the transfer device.
  • the bending strength of the chip and the cleanliness of the chip can be improved, and the defective characteristics of the chip can be reduced.
  • FIG. 1 is a plan view showing a substrate processing system according to an embodiment.
  • FIG. 2 is a flowchart illustrating a substrate processing method according to an embodiment.
  • FIG. 3 is a side view showing an outer peripheral portion processing apparatus according to an embodiment.
  • FIG. 4 is a plan view showing a substrate to be processed that has been processed by the outer peripheral portion processing apparatus according to the embodiment.
  • FIG. 5 is a side view showing a state during the processing of the primary processing unit of the thinning device according to the embodiment.
  • FIG. 6 is a side view showing a dividing apparatus according to an embodiment.
  • FIG. 7 is a side view showing an etching apparatus according to an embodiment.
  • FIG. 8 is a side view showing a gettering layer forming apparatus according to an embodiment.
  • FIG. 9 is a plan view showing a gettering layer forming apparatus according to an embodiment.
  • FIG. 10 is a plan view showing a state when a gettering layer is formed on a part of a substrate to be processed according to an embodiment.
  • FIG. 11 is a plan view showing a state when a gettering layer is formed on another part of the substrate to be processed according to the embodiment.
  • FIG. 12 is a plan view illustrating an example of control of the scanning mechanism.
  • FIG. 13 is a plan view showing another example of control of the scanning mechanism.
  • FIG. 14 is a diagram illustrating a state when a gettering layer is formed on a substrate to be processed according to a modification.
  • FIG. 15 is a plan view showing a substrate processing system according to a modification.
  • FIG. 16 is a side view showing an example of the laser processing apparatus shown in FIG.
  • FIG. 17 is a side view showing an example of the dividing apparatus for thinning shown in FIG.
  • FIG. 1 is a plan view showing a substrate processing system according to an embodiment.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are directions perpendicular to each other
  • the X-axis direction and the Y-axis direction are horizontal directions
  • the Z-axis direction is a vertical direction.
  • the rotation direction with the vertical axis as the center of rotation is also called the ⁇ direction.
  • “lower” means vertically downward
  • “upper” means vertically upward.
  • the substrate processing system 1 includes a loading / unloading station 100 for loading and unloading cassettes 101 to 103 for storing the substrate to be processed 10 and a processing station 200 for processing the substrate to be processed 10.
  • the loading / unloading station 100 and the processing station 200 are arranged in this order from the X-axis direction negative side to the X-axis direction positive side.
  • the loading / unloading station 100 includes a cassette table 110, a transfer area 120, and a substrate table 130.
  • the cassette table 110, the transfer region 120, and the substrate table 130 are arranged in this order from the X axis direction negative side to the X axis direction positive side.
  • the cassette stand 110 includes a plurality of (for example, three) placement plates 111 to 113.
  • the plurality of mounting plates 111 to 113 are arranged in a line at intervals in the Y-axis direction.
  • the cassette 101 is placed on the placement plate 111.
  • the cassette 101 accommodates the substrate 10 to be processed before processing.
  • the substrate 10 to be processed is a semiconductor substrate such as a silicon wafer, and has a first main surface 11 and a second main surface 12 facing each other as shown in FIG.
  • the first main surface 11 of the substrate to be processed 10 is partitioned into a plurality of chip regions 13 by a plurality of streets formed in a lattice shape.
  • Devices such as elements, circuits, and terminals are formed in advance in each of the plurality of chip regions 13.
  • a planned dividing line 14 is set on a street that divides a plurality of chip areas 13.
  • the planned dividing line 14 is a planned line that divides the substrate 10 to be processed into a plurality of chips 40 (see FIG. 9).
  • the chip area 13 is an area where the chip 40 is obtained.
  • the first main surface 11 of the substrate to be processed 10 is joined to the support substrate 20 via the adhesive 22 and covered with the support substrate 20 as shown in FIG.
  • the substrate to be processed 10, the adhesive 22, and the support substrate 20 constitute a superposed substrate 30.
  • the support substrate 20 supports the substrate to be processed 10 during the processing of the substrate 10 to be processed by the processing station 200 and suppresses damage to the substrate to be processed 10.
  • the thickness of the support substrate 20 is thicker than the thickness of the processed substrate 10 that has been reduced in thickness.
  • the outer diameter of the support substrate 20 is larger than the outer diameter of the substrate 10 to be processed.
  • the outer diameter of the support substrate 20 may be the same as the outer diameter of the substrate 10 to be processed.
  • the support substrate 20 for example, a glass substrate or a semiconductor substrate is used.
  • the following problems that occur when a resin tape is bonded to the first main surface 11 of the substrate to be processed 10 instead of the glass substrate or the semiconductor substrate can be solved. Since the resin tape is thin and soft, when the substrate 10 to be processed is divided into a plurality of chips 40, there is a possibility that the resin tape may be divided together with the substrate 10 to be processed. Further, the protective tape is easily damaged when the substrate to be processed 10 is etched, and there is a possibility that the plurality of chips 40 cannot be held at intervals after the etching of the substrate 10 to be processed. According to this embodiment, since a glass substrate or a semiconductor substrate is used, the above problem can be solved.
  • the cassette 102 is placed on the placement plate 112.
  • the cassette 102 stores non-defective products among the processed substrates 10 after processing.
  • the non-defective product is divided into a plurality of chips 40, and the plurality of chips 40 are supported by the support substrate 20.
  • the cassette 103 is placed on the placement plate 113.
  • the cassette 103 accommodates defective products among the processed substrates 10 after processing.
  • the defective product may be one in which processing is interrupted in the middle.
  • the defective product may not be divided into a plurality of chips 40.
  • the transport area 120 is arranged on the positive side in the X-axis direction of the cassette table 110.
  • a guide rail 121 extending in the Y-axis direction is installed in the transport region 120, and the transport device 122 moves along the guide rail 121.
  • the transfer device 122 includes a transfer arm 123 that holds the substrate 10 to be processed.
  • the transfer arm 123 is movable not only in the Y axis direction but also in the X axis direction, the Z axis direction, and the ⁇ direction.
  • the transfer arm 123 may be turned upside down to turn the substrate 10 to be turned upside down.
  • the transfer arm 123 is formed in a fork shape that is divided into two forks so as to be easily inserted into each of the plurality of cassettes 101, 102, and 103.
  • the transfer arm 123 transfers the substrate 10 to be processed before processing from the cassette table 110 to the substrate table 130.
  • the transfer arm 123 transfers the processed substrate 10 after processing from the substrate table 130 to the cassette table 110.
  • the transfer device 122 may have a plurality of transfer arms 123 to improve transfer efficiency. For example, while one transfer arm 123 places the substrate 10 to be processed on the substrate stage 130, another transfer arm 123 can receive the processed substrate 10 after the process from the substrate stage 130.
  • the substrate stand 130 temporarily mounts the substrate to be processed 10 before processing and the substrate to be processed 10 after processing.
  • the substrate table 130 is disposed between the transfer area 120 and the processing station 200.
  • the substrate table 130 is disposed on the positive side in the X-axis direction of the transfer region 120 and is disposed on the negative side in the X-axis direction of the processing station 200.
  • the processing station 200 includes, for example, an outer peripheral portion processing device 210, a thinning device 220, a cleaning device 230, a dividing device 240, an etching device 250, and a gettering layer forming device 260.
  • the outer peripheral portion processing apparatus 210 performs processing on the outer peripheral portion of the substrate to be processed 10 as shown in FIG. 3 to stop the extension of cracks from the outer periphery of the substrate to be processed 10 toward the radially inner side.
  • the extension of the crack from the outer periphery of the substrate to be processed 10 to the inside in the radial direction can be stopped, and damage to the chip region 13 can be suppressed.
  • the thinning device 220 thins the substrate 10 to be processed by grinding the second main surface 12 of the substrate 10 to be processed as shown in FIG. Thereby, the chip 40 can be thinned.
  • the thin plate device 220 is a grinding device for grinding the second main surface 12 of the substrate 10 to be processed.
  • a first defect layer 51 is formed on the second main surface 12 of the substrate 10 to be processed, for example, by contact with the rotating grindstone 224.
  • the cleaning apparatus 230 cleans the substrate 10 to be processed after the substrate 10 is thinned and before the substrate 10 is divided. Thereby, grinding scraps generated by thinning the substrate to be processed 10 can be washed away from the substrate 10 to be processed.
  • the dividing device 240 divides the thinned substrate 10 into a plurality of chips 40 as shown in FIG.
  • the plurality of chips 40 are partitioned by, for example, lattice-shaped through grooves 18 (see FIG. 9).
  • the first main surface 41 of the chip 40 is the first main surface 11 of the substrate 10 to be processed.
  • the second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed, and is a surface on which the first defect layer 51 is formed when the plate is thinned.
  • the end surface 43 of the chip 40 is a side wall surface of the through groove 18 and is a surface on which the second defect layer 52 is formed at the time of division.
  • Etching apparatus 250 etches both second main surface 42 of chip 40 and end face 43 of chip 40 as shown in FIG. Since the first defect layer 51 formed on the second main surface 42 and the second defect layer 52 formed on the end face 43 can be removed by etching, the bending strength of the chip 40 can be improved. Here, the bending strength is the maximum stress that acts on the chip 40 before the chip 40 breaks in the bending test. In addition, since the debris 53 attached to the second main surface 42 can be removed by etching, the cleanliness of the chip 40 can be improved. The debris 53 is generated at the time of division.
  • the gettering layer forming apparatus 260 forms the gettering layer 55 on the second main surface 42 of the chip 40 as shown in FIG.
  • the gettering layer 55 captures impurities such as heavy metals. Unlike the first defect layer 51 (see FIG. 6) removed by the etching apparatus 250, the gettering layer 55 can capture impurities without substantially reducing the bending strength of the chip 40.
  • the gettering layer forming apparatus 260 may form the gettering layer 55 inside the chip 40 at a predetermined depth from the second main surface 42 of the chip 40. In this case as well, impurities can be captured without substantially reducing the bending strength of the chip 40.
  • the processing station 200 includes a transfer device 280 as shown in FIG.
  • the transfer device 280 transfers the substrate 10 to be processed to the outer peripheral portion processing device 210, the thinning device 220, the cleaning device 230, the dividing device 240, the etching device 250, and the gettering layer forming device 260.
  • the transfer device 280 may transfer the substrate 10 to be processed by transferring the superposed substrate 30.
  • the substrate 10 to be processed can be reinforced by the support substrate 20 during transport, and damage to the substrate 10 being transported can be reduced.
  • the transport device 280 includes, for example, a first transport unit 281 and a second transport unit 282.
  • the first transport unit 281 moves in the X-axis direction along the guide rail 284 installed in the transport region 283.
  • the first transfer unit 281 includes a transfer arm 285 that holds the substrate 10 to be processed.
  • the first transport unit 281 may include a plurality of transport arms 285 for improving transport efficiency.
  • the transfer arm 285 may be formed in a fork shape that is divided into two forks, similarly to the transfer arm 123, for cost reduction.
  • the transfer arm 285 sucks the target substrate 10 with the first main surface 11 of the target substrate 10 facing down.
  • the transfer arm 285 is movable not only in the X axis direction but also in the Y axis direction, the Z axis direction, and the ⁇ direction.
  • the substrate table 130 of the carry-in / out station 100 is arranged on the negative side in the X-axis direction of the transfer area 283.
  • an outer peripheral portion processing apparatus 210 is disposed on the positive side in the X-axis direction of the transport region 283.
  • a dividing device 240 and a gettering layer forming device 260 are arranged on the Y axis direction positive side of the transport region 283.
  • a cleaning device 230 and an etching device 250 are arranged on the Y axis direction negative side of the transfer region 283.
  • the first transport unit 281 transports the substrate 10 to be processed to various apparatuses adjacent to the transport region 283.
  • the first transport unit 281 transports the substrate 10 to be processed from the substrate table 130 to the outer peripheral processing apparatus 210.
  • the first transport unit 281 is supplied from the cleaning device 230 to the dividing device 240, from the dividing device 240 to the etching device 250, from the etching device 250 to the gettering layer forming device 260, and from the gettering layer forming device 260 to the substrate table 130.
  • Each of the substrates to be processed 10 is transported.
  • the thinning device 220 is disposed on the X axis direction positive side of the outer peripheral portion processing apparatus 210 and is disposed on the opposite side of the conveyance region 283 across the outer peripheral portion processing apparatus 210. Therefore, in addition to the 1st conveyance part 281 which moves in the conveyance area
  • the second transport unit 282 transports the substrate 10 to be processed from the outer peripheral processing device 210 to the thinning device 220.
  • the second transport unit 282 transports the substrate 10 to be processed from the thinning device 220 to the cleaning device 230.
  • the second transport unit 282 is not particularly limited, but is an articulated robot having a plurality of arms (see FIG. 1).
  • the articulated robot has a suction pad that sucks the substrate 10 to be processed at the tip.
  • the suction surface of the suction pad is directed downward.
  • the suction pad sucks the target substrate 10 from above with the first main surface 11 of the target substrate 10 facing downward.
  • the suction pad has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10 and sucks the substrate to be processed 10 on the suction surface.
  • the suction pad is movable in the X axis direction, the Y axis direction, the Z axis direction, and the ⁇ direction.
  • the conveying apparatus 280 has the 1st conveying part 281 and the 2nd conveying part 282 in this embodiment, you may have only the 1st conveying part 281. In the latter case, the thinning device 220 is provided adjacent to the transport area 283.
  • the arrangement and number of the outer peripheral portion processing apparatus 210, the thinning apparatus 220, the cleaning apparatus 230, the dividing apparatus 240, the etching apparatus 250, and the gettering layer forming apparatus 260 can be arbitrarily selected.
  • the substrate processing system 1 includes a control device 300.
  • the control device 300 is configured by a computer, for example, and includes a CPU (Central Processing Unit) 301 and a storage medium 302 such as a memory.
  • the storage medium 302 stores a program for controlling various processes executed in the substrate processing system 1.
  • the control device 300 controls the operation of the substrate processing system 1 by causing the CPU 301 to execute a program stored in the storage medium 302.
  • the control device 300 includes an input interface 303 and an output interface 304. The control device 300 receives a signal from the outside through the input interface 303 and transmits a signal to the outside through the output interface 304.
  • Such a program may be stored in a computer-readable storage medium and may be installed in the storage medium 302 of the control device 300 from the storage medium.
  • Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), and a memory card.
  • the program may be downloaded from a server via the Internet and installed in the storage medium 302 of the control device 300.
  • FIG. 2 is a flowchart showing a substrate processing method according to an embodiment.
  • a plurality of steps shown in FIG. 2 are performed under the control of the control device 300.
  • the transfer device 122 of the loading / unloading station 100 takes out the substrate 10 to be processed from the cassette 101 placed on the cassette stand 110 and places the taken out substrate 10 on the substrate stand 130.
  • the order of the several process shown in FIG. 2 is not specifically limited. Moreover, some processes shown in FIG. 2 may not be performed.
  • the substrate processing method includes a step S101 in which the transfer device 280 receives the substrate 10 to be processed from the loading / unloading station 100 and loads it into the processing station 200.
  • a device is formed in advance on the first main surface 11 of the substrate 10 to be processed.
  • the substrate processing method includes a step S102 in which the outer peripheral processing apparatus 210 performs processing on the outer peripheral portion of the substrate to be processed 10 to stop extension of a crack from the outer periphery of the target substrate 10 toward the radially inner side.
  • the substrate processing method includes a step S103 in which the thin plate apparatus 220 thins the substrate to be processed 10 by grinding the second main surface 12 of the substrate 10 to be processed. Thereby, the chip 40 can be thinned.
  • a first defect layer 51 is formed on the second main surface 12 of the substrate 10 to be processed, for example, by contact with the rotating grindstone 224.
  • the substrate processing method includes a step S104 in which the cleaning apparatus 230 cleans the target substrate 10 after the target substrate 10 is thinned and before the target substrate 10 is divided. Thereby, grinding scraps generated by thinning the substrate to be processed 10 can be washed away from the substrate 10 to be processed.
  • the substrate processing method includes a process S105 in which the dividing device 240 divides the thinned substrate 10 into a plurality of chips 40.
  • the plurality of chips 40 are partitioned by, for example, a lattice-shaped through groove 18.
  • the first main surface 41 of the chip 40 is the first main surface 11 of the substrate 10 to be processed.
  • the second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed, and is a surface on which the first defect layer 51 is formed when the plate is thinned.
  • the end surface 43 of the chip 40 is a side wall surface of the through groove 18 and is a surface on which the second defect layer 52 is formed at the time of division.
  • the substrate processing method includes a step S106 in which the etching apparatus 250 etches both the second main surface 42 of the chip 40 and the end face 43 of the chip 40. Since the first defect layer 51 formed on the second main surface 42 and the second defect layer 52 formed on the end face 43 can be removed by etching, the bending strength of the chip 40 can be improved. In addition, since the debris 53 attached to the second main surface 42 can be removed by etching, the cleanliness of the chip 40 can be improved. Although described in detail later, the debris 53 is generated at the time of division and adheres to the second main surface 42.
  • the substrate processing method includes a step S107 in which the gettering layer forming apparatus 260 forms the gettering layer 55 on the second main surface 42 of the chip 40.
  • the gettering layer 55 captures impurities such as heavy metals. Unlike the first defect layer 51 removed by the etching apparatus 250, the gettering layer 55 can capture impurities without substantially reducing the bending strength of the chip 40.
  • the gettering layer 55 may be formed inside the chip 40 at a predetermined depth from the second main surface 42 of the chip 40.
  • the substrate processing method includes a step S108 in which the transfer apparatus 280 carries the substrate 10 to be carried out from the processing station 200 to the carry-in / out station 100.
  • the transfer device 280 places the substrate 10 to be processed on the substrate stage 130 of the carry-in / out station 100.
  • the transfer device 122 of the loading / unloading station 100 receives the substrate 10 to be processed from the substrate table 130 and stores it in the cassette 102 or the cassette 103 placed on the cassette table 110. Thereafter, the current process ends.
  • FIG. 3 is a side view showing an outer peripheral portion processing apparatus according to an embodiment.
  • the broken line indicates the second main surface 12 of the substrate to be processed 10 when the thinning is completed.
  • FIG. 4 is a plan view showing a substrate to be processed that has been processed by the outer peripheral processing apparatus according to the embodiment.
  • the outer peripheral portion processing apparatus 210 performs processing on the outer peripheral portion of the substrate to be processed 10 to stop the extension of the crack from the outer periphery of the target substrate 10 toward the radially inner side.
  • the outer peripheral portion processing apparatus 210 forms the modified layer 15 on the outer peripheral portion of the substrate to be processed 10 that stops the extension of cracks from the outer periphery of the substrate to be processed 10 toward the radially inner side.
  • the outer peripheral portion processing apparatus 210 forms the modified layer 15 in an annular line L1 (see FIG. 4) that is a certain distance away from the outer periphery of the substrate 10 to be processed in the radial direction.
  • the modified layer 15 may be formed continuously in the line L1, or may be formed discontinuously with an interval in the line L1.
  • the annular line L ⁇ b> 1 is set on the outer side in the radial direction than the chip region 13. This is to prevent the chip area 13 from being damaged.
  • the extension direction of the crack changes from the radial direction to the circumferential direction. This is because cracks tend to extend in the direction of weak strength. As a result, the extension of the crack from the outer periphery of the substrate to be processed 10 toward the radially inner side can be stopped, and damage to the chip region 13 can be suppressed.
  • the cracks directed radially inward from the outer periphery of the substrate 10 to be processed are formed, for example, when the substrate 10 to be processed is thinned. This is because when the substrate 10 to be processed is thinned, a knife edge-shaped portion 16 (see FIG. 3) is formed on the outer peripheral portion of the substrate 10 to be processed, and this portion 16 is easily chipped.
  • This portion 16 is formed in a portion called a bevel.
  • the bevel is a chamfered portion. In FIG. 3, the bevel is a portion subjected to R chamfering, but may be a portion subjected to C chamfering.
  • the outer peripheral portion processing apparatus 210 includes, for example, a processing chuck 211 and a processing head 212.
  • the processing chuck 211 rotates while holding the substrate to be processed 10 horizontally with the second main surface 12 of the substrate to be processed 10 facing upward.
  • the processing head 212 includes a condenser lens 213 that irradiates the laser beam LB1 from above toward the second main surface 12 of the substrate 10 to be processed held by the processing chuck 211.
  • the condensing lens 213 condenses the laser beam LB1 inside the substrate 10 to be processed, and forms the modified layer 15 inside the substrate 10 to be processed.
  • the laser beam LB1 one having transparency to the substrate 10 to be processed is used.
  • the modified layer 15 is formed, for example, by locally melting and solidifying the inside of the substrate 10 to be processed.
  • the modified layer 15 is formed to a preset depth from the second main surface 12 of the substrate 10 to be processed.
  • a plurality of modified layers 15 may be formed at different positions in the depth direction. That is, the plurality of modified layers 15 may be arranged at intervals in the depth direction.
  • the depth of the modified layer 15 is set as follows. When the substrate 10 is thinned, the substrate 10 is pushed in the plate thickness direction by the rotating grindstone 224 (see FIG. 5), so that the crack 17 (see FIG. 5) starts from the modified layer 15 in the plate thickness direction. Extend. During the thinning, the crack 17 reaches both the first main surface 11 of the substrate to be processed 10 and the second main surface 12 when the thinning of the substrate to be processed 10 is completed. Depth is set. Since the crack 17 penetrates the substrate to be processed 10 in the plate thickness direction, the extension of the crack from the outer periphery of the substrate to be processed 10 to the inside in the radial direction can be stopped over the entire plate thickness direction of the substrate to be processed 10.
  • the thin plate apparatus 220 thins the substrate 10 to be processed by grinding the second main surface 12 of the substrate 10 to be processed.
  • the thinning device 220 is disposed on the X axis direction positive side of the outer peripheral portion processing apparatus 210, and is disposed on the opposite side of the conveyance region 283 across the outer peripheral portion processing apparatus 210. Since the thin plate forming apparatus 220 is far from the cassette table 110, it is possible to suppress the grinding dust generated by the thin plate forming apparatus 220 from adhering to the substrate 10 after processing.
  • the thinning device 220 includes a rotary table 221, four rotary chucks 222, a primary processing unit 223, a secondary processing unit 225, and a tertiary processing unit 226.
  • the rotary table 221 is rotated around the vertical axis.
  • four rotary chucks 222 are arranged at equal intervals. Each of the four rotary chucks 222 rotates together with the rotary table 221 and moves to the delivery position D0, the primary machining position D1, the secondary machining position D2, and the tertiary machining position D3.
  • the delivery position D0 includes a position where the second transport unit 282 places the substrate 10 to be processed before thinning on the rotary chuck 222, and a position where the second transport unit 282 receives the substrate 10 after thinning from the rotary chuck 222.
  • Doubles as The primary processing position D1 is a position where the primary processing unit 223 performs primary processing (for example, primary grinding).
  • the secondary processing position D2 is a position where the secondary processing unit 225 performs secondary processing (for example, secondary grinding).
  • the tertiary processing position D3 is a position where the tertiary processing unit 226 performs tertiary processing (for example, tertiary grinding).
  • the four rotary chucks 222 are attached to the rotary table 221 so as to be rotatable around the respective rotation center lines. Each of the four rotating chucks 222 is rotated while the substrate 10 to be processed being processed is processed by the processing unit. During this time, the rotation of the turntable 221 is prohibited.
  • Each of the four rotating chucks 222 holds the substrate 10 to be processed horizontally from below.
  • Each of the four rotary chucks 222 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10, and sucks the substrate to be processed 10 on the suction surface.
  • FIG. 5 is a side view showing a state during the processing of the primary processing unit of the thinning device according to the embodiment.
  • a broken line shows the 2nd main surface 12 of the to-be-processed substrate 10 at the time of completion of thickness reduction.
  • the primary processing unit 223 performs primary grinding of the substrate 10 to be processed.
  • the primary processing unit 223 has a rotating grindstone 224.
  • the rotating grindstone 224 descends while rotating and grinds the upper surface (second main surface 12) of the substrate 10 to be processed that rotates together with the rotating chuck 222.
  • the secondary processing unit 225 and the tertiary processing unit 226 are configured in the same manner as the primary processing unit 223, illustration is omitted.
  • the average grain size of the abrasive grains of the rotary grindstone of the secondary processing unit 225 is smaller than the average grain diameter of the abrasive grains of the rotary grindstone 224 of the primary machining unit 223.
  • the average particle diameter of the abrasive grains of the rotary grindstone of the tertiary processing unit 226 is smaller than the average grain diameter of the abrasive grains of the rotary grindstone of the secondary machining unit 225.
  • the number of processing units for processing the substrate to be processed 10 is not limited to three, and may be one or two, or four or more. Further, the number of rotating chucks 222 only needs to be one more than the number of processing units.
  • the thinning device 220 only needs to have a grinding unit for grinding the substrate 10 to be processed.
  • a first defect layer 51 is formed on the second main surface 12 of the substrate 10 to be processed by contact with the rotating grindstone 224.
  • the first defect layer 51 includes a defect, and the defect reduces the bending strength of the chip 40.
  • the cleaning apparatus 230 cleans the substrate 10 to be processed after the substrate 10 is thinned and before the substrate 10 is divided. Thereby, grinding scraps generated by thinning the substrate to be processed 10 can be washed away from the substrate 10 to be processed.
  • the cleaning device 230 has a bottom surface cleaning unit.
  • the lower surface cleaning unit cleans the support substrate 20 bonded to the lower surface (first main surface 11) of the substrate 10 to be processed.
  • the lower surface cleaning unit includes, for example, a brush that contacts the support substrate 20 and a cleaning liquid nozzle that supplies a cleaning liquid to the brush.
  • the suction pad of the second transport unit 282 sucks the substrate to be processed 10 from above with the first main surface 11 of the substrate to be processed 10 facing down.
  • the second transport unit 282 transports the target substrate 10 cleaned by the lower surface cleaning unit to the upper surface cleaning unit.
  • the lower surface cleaning unit also has a function of cleaning the suction surface (lower surface) of the suction pad of the second transport unit 282 while the suction pad of the second transport unit 282 is not sucking the substrate 10 to be processed.
  • the cleaning device 230 has an upper surface cleaning unit.
  • the upper surface cleaning unit cleans the ground upper surface (second main surface 12) of the substrate 10 to be processed.
  • the upper surface cleaning unit includes, for example, a spin chuck that holds the substrate 10 to be processed from below, and a cleaning liquid nozzle that supplies a cleaning liquid to the upper surface of the substrate 10 that rotates together with the spin chuck.
  • FIG. 6 is a side view showing a dividing apparatus according to an embodiment.
