WO2020184178A1 - Processing device and processing method - Google Patents

Processing device and processing method Download PDF

Info

Publication number
WO2020184178A1
WO2020184178A1 PCT/JP2020/007697 JP2020007697W WO2020184178A1 WO 2020184178 A1 WO2020184178 A1 WO 2020184178A1 JP 2020007697 W JP2020007697 W JP 2020007697W WO 2020184178 A1 WO2020184178 A1 WO 2020184178A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
unit
laser beam
modified
substrate
Prior art date
Application number
PCT/JP2020/007697
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 森
義広 川口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2021504903A priority Critical patent/JP7129549B2/en
Publication of WO2020184178A1 publication Critical patent/WO2020184178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • This disclosure relates to a processing apparatus and a processing method.
  • Patent Document 1 discloses a method for producing a wafer from a hexagonal single crystal ingot.
  • the focusing point of the laser beam having a wavelength that is transparent to the hexagonal single crystal ingot is positioned at a depth corresponding to the thickness of the wafer generated from the surface of the ingot.
  • the surface of the ingot is irradiated with a laser beam by moving the condensing point and the hexagonal single crystal ingot relatively, and cracks are formed from the modified layer parallel to the surface and the modified layer to form a separation starting point. ..
  • the wafer is peeled from the hexagonal single crystal ingot.
  • the technique according to the present disclosure shortens the time required for the treatment when the modified layer is formed by irradiating the inside of the treated body with a laser beam.
  • One aspect of the present disclosure is an apparatus for processing a processed body, in which a holding portion for holding the processed body and the inside of the processed body held by the holding portion are irradiated with laser light to form a modified layer.
  • the modified layer is formed by the modified portion for forming the modified portion, the measuring portion for measuring the output of the laser beam, the first position for loading and unloading the processed material with respect to the holding portion, and the modified portion.
  • the control unit has a moving unit for moving the holding unit and a control unit for controlling the holding unit, the modifying unit, the measuring unit, and the moving unit. Controls the holding unit, the measuring unit, and the moving unit so that the measuring unit measures the output of the laser beam when the holding unit stands by at the first position.
  • the modified layer is formed by irradiating the inside of the processed body with a laser beam, the time required for the processing can be shortened.
  • the wafer is thinned with respect to a wafer in which devices such as a plurality of electronic circuits are formed on the surface.
  • a wafer in which devices such as a plurality of electronic circuits are formed on the surface.
  • thinning the wafer For example, a method of grinding the back surface of the wafer or a method of irradiating the inside of the wafer with laser light to form a modified layer and separating the wafer from the modified layer as a base point. and so on.
  • Patent Document 1 The wafer generation method disclosed in Patent Document 1 described above is the same technique as the wafer thinning described above in that the wafer is peeled from the hexagonal single crystal ingot.
  • power check when irradiating the inside of the wafer with a laser beam, it is necessary to confirm whether or not the output (power) of the laser beam is appropriate (power check). Further, it is appropriate to perform this power check for each wafer to be processed.
  • Patent Document 1 does not disclose that the power check is performed, much less shortening the processing time of the power check is not considered at all. Therefore, there is room for improvement in the conventional method.
  • the technique according to the present disclosure shortens the processing time and efficiently performs the formation of the modified layer using the laser beam.
  • a wafer processing system including a reformer as a processing device according to the present embodiment for efficiently performing wafer processing and a wafer processing method as a processing method will be described with reference to the drawings.
  • elements having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description.
  • FIG. 1 is a plan view schematically showing an outline of the configuration of the wafer processing system 1.
  • the processing wafer W as the first substrate and the support wafer S as the second substrate are bonded to the polymerization wafer T as the polymerization substrate. Perform the desired treatment. Then, in the wafer processing system 1, the peripheral portion We of the processed wafer W is removed, and the processed wafer W is further thinned.
  • the surface bonded to the support wafer S is referred to as a front surface Wa
  • the surface opposite to the front surface Wa is referred to as a back surface Wb.
  • the surface bonded to the processed wafer W is referred to as a front surface Sa
  • the surface opposite to the front surface Sa is referred to as a back surface Sb.
  • the processed wafer W is a semiconductor wafer such as a silicon wafer, and a device layer (not shown) including a plurality of devices is formed on the surface Wa. Further, an oxide film F, for example, a SiO 2 film (TEOS film) is further formed on the device layer.
  • the peripheral edge portion We of the processed wafer W is chamfered, and the cross section of the peripheral edge portion We becomes thinner toward the tip thereof.
  • the peripheral edge portion We is a portion that is removed in the so-called edge trim, and is, for example, in the range of 1 mm to 5 mm in the radial direction from the outer end portion of the processed wafer W.
  • the oxide film F is not shown in order to avoid the complexity of the drawing. Similarly, in other drawings used in the following description, the illustration of the oxide film F may be omitted.
  • the support wafer S is a wafer that supports the processed wafer W, and is, for example, a silicon wafer.
  • An oxide film (not shown) is formed on the surface Sa of the support wafer S.
  • the support wafer S functions as a protective material for protecting the device on the surface Wa of the processing wafer W.
  • a device layer (not shown) is formed on the surface Sa in the same manner as the processing wafer W.
  • a bonding region Aa to which the oxide film F and the surface Sa of the support wafer S are bonded and an unbonded region Ab which is a region outside the bonding region Aa in the radial direction are provided.
  • the outer end portion of the joint region Aa is located slightly radially outward from the inner end portion of the peripheral edge portion We to be removed.
  • the wafer processing system 1 has a configuration in which the loading / unloading station 2 and the processing station 3 are integrally connected.
  • the carry-in / out station 2 carries in / out a cassette Ct capable of accommodating a plurality of polymerized wafers T with, for example, the outside.
  • the processing station 3 includes various processing devices that perform desired processing on the polymerized wafer T.
  • the loading / unloading station 2 is provided with a cassette mounting stand 10.
  • a cassette mounting stand 10 In the illustrated example, a plurality of, for example, three cassettes Ct can be freely mounted in a row on the cassette mounting table 10 in the Y-axis direction.
  • the number of cassettes Ct mounted on the cassette mounting table 10 is not limited to this embodiment and can be arbitrarily determined.
  • the loading / unloading station 2 is provided with a wafer transfer device 20 adjacent to the cassette mounting table 10 on the X-axis negative direction side of the cassette mounting table 10.
  • the wafer transfer device 20 is configured to be movable on a transfer path 21 extending in the Y-axis direction. Further, the wafer transfer device 20 has, for example, two transfer arms 22 and 22 that hold and transfer the polymerized wafer T.
  • Each transport arm 22 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis.
  • the configuration of the transport arm 22 is not limited to this embodiment, and any configuration can be adopted.
  • the wafer transfer device 20 is configured to be able to transfer the polymerized wafer T to the cassette Ct of the cassette mounting table 10 and the transition device 30 described later.
  • the loading / unloading station 2 is provided with a transition device 30 for delivering the polymerized wafer T adjacent to the wafer transfer device 20 on the X-axis negative direction side of the wafer transfer device 20.
  • the processing station 3 is provided with, for example, three processing blocks G1 to G3.
  • the first processing block G1, the second processing block G2, and the third processing block G3 are arranged side by side in this order from the X-axis positive direction side (import / export station 2 side) to the negative direction side.
  • the first processing block G1 is provided with an etching device 40, a cleaning device 41, and a wafer transfer device 50.
  • the etching apparatus 40 and the cleaning apparatus 41 are arranged in a laminated manner.
  • the number and arrangement of the etching apparatus 40 and the cleaning apparatus 41 are not limited to this.
  • the etching apparatus 40 and the cleaning apparatus 41 may be extended in the X-axis direction and placed side by side in parallel in a plan view. Further, the etching apparatus 40 and the cleaning apparatus 41 may be laminated respectively.
  • the etching apparatus 40 etches the back surface Wb of the processed wafer W ground by the processing apparatus 80 described later.
  • a chemical solution etching solution
  • the chemical solution for example, HF, HNO 3 , H 3 PO 4 , TMAH, Choline, KOH and the like are used.
  • the cleaning device 41 cleans the back surface Wb of the processed wafer W ground by the processing device 80 described later.
  • the back surface Wb is brought into contact with the brush to scrub clean the back surface Wb.
  • a pressurized cleaning liquid may be used for cleaning the back surface Wb.
  • the cleaning device 41 may have a configuration for cleaning the back surface Sb of the support wafer S together with the back surface Wb of the processing wafer W.
  • the wafer transfer device 50 is arranged on the Y-axis negative direction side with respect to the etching device 40 and the cleaning device 41, for example.
  • the wafer transfer device 50 has, for example, two transfer arms 51, 51 that hold and transfer the polymerized wafer T.
  • Each transport arm 51 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis.
  • the configuration of the transport arm 51 is not limited to this embodiment, and any configuration can be adopted.
  • the wafer transfer device 50 is configured to be able to transfer the polymerized wafer T to the transition device 30, the etching device 40, the cleaning device 41, and the reforming device 60 described later.
  • the second processing block G2 is provided with a reformer 60, a peripheral edge removing device 61, and a wafer transfer device 70.
  • the reformer 60 and the peripheral edge removing device 61 are arranged in a laminated manner.
  • the number and arrangement of the reformer 60 and the peripheral edge removing device 61 are not limited to this.
  • the reformer 60 irradiates the inside of the processed wafer W with laser light to form a peripheral reforming layer, a split reforming layer, and an internal surface reforming layer.
  • the specific configuration of the reformer 60 will be described later.
  • the peripheral edge removing device 61 removes the peripheral edge portion We of the processed wafer W from the peripheral edge reforming layer formed by the reforming device 60 as a base point.
  • the specific configuration of the peripheral edge removing device 61 will be described later.
  • the wafer transfer device 70 is arranged on the Y-axis positive direction side with respect to, for example, the reformer 60 and the peripheral edge removing device 61.
  • the wafer transfer device 70 has, for example, two transfer arms 71 and 71 that hold and transfer the polymerized wafer T.
  • Each transport arm 71 is supported by an articulated arm member 72, and is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis. The specific configuration of the transport arm 71 will be described later.
  • the wafer transfer device 70 is configured to be able to transfer the polymerized wafer T to the cleaning device 41, the reforming device 60, the peripheral edge removing device 61, and the processing device 80 described later.
  • the processing device 80 is provided in the third processing block G3.
  • the number and arrangement of the processing devices 80 are not limited to this embodiment, and a plurality of processing devices 80 may be arbitrarily arranged.
  • the processing apparatus 80 grinds the back surface Wb of the processed wafer W. Then, on the back surface Wb on which the inner surface modification layer is formed, the inner surface modification layer is removed, and further, the peripheral modification layer is removed.
  • the processing device 80 has a rotary table 81.
  • the rotary table 81 is rotatably configured around a vertical rotation center line 82 by a rotation mechanism (not shown).
  • Two chucks 83 for sucking and holding the polymerized wafer T are provided on the rotary table 81.
  • the chucks 83 are evenly arranged on the same circumference as the rotary table 81.
  • the two chucks 83 can be moved to the delivery position A0 and the processing position A1 by rotating the rotary table 81.
  • each of the two chucks 83 is configured to be rotatable around a vertical axis by a rotation mechanism (not shown).
  • the grinding unit 84 grinds the back surface Wb of the processed wafer W.
  • the grinding unit 84 has a grinding unit 85 having an annular shape and a rotatable grinding wheel (not shown). Further, the grinding portion 85 is configured to be movable in the vertical direction along the support column 86. Then, in a state where the back surface Wb of the processed wafer W held by the chuck 83 is in contact with the grinding wheel, the chuck 83 and the grinding wheel are each rotated to grind the back surface Wb.
  • the above wafer processing system 1 is provided with a control device 90 as a control unit.
  • the control device 90 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program that controls the processing of the polymerized wafer T in the wafer processing system 1. Further, the program storage unit also stores a program for controlling the operation of the drive system of the above-mentioned various processing devices and transfer devices to realize the wafer processing described later in the wafer processing system 1.
  • the program may be recorded on a storage medium H that can be read by a computer, and may be installed from the storage medium H on the control device 90.
  • FIG. 4 is a plan view showing an outline of the configuration of the reformer 60.
  • FIG. 5 is a side view showing an outline of the configuration of the reformer 60.
  • the reformer 60 has a chuck 100 as a holding portion that holds the polymerized wafer T on the upper surface.
  • the chuck 100 attracts and holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is arranged on the lower side.
  • the chuck 100 is supported by the slider table 102 via an air bearing 101.
  • a rotation mechanism 103 as a rotating portion is provided on the lower surface side of the slider table 102.
  • the rotation mechanism 103 has, for example, a built-in motor as a drive source.
  • the chuck 100 is rotatably configured around a vertical axis by a rotation mechanism 103 via an air bearing 101.
  • the slider table 102 is configured to be movable along a rail 105 provided on the base 106 and extending in the Y-axis direction by a moving mechanism 104 as a moving portion provided on the lower surface side thereof.
  • the drive source of the moving mechanism 104 is not particularly limited, but for example, a linear motor is used.
  • the slider table 102 is provided with a power meter 107 as a measuring unit for measuring the output (power) of the laser light emitted from the laser head 110, which will be described later.
  • the power meter 107 is provided at the Y-axis negative end of the slider table 102. Then, as will be described later, at the first position P1, the power meter 107 is arranged below the lens of the laser head 110.
  • the power of the laser beam measured by the power meter 107 is output to the control device 90.
  • the power of the laser beam is set in the control device 90 according to the processing recipe, and it is confirmed whether or not the measured power of the laser beam is appropriate (power check). This power check is performed for each processing wafer W to be processed, for example.
  • a laser head 110 as a reforming portion is provided above the chuck 100.
  • the laser head 110 has a lens 111 and a piezo actuator 112.
  • the lens 111 is provided on the lower surface of the laser head 110 and irradiates the processing wafer W held by the chuck 100 with laser light.
  • the piezo actuator 112 raises and lowers the lens 111.
  • the laser head 110 is provided with a sensor 113 for measuring the position of the laser beam emitted from the lens 111.
  • the sensor 113 is provided coaxially with the laser beam emitted from the lens 111, and is, for example, an AF sensor, which measures the height of the back surface Wb of the processing wafer W.
  • the height of the back surface Wb measured by the sensor 113 is output to the control device 90.
  • the control device 90 calculates the irradiation position of the laser beam emitted to the inside of the processing wafer W based on the height of the back surface Wb.
  • the laser head 110 is further provided with a sensor 114 and a camera 115 for adjusting the irradiation position (focus) of the laser light emitted from the lens 111.
  • the sensor 114 is provided on a different axis from the laser beam emitted from the lens 111, and is, for example, an AF sensor, which measures the height of the back surface Wb of the processing wafer W and searches for the back surface Wb.
  • an AF sensor capable of measuring a wider range than the sensor 113 is used.
  • the camera 115 is provided coaxially with the laser beam emitted from the lens 111, and images the back surface Wb of the processed wafer W.
  • the height of the back surface Wb measured by the sensor 114 and the image of the back surface Wb captured by the camera 115 are output to the control device 90, respectively.
  • the control device 90 calculates the irradiation position of the laser beam emitted to the inside of the processed wafer W based on the height of the back surface Wb and the image.
  • the laser head 110 further has a spatial light modulator (not shown).
  • the spatial light modulator modulates and outputs the laser beam.
  • the spatial light modulator can control the focal position and phase of the laser beam, and can adjust the shape and number (number of branches) of the laser beam irradiated to the processing wafer W.
  • the laser head 110 is a high-frequency pulsed laser beam oscillated from a laser beam oscillator (not shown), and emits a laser beam having a wavelength that is transparent to the processing wafer W inside the processing wafer W. Condensate and irradiate at the desired position. As a result, the portion where the laser light is focused is modified inside the processed wafer W, and a peripheral modification layer, a division modification layer, and an inner surface modification layer are formed.
  • the laser head 110 is supported by the support member 116.
  • the laser head 110 is configured to be vertically elevated by an elevating mechanism 118 along a rail 117 extending in the vertical direction. Further, the laser head 110 is configured to be movable in the Y-axis direction by the moving mechanism 119.
  • the elevating mechanism 118 and the moving mechanism 119 are each supported by the support pillar 120.
  • a macro camera 121 as a first imaging unit and a micro camera 122 as a second imaging unit are provided above the chuck 100 and on the Y-axis positive direction side of the laser head 110.
  • the macro camera 121 and the micro camera 122 are integrally configured, and the macro camera 121 is arranged on the Y-axis positive direction side of the micro camera 122.
  • the macro camera 121 and the micro camera 122 are configured to be vertically movable by the elevating mechanism 123, and further configured to be movable in the Y-axis direction by the moving mechanism 124.
  • the macro camera 121 images the outer end of the processed wafer W (polymerized wafer T).
  • the macro camera 121 includes, for example, a coaxial lens, irradiates visible light, for example, red light, and further receives reflected light from an object.
  • the imaging magnification of the macro camera 121 is 2 times.
  • the micro camera 122 images the peripheral edge of the processed wafer W and images the boundary between the bonded region Aa and the unbonded region Ab.
  • the microcamera 122 includes, for example, a coaxial lens, irradiates infrared light (IR light), and further receives reflected light from an object.
  • IR light infrared light
  • the imaging magnification of the micro camera 122 is 10 times, the field of view is about 1/5 of that of the macro camera 121, and the pixel size is about 1/5 of that of the macro camera 121.
  • FIG. 6 is a plan view showing an outline of the configuration of the peripheral edge removing device 61.
  • FIG. 7 is a side view showing an outline of the configuration of the peripheral edge removing device 61.
  • FIG. 8 is an explanatory diagram schematically showing an outline of the configuration of the peripheral edge removing device 61.
  • the peripheral edge removing device 61 has a chuck 130 that holds the polymerized wafer T on the upper surface.
  • the chuck 130 holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is arranged on the lower side. Further, the chuck 130 is configured to be rotatable around a vertical axis by a rotation mechanism 131.
  • a peripheral edge removing portion 140 for removing the peripheral edge portion We of the processed wafer W is provided on the side of the chuck 130.
  • the peripheral edge removing portion 140 applies an impact to the peripheral edge portion We to remove the peripheral edge portion We.
  • the peripheral edge removing portion 140 has a wedge roller 141 and a support roller 142.
  • the wedge roller 141 has a wedge shape with a sharp tip when viewed from the side.
  • the wedge roller 141 is inserted from the outer end portion of the processing wafer W and the support wafer S into the interface between the processing wafer W and the support wafer S. Then, the peripheral portion We is pushed up by the inserted wedge roller 141, separated from the processed wafer W, and removed.
  • the support roller 142 penetrates the center of the wedge roller 141 and supports the wedge roller 141.
  • the support roller 142 is configured to be movable in the horizontal direction by a moving mechanism (not shown), and the wedge roller 141 also moves when the support roller 142 moves. Further, the support roller 142 is configured to be rotatable around a vertical axis, and the wedge roller 141 also rotates when the support roller 142 rotates.
  • the support roller 142 uses a so-called free roller that rotates in response to the rotation of the chuck 130 as described later. However, the support roller 142 may be positively rotated by a rotation mechanism (not shown).
  • the wedge roller 141 is used as the insertion member, but the insertion member is not limited to this.
  • the insertion member may have a shape in which the width becomes smaller toward the outside in the radial direction in the side view, and a knife-shaped insertion member having a sharpened tip may be used.
  • Nozzles 150 and 151 for supplying the cleaning liquid to the processing wafer W are provided above and below the chuck 130, respectively.
  • pure water is used as the cleaning liquid.
  • the peripheral edge removing portion 140 is used to apply an impact to the peripheral edge portion We to remove the peripheral edge portion We, dust (particles) is generated along with the removal. Therefore, in the present embodiment, the cleaning liquid is supplied from the nozzles 150 and 151 to suppress the scattering of the dust.
  • the upper nozzle 150 is arranged above the chuck 130, and supplies the cleaning liquid from above the processing wafer W to the back surface Wb.
  • the cleaning liquid from the upper nozzle 150 can suppress the scattering of dust generated when the peripheral edge portion We is removed, and further suppress the scattering of dust on the processing wafer W. Specifically, the cleaning liquid causes dust to flow to the outer peripheral side of the processing wafer W.
  • the lower nozzle 151 is arranged below the chuck 130, and supplies the cleaning liquid to the processing wafer W from the support wafer S side. The cleaning liquid from the lower nozzle 151 can more reliably suppress the scattering of dust. Further, the cleaning liquid from the lower nozzle 151 can prevent dust and broken material of the peripheral portion We from wrapping around to the support wafer S side.
  • the number and arrangement of the nozzles 150 and 151 are not limited to this embodiment.
  • a plurality of nozzles 150 and 151 may be provided respectively.
  • the lower nozzle 151 can be omitted.
  • the method of suppressing the scattering of dust is not limited to the supply of cleaning liquid.
  • a suction mechanism (not shown) may be provided to suck and remove the generated dust.
  • a detection unit 160 for confirming whether or not the peripheral portion We has been removed from the processing wafer W.
  • the detection unit 160 detects the presence or absence of the peripheral edge portion We on the processed wafer W held by the chuck 130 and from which the peripheral edge portion We has been removed.
  • a sensor is used for the detection unit 160.
  • the sensor is, for example, a line-type laser displacement meter, and detects the presence or absence of the peripheral portion We by irradiating the peripheral portion of the polymerized wafer T (processed wafer W) with a laser and measuring the thickness of the polymerized wafer T. ..
  • the method of detecting the presence or absence of the peripheral portion We by the detection unit 160 is not limited to this.
  • the detection unit 160 may detect the presence or absence of the peripheral portion We by photographing the polymerization wafer T (processed wafer W) using, for example, a line camera.
  • a recovery unit (not shown) for collecting the peripheral edge portion We removed by the peripheral edge removing portion 140 is provided below the chuck 130.
  • FIG. 9 is a vertical cross-sectional view showing an outline of the configuration of the transport arm 71.
  • the transport arm 71 has a disc-shaped suction plate 170 having a diameter larger than that of the polymerized wafer T.
  • a holding portion 180 for holding the central portion Wc of the processed wafer W is provided on the lower surface of the suction plate 170.
  • a suction pipe 181 for sucking the central portion Wc is connected to the holding portion 180, and the suction pipe 181 communicates with a suction mechanism 182 such as a vacuum pump, for example.
  • the suction tube 181 is provided with a pressure sensor 183 that measures the suction pressure.
  • the configuration of the pressure sensor 183 is arbitrary, but for example, a diaphragm type pressure gauge is used.
  • a rotation mechanism 190 for rotating the suction plate 170 around a vertical axis is provided on the upper surface of the suction plate 170.
  • the rotation mechanism 190 is supported by the support member 191. Further, the support member 191 (rotation mechanism 190) is supported by the arm member 72.
  • FIG. 10 is a flow chart showing a main process of wafer processing.
  • FIG. 11 is an explanatory diagram of a main process of wafer processing.
  • the processing wafer W and the support wafer S are bonded to each other in an external bonding device (not shown) of the wafer processing system 1 to form a polymerized wafer T in advance.
  • the cassette Ct containing a plurality of the polymerization wafers T shown in FIG. 11A is placed on the cassette mounting table 10 of the loading / unloading station 2.
  • the polymerized wafer T in the cassette Ct is taken out by the wafer transfer device 20 and transferred to the transition device 30.
  • the wafer transfer device 50 takes out the polymerized wafer T of the transition device 30 and transfers it to the reformer 60.
  • the peripheral reforming layer M1 and the split reforming layer M2 are sequentially formed inside the processed wafer W (steps A1 and A2 in FIG. 10), and further in FIG. As shown in c), the internal surface reforming layer M3 is formed (step A3 in FIG. 10).
  • the peripheral edge modification layer M1 serves as a base point when the peripheral edge portion We is removed in the edge trim.
  • the split modified layer M2 serves as a base point for the peripheral portion We to be removed to be fragmented.
  • the internal surface modification layer M3 serves as a base point for thinning the processed wafer W.
  • FIG. 12 is a flow chart showing the main steps of the reforming process in the reformer 60.
  • FIG. 13 is an explanatory diagram of the main steps of the reforming process.
  • the chuck 100 is arranged at the first position P1 and the second position P2, and each process is performed.
  • the chuck 100 (slider table 102) is moved to the first position P1 as shown in FIG. 13A and is made to stand by. While the chuck 100 is on standby, the power meter 107 is arranged below the lens 111 of the laser head 110. The power meter 107 measures the output (power) of the laser beam emitted from the laser head 110. The power of the laser beam measured by the power meter 107 is output to the control device 90, and the power check is performed by the control device 90. Further, while the chuck 100 is on standby, the optical system of the laser head 110 is calibrated (calibration) (step B1 in FIG. 12).
  • the power meter 107 when the power meter 107 is located away from the first position P1, it is necessary to move the chuck 100 from the first position P1 for power check, and the device becomes large.
  • the power meter 107 since the power meter 107 is arranged below the laser head 110 at the first position P1, the power check can be performed without moving the chuck 100. As a result, the occupied area (footprint) of the reformer 60 can be reduced, and the space can be saved. Further, since the power check and the calibration can be performed while the chuck 100 is on standby, the reforming processing time can be shortened and the wafer processing throughput can be improved.
  • the power check and calibration may be performed when the polymerized wafer T is carried in in step B2 described later.
  • the polymerized wafer T is carried in from the wafer transfer device 50 in a state where the chuck 100 is arranged at the first position as shown in FIG. 13 (b) (step B2 in FIG. 12).
  • the carried-in polymerized wafer T is held by the chuck 100.
  • macro alignment is performed using the macro camera 121 with the chuck 100 arranged at the first position P1.
  • the macro camera 121 is arranged at a position where the outer end portion of the processing wafer W can be imaged.
  • the outer end portion of the processed wafer W is imaged (step B4 in FIG. 12).
  • step B3 the focus of the macro camera 121 is adjusted with respect to a plurality of points in the height direction of the processing wafer W.
  • the chuck 100 is not rotated.
  • the macro camera 121 is raised or lowered by the elevating mechanism 123 to adjust the focus of the macro camera 121 with respect to a plurality of points in the height direction of the processing wafer W.
  • FIG. 14 is an explanatory diagram showing the timing of adjusting the focus with respect to the elevating and lowering of the macro camera 121, where the vertical axis represents the elevating speed and the horizontal axis represents the time. Further, Q1 to Q4 in FIG. 14 indicate the first to fourth focus adjustments, respectively.
  • FIG. 14 (a) shows a comparative example, and (b) shows an example of the present embodiment.
  • the macro camera 121 is moved up and down, and then the focus adjustments Q1 to Q4 are performed in a state where the macro camera 121 is stopped at a desired height. That is, every time the macro camera 121 is moved up and down, acceleration and deceleration are repeated. Then, it is determined whether or not the focus value is appropriate for each focus adjustment Q1 to Q4. Therefore, it takes time.
  • focus adjustments Q1 to Q4 are performed while raising and lowering the macro camera 121. That is, the macro camera 121 is not stopped when the focus is adjusted. Therefore, acceleration and deceleration of the comparative example are unnecessary, time can be omitted, and the suitability of the focus values in the focus adjustments Q1 to Q4 can be collectively determined. Therefore, the time for focus adjustment can be shortened. In the example of FIG. 14, the time that can be shortened is t1.
  • step B4 the outer end portion of the processing wafer W is imaged with respect to a plurality of points in the circumferential direction of the processing wafer W.
  • the macro camera 121 is fixed without being moved up and down.
  • the chuck 100 is rotated to image the outer end portion R1 (dotted line in FIG. 15) of the processed wafer W with respect to a plurality of points in the circumferential direction of the processed wafer W as shown in FIG.
  • the chuck 100 is rotated and then the imaging is performed in a state where the chuck 100 is stopped at a desired position.
  • the outer end portion of the processed wafer W is imaged while rotating the chuck 100. That is, the rotation of the chuck 100 is not stopped when the image is taken. Therefore, the imaging time can be shortened. Further, by shortening the imaging time in this way, it is possible to increase the number of imaging times, and as a result, macro alignment can be appropriately performed.
  • the macro camera 121 captures an image of the outer end portion of the processed wafer W at 360 degrees in the circumferential direction.
  • the captured image is output from the macro camera 121 to the control device 90.
  • the control device 90 calculates the first eccentricity of the center Cc of the chuck 100 and the center Cw of the processing wafer W from the image of the macro camera 121. Further, the control device 90 calculates the movement amount of the chuck 100 so as to correct the Y-axis component of the first eccentric amount based on the first eccentric amount.
  • the chuck 100 moves in the Y-axis direction based on the calculated movement amount, and moves the chuck 100 to the micro-alignment position.
  • the micro-alignment position is a position where the micro camera 122 can image the peripheral edge of the processing wafer W.
  • the field of view of the micro camera 122 is as small as about 1/5 of that of the macro camera 121.
  • the peripheral portion of the processing wafer W is the micro camera. It may not be possible to take an image with the micro camera 122 because it does not fit in the angle of view of 122. Therefore, it can be said that the correction of the Y-axis component based on the first eccentricity amount is for moving the chuck 100 to the micro-alignment position.
  • the amount of light is also adjusted before the focus adjustment.
  • the light amount adjustment may be performed for each polymerization wafer T, for each lot, or for each processing condition (processing recipe).
  • the light amount adjustment is performed on one point or a plurality of points of the processing wafer W. In such a case, the rotation of the chuck 100 is stopped and the light amount adjustment is performed. While the rotation of the chuck 100 is stopped, the amount of light is changed a plurality of times to perform imaging.
  • the macro alignment is performed to move the chuck 100 to the micro alignment position, but such macro alignment can be omitted. That is, when the alignment is not performed in two stages of macro and micro and is performed in only one stage of micro, macro alignment is omitted.
  • the chuck 100 is moved to the second position P2 (step B5 in FIG. 12).
  • micro-alignment is performed using the micro camera 122 with the chuck 100 arranged at the second position P2.
  • the microcamera 122 is arranged at a position where the boundary between the bonded region Aa and the unbonded region Ab of the processed wafer W can be imaged.
  • the boundary between the bonded region Aa and the unjunction region Ab is imaged (step B7 in FIG. 12).
  • step B6 the focus of the micro camera 122 is adjusted with respect to a plurality of points in the height direction of the processing wafer W.
  • the focus adjustment of the micro camera 122 is performed while moving the micro camera 122 up and down by the elevating mechanism 123. Therefore, the time for focus adjustment can be shortened. Since the focus adjustment of the micro camera 122 is the same as the focus adjustment of the macro camera 121 in step B3, the description thereof will be omitted.
  • step B7 the boundary between the bonded region Aa and the unbonded region Ab of the processed wafer W is imaged at a plurality of points in the circumferential direction of the processed wafer W.
  • the macro camera 121 is fixed without being moved up and down.
  • the chuck 100 is rotated to image the boundary R2 (dotted line in FIG. 16) between the bonded region Aa and the unbonded region Ab with respect to a plurality of points in the circumferential direction of the processed wafer W as shown in FIG. ..
  • the chuck 100 was rotated and then stopped at a desired position in the comparative example as in the imaging of the outer end portion of the processed wafer W in step B3. Take an image in the state.
  • the boundary between the bonded region Aa and the unbonded region Ab is imaged while rotating the chuck 100. That is, the rotation of the chuck 100 is not stopped when the image is taken. Therefore, the imaging time can be shortened. Further, by shortening the imaging time in this way, it is possible to increase the number of imaging times, and as a result, micro-alignment can be appropriately performed.
  • the microcamera 122 captures an image of the boundary between the bonded region Aa and the unbonded region Ab at 360 degrees in the circumferential direction of the processed wafer W.
  • the captured image is output from the micro camera 122 to the control device 90.
  • the control device 90 calculates the second eccentric amount of the center Cc of the chuck 100 and the center Ca of the junction region Aa from the image of the micro camera 122. Further, the control device 90 determines the position of the chuck 100 with respect to the peripheral modification layer M1 so that the center of the bonding region Aa and the center of the chuck 100 coincide with each other based on the second eccentricity amount.
  • the height of the laser beam emitted from the laser head 110 is adjusted (irradiation height adjustment) (step B8 in FIG. 12).
  • the lens 111 of the laser head 110 is arranged at a position where the laser beam can be applied to the boundary between the peripheral portion We and the central portion Wc of the processing wafer W.
  • step B9 the laser head 110 irradiates the inside of the processed wafer W with laser light while rotating the chuck 100 to form an annular peripheral modification layer. Further, in step B9, the irradiation position (irradiation height) of the laser beam is measured, and the height of the laser beam is adjusted (followed) in real time. Therefore, the height at the irradiation start position of the laser beam is important. Therefore, the laser beam irradiation height adjustment in step B8 is performed at the laser beam irradiation start position in step B9.
  • the height of the processed wafer W held by the chuck 100 may not be uniform in the wafer surface due to various factors. Then, the heights of the peripheral portion and the central portion of the processed wafer W may be different. For example, if the height of the laser beam is adjusted at the center of the processed wafer W, it may not be adjusted appropriately at the peripheral portion. Therefore, from this point of view, it is preferable that the laser beam irradiation height adjustment in step B8 is performed at the laser beam irradiation start position in step B9.
  • the sensor 113 used to measure the irradiation position of the laser beam in step B9 has a limited range that can be followed, and this range is, for example, ⁇ in the vertical direction from the back surface Wb of the processing wafer W to be measured. It is 0.2 mm. Therefore, in order to keep the irradiation position of the laser beam in step B9 within the range that can be followed by the sensor 113, it is necessary to adjust the irradiation height in step B8.
  • step B8 first, the sensor 114 and the camera 115 are moved to the laser beam irradiation start position in step B9. Then, while moving the laser head 110 up and down, the height of the back surface Wb of the processing wafer W at the irradiation start position of the laser beam is measured by the sensor 114, and the back surface Wb is searched. The height of the back surface Wb measured by the sensor 114 is output to the control device 90. The control device 90 searches (identifies) the position of the back surface Wb based on the height of the back surface Wb.
  • step B8 the laser head 110 is then moved horizontally to the laser beam irradiation position in step B9. Subsequently, the back surface Wb is imaged by the camera 115. The image of the back surface Wb captured by the camera 115 is output to the control device 90. The control device 90 calculates the height of the back surface Wb based on the image of the back surface Wb, and further calculates the irradiation position of the laser beam emitted to the inside of the processing wafer W based on the height of the back surface Wb.
  • the calculated position is set at the origin position of the irradiation position of the laser beam with respect to the sensor 113 (zero point adjustment).
  • the camera 115 precisely grasps the back surface Wb and adjusts the zero point.
  • step B8 the zero point is adjusted by using the sensor 114 and the camera 115 while raising or lowering the laser head 110.
  • the measurement is performed by the sensor 114 while moving the laser head 110 up and down. That is, the laser head 110 does not stop moving up and down when the measurement is performed by the sensor 114. Therefore, the time for zero point adjustment can be shortened.
  • the zero point adjustment takes time.
  • the time for adjusting the zero point can be shortened by taking an image of the back surface Wb with the camera 115 while moving the laser head 110 up and down.
  • the sensor 113 is moved to the laser beam irradiation start position.
  • laser light L1 peripheral laser light L1
  • the peripheral modification layer M1 is formed at the boundary between the peripheral portion We and the central portion Wc of the processed wafer W. It is formed (step B9 in FIG. 12, step A1 in FIG. 10).
  • a plurality of peripheral modification layers M1 are formed at different heights. Further, the peripheral modification layer M1 is formed radially inside the outer end portion of the bonding region Aa.
  • the peripheral modification layer M1 formed by the laser beam L1 extends in the thickness direction and has a vertically long aspect ratio.
  • the lower end of the peripheral modification layer M1 of the lowermost layer is located above the target surface (dotted line in FIG. 17) of the thinned processed wafer W. That is, the distance H1 between the lower end of the peripheral modification layer M1 and the surface Wa of the processed wafer W is larger than the target thickness H2 of the processed wafer W after thinning. In such a case, the peripheral modification layer M1 does not remain on the processed wafer W after thinning. Inside the processed wafer W, cracks C1 propagate from a plurality of peripheral modification layers M1 and reach the back surface Wb and the front surface Wa.
  • step B9 the chuck 100 is rotated by the rotating mechanism 103 and the moving mechanism 104 so that the center of the joining region Aa and the center of the chuck 100 coincide with the position of the chuck 100 determined by the control device 90.
  • the chuck 100 is moved in the Y-axis direction. At this time, the rotation of the chuck 100 and the movement in the Y-axis direction are synchronized.
  • the laser beam L1 is irradiated from the laser head 110 to the inside of the processed wafer W. That is, the peripheral modification layer M1 is formed while correcting the second eccentricity calculated in step B7. Then, the peripheral modification layer M1 is formed in an annular shape concentrically with the bonding region Aa. Therefore, in the peripheral edge removing device 61 after that, the peripheral edge portion We can be appropriately removed with the peripheral edge modifying layer M1 as a base point.
  • the chuck 100 when the second eccentricity amount includes the X-axis component, the chuck 100 is rotated while moving the chuck 100 in the Y-axis direction to correct the X-axis component.
  • the second eccentricity amount when the second eccentricity amount does not include the X-axis component, it is sufficient to move the chuck 100 in the Y-axis direction without rotating it.
  • the microcamera 122 is arranged on the Y-axis positive direction side and the lens 111 of the laser head 110 is arranged on the Y-axis negative direction side with respect to the processed wafer W held by the chuck 100.
  • the peripheral modification layer M1 is formed by the laser head 110, and the peripheral modification layer M1 is imaged by the micro camera 122.
  • the captured image is output to the control device 90, and the control device 90 inspects whether the peripheral modification layer M1 is formed at an appropriate position.
  • the control device 90 inspects whether the peripheral modification layer M1 is formed at an appropriate position.
  • the peripheral modification layer M1 is formed by irradiating the inside of the processed wafer W with the laser beam L1
  • the height of the back surface Wb of the processed wafer W is measured by the sensor 113
  • the laser beam L1 is further measured by the control device 90.
  • the irradiation position of is calculated.
  • the calculated irradiation position of the laser beam L1 is controlled so as to match the origin position set in step B8.
  • the lens 111 is moved up and down by the piezo actuator 112 based on the calculated irradiation position of the laser beam L1. In this way, in step B9, the height of the laser beam L1 is adjusted and followed in real time.
  • the senor 113 is provided coaxially with the laser beam L1 emitted from the lens 111.
  • the irradiation radius (radius of the peripheral modification layer) of the laser beam L1 may differ depending on the processing recipe of step B9.
  • the sensor 113 measures the height of the back surface Wb of the processing wafer W at a position different from the position where the laser beam L1 is irradiated. There is a possibility that the height will deviate from the actual height. Therefore, in the present embodiment, the sensor 113 is provided coaxially with the laser beam L1.
  • one peripheral modification layer M1 is formed by irradiating the inside of the processed wafer W with the laser beam L1 for one round as described above. Then, when the plurality of peripheral modification layers M1 are formed at different heights as in the present embodiment, the irradiation position (irradiation height) of the laser beam L1 is changed.
  • a method for forming a plurality of peripherally modified layers M1 in the present embodiment will be described.
  • FIG. 19 is an explanatory diagram schematically showing a method of forming a plurality of peripheral modification layers M1, the vertical axis showing the rotation speed, and the horizontal axis showing the time.
  • L1 in FIG. 19 indicates irradiation of the laser beam L1
  • D indicates a change in the processing conditions (processing recipe) when forming the peripheral modification layer M1.
  • the processing condition change D is to move the lens 111 up and down to change the irradiation position of the laser beam L1, and the conditions of the laser beam L1, for example, the output (power), frequency, shape (laser pattern), and number of branches of the laser beam L1. Including changing etc.
  • FIG. 19 shows a comparative example
  • (b) shows an example of the present embodiment.
  • the laser beam L1 is irradiated for one round while maintaining the constant speed to provide one peripheral modification layer M1.
  • the processing condition change D is performed with the rotation stopped. That is, the processing condition change D is performed every time one peripheral modification layer M1 is formed. Then, every time the processing condition change D is performed, the rotation of the chuck 100 is repeatedly accelerated and decelerated. Therefore, it takes time.
  • the processing condition change D of the peripheral modification layer M1 is performed while rotating the chuck 100. That is, the rotation of the chuck 100 is not stopped when the processing condition change D is performed. Therefore, it is not necessary to accelerate and decelerate the rotation of the chuck 100 of the comparative example, and the time can be saved. Therefore, the time for forming the plurality of peripheral modification layers M1 can be shortened. In the example of FIG. 19, the time that can be shortened is t2. Further, by shortening the time for forming the plurality of peripheral modification layers M1 in this way, it is possible to increase the number of peripheral modification layers M1 formed.
  • one peripheral modification layer M1 is continuously performed as shown in FIG. 20.
  • the irradiation start position and the irradiation end position of the laser beam L1 are shifted in the circumferential direction when the laser beam L1 is formed.
  • the irradiation start position and the irradiation end position of the laser beam L1 may be the same. Then, after the processing condition change D of the peripheral modification layer M1 is performed, the laser light L1 is not irradiated until the lens 111 is positioned above the irradiation start position of the laser light L1. Even in such a case, when the processing condition change D is performed, the rotation of the chuck 100 is not stopped, and the time for forming the plurality of peripheral modification layers M1 can be shortened.
  • FIG. 19 a case where the treatment conditions are changed for each peripheral modification layer M1 when forming a plurality of peripheral modification layers M1 has been described, but one peripheral modification layer M1 is used.
  • the conditions of the laser beam L1 may be changed during the formation, that is, while the laser beam L1 makes one round.
  • the condition of the laser beam L1 may be changed according to the crystal orientation of silicon.
  • FIG. 22 is an explanatory diagram showing an example in which the conditions of the laser beam L1 are changed in one round. In the example shown in FIG.
  • the processed wafer W is divided into four, the diagonal processed wafers W1 and W1 are irradiated with the laser beam L1 under one condition, and the processed wafers W2 and W2 are irradiated with the laser beam L1 under the other conditions. To do.
  • the processed wafers W1 and W1 are irradiated with the laser beam L1 in the first round in a state where the chuck 100 is rotated, and the processed wafers W2 and W2 are subjected to the laser light L1. Irradiation of the laser beam L1 is stopped. After that, the condition of the laser beam L1 is changed while the rotation of the chuck 100 is once stopped. Then, with the chuck 100 rotated again, the processed wafers W2 and W2 are irradiated with the laser beam L1 on the second lap, and the processed wafers W1 and W1 are stopped from being irradiated with the laser beam L1. In such a case, when the condition of the laser beam L1 is changed, the rotation of the chuck 100 is accelerated and decelerated, which takes time.
  • the condition of the laser beam L1 is changed while rotating the chuck 100. That is, when the condition of the laser beam L1 is changed, the rotation of the chuck 100 is not stopped. Therefore, it is not necessary to accelerate and decelerate the rotation of the chuck 100 of the comparative example, and the time can be saved. Therefore, the time for forming the peripheral modification layer M1 can be shortened.
  • a notch portion Wn is formed at the outer edge portion of the processed wafer W.
  • the notch portion Wn is irradiated with the laser beam L1.
  • the cross section irradiated with the laser beam L1 becomes rough.
  • step B9 when irradiating the laser beam L1 while rotating the chuck 100, the irradiation position (irradiation height) of the laser beam L1 is adjusted (followed) in real time.
  • the irradiation position of the laser beam L1 changes. Then, it takes time to adjust the irradiation position of the laser beam L1 in real time at a place other than the notch portion Wn.
  • step B9 the notch portion Wn is controlled so as not to be irradiated with the laser beam L1. Since the position of the notch portion Wn on the processed wafer W is known in advance, the irradiation of the laser beam L1 may be stopped when the lens 111 of the laser head 110 is arranged above the notch portion Wn. In such a case, since the laser beam L1 is not applied to the notch portion Wn, the cross section of the end portion of the notch portion Wn is not roughened. Further, the notch portion Wn stops the real-time adjustment of the irradiation position of the laser beam L1. Then, in the irradiation of the laser beam L1 in one round, the irradiation position of the laser beam L1 does not fluctuate significantly, and real-time adjustment other than the notch portion Wn becomes easy.
  • peripheral modification layer M1 When the peripheral modification layer M1 is formed as described above, the peripheral modification layer is then irradiated with laser light L2 (division laser light L2) from the laser head 110 as shown in FIGS. 24 and 25.
  • the split reforming layer M2 is formed on the radial outer side of M1 (step B10 in FIG. 12, step A2 in FIG. 10).
  • the split modified layer M2 also extends in the thickness direction like the peripheral modified layer M1 and has a vertically long aspect ratio.
  • the crack C2 propagates from the split modified layer M2 and reaches the back surface Wb and the front surface Wa.
  • the split reforming layer M1 extends outward in the radial direction from the peripheral reforming layer M1.
  • Layer M2 is formed.
  • the divided and modified layers M2 of the line extending in the radial direction are formed at eight positions, but the number of the divided and modified layers M2 is arbitrary. At least, if the split modification layer M2 is formed at two positions, the peripheral portion We can be removed.
  • the peripheral edge portion We when the peripheral edge portion We is removed in the edge trim, the peripheral edge portion We is divided into a plurality of parts by the divided modified layer M2 while being separated from the annular peripheral edge modified layer M1 as a base point. Then, the peripheral portion We to be removed is fragmented and can be removed more easily.
  • the chuck 100 may be moved in the Y-axis direction to form the split modified layer M2. That is, the chuck 100 is moved from the state where the chuck 100 is located on the Y-axis positive direction side of the lens 111 as shown in FIG. 26A to the chuck 100 in the Y-axis negative direction as shown in FIG. 26B. Then, when the processed wafer W passes below the lens 111, one end of the peripheral edge We is irradiated with the laser beam L2 to form the split reforming layer M21. After that, as shown in FIG.
  • the chuck 100 is further moved in the negative direction of the Y-axis to form the split reforming layer M22 at the other end of the peripheral edge We.
  • the split reforming layers M21 and M22 are formed on the opposite peripheral edges We.
  • the moving distance D1 of the chuck 100 becomes long.
  • the moving distance D1 requires, for example, one processing wafer W, a distance for accelerating the chuck 100, and a distance for decelerating.
  • step B10 of the present embodiment the split reforming layer M2 is formed only at one end of the peripheral edge We, and the chuck 100 is further rotated to move the chuck 100.
  • the chuck 100 is moved from the state where the chuck 100 is located on the Y-axis positive direction side of the lens 111 as shown in FIG. 27 (a) to the Y-axis negative direction as shown in FIG. 27 (b).
  • the processed wafer W passes below the lens 111, one end (position in one circumferential direction) of the peripheral edge We is irradiated with the laser beam L2 to form the split reforming layer M21.
  • the chuck 100 is rotated 180 degrees as shown in FIG.
  • the chuck 100 is moved in the positive direction of the Y axis to form the split reforming layer M22 at the other end (other circumferential position) of the peripheral edge We.
  • the moving distance D2 of the chuck 100 becomes short.
  • the moving distance D2 only needs to include, for example, the forming width of the split reforming layer M2, the distance for accelerating and the distance for decelerating the chuck 100.
  • the moving distance of the chuck 100 can be shortened to reduce the occupied area (footprint) of the reforming device 60, which saves energy. It can be made into a space.
  • the chuck 100 is moved in the Y-axis direction when the split reforming layer M2 is formed, but the laser head 110 may be moved in the Y-axis direction.
  • the laser head 110 irradiates the laser beam L3 (inner surface laser beam L3) to form the internal surface modification layer M3 along the surface direction (FIG. 12).
  • the black arrow shown in FIG. 29 indicates the rotation direction of the chuck 100, and the same applies to the following description.
  • the lower end of the internal surface modification layer M3 is located slightly above the target surface (dotted line in FIG. 28) of the thinned processed wafer W. That is, the distance H3 between the lower end of the internal surface modification layer M3 and the surface Wa of the processed wafer W is slightly larger than the target thickness H2 of the processed wafer W after thinning. Inside the processed wafer W, cracks C3 grow in the plane direction from the internal surface modification layer M3.
  • step B11 the chuck 100 (processed wafer W) is rotated, and the laser head 110 is moved from the outer peripheral portion to the central portion of the processed wafer W in the Y-axis direction from the laser head 110 to the inside of the processed wafer W.
  • the laser beam L3 is irradiated.
  • the internal surface modification layer M3 is spirally formed from the outside to the inside in the surface of the processed wafer W.
  • the laser head 110 is moved in the Y-axis direction when the internal surface modification layer M3 is formed, but the chuck 100 may be moved in the Y-axis direction. Further, although the chuck 100 was rotated in forming the internal surface modification layer M3, the laser head 110 may be moved to rotate the laser head 110 relative to the chuck 100.
  • the chuck 100 is moved to the first position P1 (step B12 in FIG. 12).
  • the polymerized wafer T is carried out by the wafer transfer device 70 (step B13 in FIG. 12).
  • the polymerized wafer T carried out from the reformer 60 is then transferred to the peripheral edge removing device 61 by the wafer transfer device 70.
  • the peripheral edge removing device 61 as shown in FIG. 11D, the peripheral edge portion We of the processed wafer W is removed from the peripheral edge modifying layer M1 as a base point (step A4 in FIG. 10).
  • the wedge roller 141 is inserted from the outer end portion of the processing wafer W and the support wafer S into the interface between the processing wafer W and the support wafer S.
  • the peripheral edge portion We is pushed up by the inserted wedge roller 141, and is separated from the processing wafer W with the peripheral edge modification layer M1 as a base point and removed.
  • the peripheral portion We is fragmented and separated from the divided modified layer M2 as a base point.
  • the removed peripheral edge We is collected by a collection unit (not shown).
  • the polymerized wafer T is transferred to the processing device 80 by the wafer transfer device 70.
  • the processing apparatus 80 first, the polymerization wafer T is delivered from the transport arm 71 to the chuck 83 at the delivery position A0.
  • the back surface Wb side of the processed wafer W (hereinafter referred to as the back surface wafer Wb1) is separated from the internal surface modification layer M3 as a base point (step A5 in FIG. 10).
  • step A5 the suction plate 170 of the transport arm 71 sucks and holds the processed wafer W, and the chuck 83 sucks and holds the support wafer S. Then, the suction plate 170 is rotated to trim the back surface wafer Wb1 with the internal surface modification layer M3 as a boundary. Then, in a state where the suction plate 170 sucks and holds the back surface wafer Wb1, the suction plate 170 is raised to separate the back surface wafer Wb1 from the processed wafer W.
  • the pressure sensor 183 by measuring the pressure at which the back surface wafer Wb1 is sucked by the pressure sensor 183, the presence or absence of the back surface wafer Wb1 can be detected, and it can be confirmed whether or not the back surface wafer Wb1 is separated from the processed wafer W.
  • the separated back surface wafer Wb1 is collected outside the wafer processing system 1.
  • step A6 the processing wafer W and the grinding wheel are rotated in a state where the grinding wheel is in contact with the back surface Wb to grind the back surface Wb.
  • the back surface Wb of the processing wafer W may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown).
  • the polymerized wafer T is transferred to the cleaning device 41 by the wafer transfer device 70.
  • the back surface Wb which is the ground surface of the processed wafer W, is scrubbed (step A7 in FIG. 10).
  • the back surface Sb of the support wafer S may be cleaned together with the back surface Wb of the processing wafer W.
  • the polymerized wafer T is transferred to the etching device 40 by the wafer transfer device 50.
  • the back surface Wb of the processed wafer W is wet-etched with a chemical solution (step A8 in FIG. 5). Grinding marks may be formed on the back surface Wb ground by the processing device 80 described above. In this step A8, grinding marks can be removed by wet etching, and the back surface Wb can be smoothed.
  • the polymerized wafer T that has been subjected to all the processing is transported to the transition device 30 by the wafer transfer device 50, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 20. In this way, a series of wafer processing in the wafer processing system 1 is completed.
  • the occupied area of the reformer 60 can be reduced and the space can be saved. Along with this, it is also possible to improve the throughput of wafer processing.
  • all the processing can be performed by arranging the chuck 100 at two positions, the first position P1 and the second position. That is, at the first position P1, power check and calibration in step B1, loading and unloading of the polymerized wafer T in steps B2 and B12, and macro alignment in steps B3 and B4 are performed. At the second position P2, micro-alignment in steps B6 and B7, adjustment of the irradiation height of the laser beam in step B8, formation of the peripheral modification layer M1 in step B9, formation of the split modification layer M2 in step B10, and step B11.
  • the inner surface modification layer M3 is formed in the above. Since the chuck 100 may be moved between the first position P1 and the second position P2 in this way, the moving distance is shortened, and the cost of controlling the movement of the chuck 100 can be reduced.
  • the power meter 107 is arranged below the lens 111 of the laser head 110.
  • the power meter 107 is located away from the first position P1, it is necessary to move the chuck 100 from the first position P1 for power check, but in the present embodiment, such a chuck 100 No need to move. Therefore, the occupied area of the reformer 60 can be reduced to save space.
  • step B1 since the power check and the calibration can be performed while the chuck 100 is on standby, the time for the reforming process can be shortened and the throughput for the wafer process can be improved.
  • the chuck 100 when forming the split reforming layer M2 in step B10, after forming the split reforming layer M21 at one end of the peripheral edge portion We, the chuck 100 is rotated to split and modify the other end portion of the peripheral edge portion We. Layer M22 is formed. Therefore, the moving distance of the chuck 100 can be shortened, and the occupied area of the reformer 60 can be reduced to save space.
  • the peripheral portion We is removed by using the peripheral edge removing portion 140 in the peripheral edge removing device 61, but the removing method is not limited to this.
  • the peripheral edge portion We may be held and removed, or the peripheral edge portion We may be removed by applying a physical impact or ultrasonic waves to the peripheral edge portion We.
  • the back surface wafer Wb1 is separated from the processed wafer W when the polymerized wafer T is transferred from the transfer arm 71 of the wafer transfer device 70 to the chuck 83 of the processing device 80.
  • the method is not limited to this.
  • a separation device (not shown) may be provided in the same device as the peripheral edge removing device 61, or a separation device (not shown) may be provided separately.
  • the thinning of the processed wafer W is performed by separating the back surface wafer Wb1, but the thinning method is not limited to this.
  • the back surface Wb of the processed wafer W may be ground, or the back surface Wb may be etched.
  • the processed body is the polymerized wafer T
  • the present invention is not limited to this.
  • the treated body may be something other than a substrate, for example, and the above embodiment can be applied when a modified layer is formed by irradiating the inside of the treated body with laser light.
  • Wafer processing system 60 Remodeling device 90 Control device 100 Chuck 107 Power meter 110 Laser head M1 Peripheral remodeling layer P1 First position P2 Second position S Support wafer T Polymerized wafer W Processing wafer Wc Central part We Peripheral part