  • the dividing device 240 divides the thinned substrate 10 into a plurality of chips 40. A device is formed on the first main surface 41 of the chip 40 after division, and a first defect layer 51 is formed on the second main surface 42 of the chip 40 after division.
  • the dividing device 240 includes, for example, a processing stage 241 and a processing head 242.
  • the processing stage 241 holds the target substrate 10 horizontally with the second main surface 12 of the target substrate 10 facing upward.
  • the processing stage 241 holds the substrate 10 to be processed from below via the support substrate 20.
  • the processing stage 241 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10, and sucks the substrate to be processed 10 on the suction surface.
  • the processing stage 241 is, for example, an XY ⁇ stage, and is movable in the X axis direction, the Y axis direction, and the ⁇ direction.
  • the processing head 242 has a condensing lens 243 that irradiates the second main surface 12 of the substrate 10 to be processed with the laser beam LB2.
  • the condensing lens 243 for example, condenses the laser beam LB2 on the second main surface 12 of the substrate to be processed 10 and forms the through groove 18 penetrating the substrate to be processed 10 in the plate thickness direction.
  • the laser beam LB2 one having an absorptivity with respect to the substrate to be processed 10 is used.
  • the through groove 18 is formed, for example, by locally sublimating the substrate 10 to be processed.
  • the dividing device 240 moves the irradiation point of the laser beam LB2 on the upper surface of the substrate to be processed 10 by moving the processing stage 241 in the X-axis direction, the Y-axis direction, and the ⁇ direction, for example.
  • the moving path of the irradiation point of the laser beam LB2 is set so as to coincide with the planned dividing line 14. As a result, a lattice-like through groove 18 that partitions the plurality of chips 40 is formed.
  • the dividing device 240 is a laser dicing device in the present embodiment, but may be a blade dicing device. In the latter case, the machining head 242 rotatably supports a disk-shaped blade. The blade divides the substrate to be processed 10 into a plurality of chips 40.
  • the first main surface 41 of the chip 40 is the first main surface 11 of the substrate to be processed 10 and is a surface on which a device is formed.
  • the second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed and is a surface ground by the thinning device 220.
  • the end surface 43 of the chip 40 is a divided surface divided by the dividing device 240 and is a side wall surface of the through groove 18.
  • the debris 53 adheres to the second main surface 42 of the chip 40 regardless of whether the dividing device 240 is a laser dicing device or a blade dicing device.
  • the debris 53 is dust generated by the division of the substrate 10 to be processed, and reduces the cleanliness of the substrate 10 to be processed.
  • the dividing device 240 is a laser dicing device
  • the debris 53 is obtained by cooling and solidifying the sublimated gas of the substrate 10 to be processed.
  • the dividing device 240 is a blade dicing device
  • the debris 53 is cutting waste of the substrate 10 to be processed.
  • the second defect layer 52 is formed on the end face 43 of the chip 40 regardless of whether the dividing device 240 is a laser dicing device or a blade dicing device.
  • the second defect layer 52 includes a defect, and the defect reduces the bending strength of the chip 40.
  • the defect of the second defect layer 52 is formed by the heat of the laser beam LB3.
  • the defect of the second defect layer 52 is formed by contact with the blade.
  • FIG. 7 is a side view showing an etching apparatus according to an embodiment.
  • the etching apparatus 250 etches both the second main surface 42 of the chip 40 and the end face 43 of the chip 40. Since the first defect layer 51 formed on the second main surface 42 and the second defect layer 52 formed on the end face 43 can be removed by etching, the bending strength of the chip 40 can be improved. The first defect layer 51 and the second defect layer 52 may be at least partially removed, but preferably all are removed. In addition, since the debris 53 attached to the second main surface 42 can be removed by etching, the cleanliness of the chip 40 can be improved. The debris 53 may be at least partially removed, but preferably is entirely removed.
  • the etching apparatus 250 is, for example, a wet etching apparatus, and includes a rotary chuck 251 and an etchant nozzle 252.
  • the rotating chuck 251 rotates while holding the substrate to be processed 10 with the second main surface 12 of the substrate to be processed 10 (that is, the second main surface 42 of the chip 40) facing upward.
  • the etching solution nozzle 252 discharges the etching solution 253 to the center of the second main surface 12 of the substrate to be processed 10 that rotates together with the rotary chuck 251.
  • the etching solution 253 spreads from the radially inner side to the radially outer side by centrifugal force, wets and spreads over the entire second main surface 12 of the substrate to be processed 10, and enters the lattice-shaped through grooves 18.
  • Etching solution 253 etches second main surface 42 and end surface 43.
  • the etching solution 253 may be an alkaline aqueous solution or an acidic aqueous solution.
  • alkaline aqueous solution examples include TMAH (tetramethylammonium hydroxide: (CH 3 ) 4 NOH) aqueous solution and choline aqueous solution.
  • acidic aqueous solution examples include a hydrofluoric acid (HF) aqueous solution, a nitric acid (HNO 3 ) aqueous solution, and a phosphoric acid (H 3 P0 4 ) aqueous solution.
  • Etching solution 253 may be an anisotropic etching solution or an isotropic etching solution.
  • the etching solution 253 may include a plurality of etching materials, for example, an aqueous solution including hydrofluoric acid, nitric acid, and acetic acid (CH 3 COOH). By adjusting the mixing ratio of hydrofluoric acid, nitric acid and acetic acid, the etching rate and the surface roughness of the etched surface can be adjusted.
  • the etching apparatus 250 is a wet etching apparatus in the present embodiment, but may be a dry etching apparatus.
  • the dry etching apparatus may use plasma or may not use plasma.
  • a dry etching material that does not use plasma for example, chlorine trifluoride (ClF 3 ) gas is used.
  • a mixed gas of sulfur hexafluoride (SF 6 ) gas, oxygen gas, and fluorine gas is used as a material for dry etching using plasma.
  • FIG. 8 is a side view showing a gettering layer forming apparatus according to an embodiment.
  • the gettering layer forming apparatus 260 forms the gettering layer 55 on the second main surface 42 of the chip 40.
  • the gettering layer 55 includes gettering sites (for example, crystal defects and strains) for trapping impurities.
  • the impurities are, for example, heavy metals such as copper (Cu), iron (Fe), nickel (Ni), or chromium (Cr).
  • the gettering layer 55 is formed on the second main surface 42 of the chip 40, for example, as shown in FIG.
  • the second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed and is a surface etched by the etching apparatus 250 after being ground by the thinning apparatus 220.
  • the gettering layer 55 captures impurities, thereby limiting the diffusion of impurities into the device and reducing device characteristic defects.
  • the gettering layer 55 can trap impurities without substantially reducing the bending strength of the chip 40. Although the first defect layer 51 can capture impurities, the bending strength of the chip 40 is greatly reduced.
  • the gettering layer 55 is formed by locally melting and solidifying the substrate to be processed 10, and is uniformly formed at a predetermined position. . Therefore, there is no deep flaw formed unintentionally, and the bending strength of the chip 40 is hardly lowered.
  • the gettering layer 55 locally melts and solidifies the target substrate 10 without locally sublimating the target substrate 10. It is formed by. Therefore, the integrated irradiation amount of the laser beam LB3 applied to the substrate 10 to be processed is small, and the bending strength of the chip 40 hardly decreases.
  • the unit of irradiation amount is J / mm 2 .
  • the integrated irradiation amount is the total irradiation amount.
  • the gettering layer forming apparatus 260 includes, for example, a substrate holding unit 261, a parallel movement mechanism unit 262 (see FIG. 9), a rotational movement mechanism unit 265 (see FIG. 9), a light source unit 267, and an optical unit 270. Have.
  • the substrate holding unit 261 holds the substrate to be processed 10.
  • the substrate holding unit 261 holds the target substrate 10 horizontally with the second main surface 12 of the target substrate 10 facing upward.
  • the substrate holding unit 261 holds the substrate 10 to be processed from below via the support substrate 20.
  • the substrate holding unit 261 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10 and sucks the substrate to be processed 10 on the suction surface.
  • the substrate holding unit 261 is, for example, an XY ⁇ stage, and is movable in the X axis direction, the Y axis direction, and the ⁇ direction.
  • the parallel movement mechanism unit 262 includes an X-axis direction movement mechanism unit 263 that moves the substrate holding unit 261 in the X-axis direction.
  • the X-axis direction moving mechanism unit 263 includes, for example, a rotary motor and a ball screw that converts the rotary motion of the rotary motor into the linear motion of the substrate holding unit 261.
  • the parallel movement mechanism unit 262 includes a Y-axis direction movement mechanism unit 264 that moves the substrate holding unit 261 in the Y-axis direction.
  • the Y-axis direction moving mechanism unit 264 includes, for example, a rotary motor and a ball screw that changes the rotary motion of the rotary motor to the linear motion of the substrate holding unit 261.
  • the rotation moving mechanism unit 265 rotates the substrate holding unit 261 in the ⁇ direction.
  • the rotational movement mechanism unit 265 includes, for example, a rotation motor and a timing belt that transmits the rotational motion of the rotation motor to the substrate holding unit 261.
  • a gear or the like may be used instead of the timing belt.
  • the light source unit 267 (see FIG. 8) is a laser oscillator that oscillates the laser beam LB3.
  • the laser beam LB3 forms the gettering layer 55 by locally melting and solidifying the substrate 10 to be processed.
  • the optical unit 270 irradiates the target substrate 10 held by the substrate holding unit 261 with the laser beam LB3.
  • An irradiation point 60 of the laser beam LB3 is formed on the second main surface 12 of the substrate 10 to be processed.
  • the gettering layer 55 is formed in the movement range of the irradiation point 60.
  • the optical unit 270 has a scanning mechanism 271 that moves the irradiation point 60 of the laser beam LB3 on the substrate 10 to be processed.
  • the irradiation point 60 can be moved horizontally without moving the substrate holder 261 horizontally. Therefore, the movement range of the substrate holding part 261 can be reduced, and the gettering layer forming apparatus 260 can be downsized.
  • the scanning mechanism 271 includes, for example, a galvanometer mirror unit 272.
  • the galvanometer mirror unit 272 includes a galvanometer mirror 273 that reflects the laser beam LB3, and a galvano motor 274 that rotates the galvanometer mirror 273.
  • the scanning mechanism 271 moves the irradiation point 60 horizontally by changing the rotation angle of the galvanometer mirror 273 under the control of the control device 300.
  • the scanning mechanism 271 has two sets of galvanometer mirrors 273 and galvanomotors 274 (only one set is shown in FIG. 8) in order to move the irradiation point 60 in both the X-axis direction and the Y-axis direction.
  • the scanning mechanism 271 may include a polygon mirror instead of the galvanometer mirror 273.
  • the scanning mechanism 271 further includes an f ⁇ lens 275.
  • the f ⁇ lens 275 places the focal point of the laser beam LB3 on one plane while the irradiation point 60 of the laser beam LB3 is moving.
  • the focal plane of the f ⁇ lens 275 is set to, for example, the second main surface 12 of the substrate 10 to be processed, that is, the second main surface 42 of the chip 40.
  • the gettering layer 55 is formed on the second main surface 42 of the chip 40.
  • the focal plane of the f ⁇ lens 275 may be set so as to be shifted in parallel from the second main surface 42 of the chip 40.
  • the focal plane of the f ⁇ lens 275 may be set between the second main surface 42 and the first main surface 41.
  • the gettering layer 55 can be formed at a predetermined depth from the second main surface 42.
  • the f ⁇ lens 275 may include a telecentric lens.
  • the telecentric lens irradiates the laser beam LB3 perpendicularly to the focal plane of the f ⁇ lens 275. While the irradiation point 60 is moving, the shape change of the irradiation point 60 can be suppressed.
  • the optical unit 270 includes a homogenizer 277 that forms the cross-sectional shape of the laser beam LB3 in a rectangular shape and makes the cross-sectional intensity distribution of the laser beam LB3 uniform.
  • the shape of the irradiation point 60 can be shaped into a rectangular shape, and the intensity distribution of the irradiation point 60 can be made uniform. Therefore, a uniform gettering layer 55 can be formed.
  • FIG. 9 is a plan view showing a gettering layer forming apparatus according to an embodiment.
  • the substrate 10 to be processed is equally divided into four in the circumferential direction in plan view, and the first divided area A1, the second divided area A2, the third divided area A3, and the fourth divided area. Divided into A4.
  • FIG. 10A is a plan view showing a state when the gettering layer is formed in the first scan region that is a part of the first divided region according to the embodiment.
  • FIG. 10B is a diagram illustrating a state when the gettering layer is formed in the second scan region that is a part of the first divided region according to the embodiment.
  • FIG. 11A is a diagram illustrating a state when the gettering layer is formed in the third scan region that is a part of the first divided region according to the embodiment.
  • FIG. 11B is a diagram illustrating a state when the gettering layer is formed in the fourth scan region that is a part of the first divided region according to the embodiment.
  • the first divided area A1 is divided into, for example, a first scan area B1, a second scan area B2, a third scan area B3, and a fourth scan area B4.
  • the first scan area B1, the second scan area B2, the third scan area B3, and the fourth scan area B4 are each set smaller than the f ⁇ lens 275 in plan view.
  • the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 while the substrate holding unit 261 is stopped, thereby obtaining the getter in the first scan region B1.
  • a ring layer 55 is formed. While the gettering layer 55 is formed in the first scan region B1, the first scan region B1 is arranged on the inner side of the outer periphery of the f ⁇ lens 275 in plan view as shown in FIG.
  • control device 300 moves the substrate holding part 261 horizontally and arranges the second scan region B2 inside the outer periphery of the f ⁇ lens 275 in plan view as shown in FIG. Subsequently, the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 while the substrate holding unit 261 is stopped, so that the second scan region B2 is moved. A gettering layer 55 is formed.
  • control device 300 moves the substrate holding portion 261 horizontally, and arranges the third scan region B3 inside the outer periphery of the f ⁇ lens 275 in plan view as shown in FIG. Subsequently, the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 in a state where the substrate holding unit 261 is stopped, thereby moving to the third scan region B3. A gettering layer 55 is formed.
  • control device 300 moves the substrate holder 261 horizontally, and arranges the fourth scan region B4 on the inner side of the outer periphery of the f ⁇ lens 275 in plan view as shown in FIG. Subsequently, the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 in a state where the substrate holding unit 261 is stopped, thereby moving to the fourth scan region B4. A gettering layer 55 is formed.
  • the control device 300 alternates between the control for moving the irradiation point 60 two-dimensionally by the scanning mechanism 271 while the substrate holding unit 261 is stopped and the control for moving the substrate holding unit 261 in parallel. Repeat.
  • the control device 300 switches the region in which the irradiation point 60 is moved two-dimensionally by the scan mechanism 271 of the substrate 10 to be processed held by the substrate holding unit 261 by moving the substrate holding unit 261 in parallel.
  • the first divided region A1 is divided into a plurality of regions, and a gettering layer 55 is formed for each divided region. Therefore, the diameter of the f ⁇ lens 275 can be set smaller than the radius of the substrate 10 to be processed. Therefore, the cost of the f ⁇ lens 275 can be reduced.
  • the method of forming the gettering layer 55 in the first divided region A1 is not limited to the above method.
  • the control device 300 may two-dimensionally move the irradiation point 60 to the entire first divided area A1 by the scan mechanism 271 with the substrate holding unit 261 stopped.
  • the diameter of the f ⁇ lens 275 is set to be large so that the entire first divided region A1 can be disposed inside the outer periphery of the f ⁇ lens 275 in plan view.
  • the control device 300 executes the control of rotating the substrate holding part 261 by 90 ° after forming the gettering layer 55 in the first divided area A1. Thereby, the scanning mechanism 271 can move the irradiation point 60 in the second divided region A2. Thereafter, the control device 300 executes control for forming the gettering layer 55 in the second divided region A2. Since the control for forming the gettering layer 55 in the second divided region A2 is the same as the control for forming the gettering layer 55 in the first divided region A1, description thereof is omitted.
  • the control device 300 executes the control of rotating the substrate holding part 261 by 90 ° after forming the gettering layer 55 in the second divided region A2. As a result, the scanning mechanism 271 can move the irradiation point 60 in the third divided region A3. Thereafter, the control device 300 executes control for forming the gettering layer 55 in the third divided region A3. Since the control for forming the gettering layer 55 in the third divided region A3 is the same as the control for forming the gettering layer 55 in the first divided region A1, description thereof is omitted.
  • the control device 300 executes the control of rotating the substrate holding part 261 by 90 ° after forming the gettering layer 55 in the third divided region A3. Thereby, the scanning mechanism 271 can move the irradiation point 60 in the fourth divided region A4. Thereafter, the control device 300 executes control for forming the gettering layer 55 in the fourth divided region A4. Since the control for forming the gettering layer 55 in the fourth divided region A4 is the same as the control for forming the gettering layer 55 in the first divided region A1, description thereof is omitted.
  • the control device 300 alternates between the control for moving the irradiation point 60 two-dimensionally by the scan mechanism 271 and the control for rotating the substrate holding unit 261 while the substrate holding unit 261 is stopped. Repeat.
  • the control device 300 switches the region in which the irradiation point 60 is moved two-dimensionally by the scan mechanism 271 of the substrate 10 to be processed held by the substrate holding unit 261 by rotating the substrate holding unit 261.
  • the substrate 10 to be processed is divided into a plurality of regions, and a gettering layer 55 is formed in each divided region. Therefore, the diameter of the f ⁇ lens 275 can be set smaller than the diameter of the substrate 10 to be processed. Therefore, the cost of the f ⁇ lens 275 can be reduced.
  • the to-be-processed substrate 10 of this embodiment is equally divided into four in the circumferential direction, it may be equally divided into two in the circumferential direction.
  • the diameter of the f ⁇ lens 275 can be set smaller than the diameter of the substrate 10 to be processed. Therefore, the cost of the f ⁇ lens 275 can be reduced.
  • FIG. 12 is a plan view illustrating an example of control of the scanning mechanism.
  • FIG. 12A is a plan view showing an example of the formation position of the irradiation point k (k is a natural number of 1 or more).
  • FIG. 12B is a plan view showing an example of the formation position of the (k + 1) th irradiation point.
  • FIG. 12C is a plan view showing an example of the formation position of the (k + 2) th irradiation point.
  • FIG. 12D is a plan view showing an example of the formation position of the irradiation point of the (k + 3) th time.
  • the control device 300 repeatedly performs the formation of the irradiation point 60 of the laser beam LB3 while shifting the position of the irradiation point 60 in a state where the substrate holding unit 261 is stopped.
  • the position of the irradiation point 60 is the position of the irradiation point 60 on the substrate 10 to be processed held by the substrate holding unit 261.
  • the control device 300 moves the position of the irradiation point 60 by controlling the scan mechanism 271.
  • the control device 300 prohibits movement of the position of the irradiation point 60 in a state where the irradiation point 60 of the laser beam LB3 is formed. For example, when the position of the irradiation point 60 is shifted, the control device 300 stops the output of the laser beam LB3 from the light source unit 267.
  • the control device 300 shifts the formation position of the irradiation point 60 in parallel with one side 61 of the rectangular irradiation point 60, for example, by controlling the scanning mechanism 271.
  • the amount E of shifting the formation position of the irradiation point 60 between the k-th time and the (k + 1) -th time is, for example, half of the length F of the side 61.
  • FIG. 13 is a plan view showing another example of control of the scanning mechanism.
  • FIG. 13A is a plan view showing an example of the formation position of the irradiation point of the kth (k is a natural number of 1 or more).
  • FIG. 13B is a plan view showing an example of the formation position of the (k + 1) th irradiation point.
  • FIG. 13C is a plan view showing an example of the formation position of the irradiation point of the 1st (l is a natural number larger than k + 1) times.
  • FIG. 13D is a plan view showing an example of the formation position of the l + 1th irradiation point.
  • the control device 300 repeatedly performs the formation of the irradiation point 60 of the laser beam LB3 while shifting the position of the irradiation point 60 in a state where the substrate holding unit 261 is stopped.
  • the control device 300 shifts the formation position of the irradiation point 60 in parallel with one side 61 of the rectangular irradiation point 60, for example, by controlling the scanning mechanism 271.
  • the amount E of shifting the formation position of the irradiation point 60 between the k-th time and the k + 1-th time is the same as the length F of the side 61, for example.
  • the laser beam LB3 can be irradiated multiple times to the same position of the substrate 10 to be processed. Therefore, the irradiation amount of the laser beam LB3 per time can be reduced, and the reduction in the bending strength of the chip 40 can be limited.
  • the formation position of the kth irradiation point 60 and the formation position of the lth irradiation point 60 are completely overlapped in FIG. 13, but may be partially overlapped.
  • the formation position of the first irradiation point 60 may extend over both the formation position of the kth irradiation point 60 and the formation position of the (k + 1) th irradiation point 60.
  • the amount E of shifting the formation position of the irradiation point 60 between the first time and the l + 1th time may be the same as the length F of the side 61.
  • the control device 300 irradiates the laser beam LB3 n times (n is a natural number of 2 or more) times in the same region (for example, a region indicated by hatching in FIGS. 12 and 13) of the substrate 10 to be processed. .
  • n is a natural number of 2 or more
  • the irradiation amount of the laser beam LB3 per time can be reduced, and the decrease in the bending strength of the chip 40 due to the irradiation of the laser beam LB3 can be limited.
  • the control device 300 irradiates the same region of the substrate to be processed 10 with the laser beam LB3 at the mth (m is a natural number greater than or equal to 1 and less than or equal to n-1) times and the m + 1th time.
  • the region heated by the irradiation with the laser beam LB3 is sufficiently cooled naturally, and then the same region is irradiated with the laser beam LB3.
  • a decrease in the bending strength of the chip 40 due to the temperature rise can be limited.
  • FIG. 14A is a diagram illustrating a state when a gettering layer is formed in the first region of the substrate to be processed according to the modification.
  • FIG. 14B is a diagram showing a state when a gettering layer is formed in the second region of the substrate to be processed according to the modification.
  • control device 300 rotates and moves the substrate holder 261 and reciprocates the laser beam LB3 in the radial direction (for example, the X-axis direction) of the substrate 10 to be processed held by the substrate holder 261.
  • a gettering layer 55 is formed in the first region C1 of the processing substrate 10.
  • the rotational movement mechanism unit 265 may rotate the substrate holding unit 261 one or more times, or may rotate a plurality of times.
  • the scanning mechanism 271 causes the laser beam LB3 to be emitted a plurality of times between the center position of the substrate 10 to be processed and the reversal position (position on the outer periphery of the first region C1) away from the center position of the substrate to be processed 10 Move back and forth.
  • the scanning mechanism 271 only needs to linearly move the laser beam LB3 on the target substrate 10 held by the substrate holding unit 261. Therefore, the scanning mechanism 271 has only one set of the galvano mirror 273 and the galvano motor 274. Therefore, the structure of the scan mechanism 271 can be simplified.
  • the control device 300 executes control to decrease the rotation speed of the substrate holding unit 261 as the irradiation point 60 of the laser beam LB3 is further away from the center of the substrate 10 to be processed. Or the control apparatus 300 performs control which makes the moving speed of the irradiation point 60 slow, so that the irradiation point 60 of the laser beam LB3 leaves
  • FIG. The control device 300 performs at least one control among the control of the number of rotations of the substrate holding unit 261 and the control of the moving speed of the irradiation point 60.
  • the integrated dose of the laser beam LB3 per unit area in the first region C1 can be made uniform, and a uniform gettering layer 55 can be formed in the first region C1.
  • the first region C1 is a circular region having a certain distance from the center of the substrate 10 to be processed.
  • the diameter of the first region C1 may be the same as the diameter of the substrate 10 to be processed, but may be smaller than the diameter of the substrate 10 to be processed as shown in FIG.
  • the diameter of the f ⁇ lens 275 can be set smaller than the radius of the substrate 10 to be processed. Therefore, the cost of the f ⁇ lens 275 can be reduced.
  • the diameter of the first region C1 is the same as the diameter of the substrate 10 to be processed, the diameter of the f ⁇ lens 275 is larger than the radius of the substrate 10 to be processed. However, in this case, since the linear movement of the substrate holding unit 261 described later is unnecessary, the parallel movement mechanism unit 262 is unnecessary.
  • control device 300 moves the substrate holder 261 in the linear movement direction (for example, the X-axis direction) of the laser beam LB3 when the gettering layer 55 is formed in the first region C1.
  • control device 300 rotates and moves the substrate holding unit 261 and reciprocally moves the laser beam LB3 in the radial direction of the substrate to be processed 10 held by the substrate holding unit 261.
  • a gettering layer 55 is formed in the two regions C2.
  • the rotational movement mechanism unit 265 may rotate the substrate holding unit 261 one or more times, or may rotate a plurality of times. Meanwhile, the scanning mechanism 271 reciprocates the laser beam LB3 a plurality of times between the inner periphery position of the second region C2 and the outer periphery position of the second region C2.
  • the scanning mechanism 271 linearly moves the laser beam LB3 on the target substrate 10 held by the substrate holding unit 261.
  • the linear movement direction may be the same as the linear movement direction when the gettering layer 55 is formed in the first region C1.
  • the scanning mechanism 271 only needs to have one set of the galvano mirror 273 and the galvano motor 274. Therefore, the structure of the scan mechanism 271 can be simplified.
  • the control device 300 executes control to decrease the rotation speed of the substrate holding unit 261 as the irradiation point 60 of the laser beam LB3 is further away from the center of the substrate 10 to be processed. Or the control apparatus 300 performs control which makes the moving speed of the irradiation point 60 slow, so that the irradiation point 60 of the laser beam LB3 leaves
  • FIG. The control device 300 performs at least one control among the control of the number of rotations of the substrate holding unit 261 and the control of the moving speed of the irradiation point 60.
  • the integrated irradiation amount of the laser beam LB3 per unit area in the second region C2 can be made uniform, and a uniform gettering layer 55 can be formed in the second region C2.
  • the integrated irradiation amount of the laser beam LB3 per unit area in the second region C2 may be the same as the integrated irradiation amount of the laser beam LB3 per unit area in the first region C1.
  • a uniform gettering layer 55 can be formed on the entire substrate 10 to be processed.
  • the second region C2 is an annular region that is concentric with the first region C1.
  • the outer diameter of the second region C2 may be the same as the diameter of the substrate to be processed 10 as shown in FIG. 14, but may be smaller than the diameter of the substrate to be processed 10.
  • the third region is set outside the second region C2.
  • the third region is a concentric annular region with the first region C1 and the second region C2.
  • the control device 300 forms the gettering layer 55 in the third region, similarly to the second region C2.
  • the gettering layer 55 is formed in the second region C2 after the gettering layer 55 is formed in the first region C1, but the order may be reversed. That is, the control device 300 may form the gettering layer 55 in the first region C1 after forming the gettering layer 55 in the second region C2.