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A processing device according to the present invention has: a modification unit which forms a modified layer by irradiating the interior of a workpiece retained by a retaining part with a laser beam; a measurement unit which measures the output of the laser beam; a moving part which moves the retaining part between a first position, where the workpiece is transported into and out of the retaining part, and a second position where the modified layer is formed by the modification unit; and a control unit which controls the retaining part, the modification unit, the measurement unit, and the moving part. The control unit controls the retaining part, the measurement unit, and the moving part such that the output of the laser beam is measured by the measurement unit while the retaining part is waiting at the first position.

Description

処理装置及び処理方法Processing equipment and processing method
 本開示は、処理装置及び処理方法に関する。 This disclosure relates to a processing apparatus and a processing method.
 特許文献1には、六方晶単結晶インゴットからウェハを生成する方法が開示されている。この生成方法では、六方晶単結晶インゴットに対して透過性を有する波長のレーザービームの集光点をインゴットの表面から生成するウェハの厚みに相当する深さに位置づける。集光点と六方晶単結晶インゴットとを相対的に移動してレーザービームをインゴットの表面に照射し、表面に平行な改質層及び該改質層からクラックを形成して分離起点を形成する。その後、六方晶単結晶インゴットからウェハを剥離する。 Patent Document 1 discloses a method for producing a wafer from a hexagonal single crystal ingot. In this generation method, the focusing point of the laser beam having a wavelength that is transparent to the hexagonal single crystal ingot is positioned at a depth corresponding to the thickness of the wafer generated from the surface of the ingot. The surface of the ingot is irradiated with a laser beam by moving the condensing point and the hexagonal single crystal ingot relatively, and cracks are formed from the modified layer parallel to the surface and the modified layer to form a separation starting point. .. Then, the wafer is peeled from the hexagonal single crystal ingot.
特開2016-146448号公報Japanese Unexamined Patent Publication No. 2016-146448
 本開示にかかる技術は、処理体の内部にレーザ光を照射して改質層を形成するにあたり、当該処理にかかる時間を短縮する。 The technique according to the present disclosure shortens the time required for the treatment when the modified layer is formed by irradiating the inside of the treated body with a laser beam.
 本開示の一態様は、処理体を処理する装置であって、前記処理体を保持する保持部と、前記保持部に保持された前記処理体の内部に、レーザ光を照射して改質層を形成する改質部と、前記レーザ光の出力を測定する測定部と、前記保持部に対して前記処理体を搬入出する第1の位置と、前記改質部によって前記改質層を形成する第2の位置との間で、前記保持部を移動させる移動部と、前記保持部、前記改質部、前記測定部及び前記移動部を制御する制御部と、を有し、前記制御部は、前記第1の位置において前記保持部が待機する際、前記測定部によって前記レーザ光の出力を測定するように、前記保持部、前記測定部及び前記移動部を制御する。 One aspect of the present disclosure is an apparatus for processing a processed body, in which a holding portion for holding the processed body and the inside of the processed body held by the holding portion are irradiated with laser light to form a modified layer. The modified layer is formed by the modified portion for forming the modified portion, the measuring portion for measuring the output of the laser beam, the first position for loading and unloading the processed material with respect to the holding portion, and the modified portion. The control unit has a moving unit for moving the holding unit and a control unit for controlling the holding unit, the modifying unit, the measuring unit, and the moving unit. Controls the holding unit, the measuring unit, and the moving unit so that the measuring unit measures the output of the laser beam when the holding unit stands by at the first position.
 本開示によれば、処理体の内部にレーザ光を照射して改質層を形成するにあたり、当該処理にかかる時間を短縮することができる。 According to the present disclosure, when the modified layer is formed by irradiating the inside of the processed body with a laser beam, the time required for the processing can be shortened.
本実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows the outline of the structure of the wafer processing system which concerns on this embodiment schematically. 重合ウェハの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of a polymerization wafer. 重合ウェハの一部の構成の概略を示す側面図である。It is a side view which shows the outline of the structure of a part of a polymerization wafer. 改質装置の構成の概略を示す平面図である。It is a top view which shows the outline of the structure of the reformer. 改質装置の構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the reformer. 周縁除去装置の構成の概略を示す平面図である。It is a top view which shows the outline of the structure of the peripheral edge removal device. 周縁除去装置の構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the peripheral edge removal device. 周縁除去装置の構成の概略を模式的に示す説明図である。It is explanatory drawing which shows the outline of the structure of the peripheral edge removal device schematically. 搬送アームの構成の概略を示す縦断面図である。It is a vertical cross-sectional view which shows the outline of the structure of the transport arm. 本実施形態にかかるウェハ処理の主な工程を示すフロー図である。It is a flow chart which shows the main process of the wafer processing which concerns on this Embodiment. 本実施形態にかかるウェハ処理の主な工程の説明図である。It is explanatory drawing of the main process of the wafer processing which concerns on this embodiment. 改質処理の主な工程を示すフロー図である。It is a flow chart which shows the main process of the reforming process. 改質処理の主な工程の説明図である。It is explanatory drawing of the main process of a reforming process. マイクロカメラの昇降に対するフォーカス調整を行うタイミングを示す説明図である。It is explanatory drawing which shows the timing which performs the focus adjustment with respect to the elevating and lowering of a micro camera. マクロカメラが処理ウェハの外側端部を撮像する様子を示す説明図である。It is explanatory drawing which shows a mode that a macro camera takes an image of the outer end portion of a processing wafer. マイクロカメラが処理ウェハの接合領域と未接合領域の境界を撮像する様子を示す説明図である。It is explanatory drawing which shows a mode that a micro camera images the boundary of the bonded region and the unbonded region of a processed wafer. 処理ウェハに周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the peripheral modification layer on the processed wafer. 処理ウェハに周縁改質層を形成した様子を示す説明図である。It is explanatory drawing which shows the appearance which the peripheral modification layer was formed on the processed wafer. 複数の周縁改質層を形成する方法を模式的に示す説明図である。It is explanatory drawing which shows typically the method of forming a plurality of peripheral modification layers. 複数の周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the appearance of forming a plurality of peripheral modification layers. 複数の周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the appearance of forming a plurality of peripheral modification layers. 1層の周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the peripheral modification layer of one layer. 処理ウェハに周縁改質層を形成するにあたり、ノッチ部の周辺を示す説明図である。It is explanatory drawing which shows the periphery of the notch part in forming a peripheral modification layer on a processed wafer. 処理ウェハに分割改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the division modification layer on the processing wafer. 処理ウェハに分割改質層を形成した様子を示す説明図である。It is explanatory drawing which shows the appearance which the division modification layer was formed on the processing wafer. 比較例において分割改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the division modification layer in a comparative example. 本実施形態において分割改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the division modification layer in this embodiment. 処理ウェハに内部面改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the internal surface modification layer on the processed wafer. 処理ウェハに内部面改質層を形成する様子を示す説明図である。It is explanatory drawing which shows the state of forming the internal surface modification layer on the processed wafer.
 半導体デバイスの製造工程においては、表面に複数の電子回路等のデバイスが形成されたウェハに対し、当該ウェハを薄化することが行われている。ウェハの薄化方法は種々あるが、例えばウェハの裏面を研削加工する方法や、ウェハの内部にレーザ光を照射して改質層を形成し、当該改質層を基点にウェハを分離する方法などがある。 In the manufacturing process of a semiconductor device, the wafer is thinned with respect to a wafer in which devices such as a plurality of electronic circuits are formed on the surface. There are various methods for thinning the wafer. For example, a method of grinding the back surface of the wafer or a method of irradiating the inside of the wafer with laser light to form a modified layer and separating the wafer from the modified layer as a base point. and so on.
 上述した特許文献1に開示されたウェハの生成方法は、六方晶単結晶インゴットからウェハを剥離するという点で、上述したウェハの薄化と同様の技術である。ここで、ウェハの内部にレーザ光を照射する際には、当該レーザ光の出力(パワー)が適切かどうかを確認する(パワーチェック)必要がある。また、このパワーチェックは、処理対象のウェハ毎に行うのが適当である。しかしながら、特許文献1には、パワーチェックを行うことの開示はなく、ましてパワーチェックの処理時間を短縮することは全く考慮されていない。したがって、従来の方法には改善の余地がある。 The wafer generation method disclosed in Patent Document 1 described above is the same technique as the wafer thinning described above in that the wafer is peeled from the hexagonal single crystal ingot. Here, when irradiating the inside of the wafer with a laser beam, it is necessary to confirm whether or not the output (power) of the laser beam is appropriate (power check). Further, it is appropriate to perform this power check for each wafer to be processed. However, Patent Document 1 does not disclose that the power check is performed, much less shortening the processing time of the power check is not considered at all. Therefore, there is room for improvement in the conventional method.
 本開示にかかる技術は、レーザ光を用いて改質層を形成するにあたり、処理時間を短縮し効率よく行う。以下、ウェハ処理を効率よく行う本実施形態にかかる処理装置としての改質装置を備えたウェハ処理システム、及び処理方法としてのウェハ処理方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 The technique according to the present disclosure shortens the processing time and efficiently performs the formation of the modified layer using the laser beam. Hereinafter, a wafer processing system including a reformer as a processing device according to the present embodiment for efficiently performing wafer processing and a wafer processing method as a processing method will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description.
 先ず、本実施形態にかかるウェハ処理システムの構成について説明する。図1は、ウェハ処理システム1の構成の概略を模式的に示す平面図である。 First, the configuration of the wafer processing system according to this embodiment will be described. FIG. 1 is a plan view schematically showing an outline of the configuration of the wafer processing system 1.
 ウェハ処理システム1では、図2及び図3に示すように第1の基板としての処理ウェハWと第2の基板としての支持ウェハSとが接合された、重合基板としての重合ウェハTに対して所望の処理を行う。そしてウェハ処理システム1では、処理ウェハWの周縁部Weを除去し、さらに当該処理ウェハWを薄化する。以下、処理ウェハWにおいて、支持ウェハSに接合された面を表面Waといい、表面Waと反対側の面を裏面Wbという。同様に、支持ウェハSにおいて、処理ウェハWに接合された面を表面Saといい、表面Saと反対側の面を裏面Sbという。 In the wafer processing system 1, as shown in FIGS. 2 and 3, the processing wafer W as the first substrate and the support wafer S as the second substrate are bonded to the polymerization wafer T as the polymerization substrate. Perform the desired treatment. Then, in the wafer processing system 1, the peripheral portion We of the processed wafer W is removed, and the processed wafer W is further thinned. Hereinafter, in the processed wafer W, the surface bonded to the support wafer S is referred to as a front surface Wa, and the surface opposite to the front surface Wa is referred to as a back surface Wb. Similarly, in the support wafer S, the surface bonded to the processed wafer W is referred to as a front surface Sa, and the surface opposite to the front surface Sa is referred to as a back surface Sb.
 処理ウェハWは、例えばシリコンウェハなどの半導体ウェハであって、表面Waに複数のデバイスを含むデバイス層(図示せず)が形成されている。また、デバイス層にはさらに酸化膜F、例えばSiO膜(TEOS膜)が形成されている。なお、処理ウェハWの周縁部Weは面取り加工がされており、周縁部Weの断面はその先端に向かって厚みが小さくなっている。また、周縁部Weは、いわゆるエッジトリムにおいて除去される部分であり、例えば処理ウェハWの外端部から径方向に1mm~5mmの範囲である。 The processed wafer W is a semiconductor wafer such as a silicon wafer, and a device layer (not shown) including a plurality of devices is formed on the surface Wa. Further, an oxide film F, for example, a SiO 2 film (TEOS film) is further formed on the device layer. The peripheral edge portion We of the processed wafer W is chamfered, and the cross section of the peripheral edge portion We becomes thinner toward the tip thereof. The peripheral edge portion We is a portion that is removed in the so-called edge trim, and is, for example, in the range of 1 mm to 5 mm in the radial direction from the outer end portion of the processed wafer W.
 なお、図2においては、図示の煩雑さを回避するため、酸化膜Fの図示を省略している。また、以下の説明で用いられる他の図面においても同様に、酸化膜Fの図示を省略する場合がある。 Note that in FIG. 2, the oxide film F is not shown in order to avoid the complexity of the drawing. Similarly, in other drawings used in the following description, the illustration of the oxide film F may be omitted.
 支持ウェハSは、処理ウェハWを支持するウェハであって、例えばシリコンウェハである。支持ウェハSの表面Saには酸化膜(図示せず)が形成されている。また、支持ウェハSは、処理ウェハWの表面Waのデバイスを保護する保護材として機能する。なお、支持ウェハSの表面Saの複数のデバイスが形成されている場合には、処理ウェハWと同様に表面Saにデバイス層(図示せず)が形成される。 The support wafer S is a wafer that supports the processed wafer W, and is, for example, a silicon wafer. An oxide film (not shown) is formed on the surface Sa of the support wafer S. Further, the support wafer S functions as a protective material for protecting the device on the surface Wa of the processing wafer W. When a plurality of devices on the surface Sa of the support wafer S are formed, a device layer (not shown) is formed on the surface Sa in the same manner as the processing wafer W.
 ここで、処理ウェハWの周縁部Weにおいて、処理ウェハWと支持ウェハSが接合されていると、周縁部Weを適切に除去できないおそれがある。そこで、処理ウェハWと支持ウェハSの界面には、酸化膜Fと支持ウェハSの表面Saが接合された接合領域Aaと、接合領域Aaの径方向外側の領域である未接合領域Abとを形成する。このように未接合領域Abが存在することで、周縁部Weを適切に除去できる。なお、接合領域Aaの外側端部は、除去される周縁部Weの内側端部より若干径方向外側に位置する。 Here, in the peripheral portion We of the processed wafer W, if the processed wafer W and the supporting wafer S are joined, there is a possibility that the peripheral portion We cannot be properly removed. Therefore, at the interface between the processed wafer W and the support wafer S, a bonding region Aa to which the oxide film F and the surface Sa of the support wafer S are bonded and an unbonded region Ab which is a region outside the bonding region Aa in the radial direction are provided. Form. With the presence of the unbonded region Ab in this way, the peripheral portion We can be appropriately removed. The outer end portion of the joint region Aa is located slightly radially outward from the inner end portion of the peripheral edge portion We to be removed.
 図1に示すようにウェハ処理システム1は、搬入出ステーション2と処理ステーション3を一体に接続した構成を有している。搬入出ステーション2は、例えば外部との間で複数の重合ウェハTを収容可能なカセットCtが搬入出される。処理ステーション3は、重合ウェハTに対して所望の処理を施す各種処理装置を備えている。 As shown in FIG. 1, the wafer processing system 1 has a configuration in which the loading / unloading station 2 and the processing station 3 are integrally connected. The carry-in / out station 2 carries in / out a cassette Ct capable of accommodating a plurality of polymerized wafers T with, for example, the outside. The processing station 3 includes various processing devices that perform desired processing on the polymerized wafer T.
 搬入出ステーション2には、カセット載置台10が設けられている。図示の例では、カセット載置台10には、複数、例えば3つのカセットCtをY軸方向に一列に載置自在になっている。なお、カセット載置台10に載置されるカセットCtの個数は、本実施形態に限定されず、任意に決定することができる。 The loading / unloading station 2 is provided with a cassette mounting stand 10. In the illustrated example, a plurality of, for example, three cassettes Ct can be freely mounted in a row on the cassette mounting table 10 in the Y-axis direction. The number of cassettes Ct mounted on the cassette mounting table 10 is not limited to this embodiment and can be arbitrarily determined.
 搬入出ステーション2には、カセット載置台10のX軸負方向側において、当該カセット載置台10に隣接してウェハ搬送装置20が設けられている。ウェハ搬送装置20は、Y軸方向に延伸する搬送路21上を移動自在に構成されている。また、ウェハ搬送装置20は、重合ウェハTを保持して搬送する、例えば2つの搬送アーム22、22を有している。各搬送アーム22は、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム22の構成は本実施形態に限定されず、任意の構成を取り得る。そして、ウェハ搬送装置20は、カセット載置台10のカセットCt、及び後述するトランジション装置30に対して、重合ウェハTを搬送可能に構成されている。 The loading / unloading station 2 is provided with a wafer transfer device 20 adjacent to the cassette mounting table 10 on the X-axis negative direction side of the cassette mounting table 10. The wafer transfer device 20 is configured to be movable on a transfer path 21 extending in the Y-axis direction. Further, the wafer transfer device 20 has, for example, two transfer arms 22 and 22 that hold and transfer the polymerized wafer T. Each transport arm 22 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis. The configuration of the transport arm 22 is not limited to this embodiment, and any configuration can be adopted. The wafer transfer device 20 is configured to be able to transfer the polymerized wafer T to the cassette Ct of the cassette mounting table 10 and the transition device 30 described later.
 搬入出ステーション2には、ウェハ搬送装置20のX軸負方向側において、当該ウェハ搬送装置20に隣接して、重合ウェハTを受け渡すためのトランジション装置30が設けられている。 The loading / unloading station 2 is provided with a transition device 30 for delivering the polymerized wafer T adjacent to the wafer transfer device 20 on the X-axis negative direction side of the wafer transfer device 20.
 処理ステーション3には、例えば3つの処理ブロックG1~G3が設けられている。第1の処理ブロックG1、第2の処理ブロックG2、及び第3の処理ブロックG3は、X軸正方向側(搬入出ステーション2側)から負方向側にこの順で並べて配置されている。 The processing station 3 is provided with, for example, three processing blocks G1 to G3. The first processing block G1, the second processing block G2, and the third processing block G3 are arranged side by side in this order from the X-axis positive direction side (import / export station 2 side) to the negative direction side.
 第1の処理ブロックG1には、エッチング装置40、洗浄装置41、及びウェハ搬送装置50が設けられている。エッチング装置40と洗浄装置41は、積層して配置されている。なお、エッチング装置40と洗浄装置41の数や配置はこれに限定されない。例えば、エッチング装置40と洗浄装置41はそれぞれX軸方向に延伸し、平面視において並列に並べて載置されていてもよい。さらに、これらエッチング装置40と洗浄装置41はそれぞれ、積層されていてもよい。 The first processing block G1 is provided with an etching device 40, a cleaning device 41, and a wafer transfer device 50. The etching apparatus 40 and the cleaning apparatus 41 are arranged in a laminated manner. The number and arrangement of the etching apparatus 40 and the cleaning apparatus 41 are not limited to this. For example, the etching apparatus 40 and the cleaning apparatus 41 may be extended in the X-axis direction and placed side by side in parallel in a plan view. Further, the etching apparatus 40 and the cleaning apparatus 41 may be laminated respectively.
 エッチング装置40は、後述する加工装置80で研削された処理ウェハWの裏面Wbをエッチング処理する。例えば、裏面Wbに対して薬液(エッチング液)を供給し、当該裏面Wbをウェットエッチングする。薬液には、例えばHF、HNO、HPO、TMAH、Choline、KOHなどが用いられる。 The etching apparatus 40 etches the back surface Wb of the processed wafer W ground by the processing apparatus 80 described later. For example, a chemical solution (etching solution) is supplied to the back surface Wb, and the back surface Wb is wet-etched. As the chemical solution, for example, HF, HNO 3 , H 3 PO 4 , TMAH, Choline, KOH and the like are used.
 洗浄装置41は、後述する加工装置80で研削された処理ウェハWの裏面Wbを洗浄する。例えば裏面Wbにブラシを当接させて、当該裏面Wbをスクラブ洗浄する。なお、裏面Wbの洗浄には、加圧された洗浄液を用いてもよい。また、洗浄装置41は、処理ウェハWの裏面Wbと共に、支持ウェハSの裏面Sbを洗浄する構成を有していてもよい。 The cleaning device 41 cleans the back surface Wb of the processed wafer W ground by the processing device 80 described later. For example, the back surface Wb is brought into contact with the brush to scrub clean the back surface Wb. A pressurized cleaning liquid may be used for cleaning the back surface Wb. Further, the cleaning device 41 may have a configuration for cleaning the back surface Sb of the support wafer S together with the back surface Wb of the processing wafer W.
 ウェハ搬送装置50は、例えばエッチング装置40と洗浄装置41に対してY軸負方向側に配置されている。ウェハ搬送装置50は、重合ウェハTを保持して搬送する、例えば2つの搬送アーム51、51を有している。各搬送アーム51は、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム51の構成は本実施形態に限定されず、任意の構成を取り得る。そして、ウェハ搬送装置50は、トランジション装置30、エッチング装置40、洗浄装置41、及び後述する改質装置60に対して、重合ウェハTを搬送可能に構成されている。 The wafer transfer device 50 is arranged on the Y-axis negative direction side with respect to the etching device 40 and the cleaning device 41, for example. The wafer transfer device 50 has, for example, two transfer arms 51, 51 that hold and transfer the polymerized wafer T. Each transport arm 51 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis. The configuration of the transport arm 51 is not limited to this embodiment, and any configuration can be adopted. The wafer transfer device 50 is configured to be able to transfer the polymerized wafer T to the transition device 30, the etching device 40, the cleaning device 41, and the reforming device 60 described later.
 第2の処理ブロックG2には、改質装置60、周縁除去装置61、及びウェハ搬送装置70が設けられている。改質装置60と周縁除去装置61は、積層して配置されている。なお、改質装置60と周縁除去装置61の数や配置はこれに限定されない。 The second processing block G2 is provided with a reformer 60, a peripheral edge removing device 61, and a wafer transfer device 70. The reformer 60 and the peripheral edge removing device 61 are arranged in a laminated manner. The number and arrangement of the reformer 60 and the peripheral edge removing device 61 are not limited to this.
 改質装置60は、処理ウェハWの内部にレーザ光を照射し、周縁改質層、分割改質層、及び内部面改質層を形成する。改質装置60の具体的な構成は後述する。 The reformer 60 irradiates the inside of the processed wafer W with laser light to form a peripheral reforming layer, a split reforming layer, and an internal surface reforming layer. The specific configuration of the reformer 60 will be described later.
 周縁除去装置61は、改質装置60で形成された周縁改質層を基点に、処理ウェハWの周縁部Weを除去する。周縁除去装置61の具体的な構成は後述する。 The peripheral edge removing device 61 removes the peripheral edge portion We of the processed wafer W from the peripheral edge reforming layer formed by the reforming device 60 as a base point. The specific configuration of the peripheral edge removing device 61 will be described later.
 ウェハ搬送装置70は、例えば改質装置60と周縁除去装置61に対してY軸正方向側に配置されている。ウェハ搬送装置70は、重合ウェハTを保持して搬送する、例えば2つの搬送アーム71、71を有している。各搬送アーム71は、多関節のアーム部材72に支持され、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。搬送アーム71の具体的な構成は後述する。そして、ウェハ搬送装置70は、洗浄装置41、改質装置60、周縁除去装置61、及び後述する加工装置80に対して、重合ウェハTを搬送可能に構成されている。 The wafer transfer device 70 is arranged on the Y-axis positive direction side with respect to, for example, the reformer 60 and the peripheral edge removing device 61. The wafer transfer device 70 has, for example, two transfer arms 71 and 71 that hold and transfer the polymerized wafer T. Each transport arm 71 is supported by an articulated arm member 72, and is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis. The specific configuration of the transport arm 71 will be described later. The wafer transfer device 70 is configured to be able to transfer the polymerized wafer T to the cleaning device 41, the reforming device 60, the peripheral edge removing device 61, and the processing device 80 described later.
 第3の処理ブロックG3には、加工装置80が設けられている。なお、加工装置80の数や配置は本実施形態に限定されず、複数の加工装置80が任意に配置されていてもよい。 The processing device 80 is provided in the third processing block G3. The number and arrangement of the processing devices 80 are not limited to this embodiment, and a plurality of processing devices 80 may be arbitrarily arranged.
 加工装置80は、処理ウェハWの裏面Wbを研削する。そして、内部面改質層が形成された裏面Wbにおいて、当該内部面改質層を除去し、さらに周縁改質層を除去する。 The processing apparatus 80 grinds the back surface Wb of the processed wafer W. Then, on the back surface Wb on which the inner surface modification layer is formed, the inner surface modification layer is removed, and further, the peripheral modification layer is removed.
 加工装置80は、回転テーブル81を有している。回転テーブル81は、回転機構(図示せず)によって、鉛直な回転中心線82を中心に回転自在に構成されている。回転テーブル81上には、重合ウェハTを吸着保持するチャック83が2つ設けられている。チャック83は、回転テーブル81と同一円周上に均等に配置されている。2つのチャック83は、回転テーブル81が回転することにより、受渡位置A0及び加工位置A1に移動可能になっている。また、2つのチャック83はそれぞれ、回転機構(図示せず)によって鉛直軸回りに回転可能に構成されている。 The processing device 80 has a rotary table 81. The rotary table 81 is rotatably configured around a vertical rotation center line 82 by a rotation mechanism (not shown). Two chucks 83 for sucking and holding the polymerized wafer T are provided on the rotary table 81. The chucks 83 are evenly arranged on the same circumference as the rotary table 81. The two chucks 83 can be moved to the delivery position A0 and the processing position A1 by rotating the rotary table 81. Further, each of the two chucks 83 is configured to be rotatable around a vertical axis by a rotation mechanism (not shown).
 受渡位置A0では、重合ウェハTの受け渡しが行われる。加工位置A1では、研削ユニット84が配置される。研削ユニット84では、処理ウェハWの裏面Wbを研削する。研削ユニット84は、環状形状で回転自在な研削砥石(図示せず)を備えた研削部85を有している。また、研削部85は、支柱86に沿って鉛直方向に移動可能に構成されている。そして、チャック83に保持された処理ウェハWの裏面Wbを研削砥石に当接させた状態で、チャック83と研削砥石をそれぞれ回転させ、裏面Wbを研削する。 At the delivery position A0, the polymerization wafer T is delivered. At the machining position A1, the grinding unit 84 is arranged. The grinding unit 84 grinds the back surface Wb of the processed wafer W. The grinding unit 84 has a grinding unit 85 having an annular shape and a rotatable grinding wheel (not shown). Further, the grinding portion 85 is configured to be movable in the vertical direction along the support column 86. Then, in a state where the back surface Wb of the processed wafer W held by the chuck 83 is in contact with the grinding wheel, the chuck 83 and the grinding wheel are each rotated to grind the back surface Wb.
 以上のウェハ処理システム1には、制御部としての制御装置90が設けられている。制御装置90は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理システム1における重合ウェハTの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、ウェハ処理システム1における後述のウェハ処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御装置90にインストールされたものであってもよい。 The above wafer processing system 1 is provided with a control device 90 as a control unit. The control device 90 is, for example, a computer and has a program storage unit (not shown). The program storage unit stores a program that controls the processing of the polymerized wafer T in the wafer processing system 1. Further, the program storage unit also stores a program for controlling the operation of the drive system of the above-mentioned various processing devices and transfer devices to realize the wafer processing described later in the wafer processing system 1. The program may be recorded on a storage medium H that can be read by a computer, and may be installed from the storage medium H on the control device 90.
 次に、上述した改質装置60について説明する。図4は、改質装置60の構成の概略を示す平面図である。図5は、改質装置60の構成の概略を示す側面図である。 Next, the reformer 60 described above will be described. FIG. 4 is a plan view showing an outline of the configuration of the reformer 60. FIG. 5 is a side view showing an outline of the configuration of the reformer 60.
 改質装置60は、重合ウェハTを上面で保持する、保持部としてのチャック100を有している。チャック100は、処理ウェハWが上側であって支持ウェハSが下側に配置された状態で、当該支持ウェハSを吸着保持する。チャック100は、エアベアリング101を介して、スライダテーブル102に支持されている。スライダテーブル102の下面側には、回転部としての回転機構103が設けられている。回転機構103は、駆動源として例えばモータを内蔵している。チャック100は、回転機構103によってエアベアリング101を介して、鉛直軸回りに回転自在に構成されている。スライダテーブル102は、その下面側に設けられた移動部としての移動機構104によって、基台106に設けられY軸方向に延伸するレール105に沿って移動可能に構成されている。なお、移動機構104の駆動源は特に限定されるものではないが、例えばリニアモータが用いられる。 The reformer 60 has a chuck 100 as a holding portion that holds the polymerized wafer T on the upper surface. The chuck 100 attracts and holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is arranged on the lower side. The chuck 100 is supported by the slider table 102 via an air bearing 101. A rotation mechanism 103 as a rotating portion is provided on the lower surface side of the slider table 102. The rotation mechanism 103 has, for example, a built-in motor as a drive source. The chuck 100 is rotatably configured around a vertical axis by a rotation mechanism 103 via an air bearing 101. The slider table 102 is configured to be movable along a rail 105 provided on the base 106 and extending in the Y-axis direction by a moving mechanism 104 as a moving portion provided on the lower surface side thereof. The drive source of the moving mechanism 104 is not particularly limited, but for example, a linear motor is used.
 スライダテーブル102には、後述するレーザヘッド110から照射されるレーザ光の出力(パワー)を測定する、測定部としてのパワーメータ107が設けられている。パワーメータ107は、スライダテーブル102のY軸負方向端部に設けられている。そして、後述するように第1の位置P1において、パワーメータ107はレーザヘッド110のレンズの下方に配置される。パワーメータ107で測定されたレーザ光のパワーは制御装置90に出力される。制御装置90には、処理レシピに応じたレーザ光のパワーが設定されており、測定されたレーザ光のパワーが適切かどうかを確認する(パワーチェック)。このパワーチェックは、例えば処理対象の処理ウェハW毎に行われる。 The slider table 102 is provided with a power meter 107 as a measuring unit for measuring the output (power) of the laser light emitted from the laser head 110, which will be described later. The power meter 107 is provided at the Y-axis negative end of the slider table 102. Then, as will be described later, at the first position P1, the power meter 107 is arranged below the lens of the laser head 110. The power of the laser beam measured by the power meter 107 is output to the control device 90. The power of the laser beam is set in the control device 90 according to the processing recipe, and it is confirmed whether or not the measured power of the laser beam is appropriate (power check). This power check is performed for each processing wafer W to be processed, for example.
 チャック100の上方には、改質部としてのレーザヘッド110が設けられている。レーザヘッド110は、レンズ111とピエゾアクチュエータ112を有している。レンズ111は、レーザヘッド110の下面に設けられ、チャック100に保持された処理ウェハWにレーザ光を照射する。ピエゾアクチュエータ112は、レンズ111を昇降させる。 A laser head 110 as a reforming portion is provided above the chuck 100. The laser head 110 has a lens 111 and a piezo actuator 112. The lens 111 is provided on the lower surface of the laser head 110 and irradiates the processing wafer W held by the chuck 100 with laser light. The piezo actuator 112 raises and lowers the lens 111.
 またレーザヘッド110には、レンズ111から照射されるレーザ光の位置を測定するための、センサ113が設けられている。センサ113は、レンズ111から照射されるレーザ光と同軸に設けられ、例えばAFセンサであり、処理ウェハWの裏面Wbの高さを測定する。センサ113で測定された裏面Wbの高さは制御装置90に出力される。制御装置90では、裏面Wbの高さに基づいて、処理ウェハWの内部に照射されるレーザ光の照射位置を算出する。 Further, the laser head 110 is provided with a sensor 113 for measuring the position of the laser beam emitted from the lens 111. The sensor 113 is provided coaxially with the laser beam emitted from the lens 111, and is, for example, an AF sensor, which measures the height of the back surface Wb of the processing wafer W. The height of the back surface Wb measured by the sensor 113 is output to the control device 90. The control device 90 calculates the irradiation position of the laser beam emitted to the inside of the processing wafer W based on the height of the back surface Wb.
 さらにレーザヘッド110には、レンズ111から照射されるレーザ光の照射位置(焦点)を調整するための、センサ114とカメラ115がさらに設けられている。センサ114は、レンズ111から照射されるレーザ光と別軸に設けられ、例えばAFセンサであり、処理ウェハWの裏面Wbの高さを測定して、当該裏面Wbをサーチする。なお、センサ114には、上記センサ113よりも広範囲を測定可能なAFセンサが用いられる。またカメラ115は、レンズ111から照射されるレーザ光と同軸に設けられ、処理ウェハWの裏面Wbを撮像する。センサ114で測定された裏面Wbの高さと、カメラ115で撮像された裏面Wbの画像はそれぞれ、制御装置90に出力される。制御装置90では、後述するように、裏面Wbの高さと画像に基づいて、処理ウェハWの内部に照射されるレーザ光の照射位置を算出する。 Further, the laser head 110 is further provided with a sensor 114 and a camera 115 for adjusting the irradiation position (focus) of the laser light emitted from the lens 111. The sensor 114 is provided on a different axis from the laser beam emitted from the lens 111, and is, for example, an AF sensor, which measures the height of the back surface Wb of the processing wafer W and searches for the back surface Wb. As the sensor 114, an AF sensor capable of measuring a wider range than the sensor 113 is used. Further, the camera 115 is provided coaxially with the laser beam emitted from the lens 111, and images the back surface Wb of the processed wafer W. The height of the back surface Wb measured by the sensor 114 and the image of the back surface Wb captured by the camera 115 are output to the control device 90, respectively. As will be described later, the control device 90 calculates the irradiation position of the laser beam emitted to the inside of the processed wafer W based on the height of the back surface Wb and the image.
 またレーザヘッド110は、図示しない空間光変調器をさらに有している。空間光変調器は、レーザ光を変調して出力する。具体的に空間光変調器は、レーザ光の焦点位置や位相を制御することができ、処理ウェハWに照射されるレーザ光の形状や数(分岐数)を調整することができる。 Further, the laser head 110 further has a spatial light modulator (not shown). The spatial light modulator modulates and outputs the laser beam. Specifically, the spatial light modulator can control the focal position and phase of the laser beam, and can adjust the shape and number (number of branches) of the laser beam irradiated to the processing wafer W.
 そしてレーザヘッド110は、レーザ光発振器(図示せず)から発振された高周波のパルス状のレーザ光であって、処理ウェハWに対して透過性を有する波長のレーザ光を、処理ウェハWの内部の所望位置に集光して照射する。これによって、処理ウェハWの内部においてレーザ光が集光した部分が改質し、周縁改質層、分割改質層、及び内部面改質層が形成される。 The laser head 110 is a high-frequency pulsed laser beam oscillated from a laser beam oscillator (not shown), and emits a laser beam having a wavelength that is transparent to the processing wafer W inside the processing wafer W. Condensate and irradiate at the desired position. As a result, the portion where the laser light is focused is modified inside the processed wafer W, and a peripheral modification layer, a division modification layer, and an inner surface modification layer are formed.
 レーザヘッド110は、支持部材116に支持されている。レーザヘッド110は、鉛直方向に延伸するレール117に沿って、昇降機構118により昇降自在に構成されている。またレーザヘッド110は、移動機構119によってY軸方向に移動自在に構成されている。なお、昇降機構118及び移動機構119はそれぞれ、支持柱120に支持されている。 The laser head 110 is supported by the support member 116. The laser head 110 is configured to be vertically elevated by an elevating mechanism 118 along a rail 117 extending in the vertical direction. Further, the laser head 110 is configured to be movable in the Y-axis direction by the moving mechanism 119. The elevating mechanism 118 and the moving mechanism 119 are each supported by the support pillar 120.
 チャック100の上方であって、レーザヘッド110のY軸正方向側には、第1の撮像部としてのマクロカメラ121と、第2の撮像部としてのマイクロカメラ122とが設けられている。例えば、マクロカメラ121とマイクロカメラ122は一体に構成され、マクロカメラ121はマイクロカメラ122のY軸正方向側に配置されている。マクロカメラ121とマイクロカメラ122は、昇降機構123によって昇降自在に構成され、さらに移動機構124によってY軸方向に移動自在に構成されている。 Above the chuck 100 and on the Y-axis positive direction side of the laser head 110, a macro camera 121 as a first imaging unit and a micro camera 122 as a second imaging unit are provided. For example, the macro camera 121 and the micro camera 122 are integrally configured, and the macro camera 121 is arranged on the Y-axis positive direction side of the micro camera 122. The macro camera 121 and the micro camera 122 are configured to be vertically movable by the elevating mechanism 123, and further configured to be movable in the Y-axis direction by the moving mechanism 124.
 マクロカメラ121は、処理ウェハW(重合ウェハT)の外側端部を撮像する。マクロカメラ121は、例えば同軸レンズを備え、可視光、例えば赤色光を照射し、さらに対象物からの反射光を受光する。なお例えば、マクロカメラ121の撮像倍率は2倍である。 The macro camera 121 images the outer end of the processed wafer W (polymerized wafer T). The macro camera 121 includes, for example, a coaxial lens, irradiates visible light, for example, red light, and further receives reflected light from an object. For example, the imaging magnification of the macro camera 121 is 2 times.
 マイクロカメラ122は、処理ウェハWの周縁部を撮像し、接合領域Aaと未接合領域Abの境界を撮像する。マイクロカメラ122は、例えば同軸レンズを備え、赤外光(IR光)を照射し、さらに対象物からの反射光を受光する。なお例えば、マイクロカメラ122の撮像倍率は10倍であり、視野はマクロカメラ121に対して約1/5であり、ピクセルサイズはマクロカメラ121に対して約1/5である。 The micro camera 122 images the peripheral edge of the processed wafer W and images the boundary between the bonded region Aa and the unbonded region Ab. The microcamera 122 includes, for example, a coaxial lens, irradiates infrared light (IR light), and further receives reflected light from an object. For example, the imaging magnification of the micro camera 122 is 10 times, the field of view is about 1/5 of that of the macro camera 121, and the pixel size is about 1/5 of that of the macro camera 121.
 次に、上述した周縁除去装置61について説明する。図6は、周縁除去装置61の構成の概略を示す平面図である。図7は、周縁除去装置61の構成の概略を示す側面図である。図8は、周縁除去装置61の構成の概略を模式的に示す説明図である。 Next, the peripheral removal device 61 described above will be described. FIG. 6 is a plan view showing an outline of the configuration of the peripheral edge removing device 61. FIG. 7 is a side view showing an outline of the configuration of the peripheral edge removing device 61. FIG. 8 is an explanatory diagram schematically showing an outline of the configuration of the peripheral edge removing device 61.
 周縁除去装置61は、重合ウェハTを上面で保持するチャック130を有している。チャック130は、処理ウェハWが上側であって支持ウェハSが下側に配置された状態で、当該支持ウェハSを保持する。またチャック130は、回転機構131によって鉛直軸回りに回転可能に構成されている。 The peripheral edge removing device 61 has a chuck 130 that holds the polymerized wafer T on the upper surface. The chuck 130 holds the support wafer S in a state where the processing wafer W is on the upper side and the support wafer S is arranged on the lower side. Further, the chuck 130 is configured to be rotatable around a vertical axis by a rotation mechanism 131.
 チャック130の側方には、処理ウェハWの周縁部Weを除去する周縁除去部140が設けられている。周縁除去部140は、周縁部Weに衝撃を付与して当該周縁部Weを除去する。周縁除去部140は、くさびローラ141と支持ローラ142を有している。 On the side of the chuck 130, a peripheral edge removing portion 140 for removing the peripheral edge portion We of the processed wafer W is provided. The peripheral edge removing portion 140 applies an impact to the peripheral edge portion We to remove the peripheral edge portion We. The peripheral edge removing portion 140 has a wedge roller 141 and a support roller 142.
 くさびローラ141は、側面視において、先端が尖ったくさび形状を有している。くさびローラ141は、処理ウェハWと支持ウェハSの外側端部から、当該処理ウェハWと支持ウェハSの界面に挿入される。そして、挿入されたくさびローラ141により周縁部Weが押し上げられ、処理ウェハWから分離して除去される。 The wedge roller 141 has a wedge shape with a sharp tip when viewed from the side. The wedge roller 141 is inserted from the outer end portion of the processing wafer W and the support wafer S into the interface between the processing wafer W and the support wafer S. Then, the peripheral portion We is pushed up by the inserted wedge roller 141, separated from the processed wafer W, and removed.
 支持ローラ142は、くさびローラ141の中心を貫通して、当該くさびローラ141を支持している。支持ローラ142は、移動機構(図示せず)によって水平方向に移動自在に構成され、支持ローラ142が移動することでくさびローラ141も移動する。また、支持ローラ142は鉛直軸回りに回転自在に構成され、支持ローラ142が回転することでくさびローラ141も回転する。なお、本実施形態では、支持ローラ142には、後述するようにチャック130の回転を受けて回転する、いわゆるフリーローラが用いられる。但し、支持ローラ142は、回転機構(図示せず)によって積極的に回転されてもよい。 The support roller 142 penetrates the center of the wedge roller 141 and supports the wedge roller 141. The support roller 142 is configured to be movable in the horizontal direction by a moving mechanism (not shown), and the wedge roller 141 also moves when the support roller 142 moves. Further, the support roller 142 is configured to be rotatable around a vertical axis, and the wedge roller 141 also rotates when the support roller 142 rotates. In the present embodiment, the support roller 142 uses a so-called free roller that rotates in response to the rotation of the chuck 130 as described later. However, the support roller 142 may be positively rotated by a rotation mechanism (not shown).
 なお、本実施形態では、挿入部材としてくさびローラ141を用いたが、挿入部材はこれに限定されない。例えば挿入部材は、側面視において径方向外側に向けて幅が小さくなる形状を備えたものであればよく、先端が先鋭化したナイフ状の挿入部材を用いてもよい。 In the present embodiment, the wedge roller 141 is used as the insertion member, but the insertion member is not limited to this. For example, the insertion member may have a shape in which the width becomes smaller toward the outside in the radial direction in the side view, and a knife-shaped insertion member having a sharpened tip may be used.
 チャック130の上方及び下方にはそれぞれ、処理ウェハWに洗浄液を供給するノズル150、151が設けられている。洗浄液には、例えば純水が用いられる。周縁除去部140を用いて周縁部Weに衝撃を付与して当該周縁部Weを除去する場合、除去に伴い粉塵(パーティクル)が発生する。そこで、本実施形態では、ノズル150、151から洗浄液を供給することで、この粉塵が飛散するのを抑制する。 Nozzles 150 and 151 for supplying the cleaning liquid to the processing wafer W are provided above and below the chuck 130, respectively. For example, pure water is used as the cleaning liquid. When the peripheral edge removing portion 140 is used to apply an impact to the peripheral edge portion We to remove the peripheral edge portion We, dust (particles) is generated along with the removal. Therefore, in the present embodiment, the cleaning liquid is supplied from the nozzles 150 and 151 to suppress the scattering of the dust.
 上部ノズル150は、チャック130の上方に配置され、処理ウェハWの上方から裏面Wbに洗浄液を供給する。この上部ノズル150からの洗浄液により、周縁部Weの除去時に発生する粉塵が飛散するのを抑制することができ、さらに粉塵が処理ウェハW上へ飛散するもの抑制することができる。具体的に洗浄液は、粉塵を処理ウェハWの外周側へ流す。また下部ノズル151は、チャック130の下方に配置され、支持ウェハS側から処理ウェハWに洗浄液を供給する。この下部ノズル151からの洗浄液により、粉塵が飛散するのをより確実に抑制することができる。また、下部ノズル151からの洗浄液により、粉塵や周縁部Weの破材が支持ウェハS側まで回り込むのを抑制することができる。 The upper nozzle 150 is arranged above the chuck 130, and supplies the cleaning liquid from above the processing wafer W to the back surface Wb. The cleaning liquid from the upper nozzle 150 can suppress the scattering of dust generated when the peripheral edge portion We is removed, and further suppress the scattering of dust on the processing wafer W. Specifically, the cleaning liquid causes dust to flow to the outer peripheral side of the processing wafer W. Further, the lower nozzle 151 is arranged below the chuck 130, and supplies the cleaning liquid to the processing wafer W from the support wafer S side. The cleaning liquid from the lower nozzle 151 can more reliably suppress the scattering of dust. Further, the cleaning liquid from the lower nozzle 151 can prevent dust and broken material of the peripheral portion We from wrapping around to the support wafer S side.
 なお、ノズル150、151の数や配置は本実施形態に限定されない。例えばノズル150、151はそれぞれ複数設けられていてもよい。また、下部ノズル151は省略可能である。 The number and arrangement of the nozzles 150 and 151 are not limited to this embodiment. For example, a plurality of nozzles 150 and 151 may be provided respectively. Further, the lower nozzle 151 can be omitted.
 なお、粉塵の飛散を抑制する方法は、洗浄液の供給に限定されない。例えば、吸引機構(図示せず)を設け、発生した粉塵を吸引除去してもよい。 The method of suppressing the scattering of dust is not limited to the supply of cleaning liquid. For example, a suction mechanism (not shown) may be provided to suck and remove the generated dust.
 チャック130の上方には、処理ウェハWから周縁部Weが除去されたか否かを確認するための検知部160が設けられている。検知部160は、チャック130に保持され、且つ周縁部Weが除去された処理ウェハWにおいて、周縁部Weの有無を検知する。検知部160には、例えばセンサが用いられる。センサは、例えばライン型のレーザ変位計であり、重合ウェハT(処理ウェハW)の周縁部にレーザを照射して当該重合ウェハTの厚みを測定することで、周縁部Weの有無を検知する。なお、検知部160による周縁部Weの有無の検知方法はこれに限定されない。例えば検知部160には、例えばラインカメラを用い、重合ウェハT(処理ウェハW)を撮像することで、周縁部Weの有無を検知してもよい。 Above the chuck 130, a detection unit 160 for confirming whether or not the peripheral portion We has been removed from the processing wafer W is provided. The detection unit 160 detects the presence or absence of the peripheral edge portion We on the processed wafer W held by the chuck 130 and from which the peripheral edge portion We has been removed. For example, a sensor is used for the detection unit 160. The sensor is, for example, a line-type laser displacement meter, and detects the presence or absence of the peripheral portion We by irradiating the peripheral portion of the polymerized wafer T (processed wafer W) with a laser and measuring the thickness of the polymerized wafer T. .. The method of detecting the presence or absence of the peripheral portion We by the detection unit 160 is not limited to this. For example, the detection unit 160 may detect the presence or absence of the peripheral portion We by photographing the polymerization wafer T (processed wafer W) using, for example, a line camera.
 なお、チャック130の下方には、周縁除去部140で除去された周縁部Weを回収する回収部(図示せず)が設けられている。 Below the chuck 130, a recovery unit (not shown) for collecting the peripheral edge portion We removed by the peripheral edge removing portion 140 is provided.
 次に、上述したウェハ搬送装置70の搬送アーム71について説明する。図9は、搬送アーム71の構成の概略を示す縦断面図である。 Next, the transfer arm 71 of the wafer transfer device 70 described above will be described. FIG. 9 is a vertical cross-sectional view showing an outline of the configuration of the transport arm 71.
 搬送アーム71は、重合ウェハTより大きい径を有する、円板状の吸着板170を有している。吸着板170の下面には、処理ウェハWの中央部Wcを保持する保持部180が設けられている。 The transport arm 71 has a disc-shaped suction plate 170 having a diameter larger than that of the polymerized wafer T. A holding portion 180 for holding the central portion Wc of the processed wafer W is provided on the lower surface of the suction plate 170.
 保持部180には中央部Wcを吸引する吸引管181が接続され、吸引管181は例えば真空ポンプなどの吸引機構182に連通している。吸引管181には、吸引圧力を測定する圧力センサ183が設けられている。圧力センサ183の構成は任意であるが、例えばダイヤフラム型の圧力計が用いられる。 A suction pipe 181 for sucking the central portion Wc is connected to the holding portion 180, and the suction pipe 181 communicates with a suction mechanism 182 such as a vacuum pump, for example. The suction tube 181 is provided with a pressure sensor 183 that measures the suction pressure. The configuration of the pressure sensor 183 is arbitrary, but for example, a diaphragm type pressure gauge is used.
 吸着板170の上面には、当該吸着板170を鉛直軸回りに回転させる回転機構190が設けられている。回転機構190は、支持部材191に支持されている。また、支持部材191(回転機構190)は、アーム部材72に支持されている。 On the upper surface of the suction plate 170, a rotation mechanism 190 for rotating the suction plate 170 around a vertical axis is provided. The rotation mechanism 190 is supported by the support member 191. Further, the support member 191 (rotation mechanism 190) is supported by the arm member 72.
 次に、以上のように構成されたウェハ処理システム1を用いて行われるウェハ処理について説明する。図10は、ウェハ処理の主な工程を示すフロー図である。図11は、ウェハ処理の主な工程の説明図である。なお、本実施形態では、ウェハ処理システム1の外部の接合装置(図示せず)において、処理ウェハWと支持ウェハSが接合され、予め重合ウェハTが形成されている。 Next, the wafer processing performed by using the wafer processing system 1 configured as described above will be described. FIG. 10 is a flow chart showing a main process of wafer processing. FIG. 11 is an explanatory diagram of a main process of wafer processing. In the present embodiment, the processing wafer W and the support wafer S are bonded to each other in an external bonding device (not shown) of the wafer processing system 1 to form a polymerized wafer T in advance.
 先ず、図11(a)に示す重合ウェハTを複数収納したカセットCtが、搬入出ステーション2のカセット載置台10に載置される。 First, the cassette Ct containing a plurality of the polymerization wafers T shown in FIG. 11A is placed on the cassette mounting table 10 of the loading / unloading station 2.
 次に、ウェハ搬送装置20によりカセットCt内の重合ウェハTが取り出され、トランジション装置30に搬送される。続けて、ウェハ搬送装置50により、トランジション装置30の重合ウェハTが取り出され、改質装置60に搬送される。改質装置60では、図11(b)に示すように処理ウェハWの内部に周縁改質層M1と分割改質層M2が順次形成され(図10のステップA1、A2)、さらに図11(c)に示すように内部面改質層M3が形成される(図10のステップA3)。周縁改質層M1は、エッジトリムにおいて周縁部Weを除去の際の基点となるものである。分割改質層M2は、除去される周縁部Weが小片化するための基点となるものである。内部面改質層M3は、処理ウェハWを薄化するための基点となるものである。 Next, the polymerized wafer T in the cassette Ct is taken out by the wafer transfer device 20 and transferred to the transition device 30. Subsequently, the wafer transfer device 50 takes out the polymerized wafer T of the transition device 30 and transfers it to the reformer 60. In the reformer 60, as shown in FIG. 11B, the peripheral reforming layer M1 and the split reforming layer M2 are sequentially formed inside the processed wafer W (steps A1 and A2 in FIG. 10), and further in FIG. As shown in c), the internal surface reforming layer M3 is formed (step A3 in FIG. 10). The peripheral edge modification layer M1 serves as a base point when the peripheral edge portion We is removed in the edge trim. The split modified layer M2 serves as a base point for the peripheral portion We to be removed to be fragmented. The internal surface modification layer M3 serves as a base point for thinning the processed wafer W.
 図12は、改質装置60における改質処理の主な工程を示すフロー図である。図13は、改質処理の主な工程の説明図である。本実施形態では、図13に示すようにチャック100が第1の位置P1と第2の位置P2に配置されて、各処理が行われる。 FIG. 12 is a flow chart showing the main steps of the reforming process in the reformer 60. FIG. 13 is an explanatory diagram of the main steps of the reforming process. In the present embodiment, as shown in FIG. 13, the chuck 100 is arranged at the first position P1 and the second position P2, and each process is performed.
 改質装置60では重合ウェハTが搬入される前に、図13(a)に示すようにチャック100(スライダテーブル102)を第1の位置P1に移動させ、待機させる。チャック100の待機中、パワーメータ107はレーザヘッド110のレンズ111の下方に配置される。パワーメータ107では、レーザヘッド110から照射されるレーザ光の出力(パワー)を測定する。パワーメータ107で測定されたレーザ光のパワーは制御装置90に出力され、制御装置90においてパワーチェックが行われる。また、チャック100の待機中、レーザヘッド110の光学系の較正(キャリブレーション)も行われる(図12のステップB1)。 In the reformer 60, before the polymerization wafer T is carried in, the chuck 100 (slider table 102) is moved to the first position P1 as shown in FIG. 13A and is made to stand by. While the chuck 100 is on standby, the power meter 107 is arranged below the lens 111 of the laser head 110. The power meter 107 measures the output (power) of the laser beam emitted from the laser head 110. The power of the laser beam measured by the power meter 107 is output to the control device 90, and the power check is performed by the control device 90. Further, while the chuck 100 is on standby, the optical system of the laser head 110 is calibrated (calibration) (step B1 in FIG. 12).
 ここで、例えばパワーメータ107が第1の位置P1から離れた場所にある場合、パワーチェックのためにチャック100を第1の位置P1から移動させる必要があり、装置が大きくなる。これに対して、本実施形態では、第1の位置P1において、パワーメータ107がレーザヘッド110の下方に配置されるので、チャック100を移動させずにパワーチェックを行うことができる。その結果、改質装置60の専有面積(フットプリント)を小さくすることができ、省スペース化することができる。また、チャック100の待機中にパワーチェックとキャリブレーションを行うことができるので、改質処理の時間を短縮でき、ウェハ処理のスループットを向上させることができる。なお、パワーチェックとキャリブレーションは、後述のステップB2における重合ウェハTの搬入時に行ってもよい。 Here, for example, when the power meter 107 is located away from the first position P1, it is necessary to move the chuck 100 from the first position P1 for power check, and the device becomes large. On the other hand, in the present embodiment, since the power meter 107 is arranged below the laser head 110 at the first position P1, the power check can be performed without moving the chuck 100. As a result, the occupied area (footprint) of the reformer 60 can be reduced, and the space can be saved. Further, since the power check and the calibration can be performed while the chuck 100 is on standby, the reforming processing time can be shortened and the wafer processing throughput can be improved. The power check and calibration may be performed when the polymerized wafer T is carried in in step B2 described later.
 次に、図13(b)に示すようにチャック100が第1の位置に配置された状態で、ウェハ搬送装置50から重合ウェハTが搬入される(図12のステップB2)。搬入された重合ウェハTは、チャック100に保持される。 Next, the polymerized wafer T is carried in from the wafer transfer device 50 in a state where the chuck 100 is arranged at the first position as shown in FIG. 13 (b) (step B2 in FIG. 12). The carried-in polymerized wafer T is held by the chuck 100.
 次に、チャック100が第1の位置P1に配置された状態で、マクロカメラ121を用いてマクロアライメントを行う。第1の位置P1では、マクロカメラ121は、処理ウェハWの外側端部を撮像できる位置に配置されている。そして、マクロアライメントでは、マクロカメラ121のフォーカス調整を行った後(図12のステップB3)、処理ウェハWの外側端部を撮像する(図12のステップB4)。 Next, macro alignment is performed using the macro camera 121 with the chuck 100 arranged at the first position P1. At the first position P1, the macro camera 121 is arranged at a position where the outer end portion of the processing wafer W can be imaged. Then, in the macro alignment, after adjusting the focus of the macro camera 121 (step B3 in FIG. 12), the outer end portion of the processed wafer W is imaged (step B4 in FIG. 12).
 先ず、ステップB3では、処理ウェハWの高さ方向に複数の点に対して、マクロカメラ121のフォーカス調整を行う。この際、チャック100は回転させない。そして、昇降機構123によってマクロカメラ121を上昇又は下降させて、処理ウェハWの高さ方向に複数点に対して、マクロカメラ121のフォーカス調整を行う。 First, in step B3, the focus of the macro camera 121 is adjusted with respect to a plurality of points in the height direction of the processing wafer W. At this time, the chuck 100 is not rotated. Then, the macro camera 121 is raised or lowered by the elevating mechanism 123 to adjust the focus of the macro camera 121 with respect to a plurality of points in the height direction of the processing wafer W.
 本実施形態のフォーカス調整について説明する。図14は、マクロカメラ121の昇降に対するフォーカス調整を行うタイミングを示す説明図であり、縦軸は昇降速度を示し、横軸は時間を示している。また、図14中のQ1~Q4はそれぞれ、1回目~4回目のフォーカス調整を示している。なお、図14中(a)は比較例を示し、(b)は本実施形態の例を示す。 The focus adjustment of this embodiment will be described. FIG. 14 is an explanatory diagram showing the timing of adjusting the focus with respect to the elevating and lowering of the macro camera 121, where the vertical axis represents the elevating speed and the horizontal axis represents the time. Further, Q1 to Q4 in FIG. 14 indicate the first to fourth focus adjustments, respectively. In FIG. 14, (a) shows a comparative example, and (b) shows an example of the present embodiment.
 図14(a)に示すように比較例においては、マクロカメラ121を昇降させた後、所望高さで停止させた状態で、フォーカス調整Q1~Q4を行う。すなわち、マクロカメラ121を昇降させるたびに、加速と減速を繰り返す。そして、各フォーカス調整Q1~Q4に対して、フォーカス値が適切かどうかを判断する。このため、時間がかかる。 As shown in FIG. 14A, in the comparative example, the macro camera 121 is moved up and down, and then the focus adjustments Q1 to Q4 are performed in a state where the macro camera 121 is stopped at a desired height. That is, every time the macro camera 121 is moved up and down, acceleration and deceleration are repeated. Then, it is determined whether or not the focus value is appropriate for each focus adjustment Q1 to Q4. Therefore, it takes time.
 これに対して、図14(b)に示すように本実施形態では、マクロカメラ121を昇降させながらフォーカス調整Q1~Q4を行う。すなわち、フォーカス調整を行う際に、マクロカメラ121を停止させない。このため、比較例の加速と減速が不要で、時間を省略することができ、さらにフォーカス調整Q1~Q4でのフォーカス値の適否をまとめて判断できる。このため、フォーカス調整の時間を短縮することができる。なお、図14の例では、短縮できる時間はt1である。 On the other hand, as shown in FIG. 14B, in the present embodiment, focus adjustments Q1 to Q4 are performed while raising and lowering the macro camera 121. That is, the macro camera 121 is not stopped when the focus is adjusted. Therefore, acceleration and deceleration of the comparative example are unnecessary, time can be omitted, and the suitability of the focus values in the focus adjustments Q1 to Q4 can be collectively determined. Therefore, the time for focus adjustment can be shortened. In the example of FIG. 14, the time that can be shortened is t1.
 次に、ステップB4では、処理ウェハWの周方向の複数の点に対して、処理ウェハWの外側端部を撮像する。この際、マクロカメラ121は昇降及び移動させず、固定する。そして、チャック100を回転させて、処理ウェハWの周方向の複数の点に対して、図15に示すように処理ウェハWの外側端部R1(図15中の点線)を撮像する。 Next, in step B4, the outer end portion of the processing wafer W is imaged with respect to a plurality of points in the circumferential direction of the processing wafer W. At this time, the macro camera 121 is fixed without being moved up and down. Then, the chuck 100 is rotated to image the outer end portion R1 (dotted line in FIG. 15) of the processed wafer W with respect to a plurality of points in the circumferential direction of the processed wafer W as shown in FIG.