  • FIG. 15 is a plan view showing a substrate processing system according to a modification.
  • a thinning apparatus 220 of the substrate processing system 1 shown in FIG. 15 includes a laser processing apparatus 510 and a thinning dividing apparatus 520.
  • the laser processing apparatus 510 forms a condensing point P of the laser beam LB4 on the first division planned surface S1 in the thickness direction of the substrate 10 to be processed, and the first modified layer at the condensing point P. M1 is formed.
  • the thinning dividing apparatus 520 divides the substrate 10 to be processed on the first division planned surface S ⁇ b> 1. As a result, the substrate 10 to be processed is thinned.
  • FIG. 16 is a side view showing an example of the laser processing apparatus shown in FIG.
  • the substrate 10 to be processed is a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer.
  • a device layer 71 is formed in advance as shown in FIG.
  • the device layer 71 is, for example, an electronic circuit.
  • the main surface on which the device layer 71 of the substrate 10 is formed is also referred to as the first main surface 11.
  • the main surface opposite to the first main surface 11 is also referred to as a second main surface 12.
  • the second main surface 12 approaches the first main surface 11 by thinning the substrate 10 to be processed.
  • An oxide layer 72 is formed on the surface of the device layer 71 opposite to the substrate 10 to be processed.
  • the oxide layer 72 is formed smaller than the diameter of the substrate to be processed 10 in order to smoothly remove the bevel 19 of the substrate to be processed 10.
  • the bevel 19 is a portion that has been chamfered.
  • the oxide layer 72 is a silicon oxide layer, for example.
  • the silicon oxide layer is made of, for example, tetraethyl orthosilicate (TEOS).
  • the support substrate 20 is a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer, like the substrate 10 to be processed. Note that the support substrate 20 may be a glass substrate. The support substrate 20 is bonded to the substrate to be processed 10 via the device layer 71.
  • An oxide layer 73 is formed on the surface of the support substrate 20 facing the device layer 71.
  • the oxide layer 73 is formed in the same manner as the oxide layer 72.
  • a device layer (not shown) may be formed between the oxide layer 73 and the support substrate 20.
  • the polymerization substrate 30 includes a substrate to be processed 10, a device layer 71, two oxide layers 72 and 73, and a support substrate 20.
  • the two oxide layers 72 and 73 are combined by heat treatment.
  • the laser processing apparatus 510 collects and irradiates the laser beam LB4 into the substrate to be processed 10 from the side opposite to the device layer 71 (for example, the upper side).
  • the laser beam LB4 is pulse-oscillated and forms a modified layer at the position of the condensing point P.
  • the substrate 10 to be processed is single crystal silicon
  • infrared rays are used as the laser beam LB4.
  • Infrared rays have high permeability to single crystal silicon, and an amorphous silicon layer is formed as a modified layer at the position of the infrared condensing point P.
  • the modified layer is a starting point for dividing the substrate 10 to be processed.
  • the substrate 10 to be processed is divided by applying stress.
  • the laser processing apparatus 510 forms the first modified layer M1 on the first division planned surface S1 that divides the substrate 10 to be processed in the plate thickness direction.
  • the first division planned surface S1 is a flat surface parallel to the first main surface 11 and the second main surface 12 of the substrate 10 to be processed.
  • the flat surface is concentric with the outer periphery of the substrate 10 to be processed.
  • a plurality of the first modified layers M1 are formed at intervals in the circumferential direction and the radial direction of the first scheduled split surface S1. During the formation of the first modified layer M1, a first crack CR1 that connects the first modified layers M1 is generated.
  • the laser processing apparatus 510 forms the second modified layer M2 on the second division planned surface S2 that divides the substrate to be processed 10 in the radial direction.
  • the second division planned surface S2 is a circumferential surface that is concentric with the outer periphery of the substrate 10 to be processed.
  • a plurality of second modified layers M2 are formed at intervals in the circumferential direction and the plate thickness direction of the substrate 10 to be processed. During the formation of the second modified layer M2, a second crack CR2 that connects the second modified layers M2 occurs.
  • the first modified layer M1 is formed so that the first crack CR1 intersects the second division planned surface S2 and does not reach the outer periphery of the substrate 10 to be processed.
  • the second modified layer M2 is formed such that the second crack CR2 reaches the first main surface 11 and does not reach the second main surface 12.
  • the laser processing apparatus 510 includes a chuck 511, a laser head 514, and an elevating mechanism 517.
  • the chuck 511 holds the target substrate 10 horizontally from below with the second main surface 12 of the target substrate 10 facing upward.
  • the chuck 511 holds the substrate to be processed 10 via the support substrate 20 and the device layer 71.
  • the chuck 511 rotates around a vertical rotation axis 512. Further, the chuck 511 moves along a guide rail 513 extending in the X-axis direction. By rotating and moving the chuck 511, the position of the light condensing point P can be moved in the circumferential direction and the radial direction of the substrate 10 to be processed.
  • the chuck 511 may move in the Y-axis direction instead of rotating around the rotation axis 512. Also in this case, the position of the condensing point P can be moved in the circumferential direction and the radial direction of the substrate 10 to be processed. The chuck 511 may also move in the Z-axis direction. In this case, the position of the condensing point P can also be moved in the thickness direction of the substrate 10 to be processed.
  • the laser head 514 has a condenser lens 515.
  • the condensing lens 515 collects and irradiates the laser beam LB4 inside the substrate to be processed 10 from the side opposite to the device layer 71 (for example, the upper side) with respect to the substrate 10 to be processed, and the first inside the substrate 10 to be processed.
  • the modified layer M1 and the second modified layer M2 are formed.
  • the first modified layer M1 and the second modified layer M2 are formed at the position of the condensing point P.
  • the laser head 514 has a spatial light modulator 516.
  • the spatial light modulator 516 controls the spatial distribution of the laser beam LB4.
  • the spatial distribution includes, for example, phase, polarization plane, amplitude, intensity, and propagation direction.
  • the spatial light modulator 516 includes, for example, LCOS (Liquid Crystal on Silicon).
  • the spatial light modulator 516 can adjust the depth from the second main surface 12 of the substrate to be processed 10 to the condensing point P. Further, the spatial light modulator 516 can adjust at least one of the shape and the number of the laser beams LB4 irradiated on the substrate 10 to be processed.
  • the spatial light modulator 516 can irradiate a plurality of points with the laser beam LB4 simultaneously.
  • the elevating mechanism 517 moves the laser head 514 up and down. Thereby, the depth of the condensing point P can be adjusted.
  • the elevating mechanism 517 may elevate and lower the chuck 511 in order to adjust the depth of the condensing point P.
  • a spatial light modulator 516 and an elevating mechanism 517 are used as an adjusting unit that adjusts the depth of the condensing point P.
  • FIG. 17 is a side view showing an example of the dividing apparatus for thinning shown in FIG.
  • the thinning dividing apparatus 520 includes a first chuck 521 and a second chuck 522.
  • the first chuck 521 holds the target substrate 10 horizontally from below with the second main surface 12 of the target substrate 10 facing upward.
  • the first chuck 521 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10 and sucks the substrate to be processed 10 on the suction surface.
  • the first chuck 521 holds the substrate to be processed 10 via the device layer 71.
  • the support substrate 20 is disposed between the device layer 71 and the first chuck 521.
  • the second chuck 522 sucks the substrate 10 to be processed from the side opposite to the device layer 71.
  • the second chuck 522 has a circular suction surface having a diameter larger than the diameter of the substrate 10 to be processed, and sucks the substrate 10 to be processed on the suction surface.
  • the second chuck 522 can move in the horizontal direction (both in the X-axis direction and the Y-axis direction) and the vertical direction, and can turn around the vertical axis.
  • the second chuck 522 is raised while the second chuck 522 sucks the substrate 10 to be processed from above and the first chuck 521 sucks the substrate 10 to be processed from below.
  • the first crack CR1 spreads in a planar shape, and the adjacent first cracks CR1 are connected to each other.
  • the processing substrate 10 is thinned.
  • the second crack CR2 spreads in a plane shape, and the adjacent second cracks CR2 are connected to each other, so that the substrate to be processed 10 is divided at the second scheduled division surface S2.
  • the bevel 19 is removed from the substrate 10.
  • the second chuck 522 may be raised while rotating around the vertical rotation shaft 523 so as to thread the substrate 10 to be processed by the first division planned surface S1 and the second division planned surface S2.
  • the first chuck 521 may rotate around the rotation shaft 524. Further, the second chuck 522 and the first chuck 521 may rotate in opposite directions.
  • the thin plate forming apparatus 220 may further include a thin plate forming etching apparatus 530 as shown in FIG.
  • the thin plate etching apparatus 530 etches the second main surface 12 divided by the thin plate dividing apparatus 520 of the substrate to be processed 10 and smoothes the second main surface 12.
  • the thinning device 220 may further include a cleaning device (not shown). After the cleaning device is divided by the thinning dividing device 520, and before the thinning etching device 530 is etched, the second main surface 12. May be washed.
  • the thinning device 220 may further include a polishing device 540.
  • the polishing apparatus 540 polishes the second main surface 12 divided by the thinning dividing apparatus 520 of the substrate to be processed 10 and smoothes the second main surface 12.
  • the thinning device 220 may further include a cleaning device (not shown), and the cleaning device cleans the second main surface 12 after dividing by the thinning dividing device 520 and before polishing by the polishing device 540. May be.
  • the thinning device 220 may have only one of the thinning etching device 530 and the polishing device 540 or both. In the latter case, the thin plate etching apparatus 530 and the polishing apparatus 540 may process the substrate to be processed 10 in this order, for example.
  • the thinning device 220 of the present modification simultaneously performs the division on the first scheduled division surface S1 and the division on the second scheduled division surface S2, but the division on the second scheduled division surface S2 is performed first.
  • the second modified layer M2 is formed such that the second crack CR2 reaches both the first main surface 11 and the second main surface 12.
  • the bevel 19 can be removed over the entire thickness direction of the substrate 10 to be processed. Then, the division
  • the part to be removed When the bevel 19 is removed over the entire thickness direction of the substrate 10 to be processed, the part to be removed is ring-shaped, and therefore the part to be removed may be divided into a plurality of arc-shaped pieces in the circumferential direction. . A plurality of arc-shaped divided pieces can be removed radially outward.
  • a third modified layer is formed in advance on the third division planned surface, which is the boundary between the adjacent arc-shaped division pieces. The formation of the third modified layer is performed by the laser beam LB4, similarly to the formation of the first modified layer M1 and the second modified layer M2.
  • the second main surface 12 of the substrate to be processed 10 approaches the first main surface 11 of the substrate to be processed 10 by the division on the first planned division surface S1. As shown in FIG. 17, a part of the first modified layer M ⁇ b> 1 remains on the second main surface 12, and the remaining is the first defect layer 51. Since the substrate 10 to be processed has the first defect layer 51, it is transported in this order by the transport device 280 to the dividing device 240, the etching device 250, and the gettering layer forming device 260 in the same manner as in the above embodiment. ,It is processed. Note that the transfer device 280 is also used to transfer the substrate 10 to be processed between a plurality of devices constituting the thinning device 220.
  • Substrate processing system 10 Substrate 20 Support substrate 30 Superposition substrate 100 Loading / unloading station 200 Processing station 210 Peripheral part processing apparatus 220 Thin plate apparatus 230 Cleaning apparatus 240 Dividing apparatus 250 Etching apparatus 260 Gettering layer forming apparatus 261 Substrate holding part 262 Parallel movement mechanism part 265 Rotation movement mechanism part 270 Optical part 271 Scan mechanism 280 Conveying device 300 Control device 510 Laser processing device 520 Thin plate dividing device 530 Thin plate etching device 540 Polishing device

Abstract

A substrate processing system comprising: a thickness-reducing device that reduces the thickness of a substrate to be processed; a segmenting device that segments the reduced-thickness substrate to be processed into a plurality of chips; an etching device that etches the reduced-thickness surface of the chip and the segmented surface of the chip; a gettering-layer-formation device that forms a gettering layer on the surface of the chip that has been reduced in thickness and etched, or in the interior of the chip at a prescribed depth from the surface of the chip that has been reduced in thickness and etched; a conveying device that conveys the substrate to be processed to the thickness-reducing device, the segmenting device, the etching device, and the gettering-layer-formation device; and a control device that controls the thickness-reducing device, the segmenting device, the etching device, the gettering-layer-forming device, and the conveying device.

Description

基板処理システム、および基板処理方法Substrate processing system and substrate processing method
 本開示は、基板処理システム、および基板処理方法に関する。 The present disclosure relates to a substrate processing system and a substrate processing method.
 特許文献1の半導体デバイスの製造方法は、薄型化工程と、裏面研磨工程と、重金属捕獲層形成工程と、ダイシング工程とをこの順で有する。薄型化工程は、表面に半導体素子が形成されたシリコン基板の一部を裏面側から除去することにより、シリコン基板の厚みを100μm以下とする。裏面研磨工程は、薄型化されたシリコン基板の裏面を研磨する。重金属捕獲層形成工程は、シリコン基板の裏面側の一部あるいは全面にレーザー光を照射することにより重金属捕獲層を形成する。ダイシング工程は、シリコン基板をチップに個片化する。 The semiconductor device manufacturing method of Patent Document 1 includes a thinning process, a back surface polishing process, a heavy metal capture layer forming process, and a dicing process in this order. In the thinning step, a part of the silicon substrate having a semiconductor element formed on the front surface is removed from the back surface side, so that the thickness of the silicon substrate is 100 μm or less. In the back surface polishing step, the back surface of the thinned silicon substrate is polished. In the heavy metal capturing layer forming step, a heavy metal capturing layer is formed by irradiating a part or the entire surface of the back surface side of the silicon substrate with laser light. In the dicing process, the silicon substrate is divided into chips.
日本国特開2011-3576号公報Japanese Unexamined Patent Publication No. 2011-3576
 本開示の一態様は、チップの抗折強度およびチップの清浄度を向上でき、且つチップの特性不良を低減できる技術を提供する。 One embodiment of the present disclosure provides a technique capable of improving the bending strength of the chip and the cleanliness of the chip, and reducing the defective characteristics of the chip.
 本開示の一態様に係る基板処理システムは、
 被処理基板を薄板化する薄板化装置と、
 前記薄板化された前記被処理基板を複数のチップに分割する分割装置と、
 前記チップの前記薄板化された面と前記チップの前記分割された面との両方の面をエッチングするエッチング装置と、
 前記チップの前記薄板化され且つ前記エッチングされた面、または当該面から所定の深さの前記チップの内部に、ゲッタリング層を形成するゲッタリング層形成装置と、
 前記薄板化装置、前記分割装置、前記エッチング装置および前記ゲッタリング層形成装置に対し、前記被処理基板を搬送する搬送装置と、
 前記薄板化装置、前記分割装置、前記エッチング装置、前記ゲッタリング層形成装置、および前記搬送装置を制御する制御装置とを備える。
A substrate processing system according to an aspect of the present disclosure includes:
A thinning device for thinning the substrate to be processed;
A dividing device for dividing the thinned substrate to be processed into a plurality of chips;
An etching apparatus for etching both the thinned surface of the chip and the divided surface of the chip;
A gettering layer forming apparatus for forming a gettering layer in the chip at a predetermined depth from the thinned and etched surface of the chip or from the surface;
A transport device that transports the substrate to be processed to the thinning device, the dividing device, the etching device, and the gettering layer forming device;
A control device that controls the thinning device, the dividing device, the etching device, the gettering layer forming device, and the transfer device.
 本開示の一態様によれば、チップの抗折強度およびチップの清浄度を向上でき、且つチップの特性不良を低減できる。 According to one aspect of the present disclosure, the bending strength of the chip and the cleanliness of the chip can be improved, and the defective characteristics of the chip can be reduced.
図1は、一実施形態に係る基板処理システムを示す平面図である。FIG. 1 is a plan view showing a substrate processing system according to an embodiment. 図2は、一実施形態に係る基板処理方法を示すフローチャートである。FIG. 2 is a flowchart illustrating a substrate processing method according to an embodiment. 図3は、一実施形態に係る外周部加工装置を示す側面図である。FIG. 3 is a side view showing an outer peripheral portion processing apparatus according to an embodiment. 図4は、一実施形態に係る外周部加工装置によって加工された被処理基板を示す平面図であるFIG. 4 is a plan view showing a substrate to be processed that has been processed by the outer peripheral portion processing apparatus according to the embodiment. 図5は、一実施形態に係る薄板化装置の1次加工ユニットの加工途中の状態を示す側面図である。FIG. 5 is a side view showing a state during the processing of the primary processing unit of the thinning device according to the embodiment. 図6は、一実施形態に係る分割装置を示す側面図である。FIG. 6 is a side view showing a dividing apparatus according to an embodiment. 図7は、一実施形態に係るエッチング装置を示す側面図である。FIG. 7 is a side view showing an etching apparatus according to an embodiment. 図8は、一実施形態に係るゲッタリング層形成装置を示す側面図である。FIG. 8 is a side view showing a gettering layer forming apparatus according to an embodiment. 図9は、一実施形態に係るゲッタリング層形成装置を示す平面図である。FIG. 9 is a plan view showing a gettering layer forming apparatus according to an embodiment. 図10は、一実施形態に係る被処理基板の一部にゲッタリング層を形成する時の状態を示す平面図である。FIG. 10 is a plan view showing a state when a gettering layer is formed on a part of a substrate to be processed according to an embodiment. 図11は、一実施形態に係る被処理基板の他の一部にゲッタリング層を形成する時の状態を示す平面図である。FIG. 11 is a plan view showing a state when a gettering layer is formed on another part of the substrate to be processed according to the embodiment. 図12は、スキャン機構の制御の一例を示す平面図である。FIG. 12 is a plan view illustrating an example of control of the scanning mechanism. 図13は、スキャン機構の制御の別の一例を示す平面図である。FIG. 13 is a plan view showing another example of control of the scanning mechanism. 図14は、変形例に係る被処理基板にゲッタリング層を形成する時の状態を示す図である。FIG. 14 is a diagram illustrating a state when a gettering layer is formed on a substrate to be processed according to a modification. 図15は、変形例に係る基板処理システムを示す平面図である。FIG. 15 is a plan view showing a substrate processing system according to a modification. 図16は、図15に示すレーザー加工装置の一例を示す側面図である。FIG. 16 is a side view showing an example of the laser processing apparatus shown in FIG. 図17は、図15に示す薄板化用分割装置の一例を示す側面図である。FIG. 17 is a side view showing an example of the dividing apparatus for thinning shown in FIG.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の又は対応する符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof may be omitted.
 図1は、一実施形態に係る基板処理システムを示す平面図である。図1において、X軸方向、Y軸方向、Z軸方向は互いに垂直な方向であり、X軸方向およびY軸方向は水平方向、Z軸方向は鉛直方向である。鉛直軸を回転中心とする回転方向をθ方向とも呼ぶ。本明細書において、下方とは鉛直下方を意味し、上方とは鉛直上方を意味する。 FIG. 1 is a plan view showing a substrate processing system according to an embodiment. In FIG. 1, the X-axis direction, the Y-axis direction, and the Z-axis direction are directions perpendicular to each other, the X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction. The rotation direction with the vertical axis as the center of rotation is also called the θ direction. In this specification, “lower” means vertically downward, and “upper” means vertically upward.
 基板処理システム1は、被処理基板10を収容するカセット101~103が搬入出される搬入出ステーション100と、被処理基板10を処理する処理ステーション200とを有する。搬入出ステーション100と処理ステーション200とは、この順で、X軸方向負側からX軸方向正側に並べて配置される。 The substrate processing system 1 includes a loading / unloading station 100 for loading and unloading cassettes 101 to 103 for storing the substrate to be processed 10 and a processing station 200 for processing the substrate to be processed 10. The loading / unloading station 100 and the processing station 200 are arranged in this order from the X-axis direction negative side to the X-axis direction positive side.
 搬入出ステーション100は、カセット台110と、搬送領域120と、基板台130とを有する。カセット台110と、搬送領域120と、基板台130とは、この順で、X軸方向負側からX軸方向正側に並べて配置される。 The loading / unloading station 100 includes a cassette table 110, a transfer area 120, and a substrate table 130. The cassette table 110, the transfer region 120, and the substrate table 130 are arranged in this order from the X axis direction negative side to the X axis direction positive side.
 カセット台110は、複数(例えば3つ)の載置板111~113を含む。複数の載置板111~113は、Y軸方向に間隔をおいて一列に並ぶ。 The cassette stand 110 includes a plurality of (for example, three) placement plates 111 to 113. The plurality of mounting plates 111 to 113 are arranged in a line at intervals in the Y-axis direction.
 載置板111にはカセット101が載置される。カセット101は、処理前の被処理基板10を収容する。被処理基板10は、シリコンウエハなどの半導体基板であって、図3等に示すように、互いに対向する第1主表面11と第2主表面12とを有する。 The cassette 101 is placed on the placement plate 111. The cassette 101 accommodates the substrate 10 to be processed before processing. The substrate 10 to be processed is a semiconductor substrate such as a silicon wafer, and has a first main surface 11 and a second main surface 12 facing each other as shown in FIG.
 被処理基板10の第1主表面11は、図4に示すように、格子状に形成された複数のストリートで、複数のチップ領域13に区画される。複数のチップ領域13のそれぞれには、予め素子、回路、端子などのデバイスが形成される。 As shown in FIG. 4, the first main surface 11 of the substrate to be processed 10 is partitioned into a plurality of chip regions 13 by a plurality of streets formed in a lattice shape. Devices such as elements, circuits, and terminals are formed in advance in each of the plurality of chip regions 13.
 複数のチップ領域13を区画するストリートには、分割予定線14が設定される。分割予定線14は、被処理基板10を複数のチップ40(図9参照)に分割する予定線である。チップ領域13は、チップ40が得られる領域である。 A planned dividing line 14 is set on a street that divides a plurality of chip areas 13. The planned dividing line 14 is a planned line that divides the substrate 10 to be processed into a plurality of chips 40 (see FIG. 9). The chip area 13 is an area where the chip 40 is obtained.
 被処理基板10の第1主表面11は、図3等に示すように、接着剤22を介して支持基板20と接合され、支持基板20で覆われる。被処理基板10と、接着剤22と、支持基板20とで重合基板30が構成される。 The first main surface 11 of the substrate to be processed 10 is joined to the support substrate 20 via the adhesive 22 and covered with the support substrate 20 as shown in FIG. The substrate to be processed 10, the adhesive 22, and the support substrate 20 constitute a superposed substrate 30.
 支持基板20は、処理ステーション200による被処理基板10の処理中に、被処理基板10を支持し、被処理基板10の破損を抑制する。支持基板20の厚さは、薄板化された被処理基板10の厚さよりも厚い。また、支持基板20の外径は、被処理基板10の外径よりも大きい。なお、支持基板20の外径は、被処理基板10の外径と同じでもよい。 The support substrate 20 supports the substrate to be processed 10 during the processing of the substrate 10 to be processed by the processing station 200 and suppresses damage to the substrate to be processed 10. The thickness of the support substrate 20 is thicker than the thickness of the processed substrate 10 that has been reduced in thickness. Further, the outer diameter of the support substrate 20 is larger than the outer diameter of the substrate 10 to be processed. The outer diameter of the support substrate 20 may be the same as the outer diameter of the substrate 10 to be processed.
 支持基板20としては、例えばガラス基板または半導体基板が用いられる。ガラス基板または半導体基板の代わりに、樹脂テープが被処理基板10の第1主表面11に貼合される場合に生じる下記の問題を解消できる。樹脂テープは、薄く柔らかいため、被処理基板10を複数のチップ40に分割する時に、被処理基板10と共に分割される虞がある。また、保護テープは、被処理基板10のエッチング時に傷みやすく、被処理基板10のエッチング後に複数のチップ40を間隔をおいて保持できない虞がある。本実施形態によれば、ガラス基板または半導体基板が用いられるため、上記の問題を解消できる。 As the support substrate 20, for example, a glass substrate or a semiconductor substrate is used. The following problems that occur when a resin tape is bonded to the first main surface 11 of the substrate to be processed 10 instead of the glass substrate or the semiconductor substrate can be solved. Since the resin tape is thin and soft, when the substrate 10 to be processed is divided into a plurality of chips 40, there is a possibility that the resin tape may be divided together with the substrate 10 to be processed. Further, the protective tape is easily damaged when the substrate to be processed 10 is etched, and there is a possibility that the plurality of chips 40 cannot be held at intervals after the etching of the substrate 10 to be processed. According to this embodiment, since a glass substrate or a semiconductor substrate is used, the above problem can be solved.
 載置板112にはカセット102が載置される。カセット102は、処理後の被処理基板10のうち良品を収容する。良品は複数のチップ40に分割されており、複数のチップ40は支持基板20によって支持されている。 The cassette 102 is placed on the placement plate 112. The cassette 102 stores non-defective products among the processed substrates 10 after processing. The non-defective product is divided into a plurality of chips 40, and the plurality of chips 40 are supported by the support substrate 20.
 載置板113にはカセット103が載置される。カセット103は、処理後の被処理基板10のうち不良品を収容する。不良品は、処理を途中で中断したものであってもよく、例えば複数のチップ40に分割されていなくてもよい。 The cassette 103 is placed on the placement plate 113. The cassette 103 accommodates defective products among the processed substrates 10 after processing. The defective product may be one in which processing is interrupted in the middle. For example, the defective product may not be divided into a plurality of chips 40.
 搬送領域120は、カセット台110のX軸方向正側に配置される。搬送領域120にはY軸方向に延在するガイドレール121が設置され、ガイドレール121に沿って搬送装置122が移動する。 The transport area 120 is arranged on the positive side in the X-axis direction of the cassette table 110. A guide rail 121 extending in the Y-axis direction is installed in the transport region 120, and the transport device 122 moves along the guide rail 121.
 搬送装置122は、被処理基板10を保持する搬送アーム123を有する。搬送アーム123は、Y軸方向のみならず、X軸方向、Z軸方向およびθ方向にも移動可能とされる。搬送アーム123は、被処理基板10を上下反転させるべく、上下反転可能とされてもよい。 The transfer device 122 includes a transfer arm 123 that holds the substrate 10 to be processed. The transfer arm 123 is movable not only in the Y axis direction but also in the X axis direction, the Z axis direction, and the θ direction. The transfer arm 123 may be turned upside down to turn the substrate 10 to be turned upside down.