 処理ウェハWの外側端部の撮像においても、上述した図14に示したフォーカス調整と同様に、比較例においては、チャック100を回転させた後、所望位置で停止させた状態で撮像を行う。これに対して、本実施形態では、チャック100を回転させながら、処理ウェハWの外側端部の撮像を行う。すなわち、撮像を行う際に、チャック100の回転を停止させない。このため、撮像の時間を短縮することができる。また、このように撮像時間を短縮すると、撮像回数を増やすことも可能となり、その結果、マクロアライメントを適切に行うことができる。 Also in the imaging of the outer end portion of the processed wafer W, in the same manner as the focus adjustment shown in FIG. 14 described above, in the comparative example, the chuck 100 is rotated and then the imaging is performed in a state where the chuck 100 is stopped at a desired position. On the other hand, in the present embodiment, the outer end portion of the processed wafer W is imaged while rotating the chuck 100. That is, the rotation of the chuck 100 is not stopped when the image is taken. Therefore, the imaging time can be shortened. Further, by shortening the imaging time in this way, it is possible to increase the number of imaging times, and as a result, macro alignment can be appropriately performed.
 こうしてマクロカメラ121によって、処理ウェハWの周方向360度における外側端部の画像が撮像される。撮像された画像は、マクロカメラ121から制御装置90に出力される。 In this way, the macro camera 121 captures an image of the outer end portion of the processed wafer W at 360 degrees in the circumferential direction. The captured image is output from the macro camera 121 to the control device 90.
 制御装置90では、マクロカメラ121の画像から、チャック100の中心Ccと処理ウェハWの中心Cwの第1の偏心量を算出する。さらに制御装置90では、第1の偏心量に基づいて、当該第1の偏心量のY軸成分を補正するように、チャック100の移動量を算出する。チャック100は、この算出された移動量に基づいてY軸方向に移動し、チャック100をマイクロアライメント位置に移動させる。マイクロアライメント位置は、マイクロカメラ122が処理ウェハWの周縁部を撮像できる位置である。ここで、上述したようにマイクロカメラ122の視野はマクロカメラ121に対して約1/5と小さいため、第1の偏心量のY軸成分を補正しないと、処理ウェハWの周縁部がマイクロカメラ122の画角に入らず、マイクロカメラ122で撮像できない場合がある。このため、第1の偏心量に基づくY軸成分の補正は、チャック100をマイクロアライメント位置に移動させるためともいえる。 The control device 90 calculates the first eccentricity of the center Cc of the chuck 100 and the center Cw of the processing wafer W from the image of the macro camera 121. Further, the control device 90 calculates the movement amount of the chuck 100 so as to correct the Y-axis component of the first eccentric amount based on the first eccentric amount. The chuck 100 moves in the Y-axis direction based on the calculated movement amount, and moves the chuck 100 to the micro-alignment position. The micro-alignment position is a position where the micro camera 122 can image the peripheral edge of the processing wafer W. Here, as described above, the field of view of the micro camera 122 is as small as about 1/5 of that of the macro camera 121. Therefore, unless the Y-axis component of the first eccentric amount is corrected, the peripheral portion of the processing wafer W is the micro camera. It may not be possible to take an image with the micro camera 122 because it does not fit in the angle of view of 122. Therefore, it can be said that the correction of the Y-axis component based on the first eccentricity amount is for moving the chuck 100 to the micro-alignment position.
 なお、マクロカメラ121を用いたマクロアライメントでは、フォーカス調整の前に光量の調整も行われる。光量調整は、重合ウェハT毎に行ってもよいし、ロット毎に行ってもよいし、処理条件(処理レシピ)毎に行ってもよい。光量調整は処理ウェハWの1点もしくは複数の点に対して行われるが、かかる場合、チャック100の回転を停止させて光量調整が行われる。なお、チャック100の回転停止中、光量を複数回変更して撮像が行われる。 In the macro alignment using the macro camera 121, the amount of light is also adjusted before the focus adjustment. The light amount adjustment may be performed for each polymerization wafer T, for each lot, or for each processing condition (processing recipe). The light amount adjustment is performed on one point or a plurality of points of the processing wafer W. In such a case, the rotation of the chuck 100 is stopped and the light amount adjustment is performed. While the rotation of the chuck 100 is stopped, the amount of light is changed a plurality of times to perform imaging.
 また、上述したようにマクロアライメントは、チャック100をマイクロアライメント位置に移動させるために行われるが、かかるマクロアライメントは省略可能である。すなわち、アライメントをマクロとマイクロの2段階で行わず、マイクロの1段階のみで行う場合、マクロアライメントは省略される。 Further, as described above, the macro alignment is performed to move the chuck 100 to the micro alignment position, but such macro alignment can be omitted. That is, when the alignment is not performed in two stages of macro and micro and is performed in only one stage of micro, macro alignment is omitted.
 次に、図13(c)に示すようにチャック100を第2の位置P2に移動させる(図12のステップB5)。 Next, as shown in FIG. 13 (c), the chuck 100 is moved to the second position P2 (step B5 in FIG. 12).
 次に、チャック100が第2の位置P2に配置された状態で、マイクロカメラ122を用いてマイクロアライメントを行う。第2の位置P2では、マイクロカメラ122は、処理ウェハWの接合領域Aaと未接合領域Abの境界を撮像できる位置に配置されている。そして、マイクロアライメントでは、マイクロカメラ122のフォーカス調整を行った後(図12のステップB6)、接合領域Aaと未接合領域Abの境界を撮像する(図12のステップB7)。 Next, micro-alignment is performed using the micro camera 122 with the chuck 100 arranged at the second position P2. At the second position P2, the microcamera 122 is arranged at a position where the boundary between the bonded region Aa and the unbonded region Ab of the processed wafer W can be imaged. Then, in the micro-alignment, after adjusting the focus of the micro camera 122 (step B6 in FIG. 12), the boundary between the bonded region Aa and the unjunction region Ab is imaged (step B7 in FIG. 12).
 先ず、ステップB6では、処理ウェハWの高さ方向に複数の点に対して、マイクロカメラ122のフォーカス調整を行う。マイクロカメラ122のフォーカス調整は、昇降機構123によってマイクロカメラ122を昇降させながら行う。このため、フォーカス調整の時間を短縮することができる。なお、このマイクロカメラ122のフォーカス調整は、ステップB3におけるマクロカメラ121のフォーカス調整と同様であるので、説明を省略する。 First, in step B6, the focus of the micro camera 122 is adjusted with respect to a plurality of points in the height direction of the processing wafer W. The focus adjustment of the micro camera 122 is performed while moving the micro camera 122 up and down by the elevating mechanism 123. Therefore, the time for focus adjustment can be shortened. Since the focus adjustment of the micro camera 122 is the same as the focus adjustment of the macro camera 121 in step B3, the description thereof will be omitted.
 次に、ステップB7では、処理ウェハWの周方向の複数の点に対して、処理ウェハWの接合領域Aaと未接合領域Abの境界を撮像する。この際、マクロカメラ121は昇降及び移動させず、固定する。そして、チャック100を回転させて、処理ウェハWの周方向の複数の点に対して、図16に示すように接合領域Aaと未接合領域Abの境界R2(図16中の点線)を撮像する。 Next, in step B7, the boundary between the bonded region Aa and the unbonded region Ab of the processed wafer W is imaged at a plurality of points in the circumferential direction of the processed wafer W. At this time, the macro camera 121 is fixed without being moved up and down. Then, the chuck 100 is rotated to image the boundary R2 (dotted line in FIG. 16) between the bonded region Aa and the unbonded region Ab with respect to a plurality of points in the circumferential direction of the processed wafer W as shown in FIG. ..
 接合領域Aaと未接合領域Abの境界の撮像においても、ステップB3における処理ウェハWの外側端部の撮像と同様に、比較例においては、チャック100を回転させた後、所望位置で停止させた状態で撮像を行う。これに対して、本実施形態では、チャック100を回転させながら、接合領域Aaと未接合領域Abの境界の撮像を行う。すなわち、撮像を行う際に、チャック100の回転を停止させない。このため、撮像の時間を短縮することができる。また、このように撮像時間を短縮すると、撮像回数を増やすことも可能となり、その結果、マイクロアライメントを適切に行うことができる。 In the imaging of the boundary between the bonded region Aa and the unbonded region Ab, the chuck 100 was rotated and then stopped at a desired position in the comparative example as in the imaging of the outer end portion of the processed wafer W in step B3. Take an image in the state. On the other hand, in the present embodiment, the boundary between the bonded region Aa and the unbonded region Ab is imaged while rotating the chuck 100. That is, the rotation of the chuck 100 is not stopped when the image is taken. Therefore, the imaging time can be shortened. Further, by shortening the imaging time in this way, it is possible to increase the number of imaging times, and as a result, micro-alignment can be appropriately performed.
 こうしてマイクロカメラ122によって、処理ウェハWの周方向360度における接合領域Aaと未接合領域Abの境界の画像が撮像される。撮像された画像は、マイクロカメラ122から制御装置90に出力される。 In this way, the microcamera 122 captures an image of the boundary between the bonded region Aa and the unbonded region Ab at 360 degrees in the circumferential direction of the processed wafer W. The captured image is output from the micro camera 122 to the control device 90.
 制御装置90では、マイクロカメラ122の画像から、チャック100の中心Ccと接合領域Aaの中心Caの第2の偏心量を算出する。さらに制御装置90では、第2の偏心量に基づいて、接合領域Aaの中心とチャック100の中心が一致するように、周縁改質層M1に対するチャック100の位置を決定する。 The control device 90 calculates the second eccentric amount of the center Cc of the chuck 100 and the center Ca of the junction region Aa from the image of the micro camera 122. Further, the control device 90 determines the position of the chuck 100 with respect to the peripheral modification layer M1 so that the center of the bonding region Aa and the center of the chuck 100 coincide with each other based on the second eccentricity amount.
 次に、チャック100が第2の位置P2に配置された状態で、レーザヘッド110から照射されるレーザ光の高さ調節(照射高さ調整)を行う(図12のステップB8)。第2の位置P2では、レーザヘッド110のレンズ111は、処理ウェハWの周縁部Weと中央部Wcの境界にレーザ光を照射できる位置に配置されている。 Next, in a state where the chuck 100 is arranged at the second position P2, the height of the laser beam emitted from the laser head 110 is adjusted (irradiation height adjustment) (step B8 in FIG. 12). At the second position P2, the lens 111 of the laser head 110 is arranged at a position where the laser beam can be applied to the boundary between the peripheral portion We and the central portion Wc of the processing wafer W.
 ここで、後述するようにステップB9では、チャック100を回転させながらレーザヘッド110から処理ウェハWの内部にレーザ光を照射して、環状の周縁改質層を形成する。また、ステップB9では、レーザ光の照射位置(照射高さ)を測定し、リアルタイムでそのレーザ光の高さを調節(追従)する。このため、レーザ光の照射開始位置における高さが重要になる。そこで、ステップB8のレーザ光の照射高さ調整は、ステップB9におけるレーザ光の照射開始位置において行う。 Here, as will be described later, in step B9, the laser head 110 irradiates the inside of the processed wafer W with laser light while rotating the chuck 100 to form an annular peripheral modification layer. Further, in step B9, the irradiation position (irradiation height) of the laser beam is measured, and the height of the laser beam is adjusted (followed) in real time. Therefore, the height at the irradiation start position of the laser beam is important. Therefore, the laser beam irradiation height adjustment in step B8 is performed at the laser beam irradiation start position in step B9.
 また、チャック100に保持された処理ウェハWの高さは、種々の要因により、ウェハ面内で均一でない場合がある。そうすると、処理ウェハWの周縁部と中心部では高さが異なる場合があり、例えば処理ウェハWの中心でレーザ光の高さを調節すると、周縁部では適切に調節されない場合がある。そこで、かかる観点からも、ステップB8のレーザ光の照射高さ調整は、ステップB9におけるレーザ光の照射開始位置において行うのが好ましい。 Further, the height of the processed wafer W held by the chuck 100 may not be uniform in the wafer surface due to various factors. Then, the heights of the peripheral portion and the central portion of the processed wafer W may be different. For example, if the height of the laser beam is adjusted at the center of the processed wafer W, it may not be adjusted appropriately at the peripheral portion. Therefore, from this point of view, it is preferable that the laser beam irradiation height adjustment in step B8 is performed at the laser beam irradiation start position in step B9.
 さらに、ステップB9においてレーザ光の照射位置を測定するのに用いられるセンサ113は、追従可能な範囲が限られており、この範囲は例えば、測定対象の処理ウェハWの裏面Wbから鉛直方向に±0.2mmである。そこで、ステップB9におけるレーザ光の照射位置を、上記センサ113の追従可能な範囲に収めるためにも、ステップB8の照射高さ調整が必要となる。 Further, the sensor 113 used to measure the irradiation position of the laser beam in step B9 has a limited range that can be followed, and this range is, for example, ± in the vertical direction from the back surface Wb of the processing wafer W to be measured. It is 0.2 mm. Therefore, in order to keep the irradiation position of the laser beam in step B9 within the range that can be followed by the sensor 113, it is necessary to adjust the irradiation height in step B8.
 ステップB8では、先ず、センサ114とカメラ115を、ステップB9におけるレーザ光の照射開始位置に移動させる。その後、レーザヘッド110を昇降させながら、センサ114によって、レーザ光の照射開始位置における処理ウェハWの裏面Wbの高さを測定して、当該裏面Wbをサーチする。センサ114で測定された裏面Wbの高さは制御装置90に出力される。制御装置90では、裏面Wbの高さに基づいて、裏面Wbの位置をサーチ(特定)する。 In step B8, first, the sensor 114 and the camera 115 are moved to the laser beam irradiation start position in step B9. Then, while moving the laser head 110 up and down, the height of the back surface Wb of the processing wafer W at the irradiation start position of the laser beam is measured by the sensor 114, and the back surface Wb is searched. The height of the back surface Wb measured by the sensor 114 is output to the control device 90. The control device 90 searches (identifies) the position of the back surface Wb based on the height of the back surface Wb.
 ステップB8では、次にレーザヘッド110を、ステップB9におけるレーザ光の照射位置に水平方向に移動させる。続いて、カメラ115によって、裏面Wbを撮像する。カメラ115で撮像された裏面Wbの画像は制御装置90に出力される。制御装置90では、裏面Wbの画像に基づいて、裏面Wbの高さを算出し、さらに当該裏面Wbの高さに基づいて処理ウェハWの内部に照射されるレーザ光の照射位置を算出する。そして、レーザヘッド110を降下させてレーザ光の照射高さに配置した後、当該算出した位置を、センサ113に対してレーザ光の照射位置の原点位置に設定する(ゼロ点調整)。このように、ステップB8では、センサ114によって裏面Wbの大まかなサーチを行った後、カメラ115によって精緻に裏面Wbを把握して、ゼロ点調整を行う。 In step B8, the laser head 110 is then moved horizontally to the laser beam irradiation position in step B9. Subsequently, the back surface Wb is imaged by the camera 115. The image of the back surface Wb captured by the camera 115 is output to the control device 90. The control device 90 calculates the height of the back surface Wb based on the image of the back surface Wb, and further calculates the irradiation position of the laser beam emitted to the inside of the processing wafer W based on the height of the back surface Wb. Then, after the laser head 110 is lowered and arranged at the irradiation height of the laser beam, the calculated position is set at the origin position of the irradiation position of the laser beam with respect to the sensor 113 (zero point adjustment). As described above, in step B8, after the sensor 114 performs a rough search for the back surface Wb, the camera 115 precisely grasps the back surface Wb and adjusts the zero point.
 また、ステップB8では、レーザヘッド110を上昇又は下降させながら、センサ114とカメラ115を用いてゼロ点調整を行う。ここで、上述した図14に示したフォーカス調整と同様に、レーザヘッド110の昇降を停止させた後、所望高さで停止させた状態で、センサ114で裏面Wbの高さを測定する場合、ゼロ点調整は時間がかかる。これに対して、本実施形態では、レーザヘッド110を昇降させながら、センサ114による測定を行う。すなわち、センサ114による測定を行う際に、レーザヘッド110の昇降を停止させない。このため、ゼロ点調整の時間を短縮することができる。同様にカメラ115による裏面Wbの撮像が、レーザヘッド110の昇降を停止させた後、所望高さで停止させた状態で行われる場合、ゼロ点調整は時間がかかる。これに対して、レーザヘッド110を昇降させながら、カメラ115による裏面Wbの撮像を行うことで、ゼロ点調整の時間を短縮することができる。 Further, in step B8, the zero point is adjusted by using the sensor 114 and the camera 115 while raising or lowering the laser head 110. Here, as in the case of the focus adjustment shown in FIG. 14 described above, when the height of the back surface Wb is measured by the sensor 114 in a state where the laser head 110 is stopped ascending and descending and then stopped at a desired height. Zero point adjustment takes time. On the other hand, in the present embodiment, the measurement is performed by the sensor 114 while moving the laser head 110 up and down. That is, the laser head 110 does not stop moving up and down when the measurement is performed by the sensor 114. Therefore, the time for zero point adjustment can be shortened. Similarly, when the back surface Wb is imaged by the camera 115 in a state where the laser head 110 is stopped at a desired height after being stopped, the zero point adjustment takes time. On the other hand, the time for adjusting the zero point can be shortened by taking an image of the back surface Wb with the camera 115 while moving the laser head 110 up and down.
 次に、センサ113を、レーザ光の照射開始位置に移動させる。その後、図17及び図18に示すようにレーザヘッド110からレーザ光L1(周縁用レーザ光L1)を照射して、処理ウェハWの周縁部Weと中央部Wcの境界に周縁改質層M1を形成する(図12のステップB9、図10のステップA1)。周縁改質層M1は、異なる高さに複数形成される。また周縁改質層M1は、接合領域Aaの外側端部よりも径方向内側に形成される。 Next, the sensor 113 is moved to the laser beam irradiation start position. After that, as shown in FIGS. 17 and 18, laser light L1 (peripheral laser light L1) is irradiated from the laser head 110, and the peripheral modification layer M1 is formed at the boundary between the peripheral portion We and the central portion Wc of the processed wafer W. It is formed (step B9 in FIG. 12, step A1 in FIG. 10). A plurality of peripheral modification layers M1 are formed at different heights. Further, the peripheral modification layer M1 is formed radially inside the outer end portion of the bonding region Aa.
 上記レーザ光L1によって形成される周縁改質層M1は、厚み方向に延伸し縦長のアスペクト比を有する。最下層の周縁改質層M1の下端は、薄化後の処理ウェハWの目標表面(図17中の点線)より上方に位置している。すなわち、周縁改質層M1の下端と処理ウェハWの表面Waとの間の距離H1は、薄化後の処理ウェハWの目標厚みH2より大きい。かかる場合、薄化後の処理ウェハWに周縁改質層M1が残らない。なお、処理ウェハWの内部には、複数の周縁改質層M1からクラックC1が進展し、裏面Wbと表面Waに到達している。 The peripheral modification layer M1 formed by the laser beam L1 extends in the thickness direction and has a vertically long aspect ratio. The lower end of the peripheral modification layer M1 of the lowermost layer is located above the target surface (dotted line in FIG. 17) of the thinned processed wafer W. That is, the distance H1 between the lower end of the peripheral modification layer M1 and the surface Wa of the processed wafer W is larger than the target thickness H2 of the processed wafer W after thinning. In such a case, the peripheral modification layer M1 does not remain on the processed wafer W after thinning. Inside the processed wafer W, cracks C1 propagate from a plurality of peripheral modification layers M1 and reach the back surface Wb and the front surface Wa.
 ステップB9では、制御装置90で決定されたチャック100の位置に合わせて、接合領域Aaの中心とチャック100の中心が一致するように、回転機構103によってチャック100を回転させると共に、移動機構104によってチャック100をY軸方向に移動させる。この際、チャック100の回転とY軸方向の移動を同期させる。 In step B9, the chuck 100 is rotated by the rotating mechanism 103 and the moving mechanism 104 so that the center of the joining region Aa and the center of the chuck 100 coincide with the position of the chuck 100 determined by the control device 90. The chuck 100 is moved in the Y-axis direction. At this time, the rotation of the chuck 100 and the movement in the Y-axis direction are synchronized.
 そして、このようにチャック100(処理ウェハW)を回転及び移動させながら、レーザヘッド110から処理ウェハWの内部にレーザ光L1を照射する。すなわち、ステップB7で算出した第2の偏心量を補正しながら、周縁改質層M1を形成する。そうすると周縁改質層M1は、接合領域Aaと同心円状に環状に形成される。このため、その後周縁除去装置61において、周縁改質層M1を基点に周縁部Weを適切に除去することができる。 Then, while rotating and moving the chuck 100 (processed wafer W) in this way, the laser beam L1 is irradiated from the laser head 110 to the inside of the processed wafer W. That is, the peripheral modification layer M1 is formed while correcting the second eccentricity calculated in step B7. Then, the peripheral modification layer M1 is formed in an annular shape concentrically with the bonding region Aa. Therefore, in the peripheral edge removing device 61 after that, the peripheral edge portion We can be appropriately removed with the peripheral edge modifying layer M1 as a base point.
 なお、本例においては、第2の偏心量がX軸成分を備える場合に、チャック100をY軸方向に移動させつつ、チャック100を回転させて、当該X軸成分を補正している。一方、第2の偏心量がX軸成分を備えない場合には、チャック100を回転させずに、Y軸方向に移動させるだけでよい。 In this example, when the second eccentricity amount includes the X-axis component, the chuck 100 is rotated while moving the chuck 100 in the Y-axis direction to correct the X-axis component. On the other hand, when the second eccentricity amount does not include the X-axis component, it is sufficient to move the chuck 100 in the Y-axis direction without rotating it.
 なお、第2の位置P2では、チャック100に保持された処理ウェハWに対して、マイクロカメラ122はY軸正方向側に配置され、レーザヘッド110のレンズ111はY軸負方向側に配置される。かかる場合、ステップB9では、レーザヘッド110によって周縁改質層M1を形成すると共に、マイクロカメラ122によって周縁改質層M1を撮像する。撮像された画像は制御装置90に出力され、制御装置90において周縁改質層M1が適切な位置に形成されているかを検査する。このように周縁改質層M1の形成と検査を並行して行うことで、作業効率を向上させることができる。また、検査の結果、周縁改質層M1が所望の位置からずれている場合には、チャック100の移動を微調整することも可能となる。 At the second position P2, the microcamera 122 is arranged on the Y-axis positive direction side and the lens 111 of the laser head 110 is arranged on the Y-axis negative direction side with respect to the processed wafer W held by the chuck 100. To. In such a case, in step B9, the peripheral modification layer M1 is formed by the laser head 110, and the peripheral modification layer M1 is imaged by the micro camera 122. The captured image is output to the control device 90, and the control device 90 inspects whether the peripheral modification layer M1 is formed at an appropriate position. By performing the formation and inspection of the peripheral modification layer M1 in parallel in this way, the work efficiency can be improved. Further, as a result of the inspection, when the peripheral modification layer M1 deviates from a desired position, the movement of the chuck 100 can be finely adjusted.
 このように処理ウェハWの内部にレーザ光L1を照射して周縁改質層M1を形成する間、センサ113で処理ウェハWの裏面Wbの高さを測定し、さらに制御装置90でレーザ光L1の照射位置を算出する。そして、算出されたレーザ光L1の照射位置が、ステップB8で設定された原点位置に一致するように制御する。具体的には、算出された算出されたレーザ光L1の照射位置に基づいて、ピエゾアクチュエータ112によってレンズ111を昇降させる。このようにステップB9では、リアルタイムでレーザ光L1の高さを調節して追従させる。 While the peripheral modification layer M1 is formed by irradiating the inside of the processed wafer W with the laser beam L1, the height of the back surface Wb of the processed wafer W is measured by the sensor 113, and the laser beam L1 is further measured by the control device 90. The irradiation position of is calculated. Then, the calculated irradiation position of the laser beam L1 is controlled so as to match the origin position set in step B8. Specifically, the lens 111 is moved up and down by the piezo actuator 112 based on the calculated irradiation position of the laser beam L1. In this way, in step B9, the height of the laser beam L1 is adjusted and followed in real time.
 ここで、センサ113は、レンズ111から照射されるレーザ光L1と同軸に設けられている。ステップB9の処理レシピによっては、レーザ光L1の照射半径(周縁改質層の半径)が異なる場合がある。かかる場合に、センサ113がレーザ光L1と別軸で設けられていると、当該センサ113は、レーザ光L1が照射される位置と異なる位置における処理ウェハWの裏面Wbの高さを測定することになり、実際の高さからずれる可能性がある。そこで、本実施形態では、センサ113をレーザ光L1と同軸で設ける。 Here, the sensor 113 is provided coaxially with the laser beam L1 emitted from the lens 111. The irradiation radius (radius of the peripheral modification layer) of the laser beam L1 may differ depending on the processing recipe of step B9. In such a case, if the sensor 113 is provided on a different axis from the laser beam L1, the sensor 113 measures the height of the back surface Wb of the processing wafer W at a position different from the position where the laser beam L1 is irradiated. There is a possibility that the height will deviate from the actual height. Therefore, in the present embodiment, the sensor 113 is provided coaxially with the laser beam L1.
 ステップB9では、以上のように処理ウェハWの内部に1周分のレーザ光L1を照射することで、1層の周縁改質層M1が形成される。そして、本実施形態のように異なる高さに複数の周縁改質層M1が形成する際には、レーザ光L1の照射位置(照射高さ)を変更する。以下、本実施形態における複数の周縁改質層M1の形成方法について説明する。 In step B9, one peripheral modification layer M1 is formed by irradiating the inside of the processed wafer W with the laser beam L1 for one round as described above. Then, when the plurality of peripheral modification layers M1 are formed at different heights as in the present embodiment, the irradiation position (irradiation height) of the laser beam L1 is changed. Hereinafter, a method for forming a plurality of peripherally modified layers M1 in the present embodiment will be described.
 図19は、複数の周縁改質層M1を形成する方法を模式的に示す説明図であり、縦軸は回転速度を示し、横軸は時間を示している。また、図19中のL1はレーザ光L1の照射を示し、Dは周縁改質層M1を形成する際の処理条件(処理レシピ)の変更を示す。処理条件変更Dは、レンズ111を昇降させてレーザ光L1の照射位置を変更することや、レーザ光L1の条件、例えばレーザ光L1の出力(パワー)、周波数、形状(レーザパターン)、分岐数などを変更することを含む。なお、図19中(a)は比較例を示し、(b)は本実施形態の例を示す。 FIG. 19 is an explanatory diagram schematically showing a method of forming a plurality of peripheral modification layers M1, the vertical axis showing the rotation speed, and the horizontal axis showing the time. Further, L1 in FIG. 19 indicates irradiation of the laser beam L1, and D indicates a change in the processing conditions (processing recipe) when forming the peripheral modification layer M1. The processing condition change D is to move the lens 111 up and down to change the irradiation position of the laser beam L1, and the conditions of the laser beam L1, for example, the output (power), frequency, shape (laser pattern), and number of branches of the laser beam L1. Including changing etc. In FIG. 19, (a) shows a comparative example, and (b) shows an example of the present embodiment.
 図19(a)に示すように比較例においては、チャック100の回転を加速させた後、一定速度に維持した状態でレーザ光L1を1周分照射して1層の周縁改質層M1を形成する。その後、チャック100の回転を減速させた後、回転を停止した状態で、処理条件変更Dを行う。すなわち、1層の周縁改質層M1を形成するたびに、処理条件変更Dを行う。そして、処理条件変更Dを行うたびに、チャック100の回転の加速と減速を繰り返す。このため、時間がかかる。 As shown in FIG. 19A, in the comparative example, after accelerating the rotation of the chuck 100, the laser beam L1 is irradiated for one round while maintaining the constant speed to provide one peripheral modification layer M1. Form. Then, after decelerating the rotation of the chuck 100, the processing condition change D is performed with the rotation stopped. That is, the processing condition change D is performed every time one peripheral modification layer M1 is formed. Then, every time the processing condition change D is performed, the rotation of the chuck 100 is repeatedly accelerated and decelerated. Therefore, it takes time.
 これに対して、図19(b)に示すように本実施形態では、チャック100を回転させながら、周縁改質層M1の処理条件変更Dを行う。すなわち、処理条件変更Dを行う際に、チャック100の回転を停止させない。このため、比較例のチャック100の回転の加速と減速が不要で、時間を省略することができる。このため、複数の周縁改質層M1を形成する時間を短縮することができる。なお、図19の例では、短縮できる時間はt2である。また、このように複数の周縁改質層M1を形成する時間を短縮すると、周縁改質層M1を形成する本数を増やすことも可能となる。 On the other hand, as shown in FIG. 19B, in the present embodiment, the processing condition change D of the peripheral modification layer M1 is performed while rotating the chuck 100. That is, the rotation of the chuck 100 is not stopped when the processing condition change D is performed. Therefore, it is not necessary to accelerate and decelerate the rotation of the chuck 100 of the comparative example, and the time can be saved. Therefore, the time for forming the plurality of peripheral modification layers M1 can be shortened. In the example of FIG. 19, the time that can be shortened is t2. Further, by shortening the time for forming the plurality of peripheral modification layers M1 in this way, it is possible to increase the number of peripheral modification layers M1 formed.
 なお、図19(b)に示すようにレーザ光L1の照射と、周縁改質層M1の処理条件変更Dとを連続して行う場合、図20に示すように1層の周縁改質層M1を形成する際の、レーザ光L1の照射開始位置と照射終了位置がそれぞれ周方向にずれる。 When the irradiation of the laser beam L1 and the processing condition change D of the peripheral modification layer M1 are continuously performed as shown in FIG. 19B, one peripheral modification layer M1 is continuously performed as shown in FIG. 20. The irradiation start position and the irradiation end position of the laser beam L1 are shifted in the circumferential direction when the laser beam L1 is formed.