 搬送アーム123は、複数のカセット101、102、103のそれぞれの内部に挿入されやすいように、二股に分かれたフォーク形状に形成される。搬送アーム123は、処理前の被処理基板10をカセット台110から基板台130に搬送する。また、搬送アーム123は、処理後の被処理基板10を基板台130からカセット台110に搬送する。 The transfer arm 123 is formed in a fork shape that is divided into two forks so as to be easily inserted into each of the plurality of cassettes 101, 102, and 103. The transfer arm 123 transfers the substrate 10 to be processed before processing from the cassette table 110 to the substrate table 130. The transfer arm 123 transfers the processed substrate 10 after processing from the substrate table 130 to the cassette table 110.
 搬送装置122は、搬送効率向上のため、搬送アーム123を複数有してもよい。例えば、一の搬送アーム123が処理前の被処理基板10を基板台130に載置する間に、別の搬送アーム123が処理後の被処理基板10を基板台130から受け取ることができる。 The transfer device 122 may have a plurality of transfer arms 123 to improve transfer efficiency. For example, while one transfer arm 123 places the substrate 10 to be processed on the substrate stage 130, another transfer arm 123 can receive the processed substrate 10 after the process from the substrate stage 130.
 基板台130は、処理前の被処理基板10および処理後の被処理基板10を一時的に載置するものである。基板台130は、搬送領域120と処理ステーション200との間に配置される。基板台130は、搬送領域120のX軸方向正側に配置され、処理ステーション200のX軸方向負側に配置される。 The substrate stand 130 temporarily mounts the substrate to be processed 10 before processing and the substrate to be processed 10 after processing. The substrate table 130 is disposed between the transfer area 120 and the processing station 200. The substrate table 130 is disposed on the positive side in the X-axis direction of the transfer region 120 and is disposed on the negative side in the X-axis direction of the processing station 200.
 処理ステーション200は、例えば、外周部加工装置210と、薄板化装置220と、洗浄装置230と、分割装置240と、エッチング装置250と、ゲッタリング層形成装置260とを備える。 The processing station 200 includes, for example, an outer peripheral portion processing device 210, a thinning device 220, a cleaning device 230, a dividing device 240, an etching device 250, and a gettering layer forming device 260.
 外周部加工装置210は、詳しくは後述するが図3に示すように、被処理基板10の外周から径方向内側に向う亀裂の伸展を止める加工を、被処理基板10の外周部に施す。その結果、詳しくは後述するが、被処理基板10の薄板化時に、被処理基板10の外周から径方向内側に向う亀裂の伸展を止めることができ、チップ領域13の破損を抑制できる。 As will be described in detail later, the outer peripheral portion processing apparatus 210 performs processing on the outer peripheral portion of the substrate to be processed 10 as shown in FIG. 3 to stop the extension of cracks from the outer periphery of the substrate to be processed 10 toward the radially inner side. As a result, as will be described in detail later, when the substrate 10 to be processed is thinned, the extension of the crack from the outer periphery of the substrate to be processed 10 to the inside in the radial direction can be stopped, and damage to the chip region 13 can be suppressed.
 薄板化装置220は、詳しくは後述するが図5に示すように、被処理基板10の第2主表面12を研削することにより、被処理基板10を薄板化する。これにより、チップ40を薄型化することができる。薄板化装置220は、被処理基板10の第2主表面12を研削する研削装置である。被処理基板10の第2主表面12には、例えば回転砥石224との接触によって第1欠陥層51が形成される。 As will be described in detail later, the thinning device 220 thins the substrate 10 to be processed by grinding the second main surface 12 of the substrate 10 to be processed as shown in FIG. Thereby, the chip 40 can be thinned. The thin plate device 220 is a grinding device for grinding the second main surface 12 of the substrate 10 to be processed. A first defect layer 51 is formed on the second main surface 12 of the substrate 10 to be processed, for example, by contact with the rotating grindstone 224.
 洗浄装置230は、詳しくは後述するが、被処理基板10の薄板化の後、被処理基板10の分割の前に、被処理基板10を洗浄する。これにより、被処理基板10の薄板化で生じる研削屑を、被処理基板10から洗い落とすことができる。 As will be described in detail later, the cleaning apparatus 230 cleans the substrate 10 to be processed after the substrate 10 is thinned and before the substrate 10 is divided. Thereby, grinding scraps generated by thinning the substrate to be processed 10 can be washed away from the substrate 10 to be processed.
 分割装置240は、詳しくは後述するが図6に示すように、薄板化された被処理基板10を複数のチップ40に分割する。複数のチップ40は、例えば格子状の貫通溝18によって区画される(図9参照)。チップ40の第1主表面41は、被処理基板10の第1主表面11である。チップ40の第2主表面42は、被処理基板10の第2主表面12であって、薄板化時に第1欠陥層51が形成された面である。チップ40の端面43は、貫通溝18の側壁面であって、分割時に第2欠陥層52が形成された面である。 As will be described in detail later, the dividing device 240 divides the thinned substrate 10 into a plurality of chips 40 as shown in FIG. The plurality of chips 40 are partitioned by, for example, lattice-shaped through grooves 18 (see FIG. 9). The first main surface 41 of the chip 40 is the first main surface 11 of the substrate 10 to be processed. The second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed, and is a surface on which the first defect layer 51 is formed when the plate is thinned. The end surface 43 of the chip 40 is a side wall surface of the through groove 18 and is a surface on which the second defect layer 52 is formed at the time of division.
 エッチング装置250は、詳しくは後述するが図7に示すように、チップ40の第2主表面42とチップ40の端面43との両方をエッチングする。第2主表面42に形成された第1欠陥層51と端面43に形成された第2欠陥層52とをエッチングによって除去できるため、チップ40の抗折強度を向上できる。ここで、抗折強度とは、曲げ試験においてチップ40が破壊に至るまでにチップ40に作用する最大応力のことである。また、第2主表面42に付着したデブリ53をエッチングによって除去できるため、チップ40の清浄度を向上できる。デブリ53は、分割時に生成されるものである。 Etching apparatus 250 etches both second main surface 42 of chip 40 and end face 43 of chip 40 as shown in FIG. Since the first defect layer 51 formed on the second main surface 42 and the second defect layer 52 formed on the end face 43 can be removed by etching, the bending strength of the chip 40 can be improved. Here, the bending strength is the maximum stress that acts on the chip 40 before the chip 40 breaks in the bending test. In addition, since the debris 53 attached to the second main surface 42 can be removed by etching, the cleanliness of the chip 40 can be improved. The debris 53 is generated at the time of division.
 ゲッタリング層形成装置260は、詳しくは後述するが図8に示すように、チップ40の第2主表面42にゲッタリング層55を形成する。ゲッタリング層55は、重金属などの不純物を捕獲するものである。ゲッタリング層55は、エッチング装置250によって除去された第1欠陥層51(図6参照)とは異なり、チップ40の抗折強度をほとんど低下させることなく、不純物を捕獲できる。 The gettering layer forming apparatus 260 forms the gettering layer 55 on the second main surface 42 of the chip 40 as shown in FIG. The gettering layer 55 captures impurities such as heavy metals. Unlike the first defect layer 51 (see FIG. 6) removed by the etching apparatus 250, the gettering layer 55 can capture impurities without substantially reducing the bending strength of the chip 40.
 なお、ゲッタリング層形成装置260は、チップ40の第2主表面42から所定の深さの、チップ40の内部にゲッタリング層55を形成してもよい。この場合も、チップ40の抗折強度をほとんど低下させることなく、不純物を捕獲できる。 Note that the gettering layer forming apparatus 260 may form the gettering layer 55 inside the chip 40 at a predetermined depth from the second main surface 42 of the chip 40. In this case as well, impurities can be captured without substantially reducing the bending strength of the chip 40.
 また、処理ステーション200は、図1に示すように、搬送装置280を備える。搬送装置280は、外周部加工装置210、薄板化装置220、洗浄装置230、分割装置240、エッチング装置250、およびゲッタリング層形成装置260に対し、被処理基板10を搬送する。搬送装置280は、重合基板30を搬送することで、被処理基板10を搬送してよい。搬送中に被処理基板10を支持基板20によって補強でき、搬送中の被処理基板10の破損を低減できる。搬送装置280は、例えば、第1搬送部281と、第2搬送部282とを有する。 Further, the processing station 200 includes a transfer device 280 as shown in FIG. The transfer device 280 transfers the substrate 10 to be processed to the outer peripheral portion processing device 210, the thinning device 220, the cleaning device 230, the dividing device 240, the etching device 250, and the gettering layer forming device 260. The transfer device 280 may transfer the substrate 10 to be processed by transferring the superposed substrate 30. The substrate 10 to be processed can be reinforced by the support substrate 20 during transport, and damage to the substrate 10 being transported can be reduced. The transport device 280 includes, for example, a first transport unit 281 and a second transport unit 282.
 第1搬送部281は、搬送領域283に設置されるガイドレール284に沿って、X軸方向に移動する。第1搬送部281は、被処理基板10を保持する搬送アーム285を有する。第1搬送部281は、搬送効率向上のため、搬送アーム285を複数有してもよい。 The first transport unit 281 moves in the X-axis direction along the guide rail 284 installed in the transport region 283. The first transfer unit 281 includes a transfer arm 285 that holds the substrate 10 to be processed. The first transport unit 281 may include a plurality of transport arms 285 for improving transport efficiency.
 搬送アーム285は、コスト低減のため、搬送アーム123と同様に、二股に分かれたフォーク形状に形成されてよい。搬送アーム285は、被処理基板10の第1主表面11を下に向けて、被処理基板10を吸着する。搬送アーム285は、X軸方向のみならず、Y軸方向、Z軸方向およびθ方向に移動可能とされる。 The transfer arm 285 may be formed in a fork shape that is divided into two forks, similarly to the transfer arm 123, for cost reduction. The transfer arm 285 sucks the target substrate 10 with the first main surface 11 of the target substrate 10 facing down. The transfer arm 285 is movable not only in the X axis direction but also in the Y axis direction, the Z axis direction, and the θ direction.
 搬送領域283のX軸方向負側には、搬入出ステーション100の基板台130が配置される。一方、搬送領域283のX軸方向正側には、外周部加工装置210が配置される。また、搬送領域283のY軸方向正側には、分割装置240とゲッタリング層形成装置260とが配置される。一方、搬送領域283のY軸方向負側には、洗浄装置230と、エッチング装置250とが配置される。 On the negative side in the X-axis direction of the transfer area 283, the substrate table 130 of the carry-in / out station 100 is arranged. On the other hand, an outer peripheral portion processing apparatus 210 is disposed on the positive side in the X-axis direction of the transport region 283. In addition, a dividing device 240 and a gettering layer forming device 260 are arranged on the Y axis direction positive side of the transport region 283. On the other hand, a cleaning device 230 and an etching device 250 are arranged on the Y axis direction negative side of the transfer region 283.
 第1搬送部281は、搬送領域283に隣設される各種の装置に対し、被処理基板10を搬送する。第1搬送部281は、基板台130から外周部加工装置210に被処理基板10を搬送する。また、第1搬送部281は、洗浄装置230から分割装置240に、分割装置240からエッチング装置250に、エッチング装置250からゲッタリング層形成装置260に、ゲッタリング層形成装置260から基板台130に、それぞれ、被処理基板10を搬送する。 The first transport unit 281 transports the substrate 10 to be processed to various apparatuses adjacent to the transport region 283. The first transport unit 281 transports the substrate 10 to be processed from the substrate table 130 to the outer peripheral processing apparatus 210. In addition, the first transport unit 281 is supplied from the cleaning device 230 to the dividing device 240, from the dividing device 240 to the etching device 250, from the etching device 250 to the gettering layer forming device 260, and from the gettering layer forming device 260 to the substrate table 130. Each of the substrates to be processed 10 is transported.
 ところで、詳しくは後述するが、薄板化装置220は、外周部加工装置210のX軸方向正側に配置され、外周部加工装置210を挟んで搬送領域283とは反対側に配置される。そのため、搬送領域283において移動する第1搬送部281に加えて、第2搬送部282が設けられる。 Incidentally, as will be described in detail later, the thinning device 220 is disposed on the X axis direction positive side of the outer peripheral portion processing apparatus 210 and is disposed on the opposite side of the conveyance region 283 across the outer peripheral portion processing apparatus 210. Therefore, in addition to the 1st conveyance part 281 which moves in the conveyance area | region 283, the 2nd conveyance part 282 is provided.
 第2搬送部282の周囲には、外周部加工装置210、薄板化装置220および洗浄装置230が配置される。第2搬送部282は、外周部加工装置210から薄板化装置220に被処理基板10を搬送する。また、第2搬送部282は、薄板化装置220から洗浄装置230に被処理基板10を搬送する。 Around the second transport unit 282, an outer peripheral processing device 210, a thinning device 220, and a cleaning device 230 are arranged. The second transport unit 282 transports the substrate 10 to be processed from the outer peripheral processing device 210 to the thinning device 220. The second transport unit 282 transports the substrate 10 to be processed from the thinning device 220 to the cleaning device 230.
 第2搬送部282は、特に限定されないが、複数のアームを有する多関節ロボットである(図1参照)。多関節ロボットは、被処理基板10を吸着する吸着パッドを先端に有する。吸着パッドの吸着面は下向きとされる。吸着パッドは、被処理基板10の第1主表面11を下に向けて、被処理基板10を上方から吸着する。吸着パッドは、被処理基板10の直径よりも大きい直径の円形の吸着面を有し、その吸着面に被処理基板10を吸着する。吸着パッドは、X軸方向、Y軸方向、Z軸方向およびθ方向に移動可能とされる。 The second transport unit 282 is not particularly limited, but is an articulated robot having a plurality of arms (see FIG. 1). The articulated robot has a suction pad that sucks the substrate 10 to be processed at the tip. The suction surface of the suction pad is directed downward. The suction pad sucks the target substrate 10 from above with the first main surface 11 of the target substrate 10 facing downward. The suction pad has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10 and sucks the substrate to be processed 10 on the suction surface. The suction pad is movable in the X axis direction, the Y axis direction, the Z axis direction, and the θ direction.
 なお、搬送装置280は、本実施形態では第1搬送部281と第2搬送部282とを有するが、第1搬送部281のみを有してもよい。後者の場合、薄板化装置220は搬送領域283に隣設される。 In addition, although the conveying apparatus 280 has the 1st conveying part 281 and the 2nd conveying part 282 in this embodiment, you may have only the 1st conveying part 281. In the latter case, the thinning device 220 is provided adjacent to the transport area 283.
 なお、処理ステーション200において、外周部加工装置210、薄板化装置220、洗浄装置230、分割装置240、エッチング装置250、ゲッタリング層形成装置260の、配置や個数は、任意に選択可能である。 In the processing station 200, the arrangement and number of the outer peripheral portion processing apparatus 210, the thinning apparatus 220, the cleaning apparatus 230, the dividing apparatus 240, the etching apparatus 250, and the gettering layer forming apparatus 260 can be arbitrarily selected.
 基板処理システム1は、制御装置300を備える。制御装置300は、例えばコンピュータで構成され、CPU(Central Processing Unit)301と、メモリなどの記憶媒体302とを備える。記憶媒体302には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御装置300は、記憶媒体302に記憶されたプログラムをCPU301に実行させることにより、基板処理システム1の動作を制御する。また、制御装置300は、入力インターフェース303と、出力インターフェース304とを有する。制御装置300は、入力インターフェース303で外部からの信号を受信し、出力インターフェース304で外部に信号を送信する。 The substrate processing system 1 includes a control device 300. The control device 300 is configured by a computer, for example, and includes a CPU (Central Processing Unit) 301 and a storage medium 302 such as a memory. The storage medium 302 stores a program for controlling various processes executed in the substrate processing system 1. The control device 300 controls the operation of the substrate processing system 1 by causing the CPU 301 to execute a program stored in the storage medium 302. In addition, the control device 300 includes an input interface 303 and an output interface 304. The control device 300 receives a signal from the outside through the input interface 303 and transmits a signal to the outside through the output interface 304.
 かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記憶されていたものであって、その記憶媒体から制御装置300の記憶媒体302にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、例えば、ハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどが挙げられる。なお、プログラムは、インターネットを介してサーバからダウンロードされ、制御装置300の記憶媒体302にインストールされてもよい。 Such a program may be stored in a computer-readable storage medium and may be installed in the storage medium 302 of the control device 300 from the storage medium. Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), and a memory card. The program may be downloaded from a server via the Internet and installed in the storage medium 302 of the control device 300.
 図2は、一実施形態に係る基板処理方法を示すフローチャートである。図2に示す複数の工程は、制御装置300による制御下で実施される。図2に示す複数の工程は、搬入出ステーション100の搬送装置122がカセット台110に載置されたカセット101から被処理基板10を取り出し、取り出した被処理基板10を基板台130に載置すると、開始される。尚、図2に示す複数の工程の順序は特に限定されない。また、図2に示す一部の工程は、実施されなくてもよい。 FIG. 2 is a flowchart showing a substrate processing method according to an embodiment. A plurality of steps shown in FIG. 2 are performed under the control of the control device 300. In the plurality of steps shown in FIG. 2, when the transfer device 122 of the loading / unloading station 100 takes out the substrate 10 to be processed from the cassette 101 placed on the cassette stand 110 and places the taken out substrate 10 on the substrate stand 130. To be started. In addition, the order of the several process shown in FIG. 2 is not specifically limited. Moreover, some processes shown in FIG. 2 may not be performed.
 基板処理方法は、搬送装置280が搬入出ステーション100から被処理基板10を受け取り、処理ステーション200に搬入する工程S101を有する。被処理基板10の第1主表面11には、デバイスが予め形成されている。 The substrate processing method includes a step S101 in which the transfer device 280 receives the substrate 10 to be processed from the loading / unloading station 100 and loads it into the processing station 200. A device is formed in advance on the first main surface 11 of the substrate 10 to be processed.
 基板処理方法は、外周部加工装置210が、被処理基板10の外周から径方向内側に向う亀裂の伸展を止める加工を、被処理基板10の外周部に施す工程S102を有する。その結果、詳しくは後述するが、被処理基板10の薄板化時に、被処理基板10の外周から径方向内側に向う亀裂の伸展を止めることができ、チップ領域13の破損を抑制できる。 The substrate processing method includes a step S102 in which the outer peripheral processing apparatus 210 performs processing on the outer peripheral portion of the substrate to be processed 10 to stop extension of a crack from the outer periphery of the target substrate 10 toward the radially inner side. As a result, as will be described in detail later, when the substrate 10 to be processed is thinned, the extension of the crack from the outer periphery of the substrate to be processed 10 to the inside in the radial direction can be stopped, and damage to the chip region 13 can be suppressed.
 基板処理方法は、薄板化装置220が、被処理基板10の第2主表面12を研削することにより、被処理基板10を薄板化する工程S103を有する。これにより、チップ40を薄型化することができる。被処理基板10の第2主表面12には、例えば回転砥石224との接触によって第1欠陥層51が形成される。 The substrate processing method includes a step S103 in which the thin plate apparatus 220 thins the substrate to be processed 10 by grinding the second main surface 12 of the substrate 10 to be processed. Thereby, the chip 40 can be thinned. A first defect layer 51 is formed on the second main surface 12 of the substrate 10 to be processed, for example, by contact with the rotating grindstone 224.
 基板処理方法は、洗浄装置230が、被処理基板10の薄板化の後、被処理基板10の分割の前に、被処理基板10を洗浄する工程S104を有する。これにより、被処理基板10の薄板化で生じる研削屑を、被処理基板10から洗い落とすことができる。 The substrate processing method includes a step S104 in which the cleaning apparatus 230 cleans the target substrate 10 after the target substrate 10 is thinned and before the target substrate 10 is divided. Thereby, grinding scraps generated by thinning the substrate to be processed 10 can be washed away from the substrate 10 to be processed.
 基板処理方法は、分割装置240が、薄板化された被処理基板10を複数のチップ40に分割する工程S105を有する。複数のチップ40は、例えば格子状の貫通溝18によって区画される。チップ40の第1主表面41は、被処理基板10の第1主表面11である。チップ40の第2主表面42は、被処理基板10の第2主表面12であって、薄板化時に第1欠陥層51が形成された面である。チップ40の端面43は、貫通溝18の側壁面であって、分割時に第2欠陥層52が形成された面である。 The substrate processing method includes a process S105 in which the dividing device 240 divides the thinned substrate 10 into a plurality of chips 40. The plurality of chips 40 are partitioned by, for example, a lattice-shaped through groove 18. The first main surface 41 of the chip 40 is the first main surface 11 of the substrate 10 to be processed. The second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed, and is a surface on which the first defect layer 51 is formed when the plate is thinned. The end surface 43 of the chip 40 is a side wall surface of the through groove 18 and is a surface on which the second defect layer 52 is formed at the time of division.
 基板処理方法は、エッチング装置250が、チップ40の第2主表面42とチップ40の端面43との両方をエッチングする工程S106を有する。第2主表面42に形成された第1欠陥層51と端面43に形成された第2欠陥層52とをエッチングによって除去できるため、チップ40の抗折強度を向上できる。また、第2主表面42に付着したデブリ53をエッチングによって除去できるため、チップ40の清浄度を向上できる。デブリ53は、詳しくは後述するが、分割時に生成され、第2主表面42に付着する。 The substrate processing method includes a step S106 in which the etching apparatus 250 etches both the second main surface 42 of the chip 40 and the end face 43 of the chip 40. Since the first defect layer 51 formed on the second main surface 42 and the second defect layer 52 formed on the end face 43 can be removed by etching, the bending strength of the chip 40 can be improved. In addition, since the debris 53 attached to the second main surface 42 can be removed by etching, the cleanliness of the chip 40 can be improved. Although described in detail later, the debris 53 is generated at the time of division and adheres to the second main surface 42.
 基板処理方法は、ゲッタリング層形成装置260が、チップ40の第2主表面42にゲッタリング層55を形成する工程S107を有する。ゲッタリング層55は、重金属などの不純物を捕獲するものである。ゲッタリング層55は、エッチング装置250によって除去された第1欠陥層51とは異なり、チップ40の抗折強度をほとんど低下させることなく、不純物を捕獲できる。なお、ゲッタリング層55は、チップ40の第2主表面42から所定の深さの、チップ40の内部に形成されてもよい。 The substrate processing method includes a step S107 in which the gettering layer forming apparatus 260 forms the gettering layer 55 on the second main surface 42 of the chip 40. The gettering layer 55 captures impurities such as heavy metals. Unlike the first defect layer 51 removed by the etching apparatus 250, the gettering layer 55 can capture impurities without substantially reducing the bending strength of the chip 40. The gettering layer 55 may be formed inside the chip 40 at a predetermined depth from the second main surface 42 of the chip 40.
 基板処理方法は、搬送装置280が被処理基板10を処理ステーション200から搬入出ステーション100に搬出する工程S108を有する。搬送装置280は、被処理基板10を、搬入出ステーション100の基板台130に載置する。その後、搬入出ステーション100の搬送装置122が、被処理基板10を、基板台130から受け取り、カセット台110に載置されたカセット102またはカセット103に収納する。その後、今回の処理が終了する。 The substrate processing method includes a step S108 in which the transfer apparatus 280 carries the substrate 10 to be carried out from the processing station 200 to the carry-in / out station 100. The transfer device 280 places the substrate 10 to be processed on the substrate stage 130 of the carry-in / out station 100. Thereafter, the transfer device 122 of the loading / unloading station 100 receives the substrate 10 to be processed from the substrate table 130 and stores it in the cassette 102 or the cassette 103 placed on the cassette table 110. Thereafter, the current process ends.
 図3は、一実施形態に係る外周部加工装置を示す側面図である。図3において、破線は、薄板化の完了時における被処理基板10の第2主表面12を示す。図4は、一実施形態に係る外周部加工装置によって加工された被処理基板を示す平面図である。 FIG. 3 is a side view showing an outer peripheral portion processing apparatus according to an embodiment. In FIG. 3, the broken line indicates the second main surface 12 of the substrate to be processed 10 when the thinning is completed. FIG. 4 is a plan view showing a substrate to be processed that has been processed by the outer peripheral processing apparatus according to the embodiment.
 外周部加工装置210は、被処理基板10の外周から径方向内側に向う亀裂の伸展を止める加工を、被処理基板10の外周部に施す。例えば、外周部加工装置210は、被処理基板10の外周から径方向内側に向う亀裂の伸展を止める改質層15を、被処理基板10の外周部に形成する。 The outer peripheral portion processing apparatus 210 performs processing on the outer peripheral portion of the substrate to be processed 10 to stop the extension of the crack from the outer periphery of the target substrate 10 toward the radially inner side. For example, the outer peripheral portion processing apparatus 210 forms the modified layer 15 on the outer peripheral portion of the substrate to be processed 10 that stops the extension of cracks from the outer periphery of the substrate to be processed 10 toward the radially inner side.
 外周部加工装置210は、改質層15を、被処理基板10の外周から径方向内側に一定の距離離れた円環状のラインL1(図4参照)に形成する。改質層15は、ラインL1に連続的に形成されてもよいし、ラインL1に間隔をおいて不連続的に形成されてもよい。円環状のラインL1は、チップ領域13よりも径方向外側に設定される。チップ領域13の破損を抑制するためである。 The outer peripheral portion processing apparatus 210 forms the modified layer 15 in an annular line L1 (see FIG. 4) that is a certain distance away from the outer periphery of the substrate 10 to be processed in the radial direction. The modified layer 15 may be formed continuously in the line L1, or may be formed discontinuously with an interval in the line L1. The annular line L <b> 1 is set on the outer side in the radial direction than the chip region 13. This is to prevent the chip area 13 from being damaged.
 本実施形態によれば、被処理基板10の外周から径方向内側に向けて亀裂が伸展し、亀裂がラインL1に達すると、亀裂の伸展方向が径方向から周方向に変わる。亀裂は強度の弱い方向に伸展しやすいためである。その結果、被処理基板10の外周から径方向内側に向う亀裂の伸展を止めることができ、チップ領域13の破損を抑制できる。 According to the present embodiment, when a crack extends from the outer periphery of the substrate 10 to be processed in the radial direction and the crack reaches the line L1, the extension direction of the crack changes from the radial direction to the circumferential direction. This is because cracks tend to extend in the direction of weak strength. As a result, the extension of the crack from the outer periphery of the substrate to be processed 10 toward the radially inner side can be stopped, and damage to the chip region 13 can be suppressed.
 ここで、被処理基板10の外周から径方向内側に向う亀裂は、例えば、被処理基板10の薄板化時に形成される。被処理基板10の薄板化時には、被処理基板10の外周部にナイフエッジ状の部分16(図3参照)が形成され、この部分16がチッピングしやすいためである。この部分16は、ベベルと呼ばれる部分に形成される。ベベルは、面取り加工が施された部分である。ベベルは、図3ではR面取り加工が施された部分であるが、C面取り加工が施された部分であってもよい。 Here, the cracks directed radially inward from the outer periphery of the substrate 10 to be processed are formed, for example, when the substrate 10 to be processed is thinned. This is because when the substrate 10 to be processed is thinned, a knife edge-shaped portion 16 (see FIG. 3) is formed on the outer peripheral portion of the substrate 10 to be processed, and this portion 16 is easily chipped. This portion 16 is formed in a portion called a bevel. The bevel is a chamfered portion. In FIG. 3, the bevel is a portion subjected to R chamfering, but may be a portion subjected to C chamfering.