 一方、図21に示すように1層の周縁改質層M1を形成する際の、レーザ光L1の照射開始位置と照射終了位置をそれぞれ同じにしてもよい。そして、周縁改質層M1の処理条件変更Dを行った後、レーザ光L1の照射開始位置の上方にレンズ111が位置するまでは、レーザ光L1を照射しないようにする。かかる場合でも、処理条件変更Dを行う際に、チャック100の回転を停止させることがなく、複数の周縁改質層M1を形成する時間を短縮することができる。 On the other hand, as shown in FIG. 21, when forming the peripheral modification layer M1 of one layer, the irradiation start position and the irradiation end position of the laser beam L1 may be the same. Then, after the processing condition change D of the peripheral modification layer M1 is performed, the laser light L1 is not irradiated until the lens 111 is positioned above the irradiation start position of the laser light L1. Even in such a case, when the processing condition change D is performed, the rotation of the chuck 100 is not stopped, and the time for forming the plurality of peripheral modification layers M1 can be shortened.
 なお、図19に示した例では、複数の周縁改質層M1を形成する際に、周縁改質層M1毎に処理条件を変更する場合について説明したが、1層の周縁改質層M1を形成する間、すなわちレーザ光L1が1周する間にも当該レーザ光L1の条件を変更する場合がある。例えば処理ウェハWにおいて、シリコンの結晶方位に応じてレーザ光L1の条件を変更する場合がある。図22は、レーザ光L1の条件が1周のうちに変更される一例を示す説明図である。図22に示す例では、処理ウェハWを4分割し、対角の処理ウェハW1、W1では一の条件でレーザ光L1を照射し、処理ウェハW2、W2では他の条件でレーザ光L1を照射する。 In the example shown in FIG. 19, a case where the treatment conditions are changed for each peripheral modification layer M1 when forming a plurality of peripheral modification layers M1 has been described, but one peripheral modification layer M1 is used. The conditions of the laser beam L1 may be changed during the formation, that is, while the laser beam L1 makes one round. For example, in the processed wafer W, the condition of the laser beam L1 may be changed according to the crystal orientation of silicon. FIG. 22 is an explanatory diagram showing an example in which the conditions of the laser beam L1 are changed in one round. In the example shown in FIG. 22, the processed wafer W is divided into four, the diagonal processed wafers W1 and W1 are irradiated with the laser beam L1 under one condition, and the processed wafers W2 and W2 are irradiated with the laser beam L1 under the other conditions. To do.
 図22に示す処理を行う場合、比較例においては、チャック100を回転させた状態で、1周目で処理ウェハW1、W1に対してレーザ光L1を照射し、処理ウェハW2、W2に対してレーザ光L1の照射を停止する。その後、一旦チャック100の回転を停止した状態で、レーザ光L1の条件を変更する。そして、再びチャック100を回転させた状態で、2周目で処理ウェハW2、W2に対してレーザ光L1を照射し、処理ウェハW1、W1に対してレーザ光L1の照射を停止する。かかる場合、レーザ光L1の条件を変更する際に、チャック100の回転の加速と減速を行うため、時間がかかる。 When the processing shown in FIG. 22 is performed, in the comparative example, the processed wafers W1 and W1 are irradiated with the laser beam L1 in the first round in a state where the chuck 100 is rotated, and the processed wafers W2 and W2 are subjected to the laser light L1. Irradiation of the laser beam L1 is stopped. After that, the condition of the laser beam L1 is changed while the rotation of the chuck 100 is once stopped. Then, with the chuck 100 rotated again, the processed wafers W2 and W2 are irradiated with the laser beam L1 on the second lap, and the processed wafers W1 and W1 are stopped from being irradiated with the laser beam L1. In such a case, when the condition of the laser beam L1 is changed, the rotation of the chuck 100 is accelerated and decelerated, which takes time.
 これに対して、本実施形態では、チャック100を回転させながら、レーザ光L1の条件を変更する。すなわち、レーザ光L1の条件を変更する際に、チャック100の回転を停止させない。このため、比較例のチャック100の回転の加速と減速が不要で、時間を省略することができる。このため、周縁改質層M1を形成する時間を短縮することができる。 On the other hand, in the present embodiment, the condition of the laser beam L1 is changed while rotating the chuck 100. That is, when the condition of the laser beam L1 is changed, the rotation of the chuck 100 is not stopped. Therefore, it is not necessary to accelerate and decelerate the rotation of the chuck 100 of the comparative example, and the time can be saved. Therefore, the time for forming the peripheral modification layer M1 can be shortened.
 ここで、図23に示すように処理ウェハWの外縁部にはノッチ部Wnが形成されている。例えば、図23(a)に示すように周縁改質層M1の形成位置がノッチ部Wnと重なる場合、ノッチ部Wnにレーザ光L1が照射される。そうすると、ノッチ部Wnの端部において、レーザ光L1が照射される断面が荒れる。また、上述したようにステップB9では、チャック100を回転させながらレーザ光L1を照射する際、当該レーザ光L1の照射位置(照射高さ)をリアルタイムで調節(追従)している。この点、ノッチ部Wnにレーザ光L1を照射すると、当該レーザ光L1の照射位置が変動する。そうすると、ノッチ部Wn以外の場所で、レーザ光L1の照射位置をリアルタイムで調節するのに時間がかかる。 Here, as shown in FIG. 23, a notch portion Wn is formed at the outer edge portion of the processed wafer W. For example, when the formation position of the peripheral modification layer M1 overlaps with the notch portion Wn as shown in FIG. 23A, the notch portion Wn is irradiated with the laser beam L1. Then, at the end of the notch portion Wn, the cross section irradiated with the laser beam L1 becomes rough. Further, as described above, in step B9, when irradiating the laser beam L1 while rotating the chuck 100, the irradiation position (irradiation height) of the laser beam L1 is adjusted (followed) in real time. At this point, when the notch portion Wn is irradiated with the laser beam L1, the irradiation position of the laser beam L1 changes. Then, it takes time to adjust the irradiation position of the laser beam L1 in real time at a place other than the notch portion Wn.
 そこで本実施形態では、ステップB9において、図23(b)に示すようにノッチ部Wnにレーザ光L1が照射されないように制御する。処理ウェハWにおけるノッチ部Wnの位置は予め把握されているため、レーザヘッド110のレンズ111がノッチ部Wnの上方に配置される際に、レーザ光L1の照射を停止すればよい。かかる場合、ノッチ部Wnにレーザ光L1が照射されないので、ノッチ部Wnの端部断面が荒れない。また、ノッチ部Wnではレーザ光L1の照射位置のリアルタイム調節を停止する。そうすると、1周のレーザ光L1の照射において、当該レーザ光L1の照射位置が大きく変動せず、ノッチ部Wn以外でのリアルタイム調節が容易になる。 Therefore, in the present embodiment, in step B9, as shown in FIG. 23 (b), the notch portion Wn is controlled so as not to be irradiated with the laser beam L1. Since the position of the notch portion Wn on the processed wafer W is known in advance, the irradiation of the laser beam L1 may be stopped when the lens 111 of the laser head 110 is arranged above the notch portion Wn. In such a case, since the laser beam L1 is not applied to the notch portion Wn, the cross section of the end portion of the notch portion Wn is not roughened. Further, the notch portion Wn stops the real-time adjustment of the irradiation position of the laser beam L1. Then, in the irradiation of the laser beam L1 in one round, the irradiation position of the laser beam L1 does not fluctuate significantly, and real-time adjustment other than the notch portion Wn becomes easy.
 以上のように周縁改質層M1が形成されると、次に、図24及び図25に示すようにレーザヘッド110からレーザ光L2(分割用レーザ光L2)を照射して、周縁改質層M1の径方向外側に分割改質層M2を形成する(図12のステップB10、図10のステップA2)。 When the peripheral modification layer M1 is formed as described above, the peripheral modification layer is then irradiated with laser light L2 (division laser light L2) from the laser head 110 as shown in FIGS. 24 and 25. The split reforming layer M2 is formed on the radial outer side of M1 (step B10 in FIG. 12, step A2 in FIG. 10).
 分割改質層M2も、周縁改質層M1と同様に厚み方向に延伸し、縦長のアスペクト比を有する。なお、分割改質層M2からクラックC2が進展し、裏面Wbと表面Waに到達している。 The split modified layer M2 also extends in the thickness direction like the peripheral modified layer M1 and has a vertically long aspect ratio. The crack C2 propagates from the split modified layer M2 and reaches the back surface Wb and the front surface Wa.
 また、分割改質層M2及びクラックC2を径方向に数μmのピッチで複数形成することで、図25に示すように周縁改質層M1から径方向外側に延伸する、1ラインの分割改質層M2が形成される。なお、図示の例においては、径方向に延伸するラインの分割改質層M2は8箇所に形成されているが、この分割改質層M2の数は任意である。少なくとも、分割改質層M2が2箇所に形成されていれば、周縁部Weは除去できる。かかる場合、エッジトリムにおいて周縁部Weを除去する際、当該周縁部Weは、環状の周縁改質層M1を基点に分離しつつ、分割改質層M2によって複数に分割される。そうすると、除去される周縁部Weが小片化され、より容易に除去することができる。 Further, by forming a plurality of the split reforming layers M2 and the cracks C2 at a pitch of several μm in the radial direction, as shown in FIG. 25, the split reforming layer M1 extends outward in the radial direction from the peripheral reforming layer M1. Layer M2 is formed. In the illustrated example, the divided and modified layers M2 of the line extending in the radial direction are formed at eight positions, but the number of the divided and modified layers M2 is arbitrary. At least, if the split modification layer M2 is formed at two positions, the peripheral portion We can be removed. In such a case, when the peripheral edge portion We is removed in the edge trim, the peripheral edge portion We is divided into a plurality of parts by the divided modified layer M2 while being separated from the annular peripheral edge modified layer M1 as a base point. Then, the peripheral portion We to be removed is fragmented and can be removed more easily.
 ここで、比較例において、図26に示すようにチャック100をY軸方向に移動させて、分割改質層M2を形成する場合がある。すなわち、図26(a)に示すようにチャック100がレンズ111のY軸正方向側に位置した状態から、図26(b)に示すようにチャック100をY軸負方向に移動させる。そして、処理ウェハWがレンズ111の下方を通過する際に、周縁部Weの一端部にレーザ光L2を照射し、分割改質層M21を形成する。その後、図26(c)に示すようにさらにチャック100をY軸負方向に移動させ、周縁部Weの他端部に分割改質層M22を形成する。こうして、対向する周縁部Weに分割改質層M21、M22を形成する。かかる場合、チャック100の移動距離D1が長くなる。具体的に移動距離D1には、例えば処理ウェハWの1枚分と、チャック100の加速するための距離及び減速するための距離が必要である。 Here, in the comparative example, as shown in FIG. 26, the chuck 100 may be moved in the Y-axis direction to form the split modified layer M2. That is, the chuck 100 is moved from the state where the chuck 100 is located on the Y-axis positive direction side of the lens 111 as shown in FIG. 26A to the chuck 100 in the Y-axis negative direction as shown in FIG. 26B. Then, when the processed wafer W passes below the lens 111, one end of the peripheral edge We is irradiated with the laser beam L2 to form the split reforming layer M21. After that, as shown in FIG. 26C, the chuck 100 is further moved in the negative direction of the Y-axis to form the split reforming layer M22 at the other end of the peripheral edge We. In this way, the split reforming layers M21 and M22 are formed on the opposite peripheral edges We. In such a case, the moving distance D1 of the chuck 100 becomes long. Specifically, the moving distance D1 requires, for example, one processing wafer W, a distance for accelerating the chuck 100, and a distance for decelerating.
 これに対して、本実施形態のステップB10では、図27に示すように周縁部Weの一端部のみに分割改質層M2を形成し、さらにチャック100を回転させることで、チャック100の移動距離を短くする。すなわち、図27(a)に示すようにチャック100がレンズ111のY軸正方向側に位置した状態から、図27(b)に示すようにチャック100をY軸負方向に移動させる。そして、処理ウェハWがレンズ111の下方を通過する際に、周縁部Weの一端部(一の周方向位置)にレーザ光L2を照射し、分割改質層M21を形成する。次に、図27(c)に示すようにチャック100を180度回転させる。その後、図27(d)に示すようにチャック100をY軸正方向に移動させ、周縁部Weの他端部(他の周方向位置)に分割改質層M22を形成する。かかる場合、チャック100の移動距離D2は短くなる。具体的に移動距離D2には、例えば分割改質層M2の形成幅と、チャック100の加速するための距離及び減速するための距離だけがあればよい。 On the other hand, in step B10 of the present embodiment, as shown in FIG. 27, the split reforming layer M2 is formed only at one end of the peripheral edge We, and the chuck 100 is further rotated to move the chuck 100. To shorten. That is, the chuck 100 is moved from the state where the chuck 100 is located on the Y-axis positive direction side of the lens 111 as shown in FIG. 27 (a) to the Y-axis negative direction as shown in FIG. 27 (b). Then, when the processed wafer W passes below the lens 111, one end (position in one circumferential direction) of the peripheral edge We is irradiated with the laser beam L2 to form the split reforming layer M21. Next, the chuck 100 is rotated 180 degrees as shown in FIG. 27 (c). After that, as shown in FIG. 27 (d), the chuck 100 is moved in the positive direction of the Y axis to form the split reforming layer M22 at the other end (other circumferential position) of the peripheral edge We. In such a case, the moving distance D2 of the chuck 100 becomes short. Specifically, the moving distance D2 only needs to include, for example, the forming width of the split reforming layer M2, the distance for accelerating and the distance for decelerating the chuck 100.
 このように本実施形態では、ステップB10で分割改質層M2を形成するに際し、チャック100の移動距離を短くして、改質装置60の占有面積(フットプリント)を小さくすることができ、省スペース化することができる。 As described above, in the present embodiment, when the split reforming layer M2 is formed in step B10, the moving distance of the chuck 100 can be shortened to reduce the occupied area (footprint) of the reforming device 60, which saves energy. It can be made into a space.
 なお、本実施形態では分割改質層M2を形成するにあたり、チャック100をY軸方向に移動させたが、レーザヘッド110をY軸方向に移動させてもよい。 In the present embodiment, the chuck 100 is moved in the Y-axis direction when the split reforming layer M2 is formed, but the laser head 110 may be moved in the Y-axis direction.
 次に、図28及び図29に示すようにレーザヘッド110からレーザ光L3(内部面用レーザ光L3)を照射して、面方向に沿って内部面改質層M3を形成する(図12のステップB11、図10のステップA3)。なお、図29に示す黒塗り矢印はチャック100の回転方向を示し、以下の説明においても同様である。 Next, as shown in FIGS. 28 and 29, the laser head 110 irradiates the laser beam L3 (inner surface laser beam L3) to form the internal surface modification layer M3 along the surface direction (FIG. 12). Step B11, step A3 in FIG. 10). The black arrow shown in FIG. 29 indicates the rotation direction of the chuck 100, and the same applies to the following description.
 内部面改質層M3の下端は、薄化後の処理ウェハWの目標表面(図28中の点線)より少し上方に位置している。すなわち、内部面改質層M3の下端と処理ウェハWの表面Waとの間の距離H3は、薄化後の処理ウェハWの目標厚みH2より少し大きい。なお、処理ウェハWの内部には、内部面改質層M3から面方向にクラックC3が進展する。 The lower end of the internal surface modification layer M3 is located slightly above the target surface (dotted line in FIG. 28) of the thinned processed wafer W. That is, the distance H3 between the lower end of the internal surface modification layer M3 and the surface Wa of the processed wafer W is slightly larger than the target thickness H2 of the processed wafer W after thinning. Inside the processed wafer W, cracks C3 grow in the plane direction from the internal surface modification layer M3.
 ステップB11では、チャック100(処理ウェハW)を回転させると共に、レーザヘッド110を処理ウェハWの外周部から中心部に向けてY軸方向に移動させながら、レーザヘッド110から処理ウェハWの内部にレーザ光L3を照射する。そうすると、内部面改質層M3は、処理ウェハWの面内において、外側から内側に螺旋状に形成される。 In step B11, the chuck 100 (processed wafer W) is rotated, and the laser head 110 is moved from the outer peripheral portion to the central portion of the processed wafer W in the Y-axis direction from the laser head 110 to the inside of the processed wafer W. The laser beam L3 is irradiated. Then, the internal surface modification layer M3 is spirally formed from the outside to the inside in the surface of the processed wafer W.
 なお、本実施形態では内部面改質層M3を形成するにあたり、レーザヘッド110をY軸方向に移動させたが、チャック100をY軸方向に移動させてもよい。また内部面改質層M3を形成するにあたり、チャック100を回転させたが、レーザヘッド110を移動させて、チャック100に対してレーザヘッド110を相対的に回転させてもよい。 In the present embodiment, the laser head 110 is moved in the Y-axis direction when the internal surface modification layer M3 is formed, but the chuck 100 may be moved in the Y-axis direction. Further, although the chuck 100 was rotated in forming the internal surface modification layer M3, the laser head 110 may be moved to rotate the laser head 110 relative to the chuck 100.
 次に、図13(d)に示すようにチャック100を第1の位置P1に移動させる(図12のステップB12)。その後、第1の位置P1において、ウェハ搬送装置70により重合ウェハTが搬出される(図12のステップB13)。 Next, as shown in FIG. 13 (d), the chuck 100 is moved to the first position P1 (step B12 in FIG. 12). After that, at the first position P1, the polymerized wafer T is carried out by the wafer transfer device 70 (step B13 in FIG. 12).
 以上が改質装置60で行われる一連の処理である。以下、図10及び図11に戻って、ウェハ処理システム1で行われるウェハ処理について説明する。 The above is a series of processes performed by the reformer 60. Hereinafter, returning to FIGS. 10 and 11, the wafer processing performed by the wafer processing system 1 will be described.
 改質装置60から搬出された重合ウェハTは、次に、ウェハ搬送装置70により周縁除去装置61に搬送される。周縁除去装置61では、図11(d)に示すように周縁改質層M1を基点に、処理ウェハWの周縁部Weを除去する(図10のステップA4)。ステップA4では、図8に示したように、くさびローラ141を、処理ウェハWと支持ウェハSの外側端部から、当該処理ウェハWと支持ウェハSの界面に挿入する。そして、挿入されたくさびローラ141により周縁部Weが押し上げられ、周縁改質層M1を基点に処理ウェハWから分離して除去される。この際、分割改質層M2を基点に、周縁部Weは小片化して分離される。なお、除去された周縁部Weは、回収部(図示せず)に回収される。 The polymerized wafer T carried out from the reformer 60 is then transferred to the peripheral edge removing device 61 by the wafer transfer device 70. In the peripheral edge removing device 61, as shown in FIG. 11D, the peripheral edge portion We of the processed wafer W is removed from the peripheral edge modifying layer M1 as a base point (step A4 in FIG. 10). In step A4, as shown in FIG. 8, the wedge roller 141 is inserted from the outer end portion of the processing wafer W and the support wafer S into the interface between the processing wafer W and the support wafer S. Then, the peripheral edge portion We is pushed up by the inserted wedge roller 141, and is separated from the processing wafer W with the peripheral edge modification layer M1 as a base point and removed. At this time, the peripheral portion We is fragmented and separated from the divided modified layer M2 as a base point. The removed peripheral edge We is collected by a collection unit (not shown).
 次に、重合ウェハTはウェハ搬送装置70により加工装置80に搬送される。加工装置80では、先ず、搬送アーム71から受渡位置A0のチャック83に重合ウェハTを受け渡す。この際、図11(e)に示すように内部面改質層M3を基点に、処理ウェハWの裏面Wb側(以下、裏面ウェハWb1という)を分離する(図10のステップA5)。 Next, the polymerized wafer T is transferred to the processing device 80 by the wafer transfer device 70. In the processing apparatus 80, first, the polymerization wafer T is delivered from the transport arm 71 to the chuck 83 at the delivery position A0. At this time, as shown in FIG. 11E, the back surface Wb side of the processed wafer W (hereinafter referred to as the back surface wafer Wb1) is separated from the internal surface modification layer M3 as a base point (step A5 in FIG. 10).
 ステップA5では、搬送アーム71の吸着板170で処理ウェハWを吸着保持しつつ、チャック83で支持ウェハSを吸着保持する。そして、吸着板170を回転させて、内部面改質層M3を境界に裏面ウェハWb1が縁切りされる。その後、吸着板170が裏面ウェハWb1を吸着保持した状態で、当該吸着板170を上昇させて、処理ウェハWから裏面ウェハWb1を分離する。この際、圧力センサ183で裏面ウェハWb1を吸引する圧力を測定することで、裏面ウェハWb1の有無を検知して、処理ウェハWから裏面ウェハWb1が分離されたか否かを確認することができる。なお、分離された裏面ウェハWb1は、ウェハ処理システム1の外部に回収される。 In step A5, the suction plate 170 of the transport arm 71 sucks and holds the processed wafer W, and the chuck 83 sucks and holds the support wafer S. Then, the suction plate 170 is rotated to trim the back surface wafer Wb1 with the internal surface modification layer M3 as a boundary. Then, in a state where the suction plate 170 sucks and holds the back surface wafer Wb1, the suction plate 170 is raised to separate the back surface wafer Wb1 from the processed wafer W. At this time, by measuring the pressure at which the back surface wafer Wb1 is sucked by the pressure sensor 183, the presence or absence of the back surface wafer Wb1 can be detected, and it can be confirmed whether or not the back surface wafer Wb1 is separated from the processed wafer W. The separated back surface wafer Wb1 is collected outside the wafer processing system 1.
 続いて、チャック83を加工位置A1に移動させる。そして、研削ユニット84によって、図11(f)に示すようにチャック83に保持された処理ウェハWの裏面Wbを研削し、当該裏面Wbに残る内部面改質層M3と周縁改質層M1を除去する(図10のステップA6)。ステップA6では、裏面Wbに研削砥石を当接させた状態で、処理ウェハWと研削砥石をそれぞれ回転させ、裏面Wbを研削する。なおその後、洗浄液ノズル(図示せず)を用いて、処理ウェハWの裏面Wbが洗浄液によって洗浄されてもよい。 Subsequently, the chuck 83 is moved to the processing position A1. Then, as shown in FIG. 11 (f), the back surface Wb of the processed wafer W held by the chuck 83 is ground by the grinding unit 84, and the internal surface modification layer M3 and the peripheral edge modification layer M1 remaining on the back surface Wb are removed. Remove (step A6 in FIG. 10). In step A6, the processing wafer W and the grinding wheel are rotated in a state where the grinding wheel is in contact with the back surface Wb to grind the back surface Wb. After that, the back surface Wb of the processing wafer W may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown).
 次に、重合ウェハTはウェハ搬送装置70により洗浄装置41に搬送される。洗浄装置41では処理ウェハWの研削面である裏面Wbがスクラブ洗浄される(図10のステップA7)。なお、洗浄装置41では、処理ウェハWの裏面Wbと共に、支持ウェハSの裏面Sbが洗浄されてもよい。 Next, the polymerized wafer T is transferred to the cleaning device 41 by the wafer transfer device 70. In the cleaning device 41, the back surface Wb, which is the ground surface of the processed wafer W, is scrubbed (step A7 in FIG. 10). In the cleaning device 41, the back surface Sb of the support wafer S may be cleaned together with the back surface Wb of the processing wafer W.
 次に、重合ウェハTはウェハ搬送装置50によりエッチング装置40に搬送される。エッチング装置40では処理ウェハWの裏面Wbが薬液によりウェットエッチングされる(図5のステップA8)。上述した加工装置80で研削された裏面Wbには、研削痕が形成される場合がある。本ステップA8では、ウェットエッチングすることによって研削痕を除去でき、裏面Wbを平滑化することができる。 Next, the polymerized wafer T is transferred to the etching device 40 by the wafer transfer device 50. In the etching apparatus 40, the back surface Wb of the processed wafer W is wet-etched with a chemical solution (step A8 in FIG. 5). Grinding marks may be formed on the back surface Wb ground by the processing device 80 described above. In this step A8, grinding marks can be removed by wet etching, and the back surface Wb can be smoothed.
 その後、すべての処理が施された重合ウェハTは、ウェハ搬送装置50によりトランジション装置30に搬送され、さらにウェハ搬送装置20によりカセット載置台10のカセットCtに搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 After that, the polymerized wafer T that has been subjected to all the processing is transported to the transition device 30 by the wafer transfer device 50, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 20. In this way, a series of wafer processing in the wafer processing system 1 is completed.
 以上の実施形態によれば、改質装置60における構成要素の位置や処理内容を最適化することで、改質装置60の占有面積を小さくして、省スペース化することができる。また、これに伴い、ウェハ処理のスループットを向上させることも可能となる。 According to the above embodiment, by optimizing the positions of the components and the processing contents in the reformer 60, the occupied area of the reformer 60 can be reduced and the space can be saved. Along with this, it is also possible to improve the throughput of wafer processing.
 より詳細には、改質装置60において、第1の位置P1と第2の位置の2つのポジションにチャック100を配置することで、すべての処理を行うことができる。すなわち、第1の位置P1では、ステップB1におけるパワーチェック及びキャリブレーション、ステップB2、B12における重合ウェハTの搬入出、ステップB3、B4におけるマクロアライメントが行われる。第2の位置P2では、ステップB6、B7におけるマイクロアライメント、ステップB8におけるレーザ光の照射高さ調整、ステップB9における周縁改質層M1の形成、ステップB10における分割改質層M2の形成、ステップB11における内部面改質層M3の形成が行われる。このように第1の位置P1と第2の位置P2の間でチャック100を移動させればよいので、その移動距離が短くなり、チャック100の移動を制御するコストを下げることができる。 More specifically, in the reformer 60, all the processing can be performed by arranging the chuck 100 at two positions, the first position P1 and the second position. That is, at the first position P1, power check and calibration in step B1, loading and unloading of the polymerized wafer T in steps B2 and B12, and macro alignment in steps B3 and B4 are performed. At the second position P2, micro-alignment in steps B6 and B7, adjustment of the irradiation height of the laser beam in step B8, formation of the peripheral modification layer M1 in step B9, formation of the split modification layer M2 in step B10, and step B11. The inner surface modification layer M3 is formed in the above. Since the chuck 100 may be moved between the first position P1 and the second position P2 in this way, the moving distance is shortened, and the cost of controlling the movement of the chuck 100 can be reduced.
 また、第1の位置P1にチャック100が配置される際、パワーメータ107はレーザヘッド110のレンズ111の下方に配置される。例えばパワーメータ107が第1の位置P1から離れた場所にある場合、パワーチェックのためにチャック100を第1の位置P1から移動させる必要があるが、本実施形態では、このようなチャック100の移動が不要になる。このため、改質装置60の占有面積を小さくして省スペース化することができる。また、ステップB1では、チャック100の待機中にパワーチェックとキャリブレーションを行うことができるので、改質処理の時間を短縮でき、ウェハ処理のスループットを向上させることもできる。 Further, when the chuck 100 is arranged at the first position P1, the power meter 107 is arranged below the lens 111 of the laser head 110. For example, when the power meter 107 is located away from the first position P1, it is necessary to move the chuck 100 from the first position P1 for power check, but in the present embodiment, such a chuck 100 No need to move. Therefore, the occupied area of the reformer 60 can be reduced to save space. Further, in step B1, since the power check and the calibration can be performed while the chuck 100 is on standby, the time for the reforming process can be shortened and the throughput for the wafer process can be improved.
 また、ステップB10において分割改質層M2を形成する際、周縁部Weの一端部に分割改質層M21を形成した後、チャック100を回転させて、周縁部Weの他端部に分割改質層M22を形成する。このため、チャック100の移動距離を短くすることができ、改質装置60の占有面積を小さくして省スペース化することができる。 Further, when forming the split reforming layer M2 in step B10, after forming the split reforming layer M21 at one end of the peripheral edge portion We, the chuck 100 is rotated to split and modify the other end portion of the peripheral edge portion We. Layer M22 is formed. Therefore, the moving distance of the chuck 100 can be shortened, and the occupied area of the reformer 60 can be reduced to save space.
 なお、以上の実施形態では、周縁部Weの除去は、周縁除去装置61において周縁除去部140を用いて行われたが、除去方法はこれに限定されない。例えば、周縁部Weを保持して除去してもよいし、周縁部Weに対して物理的な衝撃や超音波などを付与して除去してもよい。 In the above embodiment, the peripheral portion We is removed by using the peripheral edge removing portion 140 in the peripheral edge removing device 61, but the removing method is not limited to this. For example, the peripheral edge portion We may be held and removed, or the peripheral edge portion We may be removed by applying a physical impact or ultrasonic waves to the peripheral edge portion We.
 また、以上の実施形態では、処理ウェハWからの裏面ウェハWb1の分離は、ウェハ搬送装置70の搬送アーム71から加工装置80のチャック83に重合ウェハTを受け渡す際に行っていたが、分離方法はこれに限定されない。例えば、分離装置(図示せず)を周縁除去装置61と同一装置内に設けてもよいし、分離装置(図示せず)を別途設けてもよい。 Further, in the above embodiment, the back surface wafer Wb1 is separated from the processed wafer W when the polymerized wafer T is transferred from the transfer arm 71 of the wafer transfer device 70 to the chuck 83 of the processing device 80. The method is not limited to this. For example, a separation device (not shown) may be provided in the same device as the peripheral edge removing device 61, or a separation device (not shown) may be provided separately.
 さらに、以上の実施形態では、処理ウェハWの薄化は、裏面ウェハWb1を分離することで行っていたが、薄化方法はこれに限定されない。例えば処理ウェハWの裏面Wbを研削してもよいし、あるいは裏面Wbをエッチングしてもよい。 Further, in the above embodiment, the thinning of the processed wafer W is performed by separating the back surface wafer Wb1, but the thinning method is not limited to this. For example, the back surface Wb of the processed wafer W may be ground, or the back surface Wb may be etched.
 また、以上の実施形態では、処理体が重合ウェハTである場合について説明したが、これに限定されない。処理体は、例えば基板以外のものであってもよく、処理体の内部にレーザ光を照射して改質層を形成する場合に、上記実施形態を適用することができる。 Further, in the above embodiment, the case where the processed body is the polymerized wafer T has been described, but the present invention is not limited to this. The treated body may be something other than a substrate, for example, and the above embodiment can be applied when a modified layer is formed by irradiating the inside of the treated body with laser light.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope of the appended claims and the gist thereof.
  1   ウェハ処理システム
  60  改質装置
  90  制御装置
  100 チャック
  107 パワーメータ
  110 レーザヘッド
  M1  周縁改質層
  P1  第1の位置
  P2  第2の位置
  S   支持ウェハ
  T   重合ウェハ
  W   処理ウェハ
  Wc  中央部
  We  周縁部
1 Wafer processing system 60 Remodeling device 90 Control device 100 Chuck 107 Power meter 110 Laser head M1 Peripheral remodeling layer P1 First position P2 Second position S Support wafer T Polymerized wafer W Processing wafer Wc Central part We Peripheral part