 外周部加工装置210は、例えば、加工チャック211と、加工ヘッド212とを有する。加工チャック211は、被処理基板10の第2主表面12を上に向けて、被処理基板10を水平に保持しながら回転する。加工ヘッド212は、加工チャック211に保持されている被処理基板10の第2主表面12に向けて上方からレーザー光線LB1を照射する集光レンズ213を含む。 The outer peripheral portion processing apparatus 210 includes, for example, a processing chuck 211 and a processing head 212. The processing chuck 211 rotates while holding the substrate to be processed 10 horizontally with the second main surface 12 of the substrate to be processed 10 facing upward. The processing head 212 includes a condenser lens 213 that irradiates the laser beam LB1 from above toward the second main surface 12 of the substrate 10 to be processed held by the processing chuck 211.
 集光レンズ213は、レーザー光線LB1を被処理基板10の内部に集光し、被処理基板10の内部に改質層15を形成する。レーザー光線LB1としては、被処理基板10に対し透過性を有するものが用いられる。改質層15は、例えば、被処理基板10の内部を局所的に溶融、固化させることにより形成される。 The condensing lens 213 condenses the laser beam LB1 inside the substrate 10 to be processed, and forms the modified layer 15 inside the substrate 10 to be processed. As the laser beam LB1, one having transparency to the substrate 10 to be processed is used. The modified layer 15 is formed, for example, by locally melting and solidifying the inside of the substrate 10 to be processed.
 改質層15は、被処理基板10の第2主表面12から、予め設定された深さに形成される。深さ方向に異なる位置に、複数の改質層15が形成されてもよい。つまり、複数の改質層15が、深さ方向に間隔をおいて配置されてもよい。 The modified layer 15 is formed to a preset depth from the second main surface 12 of the substrate 10 to be processed. A plurality of modified layers 15 may be formed at different positions in the depth direction. That is, the plurality of modified layers 15 may be arranged at intervals in the depth direction.
 改質層15の深さは、下記のように設定される。被処理基板10の薄板化時には、被処理基板10が回転砥石224(図5参照)で板厚方向に押されるため、改質層15を起点として亀裂17(図5参照)が板厚方向に伸展する。この亀裂17が、薄板化の途中で、被処理基板10の第1主表面11と被処理基板10の薄板化完了時の第2主表面12との両方に達するように、改質層15の深さが設定される。亀裂17が被処理基板10を板厚方向に貫通するため、被処理基板10の板厚方向全体に亘って、被処理基板10の外周から径方向内側に向う亀裂の伸展を止めることができる。 The depth of the modified layer 15 is set as follows. When the substrate 10 is thinned, the substrate 10 is pushed in the plate thickness direction by the rotating grindstone 224 (see FIG. 5), so that the crack 17 (see FIG. 5) starts from the modified layer 15 in the plate thickness direction. Extend. During the thinning, the crack 17 reaches both the first main surface 11 of the substrate to be processed 10 and the second main surface 12 when the thinning of the substrate to be processed 10 is completed. Depth is set. Since the crack 17 penetrates the substrate to be processed 10 in the plate thickness direction, the extension of the crack from the outer periphery of the substrate to be processed 10 to the inside in the radial direction can be stopped over the entire plate thickness direction of the substrate to be processed 10.
 薄板化装置220は、被処理基板10の第2主表面12を研削することにより、被処理基板10を薄板化する。薄板化装置220は、図1に示すように、外周部加工装置210のX軸方向正側に配置され、外周部加工装置210を挟んで搬送領域283とは反対側に配置される。薄板化装置220がカセット台110から遠いため、薄板化装置220で発生する研削屑が処理後の被処理基板10に付着することを抑制できる。 The thin plate apparatus 220 thins the substrate 10 to be processed by grinding the second main surface 12 of the substrate 10 to be processed. As shown in FIG. 1, the thinning device 220 is disposed on the X axis direction positive side of the outer peripheral portion processing apparatus 210, and is disposed on the opposite side of the conveyance region 283 across the outer peripheral portion processing apparatus 210. Since the thin plate forming apparatus 220 is far from the cassette table 110, it is possible to suppress the grinding dust generated by the thin plate forming apparatus 220 from adhering to the substrate 10 after processing.
 薄板化装置220は、例えば、図1に示すように、回転テーブル221と、4つの回転チャック222と、1次加工ユニット223と、2次加工ユニット225と、3次加工ユニット226とを備える。 As shown in FIG. 1, for example, the thinning device 220 includes a rotary table 221, four rotary chucks 222, a primary processing unit 223, a secondary processing unit 225, and a tertiary processing unit 226.
 回転テーブル221は、鉛直軸周りに回転させられる。回転テーブル221の回転中心線の周りには、4つの回転チャック222が等間隔で配設される。4つの回転チャック222のそれぞれは、回転テーブル221と共に回転し、受渡位置D0、1次加工位置D1、2次加工位置D2および3次加工位置D3に移動する。 The rotary table 221 is rotated around the vertical axis. Around the rotation center line of the rotary table 221, four rotary chucks 222 are arranged at equal intervals. Each of the four rotary chucks 222 rotates together with the rotary table 221 and moves to the delivery position D0, the primary machining position D1, the secondary machining position D2, and the tertiary machining position D3.
 受渡位置D0は、第2搬送部282が薄板化前の被処理基板10を回転チャック222に載せる位置と、第2搬送部282が薄板化後の被処理基板10を回転チャック222から受け取る位置とを兼ねる。1次加工位置D1は、1次加工ユニット223が1次加工(例えば1次研削)を行う位置である。2次加工位置D2は、2次加工ユニット225が2次加工(例えば2次研削)を行う位置である。3次加工位置D3は、3次加工ユニット226が3次加工(例えば3次研削)を行う位置である。 The delivery position D0 includes a position where the second transport unit 282 places the substrate 10 to be processed before thinning on the rotary chuck 222, and a position where the second transport unit 282 receives the substrate 10 after thinning from the rotary chuck 222. Doubles as The primary processing position D1 is a position where the primary processing unit 223 performs primary processing (for example, primary grinding). The secondary processing position D2 is a position where the secondary processing unit 225 performs secondary processing (for example, secondary grinding). The tertiary processing position D3 is a position where the tertiary processing unit 226 performs tertiary processing (for example, tertiary grinding).
 4つの回転チャック222は、それぞれの回転中心線を中心に回転自在に、回転テーブル221に取り付けられる。4つの回転チャック222のそれぞれは、保持している被処理基板10が加工ユニットによって加工される間、回転させられる。この間、回転テーブル221の回転は禁止される。 The four rotary chucks 222 are attached to the rotary table 221 so as to be rotatable around the respective rotation center lines. Each of the four rotating chucks 222 is rotated while the substrate 10 to be processed being processed is processed by the processing unit. During this time, the rotation of the turntable 221 is prohibited.
 4つの回転チャック222のそれぞれは、被処理基板10を下方から水平に保持する。4つの回転チャック222のそれぞれは、被処理基板10の直径よりも大きい直径の円形の吸着面を有し、その吸着面に被処理基板10を吸着する。 Each of the four rotating chucks 222 holds the substrate 10 to be processed horizontally from below. Each of the four rotary chucks 222 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10, and sucks the substrate to be processed 10 on the suction surface.
 図5は、一実施形態に係る薄板化装置の1次加工ユニットの加工途中の状態を示す側面図である。図5において、破線は、薄板化の完了時における被処理基板10の第2主表面12を示す。図5に示すように、1次加工ユニット223は、被処理基板10の1次研削を行う。1次加工ユニット223は、回転砥石224を有する。回転砥石224は、回転しながら下降し、回転チャック222と共に回転する被処理基板10の上面(第2主表面12)を研削する。 FIG. 5 is a side view showing a state during the processing of the primary processing unit of the thinning device according to the embodiment. In FIG. 5, a broken line shows the 2nd main surface 12 of the to-be-processed substrate 10 at the time of completion of thickness reduction. As shown in FIG. 5, the primary processing unit 223 performs primary grinding of the substrate 10 to be processed. The primary processing unit 223 has a rotating grindstone 224. The rotating grindstone 224 descends while rotating and grinds the upper surface (second main surface 12) of the substrate 10 to be processed that rotates together with the rotating chuck 222.
 2次加工ユニット225および3次加工ユニット226は、1次加工ユニット223と同様に構成されるので、図示を省略する。但し、2次加工ユニット225の回転砥石の砥粒の平均粒径は、1次加工ユニット223の回転砥石224の砥粒の平均粒径よりも小さい。また、3次加工ユニット226の回転砥石の砥粒の平均粒径は、2次加工ユニット225の回転砥石の砥粒の平均粒径よりも小さい。 Since the secondary processing unit 225 and the tertiary processing unit 226 are configured in the same manner as the primary processing unit 223, illustration is omitted. However, the average grain size of the abrasive grains of the rotary grindstone of the secondary processing unit 225 is smaller than the average grain diameter of the abrasive grains of the rotary grindstone 224 of the primary machining unit 223. Moreover, the average particle diameter of the abrasive grains of the rotary grindstone of the tertiary processing unit 226 is smaller than the average grain diameter of the abrasive grains of the rotary grindstone of the secondary machining unit 225.
 なお、被処理基板10を加工する加工ユニットの数は、3つには限定されず、1つまたは2つでもよいし、4つ以上でもよい。また、回転チャック222の数は、加工ユニットの数よりも1つ多ければよい。 Note that the number of processing units for processing the substrate to be processed 10 is not limited to three, and may be one or two, or four or more. Further, the number of rotating chucks 222 only needs to be one more than the number of processing units.
 薄板化装置220は、被処理基板10を研削する研削ユニットを有していればよい。被処理基板10の第2主表面12には、回転砥石224との接触によって第1欠陥層51が形成される。第1欠陥層51は欠陥を含み、その欠陥がチップ40の抗折強度を低下させる。 The thinning device 220 only needs to have a grinding unit for grinding the substrate 10 to be processed. A first defect layer 51 is formed on the second main surface 12 of the substrate 10 to be processed by contact with the rotating grindstone 224. The first defect layer 51 includes a defect, and the defect reduces the bending strength of the chip 40.
 洗浄装置230は、被処理基板10の薄板化の後、被処理基板10の分割の前に、被処理基板10を洗浄する。これにより、被処理基板10の薄板化で生じる研削屑を、被処理基板10から洗い落とすことができる。 The cleaning apparatus 230 cleans the substrate 10 to be processed after the substrate 10 is thinned and before the substrate 10 is divided. Thereby, grinding scraps generated by thinning the substrate to be processed 10 can be washed away from the substrate 10 to be processed.
 洗浄装置230は、下面洗浄ユニットを有する。下面洗浄ユニットは、被処理基板10の下面(第1主表面11)に接合された支持基板20を洗浄する。下面洗浄ユニットは、例えば、支持基板20に接触するブラシと、ブラシに洗浄液を供給する洗浄液ノズルとを有する。 The cleaning device 230 has a bottom surface cleaning unit. The lower surface cleaning unit cleans the support substrate 20 bonded to the lower surface (first main surface 11) of the substrate 10 to be processed. The lower surface cleaning unit includes, for example, a brush that contacts the support substrate 20 and a cleaning liquid nozzle that supplies a cleaning liquid to the brush.
 下面洗浄ユニットが支持基板20を洗浄する間、第2搬送部282の吸着パッドが被処理基板10の第1主表面11を下に向けて被処理基板10を上方から吸着する。第2搬送部282は、下面洗浄ユニットで洗浄された被処理基板10を、上面洗浄ユニットに搬送する。 While the lower surface cleaning unit cleans the support substrate 20, the suction pad of the second transport unit 282 sucks the substrate to be processed 10 from above with the first main surface 11 of the substrate to be processed 10 facing down. The second transport unit 282 transports the target substrate 10 cleaned by the lower surface cleaning unit to the upper surface cleaning unit.
 なお、下面洗浄ユニットは、第2搬送部282の吸着パッドが被処理基板10を吸着していない間に、第2搬送部282の吸着パッドの吸着面(下面)を洗浄する機能をも有する。 The lower surface cleaning unit also has a function of cleaning the suction surface (lower surface) of the suction pad of the second transport unit 282 while the suction pad of the second transport unit 282 is not sucking the substrate 10 to be processed.
 洗浄装置230は、上面洗浄ユニットを有する。上面洗浄ユニットは、被処理基板10の研削された上面(第2主表面12)を洗浄する。上面洗浄ユニットは、例えば、被処理基板10を下方から保持するスピンチャックと、スピンチャックと共に回転する被処理基板10の上面に洗浄液を供給する洗浄液ノズルとを有する。 The cleaning device 230 has an upper surface cleaning unit. The upper surface cleaning unit cleans the ground upper surface (second main surface 12) of the substrate 10 to be processed. The upper surface cleaning unit includes, for example, a spin chuck that holds the substrate 10 to be processed from below, and a cleaning liquid nozzle that supplies a cleaning liquid to the upper surface of the substrate 10 that rotates together with the spin chuck.
 図6は、一実施形態に係る分割装置を示す側面図である。分割装置240は、薄板化された被処理基板10を複数のチップ40に分割する。分割後のチップ40の第1主表面41にはデバイスが形成されており、分割後のチップ40の第2主表面42には第1欠陥層51が形成されている。分割装置240は、例えば、加工ステージ241と、加工ヘッド242とを有する。 FIG. 6 is a side view showing a dividing apparatus according to an embodiment. The dividing device 240 divides the thinned substrate 10 into a plurality of chips 40. A device is formed on the first main surface 41 of the chip 40 after division, and a first defect layer 51 is formed on the second main surface 42 of the chip 40 after division. The dividing device 240 includes, for example, a processing stage 241 and a processing head 242.
 加工ステージ241は、被処理基板10の第2主表面12を上に向けて、被処理基板10を水平に保持する。加工ステージ241は、支持基板20を介して、被処理基板10を下方から保持する。加工ステージ241は、被処理基板10の直径よりも大きい直径の円形の吸着面を有し、その吸着面に被処理基板10を吸着する。加工ステージ241は、例えばXYθステージであって、X軸方向、Y軸方向およびθ方向に移動可能とされる。 The processing stage 241 holds the target substrate 10 horizontally with the second main surface 12 of the target substrate 10 facing upward. The processing stage 241 holds the substrate 10 to be processed from below via the support substrate 20. The processing stage 241 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10, and sucks the substrate to be processed 10 on the suction surface. The processing stage 241 is, for example, an XYθ stage, and is movable in the X axis direction, the Y axis direction, and the θ direction.
 加工ヘッド242は、被処理基板10の第2主表面12に、レーザー光線LB2を照射する集光レンズ243を有する。集光レンズ243は、例えば、被処理基板10の第2主表面12にレーザー光線LB2を集光し、被処理基板10を板厚方向に貫通する貫通溝18を形成する。レーザー光線LB2としては、被処理基板10に対し吸収性を有するものが用いられる。貫通溝18は、例えば、被処理基板10を局所的に昇華させることにより形成される。 The processing head 242 has a condensing lens 243 that irradiates the second main surface 12 of the substrate 10 to be processed with the laser beam LB2. The condensing lens 243, for example, condenses the laser beam LB2 on the second main surface 12 of the substrate to be processed 10 and forms the through groove 18 penetrating the substrate to be processed 10 in the plate thickness direction. As the laser beam LB2, one having an absorptivity with respect to the substrate to be processed 10 is used. The through groove 18 is formed, for example, by locally sublimating the substrate 10 to be processed.
 分割装置240は、例えば加工ステージ241をX軸方向、Y軸方向およびθ方向に移動させることにより、被処理基板10の上面におけるレーザー光線LB2の照射点を移動させる。レーザー光線LB2の照射点の移動経路は、分割予定線14と一致するように設定される。これにより、複数のチップ40を区画する格子状の貫通溝18が形成される。 The dividing device 240 moves the irradiation point of the laser beam LB2 on the upper surface of the substrate to be processed 10 by moving the processing stage 241 in the X-axis direction, the Y-axis direction, and the θ direction, for example. The moving path of the irradiation point of the laser beam LB2 is set so as to coincide with the planned dividing line 14. As a result, a lattice-like through groove 18 that partitions the plurality of chips 40 is formed.
 分割装置240は、本実施形態ではレーザーダイシング装置であるが、ブレードダイシング装置であってもよい。後者の場合、加工ヘッド242は、円盤状のブレードを回転自在に支持する。ブレードが、被処理基板10を複数のチップ40に分割する。 The dividing device 240 is a laser dicing device in the present embodiment, but may be a blade dicing device. In the latter case, the machining head 242 rotatably supports a disk-shaped blade. The blade divides the substrate to be processed 10 into a plurality of chips 40.
 チップ40の第1主表面41は、被処理基板10の第1主表面11であって、デバイスが形成された面である。チップ40の第2主表面42は、被処理基板10の第2主表面12であって、薄板化装置220によって研削された面である。チップ40の端面43は、分割装置240によって分割された分割面であって、貫通溝18の側壁面である。 The first main surface 41 of the chip 40 is the first main surface 11 of the substrate to be processed 10 and is a surface on which a device is formed. The second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed and is a surface ground by the thinning device 220. The end surface 43 of the chip 40 is a divided surface divided by the dividing device 240 and is a side wall surface of the through groove 18.
 分割装置240がレーザーダイシング装置およびブレードダイシング装置の何れであっても、チップ40の第2主表面42にはデブリ53が付着する。デブリ53は、被処理基板10の分割によって生じるゴミであり、被処理基板10の清浄度を低下させる。分割装置240がレーザーダイシング装置である場合、デブリ53は、被処理基板10の昇華したガスが冷え固まったものである。一方、分割装置240がブレードダイシング装置である場合、デブリ53は、被処理基板10の切削屑である。 The debris 53 adheres to the second main surface 42 of the chip 40 regardless of whether the dividing device 240 is a laser dicing device or a blade dicing device. The debris 53 is dust generated by the division of the substrate 10 to be processed, and reduces the cleanliness of the substrate 10 to be processed. When the dividing device 240 is a laser dicing device, the debris 53 is obtained by cooling and solidifying the sublimated gas of the substrate 10 to be processed. On the other hand, when the dividing device 240 is a blade dicing device, the debris 53 is cutting waste of the substrate 10 to be processed.
 また、分割装置240がレーザーダイシング装置およびブレードダイシング装置の何れであっても、チップ40の端面43には、第2欠陥層52が形成される。第2欠陥層52は欠陥を含み、その欠陥がチップ40の抗折強度を低下させる。分割装置240がレーザーダイシング装置である場合、第2欠陥層52の欠陥はレーザー光線LB3の熱によって形成される。一方、分割装置240がブレードダイシング装置である場合、第2欠陥層52の欠陥はブレードとの接触によって形成される。 In addition, the second defect layer 52 is formed on the end face 43 of the chip 40 regardless of whether the dividing device 240 is a laser dicing device or a blade dicing device. The second defect layer 52 includes a defect, and the defect reduces the bending strength of the chip 40. When the dividing device 240 is a laser dicing device, the defect of the second defect layer 52 is formed by the heat of the laser beam LB3. On the other hand, when the dividing device 240 is a blade dicing device, the defect of the second defect layer 52 is formed by contact with the blade.
 図7は、一実施形態に係るエッチング装置を示す側面図である。エッチング装置250は、チップ40の第2主表面42と、チップ40の端面43との両方をエッチングする。第2主表面42に形成された第1欠陥層51と端面43に形成された第2欠陥層52とをエッチングによって除去できるため、チップ40の抗折強度を向上できる。第1欠陥層51および第2欠陥層52は、少なくとも一部が除去されればよいが、好ましくは全部が除去される。また、第2主表面42に付着したデブリ53をエッチングによって除去できるため、チップ40の清浄度を向上できる。デブリ53は、少なくとも一部が除去されればよいが、好ましくは全部が除去される。 FIG. 7 is a side view showing an etching apparatus according to an embodiment. The etching apparatus 250 etches both the second main surface 42 of the chip 40 and the end face 43 of the chip 40. Since the first defect layer 51 formed on the second main surface 42 and the second defect layer 52 formed on the end face 43 can be removed by etching, the bending strength of the chip 40 can be improved. The first defect layer 51 and the second defect layer 52 may be at least partially removed, but preferably all are removed. In addition, since the debris 53 attached to the second main surface 42 can be removed by etching, the cleanliness of the chip 40 can be improved. The debris 53 may be at least partially removed, but preferably is entirely removed.
 エッチング装置250は、例えばウエットエッチング装置であって、回転チャック251と、エッチング液ノズル252とを有する。回転チャック251は、被処理基板10の第2主表面12(つまり、チップ40の第2主表面42)を上に向けて、被処理基板10を水平に保持しながら回転する。 The etching apparatus 250 is, for example, a wet etching apparatus, and includes a rotary chuck 251 and an etchant nozzle 252. The rotating chuck 251 rotates while holding the substrate to be processed 10 with the second main surface 12 of the substrate to be processed 10 (that is, the second main surface 42 of the chip 40) facing upward.
 エッチング液ノズル252は、回転チャック251と共に回転する被処理基板10の第2主表面12の中心に、エッチング液253を吐出する。エッチング液253は、遠心力によって径方向内側から径方向外側に広がり、被処理基板10の第2主表面12の全体に濡れ広がり、格子状の貫通溝18の内部にも入り込む。エッチング液253は、第2主表面42および端面43をエッチングする。 The etching solution nozzle 252 discharges the etching solution 253 to the center of the second main surface 12 of the substrate to be processed 10 that rotates together with the rotary chuck 251. The etching solution 253 spreads from the radially inner side to the radially outer side by centrifugal force, wets and spreads over the entire second main surface 12 of the substrate to be processed 10, and enters the lattice-shaped through grooves 18. Etching solution 253 etches second main surface 42 and end surface 43.
 エッチング液253は、アルカリ性の水溶液でもよいし、酸性の水溶液でもよい。アルカリ性の水溶液としては、例えばTMAH(水酸化テトラメチルアンモニウム:(CHNOH)水溶液、コリン水溶液が挙げられる。酸性の水溶液としては、フッ酸(HF)水溶液、硝酸(HNO)水溶液、リン酸(HP0)水溶液が挙げられる。 The etching solution 253 may be an alkaline aqueous solution or an acidic aqueous solution. Examples of the alkaline aqueous solution include TMAH (tetramethylammonium hydroxide: (CH 3 ) 4 NOH) aqueous solution and choline aqueous solution. Examples of the acidic aqueous solution include a hydrofluoric acid (HF) aqueous solution, a nitric acid (HNO 3 ) aqueous solution, and a phosphoric acid (H 3 P0 4 ) aqueous solution.
 エッチング液253は、異方性エッチング溶液でもよいし、等方性エッチング溶液でもよい。 Etching solution 253 may be an anisotropic etching solution or an isotropic etching solution.
 エッチング液253は、複数のエッチング材料を含んでもよく、例えば、フッ酸と硝酸と酢酸(CHCOOH)とを含む水溶液であってもよい。フッ酸と硝酸と酢酸との混合比を調整することで、エッチングレート、エッチングされた面の表面粗さを調整することができる。 The etching solution 253 may include a plurality of etching materials, for example, an aqueous solution including hydrofluoric acid, nitric acid, and acetic acid (CH 3 COOH). By adjusting the mixing ratio of hydrofluoric acid, nitric acid and acetic acid, the etching rate and the surface roughness of the etched surface can be adjusted.
 エッチング装置250は、本実施形態ではウエットエッチング装置であるが、ドライエッチング装置であってもよい。ドライエッチング装置は、プラズマを利用するものでもよいし、プラズマを利用しないものでもよい。 The etching apparatus 250 is a wet etching apparatus in the present embodiment, but may be a dry etching apparatus. The dry etching apparatus may use plasma or may not use plasma.
 プラズマを利用しないドライエッチングの材料としては、例えば、三フッ化塩素(ClF)ガスが用いられる。一方、プラズマを利用するドライエッチングの材料としては、例えば、六フッ化硫黄(SF)ガスと、酸素ガスと、フッ素ガスとの混合ガスが用いられる。 As a dry etching material that does not use plasma, for example, chlorine trifluoride (ClF 3 ) gas is used. On the other hand, as a material for dry etching using plasma, for example, a mixed gas of sulfur hexafluoride (SF 6 ) gas, oxygen gas, and fluorine gas is used.
 図8は、一実施形態に係るゲッタリング層形成装置を示す側面図である。ゲッタリング層形成装置260は、チップ40の第2主表面42に、ゲッタリング層55を形成する。ゲッタリング層55は、不純物を捕獲するゲッタリングサイト(例えば結晶欠陥や歪み)を含む。不純物は、例えば、銅(Cu)、鉄(Fe)、ニッケル(Ni)またはクロム(Cr)などの重金属である。 FIG. 8 is a side view showing a gettering layer forming apparatus according to an embodiment. The gettering layer forming apparatus 260 forms the gettering layer 55 on the second main surface 42 of the chip 40. The gettering layer 55 includes gettering sites (for example, crystal defects and strains) for trapping impurities. The impurities are, for example, heavy metals such as copper (Cu), iron (Fe), nickel (Ni), or chromium (Cr).
 ゲッタリング層55は、例えば、図8に示すように、チップ40の第2主表面42に形成される。チップ40の第2主表面42は、被処理基板10の第2主表面12であって、薄板化装置220によって研削された後にエッチング装置250によってエッチングされた面である。ゲッタリング層55は、不純物を捕獲することで、不純物のデバイスへの拡散を制限し、デバイスの特性不良を低減する。 The gettering layer 55 is formed on the second main surface 42 of the chip 40, for example, as shown in FIG. The second main surface 42 of the chip 40 is the second main surface 12 of the substrate 10 to be processed and is a surface etched by the etching apparatus 250 after being ground by the thinning apparatus 220. The gettering layer 55 captures impurities, thereby limiting the diffusion of impurities into the device and reducing device characteristic defects.
 ゲッタリング層55は、エッチング装置250によって除去された第1欠陥層51とは異なり、チップ40の抗折強度をほとんど低下させることなく、不純物を捕獲できる。なお、第1欠陥層51は、不純物を捕獲できるが、チップ40の抗折強度を大幅に低下させてしまう。 Unlike the first defect layer 51 removed by the etching apparatus 250, the gettering layer 55 can trap impurities without substantially reducing the bending strength of the chip 40. Although the first defect layer 51 can capture impurities, the bending strength of the chip 40 is greatly reduced.
 ゲッタリング層55は、エッチング装置250によって除去された第1欠陥層51とは異なり、被処理基板10を局所的に溶融、固化させることにより形成され、予め定められた位置に均一に形成される。そのため、意図せずに形成される深い傷などがなく、チップ40の抗折強度がほとんど低下しない。 Unlike the first defect layer 51 removed by the etching apparatus 250, the gettering layer 55 is formed by locally melting and solidifying the substrate to be processed 10, and is uniformly formed at a predetermined position. . Therefore, there is no deep flaw formed unintentionally, and the bending strength of the chip 40 is hardly lowered.
 また、ゲッタリング層55は、エッチング装置250によって除去された第2欠陥層52とは異なり、被処理基板10を局所的に昇華させることなく、被処理基板10を局所的に溶融、固化させることにより形成される。そのため、被処理基板10に照射されるレーザー光線LB3の積算照射量が小さく、チップ40の抗折強度がほとんど低下しない。 Further, unlike the second defect layer 52 removed by the etching apparatus 250, the gettering layer 55 locally melts and solidifies the target substrate 10 without locally sublimating the target substrate 10. It is formed by. Therefore, the integrated irradiation amount of the laser beam LB3 applied to the substrate 10 to be processed is small, and the bending strength of the chip 40 hardly decreases.
 なお、本明細書において照射量の単位はJ/mmである。また、積算照射量とは合計の照射量である。 In the present specification, the unit of irradiation amount is J / mm 2 . Further, the integrated irradiation amount is the total irradiation amount.
 ゲッタリング層形成装置260は、例えば、基板保持部261と、平行移動機構部262(図9参照)と、回転移動機構部265(図9参照)と、光源部267と、光学部270とを有する。 The gettering layer forming apparatus 260 includes, for example, a substrate holding unit 261, a parallel movement mechanism unit 262 (see FIG. 9), a rotational movement mechanism unit 265 (see FIG. 9), a light source unit 267, and an optical unit 270. Have.
 基板保持部261は、被処理基板10を保持する。例えば、基板保持部261は、被処理基板10の第2主表面12を上に向けて、被処理基板10を水平に保持する。基板保持部261は、支持基板20を介して、被処理基板10を下方から保持する。 The substrate holding unit 261 holds the substrate to be processed 10. For example, the substrate holding unit 261 holds the target substrate 10 horizontally with the second main surface 12 of the target substrate 10 facing upward. The substrate holding unit 261 holds the substrate 10 to be processed from below via the support substrate 20.
 基板保持部261は、被処理基板10の直径よりも大きい直径の円形の吸着面を有し、その吸着面に被処理基板10を吸着する。基板保持部261は、例えばXYθステージであって、X軸方向、Y軸方向およびθ方向に移動可能とされる。 The substrate holding unit 261 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10 and sucks the substrate to be processed 10 on the suction surface. The substrate holding unit 261 is, for example, an XYθ stage, and is movable in the X axis direction, the Y axis direction, and the θ direction.
 平行移動機構部262は、基板保持部261をX軸方向に移動させるX軸方向移動機構部263を有する。X軸方向移動機構部263は、例えば、回転モータと、回転モータの回転運動を基板保持部261の直線運動に変換するボールねじとを含む。 The parallel movement mechanism unit 262 includes an X-axis direction movement mechanism unit 263 that moves the substrate holding unit 261 in the X-axis direction. The X-axis direction moving mechanism unit 263 includes, for example, a rotary motor and a ball screw that converts the rotary motion of the rotary motor into the linear motion of the substrate holding unit 261.
 平行移動機構部262は、基板保持部261をY軸方向に移動させるY軸方向移動機構部264を有する。Y軸方向移動機構部264は、例えば、回転モータと、回転モータの回転運動を基板保持部261の直線運動に変化するボールねじとを含む。 The parallel movement mechanism unit 262 includes a Y-axis direction movement mechanism unit 264 that moves the substrate holding unit 261 in the Y-axis direction. The Y-axis direction moving mechanism unit 264 includes, for example, a rotary motor and a ball screw that changes the rotary motion of the rotary motor to the linear motion of the substrate holding unit 261.
 回転移動機構部265は、基板保持部261をθ方向に回転移動させる。回転移動機構部265は、例えば、回転モータと、回転モータの回転運動を基板保持部261に伝達するタイミングベルトとを含む。なお、タイミングベルトの代わりに、ギヤなどが用いられてもよい。 The rotation moving mechanism unit 265 rotates the substrate holding unit 261 in the θ direction. The rotational movement mechanism unit 265 includes, for example, a rotation motor and a timing belt that transmits the rotational motion of the rotation motor to the substrate holding unit 261. A gear or the like may be used instead of the timing belt.
 光源部267(図8参照)は、レーザー光線LB3を発振するレーザー発振器である。レーザー光線LB3は、被処理基板10を局所的に溶融、固化させることにより、ゲッタリング層55を形成する。レーザー光線LB3としては、被処理基板10に対し吸収性を有するものが用いられる。 The light source unit 267 (see FIG. 8) is a laser oscillator that oscillates the laser beam LB3. The laser beam LB3 forms the gettering layer 55 by locally melting and solidifying the substrate 10 to be processed. As the laser beam LB3, one having an absorptivity with respect to the substrate to be processed 10 is used.
 光学部270は、基板保持部261に保持されている被処理基板10に、レーザー光線LB3を照射する。被処理基板10の第2主表面12には、レーザー光線LB3の照射点60が形成される。照射点60を移動させることで、照射点60の移動範囲にゲッタリング層55が形成される。 The optical unit 270 irradiates the target substrate 10 held by the substrate holding unit 261 with the laser beam LB3. An irradiation point 60 of the laser beam LB3 is formed on the second main surface 12 of the substrate 10 to be processed. By moving the irradiation point 60, the gettering layer 55 is formed in the movement range of the irradiation point 60.
 光学部270は、被処理基板10におけるレーザー光線LB3の照射点60を移動させるスキャン機構271を有する。基板保持部261を水平に移動させることなく、照射点60を水平に移動させることが可能になる。そのため、基板保持部261の移動範囲を低減でき、ゲッタリング層形成装置260を小型化できる。 The optical unit 270 has a scanning mechanism 271 that moves the irradiation point 60 of the laser beam LB3 on the substrate 10 to be processed. The irradiation point 60 can be moved horizontally without moving the substrate holder 261 horizontally. Therefore, the movement range of the substrate holding part 261 can be reduced, and the gettering layer forming apparatus 260 can be downsized.
 スキャン機構271は、例えば、ガルバノミラーユニット272を含む。ガルバノミラーユニット272は、レーザー光線LB3を反射するガルバノミラー273と、ガルバノミラー273を回転させるガルバノモータ274とを有する。 The scanning mechanism 271 includes, for example, a galvanometer mirror unit 272. The galvanometer mirror unit 272 includes a galvanometer mirror 273 that reflects the laser beam LB3, and a galvano motor 274 that rotates the galvanometer mirror 273.
 スキャン機構271は、制御装置300による制御下で、ガルバノミラー273の回転角を変更することにより、照射点60を水平に移動させる。スキャン機構271は、照射点60をX軸方向とY軸方向との両方向に移動させるため、ガルバノミラー273とガルバノモータ274との組を2組(図8には1組のみ図示)有する。 The scanning mechanism 271 moves the irradiation point 60 horizontally by changing the rotation angle of the galvanometer mirror 273 under the control of the control device 300. The scanning mechanism 271 has two sets of galvanometer mirrors 273 and galvanomotors 274 (only one set is shown in FIG. 8) in order to move the irradiation point 60 in both the X-axis direction and the Y-axis direction.
 なお、スキャン機構271は、ガルバノミラー273の代わりに、ポリゴンミラーを有してもよい。 Note that the scanning mechanism 271 may include a polygon mirror instead of the galvanometer mirror 273.
 スキャン機構271は、fθレンズ275をさらに含む。fθレンズ275は、レーザー光線LB3の照射点60の移動中に、レーザー光線LB3の焦点を一つの平面に置く。fθレンズ275の焦点平面は、例えば、被処理基板10の第2主表面12、つまり、チップ40の第2主表面42に設定される。これにより、チップ40の第2主表面42にゲッタリング層55が形成される。 The scanning mechanism 271 further includes an fθ lens 275. The fθ lens 275 places the focal point of the laser beam LB3 on one plane while the irradiation point 60 of the laser beam LB3 is moving. The focal plane of the fθ lens 275 is set to, for example, the second main surface 12 of the substrate 10 to be processed, that is, the second main surface 42 of the chip 40. As a result, the gettering layer 55 is formed on the second main surface 42 of the chip 40.
 なお、fθレンズ275の焦点平面は、チップ40の第2主表面42から平行にずらして設定されてもよい。例えば、fθレンズ275の焦点平面が、第2主表面42と第1主表面41との間に設定されてもよい。この場合、第2主表面42から所定の深さの位置に、ゲッタリング層55を形成可能である。 It should be noted that the focal plane of the fθ lens 275 may be set so as to be shifted in parallel from the second main surface 42 of the chip 40. For example, the focal plane of the fθ lens 275 may be set between the second main surface 42 and the first main surface 41. In this case, the gettering layer 55 can be formed at a predetermined depth from the second main surface 42.
 fθレンズ275は、テレセントリックレンズを含んでよい。テレセントリックレンズは、fθレンズ275の焦点平面に対し、レーザー光線LB3を垂直に照射する。照射点60の移動中に、照射点60の形状変化を抑制できる。 The fθ lens 275 may include a telecentric lens. The telecentric lens irradiates the laser beam LB3 perpendicularly to the focal plane of the fθ lens 275. While the irradiation point 60 is moving, the shape change of the irradiation point 60 can be suppressed.
 光学部270は、レーザー光線LB3の断面形状を矩形状に形成し、且つレーザー光線LB3の断面強度分布を均一にするホモジナイザー277を有する。照射点60の形状を矩形状に整形でき、且つ照射点60の強度分布を均一化できる。そのため、均一なゲッタリング層55を形成できる。 The optical unit 270 includes a homogenizer 277 that forms the cross-sectional shape of the laser beam LB3 in a rectangular shape and makes the cross-sectional intensity distribution of the laser beam LB3 uniform. The shape of the irradiation point 60 can be shaped into a rectangular shape, and the intensity distribution of the irradiation point 60 can be made uniform. Therefore, a uniform gettering layer 55 can be formed.
 次に、図9等を参照して、ゲッタリング層形成装置260の制御の一例について説明する。図9は、一実施形態に係るゲッタリング層形成装置を示す平面図である。図9に示すように、被処理基板10は、平面視で、周方向に均等に4つに区分けされ、第1分割領域A1、第2分割領域A2、第3分割領域A3および第4分割領域A4に区分けされる。 Next, an example of control of the gettering layer forming apparatus 260 will be described with reference to FIG. FIG. 9 is a plan view showing a gettering layer forming apparatus according to an embodiment. As shown in FIG. 9, the substrate 10 to be processed is equally divided into four in the circumferential direction in plan view, and the first divided area A1, the second divided area A2, the third divided area A3, and the fourth divided area. Divided into A4.
 先ず、図10~図11を参照して、第1分割領域A1にゲッタリング層55を形成する方法について説明する。図10(a)は、一実施形態に係る第1分割領域の一部である第1スキャン領域にゲッタリング層を形成する時の状態を示す平面図である。図10(b)は、一実施形態に係る第1分割領域の一部である第2スキャン領域にゲッタリング層を形成する時の状態を示す図である。図11(a)は、一実施形態に係る第1分割領域の一部である第3スキャン領域にゲッタリング層を形成する時の状態を示す図である。図11(b)は、一実施形態に係る第1分割領域の一部である第4スキャン領域にゲッタリング層を形成する時の状態を示す図である。 First, a method for forming the gettering layer 55 in the first divided region A1 will be described with reference to FIGS. FIG. 10A is a plan view showing a state when the gettering layer is formed in the first scan region that is a part of the first divided region according to the embodiment. FIG. 10B is a diagram illustrating a state when the gettering layer is formed in the second scan region that is a part of the first divided region according to the embodiment. FIG. 11A is a diagram illustrating a state when the gettering layer is formed in the third scan region that is a part of the first divided region according to the embodiment. FIG. 11B is a diagram illustrating a state when the gettering layer is formed in the fourth scan region that is a part of the first divided region according to the embodiment.
 第1分割領域A1は、例えば、第1スキャン領域B1、第2スキャン領域B2、第3スキャン領域B3および第4スキャン領域B4に区分される。第1スキャン領域B1、第2スキャン領域B2、第3スキャン領域B3および第4スキャン領域B4は、それぞれ、平面視でfθレンズ275よりも小さく設定される。 The first divided area A1 is divided into, for example, a first scan area B1, a second scan area B2, a third scan area B3, and a fourth scan area B4. The first scan area B1, the second scan area B2, the third scan area B3, and the fourth scan area B4 are each set smaller than the fθ lens 275 in plan view.
 先ず、制御装置300は、基板保持部261を停止させた状態で、スキャン機構271によって照射点60をX軸方向およびY軸方向に2次元的に移動させることにより、第1スキャン領域B1にゲッタリング層55を形成する。第1スキャン領域B1にゲッタリング層55を形成する間、第1スキャン領域B1は、図10(a)に示すように平面視でfθレンズ275の外周よりも内側に配置される。 First, the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 while the substrate holding unit 261 is stopped, thereby obtaining the getter in the first scan region B1. A ring layer 55 is formed. While the gettering layer 55 is formed in the first scan region B1, the first scan region B1 is arranged on the inner side of the outer periphery of the fθ lens 275 in plan view as shown in FIG.
 次に、制御装置300は、基板保持部261を水平に移動させ、図10(b)に示すように第2スキャン領域B2を平面視でfθレンズ275の外周よりも内側に配置する。続いて、制御装置300は、基板保持部261を停止させた状態で、スキャン機構271によって照射点60をX軸方向およびY軸方向に2次元的に移動させることにより、第2スキャン領域B2にゲッタリング層55を形成する。 Next, the control device 300 moves the substrate holding part 261 horizontally and arranges the second scan region B2 inside the outer periphery of the fθ lens 275 in plan view as shown in FIG. Subsequently, the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 while the substrate holding unit 261 is stopped, so that the second scan region B2 is moved. A gettering layer 55 is formed.
 次に、制御装置300は、基板保持部261を水平に移動させ、図11(a)に示すように第3スキャン領域B3を平面視でfθレンズ275の外周よりも内側に配置する。続いて、制御装置300は、基板保持部261を停止させた状態で、スキャン機構271によって照射点60をX軸方向およびY軸方向に2次元的に移動させることにより、第3スキャン領域B3にゲッタリング層55を形成する。 Next, the control device 300 moves the substrate holding portion 261 horizontally, and arranges the third scan region B3 inside the outer periphery of the fθ lens 275 in plan view as shown in FIG. Subsequently, the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 in a state where the substrate holding unit 261 is stopped, thereby moving to the third scan region B3. A gettering layer 55 is formed.
 最後に、制御装置300は、基板保持部261を水平に移動させ、図11(b)に示すように第4スキャン領域B4を平面視でfθレンズ275の外周よりも内側に配置する。続いて、制御装置300は、基板保持部261を停止させた状態で、スキャン機構271によって照射点60をX軸方向およびY軸方向に2次元的に移動させることにより、第4スキャン領域B4にゲッタリング層55を形成する。 Finally, the control device 300 moves the substrate holder 261 horizontally, and arranges the fourth scan region B4 on the inner side of the outer periphery of the fθ lens 275 in plan view as shown in FIG. Subsequently, the control device 300 moves the irradiation point 60 two-dimensionally in the X-axis direction and the Y-axis direction by the scan mechanism 271 in a state where the substrate holding unit 261 is stopped, thereby moving to the fourth scan region B4. A gettering layer 55 is formed.
 以上説明したように、制御装置300は、基板保持部261を停止させた状態でスキャン機構271によって照射点60を2次元的に移動させる制御と、基板保持部261を平行移動させる制御とを交互に繰り返す。制御装置300は、基板保持部261を平行移動させることにより、基板保持部261に保持されている被処理基板10の、スキャン機構271によって照射点60を2次元的に移動させる領域を切り換える。第1分割領域A1を複数の領域に分け、分けた領域毎にゲッタリング層55を形成する。そのため、fθレンズ275の直径を被処理基板10の半径よりも小さく設定できる。従って、fθレンズ275のコストを削減できる。 As described above, the control device 300 alternates between the control for moving the irradiation point 60 two-dimensionally by the scanning mechanism 271 while the substrate holding unit 261 is stopped and the control for moving the substrate holding unit 261 in parallel. Repeat. The control device 300 switches the region in which the irradiation point 60 is moved two-dimensionally by the scan mechanism 271 of the substrate 10 to be processed held by the substrate holding unit 261 by moving the substrate holding unit 261 in parallel. The first divided region A1 is divided into a plurality of regions, and a gettering layer 55 is formed for each divided region. Therefore, the diameter of the fθ lens 275 can be set smaller than the radius of the substrate 10 to be processed. Therefore, the cost of the fθ lens 275 can be reduced.
 なお、第1分割領域A1にゲッタリング層55を形成する方法は、上記の方法には限定されない。例えば、制御装置300は、基板保持部261を停止させた状態で、スキャン機構271によって照射点60を第1分割領域A1の全体に2次元的に移動させてもよい。この場合、平面視で、第1分割領域A1の全体がfθレンズ275の外周よりも内側に配置できるように、fθレンズ275の直径が大きく設定される。但し、この場合、第1分割領域A1の全体にゲッタリング層55を形成する間に、基板保持部261を平行移動させる必要が無くなる。そのため、平行移動機構部262が不要になり、ゲッタリング層形成装置260の構造を簡易化できる。 Note that the method of forming the gettering layer 55 in the first divided region A1 is not limited to the above method. For example, the control device 300 may two-dimensionally move the irradiation point 60 to the entire first divided area A1 by the scan mechanism 271 with the substrate holding unit 261 stopped. In this case, the diameter of the fθ lens 275 is set to be large so that the entire first divided region A1 can be disposed inside the outer periphery of the fθ lens 275 in plan view. However, in this case, it is not necessary to translate the substrate holding portion 261 while the gettering layer 55 is formed in the entire first divided region A1. Therefore, the parallel movement mechanism unit 262 is not necessary, and the structure of the gettering layer forming apparatus 260 can be simplified.
 制御装置300は、第1分割領域A1にゲッタリング層55を形成した後、基板保持部261を90°回転させる制御を実行する。これにより、スキャン機構271が第2分割領域A2において照射点60を移動させることが可能になる。その後、制御装置300は、第2分割領域A2にゲッタリング層55を形成する制御を実行する。第2分割領域A2にゲッタリング層55を形成する制御は、第1分割領域A1にゲッタリング層55を形成する制御と同様であるので、説明を省略する。 The control device 300 executes the control of rotating the substrate holding part 261 by 90 ° after forming the gettering layer 55 in the first divided area A1. Thereby, the scanning mechanism 271 can move the irradiation point 60 in the second divided region A2. Thereafter, the control device 300 executes control for forming the gettering layer 55 in the second divided region A2. Since the control for forming the gettering layer 55 in the second divided region A2 is the same as the control for forming the gettering layer 55 in the first divided region A1, description thereof is omitted.
 制御装置300は、第2分割領域A2にゲッタリング層55を形成した後、基板保持部261を90°回転させる制御を実行する。これにより、スキャン機構271が第3分割領域A3において照射点60を移動させることが可能になる。その後、制御装置300は、第3分割領域A3にゲッタリング層55を形成する制御を実行する。第3分割領域A3にゲッタリング層55を形成する制御は、第1分割領域A1にゲッタリング層55を形成する制御と同様であるので、説明を省略する。 The control device 300 executes the control of rotating the substrate holding part 261 by 90 ° after forming the gettering layer 55 in the second divided region A2. As a result, the scanning mechanism 271 can move the irradiation point 60 in the third divided region A3. Thereafter, the control device 300 executes control for forming the gettering layer 55 in the third divided region A3. Since the control for forming the gettering layer 55 in the third divided region A3 is the same as the control for forming the gettering layer 55 in the first divided region A1, description thereof is omitted.
 制御装置300は、第3分割領域A3にゲッタリング層55を形成した後、基板保持部261を90°回転させる制御を実行する。これにより、スキャン機構271が第4分割領域A4において照射点60を移動させることが可能になる。その後、制御装置300は、第4分割領域A4にゲッタリング層55を形成する制御を実行する。第4分割領域A4にゲッタリング層55を形成する制御は、第1分割領域A1にゲッタリング層55を形成する制御と同様であるので、説明を省略する。 The control device 300 executes the control of rotating the substrate holding part 261 by 90 ° after forming the gettering layer 55 in the third divided region A3. Thereby, the scanning mechanism 271 can move the irradiation point 60 in the fourth divided region A4. Thereafter, the control device 300 executes control for forming the gettering layer 55 in the fourth divided region A4. Since the control for forming the gettering layer 55 in the fourth divided region A4 is the same as the control for forming the gettering layer 55 in the first divided region A1, description thereof is omitted.
 以上説明したように、制御装置300は、基板保持部261を停止させた状態でスキャン機構271によって照射点60を2次元的に移動させる制御と、基板保持部261を回転移動させる制御とを交互に繰り返す。制御装置300は、基板保持部261を回転移動させることにより、基板保持部261に保持されている被処理基板10の、スキャン機構271によって照射点60を2次元的に移動させる領域を切り換える。被処理基板10を複数の領域に分け、分けた領域毎にゲッタリング層55を形成する。そのため、fθレンズ275の直径を被処理基板10の直径よりも小さく設定できる。従って、fθレンズ275のコストを削減できる。 As described above, the control device 300 alternates between the control for moving the irradiation point 60 two-dimensionally by the scan mechanism 271 and the control for rotating the substrate holding unit 261 while the substrate holding unit 261 is stopped. Repeat. The control device 300 switches the region in which the irradiation point 60 is moved two-dimensionally by the scan mechanism 271 of the substrate 10 to be processed held by the substrate holding unit 261 by rotating the substrate holding unit 261. The substrate 10 to be processed is divided into a plurality of regions, and a gettering layer 55 is formed in each divided region. Therefore, the diameter of the fθ lens 275 can be set smaller than the diameter of the substrate 10 to be processed. Therefore, the cost of the fθ lens 275 can be reduced.
 なお、本実施形態の被処理基板10は、周方向に均等に4つに分割されるが、周方向に均等に2つに分割されてもよい。いずれにしても、fθレンズ275の直径を被処理基板10の直径よりも小さく設定できる。従って、fθレンズ275のコストを削減できる。 In addition, although the to-be-processed substrate 10 of this embodiment is equally divided into four in the circumferential direction, it may be equally divided into two in the circumferential direction. In any case, the diameter of the fθ lens 275 can be set smaller than the diameter of the substrate 10 to be processed. Therefore, the cost of the fθ lens 275 can be reduced.
 次に、図12を参照して、スキャン機構271の制御の一例について説明する。図12は、スキャン機構の制御の一例を示す平面図である。図12(a)は、k(kは1以上の自然数)回目の照射点の形成位置の一例を示す平面図である。図12(b)は、k+1回目の照射点の形成位置の一例を示す平面図である。図12(c)は、k+2回目の照射点の形成位置の一例を示す平面図である。図12(d)は、k+3回目の照射点の形成位置の一例を示す平面図である。図12に示すように、制御装置300は、基板保持部261を停止させた状態で、レーザー光線LB3の照射点60の形成を、照射点60の位置をずらして繰り返し実施する。 Next, an example of control of the scan mechanism 271 will be described with reference to FIG. FIG. 12 is a plan view illustrating an example of control of the scanning mechanism. FIG. 12A is a plan view showing an example of the formation position of the irradiation point k (k is a natural number of 1 or more). FIG. 12B is a plan view showing an example of the formation position of the (k + 1) th irradiation point. FIG. 12C is a plan view showing an example of the formation position of the (k + 2) th irradiation point. FIG. 12D is a plan view showing an example of the formation position of the irradiation point of the (k + 3) th time. As illustrated in FIG. 12, the control device 300 repeatedly performs the formation of the irradiation point 60 of the laser beam LB3 while shifting the position of the irradiation point 60 in a state where the substrate holding unit 261 is stopped.
 本明細書において、照射点60の位置とは、基板保持部261に保持されている被処理基板10における照射点60の位置のことである。制御装置300は、スキャン機構271を制御することで、照射点60の位置を移動させる。 In this specification, the position of the irradiation point 60 is the position of the irradiation point 60 on the substrate 10 to be processed held by the substrate holding unit 261. The control device 300 moves the position of the irradiation point 60 by controlling the scan mechanism 271.
 制御装置300は、レーザー光線LB3の照射点60を形成した状態での、照射点60の位置の移動を禁止する。例えば、制御装置300は、照射点60の位置をずらすときには、光源部267からのレーザー光線LB3の出力を停止させる。 The control device 300 prohibits movement of the position of the irradiation point 60 in a state where the irradiation point 60 of the laser beam LB3 is formed. For example, when the position of the irradiation point 60 is shifted, the control device 300 stops the output of the laser beam LB3 from the light source unit 267.
 制御装置300は、例えば、スキャン機構271を制御することで、矩形状の照射点60の一辺61と平行に、照射点60の形成位置をずらす。k回目とk+1回目とで照射点60の形成位置をずらす量Eは、例えば、一辺61の長さFの半分である。これにより、被処理基板10の同じ位置に、複数回、レーザー光線LB3を照射できる。従って、1回当たりのレーザー光線LB3の照射量を低減でき、チップ40の抗折強度の低下を制限できる。 The control device 300 shifts the formation position of the irradiation point 60 in parallel with one side 61 of the rectangular irradiation point 60, for example, by controlling the scanning mechanism 271. The amount E of shifting the formation position of the irradiation point 60 between the k-th time and the (k + 1) -th time is, for example, half of the length F of the side 61. Thereby, the same position of the substrate 10 can be irradiated with the laser beam LB3 a plurality of times. Therefore, the irradiation amount of the laser beam LB3 per time can be reduced, and the reduction in the bending strength of the chip 40 can be limited.