Claims (10)

  1. 処理体を処理する装置であって、
    前記処理体を保持する保持部と、
    前記保持部に保持された前記処理体の内部に、レーザ光を照射して改質層を形成する改質部と、
    前記レーザ光の出力を測定する測定部と、
    前記保持部に対して前記処理体を搬入出する第1の位置と、前記改質部によって前記改質層を形成する第2の位置との間で、前記保持部を移動させる移動部と、
    前記保持部、前記改質部、前記測定部及び前記移動部を制御する制御部と、を有し、
    前記制御部は、前記第1の位置において前記保持部が待機する際、前記測定部によって前記レーザ光の出力を測定するように、前記保持部、前記測定部及び前記移動部を制御する、処理装置。
    A device that processes a processing body
    A holding unit that holds the processed body and
    A modified portion that irradiates a laser beam to form a modified layer inside the processed body held by the holding portion, and a modified portion.
    A measuring unit that measures the output of the laser beam,
    A moving portion for moving the holding portion between a first position for loading and unloading the processed body with respect to the holding portion and a second position for forming the modified layer by the modified portion.
    It has a holding unit, a modifying unit, a measuring unit, and a control unit that controls the moving unit.
    The control unit controls the holding unit, the measuring unit, and the moving unit so that the measuring unit measures the output of the laser beam when the holding unit stands by at the first position. apparatus.
  2. 前記測定部は前記保持部に設けられ、
    前記第1の位置において前記測定部は前記改質部の下方に配置される、請求項1に記載の処理装置。
    The measuring unit is provided on the holding unit.
    The processing apparatus according to claim 1, wherein the measuring unit is arranged below the modified unit at the first position.
  3. 前記処理体は、第1の基板と第2の基板が接合された重合基板であり、
    前記保持部は、前記第2の基板側から前記重合基板を保持し、
    前記改質部は、前記第1の基板の内部に、除去対象の周縁部と中央部の境界に沿って前記レーザ光を照射して、前記改質層である周縁改質層を形成する、請求項1又は2に記載の処理装置。
    The processed body is a polymerized substrate in which a first substrate and a second substrate are bonded to each other.
    The holding portion holds the polymerized substrate from the second substrate side.
    The modified portion irradiates the inside of the first substrate with the laser beam along the boundary between the peripheral portion and the central portion to be removed to form the peripheral modified layer which is the modified layer. The processing apparatus according to claim 1 or 2.
  4. 前記第1の位置に前記保持部が配置される際、前記第1の基板の外側端部を撮像する第1の撮像部と、
    前記第2の位置に前記保持部が配置される際、前記第1の基板と第2の基板が接合された接合領域と、当該接合領域の外側の未接合領域との境界を撮像する第2の撮像部と、を有する、請求項3に記載の処理装置。
    When the holding portion is arranged at the first position, the first imaging unit that images the outer end portion of the first substrate and the first imaging unit.
    When the holding portion is arranged at the second position, a second image is taken of the boundary between the bonded region where the first substrate and the second substrate are bonded and the unbonded region outside the bonded region. The processing apparatus according to claim 3, further comprising an imaging unit of the above.
  5. 前記保持部を回転させる回転部を有し、
    前記改質部は、前記第2の位置において、前記保持部に保持された前記第1の基板の内部に、前記周縁改質層から径方向外側に向けてレーザ光を照射して分割改質層を形成し、
    前記制御部は、前記改質部が前記周縁部における一の周方向位置の上方に配置された状態で、当該一の周方向位置に前記分割改質層を形成した後、前記回転部によって前記保持部を回転させ、前記改質部が前記周縁部における他の周方向位置の上方に配置された状態で、当該他の周方向位置に前記分割改質層を形成するように、前記保持部、前記改質部、前記移動部及び前記回転部を制御する、請求項3又は4に記載の処理装置。
    It has a rotating part that rotates the holding part,
    At the second position, the modified portion is divided and modified by irradiating the inside of the first substrate held by the holding portion with laser light from the peripheral modification layer toward the outside in the radial direction. Form a layer,
    The control unit is formed by forming the split reforming layer at the one circumferential position in a state where the reforming portion is arranged above the one circumferential position in the peripheral portion, and then the rotating portion. The holding portion is rotated so that the modified portion is arranged above the other circumferential position on the peripheral portion and the divided modified layer is formed at the other circumferential position. The processing apparatus according to claim 3 or 4, which controls the reforming unit, the moving unit, and the rotating unit.
  6. 処理体を処理する方法であって、
    前記処理体を保持部で保持することと、
    改質部から前記保持部に保持された前記処理体の内部に、レーザ光を照射して改質層を形成することと、
    前記レーザ光の出力を測定部で測定することと、
    前記保持部に対して前記処理体を搬入出する第1の位置と、前記改質部によって前記改質層を形成する第2の位置との間で、前記保持部を移動させることと、を有し、
    前記第1の位置において前記保持部が待機する際、前記測定部によって前記レーザ光の出力を測定する、処理方法。
    It is a method of processing a processing body,
    Holding the processed body in the holding part and
    To form a modified layer by irradiating a laser beam from the modified portion to the inside of the processed body held by the holding portion.
    Measuring the output of the laser beam with the measuring unit
    Moving the holding portion between a first position for loading and unloading the processed body with respect to the holding portion and a second position for forming the modified layer by the modified portion. Have and
    A processing method in which the output of the laser beam is measured by the measuring unit when the holding unit stands by at the first position.
  7. 前記測定部は前記保持部に設けられ、
    前記第1の位置において前記測定部は前記改質部の下方に配置される、請求項6に記載の処理方法。
    The measuring unit is provided on the holding unit.
    The processing method according to claim 6, wherein the measuring unit is arranged below the modified unit at the first position.
  8. 前記処理体は、第1の基板と第2の基板が接合された重合基板であり、
    前記保持部は、前記第2の基板側から前記重合基板を保持し、
    前記改質部は、前記第1の基板の内部に、除去対象の周縁部と中央部の境界に沿って前記レーザ光を照射して、前記改質層である周縁改質層を形成する、請求項6又は7に記載の処理方法。
    The processed body is a polymerized substrate in which a first substrate and a second substrate are bonded to each other.
    The holding portion holds the polymerized substrate from the second substrate side.
    The modified portion irradiates the inside of the first substrate with the laser beam along the boundary between the peripheral portion and the central portion to be removed to form the peripheral modified layer which is the modified layer. The processing method according to claim 6 or 7.
  9. 前記第1の位置に前記保持部が配置される際、前記第1の基板の外側端部を第1の撮像部で撮像することと、
    前記第2の位置に前記保持部が配置される際、前記第1の基板と第2の基板が接合された接合領域と、当該接合領域の外側の未接合領域との境界を第2の撮像部で撮像することと、を有する、請求項8に記載の処理方法。
    When the holding portion is arranged at the first position, the outer end portion of the first substrate is imaged by the first imaging unit.
    When the holding portion is arranged at the second position, a second imaging is performed on the boundary between the bonded region where the first substrate and the second substrate are bonded and the unbonded region outside the bonded region. The processing method according to claim 8, wherein the image is taken by a unit.
  10. 前記第2の位置において、前記保持部に保持された前記第1の基板の内部に、前記周縁改質層から径方向外側に向けてレーザ光を照射して分割改質層を形成し、
    前記改質部が前記周縁部における一の周方向位置の上方に配置された状態で、当該一の周方向位置に前記分割改質層を形成した後、前記保持部を回転させ、前記改質部が前記周縁部における他の周方向位置の上方に配置された状態で、当該他の周方向位置に前記分割改質層を形成する、請求項8又は9に記載の処理方法。
    At the second position, a split reforming layer is formed by irradiating the inside of the first substrate held by the holding portion with laser light from the peripheral modification layer toward the outside in the radial direction.
    In a state where the modified portion is arranged above one circumferential position on the peripheral portion, the divided modified layer is formed at the one circumferential position, and then the holding portion is rotated to modify the modified portion. The processing method according to claim 8 or 9, wherein the divided and modified layer is formed at the other circumferential position in a state where the portion is arranged above the other circumferential position on the peripheral portion.
PCT/JP2020/007697 2019-03-08 2020-02-26 Processing device and processing method WO2020184178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021504903A JP7129549B2 (en) 2019-03-08 2020-02-26 Processing equipment and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-043024 2019-03-08
JP2019043024 2019-03-08

Publications (1)

Publication Number Publication Date
WO2020184178A1 true WO2020184178A1 (en) 2020-09-17

Family

ID=72425966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007697 WO2020184178A1 (en) 2019-03-08 2020-02-26 Processing device and processing method

Country Status (3)

Country Link
JP (1) JP7129549B2 (en)
TW (1) TWI832975B (en)
WO (1) WO2020184178A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070309A1 (en) * 2022-09-30 2024-04-04 東京エレクトロン株式会社 Substrate processing method and substrate processing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114202533A (en) * 2021-12-14 2022-03-18 西安奕斯伟材料科技有限公司 Method, device and equipment for detecting coaxiality of single crystal furnace and computer storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351876A (en) * 2000-06-05 2001-12-21 Sumitomo Heavy Ind Ltd Apparatus and method for laser processing
JP2004111426A (en) * 2002-09-13 2004-04-08 Tokyo Seimitsu Co Ltd Laser dicing equipment
JP2004111606A (en) * 2002-09-18 2004-04-08 Tokyo Seimitsu Co Ltd Method of processing wafer
JP2006108532A (en) * 2004-10-08 2006-04-20 Disco Abrasive Syst Ltd Method of grinding wafer
JP2018051605A (en) * 2016-09-29 2018-04-05 ファナック株式会社 Laser processing system
JP2019033162A (en) * 2017-08-08 2019-02-28 株式会社ディスコ Laser processing method
JP2019063828A (en) * 2017-10-03 2019-04-25 株式会社ディスコ Laser processing device and output checking method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223176A (en) 2000-02-09 2001-08-17 Matsushita Electric Ind Co Ltd Laser irradiation device and laser irradiation method
JP2014113606A (en) 2012-12-07 2014-06-26 Sharp Corp Laser machining apparatus and laser machining method
JP6465712B2 (en) * 2015-03-25 2019-02-06 住友重機械工業株式会社 Laser processing apparatus and laser processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351876A (en) * 2000-06-05 2001-12-21 Sumitomo Heavy Ind Ltd Apparatus and method for laser processing
JP2004111426A (en) * 2002-09-13 2004-04-08 Tokyo Seimitsu Co Ltd Laser dicing equipment
JP2004111606A (en) * 2002-09-18 2004-04-08 Tokyo Seimitsu Co Ltd Method of processing wafer
JP2006108532A (en) * 2004-10-08 2006-04-20 Disco Abrasive Syst Ltd Method of grinding wafer
JP2018051605A (en) * 2016-09-29 2018-04-05 ファナック株式会社 Laser processing system
JP2019033162A (en) * 2017-08-08 2019-02-28 株式会社ディスコ Laser processing method
JP2019063828A (en) * 2017-10-03 2019-04-25 株式会社ディスコ Laser processing device and output checking method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070309A1 (en) * 2022-09-30 2024-04-04 東京エレクトロン株式会社 Substrate processing method and substrate processing system

Also Published As

Publication number Publication date
JP7129549B2 (en) 2022-09-01
TWI832975B (en) 2024-02-21
JPWO2020184178A1 (en) 2021-12-23
TW202040673A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
JP7413468B2 (en) Substrate processing equipment and substrate processing method
JP7287982B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
WO2020184178A1 (en) Processing device and processing method
WO2020213479A1 (en) Processing device and processing method
JP7203863B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2020136448A (en) Substrate processing apparatus and substrate processing method
CN114096372A (en) Processing apparatus and processing method
JP7127208B2 (en) Processing equipment and processing method
CN113195152B (en) Substrate processing apparatus and substrate processing method
JP7093855B2 (en) Board processing equipment and board processing method
KR102637161B1 (en) Substrate processing device and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769505

Country of ref document: EP

Kind code of ref document: A1