 次に、図13を参照して、スキャン機構271の制御の別の一例について説明する。図13は、スキャン機構の制御の別の一例を示す平面図である。図13(a)は、k(kは1以上の自然数)回目の照射点の形成位置の一例を示す平面図である。図13(b)は、k+1回目の照射点の形成位置の一例を示す平面図である。図13(c)は、l(lはk+1よりも大きい自然数)回目の照射点の形成位置の一例を示す平面図である。図13(d)は、l+1回目の照射点の形成位置の一例を示す平面図である。図13に示すように、制御装置300は、基板保持部261を停止させた状態で、レーザー光線LB3の照射点60の形成を、照射点60の位置をずらして繰り返し実施する。 Next, another example of control of the scan mechanism 271 will be described with reference to FIG. FIG. 13 is a plan view showing another example of control of the scanning mechanism. FIG. 13A is a plan view showing an example of the formation position of the irradiation point of the kth (k is a natural number of 1 or more). FIG. 13B is a plan view showing an example of the formation position of the (k + 1) th irradiation point. FIG. 13C is a plan view showing an example of the formation position of the irradiation point of the 1st (l is a natural number larger than k + 1) times. FIG. 13D is a plan view showing an example of the formation position of the l + 1th irradiation point. As illustrated in FIG. 13, the control device 300 repeatedly performs the formation of the irradiation point 60 of the laser beam LB3 while shifting the position of the irradiation point 60 in a state where the substrate holding unit 261 is stopped.
 制御装置300は、例えば、スキャン機構271を制御することで、矩形状の照射点60の一辺61と平行に、照射点60の形成位置をずらす。k回目とk+1回目とで照射点60の形成位置をずらす量Eは、例えば、一辺61の長さFと同じである。この場合、ll回目に、k回目と同じ位置に照射点60を形成することで、被処理基板10の同じ位置に、複数回、レーザー光線LB3を照射できる。従って、1回当たりのレーザー光線LB3の照射量を低減でき、チップ40の抗折強度の低下を制限できる。 The control device 300 shifts the formation position of the irradiation point 60 in parallel with one side 61 of the rectangular irradiation point 60, for example, by controlling the scanning mechanism 271. The amount E of shifting the formation position of the irradiation point 60 between the k-th time and the k + 1-th time is the same as the length F of the side 61, for example. In this case, by forming the irradiation point 60 at the same position as the k-th time, the laser beam LB3 can be irradiated multiple times to the same position of the substrate 10 to be processed. Therefore, the irradiation amount of the laser beam LB3 per time can be reduced, and the reduction in the bending strength of the chip 40 can be limited.
 なお、k回目の照射点60の形成位置とl回目の照射点60の形成位置とは、図13では完全に重なっているが、一部重なっていてもよい。例えば、l回目の照射点60の形成位置は、k回目の照射点60の形成位置とk+1回目の照射点60の形成位置との両方にまたがっていてもよい。l回目とl+1回目とで照射点60の形成位置をずらす量Eが一辺61の長さFと同じであればよい。 The formation position of the kth irradiation point 60 and the formation position of the lth irradiation point 60 are completely overlapped in FIG. 13, but may be partially overlapped. For example, the formation position of the first irradiation point 60 may extend over both the formation position of the kth irradiation point 60 and the formation position of the (k + 1) th irradiation point 60. The amount E of shifting the formation position of the irradiation point 60 between the first time and the l + 1th time may be the same as the length F of the side 61.
 以上説明したように、制御装置300は、被処理基板10の同一の領域(例えば図12および図13に斜線で示す領域)に、n(nは2以上の自然数)回、レーザー光線LB3を照射する。これにより、1回当たりのレーザー光線LB3の照射量を低減でき、レーザー光線LB3の照射によるチップ40の抗折強度の低下を制限できる。 As described above, the control device 300 irradiates the laser beam LB3 n times (n is a natural number of 2 or more) times in the same region (for example, a region indicated by hatching in FIGS. 12 and 13) of the substrate 10 to be processed. . Thereby, the irradiation amount of the laser beam LB3 per time can be reduced, and the decrease in the bending strength of the chip 40 due to the irradiation of the laser beam LB3 can be limited.
 制御装置300は、m(mは1以上n-1以下の自然数)回目と、m+1回目とで、所定時間を空けて、被処理基板10の同一の領域に、レーザー光線LB3を照射する。レーザー光線LB3の照射によって加熱された領域を十分に自然冷却したうえで、同じ領域にレーザー光線LB3を照射する。温度上昇によるチップ40の抗折強度の低下を制限できる。 The control device 300 irradiates the same region of the substrate to be processed 10 with the laser beam LB3 at the mth (m is a natural number greater than or equal to 1 and less than or equal to n-1) times and the m + 1th time. The region heated by the irradiation with the laser beam LB3 is sufficiently cooled naturally, and then the same region is irradiated with the laser beam LB3. A decrease in the bending strength of the chip 40 due to the temperature rise can be limited.
 次に、図14を参照して、ゲッタリング層形成装置260の制御の変形例について説明する。なお、本変形例では、図12および図13に示す例とは異なり、制御装置300は、レーザー光線LB3の照射点60を形成した状態で、照射点60の位置を移動させる。図14(a)は、変形例に係る被処理基板の第1領域にゲッタリング層を形成する時の状態を示す図である。図14(b)は、変形例に係る被処理基板の第2領域にゲッタリング層を形成する時の状態を示す図である。 Next, a modified example of the control of the gettering layer forming apparatus 260 will be described with reference to FIG. In this modification, unlike the example shown in FIGS. 12 and 13, the control device 300 moves the position of the irradiation point 60 in a state where the irradiation point 60 of the laser beam LB3 is formed. FIG. 14A is a diagram illustrating a state when a gettering layer is formed in the first region of the substrate to be processed according to the modification. FIG. 14B is a diagram showing a state when a gettering layer is formed in the second region of the substrate to be processed according to the modification.
 先ず、制御装置300は、基板保持部261を回転移動させると共に、基板保持部261に保持されている被処理基板10の径方向(例えばX軸方向)にレーザー光線LB3を往復移動させることにより、被処理基板10の第1領域C1にゲッタリング層55を形成する。 First, the control device 300 rotates and moves the substrate holder 261 and reciprocates the laser beam LB3 in the radial direction (for example, the X-axis direction) of the substrate 10 to be processed held by the substrate holder 261. A gettering layer 55 is formed in the first region C1 of the processing substrate 10.
 回転移動機構部265は、基板保持部261を、1回以上回転すればよく、複数回回転してもよい。その間に、スキャン機構271は、レーザー光線LB3を、被処理基板10の中心位置と、被処理基板10の中心位置から離れた反転位置(第1領域C1の外周の位置)との間で、複数回往復移動させる。 The rotational movement mechanism unit 265 may rotate the substrate holding unit 261 one or more times, or may rotate a plurality of times. In the meantime, the scanning mechanism 271 causes the laser beam LB3 to be emitted a plurality of times between the center position of the substrate 10 to be processed and the reversal position (position on the outer periphery of the first region C1) away from the center position of the substrate to be processed 10 Move back and forth.
 スキャン機構271は、基板保持部261に保持されている被処理基板10上で、レーザー光線LB3を直線移動させればよいため、ガルバノミラー273とガルバノモータ274との組を1組有すればよい。従って、スキャン機構271の構造を簡略化できる。 The scanning mechanism 271 only needs to linearly move the laser beam LB3 on the target substrate 10 held by the substrate holding unit 261. Therefore, the scanning mechanism 271 has only one set of the galvano mirror 273 and the galvano motor 274. Therefore, the structure of the scan mechanism 271 can be simplified.
 制御装置300は、レーザー光線LB3の照射点60が被処理基板10の中心から離れるほど、基板保持部261の回転数を小さくする制御を実行する。または、制御装置300は、レーザー光線LB3の照射点60が被処理基板10の中心から離れるほど、照射点60の移動速さを遅くする制御を実行する。制御装置300は、基板保持部261の回転数の制御と、照射点60の移動速さの制御とのうち、少なくとも1つの制御を実施する。第1領域C1における単位面積当たりのレーザー光線LB3の積算照射量を均一化でき、第1領域C1に均一なゲッタリング層55を形成できる。 The control device 300 executes control to decrease the rotation speed of the substrate holding unit 261 as the irradiation point 60 of the laser beam LB3 is further away from the center of the substrate 10 to be processed. Or the control apparatus 300 performs control which makes the moving speed of the irradiation point 60 slow, so that the irradiation point 60 of the laser beam LB3 leaves | separates from the center of the to-be-processed substrate 10. FIG. The control device 300 performs at least one control among the control of the number of rotations of the substrate holding unit 261 and the control of the moving speed of the irradiation point 60. The integrated dose of the laser beam LB3 per unit area in the first region C1 can be made uniform, and a uniform gettering layer 55 can be formed in the first region C1.
 第1領域C1は、被処理基板10の中心から一定の距離を有する円領域である。第1領域C1の直径は、被処理基板10の直径と同じでもよいが、図14に示すように被処理基板10の直径よりも小さくてよい。 The first region C1 is a circular region having a certain distance from the center of the substrate 10 to be processed. The diameter of the first region C1 may be the same as the diameter of the substrate 10 to be processed, but may be smaller than the diameter of the substrate 10 to be processed as shown in FIG.
 図14に示すように第1領域C1の直径が被処理基板10の直径よりも小さい場合、fθレンズ275の直径を被処理基板10の半径よりも小さく設定できる。従って、fθレンズ275のコストを削減できる。 As shown in FIG. 14, when the diameter of the first region C1 is smaller than the diameter of the substrate 10 to be processed, the diameter of the fθ lens 275 can be set smaller than the radius of the substrate 10 to be processed. Therefore, the cost of the fθ lens 275 can be reduced.
 なお、第1領域C1の直径が被処理基板10の直径と同じ場合、fθレンズ275の直径は被処理基板10の半径よりも大きくなる。但し、この場合、後述の基板保持部261の直線移動が不要であるため、平行移動機構部262が不要になる。 If the diameter of the first region C1 is the same as the diameter of the substrate 10 to be processed, the diameter of the fθ lens 275 is larger than the radius of the substrate 10 to be processed. However, in this case, since the linear movement of the substrate holding unit 261 described later is unnecessary, the parallel movement mechanism unit 262 is unnecessary.
 次に、制御装置300は、第1領域C1にゲッタリング層55を形成するときのレーザー光線LB3の直線移動方向(例えばX軸方向)に、基板保持部261を移動させる。 Next, the control device 300 moves the substrate holder 261 in the linear movement direction (for example, the X-axis direction) of the laser beam LB3 when the gettering layer 55 is formed in the first region C1.
 次に、制御装置300は、基板保持部261を回転移動させると共に、基板保持部261に保持されている被処理基板10の径方向にレーザー光線LB3を往復移動させることにより、被処理基板10の第2領域C2にゲッタリング層55を形成する。 Next, the control device 300 rotates and moves the substrate holding unit 261 and reciprocally moves the laser beam LB3 in the radial direction of the substrate to be processed 10 held by the substrate holding unit 261. A gettering layer 55 is formed in the two regions C2.
 回転移動機構部265は、基板保持部261を、1回以上回転すればよく、複数回回転してもよい。その間に、スキャン機構271は、レーザー光線LB3を、第2領域C2の内周の位置と第2領域C2の外周の位置との間で、複数回往復移動させる。 The rotational movement mechanism unit 265 may rotate the substrate holding unit 261 one or more times, or may rotate a plurality of times. Meanwhile, the scanning mechanism 271 reciprocates the laser beam LB3 a plurality of times between the inner periphery position of the second region C2 and the outer periphery position of the second region C2.
 スキャン機構271は、基板保持部261に保持されている被処理基板10上で、レーザー光線LB3を直線移動させる。その直線移動方向は、第1領域C1にゲッタリング層55を形成する時の直線移動方向と同じであってよい。スキャン機構271は、ガルバノミラー273とガルバノモータ274との組を1組有すればよい。従って、スキャン機構271の構造を簡略化できる。 The scanning mechanism 271 linearly moves the laser beam LB3 on the target substrate 10 held by the substrate holding unit 261. The linear movement direction may be the same as the linear movement direction when the gettering layer 55 is formed in the first region C1. The scanning mechanism 271 only needs to have one set of the galvano mirror 273 and the galvano motor 274. Therefore, the structure of the scan mechanism 271 can be simplified.
 制御装置300は、レーザー光線LB3の照射点60が被処理基板10の中心から離れるほど、基板保持部261の回転数を小さくする制御を実行する。または、制御装置300は、レーザー光線LB3の照射点60が被処理基板10の中心から離れるほど、照射点60の移動速さを遅くする制御を実行する。制御装置300は、基板保持部261の回転数の制御と、照射点60の移動速さの制御とのうち、少なくとも1つの制御を実施する。第2領域C2における単位面積当たりのレーザー光線LB3の積算照射量を均一化でき、第2領域C2に均一なゲッタリング層55を形成できる。 The control device 300 executes control to decrease the rotation speed of the substrate holding unit 261 as the irradiation point 60 of the laser beam LB3 is further away from the center of the substrate 10 to be processed. Or the control apparatus 300 performs control which makes the moving speed of the irradiation point 60 slow, so that the irradiation point 60 of the laser beam LB3 leaves | separates from the center of the to-be-processed substrate 10. FIG. The control device 300 performs at least one control among the control of the number of rotations of the substrate holding unit 261 and the control of the moving speed of the irradiation point 60. The integrated irradiation amount of the laser beam LB3 per unit area in the second region C2 can be made uniform, and a uniform gettering layer 55 can be formed in the second region C2.
 第2領域C2における単位面積当たりのレーザー光線LB3の積算照射量は、第1領域C1における単位面積当たりのレーザー光線LB3の積算照射量と同じであってよい。被処理基板10の全体に、均一なゲッタリング層55を形成できる。 The integrated irradiation amount of the laser beam LB3 per unit area in the second region C2 may be the same as the integrated irradiation amount of the laser beam LB3 per unit area in the first region C1. A uniform gettering layer 55 can be formed on the entire substrate 10 to be processed.
 第2領域C2は、第1領域C1と同心円状の円環領域である。第2領域C2の外径は、図14に示すように被処理基板10の直径と同じでもよいが、被処理基板10の直径よりも小さくてよい。 The second region C2 is an annular region that is concentric with the first region C1. The outer diameter of the second region C2 may be the same as the diameter of the substrate to be processed 10 as shown in FIG. 14, but may be smaller than the diameter of the substrate to be processed 10.
 第2領域C2の直径が被処理基板10の直径よりも小さい場合、第2領域C2の外側に第3領域が設定される。第3領域は、第1領域C1および第2領域C2と、同心円状の円環領域である。この場合、制御装置300は、第2領域C2と同様に、第3領域にゲッタリング層55を形成する。 When the diameter of the second region C2 is smaller than the diameter of the substrate 10 to be processed, the third region is set outside the second region C2. The third region is a concentric annular region with the first region C1 and the second region C2. In this case, the control device 300 forms the gettering layer 55 in the third region, similarly to the second region C2.
 なお、本実施形態では第1領域C1にゲッタリング層55を形成した後、第2領域C2にゲッタリング層55を形成するが、その順番は逆でもよい。つまり、制御装置300は、第2領域C2にゲッタリング層55を形成した後、第1領域C1にゲッタリング層55を形成してもよい。 In this embodiment, the gettering layer 55 is formed in the second region C2 after the gettering layer 55 is formed in the first region C1, but the order may be reversed. That is, the control device 300 may form the gettering layer 55 in the first region C1 after forming the gettering layer 55 in the second region C2.
 以上、本開示に係る基板処理システムおよび基板処理方法の実施形態について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、および組合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 As mentioned above, although embodiment of the substrate processing system and substrate processing method concerning this indication was described, this indication is not limited to the above-mentioned embodiment etc. Various changes, modifications, substitutions, additions, deletions, and combinations can be made within the scope of the claims. Of course, these also belong to the technical scope of the present disclosure.
 図15は、変形例に係る基板処理システムを示す平面図である。図15に示す基板処理システム1の薄板化装置220は、レーザー加工装置510と、薄板化用分割装置520とを有する。レーザー加工装置510は、図16に示すように、被処理基板10の厚さ方向における第1分割予定面S1にレーザー光線LB4の集光点Pを形成し、集光点Pに第1改質層M1を形成する。薄板化用分割装置520は、図17に示すように、被処理基板10を第1分割予定面S1にて分割する。その結果、被処理基板10が薄板化される。 FIG. 15 is a plan view showing a substrate processing system according to a modification. A thinning apparatus 220 of the substrate processing system 1 shown in FIG. 15 includes a laser processing apparatus 510 and a thinning dividing apparatus 520. As shown in FIG. 16, the laser processing apparatus 510 forms a condensing point P of the laser beam LB4 on the first division planned surface S1 in the thickness direction of the substrate 10 to be processed, and the first modified layer at the condensing point P. M1 is formed. As shown in FIG. 17, the thinning dividing apparatus 520 divides the substrate 10 to be processed on the first division planned surface S <b> 1. As a result, the substrate 10 to be processed is thinned.
 図16は、図15に示すレーザー加工装置の一例を示す側面図である。被処理基板10は、例えばシリコンウエハや化合物半導体ウエハなどの半導体基板である。被処理基板10の片面には、図16に示すようにデバイス層71が予め形成される。デバイス層71は、例えば電子回路などである。被処理基板10のデバイス層71が形成される主表面を、第1主表面11とも呼ぶ。また、第1主表面11とは反対側の主表面を、第2主表面12とも呼ぶ。第2主表面12は、被処理基板10の薄板化によって第1主表面11に近づく。 FIG. 16 is a side view showing an example of the laser processing apparatus shown in FIG. The substrate 10 to be processed is a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer. On one side of the substrate 10 to be processed, a device layer 71 is formed in advance as shown in FIG. The device layer 71 is, for example, an electronic circuit. The main surface on which the device layer 71 of the substrate 10 is formed is also referred to as the first main surface 11. The main surface opposite to the first main surface 11 is also referred to as a second main surface 12. The second main surface 12 approaches the first main surface 11 by thinning the substrate 10 to be processed.
 デバイス層71の、被処理基板10と反対側の表面には、酸化層72が形成される。酸化層72は、被処理基板10のベベル19を円滑に除去すべく、被処理基板10の直径よりも小さく形成される。ベベル19とは、面取り加工が施された部分である。酸化層72は、例えば酸化シリコン層である。酸化シリコン層は、例えばオルトケイ酸テトラエチル(TEOS)で形成される。 An oxide layer 72 is formed on the surface of the device layer 71 opposite to the substrate 10 to be processed. The oxide layer 72 is formed smaller than the diameter of the substrate to be processed 10 in order to smoothly remove the bevel 19 of the substrate to be processed 10. The bevel 19 is a portion that has been chamfered. The oxide layer 72 is a silicon oxide layer, for example. The silicon oxide layer is made of, for example, tetraethyl orthosilicate (TEOS).
 支持基板20は、被処理基板10と同様に、シリコンウエハや化合物半導体ウエハなどの半導体基板である。なお、支持基板20は、ガラス基板であってもよい。支持基板20は、デバイス層71を介して被処理基板10と貼合される。 The support substrate 20 is a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer, like the substrate 10 to be processed. Note that the support substrate 20 may be a glass substrate. The support substrate 20 is bonded to the substrate to be processed 10 via the device layer 71.
 支持基板20の、デバイス層71に対向する表面には、酸化層73が形成される。酸化層73は、酸化層72と同様に形成される。なお、酸化層73と支持基板20との間には、不図示のデバイス層が形成されてもよい。 An oxide layer 73 is formed on the surface of the support substrate 20 facing the device layer 71. The oxide layer 73 is formed in the same manner as the oxide layer 72. A device layer (not shown) may be formed between the oxide layer 73 and the support substrate 20.
 重合基板30は、被処理基板10と、デバイス層71と、2つの酸化層72、73と、支持基板20とを有する。2つの酸化層72、73は、加熱処理によって結合される。なお、重合基板30、2つの酸化層72、73のうちの1つのみを有してもよい。 The polymerization substrate 30 includes a substrate to be processed 10, a device layer 71, two oxide layers 72 and 73, and a support substrate 20. The two oxide layers 72 and 73 are combined by heat treatment. In addition, you may have only one of the superposition | polymerization board | substrate 30, and the two oxide layers 72 and 73. FIG.
 レーザー加工装置510は、デバイス層71とは反対側(例えば上側)から被処理基板10の内部にレーザー光線LB4を集光照射する。レーザー光線LB4は、パルス発振され、集光点Pの位置に、改質層を形成する。被処理基板10が単結晶シリコンである場合、レーザー光線LB4として赤外線が用いられる。赤外線は単結晶シリコンに対して高い透過性を有し、赤外線の集光点Pの位置に改質層としてアモルファスシリコン層が形成される。改質層は、被処理基板10の分割の起点になる。被処理基板10の分割は、応力の印加によって行われる。 The laser processing apparatus 510 collects and irradiates the laser beam LB4 into the substrate to be processed 10 from the side opposite to the device layer 71 (for example, the upper side). The laser beam LB4 is pulse-oscillated and forms a modified layer at the position of the condensing point P. When the substrate 10 to be processed is single crystal silicon, infrared rays are used as the laser beam LB4. Infrared rays have high permeability to single crystal silicon, and an amorphous silicon layer is formed as a modified layer at the position of the infrared condensing point P. The modified layer is a starting point for dividing the substrate 10 to be processed. The substrate 10 to be processed is divided by applying stress.
 レーザー加工装置510は、被処理基板10を板厚方向に分割する第1分割予定面S1に、第1改質層M1を形成する。第1分割予定面S1は、被処理基板10の第1主表面11および第2主表面12に対して平行な平坦面である。その平坦面は、被処理基板10の外周と同心円状である。第1改質層M1は、第1分割予定面S1の周方向および径方向に間隔をおいて複数形成される。第1改質層M1の形成時に、第1改質層M1同士をつなぐ第1クラックCR1が生じる。 The laser processing apparatus 510 forms the first modified layer M1 on the first division planned surface S1 that divides the substrate 10 to be processed in the plate thickness direction. The first division planned surface S1 is a flat surface parallel to the first main surface 11 and the second main surface 12 of the substrate 10 to be processed. The flat surface is concentric with the outer periphery of the substrate 10 to be processed. A plurality of the first modified layers M1 are formed at intervals in the circumferential direction and the radial direction of the first scheduled split surface S1. During the formation of the first modified layer M1, a first crack CR1 that connects the first modified layers M1 is generated.
 レーザー加工装置510は、被処理基板10を径方向に分割する第2分割予定面S2に、第2改質層M2を形成する。第2分割予定面S2は、被処理基板10の外周と同心円状の円周面である。第2改質層M2は、被処理基板10の周方向および板厚方向に間隔をおいて複数形成される。第2改質層M2の形成時に、第2改質層M2同士をつなぐ第2クラックCR2が生じる。 The laser processing apparatus 510 forms the second modified layer M2 on the second division planned surface S2 that divides the substrate to be processed 10 in the radial direction. The second division planned surface S2 is a circumferential surface that is concentric with the outer periphery of the substrate 10 to be processed. A plurality of second modified layers M2 are formed at intervals in the circumferential direction and the plate thickness direction of the substrate 10 to be processed. During the formation of the second modified layer M2, a second crack CR2 that connects the second modified layers M2 occurs.
 図16に示すように、例えば、第1改質層M1は、第1クラックCR1が第2分割予定面S2と交差し且つ被処理基板10の外周に達しないように形成される。また、第2改質層M2は、第2クラックCR2が第1主表面11に達し且つ第2主表面12に達しないように形成される。 As shown in FIG. 16, for example, the first modified layer M1 is formed so that the first crack CR1 intersects the second division planned surface S2 and does not reach the outer periphery of the substrate 10 to be processed. The second modified layer M2 is formed such that the second crack CR2 reaches the first main surface 11 and does not reach the second main surface 12.
 レーザー加工装置510は、チャック511と、レーザーヘッド514と、昇降機構517とを有する。チャック511は、被処理基板10の第2主表面12を上に向けて、被処理基板10を下方から水平に保持する。例えば、チャック511は、支持基板20およびデバイス層71を介して被処理基板10を保持する。チャック511は、鉛直な回転軸512の周りに回転する。また、チャック511は、X軸方向に延びるガイドレール513に沿って移動する。チャック511の回転および移動によって、集光点Pの位置を被処理基板10の周方向および径方向に移動できる。 The laser processing apparatus 510 includes a chuck 511, a laser head 514, and an elevating mechanism 517. The chuck 511 holds the target substrate 10 horizontally from below with the second main surface 12 of the target substrate 10 facing upward. For example, the chuck 511 holds the substrate to be processed 10 via the support substrate 20 and the device layer 71. The chuck 511 rotates around a vertical rotation axis 512. Further, the chuck 511 moves along a guide rail 513 extending in the X-axis direction. By rotating and moving the chuck 511, the position of the light condensing point P can be moved in the circumferential direction and the radial direction of the substrate 10 to be processed.
 なお、チャック511は、回転軸512の周りに回転する代わりに、Y軸方向に移動してもよい。この場合も、集光点Pの位置を被処理基板10の周方向および径方向に移動できる。また、チャック511は、Z軸方向にも移動してもよい。この場合、集光点Pの位置を被処理基板10の板厚方向にも移動できる。 Note that the chuck 511 may move in the Y-axis direction instead of rotating around the rotation axis 512. Also in this case, the position of the condensing point P can be moved in the circumferential direction and the radial direction of the substrate 10 to be processed. The chuck 511 may also move in the Z-axis direction. In this case, the position of the condensing point P can also be moved in the thickness direction of the substrate 10 to be processed.
 レーザーヘッド514は、集光レンズ515を有する。集光レンズ515は、被処理基板10を基準としてデバイス層71とは反対側(例えば上側)から、被処理基板10の内部にレーザー光線LB4を集光照射し、被処理基板10の内部に第1改質層M1および第2改質層M2を形成する。第1改質層M1および第2改質層M2は、集光点Pの位置に形成される。 The laser head 514 has a condenser lens 515. The condensing lens 515 collects and irradiates the laser beam LB4 inside the substrate to be processed 10 from the side opposite to the device layer 71 (for example, the upper side) with respect to the substrate 10 to be processed, and the first inside the substrate 10 to be processed. The modified layer M1 and the second modified layer M2 are formed. The first modified layer M1 and the second modified layer M2 are formed at the position of the condensing point P.
 レーザーヘッド514は、空間光変調器516を有する。空間光変調器516は、レーザー光線LB4の空間分布を制御する。空間分布は、例えば位相、偏波面、振幅、強度および伝播方向を含む。空間光変調器516は、例えばLCOS(Liquid Crystal on Silicon)を含む。空間光変調器516は、被処理基板10の第2主表面12から集光点Pまでの深さを調節できる。また、空間光変調器516は、被処理基板10に照射されるレーザー光線LB4の形状および数のうちの少なくとも1つを調節できる。空間光変調器516は、複数の点に同時にレーザー光線LB4を照射できる。 The laser head 514 has a spatial light modulator 516. The spatial light modulator 516 controls the spatial distribution of the laser beam LB4. The spatial distribution includes, for example, phase, polarization plane, amplitude, intensity, and propagation direction. The spatial light modulator 516 includes, for example, LCOS (Liquid Crystal on Silicon). The spatial light modulator 516 can adjust the depth from the second main surface 12 of the substrate to be processed 10 to the condensing point P. Further, the spatial light modulator 516 can adjust at least one of the shape and the number of the laser beams LB4 irradiated on the substrate 10 to be processed. The spatial light modulator 516 can irradiate a plurality of points with the laser beam LB4 simultaneously.
 昇降機構517は、レーザーヘッド514を昇降させる。これにより、集光点Pの深さを調節できる。なお、昇降機構517は、集光点Pの深さを調節すべく、チャック511を昇降してもよい。本変形例では、集光点Pの深さを調節する調節部として、空間光変調器516および昇降機構517が用いられる。 The elevating mechanism 517 moves the laser head 514 up and down. Thereby, the depth of the condensing point P can be adjusted. The elevating mechanism 517 may elevate and lower the chuck 511 in order to adjust the depth of the condensing point P. In this modification, a spatial light modulator 516 and an elevating mechanism 517 are used as an adjusting unit that adjusts the depth of the condensing point P.
 図17は、図15に示す薄板化用分割装置の一例を示す側面図である。薄板化用分割装置520は、第1チャック521と、第2チャック522とを有する。第1チャック521は、被処理基板10の第2主表面12を上に向けて、被処理基板10を下方から水平に保持する。第1チャック521は、被処理基板10の直径よりも大きい直径の円形の吸着面を有し、その吸着面に被処理基板10を吸着する。第1チャック521は、デバイス層71を介して被処理基板10を保持する。デバイス層71と第1チャック521との間には、支持基板20が配置される。 FIG. 17 is a side view showing an example of the dividing apparatus for thinning shown in FIG. The thinning dividing apparatus 520 includes a first chuck 521 and a second chuck 522. The first chuck 521 holds the target substrate 10 horizontally from below with the second main surface 12 of the target substrate 10 facing upward. The first chuck 521 has a circular suction surface having a diameter larger than the diameter of the substrate to be processed 10 and sucks the substrate to be processed 10 on the suction surface. The first chuck 521 holds the substrate to be processed 10 via the device layer 71. The support substrate 20 is disposed between the device layer 71 and the first chuck 521.
 第2チャック522は、被処理基板10を、デバイス層71とは反対側から吸着する。第2チャック522は、被処理基板10の直径よりも大きい直径の円形の吸着面を有し、その吸着面に被処理基板10を吸着する。第2チャック522は、水平方向(X軸方向およびY軸方向の両方向)および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能である。 The second chuck 522 sucks the substrate 10 to be processed from the side opposite to the device layer 71. The second chuck 522 has a circular suction surface having a diameter larger than the diameter of the substrate 10 to be processed, and sucks the substrate 10 to be processed on the suction surface. The second chuck 522 can move in the horizontal direction (both in the X-axis direction and the Y-axis direction) and the vertical direction, and can turn around the vertical axis.
 第2チャック522が被処理基板10を上方から吸着すると共に第1チャック521が被処理基板10を下方から吸着した状態で、第2チャック522が上昇する。これにより、被処理基板10に応力が印可され、第1クラックCR1が面状に広がり、隣り合う第1クラックCR1同士がつながるので、第1分割予定面S1で被処理基板10が分割され、被処理基板10が薄化される。また、被処理基板10に応力が印可され、第2クラックCR2が面状に広がり、隣り合う第2クラックCR2同士がつながるので、第2分割予定面S2で被処理基板10が分割され、被処理基板10からベベル19が除去される。 The second chuck 522 is raised while the second chuck 522 sucks the substrate 10 to be processed from above and the first chuck 521 sucks the substrate 10 to be processed from below. As a result, stress is applied to the substrate 10 to be processed, the first crack CR1 spreads in a planar shape, and the adjacent first cracks CR1 are connected to each other. The processing substrate 10 is thinned. Further, since stress is applied to the substrate 10 to be processed, the second crack CR2 spreads in a plane shape, and the adjacent second cracks CR2 are connected to each other, so that the substrate to be processed 10 is divided at the second scheduled division surface S2. The bevel 19 is removed from the substrate 10.
 第2チャック522は、第1分割予定面S1と第2分割予定面S2とで被処理基板10をねじ切るべく、鉛直な回転軸523を中心に回転しながら、上昇してもよい。なお、第2チャック522の代わりに、第1チャック521が回転軸524を中心に回転してもよい。また、第2チャック522と第1チャック521とが反対向きに回転してもよい。 The second chuck 522 may be raised while rotating around the vertical rotation shaft 523 so as to thread the substrate 10 to be processed by the first division planned surface S1 and the second division planned surface S2. Instead of the second chuck 522, the first chuck 521 may rotate around the rotation shaft 524. Further, the second chuck 522 and the first chuck 521 may rotate in opposite directions.
 薄板化装置220は図15に示すように薄板化用エッチング装置530をさらに有してもよい。薄板化用エッチング装置530は、被処理基板10の薄板化用分割装置520で分割された第2主表面12をエッチングし、その第2主表面12を滑らかにする。薄板化装置220は不図示の洗浄装置をさらに有してもよく、その洗浄装置が薄板化用分割装置520による分割の後、薄板化用エッチング装置530によるエッチングの前に、第2主表面12を洗浄してもよい。 The thin plate forming apparatus 220 may further include a thin plate forming etching apparatus 530 as shown in FIG. The thin plate etching apparatus 530 etches the second main surface 12 divided by the thin plate dividing apparatus 520 of the substrate to be processed 10 and smoothes the second main surface 12. The thinning device 220 may further include a cleaning device (not shown). After the cleaning device is divided by the thinning dividing device 520, and before the thinning etching device 530 is etched, the second main surface 12. May be washed.
 同様に、薄板化装置220は研磨装置540をさらに有してもよい。研磨装置540は、被処理基板10の薄板化用分割装置520で分割された第2主表面12を研磨し、その第2主表面12を滑らかにする。薄板化装置220は不図示の洗浄装置をさらに有してもよく、その洗浄装置が薄板化用分割装置520による分割の後、研磨装置540による研磨の前に、第2主表面12を洗浄してもよい。 Similarly, the thinning device 220 may further include a polishing device 540. The polishing apparatus 540 polishes the second main surface 12 divided by the thinning dividing apparatus 520 of the substrate to be processed 10 and smoothes the second main surface 12. The thinning device 220 may further include a cleaning device (not shown), and the cleaning device cleans the second main surface 12 after dividing by the thinning dividing device 520 and before polishing by the polishing device 540. May be.
 薄板化装置220は、薄板化用エッチング装置530と研磨装置540とのうちの片方のみを有してもよいし、両方を有してもよい。後者の場合、薄板化用エッチング装置530と研磨装置540とは、例えばこの順番で被処理基板10を処理してよい。 The thinning device 220 may have only one of the thinning etching device 530 and the polishing device 540 or both. In the latter case, the thin plate etching apparatus 530 and the polishing apparatus 540 may process the substrate to be processed 10 in this order, for example.
 なお、本変形例の薄板化装置220は、第1分割予定面S1での分割と、第2分割予定面S2での分割とを同時に実施するが、第2分割予定面S2での分割を第1分割予定面S1での分割よりも先に実施してもよい。後者の場合、第2改質層M2は、第2クラックCR2が第1主表面11と第2主表面12の両方に達するように形成される。その結果、被処理基板10の板厚方向全体に亘って、ベベル19を除去できる。その後、第1分割予定面S1での分割が行われてよい。 Note that the thinning device 220 of the present modification simultaneously performs the division on the first scheduled division surface S1 and the division on the second scheduled division surface S2, but the division on the second scheduled division surface S2 is performed first. You may implement before the division | segmentation in 1 division | segmentation planned surface S1. In the latter case, the second modified layer M2 is formed such that the second crack CR2 reaches both the first main surface 11 and the second main surface 12. As a result, the bevel 19 can be removed over the entire thickness direction of the substrate 10 to be processed. Then, the division | segmentation in 1st division | segmentation planned surface S1 may be performed.
 被処理基板10の板厚方向全体に亘ってベベル19を除去する場合、除去する部分がリング状であるので、その除去する部分を周方向に複数の円弧状の分割片に分割してもよい。複数の円弧状の分割片を径方向外方に除去できる。隣り合う円弧状の分割片の境界である第3分割予定面には、予めだ第3改質層が形成される。第3改質層の形成は、第1改質層M1および第2改質層M2の形成と同様に、レーザー光線LB4によって行われる。 When the bevel 19 is removed over the entire thickness direction of the substrate 10 to be processed, the part to be removed is ring-shaped, and therefore the part to be removed may be divided into a plurality of arc-shaped pieces in the circumferential direction. . A plurality of arc-shaped divided pieces can be removed radially outward. A third modified layer is formed in advance on the third division planned surface, which is the boundary between the adjacent arc-shaped division pieces. The formation of the third modified layer is performed by the laser beam LB4, similarly to the formation of the first modified layer M1 and the second modified layer M2.
 第1分割予定面S1での分割によって、被処理基板10の第2主表面12は、被処理基板10の第1主表面11に近づく。その第2主表面12には、図17に示すように第1改質層M1の一部が残り、その残りが第1欠陥層51である。被処理基板10は、第1欠陥層51を有するので、上記実施形態と同様に、搬送装置280によって、分割装置240と、エッチング装置250と、ゲッタリング層形成装置260とにこの順番で搬送され、処理される。なお、搬送装置280は、薄板化装置220を構成する複数の装置間での被処理基板10の搬送にも用いられる。 The second main surface 12 of the substrate to be processed 10 approaches the first main surface 11 of the substrate to be processed 10 by the division on the first planned division surface S1. As shown in FIG. 17, a part of the first modified layer M <b> 1 remains on the second main surface 12, and the remaining is the first defect layer 51. Since the substrate 10 to be processed has the first defect layer 51, it is transported in this order by the transport device 280 to the dividing device 240, the etching device 250, and the gettering layer forming device 260 in the same manner as in the above embodiment. ,It is processed. Note that the transfer device 280 is also used to transfer the substrate 10 to be processed between a plurality of devices constituting the thinning device 220.
 本出願は、2018年6月12日に日本国特許庁に出願した特願2018-112272号に基づく優先権を主張するものであり、特願2018-112272号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2018-112272 filed with the Japan Patent Office on June 12, 2018. The entire contents of Japanese Patent Application No. 2018-112272 are incorporated herein by reference. .
1   基板処理システム
10  被処理基板
20  支持基板
30  重合基板
100 搬入出ステーション
200 処理ステーション
210 外周部加工装置
220 薄板化装置
230 洗浄装置
240 分割装置
250 エッチング装置
260 ゲッタリング層形成装置
261 基板保持部
262 平行移動機構部
265 回転移動機構部
270 光学部
271 スキャン機構
280 搬送装置
300 制御装置
510 レーザー加工装置
520 薄板化用分割装置
530 薄板化用エッチング装置
540 研磨装置
DESCRIPTION OF SYMBOLS 1 Substrate processing system 10 Substrate 20 Support substrate 30 Superposition substrate 100 Loading / unloading station 200 Processing station 210 Peripheral part processing apparatus 220 Thin plate apparatus 230 Cleaning apparatus 240 Dividing apparatus 250 Etching apparatus 260 Gettering layer forming apparatus 261 Substrate holding part 262 Parallel movement mechanism part 265 Rotation movement mechanism part 270 Optical part 271 Scan mechanism 280 Conveying device 300 Control device 510 Laser processing device 520 Thin plate dividing device 530 Thin plate etching device 540 Polishing device

Claims (20)

  1.  被処理基板を薄板化する薄板化装置と、
     前記薄板化された前記被処理基板を複数のチップに分割する分割装置と、
     前記チップの前記薄板化された面と前記チップの前記分割された面との両方の面をエッチングするエッチング装置と、
     前記チップの前記薄板化され且つ前記エッチングされた面、または当該面から所定の深さの前記チップの内部に、ゲッタリング層を形成するゲッタリング層形成装置と、
     前記薄板化装置、前記分割装置、前記エッチング装置および前記ゲッタリング層形成装置に対し、前記被処理基板を搬送する搬送装置と、
     前記薄板化装置、前記分割装置、前記エッチング装置、前記ゲッタリング層形成装置、および前記搬送装置を制御する制御装置とを備える、基板処理システム。
    A thinning device for thinning the substrate to be processed;
    A dividing device for dividing the thinned substrate to be processed into a plurality of chips;
    An etching apparatus for etching both the thinned surface of the chip and the divided surface of the chip;
    A gettering layer forming apparatus for forming a gettering layer in the chip at a predetermined depth from the thinned and etched surface of the chip or from the surface;
    A transport device that transports the substrate to be processed to the thinning device, the dividing device, the etching device, and the gettering layer forming device;
    A substrate processing system comprising: the thinning device, the dividing device, the etching device, the gettering layer forming device, and a control device that controls the transfer device.
  2.  前記ゲッタリング層形成装置は、前記被処理基板を保持する基板保持部と、前記基板保持部に保持されている前記被処理基板に、前記ゲッタリング層を形成するレーザー光線を照射する光学部とを有し、
     前記光学部は、前記被処理基板における前記レーザー光線の照射点を移動させるスキャン機構を含む、請求項1に記載の基板処理システム。
    The gettering layer forming apparatus includes a substrate holding unit that holds the substrate to be processed, and an optical unit that irradiates the substrate to be processed held by the substrate holding unit with a laser beam that forms the gettering layer. Have
    The substrate processing system according to claim 1, wherein the optical unit includes a scanning mechanism that moves an irradiation point of the laser beam on the substrate to be processed.
  3.  前記ゲッタリング層形成装置は、前記基板保持部を回転移動させる回転移動機構部を有する、請求項2に記載の基板処理システム。 The substrate processing system according to claim 2, wherein the gettering layer forming apparatus includes a rotation moving mechanism unit that rotates and moves the substrate holding unit.
  4.  前記制御装置は、
     前記基板保持部を停止させた状態で、前記スキャン機構によって前記照射点を2次元的に移動させることにより、前記ゲッタリング層を形成する制御と、
     前記基板保持部を回転移動させることにより、前記基板保持部に保持されている前記被処理基板の、前記スキャン機構によって前記照射点を2次元的に移動させる領域を切り換える制御とを実行する、請求項3に記載の基板処理システム。
    The controller is
    Control the formation of the gettering layer by moving the irradiation point two-dimensionally by the scanning mechanism in a state where the substrate holding unit is stopped.
    Performing rotation control of the substrate holding unit to switch a region of the substrate to be processed held by the substrate holding unit to move the irradiation point two-dimensionally by the scanning mechanism. Item 4. The substrate processing system according to Item 3.
  5.  前記ゲッタリング層形成装置は、前記基板保持部を平行移動させる平行移動機構部を有する、請求項2~4のいずれか1項に記載の基板処理システム。 The substrate processing system according to any one of claims 2 to 4, wherein the gettering layer forming apparatus includes a translation mechanism that translates the substrate holder.
  6.  前記制御装置は、
     前記基板保持部を停止させた状態で、前記スキャン機構によって前記照射点を2次元的に移動させることにより、前記ゲッタリング層を形成する制御と、
     前記基板保持部を平行移動させることにより、前記基板保持部に保持されている前記被処理基板の、前記スキャン機構によって前記照射点を2次元的に移動させる領域を切り換える制御とを実行する、請求項5に記載の基板処理システム。
    The controller is
    Control the formation of the gettering layer by moving the irradiation point two-dimensionally by the scanning mechanism in a state where the substrate holding unit is stopped.
    Performing a control of switching a region in which the irradiation point is moved two-dimensionally by the scanning mechanism of the substrate to be processed held by the substrate holding unit by moving the substrate holding unit in parallel. Item 6. The substrate processing system according to Item 5.
  7.  前記制御装置は、前記基板保持部を回転移動させると共に、前記基板保持部に保持されている前記被処理基板の径方向に前記レーザー光線を往復移動させることにより、前記被処理基板に設定される円状の領域に前記ゲッタリング層を形成する、請求項3に記載の基板処理システム。 The control device rotates and moves the substrate holder, and reciprocally moves the laser beam in the radial direction of the substrate to be processed held by the substrate holder, thereby setting a circle set on the substrate to be processed. The substrate processing system according to claim 3, wherein the gettering layer is formed in a shaped region.
  8.  前記制御装置は、前記レーザー光線の前記照射点が前記被処理基板の中心から離れるほど、前記基板保持部の回転数を小さくする制御と、前記レーザー光線の前記照射点が前記被処理基板の中心から離れるほど、前記照射点の移動速さを遅くする制御とのうち、少なくとも1つの制御を実行する、請求項7に記載の基板処理システム。 The control device controls to reduce the number of rotations of the substrate holding portion as the irradiation point of the laser beam is further away from the center of the substrate to be processed, and the irradiation point of the laser beam is further away from the center of the substrate to be processed. The substrate processing system according to claim 7, wherein at least one of the controls for slowing down the moving speed of the irradiation point is executed.
  9.  前記制御装置は、
     前記基板保持部を回転移動させると共に、前記基板保持部に保持されている前記被処理基板の径方向に前記レーザー光線を往復移動させることにより、前記被処理基板に同心円状に設定される複数の領域に順番に前記ゲッタリング層を形成する制御と、
     前記ゲッタリング層を形成するときの前記レーザー光線の直線移動方向に、前記基板保持部を平行移動させることにより、前記ゲッタリング層を形成する領域を切り換える制御とを実行する、請求項7または8に記載の基板処理システム。
    The controller is
    A plurality of regions set concentrically on the substrate to be processed by rotating the substrate holder and reciprocating the laser beam in the radial direction of the substrate to be processed held by the substrate holder. In order to form the gettering layer in turn,
    The control for switching a region for forming the gettering layer is performed by translating the substrate holder in the linear movement direction of the laser beam when forming the gettering layer. The substrate processing system as described.
  10.  前記薄板化装置は、前記被処理基板を研削する研削装置を有する、請求項1~9のいずれか1項に記載の基板処理システム。 10. The substrate processing system according to claim 1, wherein the thinning device includes a grinding device that grinds the substrate to be processed.
  11.  前記薄板化装置は、
     前記被処理基板の厚さ方向における分割予定面にレーザー光線の集光点を形成し、前記集光点に改質層を形成するレーザー加工装置と、
     前記被処理基板を前記分割予定面にて分割する薄板化用分割装置とを有する、請求項1~10のいずれか1項に記載の基板処理システム。
    The thinning device is:
    A laser processing device for forming a condensing point of a laser beam on a division planned surface in a thickness direction of the substrate to be processed, and forming a modified layer at the condensing point;
    The substrate processing system according to any one of claims 1 to 10, further comprising a thinning dividing device that divides the substrate to be processed along the division plane.
  12.  前記薄板化装置は、前記分割装置で分割された面をエッチングする薄板化用エッチング装置を有する、請求項11に記載の基板処理システム。 12. The substrate processing system according to claim 11, wherein the thinning device includes a thinning etching device that etches a surface divided by the dividing device.
  13.  前記薄板化装置は、前記分割装置で分割された面を研磨する研磨装置を有する、請求項11または12に記載の基板処理システム。 The substrate processing system according to claim 11 or 12, wherein the thinning device includes a polishing device for polishing a surface divided by the dividing device.
  14.  被処理基板を薄板化する工程と、
     前記薄板化された前記被処理基板を複数のチップに分割する工程と、
     前記チップの前記薄板化された面と前記チップの前記分割された面との両方の面をエッチングする工程と、
     前記チップの前記薄板化され且つ前記エッチングされた面、または当該面から所定の深さの前記チップの内部に、ゲッタリング層を形成する工程とを有する、基板処理方法。
    A step of thinning the substrate to be processed;
    Dividing the thinned substrate to be processed into a plurality of chips;
    Etching both surfaces of the thinned surface of the chip and the divided surface of the chip;
    Forming a gettering layer on the thinned and etched surface of the chip or in the chip at a predetermined depth from the surface.
  15.  基板保持部に保持されている前記被処理基板に、前記ゲッタリング層を形成するレーザー光線を照射する工程と、
     前記レーザー光線の経路の途中に設けられるスキャン機構によって、前記被処理基板における前記レーザー光線の照射点を移動させる工程とを有する、請求項14に記載の基板処理方法。
    Irradiating a laser beam for forming the gettering layer on the substrate to be processed held by a substrate holding unit;
    The substrate processing method according to claim 14, further comprising: moving an irradiation point of the laser beam on the substrate to be processed by a scanning mechanism provided in the middle of the path of the laser beam.
  16.  前記基板保持部を停止させた状態で、前記スキャン機構によって前記照射点を2次元的に移動させることにより、前記ゲッタリング層を形成する工程と、
     前記基板保持部を回転移動させることにより、前記基板保持部に保持されている前記被処理基板の、前記スキャン機構によって前記照射点を2次元的に移動させる領域を切り換える工程とを有する、請求項15に記載の基板処理方法。
    Forming the gettering layer by moving the irradiation point two-dimensionally by the scanning mechanism in a state where the substrate holding unit is stopped;
    The method includes a step of switching a region in which the irradiation point is moved two-dimensionally by the scan mechanism of the substrate to be processed held by the substrate holding unit by rotating the substrate holding unit. 15. The substrate processing method according to 15.
  17.  前記基板保持部を停止させた状態で、前記スキャン機構によって前記照射点を2次元的に移動させることにより、前記ゲッタリング層を形成する工程と、
     前記基板保持部を平行移動させることにより、前記基板保持部に保持されている前記被処理基板の、前記スキャン機構によって前記照射点を2次元的に移動させる領域を切り換える工程とを有する、請求項15または16に記載の基板処理方法。
    Forming the gettering layer by moving the irradiation point two-dimensionally by the scanning mechanism in a state where the substrate holding unit is stopped;
    And a step of switching an area in which the irradiation point is moved two-dimensionally by the scan mechanism of the substrate to be processed held by the substrate holding unit by moving the substrate holding unit in parallel. The substrate processing method according to 15 or 16.
  18.  前記基板保持部を回転移動させると共に、前記基板保持部に保持されている前記被処理基板の径方向に前記レーザー光線を往復移動させることにより、前記被処理基板に設定される円状の領域に前記ゲッタリング層を形成する、請求項15に記載の基板処理方法。 While rotating the substrate holding part and reciprocating the laser beam in the radial direction of the substrate to be processed held by the substrate holding part, the circular region set in the substrate to be processed is The substrate processing method according to claim 15, wherein a gettering layer is formed.
  19.  前記レーザー光線の前記照射点が前記被処理基板の中心から離れるほど、前記基板保持部の回転数を小さくする工程と、前記レーザー光線の前記照射点が前記被処理基板の中心から離れるほど、前記照射点の移動速さを遅くする工程とのうち、少なくとも1つの工程を有する、請求項18に記載の基板処理方法。 The step of reducing the number of rotations of the substrate holder as the irradiation point of the laser beam is further away from the center of the substrate to be processed; and the irradiation point as the irradiation point of the laser beam is away from the center of the substrate to be processed. The substrate processing method according to claim 18, further comprising at least one step of slowing down the moving speed of the substrate.
  20.  前記基板保持部を回転移動させると共に、前記基板保持部に保持されている前記被処理基板の径方向に前記レーザー光線を往復移動させることにより、前記被処理基板に同心円状に設定される複数の領域に順番に前記ゲッタリング層を形成する工程と、
     前記ゲッタリング層を形成するときの前記レーザー光線の直線移動方向に、前記基板保持部を平行移動させることにより、前記ゲッタリング層を形成する領域を切り換える工程とを有する、請求項18または19に記載の基板処理方法。
    A plurality of regions set concentrically on the substrate to be processed by rotating the substrate holder and reciprocating the laser beam in the radial direction of the substrate to be processed held by the substrate holder. Forming the gettering layer in turn,
    The method includes: switching a region for forming the gettering layer by translating the substrate holder in a linear movement direction of the laser beam when the gettering layer is formed. Substrate processing method.
PCT/JP2019/019883 2018-06-12 2019-05-20 Substrate processing system, and substrate processing method WO2019239801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018112272 2018-06-12
JP2018-112272 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019239801A1 true WO2019239801A1 (en) 2019-12-19

Family

ID=68842853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019883 WO2019239801A1 (en) 2018-06-12 2019-05-20 Substrate processing system, and substrate processing method

Country Status (1)

Country Link
WO (1) WO2019239801A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109838A (en) * 2005-10-13 2007-04-26 Disco Abrasive Syst Ltd Device and its manufacturing method
JP2007165835A (en) * 2005-11-16 2007-06-28 Denso Corp Laser dicing method and semiconductor wafer
JP2010161107A (en) * 2009-01-06 2010-07-22 Tokyo Seimitsu Co Ltd Method of manufacturing semiconductor device
JP2011155069A (en) * 2010-01-26 2011-08-11 Saitama Univ Method of processing substrate
JP2013157449A (en) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk Method for manufacturing semiconductor device
JP2017092135A (en) * 2015-11-05 2017-05-25 株式会社ディスコ Manufacturing method of device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109838A (en) * 2005-10-13 2007-04-26 Disco Abrasive Syst Ltd Device and its manufacturing method
JP2007165835A (en) * 2005-11-16 2007-06-28 Denso Corp Laser dicing method and semiconductor wafer
JP2010161107A (en) * 2009-01-06 2010-07-22 Tokyo Seimitsu Co Ltd Method of manufacturing semiconductor device
JP2011155069A (en) * 2010-01-26 2011-08-11 Saitama Univ Method of processing substrate
JP2013157449A (en) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk Method for manufacturing semiconductor device
JP2017092135A (en) * 2015-11-05 2017-05-25 株式会社ディスコ Manufacturing method of device

Similar Documents

Publication Publication Date Title
JP7357101B2 (en) Substrate processing system, substrate processing method, and computer storage medium
TWI821273B (en) Substrate processing system and substrate processing method
TWI814814B (en) Substrate processing system and substrate processing method
JP5710133B2 (en) How to divide work
TWI392002B (en) Laser processing device
JP7129558B2 (en) Processing equipment and processing method
JP2022173213A (en) Substrate processing apparatus and substrate processing method
KR20210153091A (en) Processing device and processing method
WO2019239801A1 (en) Substrate processing system, and substrate processing method
JP7344965B2 (en) Processing equipment and processing method
KR20220034190A (en) Processing device and processing method
WO2020184178A1 (en) Processing device and processing method
CN114096375A (en) Processing apparatus and processing method
JP2021019056A (en) Processing device and processing method
JP2020072238A (en) Substrate processing apparatus and substrate processing method
TWI836786B (en) Substrate processing system, substrate processing method, and computer storage medium
JP7285151B2 (en) Support peeling method and support peeling system
CN114096374A (en) Processing apparatus and processing method
JP2022184618A (en) Processing system and processing method
KR20210143175A (en) Processing device and processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP