WO2019239689A1 - Reception device, communication system, and reception method - Google Patents

Reception device, communication system, and reception method Download PDF

Info

Publication number
WO2019239689A1
WO2019239689A1 PCT/JP2019/015055 JP2019015055W WO2019239689A1 WO 2019239689 A1 WO2019239689 A1 WO 2019239689A1 JP 2019015055 W JP2019015055 W JP 2019015055W WO 2019239689 A1 WO2019239689 A1 WO 2019239689A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control signal
error correction
transmission control
size
Prior art date
Application number
PCT/JP2019/015055
Other languages
French (fr)
Japanese (ja)
Inventor
塁 阪井
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to BR112020024830-4A priority Critical patent/BR112020024830A2/en
Priority to JP2020525285A priority patent/JP7157807B2/en
Publication of WO2019239689A1 publication Critical patent/WO2019239689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present technology relates to a receiving device, a communication system, and a receiving method.
  • the present invention relates to a receiving apparatus, a communication system, and a receiving method for receiving terrestrial digital television broadcasting.
  • the transmission apparatus encodes the content to be broadcast into a plurality of codewords using a forward error correction (FEC) scheme. Then, the transmitting apparatus further divides the FEC block sequence in which these codewords are carrier-modulated and arranged into a plurality of divided data in a certain unit, and sequentially transmits in units of frames.
  • FEC forward error correction
  • the size of the FEC block is not limited to a divisor of the size of the divided data from the viewpoint of improving the transmission efficiency. For this reason, when an FEC block having a size that does not correspond to a divisor of the size of the divided data is used, the head of the FEC block is shifted in the frame without matching the head of the divided data.
  • TMCC Transmission and Multiplexing, Configuration, and Control
  • the receiving apparatus can acquire the start position of the FEC block by referring to the pointer in the TMCC, and can extract the FEC block from the frame and decode it.
  • the pointer changes from frame to frame
  • a part of the TMCC changes from frame to frame due to the change.
  • the estimation of the transmission path means estimating the characteristics of the transmission path such as phase and amplitude in order to compensate for waveform distortion and fading.
  • This technology has been created in view of such a situation, and aims to improve noise resistance in a communication system that transmits FEC blocks.
  • the present technology has been made to solve the above-described problems.
  • the first aspect of the present technology is to divide a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in a division unit different from the above size.
  • a receiving device comprising: a receiving unit that receives the divided data generated by the processing; and a processing unit that performs a process of calculating the start position of the FEC block in the divided data from the size and the division unit; This is the receiving method. This brings about the effect that the start position of the FEC block in the divided data is calculated in the receiving apparatus.
  • the receiving unit further receives a transmission control signal including a code length and a modulation order of codewords constituting the FEC block, and the processing unit receives the code length and the modulation order.
  • the processing unit may estimate the next head position from the current head position, the size, and the division unit each time the divided data is received. As a result, the head position is calculated every time the divided data is received.
  • the first aspect further includes a transmission path estimation unit that generates a demodulation result by performing orthogonal frequency division multiplexing demodulation on the orthogonal frequency division multiplexing modulated frame and estimates the transmission path using the demodulation result.
  • the frame may include the division data, and the processing unit may obtain the division unit from the demodulation result. As a result, the division unit is obtained from the demodulation result of the orthogonal frequency division multiplexed frame.
  • the receiving unit further receives a differentially modulated transmission control signal carrier, and the processing unit differentially demodulates the transmission control signal carrier to obtain an error correction code.
  • a differential modulation unit that generates a signal carrier, and the transmission path estimation unit may perform transmission path estimation based on the new transmission control signal carrier. This brings about the effect that the transmission path is estimated based on the transmission control signal carrier generated by error correction coding and differential modulation of the transmission control signal including the head position.
  • the error correction code decoding unit may perform soft decision decoding.
  • the transmission control signal can be obtained by soft decision decoding.
  • the error correction encoding unit may divide the transmission control signal and perform error correction encoding. This brings about the effect that a plurality of codewords are generated from the transmission control signal.
  • a demodulated data decoding unit that performs orthogonal frequency division multiplexing demodulation of the frame, extracts the FEC block from the divided data in the demodulation result, and decodes the FEC block. You can also This brings about the effect that the error of the FEC block is corrected.
  • a transmission device that divides and transmits a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in a division unit different from the size, and reception that receives the division data.
  • a receiving device including a processing unit that performs processing for calculating the start position of the FEC block in the divided data from the predetermined size and the division unit.
  • FIG. 6 is a diagram for describing a procedure until generation of an OFDM (OrthogonalgonFrequency Division Multiplexing) frame according to the first embodiment of the present technology.
  • FIG. It is a figure which shows an example of the data structure of the TMCC carrier in 1st Embodiment of this technique. It is a figure which shows an example of the data structure of the OFDM frame in 1st Embodiment of this technique. It is a block diagram showing an example of 1 composition of a channel estimation part in a 1st embodiment of this art.
  • FIG. 7 is a flowchart illustrating an example of an operation of the transmission device according to the first embodiment of the present technology. 7 is a flowchart illustrating an example of an operation of the reception device according to the first embodiment of the present technology. 3 is a flowchart illustrating an example of transmission control signal processing according to the first embodiment of the present technology.
  • First embodiment an example in which the receiving device calculates the start position of an FEC block
  • Second embodiment an example in which a receiving device calculates the start position of an FEC block and divides data including the calculation result
  • FIG. 1 is a block diagram illustrating a configuration example of a communication system according to the first embodiment of the present technology.
  • This communication system transmits and receives OFDM frames conforming to the ISDB-T standard used in next-generation terrestrial digital television broadcasting, and includes a transmission device 100 and a reception device 200.
  • the transmission device 100 includes an antenna 101.
  • Transmitting apparatus 100 generates an OFDM frame subjected to orthogonal frequency division multiplexing modulation, and antenna 101 generates a radio signal on which the frame is superimposed, and wirelessly transmits it to receiving apparatus 200.
  • the receiving apparatus 200 includes an antenna 201, a tuner 210, an AD (Analog-to-Digital) conversion unit 220, a transmission path estimation unit 230, a transmission control signal processing unit 300, and a demodulated data decoding unit 240.
  • AD Analog-to-Digital
  • the antenna 201 receives a radio signal from the transmission device 100 and generates an analog reception signal.
  • the antenna 201 supplies a received signal to the tuner 210.
  • the antenna 201 is an example of a receiving unit described in the claims.
  • the tuner 210 selects a signal of a predetermined channel from the received signal and outputs it to the AD converter 220 via the signal line 219.
  • the AD converter 220 converts an analog output signal from the tuner 210 into a digital signal.
  • This digital signal includes an OFDM frame.
  • the AD conversion unit 220 supplies the digital signal to the transmission path estimation unit 230 via the signal line 229.
  • the transmission path estimation unit 230 demodulates the OFDM frame in the digital signal and estimates the transmission path using the demodulation result.
  • the transmission path estimation unit 230 acquires a TMCC carrier including a transmission control signal (TMCC) from the demodulation result. Then, the transmission path estimation unit 230 supplies the TMCC carrier to the transmission control signal processing unit 300 via the signal line 309. Also, the transmission path estimation unit 230 performs equalization processing that compensates for the phase and amplitude based on the transmission path estimation result, and supplies the processed data to the demodulated data decoding unit 240 as demodulated data.
  • TMCC transmission control signal
  • the transmission control signal processing unit 300 performs processing for updating a part of the transmission control signal. Details of the update contents will be described later.
  • the transmission control signal processing unit 300 supplies the updated transmission control signal to the transmission path estimation unit 230 via the signal line 309.
  • the transmission control signal processing unit 300 is an example of a processing unit described in the claims.
  • the demodulated data decoder 240 decodes demodulated data.
  • the demodulated data decoding unit 240 outputs the decoding result as decoded data.
  • FIG. 2 is a diagram for describing a procedure until generation of an OFDM frame according to the first embodiment of the present technology.
  • a indicates an example of the input data series
  • b in the figure indicates an example of the encoded series.
  • C in the figure shows an example of a sequence after interleaving.
  • D in the figure shows an example of the FEC block.
  • e in the figure indicates a sequence of OFDM frames.
  • the transmitting apparatus 100 divides the content into a plurality of input data of a certain size such as input data # 1, # 2, and # 3 as illustrated in a in FIG. To do.
  • the transmission apparatus 100 performs forward error correction (FEC: Forward Error Correction) coding on each of the input data.
  • FEC Forward Error Correction
  • BCH coding and LDPC (Low-Density Parity-Check) coding are sequentially performed. With these encodings, a codeword sequence including data and parity for correcting an error in the data is generated as illustrated in FIG.
  • the transmitting apparatus 100 performs interleaving, and generates a bit string after rearrangement illustrated as c in FIG.
  • the transmission apparatus 100 performs carrier modulation, and generates a plurality of FEC blocks such as FEC blocks # 1, # 2, and # 3 as illustrated by d in FIG.
  • This FEC block is a sequence obtained by carrier-modulating a code word.
  • the size of each FEC block is constant, and the size is m (m is an integer).
  • the transmission apparatus 100 generates a plurality of divided data by dividing a FEC block sequence in which a plurality of FEC blocks are arranged by a predetermined division unit.
  • This division unit is N (N is an integer).
  • the transmission device 100 generates an OFDM frame from each of the divided data.
  • OFDM frames such as OFDM frames # 1 and # 2 are generated as illustrated in e in FIG.
  • One division data is stored in each OFDM frame.
  • a data carrier and TMCC including divided data # 1 are stored in OFDM frame # 1
  • a data carrier and TMCC including divided data # 2 are stored in OFDM frame # 2.
  • the size m of the FEC block is not limited to a divisor of the division unit N from the viewpoint of improving transmission efficiency. For this reason, when the size m does not correspond to the divisor of the division unit N, the heads of the second and subsequent OFDM frames are shifted without matching the head of the first FEC block in the OFDM frame. For this reason, the receiving apparatus 200 cannot extract the FEC block from the OFDM frame without acquiring the shift (in other words, the offset).
  • This offset indicates the head position of the first FEC block in the OFDM frame, and information indicating the offset is hereinafter referred to as “FEC block pointer”.
  • the transmitting apparatus 100 stores the FEC block pointer of the next OFDM frame in each TMCC of the OFDM frame. For example, the FCC block pointer of the next OFDM frame # 2 is stored in the TMCC in the OFDM frame # 1.
  • FIG. 3 is a diagram illustrating an example of a data structure of a TMCC carrier in the first embodiment of the present technology.
  • the transmitting apparatus 100 performs differential-set cyclic coding on TMCC including the number of segments, modulation order, code length, and reserved area, and further differentially modulates to generate a TMCC carrier.
  • the modulation order represents the number of bits mapped to one symbol of the FEC block.
  • the code length indicates the code length of the code word that constitutes the FEC block.
  • FIG. 4 is a diagram illustrating an example of the data structure of the OFDM frame according to the first embodiment of the present technology.
  • the vertical axis in the figure is the time axis, and the horizontal axis is the frequency axis.
  • This figure is described in STIB-B31 “terrestrial digital television broadcast transmission system” of the ARIB standard.
  • the example in the figure is an example when QAM modulation is adopted as a modulation method.
  • one carrier in one OFDM frame is used for TMCC transmission.
  • An SP (Scattered Pilot) symbol is inserted at a predetermined position.
  • a data carrier is stored in the OFDM frame.
  • the receiving apparatus 200 can estimate the transmission path with reference to the position of the SP.
  • the size m of the FEC block is not a divisor of the division unit N, the FEC block pointer changes for each OFDM frame. Further, the parity for correcting the error also changes for each OFDM frame.
  • FIG. 5 is a block diagram illustrating a configuration example of the transmission path estimation unit 230 according to the first embodiment of the present technology.
  • the transmission channel estimation unit 230 includes an FFT (Fast Fourier Transform) size estimation unit 231, a fast Fourier transform unit 232, a data carrier extraction circuit 233, a transmission control signal extraction circuit 234, a transmission channel estimation circuit 235, and an equalization circuit 236.
  • FFT Fast Fourier Transform
  • the FFT size estimation unit 231 estimates the FFT size by performing quadrature detection on the digital signal from the AD conversion unit 220.
  • the FFT size estimation unit 231 supplies the FFT size to the fast Fourier transform unit 232 and the transmission control signal processing unit 300.
  • the fast Fourier transform unit 232 removes the guard interval from the OFDM frame in the digital signal and performs fast Fourier transform. By this fast Fourier transform, a time-domain OFDM frame is converted into a frequency-domain OFDM symbol.
  • the OFDM frame is OFDM demodulated by the FFT size estimation unit 231 and the fast Fourier transform unit 232.
  • the fast Fourier transform unit 232 supplies the demodulation result to the data carrier extraction circuit 233 and the transmission control signal extraction circuit 234.
  • the data carrier extraction circuit 233 extracts a data carrier from the demodulation result by the fast Fourier transform unit 232 and supplies the data carrier to the equalization circuit 236.
  • This data carrier includes a data frame and the like.
  • the transmission control signal extraction circuit 234 extracts the TMCC carrier from the demodulation result by the fast Fourier transform unit 232.
  • the transmission control signal extraction circuit 234 supplies the extracted TMCC carrier to the transmission control signal processing unit 300 and the transmission path estimation circuit 235 as a reception TMCC carrier.
  • the transmission path estimation circuit 235 estimates the amount of phase rotation and noise power by comparing the phase and amplitude with the received TMCC carrier using the differentially modulated predicted TMCC carrier as an expected value.
  • the transmission path estimation circuit 235 supplies the estimation result to the equalization circuit 236.
  • the equalization circuit 236 equalizes the data carrier based on the estimation result from the transmission path estimation circuit 235.
  • the equalization circuit 236 supplies the equalized data to the demodulated data decoding unit 240 as demodulated data.
  • FIG. 6 is a block diagram illustrating a configuration example of the transmission control signal processing unit 300 according to the first embodiment of the present technology.
  • the transmission control signal processing unit 300 includes a differential demodulation unit 310, an error correction code decoding circuit 320, an FEC block pointer calculation unit 330, a synchronization word confirmation circuit 340, an error correction coding circuit 350, a differential modulation unit 360, and a TMCC sequence.
  • a generation circuit 370 is provided.
  • the differential demodulator 310 performs differential demodulation on the received TMCC carrier from the transmission path estimator 230.
  • differential BPSK Binary Phase-Shift Keying
  • Differential demodulation section 310 determines whether it is “1” or “0” from the phase difference between the TMCC carrier extracted from the previous OFDM symbol and the received TMCC carrier (that is, hard decision). The number of bits demodulated per OFDM symbol depends on the transmission specification.
  • the differential demodulation unit 310 supplies the demodulation result to the synchronization word confirmation circuit 340 and the error correction code decoding circuit 320.
  • the error correction code decoding circuit 320 decodes an error correction code such as a difference set cyclic code to obtain a TMCC.
  • an error correction code such as a difference set cyclic code
  • data is error correction encoded by a differential set cyclic code, and the differential set cyclic code is arranged in order from the last carrier of the synchronization word.
  • the error correction code decoding circuit 320 decodes the difference set cyclic code for the differentially demodulated sequence.
  • the decoding algorithm may be any algorithm such as a variable threshold decoding method.
  • the differential demodulated sequence is a bit sequence.
  • the differential demodulation result can be received with the judgment value.
  • the code length and information length of the difference set cyclic code are not limited to those proposed in the ISDB-T standard.
  • the error correction code is not limited to the difference set cyclic code.
  • the error correction code decoding circuit 320 supplies the acquired TMCC to the FEC block pointer calculation unit 330 and the error correction coding circuit 350.
  • the FEC block pointer calculation unit 330 calculates the FEC block pointer from the FFT size from the transmission path estimation unit 230 and the TMCC.
  • the FEC block pointer calculation unit 330 supplies the calculated FEC block pointer to the error correction coding circuit 350.
  • the error correction encoding circuit 350 updates a part of the TMCC in the previous OFDM frame with the FEC block pointer from the FEC block pointer calculation unit 330 and performs error correction encoding on the updated new TMCC. For example, difference set cyclic coding is performed.
  • the error correction coding circuit 350 supplies an error correction code such as a difference set cyclic code to the TMCC sequence generation circuit 370.
  • the synchronization word confirmation circuit 340 confirms the coincidence of the synchronization words in the demodulation result of the differential demodulator 310 and takes frame synchronization.
  • a reference bit by differential modulation of the TMCC carrier is arranged at the head of the frame, and a synchronization word is arranged in the subsequent 16 carriers.
  • This synchronization word is a 16-bit sequence known to the receiving apparatus 200 defined by the specification.
  • the synchronization word confirmation circuit 340 confirms whether or not the next 16 bits of the reference bits are the defined synchronization word in the demodulation result.
  • the synchronization word confirmation circuit 340 supplies the confirmation result to the TMCC sequence generation circuit 370.
  • the TMCC sequence generation circuit 370 generates a predicted TMCC sequence for the next frame using a synchronization word and an error correction code.
  • TMCC sequence arranged in an OFDM frame according to the ISDB-T standard, data is arranged in the order of a differential modulation reference bit, a synchronization word, and a difference set cyclic code. The reference bit is determined depending on the carrier number, and the synchronization word is inverted every OFDM frame.
  • the TMCC sequence generation circuit 370 When the synchronization words match, the TMCC sequence generation circuit 370 generates a reference bit and a synchronization word based on the transmission specifications, and supplies the bit sequence obtained by adding them to the differential cyclic code as a TMCC sequence to the differential modulation unit 360 To do.
  • the differential modulation unit 360 performs differential modulation on the TMCC sequence based on the transmission specifications.
  • the differential modulation unit 360 supplies the modulated symbol to the transmission path estimation unit 230 as a predicted TMCC carrier expected in the next OFDM frame.
  • FIG. 7 is a block diagram illustrating a configuration example of the FEC block pointer calculation unit 330 according to the first embodiment of the present technology.
  • the FEC block pointer calculation unit 330 includes an FEC block size calculation unit 351, an OFDM frame data carrier number calculation unit 352, and a next frame FEC block pointer calculation unit 353.
  • the FEC block size calculation unit 351 calculates the size m of the FEC block.
  • the FEC block size calculation unit 351 receives TMCC from the error correction code decoding circuit 320, and refers to the code length C and the modulation order ⁇ of the FEC block described in the TMCC. Then, the FEC block size calculation unit 351 calculates the size m of the FEC block by the following formula and supplies the FEC block size calculation unit 351 to the next frame FEC block pointer calculation unit 353.
  • m C / ⁇ Equation 1
  • the intra-OFDM data carrier number calculation unit 352 calculates the number of data carriers corresponding to the division unit N. This intra-OFDM data carrier number calculation unit 352 obtains the total number of carriers N total from the FFT size estimated by the FFT size estimation unit 231 and calculates the number of data carriers (division unit) N using the following equation. The number of data carriers in OFDM frame calculation unit 352 supplies the calculated N to the next frame FEC block pointer calculation unit 353.
  • N N total ⁇ N pilot ⁇ N tmcc ⁇ N AC
  • N pilot is the number of pilot carriers
  • N tmcc is the number of TMCC carriers
  • N AC is the number of AC carriers.
  • the next frame FEC block pointer calculation unit 353 calculates the FEC block pointer p_n of the next OFDM frame from the FEC block pointer p_c of the current OFDM frame, the size m of the FEC block, and the number N of data carriers.
  • the next frame FEC block pointer calculation unit 353 acquires the FEC block pointer p_c of the current OFDM frame from the TMCC of the previous OFDM frame, and calculates the next FEC block pointer p_n by the following equation, for example. Then, the next frame FEC block pointer calculation unit 353 supplies the calculated p_n to the error correction coding circuit 350.
  • p_n ⁇ m ⁇ (m ⁇ p_c + N)% m ⁇ % m Equation 3
  • “%” is an operator that obtains a remainder obtained by dividing the immediately preceding variable by the immediately following variable.
  • FIG. 8 is a diagram for explaining a transmission control signal processing method according to the first embodiment of the present technology.
  • a in the figure is an example of the TMCC carrier before the update
  • b in the figure is an example of the TMCC after the update.
  • C in the figure is an example of a differential cyclic code obtained by encoding the updated TMCC.
  • the transmission control signal processing unit 300 differentially demodulates the TMCC carrier illustrated as a in FIG. 6 and further decodes the differential cyclic code to extract the TMCC.
  • the TMCC stores the FEC block pointer p_c in addition to the number of segments, the modulation order, and the code length.
  • the FEC block pointer p_c is stored in, for example, a reserved area in TMCC.
  • the maximum code length is assumed in DVB-Digital Video Broadcasting-Terrestrial (ATB) 2 and ATSC (Advanced Television Systems Committee standards) 3.0 which are overseas terrestrial broadcasting standards.
  • the transmission control signal processing unit 300 calculates the next FEC block pointer p_n from the current FEC block pointer p_c using Expressions 1 to 3, and updates the reserved area with the value. As a result, a TMCC is newly generated as illustrated in FIG.
  • the transmission control signal processing unit 300 encodes a new TMCC and generates a difference set cyclic code as illustrated in c in FIG.
  • TMCC is error-correction-coded with a difference set cyclic code having a code length of 184 bits and an information length of 102 bits.
  • the 82-bit parity of the difference between the code length and the information length changes for each OFDM frame. Thereby, about 50% of the bits are changed for each OFDM frame together with the changing information bits.
  • the transmission of the FEC block pointer is not stipulated.
  • a method of storing the FEC block pointer in the TMCC and transmitting it can be considered.
  • about 50% of the bits of the TMCC change for each OFDM frame due to the change of the FEC block pointer.
  • the estimation accuracy of the used transmission path estimation is reduced.
  • noise resistance may be reduced as compared with the current ISDB-T standard.
  • the receiving apparatus 200 calculates the FEC block pointer p_n of the next OFDM frame from the size m of the FEC block and the number N of data carriers. For this reason, even if part of the TMCC changes for each OFDM frame due to the change of the FEC block pointer, the receiving apparatus 200 can predict the changed TMCC using the calculated p_n. Thereby, the estimation accuracy of the transmission path using TMCC can be improved, and noise tolerance can be improved.
  • the demodulated data decoding unit 240 acquires the FEC block pointer from the TMCC, and extracts and decodes the FEC block from the divided data using the pointer.
  • FIG. 9 is a flowchart illustrating an example of the operation of the transmission device 100 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for transmission is executed.
  • the transmitting apparatus 100 performs carrier modulation such as bit interleaving and QAM mapping on the codeword obtained by encoding the input data, and encodes the codeword into an FEC block (step S901).
  • the data carrier is generated by dividing (step S902).
  • transmitting apparatus 100 generates a TMCC carrier (step S903), and transmits an OFDM frame including a data carrier and a TMCC carrier (step S904).
  • step S904 the transmitting apparatus 100 repeats step S901 and subsequent steps.
  • FIG. 10 is a flowchart illustrating an example of the operation of the reception device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for reception is executed.
  • the receiving apparatus 200 receives the OFDM frame (step S951), and extracts a data carrier and a TMCC carrier by fast Fourier transform (step S952). Then, the receiving apparatus 200 performs transmission control signal processing for updating a part of the transmission control signal (step S960), and performs estimation and equalization of the transmission path (step S953). Subsequently, the receiving apparatus 200 executes a demodulated data decoding process for decoding the demodulated data (step S954), and repeatedly executes step S951 and subsequent steps.
  • FIG. 11 is a flowchart illustrating an example of transmission control signal processing according to the first embodiment of the present technology.
  • the transmission control signal processing unit 300 performs differential demodulation for each OFDM symbol (step S961).
  • the transmission control signal processing unit 300 buffers the 16-bit synchronization word (step S962), and checks whether or not the received synchronization word matches the specified synchronization word (step S963). If the synchronization words do not match (step S963: No), the transmission control signal processing unit 300 updates the buffer bit by bit and repeats step S963 and subsequent steps.
  • step S963 when the synchronization words match (step S963: Yes), the transmission control signal processing unit 300 buffers an error correction code (such as a difference set cyclic code) after the next bit of the synchronization word (step S964).
  • the code is decoded (step S965).
  • a difference set cyclic code is assigned to 184 OFDM symbols, and the decoding process is required to be completed within one OFDM symbol.
  • the transmission control signal processing unit 300 determines whether or not the decoding is successful (step S966). When decoding fails (step S966: No), the transmission control signal processing unit 300 repeats step S963 and subsequent steps.
  • step S966 when the decoding is successful (step S966: Yes), the transmission control signal processing unit 300 calculates the FEC block pointer of the next frame using Equations 1 to 3 (Step S967). Then, the transmission control signal processing unit 300 performs error correction coding on the TMCC partially updated with the calculated value (step S968), generates a TMCC sequence (step S969), and performs differential modulation (step S970). After step S970, the transmission control signal processing unit 300 ends the transmission control signal processing. Since the differentially modulated carrier is used as a predicted TMCC carrier for the next OFDM frame, steps S967 to S970 need to be completed before the first reception of the next OFDM frame.
  • the reception device 200 calculates the start position of the FEC block from the FEC block size m and the division unit N.
  • a TMCC that has partially changed can be predicted.
  • the accuracy of channel estimation using TMCC can be improved, and noise resistance can be improved.
  • the transmission control signal processing unit 300 performs hard decision decoding on the error correction code.
  • the hard decision decoding lacks error correction capability and realizes sufficient reception performance. There is a risk that it cannot be done.
  • the transmission control signal processing unit 300 in the modification of the first embodiment is different from the first embodiment in that soft decision decoding is performed.
  • FIG. 12 is a block diagram illustrating a configuration example of the transmission control signal processing unit 300 according to the modification of the first embodiment of the present technology.
  • the transmission control signal processing unit 300 according to the modification of the first embodiment is different from the first embodiment in that an error correction code decoding circuit 321 is provided instead of the error correction code decoding circuit 320.
  • the error correction code decoding circuit 321 performs soft decision decoding on an error correction code such as a difference set cyclic code.
  • an error correction code such as a difference set cyclic code.
  • a soft decision value decoding method a variable threshold value decoding method or a probability propagation method is known.
  • error correction code decoding the probability of “0” to “1” and the log-likelihood ratio are calculated and used from the phase information of a differentially modulated bit string, etc., and reception performance can be improved.
  • the error correction code decoding circuit 321 performs error determination code soft decision decoding, and thus has higher error correction capability than the case of hard decision decoding. As a result, the reception performance can be improved.
  • the transmission control signal processing unit 300 encodes the updated TMCC without dividing it, and generates one codeword of a differential cyclic code for each TMCC.
  • the FEC block pointer or the like is stored in the TMCC on the receiving device 200 side, there is a possibility that it will not fit within one codeword.
  • the transmission control signal processing unit 300 according to the second embodiment is different from the first embodiment in that TMCC is divided and a plurality of codewords are generated for each TMCC.
  • FIG. 13 is a block diagram illustrating a configuration example of the transmission control signal processing unit 300 according to the second embodiment of the present technology.
  • the transmission control signal processing unit 300 of the second embodiment is different from the first embodiment in that an error correction code decoding circuit 322 is further provided.
  • the transmission apparatus 100 divides the TMCC into two, generates two codewords of the differential cyclic code, and transmits an OFDM frame including them. For this reason, the differential demodulator 310 acquires two codewords of the difference set cyclic code for each TMCC carrier.
  • the error correction code decoding circuit 320 decodes one of the two code words, and the error correction code decoding circuit 322 decodes the other.
  • FIG. 14 is a diagram for describing a transmission control signal processing method according to the second embodiment of the present technology.
  • a in the figure is an example of the TMCC carrier before the update, and b in the figure is an example of the TMCC after the update.
  • C in the figure is an example of a differential cyclic code obtained by encoding the updated TMCC.
  • the TMCC carrier includes difference set cyclic codes # 1_1 and # 1_2 as illustrated in a in FIG.
  • the difference set cyclic code # 1_1 includes an information bit string # 1_1 and a parity # 1_1
  • the difference set cyclic code # 1_2 includes an information bit string # 1_2 and a parity # 1_2.
  • Each of the difference set cyclic codes # 1_1 and # 1_2 corresponds to one codeword.
  • Information bit sequence # 1_1 and information bit sequence # 1_2 are obtained by dividing one TMCC and include the number of segments, the modulation order, and the like.
  • the error correction code decoding circuit 320 decodes the difference set cyclic code # 1_1, and the error correction code decoding circuit 322 decodes the difference set cyclic code # 1_2.
  • the transmission control signal processing unit 300 calculates the next FEC block pointer p_n from the FEC block pointer p_c using Equations 1 to 3, and updates the reserved area with the value. As a result, a TMCC is newly generated as illustrated in FIG.
  • the transmission control signal processing unit 300 divides and encodes the TMCC into two, and generates two codewords of the difference cyclic code as illustrated in c in the figure.
  • the transmission control signal processing unit 300 divides the TMCC into two, it can be divided into three or more.
  • FIG. 15 is a flowchart illustrating an example of transmission control signal processing according to the second embodiment of the present technology.
  • the transmission control signal processing of the second embodiment is different from the first embodiment in that steps S971 to S973 are further executed.
  • step S963: Yes the transmission control signal processing unit 300 executes steps S964 to S966 for the first difference set cyclic code.
  • step S966: Yes the transmission control signal processing unit 300 buffers the second difference set cyclic code (step S971) and decodes the code (step S972). ).
  • step S973: No the transmission control signal processing unit 300 repeats step S963 and subsequent steps.
  • step S973: Yes the transmission control signal processing unit 300 executes step S967 and subsequent steps.
  • the transmission control signal processing unit 300 divides and encodes the updated TMCC, error correction is performed even if the TMCC data size increases. A decrease in ability can be suppressed.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium for storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • a receiving unit that receives divided data generated by dividing a sequence in which a predetermined number of FEC (Forward Error Correction) blocks each having a predetermined size are arranged in a division unit different from the size;
  • a receiving apparatus comprising: a processing unit that performs a process of calculating a start position of the FEC block in the divided data from the size and the division unit.
  • the reception unit further receives a transmission control signal including a code length and a modulation order of codewords constituting the FEC block, The receiving apparatus according to (1), wherein the processing unit obtains the size from the code length and the modulation order.
  • the frame includes the divided data
  • the receiving device according to any one of (1) to (3), wherein the processing unit acquires the division unit from the demodulation result.
  • the receiver further receives a differentially modulated transmission control signal carrier
  • the processor is A differential demodulator for differentially demodulating the transmission control signal carrier to obtain an error correction code;
  • An error correction code decoding unit for decoding the error correction code to obtain a transmission control signal;
  • a calculation unit that calculates the head position by obtaining the size from the transmission control signal and the division unit;
  • An error correction encoding unit that generates an error correction code by performing error correction encoding on the transmission control signal including the calculated head position;
  • a differential modulation unit that differentially modulates the new error correction code to generate a new transmission control signal carrier,
  • the receiving apparatus according to (4), wherein the transmission path estimation unit performs transmission path estimation based on the new transmission control signal carrier.
  • the receiving apparatus (6) The receiving apparatus according to (5), wherein the error correction code decoding unit performs soft decision decoding. (7) The receiving apparatus according to (5) or (6), wherein the error correction encoding unit divides the transmission control signal and performs error correction encoding. (8) From the above (5), further comprising a demodulated data decoding unit that performs orthogonal frequency division multiplexing demodulation on the frame, extracts the FEC block from the divided data in the demodulation result using the head position, and decodes the FEC block (7) The receiving apparatus in any one of.
  • a transmission apparatus that divides and transmits a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in a division unit different from the size;
  • a communication system comprising: a receiving unit that receives the divided data; and a processing unit that performs processing for calculating a head position of the FEC block in the divided data from the predetermined size and the division unit.
  • DESCRIPTION OF SYMBOLS 100 Transmission apparatus 101, 201 Antenna 200 Reception apparatus 210 Tuner 220 AD conversion part 230 Transmission path estimation part 231 FFT size estimation part 232 Fast Fourier transform part 233 Data carrier extraction circuit 234 Transmission control signal extraction circuit 235 Transmission path estimation circuit 236 Equalization Circuit 240 Demodulated data decoding unit 300 Transmission control signal processing unit 310 Differential demodulation unit 320, 321, 322 Error correction code decoding circuit 330 FEC block pointer calculation unit 340 Synchronization word confirmation circuit 350 Error correction encoding circuit 351 FEC block size calculation unit 352 Number of data carriers in OFDM frame calculation unit 353 Next frame FEC block pointer calculation unit 360 Differential modulation unit 370 TMCC sequence generation circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)

Abstract

The present invention improves transmission efficiency in a communication system that transmits forward error correction (FEC) blocks. A reception device is equipped with a reception unit and a processing unit. The reception unit of the reception device receives divided data generated by dividing a series, in which a prescribed number of FEC blocks each having a prescribed size are arranged, using a division unit that differs from the aforementioned size. Also, the processing unit of the reception device performs a process for calculating, from the size and the division unit, the start positions of the FEC blocks in the divided data received by the reception unit.

Description

受信装置、通信システムおよび受信方法Reception device, communication system, and reception method
 本技術は、受信装置、通信システムおよび受信方法に関する。詳しくは、地上波デジタルテレビジョン放送を受信する受信装置、通信システムおよび受信方法に関する。 The present technology relates to a receiving device, a communication system, and a receiving method. Specifically, the present invention relates to a receiving apparatus, a communication system, and a receiving method for receiving terrestrial digital television broadcasting.
 近年、ISDB-T(Integrated Services Digital Broadcasting - Terrestrial)方式の特徴を継承した次世代の地上波デジタルテレビジョン放送サービスを提供するための送信装置や受信装置の開発が進められている。このISDB-Tの次世代方式において、送信装置は、放送対象のコンテンツを前方向誤り訂正(FEC:Forward Error Correction)方式により複数の符号語に符号化する。そして、送信装置は、それらの符号語をキャリア変調して配列したFECブロックの系列をさらに一定の単位で複数の分割データに分割してフレーム単位で順に送信する。 In recent years, the development of transmitters and receivers for providing next-generation digital terrestrial television broadcasting services that inherit the features of the ISDB-T (Integrated Services Digital Broadcasting Terrestrial) system has been underway. In the ISDB-T next-generation scheme, the transmission apparatus encodes the content to be broadcast into a plurality of codewords using a forward error correction (FEC) scheme. Then, the transmitting apparatus further divides the FEC block sequence in which these codewords are carrier-modulated and arranged into a plurality of divided data in a certain unit, and sequentially transmits in units of frames.
 ここで、ISDB-Tの次世代方式では、伝送効率を向上させる観点から、FECブロックのサイズは、分割データのサイズの約数に限定しないことが提案されている。このため、分割データのサイズの約数に該当しないサイズのFECブロックを用いる場合に、フレーム内においてFECブロックの先頭が分割データの先頭と一致せずにずれてしまう。そこで、次のフレーム内の最初のFECブロックの先頭位置を示すポインタを、その伝送制御信号(TMCC:Transmission and Multiplexing Configuration and Control)に格納して送信する送信装置が提案されている(例えば、特許文献1参照。)。 Here, in the next generation system of ISDB-T, it is proposed that the size of the FEC block is not limited to a divisor of the size of the divided data from the viewpoint of improving the transmission efficiency. For this reason, when an FEC block having a size that does not correspond to a divisor of the size of the divided data is used, the head of the FEC block is shifted in the frame without matching the head of the divided data. In view of this, there has been proposed a transmission apparatus that stores a pointer indicating the head position of the first FEC block in the next frame in its transmission control signal (TMCC: Transmission and Multiplexing, Configuration, and Control) (for example, a patent) Reference 1).
特開2015-65627号公報Japanese Patent Laying-Open No. 2015-65627
 上述の従来技術では、受信装置は、TMCC内のポインタを参照することによりFECブロックの先頭位置を取得し、そのFECブロックをフレームから取り出して復号することができる。しかしながら、ポインタがフレームごとに変化するため、その変化に起因してTMCCの一部がフレームごとに変化してしまう。これにより、TMCCを用いて伝送路の推定を行う際に、推定の精度が低下し、雑音耐性が低下してしまうという問題がある。ここで、伝送路の推定とは、波形の歪みやフェージングを補償するため、位相や振幅などの伝送路の特性を推定することを意味する。 In the above-described conventional technology, the receiving apparatus can acquire the start position of the FEC block by referring to the pointer in the TMCC, and can extract the FEC block from the frame and decode it. However, since the pointer changes from frame to frame, a part of the TMCC changes from frame to frame due to the change. Thereby, when estimating a transmission line using TMCC, there exists a problem that the precision of estimation falls and noise tolerance falls. Here, the estimation of the transmission path means estimating the characteristics of the transmission path such as phase and amplitude in order to compensate for waveform distortion and fading.
 本技術はこのような状況に鑑みて生み出されたものであり、FECブロックを伝送する通信システムにおいて、雑音耐性を向上させることを目的とする。 This technology has been created in view of such a situation, and aims to improve noise resistance in a communication system that transmits FEC blocks.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、各々が所定のサイズの所定数のFECブロックを配列した系列を上記サイズと異なる分割単位で分割することにより生成された分割データを受信する受信部と、上記分割データ内の上記FECブロックの先頭位置を上記サイズおよび上記分割単位から算出する処理を行う処理部とを具備する受信装置、および、その受信方法である。これにより、受信装置内で分割データ内のFECブロックの先頭位置が算出されるという作用をもたらす。 The present technology has been made to solve the above-described problems. The first aspect of the present technology is to divide a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in a division unit different from the above size. A receiving device comprising: a receiving unit that receives the divided data generated by the processing; and a processing unit that performs a process of calculating the start position of the FEC block in the divided data from the size and the division unit; This is the receiving method. This brings about the effect that the start position of the FEC block in the divided data is calculated in the receiving apparatus.
 また、この第1の側面において、上記受信部は、上記FECブロックを構成する符号語の符号長および変調次数を含む伝送制御信号をさらに受信し、上記処理部は、上記符号長および上記変調次数から上記サイズを求めてもよい。これにより、伝送制御信号からFECブロックのサイズが取得されるという作用をもたらす。 In the first aspect, the receiving unit further receives a transmission control signal including a code length and a modulation order of codewords constituting the FEC block, and the processing unit receives the code length and the modulation order. You may obtain | require the said size from. This brings about the effect that the size of the FEC block is acquired from the transmission control signal.
 また、この第1の側面において、上記処理部は、上記分割データが受信されるたびに現在の上記先頭位置と上記サイズと上記分割単位とから次の上記先頭位置を推定してもよい。これにより、分割データを受信するたびに先頭位置が算出されるという作用をもたらす。 In this first aspect, the processing unit may estimate the next head position from the current head position, the size, and the division unit each time the divided data is received. As a result, the head position is calculated every time the divided data is received.
 また、この第1の側面において、直交周波数分割多重変調されたフレームを直交周波数分割多重復調して復調結果を生成するとともに上記復調結果を用いて伝送路を推定する伝送路推定部をさらに具備し、上記フレームは、上記分割データを含み、上記処理部は、上記復調結果から上記分割単位を取得してもよい。これにより、直交周波数分割多重化されたフレームの復調結果から分割単位が取得されるという作用をもたらす。 The first aspect further includes a transmission path estimation unit that generates a demodulation result by performing orthogonal frequency division multiplexing demodulation on the orthogonal frequency division multiplexing modulated frame and estimates the transmission path using the demodulation result. The frame may include the division data, and the processing unit may obtain the division unit from the demodulation result. As a result, the division unit is obtained from the demodulation result of the orthogonal frequency division multiplexed frame.
 また、この第1の側面において、上記受信部は、差動変調された伝送制御信号キャリアをさらに受信し、上記処理部は、上記伝送制御信号キャリアを差動復調して誤り訂正符号を取得する差動復調部と、上記誤り訂正符号を復号して伝送制御信号を取得する誤り訂正符号復号部と、上記伝送制御信号および上記分割単位から上記サイズを求めて上記先頭位置を算出する算出部と、上記算出された先頭位置を含む上記伝送制御信号を誤り訂正符号化して新たな誤り訂正符号を生成する誤り訂正符号化部と、上記新たな誤り訂正符号を差動変調して新たな伝送制御信号キャリアを生成する差動変調部とを備え、上記伝送路推定部は、上記新たな伝送制御信号キャリアに基づいて伝送路推定を行ってもよい。これにより、先頭位置を含む伝送制御信号の誤り訂正符号化および差動変調により生成された伝送制御信号キャリアに基づいて伝送路が推定されるという作用をもたらす。 In the first aspect, the receiving unit further receives a differentially modulated transmission control signal carrier, and the processing unit differentially demodulates the transmission control signal carrier to obtain an error correction code. A differential demodulation unit; an error correction code decoding unit that decodes the error correction code to obtain a transmission control signal; a calculation unit that calculates the head position by obtaining the size from the transmission control signal and the division unit; An error correction encoding unit that generates an error correction code by encoding the transmission control signal including the calculated head position, and a new transmission control by differentially modulating the new error correction code A differential modulation unit that generates a signal carrier, and the transmission path estimation unit may perform transmission path estimation based on the new transmission control signal carrier. This brings about the effect that the transmission path is estimated based on the transmission control signal carrier generated by error correction coding and differential modulation of the transmission control signal including the head position.
 また、この第1の側面において、上記誤り訂正符号復号部は、軟判定復号を行ってもよい。これにより、軟判定復号により伝送制御信号が得られるという作用をもたらす。 Also, in this first aspect, the error correction code decoding unit may perform soft decision decoding. As a result, the transmission control signal can be obtained by soft decision decoding.
 また、この第1の側面において、上記誤り訂正符号化部は、上記伝送制御信号を分割して誤り訂正符号化してもよい。これにより、伝送制御信号から複数の符号語が生成されるという作用をもたらす。 In this first aspect, the error correction encoding unit may divide the transmission control signal and perform error correction encoding. This brings about the effect that a plurality of codewords are generated from the transmission control signal.
 また、この第1の側面において、上記フレームを直交周波数分割多重復調し、当該復調結果内の上記分割データから上記先頭位置を用いて上記FECブロックを抽出して復号する復調データ復号部をさらに具備することもできる。これにより、FECブロックの誤りが訂正されるという作用をもたらす。 Further, according to the first aspect, there is further provided a demodulated data decoding unit that performs orthogonal frequency division multiplexing demodulation of the frame, extracts the FEC block from the divided data in the demodulation result, and decodes the FEC block. You can also This brings about the effect that the error of the FEC block is corrected.
 また、本技術の第2の側面は、各々が所定のサイズの所定数のFECブロックを配列した系列を上記サイズと異なる分割単位で分割して送信する送信装置と、上記分割データを受信する受信部と、上記分割データ内の上記FECブロックの先頭位置を上記所定サイズおよび上記分割単位から算出する処理を行う処理部とを備える受信装置とを具備する通信システムである。これにより、送信装置から分割データが送信され、受信装置内で分割データ内のFECブロックの先頭位置が算出されるという作用をもたらす。 In addition, according to a second aspect of the present technology, a transmission device that divides and transmits a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in a division unit different from the size, and reception that receives the division data. And a receiving device including a processing unit that performs processing for calculating the start position of the FEC block in the divided data from the predetermined size and the division unit. As a result, the division data is transmitted from the transmission device, and the leading position of the FEC block in the division data is calculated in the reception device.
 本技術によれば、FECブロックを伝送する通信システムにおいて、雑音耐性を向上させることができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, it is possible to achieve an excellent effect that noise resistance can be improved in a communication system that transmits FEC blocks. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施の形態における通信システムの一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a communications system in a 1st embodiment of this art. 本技術の第1の実施の形態におけるOFDM(Orthogonal Frequency Division Multiplexing)フレーム生成までの手順を説明するための図である。6 is a diagram for describing a procedure until generation of an OFDM (OrthogonalgonFrequency Division Multiplexing) frame according to the first embodiment of the present technology. FIG. 本技術の第1の実施の形態におけるTMCCキャリアのデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the TMCC carrier in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるOFDMフレームのデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the OFDM frame in 1st Embodiment of this technique. 本技術の第1の実施の形態における伝送路推定部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a channel estimation part in a 1st embodiment of this art. 本技術の第1の実施の形態における伝送制御信号処理部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a transmission control signal processing part in a 1st embodiment of this art. 本技術の第1の実施の形態におけるFECブロックポインタ算出部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a FEC block pointer calculation part in a 1st embodiment of this art. 本技術の第1の実施の形態における伝送制御信号の処理方法を説明するための図である。It is a figure for demonstrating the processing method of the transmission control signal in 1st Embodiment of this technique. 本技術の第1の実施の形態における送信装置の動作の一例を示すフローチャートである。7 is a flowchart illustrating an example of an operation of the transmission device according to the first embodiment of the present technology. 本技術の第1の実施の形態における受信装置の動作の一例を示すフローチャートである。7 is a flowchart illustrating an example of an operation of the reception device according to the first embodiment of the present technology. 本技術の第1の実施の形態における伝送制御信号処理の一例を示すフローチャートである。3 is a flowchart illustrating an example of transmission control signal processing according to the first embodiment of the present technology. 本技術の第1の実施の形態の変形例における伝送制御信号処理部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a transmission control signal processing part in a modification of a 1st embodiment of this art. 本技術の第2の実施の形態における伝送制御信号処理部の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a transmission control signal processing part in a 2nd embodiment of this art. 本技術の第2の実施の形態における伝送制御信号の処理方法を説明するための図である。It is a figure for demonstrating the processing method of the transmission control signal in 2nd Embodiment of this technique. 本技術の第2の実施の形態における伝送制御信号処理の一例を示すフローチャートである。12 is a flowchart illustrating an example of transmission control signal processing according to the second embodiment of the present technology.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(受信装置がFECブロックの先頭位置を算出する例)
 2.第2の実施の形態(受信装置がFECブロックの先頭位置を算出し、算出結果を含むデータを分割する例)
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (an example in which the receiving device calculates the start position of an FEC block)
2. Second embodiment (an example in which a receiving device calculates the start position of an FEC block and divides data including the calculation result)
 <1.第1の実施の形態>
 [通信システムの構成例]
 図1は、本技術の第1の実施の形態における通信システムの一構成例を示すブロック図である。この通信システムは、次世代地上波デジタルテレビジョン放送において用いられるISDB-T規格に準拠したOFDMフレームを送受信するものであり、送信装置100および受信装置200を備える。
<1. First Embodiment>
[Configuration example of communication system]
FIG. 1 is a block diagram illustrating a configuration example of a communication system according to the first embodiment of the present technology. This communication system transmits and receives OFDM frames conforming to the ISDB-T standard used in next-generation terrestrial digital television broadcasting, and includes a transmission device 100 and a reception device 200.
 送信装置100は、アンテナ101を備える。送信装置100は、直交周波数分割多重変調されたOFDMフレームを生成し、アンテナ101は、そのフレームを重畳した無線信号を生成して受信装置200に無線送信する。 The transmission device 100 includes an antenna 101. Transmitting apparatus 100 generates an OFDM frame subjected to orthogonal frequency division multiplexing modulation, and antenna 101 generates a radio signal on which the frame is superimposed, and wirelessly transmits it to receiving apparatus 200.
 受信装置200は、アンテナ201、チューナー210、AD(Analog to Digital)変換部220、伝送路推定部230、伝送制御信号処理部300および復調データ復号部240を備える。 The receiving apparatus 200 includes an antenna 201, a tuner 210, an AD (Analog-to-Digital) conversion unit 220, a transmission path estimation unit 230, a transmission control signal processing unit 300, and a demodulated data decoding unit 240.
 アンテナ201は、送信装置100からの無線信号を受信してアナログの受信信号を生成するものである。このアンテナ201は、受信信号をチューナー210に供給する。なお、アンテナ201は、特許請求の範囲に記載の受信部の一例である。 The antenna 201 receives a radio signal from the transmission device 100 and generates an analog reception signal. The antenna 201 supplies a received signal to the tuner 210. The antenna 201 is an example of a receiving unit described in the claims.
 チューナー210は、受信信号から所定のチャンネルの信号を選局し、AD変換部220に信号線219を介して出力するものである。 The tuner 210 selects a signal of a predetermined channel from the received signal and outputs it to the AD converter 220 via the signal line 219.
 AD変換部220は、チューナー210からのアナログの出力信号をデジタル信号に変換するものである。このデジタル信号は、OFDMフレームを含む。AD変換部220は、そのデジタル信号を伝送路推定部230に信号線229を介して供給する。 The AD converter 220 converts an analog output signal from the tuner 210 into a digital signal. This digital signal includes an OFDM frame. The AD conversion unit 220 supplies the digital signal to the transmission path estimation unit 230 via the signal line 229.
 伝送路推定部230は、デジタル信号内のOFDMフレームを復調し、復調結果を用いて伝送路を推定するものである。伝送路推定部230は、復調結果から伝送制御信号(TMCC)を含むTMCCキャリアを取得する。そして、伝送路推定部230は、そのTMCCキャリアを伝送制御信号処理部300に信号線309を介して供給する。また、伝送路推定部230は、伝送路の推定結果に基づいて、位相や振幅などを補償する等化処理を行い、処理後のデータを復調データとして復調データ復号部240に供給する。 The transmission path estimation unit 230 demodulates the OFDM frame in the digital signal and estimates the transmission path using the demodulation result. The transmission path estimation unit 230 acquires a TMCC carrier including a transmission control signal (TMCC) from the demodulation result. Then, the transmission path estimation unit 230 supplies the TMCC carrier to the transmission control signal processing unit 300 via the signal line 309. Also, the transmission path estimation unit 230 performs equalization processing that compensates for the phase and amplitude based on the transmission path estimation result, and supplies the processed data to the demodulated data decoding unit 240 as demodulated data.
 伝送制御信号処理部300は、伝送制御信号の一部を更新する処理を行うものである。更新内容の詳細については後述する。伝送制御信号処理部300は、更新後の伝送制御信号を伝送路推定部230に信号線309を介して供給する。なお、伝送制御信号処理部300は、特許請求の範囲に記載の処理部の一例である。 The transmission control signal processing unit 300 performs processing for updating a part of the transmission control signal. Details of the update contents will be described later. The transmission control signal processing unit 300 supplies the updated transmission control signal to the transmission path estimation unit 230 via the signal line 309. The transmission control signal processing unit 300 is an example of a processing unit described in the claims.
 復調データ復号部240は、復調データを復号するものである。この復調データ復号部240は、復号結果を復号データとして出力する。 The demodulated data decoder 240 decodes demodulated data. The demodulated data decoding unit 240 outputs the decoding result as decoded data.
 図2は、本技術の第1の実施の形態におけるOFDMフレーム生成までの手順を説明するための図である。同図におけるaは、入力データ系列の一例を示し、同図におけるbは、符号化後の系列の一例を示す。同図におけるcは、インタリーブ後の系列の一例を示す。同図におけるdは、FECブロックの一例を示す。また、同図におけるeは、OFDMフレームの系列を示す。 FIG. 2 is a diagram for describing a procedure until generation of an OFDM frame according to the first embodiment of the present technology. In the figure, a indicates an example of the input data series, and b in the figure indicates an example of the encoded series. C in the figure shows an example of a sequence after interleaving. D in the figure shows an example of the FEC block. Further, e in the figure indicates a sequence of OFDM frames.
 放送対象のコンテンツなどが入力されると、送信装置100は、同図におけるaに例示するように、そのコンテンツを入力データ#1、#2および#3などの一定サイズの複数の入力データに分割する。 When content to be broadcast is input, the transmitting apparatus 100 divides the content into a plurality of input data of a certain size such as input data # 1, # 2, and # 3 as illustrated in a in FIG. To do.
 そして、送信装置100は、入力データのそれぞれに対して前方向誤り訂正(FEC:Forward Error Correction)符号化を行う。例えば、前方向誤り訂正符号化において、BCH符号化とLDPC(Low-Density Parity-Check)符号化とが順に行われる。これらの符号化により、同図におけるbに例示するように、データと、そのデータの誤りを訂正するためのパリティとからなる符号語の系列が生成される。続いて送信装置100は、インタリーブを行い、同図におけるcに例示する再配置後のビット列を生成する。そして、送信装置100は、キャリア変調を行い、同図におけるdに例示するように、FECブロック#1、#2および#3などの複数のFECブロックを生成する。このFECブロックは、符号語をキャリア変調した系列である。個々のFECブロックのサイズは一定であり、そのサイズをm(mは、整数)とする。 Then, the transmission apparatus 100 performs forward error correction (FEC: Forward Error Correction) coding on each of the input data. For example, in forward error correction coding, BCH coding and LDPC (Low-Density Parity-Check) coding are sequentially performed. With these encodings, a codeword sequence including data and parity for correcting an error in the data is generated as illustrated in FIG. Subsequently, the transmitting apparatus 100 performs interleaving, and generates a bit string after rearrangement illustrated as c in FIG. Then, the transmission apparatus 100 performs carrier modulation, and generates a plurality of FEC blocks such as FEC blocks # 1, # 2, and # 3 as illustrated by d in FIG. This FEC block is a sequence obtained by carrier-modulating a code word. The size of each FEC block is constant, and the size is m (m is an integer).
 送信装置100は、複数のFECブロックを配列したFECブロック系列を所定の分割単位により分割して複数の分割データを生成する。この分割単位をN(Nは整数)とする。 The transmission apparatus 100 generates a plurality of divided data by dividing a FEC block sequence in which a plurality of FEC blocks are arranged by a predetermined division unit. This division unit is N (N is an integer).
 そして、送信装置100は、分割データのそれぞれからOFDMフレームを生成する。これにより、同図におけるeに例示するように、OFDMフレーム#1および#2などのOFDMフレームが生成される。OFDMフレームのそれぞれには、1つの分割データが格納される。例えば、OFDMフレーム#1には、分割データ#1を含むデータキャリアやTMCCが格納され、OFDMフレーム#2には、分割データ#2を含むデータキャリアやTMCCが格納される。 Then, the transmission device 100 generates an OFDM frame from each of the divided data. As a result, OFDM frames such as OFDM frames # 1 and # 2 are generated as illustrated in e in FIG. One division data is stored in each OFDM frame. For example, a data carrier and TMCC including divided data # 1 are stored in OFDM frame # 1, and a data carrier and TMCC including divided data # 2 are stored in OFDM frame # 2.
 ここで、ISDB-Tの次世代規格では、伝送効率を向上させる観点から、FECブロックのサイズmは、分割単位Nの約数に限定しないことが提案されている。このため、サイズmが分割単位Nの約数に該当しない場合には、2つ目以降のOFDMフレームの先頭が、そのOFDMフレーム内の最初のFECブロックの先頭と一致せずにずれてしまう。このため、受信装置200は、そのずれ(言い換えれば、オフセット)を取得しないと、OFDMフレームからFECブロックを取り出すことができない。このオフセットは、OFDMフレーム内の最初のFECブロックの先頭位置を示し、そのオフセットを示す情報を以下、「FECブロックポインタ」と称する。送信装置100は、OFDMフレームのそれぞれのTMCC内に、次のOFDMフレームのFECブロックポインタを格納する。例えば、OFDMフレーム#1内のTMCCには、次のOFDMフレーム#2のFECブロックポインタが格納される。 Here, in the next generation standard of ISDB-T, it is proposed that the size m of the FEC block is not limited to a divisor of the division unit N from the viewpoint of improving transmission efficiency. For this reason, when the size m does not correspond to the divisor of the division unit N, the heads of the second and subsequent OFDM frames are shifted without matching the head of the first FEC block in the OFDM frame. For this reason, the receiving apparatus 200 cannot extract the FEC block from the OFDM frame without acquiring the shift (in other words, the offset). This offset indicates the head position of the first FEC block in the OFDM frame, and information indicating the offset is hereinafter referred to as “FEC block pointer”. The transmitting apparatus 100 stores the FEC block pointer of the next OFDM frame in each TMCC of the OFDM frame. For example, the FCC block pointer of the next OFDM frame # 2 is stored in the TMCC in the OFDM frame # 1.
 図3は、本技術の第1の実施の形態におけるTMCCキャリアのデータ構造の一例を示す図である。 FIG. 3 is a diagram illustrating an example of a data structure of a TMCC carrier in the first embodiment of the present technology.
 送信装置100は、セグメント数、変調次数、符号長やリザーブ領域を含むTMCCを差集合巡回符号化し、さらに差動変調してTMCCキャリアを生成する。 The transmitting apparatus 100 performs differential-set cyclic coding on TMCC including the number of segments, modulation order, code length, and reserved area, and further differentially modulates to generate a TMCC carrier.
 ここで、変調次数は、FECブロックの1つのシンボルにマッピングしたビット数を表す。また、符号長は、FECブロックを構成する符号語の符号長を示す。 Here, the modulation order represents the number of bits mapped to one symbol of the FEC block. The code length indicates the code length of the code word that constitutes the FEC block.
 図4は、本技術の第1の実施の形態におけるOFDMフレームのデータ構造の一例を示す図である。同図における縦軸は、時間軸であり、横軸は周波数軸である。同図はARIB規格のSTD-B31「地上デジタルテレビジョン放送伝送方式」に記載されたものである。同図の例は、変調方式としてQAM変調を採用した場合の例である。同図に示すように、1つのOFDMフレーム中の1キャリアがTMCCの伝送に用いられている。また、所定の位置にSP(Scattered Pilot)シンボルが挿入されている。また、OFDMフレームには、データキャリアが格納される。受信装置200は、そのSPの位置を参照して伝送路の推定を行うことができる。ただし、FECブロックのサイズmが分割単位Nの約数でない場合には、FECブロックポインタは、OFDMフレームごとに変化する。また、その誤りを訂正するためのパリティもOFDMフレームごとに変化する。 FIG. 4 is a diagram illustrating an example of the data structure of the OFDM frame according to the first embodiment of the present technology. The vertical axis in the figure is the time axis, and the horizontal axis is the frequency axis. This figure is described in STIB-B31 “terrestrial digital television broadcast transmission system” of the ARIB standard. The example in the figure is an example when QAM modulation is adopted as a modulation method. As shown in the figure, one carrier in one OFDM frame is used for TMCC transmission. An SP (Scattered Pilot) symbol is inserted at a predetermined position. A data carrier is stored in the OFDM frame. The receiving apparatus 200 can estimate the transmission path with reference to the position of the SP. However, when the size m of the FEC block is not a divisor of the division unit N, the FEC block pointer changes for each OFDM frame. Further, the parity for correcting the error also changes for each OFDM frame.
 [伝送路推定部の構成例]
 図5は、本技術の第1の実施の形態における伝送路推定部230の一構成例を示すブロック図である。この伝送路推定部230は、FFT(Fast Fourier Transform)サイズ推定部231、高速フーリエ変換部232、データキャリア抽出回路233、伝送制御信号抽出回路234、伝送路推定回路235および等化回路236を備える。
[Configuration example of transmission path estimation unit]
FIG. 5 is a block diagram illustrating a configuration example of the transmission path estimation unit 230 according to the first embodiment of the present technology. The transmission channel estimation unit 230 includes an FFT (Fast Fourier Transform) size estimation unit 231, a fast Fourier transform unit 232, a data carrier extraction circuit 233, a transmission control signal extraction circuit 234, a transmission channel estimation circuit 235, and an equalization circuit 236. .
 FFTサイズ推定部231は、AD変換部220からのデジタル信号に対して直交検波を行ってFFTサイズを推定するものである。このFFTサイズ推定部231は、FFTサイズを高速フーリエ変換部232および伝送制御信号処理部300に供給する。 The FFT size estimation unit 231 estimates the FFT size by performing quadrature detection on the digital signal from the AD conversion unit 220. The FFT size estimation unit 231 supplies the FFT size to the fast Fourier transform unit 232 and the transmission control signal processing unit 300.
 高速フーリエ変換部232は、デジタル信号内のOFDMフレームからガードインターバルを除去し、高速フーリエ変換を行うものである。この高速フーリエ変換により、時間領域のOFDMフレームが、周波数領域のOFDMシンボルに変換される。 The fast Fourier transform unit 232 removes the guard interval from the OFDM frame in the digital signal and performs fast Fourier transform. By this fast Fourier transform, a time-domain OFDM frame is converted into a frequency-domain OFDM symbol.
 FFTサイズ推定部231および高速フーリエ変換部232により、OFDMフレームがOFDM復調される。高速フーリエ変換部232は、復調結果をデータキャリア抽出回路233および伝送制御信号抽出回路234に供給する。 The OFDM frame is OFDM demodulated by the FFT size estimation unit 231 and the fast Fourier transform unit 232. The fast Fourier transform unit 232 supplies the demodulation result to the data carrier extraction circuit 233 and the transmission control signal extraction circuit 234.
 データキャリア抽出回路233は、高速フーリエ変換部232による復調結果からデータキャリアを抽出して等化回路236に供給するものである。このデータキャリアは、データフレームなどを含む。 The data carrier extraction circuit 233 extracts a data carrier from the demodulation result by the fast Fourier transform unit 232 and supplies the data carrier to the equalization circuit 236. This data carrier includes a data frame and the like.
 伝送制御信号抽出回路234は、高速フーリエ変換部232による復調結果からTMCCキャリアを抽出するものである。この伝送制御信号抽出回路234は、抽出したTMCCキャリアを受信TMCCキャリアとして伝送制御信号処理部300および伝送路推定回路235に供給する。 The transmission control signal extraction circuit 234 extracts the TMCC carrier from the demodulation result by the fast Fourier transform unit 232. The transmission control signal extraction circuit 234 supplies the extracted TMCC carrier to the transmission control signal processing unit 300 and the transmission path estimation circuit 235 as a reception TMCC carrier.
 伝送路推定回路235は、差動変調された予測TMCCキャリアを期待値として、受信TMCCキャリアとの位相および振幅を比較することにより、位相回転量や雑音電力を推定するものである。この伝送路推定回路235は、推定結果を等化回路236に供給する。 The transmission path estimation circuit 235 estimates the amount of phase rotation and noise power by comparing the phase and amplitude with the received TMCC carrier using the differentially modulated predicted TMCC carrier as an expected value. The transmission path estimation circuit 235 supplies the estimation result to the equalization circuit 236.
 等化回路236は、伝送路推定回路235からの推定結果に基づいて、データキャリアについて等化を行うものである。この等化回路236は、等化後のデータを復調データとして復調データ復号部240に供給する。 The equalization circuit 236 equalizes the data carrier based on the estimation result from the transmission path estimation circuit 235. The equalization circuit 236 supplies the equalized data to the demodulated data decoding unit 240 as demodulated data.
 [伝送制御信号処理部の構成例]
 図6は、本技術の第1の実施の形態における伝送制御信号処理部300の一構成例を示すブロック図である。この伝送制御信号処理部300は、差動復調部310、誤り訂正符号復号回路320、FECブロックポインタ算出部330、同期ワード確認回路340、誤り訂正符号化回路350、差動変調部360およびTMCC系列生成回路370を備える。
[Configuration example of transmission control signal processor]
FIG. 6 is a block diagram illustrating a configuration example of the transmission control signal processing unit 300 according to the first embodiment of the present technology. The transmission control signal processing unit 300 includes a differential demodulation unit 310, an error correction code decoding circuit 320, an FEC block pointer calculation unit 330, a synchronization word confirmation circuit 340, an error correction coding circuit 350, a differential modulation unit 360, and a TMCC sequence. A generation circuit 370 is provided.
 差動復調部310は、伝送路推定部230からの受信TMCCキャリアについて差動復調するものである。ISDB-T規格では差動BPSK(Binary Phase-Shift Keying)変調が行われているため、その変調方式に対応する復調が行われる。差動復調部310は、前のOFDMシンボルから抽出したTMCCキャリアと受信TMCCキャリアとの位相差から「1」および「0」のいずれであるかを判定(すなわち、硬判定)する。1つのOFDMシンボルあたりに復調するビット数は伝送仕様に依存する。差動復調部310は、復調結果を同期ワード確認回路340および誤り訂正符号復号回路320に供給する。 The differential demodulator 310 performs differential demodulation on the received TMCC carrier from the transmission path estimator 230. In the ISDB-T standard, differential BPSK (Binary Phase-Shift Keying) modulation is performed, so that demodulation corresponding to the modulation method is performed. Differential demodulation section 310 determines whether it is “1” or “0” from the phase difference between the TMCC carrier extracted from the previous OFDM symbol and the received TMCC carrier (that is, hard decision). The number of bits demodulated per OFDM symbol depends on the transmission specification. The differential demodulation unit 310 supplies the demodulation result to the synchronization word confirmation circuit 340 and the error correction code decoding circuit 320.
 誤り訂正符号復号回路320は、差集合巡回符号などの誤り訂正符号を復号してTMCCを取得するものである。例えば、ISDB-T規格では、差集合巡回符号によりデータが誤り訂正符号化されており、差集合巡回符号は、同期ワードの最終キャリアの次から順に配置されている。誤り訂正符号復号回路320は、差動復調された系列に対して、差集合巡回符号の復号を行う。復号アルゴリズムは可変閾値復号法など、どのようなアルゴリズムでも良い。なお、この第1の実施の形態では、差動復調後の系列をビット系列としているが、軟判定可変閾値復号法や確率伝搬法(Belief Propagation)などの軟判定復号を行う場合には、軟判定値で差動復調結果を受け取ることができる。また、差集合巡回符号の符号長や情報長はISDB-T規格で提案されているものに限定されない。さらに、誤り訂正符号は、差集合巡回符号に限定されない。誤り訂正符号復号回路320は、取得したTMCCをFECブロックポインタ算出部330および誤り訂正符号化回路350に供給する。 The error correction code decoding circuit 320 decodes an error correction code such as a difference set cyclic code to obtain a TMCC. For example, in the ISDB-T standard, data is error correction encoded by a differential set cyclic code, and the differential set cyclic code is arranged in order from the last carrier of the synchronization word. The error correction code decoding circuit 320 decodes the difference set cyclic code for the differentially demodulated sequence. The decoding algorithm may be any algorithm such as a variable threshold decoding method. In the first embodiment, the differential demodulated sequence is a bit sequence. However, when performing soft decision decoding such as the soft decision variable threshold decoding method or the probability propagation method (Belief Propagation), The differential demodulation result can be received with the judgment value. Further, the code length and information length of the difference set cyclic code are not limited to those proposed in the ISDB-T standard. Further, the error correction code is not limited to the difference set cyclic code. The error correction code decoding circuit 320 supplies the acquired TMCC to the FEC block pointer calculation unit 330 and the error correction coding circuit 350.
 FECブロックポインタ算出部330は、伝送路推定部230からのFFTサイズと、TMCCとからFECブロックポインタを算出するものである。このFECブロックポインタ算出部330は、算出したFECブロックポインタを誤り訂正符号化回路350に供給する。 The FEC block pointer calculation unit 330 calculates the FEC block pointer from the FFT size from the transmission path estimation unit 230 and the TMCC. The FEC block pointer calculation unit 330 supplies the calculated FEC block pointer to the error correction coding circuit 350.
 誤り訂正符号化回路350は、FECブロックポインタ算出部330からのFECブロックポインタにより前のOFDMフレーム内のTMCCの一部を更新して更新後の新たなTMCCを誤り訂正符号化するものである。例えば、差集合巡回符号化が行われる。この誤り訂正符号化回路350は、差集合巡回符号などの誤り訂正符号をTMCC系列生成回路370に供給する。 The error correction encoding circuit 350 updates a part of the TMCC in the previous OFDM frame with the FEC block pointer from the FEC block pointer calculation unit 330 and performs error correction encoding on the updated new TMCC. For example, difference set cyclic coding is performed. The error correction coding circuit 350 supplies an error correction code such as a difference set cyclic code to the TMCC sequence generation circuit 370.
 同期ワード確認回路340は、差動復調部310の復調結果において同期ワードの一致を確認してフレーム同期をとるものである。ISDB-T規格ではフレーム先頭にTMCCキャリアの差動変調による基準ビットが配置され、以降の16キャリアに同期ワードが配置される。この同期ワードは仕様で規定された受信装置200にとって既知の16ビットの系列である。同期ワード確認回路340は、復調結果において基準ビットの次の16ビットが規定された同期ワードであるかについて確認を行う。伝送路の雑音により間違って受信する場合もあるため、16ビットの全てが一致するか否かの確認に限定されず、一致するビット数が閾値を超えるか否かの確認であっても良い。ISDB-T規格の伝送仕様を例としたが、同期ワードのキャリア数やビット系列はこれに限定されない。同期ワード確認回路340は、確認結果をTMCC系列生成回路370に供給する。 The synchronization word confirmation circuit 340 confirms the coincidence of the synchronization words in the demodulation result of the differential demodulator 310 and takes frame synchronization. In the ISDB-T standard, a reference bit by differential modulation of the TMCC carrier is arranged at the head of the frame, and a synchronization word is arranged in the subsequent 16 carriers. This synchronization word is a 16-bit sequence known to the receiving apparatus 200 defined by the specification. The synchronization word confirmation circuit 340 confirms whether or not the next 16 bits of the reference bits are the defined synchronization word in the demodulation result. Since there is a case of erroneous reception due to noise in the transmission path, it is not limited to checking whether or not all 16 bits match, and may be checking whether or not the number of matching bits exceeds a threshold value. Although the transmission specification of the ISDB-T standard is taken as an example, the number of carriers and the bit sequence of the synchronization word are not limited thereto. The synchronization word confirmation circuit 340 supplies the confirmation result to the TMCC sequence generation circuit 370.
 TMCC系列生成回路370は、同期ワードと誤り訂正符号とを用いて次フレームの予測TMCC系列を生成するものである。ISDB-T規格で、OFDMフレームに配置されるTMCC系列において、差動変調の基準ビット、同期ワードおよび差集合巡回符号の順にデータが配置される。基準ビットはキャリア番号に依存して決定され、同期ワードはOFDMフレームごとに反転される。同期ワードが一致した場合にTMCC系列生成回路370は、伝送仕様に基づいて基準ビットおよび同期ワードを生成し、それらを差集合巡回符号に付加したビット系列をTMCC系列として差動変調部360に供給する。 The TMCC sequence generation circuit 370 generates a predicted TMCC sequence for the next frame using a synchronization word and an error correction code. In the TMCC sequence arranged in an OFDM frame according to the ISDB-T standard, data is arranged in the order of a differential modulation reference bit, a synchronization word, and a difference set cyclic code. The reference bit is determined depending on the carrier number, and the synchronization word is inverted every OFDM frame. When the synchronization words match, the TMCC sequence generation circuit 370 generates a reference bit and a synchronization word based on the transmission specifications, and supplies the bit sequence obtained by adding them to the differential cyclic code as a TMCC sequence to the differential modulation unit 360 To do.
 差動変調部360は、TMCC系列を伝送仕様に基づいて差動変調するものである。差動変調部360は、変調後のシンボルを、次のOFDMフレームで期待される予測TMCCキャリアとして伝送路推定部230に供給する。 The differential modulation unit 360 performs differential modulation on the TMCC sequence based on the transmission specifications. The differential modulation unit 360 supplies the modulated symbol to the transmission path estimation unit 230 as a predicted TMCC carrier expected in the next OFDM frame.
 [FECブロックポインタ算出部の構成例]
 図7は、本技術の第1の実施の形態におけるFECブロックポインタ算出部330の一構成例を示すブロック図である。このFECブロックポインタ算出部330は、FECブロックサイズ算出部351、OFDMフレーム内データキャリア数算出部352および次フレームFECブロックポインタ算出部353を備える。
[Configuration Example of FEC Block Pointer Calculation Unit]
FIG. 7 is a block diagram illustrating a configuration example of the FEC block pointer calculation unit 330 according to the first embodiment of the present technology. The FEC block pointer calculation unit 330 includes an FEC block size calculation unit 351, an OFDM frame data carrier number calculation unit 352, and a next frame FEC block pointer calculation unit 353.
 FECブロックサイズ算出部351は、FECブロックのサイズmを算出するものである。このFECブロックサイズ算出部351は、誤り訂正符号復号回路320からTMCCを受け取り、そのTMCCに記載された、FECブロックの符号長Cおよび変調次数μを参照する。そして、FECブロックサイズ算出部351は、次の式によりFECブロックのサイズmを算出して次フレームFECブロックポインタ算出部353に供給する。
  m=C/μ                    ・・・式1
The FEC block size calculation unit 351 calculates the size m of the FEC block. The FEC block size calculation unit 351 receives TMCC from the error correction code decoding circuit 320, and refers to the code length C and the modulation order μ of the FEC block described in the TMCC. Then, the FEC block size calculation unit 351 calculates the size m of the FEC block by the following formula and supplies the FEC block size calculation unit 351 to the next frame FEC block pointer calculation unit 353.
m = C / μ Equation 1
 OFDMフレーム内データキャリア数算出部352は、分割単位Nに該当するデータキャリア数を算出するものである。このOFDMフレーム内データキャリア数算出部352は、FFTサイズ推定部231により推定されたFFTサイズから全キャリア数Ntotalを取得し、次の式によりデータキャリア数(分割単位)Nを算出する。OFDMフレーム内データキャリア数算出部352は、算出したNを次フレームFECブロックポインタ算出部353に供給する。
  N=Ntotal-Npilot-Ntmcc-NAC           ・・・式2
上式において、Npilotは、パイロットキャリア数であり、Ntmccは、TMCCキャリア数である。また、NACは、ACキャリア数である。これらの値は、伝送仕様に応じて決定される。
The intra-OFDM data carrier number calculation unit 352 calculates the number of data carriers corresponding to the division unit N. This intra-OFDM data carrier number calculation unit 352 obtains the total number of carriers N total from the FFT size estimated by the FFT size estimation unit 231 and calculates the number of data carriers (division unit) N using the following equation. The number of data carriers in OFDM frame calculation unit 352 supplies the calculated N to the next frame FEC block pointer calculation unit 353.
N = N total −N pilot −N tmcc −N AC
In the above equation, N pilot is the number of pilot carriers, and N tmcc is the number of TMCC carriers. N AC is the number of AC carriers. These values are determined according to transmission specifications.
 次フレームFECブロックポインタ算出部353は、現在のOFDMフレームのFECブロックポインタp_cとFECブロックのサイズmと、データキャリア数Nとから、次のOFDMフレームのFECブロックポインタp_nを算出するものである。次フレームFECブロックポインタ算出部353は、前のOFDMフレームのTMCCから現在のOFDMフレームのFECブロックポインタp_cを取得し、例えば、次の式により、次のFECブロックポインタp_nを算出する。そして次フレームFECブロックポインタ算出部353は、算出したp_nを誤り訂正符号化回路350に供給する。
  p_n={m-(m-p_c+N)%m}%m     ・・・式3
上式において「%」は、直前の変数を、その直後の変数により除算した余りを取得する演算子である。
The next frame FEC block pointer calculation unit 353 calculates the FEC block pointer p_n of the next OFDM frame from the FEC block pointer p_c of the current OFDM frame, the size m of the FEC block, and the number N of data carriers. The next frame FEC block pointer calculation unit 353 acquires the FEC block pointer p_c of the current OFDM frame from the TMCC of the previous OFDM frame, and calculates the next FEC block pointer p_n by the following equation, for example. Then, the next frame FEC block pointer calculation unit 353 supplies the calculated p_n to the error correction coding circuit 350.
p_n = {m− (m−p_c + N)% m}% m Equation 3
In the above expression, “%” is an operator that obtains a remainder obtained by dividing the immediately preceding variable by the immediately following variable.
 図8は、本技術の第1の実施の形態における伝送制御信号の処理方法を説明するための図である。同図におけるaは、更新前のTMCCキャリアの一例であり、同図におけるbは、更新後のTMCCの一例である。同図におけるcは、更新後のTMCCを符号化した差集合巡回符号の一例である。 FIG. 8 is a diagram for explaining a transmission control signal processing method according to the first embodiment of the present technology. A in the figure is an example of the TMCC carrier before the update, and b in the figure is an example of the TMCC after the update. C in the figure is an example of a differential cyclic code obtained by encoding the updated TMCC.
 伝送制御信号処理部300は、同図におけるaに例示したTMCCキャリアを差動復調し、さらに差集合巡回符号を復号してTMCCを取り出す。このTMCCには、セグメント数、変調次数や符号長の他、FECブロックポインタp_cが格納されている。FECブロックポインタp_cは、例えば、TMCC内のリザーブ領域に格納される。 The transmission control signal processing unit 300 differentially demodulates the TMCC carrier illustrated as a in FIG. 6 and further decodes the differential cyclic code to extract the TMCC. The TMCC stores the FEC block pointer p_c in addition to the number of segments, the modulation order, and the code length. The FEC block pointer p_c is stored in, for example, a reserved area in TMCC.
 オフセット(FECブロックポインタ)は、最大でFECブロックのサイズとなるため、例えば、符号長を64800(=C/μ=3240/2)ビットとすると、QPSK変調では、最大で15ビット(=log32400)がOFDMフレームごとに変化する。例えば、「"次世代地上放送システム地上波によるスーパーハイビジョン放送の実現に向けて"、[online]、NHK放送技術研究所、インターネット(URL:https://www.nhk.or.jp/strl/open2016/tenji/a8.html)」では、ペイロードの誤り訂正符号(FECブロック)としてLDPC(Low-Density Parity-check Code)符号を採用すると記載されている。ここでは、海外の地上波放送規格であるDVB-Digital Video Broadcasting - Terrestrial)2やATSC(Advanced Television Systems Committee standards)3.0での最大符号長を想定している。 Since the offset (FEC block pointer) is the size of the FEC block at the maximum, for example, when the code length is 64800 (= C / μ = 3240/2) bits, the maximum is 15 bits (= log 2 ) in QPSK modulation. 32400) changes for each OFDM frame. For example, “Toward Realization of Super Hi-Vision Broadcasting by Next Generation Terrestrial Broadcasting System” [online], NHK Broadcasting Technology Laboratory, Internet (URL: https://www.nhk.or.jp/strl/ open2016 / tenji / a8.html) describes that an LDPC (Low-Density Parity-check Code) code is adopted as an error correction code (FEC block) of the payload. Here, the maximum code length is assumed in DVB-Digital Video Broadcasting-Terrestrial (ATB) 2 and ATSC (Advanced Television Systems Committee standards) 3.0 which are overseas terrestrial broadcasting standards.
 そして、伝送制御信号処理部300は、式1乃至式3を用いて、現在のFECブロックポインタp_cから、次のFECブロックポインタp_nを算出し、その値によりリザーブ領域を更新する。これにより、同図におけるbに例示するように新たにTMCCが生成される。 Then, the transmission control signal processing unit 300 calculates the next FEC block pointer p_n from the current FEC block pointer p_c using Expressions 1 to 3, and updates the reserved area with the value. As a result, a TMCC is newly generated as illustrated in FIG.
 続いて伝送制御信号処理部300は、新たなTMCCを符号化し、同図におけるcに例示するように差集合巡回符号を生成する。 Subsequently, the transmission control signal processing unit 300 encodes a new TMCC and generates a difference set cyclic code as illustrated in c in FIG.
 例えば,ISDB―T規格では、TMCCは、符号長184ビット、情報長102ビットの差集合巡回符号で誤り訂正符号化される。この場合には、符号長および情報長の差分の82ビットのパリティがOFDMフレームごとに変化することになる。これにより、変化する情報ビットと合わせて50%程度のビットがOFDMフレームごとに変化する。 For example, in the ISDB-T standard, TMCC is error-correction-coded with a difference set cyclic code having a code length of 184 bits and an information length of 102 bits. In this case, the 82-bit parity of the difference between the code length and the information length changes for each OFDM frame. Thereby, about 50% of the bits are changed for each OFDM frame together with the changing information bits.
 ここで、ISDB-Tの次世代規格では、FECブロックポインタの伝送に関して規定されていない。前述したようにFECブロックポインタをTMCCに格納して送信する方法が考えられるが、この方法では、FECブロックポインタの変化によりTMCCの50%程度のビットがOFDMフレームごとに変化するため、そのTMCCを用いた伝送路推定の推定精度が低下してしまう。これにより、現行のISDB-T規格と比較して雑音耐性が低下するおそれがある。 Here, in the next generation standard of ISDB-T, the transmission of the FEC block pointer is not stipulated. As described above, a method of storing the FEC block pointer in the TMCC and transmitting it can be considered. However, in this method, about 50% of the bits of the TMCC change for each OFDM frame due to the change of the FEC block pointer. The estimation accuracy of the used transmission path estimation is reduced. As a result, noise resistance may be reduced as compared with the current ISDB-T standard.
 そこで、受信装置200は、FECブロックのサイズmやデータキャリア数Nから次のOFDMフレームのFECブロックポインタp_nを算出している。このため、FECブロックポインタの変化によりTMCCの一部がOFDMフレームごとに変化しても、受信装置200は、算出したp_nを用いて、その変化後のTMCCを予測することができる。これにより、TMCCを用いた伝送路の推定精度を向上させ、雑音耐性を向上させることができる。 Therefore, the receiving apparatus 200 calculates the FEC block pointer p_n of the next OFDM frame from the size m of the FEC block and the number N of data carriers. For this reason, even if part of the TMCC changes for each OFDM frame due to the change of the FEC block pointer, the receiving apparatus 200 can predict the changed TMCC using the calculated p_n. Thereby, the estimation accuracy of the transmission path using TMCC can be improved, and noise tolerance can be improved.
 そして、復調データ復号部240は、TMCCからFECブロックポインタを取得し、そのポインタを用いて分割データからFECブロックを取り出して復号する。 Then, the demodulated data decoding unit 240 acquires the FEC block pointer from the TMCC, and extracts and decodes the FEC block from the divided data using the pointer.
 [送信装置の動作例]
 図9は、本技術の第1の実施の形態における送信装置100の動作の一例を示すフローチャートである。この動作は、例えば、送信のための所定のアプリケーションが実行されたときに開始される。送信装置100は、入力データを符号化した符号語に対してビットインタリーブやQAMマッピング等のキャリア変調を行ってFECブロックに符号化し(ステップS901)、それらのブロックを配列した系列を分割単位Nで分割して、データキャリアを生成する(ステップS902)。そして、送信装置100は、TMCCキャリアを生成し(ステップS903)、データキャリアおよびTMCCキャリアを含むOFDMフレームを送信する(ステップS904)。ステップS904の後に送信装置100は、ステップS901以降を繰り返す。
[Operation example of transmitter]
FIG. 9 is a flowchart illustrating an example of the operation of the transmission device 100 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for transmission is executed. The transmitting apparatus 100 performs carrier modulation such as bit interleaving and QAM mapping on the codeword obtained by encoding the input data, and encodes the codeword into an FEC block (step S901). The data carrier is generated by dividing (step S902). Then, transmitting apparatus 100 generates a TMCC carrier (step S903), and transmits an OFDM frame including a data carrier and a TMCC carrier (step S904). After step S904, the transmitting apparatus 100 repeats step S901 and subsequent steps.
 [受信装置の動作例]
 図10は、本技術の第1の実施の形態における受信装置200の動作の一例を示すフローチャートである。この動作は、例えば、受信のための所定のアプリケーションが実行されたときに開始される。受信装置200は、OFDMフレームを受信し(ステップS951)、高速フーリエ変換によりデータキャリアやTMCCキャリアを抽出する(ステップS952)。そして、受信装置200は、伝送制御信号の一部を更新する伝送制御信号処理を実行し(ステップS960)、伝送路の推定および等化を行う(ステップS953)。続いて受信装置200は、復調データを復号する復調データ復号処理を実行し(ステップS954)、ステップS951以降を繰り返し実行する。
[Example of receiver operation]
FIG. 10 is a flowchart illustrating an example of the operation of the reception device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for reception is executed. The receiving apparatus 200 receives the OFDM frame (step S951), and extracts a data carrier and a TMCC carrier by fast Fourier transform (step S952). Then, the receiving apparatus 200 performs transmission control signal processing for updating a part of the transmission control signal (step S960), and performs estimation and equalization of the transmission path (step S953). Subsequently, the receiving apparatus 200 executes a demodulated data decoding process for decoding the demodulated data (step S954), and repeatedly executes step S951 and subsequent steps.
 図11は、本技術の第1の実施の形態における伝送制御信号処理の一例を示すフローチャートである。伝送制御信号処理部300は、OFDMシンボルごとに差動復調を行う(ステップS961)。伝送制御信号処理部300は、16ビットの同期ワードをバッファリングし(ステップS962)、受信した同期ワードが規定の同期ワードに一致するか否かを確認する(ステップS963)。同期ワードが一致しない場合(ステップS963:No)、伝送制御信号処理部300は、1ビットずつバッファを更新してステップS963以降を繰り返す。 FIG. 11 is a flowchart illustrating an example of transmission control signal processing according to the first embodiment of the present technology. The transmission control signal processing unit 300 performs differential demodulation for each OFDM symbol (step S961). The transmission control signal processing unit 300 buffers the 16-bit synchronization word (step S962), and checks whether or not the received synchronization word matches the specified synchronization word (step S963). If the synchronization words do not match (step S963: No), the transmission control signal processing unit 300 updates the buffer bit by bit and repeats step S963 and subsequent steps.
 一方、同期ワードが一致する場合に(ステップS963:Yes)、伝送制御信号処理部300は、同期ワードの次のビット以降の誤り訂正符号(差集合巡回符号など)をバッファリングし(ステップS964)、その符号を復号する(ステップS965)。ISDB-T規格では、184個のOFDMシンボルに差集合巡回符号が割り当てられ、復号処理は1OFDMシンボル内に完了することが求められる。伝送制御信号処理部300は、復号が成功したか否かを判断する(ステップS966)。復号に失敗した場合(ステップS966:No)に伝送制御信号処理部300は、ステップS963以降を繰り返す。 On the other hand, when the synchronization words match (step S963: Yes), the transmission control signal processing unit 300 buffers an error correction code (such as a difference set cyclic code) after the next bit of the synchronization word (step S964). The code is decoded (step S965). In the ISDB-T standard, a difference set cyclic code is assigned to 184 OFDM symbols, and the decoding process is required to be completed within one OFDM symbol. The transmission control signal processing unit 300 determines whether or not the decoding is successful (step S966). When decoding fails (step S966: No), the transmission control signal processing unit 300 repeats step S963 and subsequent steps.
 一方、復号に成功した場合(ステップS966:Yes)に伝送制御信号処理部300は、式1乃至式3を用いて、次のフレームのFECブロックポインタを算出する(ステップS967)。そして、伝送制御信号処理部300は、算出値により一部を更新したTMCCを誤り訂正符号化し(ステップS968)、TMCC系列を生成し(ステップS969)、差動変調を行う(ステップS970)。ステップS970の後に伝送制御信号処理部300は、伝送制御信号処理を終了する。差動変調したキャリアは次のOFDMフレームの予測TMCCキャリアとして用いられるため、ステップS967乃至S970は、次のOFDMフレームの先頭の受信までに完了させる必要がある。 On the other hand, when the decoding is successful (step S966: Yes), the transmission control signal processing unit 300 calculates the FEC block pointer of the next frame using Equations 1 to 3 (Step S967). Then, the transmission control signal processing unit 300 performs error correction coding on the TMCC partially updated with the calculated value (step S968), generates a TMCC sequence (step S969), and performs differential modulation (step S970). After step S970, the transmission control signal processing unit 300 ends the transmission control signal processing. Since the differentially modulated carrier is used as a predicted TMCC carrier for the next OFDM frame, steps S967 to S970 need to be completed before the first reception of the next OFDM frame.
 このように、本技術の第1の実施の形態によれば、受信装置200が、FECブロックのサイズmと分割単位Nとから、FECブロックの先頭位置を算出するため、先頭位置の変化に起因して一部が変化したTMCCを予測することができる。これにより、TMCCを用いた伝送路推定の精度を向上させ、雑音耐性をを向上させることができる。 As described above, according to the first embodiment of the present technology, the reception device 200 calculates the start position of the FEC block from the FEC block size m and the division unit N. Thus, a TMCC that has partially changed can be predicted. As a result, the accuracy of channel estimation using TMCC can be improved, and noise resistance can be improved.
 [変形例]
 上述の第1の実施の形態では、伝送制御信号処理部300は、誤り訂正符号に対して硬判定復号を行っていたが、硬判定復号では誤り訂正能力が不足し、十分な受信性能を実現することができないおそれがある。この第1の実施の形態の変形例における伝送制御信号処理部300は、軟判定復号を行う点において第1の実施の形態と異なる。
[Modification]
In the first embodiment described above, the transmission control signal processing unit 300 performs hard decision decoding on the error correction code. However, the hard decision decoding lacks error correction capability and realizes sufficient reception performance. There is a risk that it cannot be done. The transmission control signal processing unit 300 in the modification of the first embodiment is different from the first embodiment in that soft decision decoding is performed.
 図12は、本技術の第1の実施の形態の変形例における伝送制御信号処理部300の一構成例を示すブロック図である。この第1の実施の形態の変形例の伝送制御信号処理部300は、誤り訂正符号復号回路320の代わりに誤り訂正符号復号回路321を備える点において第1の実施の形態と異なる。 FIG. 12 is a block diagram illustrating a configuration example of the transmission control signal processing unit 300 according to the modification of the first embodiment of the present technology. The transmission control signal processing unit 300 according to the modification of the first embodiment is different from the first embodiment in that an error correction code decoding circuit 321 is provided instead of the error correction code decoding circuit 320.
 誤り訂正符号復号回路321は、差集合巡回符号などの誤り訂正符号を軟判定復号する。軟判定値復号の方法としては、可変閾値復号法や確率伝搬法などが知られている。誤り訂正符号復号において、差動変調されたビット列の位相情報等から「0」乃至「1」の確率や対数尤度比を算出して用いると受信性能を向上させることができる。 The error correction code decoding circuit 321 performs soft decision decoding on an error correction code such as a difference set cyclic code. As a soft decision value decoding method, a variable threshold value decoding method or a probability propagation method is known. In error correction code decoding, the probability of “0” to “1” and the log-likelihood ratio are calculated and used from the phase information of a differentially modulated bit string, etc., and reception performance can be improved.
 このように、本技術の第1の実施の形態の変形例によれば、誤り訂正符号復号回路321は、誤り訂正符号を軟判定復号するため、硬判定復号する場合よりも誤り訂正能力を高くして受信性能を向上させることができる。 As described above, according to the modification of the first embodiment of the present technology, the error correction code decoding circuit 321 performs error determination code soft decision decoding, and thus has higher error correction capability than the case of hard decision decoding. As a result, the reception performance can be improved.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、伝送制御信号処理部300は、更新後のTMCCを分割せずに符号化してTMCCごとに差集合巡回符号の符号語を1つ生成していた。しかし、受信装置200側で、FECブロックポインタなどをTMCCに格納すると1個の符号語内に収まらないおそれがある。この第2の実施の形態の伝送制御信号処理部300は、TMCCを分割して、TMCCごとに複数の符号語を生成する点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the transmission control signal processing unit 300 encodes the updated TMCC without dividing it, and generates one codeword of a differential cyclic code for each TMCC. However, if the FEC block pointer or the like is stored in the TMCC on the receiving device 200 side, there is a possibility that it will not fit within one codeword. The transmission control signal processing unit 300 according to the second embodiment is different from the first embodiment in that TMCC is divided and a plurality of codewords are generated for each TMCC.
 図13は、本技術の第2の実施の形態における伝送制御信号処理部300の一構成例を示すブロック図である。この第2の実施の形態の伝送制御信号処理部300は、誤り訂正符号復号回路322をさらに備える点において第1の実施の形態と異なる。 FIG. 13 is a block diagram illustrating a configuration example of the transmission control signal processing unit 300 according to the second embodiment of the present technology. The transmission control signal processing unit 300 of the second embodiment is different from the first embodiment in that an error correction code decoding circuit 322 is further provided.
 また、第2の実施の形態の送信装置100は、TMCCを2つに分割して差集合巡回符号の符号語を2つ生成し、それらを含むOFDMフレームを送信する。このため、差動復調部310は、TMCCキャリアごとに、差集合巡回符号の符号語を2つ取得する。誤り訂正符号復号回路320は、2つの符号語の一方を復号し、誤り訂正符号復号回路322は、他方を復号する。 Also, the transmission apparatus 100 according to the second embodiment divides the TMCC into two, generates two codewords of the differential cyclic code, and transmits an OFDM frame including them. For this reason, the differential demodulator 310 acquires two codewords of the difference set cyclic code for each TMCC carrier. The error correction code decoding circuit 320 decodes one of the two code words, and the error correction code decoding circuit 322 decodes the other.
 図14は、本技術の第2の実施の形態における伝送制御信号の処理方法を説明するための図である。同図におけるaは、更新前のTMCCキャリアの一例であり、同図におけるbは、更新後のTMCCの一例である。同図におけるcは、更新後のTMCCを符号化した差集合巡回符号の一例である。 FIG. 14 is a diagram for describing a transmission control signal processing method according to the second embodiment of the present technology. A in the figure is an example of the TMCC carrier before the update, and b in the figure is an example of the TMCC after the update. C in the figure is an example of a differential cyclic code obtained by encoding the updated TMCC.
 TMCCキャリアは、同図におけるaに例示するように差集合巡回符号#1_1および#1_2を含む。差集合巡回符号#1_1は、情報ビット列#1_1およびパリティ#1_1からなり、差集合巡回符号#1_2は、情報ビット列#1_2およびパリティ#1_2からなる。差集合巡回符号#1_1および#1_2のそれぞれは、1つの符号語に該当する。情報ビット列#1_1および情報ビット列#1_2は、1つのTMCCを分割したものであり、セグメント数や変調次数などを含む。誤り訂正符号復号回路320は、差集合巡回符号#1_1を復号し、誤り訂正符号復号回路322は、差集合巡回符号#1_2を復号する。 The TMCC carrier includes difference set cyclic codes # 1_1 and # 1_2 as illustrated in a in FIG. The difference set cyclic code # 1_1 includes an information bit string # 1_1 and a parity # 1_1, and the difference set cyclic code # 1_2 includes an information bit string # 1_2 and a parity # 1_2. Each of the difference set cyclic codes # 1_1 and # 1_2 corresponds to one codeword. Information bit sequence # 1_1 and information bit sequence # 1_2 are obtained by dividing one TMCC and include the number of segments, the modulation order, and the like. The error correction code decoding circuit 320 decodes the difference set cyclic code # 1_1, and the error correction code decoding circuit 322 decodes the difference set cyclic code # 1_2.
 伝送制御信号処理部300は、式1乃至式3を用いて、FECブロックポインタp_cから、次のFECブロックポインタp_nを算出し、その値によりリザーブ領域を更新する。これにより、同図におけるbに例示するように新たにTMCCが生成される。 The transmission control signal processing unit 300 calculates the next FEC block pointer p_n from the FEC block pointer p_c using Equations 1 to 3, and updates the reserved area with the value. As a result, a TMCC is newly generated as illustrated in FIG.
 続いて伝送制御信号処理部300は、TMCCを2つに分割して符号化し、同図におけるcに例示するように差集合巡回符号の符号語を2つ生成する。 Subsequently, the transmission control signal processing unit 300 divides and encodes the TMCC into two, and generates two codewords of the difference cyclic code as illustrated in c in the figure.
 なお、伝送制御信号処理部300は、TMCCを2つに分割しているが、3つ以上に分割することもできる。 In addition, although the transmission control signal processing unit 300 divides the TMCC into two, it can be divided into three or more.
 図15は、本技術の第2の実施の形態における伝送制御信号処理の一例を示すフローチャートである。第2の実施の形態の伝送制御信号処理は、ステップS971乃至S973をさらに実行する点において第1の実施の形態と異なる。 FIG. 15 is a flowchart illustrating an example of transmission control signal processing according to the second embodiment of the present technology. The transmission control signal processing of the second embodiment is different from the first embodiment in that steps S971 to S973 are further executed.
 同期ワードが一致する場合に(ステップS963:Yes)、伝送制御信号処理部300は、1個目の差集合巡回符号についてステップS964乃至S966を実行する。1個目について復号が成功した場合(ステップS966:Yes)に、伝送制御信号処理部300は、2個目の差集合巡回符号をバッファリングし(ステップS971)、その符号を復号する(ステップS972)。伝送制御信号処理部300は、復号が成功したか否かを判断する(ステップS973)。2個目について復号に失敗した場合(ステップS973:No)に伝送制御信号処理部300は、ステップS963以降を繰り返す。2個目について復号に成功した場合(ステップS973:Yes)に伝送制御信号処理部300は、ステップS967以降を実行する。 When the synchronization words match (step S963: Yes), the transmission control signal processing unit 300 executes steps S964 to S966 for the first difference set cyclic code. When decoding is successful for the first one (step S966: Yes), the transmission control signal processing unit 300 buffers the second difference set cyclic code (step S971) and decodes the code (step S972). ). The transmission control signal processing unit 300 determines whether or not the decoding is successful (step S973). When decoding fails for the second one (step S973: No), the transmission control signal processing unit 300 repeats step S963 and subsequent steps. When decoding is successful for the second (step S973: Yes), the transmission control signal processing unit 300 executes step S967 and subsequent steps.
 このように、本技術の第2の実施の形態によれば、伝送制御信号処理部300は、更新後のTMCCを分割して符号化するため、TMCCのデータサイズが大きくなっても、誤り訂正能力の低下を抑制することができる。 As described above, according to the second embodiment of the present technology, since the transmission control signal processing unit 300 divides and encodes the updated TMCC, error correction is performed even if the TMCC data size increases. A decrease in ability can be suppressed.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium for storing the program. You may catch it. As this recording medium, for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples, and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)各々が所定のサイズの所定数のFEC(Forward Error Correction)ブロックを配列した系列を前記サイズと異なる分割単位で分割することにより生成された分割データを受信する受信部と、
 前記分割データ内の前記FECブロックの先頭位置を前記サイズおよび前記分割単位から算出する処理を行う処理部と
を具備する受信装置。
(2)前記受信部は、前記FECブロックを構成する符号語の符号長および変調次数を含む伝送制御信号をさらに受信し、
 前記処理部は、前記符号長および前記変調次数から前記サイズを求める
前記(1)記載の受信装置。
(3)前記処理部は、前記分割データが受信されるたびに現在の前記先頭位置と前記サイズと前記分割単位とから次の前記先頭位置を算出する
前記(1)または(2)に記載の受信装置。
(4)直交周波数分割多重変調されたフレームを直交周波数分割多重復調して復調結果を生成するとともに前記復調結果を用いて伝送路を推定する伝送路推定部をさらに具備し、
 前記フレームは、前記分割データを含み、
 前記処理部は、前記復調結果から前記分割単位を取得する
前記(1)から(3)のいずれかに記載の受信装置。
(5)前記受信部は、差動変調された伝送制御信号キャリアをさらに受信し、
 前記処理部は、
 前記伝送制御信号キャリアを差動復調して誤り訂正符号を取得する差動復調部と、
 前記誤り訂正符号を復号して伝送制御信号を取得する誤り訂正符号復号部と、
 前記伝送制御信号および前記分割単位から前記サイズを求めて前記先頭位置を算出する算出部と、
 前記算出された先頭位置を含む前記伝送制御信号を誤り訂正符号化して新たな誤り訂正符号を生成する誤り訂正符号化部と、
 前記新たな誤り訂正符号を差動変調して新たな伝送制御信号キャリアを生成する差動変調部と
を備え、
 前記伝送路推定部は、前記新たな伝送制御信号キャリアに基づいて伝送路推定を行う
前記(4)記載の受信装置。
(6)前記誤り訂正符号復号部は、軟判定復号を行う
前記(5)記載の受信装置。
(7)前記誤り訂正符号化部は、前記伝送制御信号を分割して誤り訂正符号化する
前記(5)または(6)に記載の受信装置。
(8)前記フレームを直交周波数分割多重復調し、当該復調結果内の前記分割データから前記先頭位置を用いて前記FECブロックを抽出して復号する復調データ復号部をさらに具備する前記(5)から(7)のいずれかに記載の受信装置。
(9)各々が所定のサイズの所定数のFECブロックを配列した系列を前記サイズと異なる分割単位で分割して送信する送信装置と、
 前記分割データを受信する受信部と、前記分割データ内の前記FECブロックの先頭位置を前記所定サイズおよび前記分割単位から算出する処理を行う処理部とを備える受信装置と
を具備する通信システム。
(10)各々が所定のサイズの所定数のFECブロックを配列した系列を前記サイズと異なる分割単位で分割することにより生成された分割データを受信する受信手順と、
 前記分割データ内の前記FECブロックの先頭位置を前記サイズおよび前記分割単位から算出する処理を行う処理手順と
を具備する受信方法。
In addition, this technique can also take the following structures.
(1) a receiving unit that receives divided data generated by dividing a sequence in which a predetermined number of FEC (Forward Error Correction) blocks each having a predetermined size are arranged in a division unit different from the size;
A receiving apparatus comprising: a processing unit that performs a process of calculating a start position of the FEC block in the divided data from the size and the division unit.
(2) The reception unit further receives a transmission control signal including a code length and a modulation order of codewords constituting the FEC block,
The receiving apparatus according to (1), wherein the processing unit obtains the size from the code length and the modulation order.
(3) The processing unit according to (1) or (2), wherein each time the divided data is received, the processing unit calculates the next head position from the current head position, the size, and the division unit. Receiver device.
(4) further comprising a transmission path estimator for generating a demodulation result by performing orthogonal frequency division multiplex demodulation on the orthogonal frequency division multiplex modulated frame and estimating a transmission path using the demodulation result;
The frame includes the divided data,
The receiving device according to any one of (1) to (3), wherein the processing unit acquires the division unit from the demodulation result.
(5) The receiver further receives a differentially modulated transmission control signal carrier,
The processor is
A differential demodulator for differentially demodulating the transmission control signal carrier to obtain an error correction code;
An error correction code decoding unit for decoding the error correction code to obtain a transmission control signal;
A calculation unit that calculates the head position by obtaining the size from the transmission control signal and the division unit;
An error correction encoding unit that generates an error correction code by performing error correction encoding on the transmission control signal including the calculated head position;
A differential modulation unit that differentially modulates the new error correction code to generate a new transmission control signal carrier,
The receiving apparatus according to (4), wherein the transmission path estimation unit performs transmission path estimation based on the new transmission control signal carrier.
(6) The receiving apparatus according to (5), wherein the error correction code decoding unit performs soft decision decoding.
(7) The receiving apparatus according to (5) or (6), wherein the error correction encoding unit divides the transmission control signal and performs error correction encoding.
(8) From the above (5), further comprising a demodulated data decoding unit that performs orthogonal frequency division multiplexing demodulation on the frame, extracts the FEC block from the divided data in the demodulation result using the head position, and decodes the FEC block (7) The receiving apparatus in any one of.
(9) a transmission apparatus that divides and transmits a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in a division unit different from the size;
A communication system comprising: a receiving unit that receives the divided data; and a processing unit that performs processing for calculating a head position of the FEC block in the divided data from the predetermined size and the division unit.
(10) A reception procedure for receiving divided data generated by dividing a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in division units different from the size;
And a processing procedure for performing a process of calculating the start position of the FEC block in the divided data from the size and the division unit.
 100 送信装置
 101、201 アンテナ
 200 受信装置
 210 チューナー
 220 AD変換部
 230 伝送路推定部
 231 FFTサイズ推定部
 232 高速フーリエ変換部
 233 データキャリア抽出回路
 234 伝送制御信号抽出回路
 235 伝送路推定回路
 236 等化回路
 240 復調データ復号部
 300 伝送制御信号処理部
 310 差動復調部
 320、321、322 誤り訂正符号復号回路
 330 FECブロックポインタ算出部
 340 同期ワード確認回路
 350 誤り訂正符号化回路
 351 FECブロックサイズ算出部
 352 OFDMフレーム内データキャリア数算出部
 353 次フレームFECブロックポインタ算出部
 360 差動変調部
 370 TMCC系列生成回路
DESCRIPTION OF SYMBOLS 100 Transmission apparatus 101, 201 Antenna 200 Reception apparatus 210 Tuner 220 AD conversion part 230 Transmission path estimation part 231 FFT size estimation part 232 Fast Fourier transform part 233 Data carrier extraction circuit 234 Transmission control signal extraction circuit 235 Transmission path estimation circuit 236 Equalization Circuit 240 Demodulated data decoding unit 300 Transmission control signal processing unit 310 Differential demodulation unit 320, 321, 322 Error correction code decoding circuit 330 FEC block pointer calculation unit 340 Synchronization word confirmation circuit 350 Error correction encoding circuit 351 FEC block size calculation unit 352 Number of data carriers in OFDM frame calculation unit 353 Next frame FEC block pointer calculation unit 360 Differential modulation unit 370 TMCC sequence generation circuit

Claims (10)

  1.  各々が所定のサイズの所定数のFEC(Forward Error Correction)ブロックを配列した系列を前記サイズと異なる分割単位で分割することにより生成された分割データを受信する受信部と、
     前記分割データ内の前記FECブロックの先頭位置を前記サイズおよび前記分割単位から算出する処理を行う処理部と
    を具備する受信装置。
    A receiving unit that receives divided data generated by dividing a sequence in which a predetermined number of FEC (Forward Error Correction) blocks each having a predetermined size are arranged in a division unit different from the size;
    A receiving apparatus comprising: a processing unit that performs a process of calculating a start position of the FEC block in the divided data from the size and the division unit.
  2.  前記受信部は、前記FECブロックを構成する符号語の符号長および変調次数を含む伝送制御信号をさらに受信し、
     前記処理部は、前記符号長および前記変調次数から前記サイズを求める
    請求項1記載の受信装置。
    The receiver further receives a transmission control signal including a code length and a modulation order of codewords constituting the FEC block;
    The receiving apparatus according to claim 1, wherein the processing unit obtains the size from the code length and the modulation order.
  3.  前記処理部は、前記分割データが受信されるたびに現在の前記先頭位置と前記サイズと前記分割単位とから次の前記先頭位置を算出する
    請求項1記載の受信装置。
    The receiving device according to claim 1, wherein the processing unit calculates the next head position from the current head position, the size, and the division unit each time the divided data is received.
  4.  直交周波数分割多重変調されたフレームを直交周波数分割多重復調して復調結果を生成するとともに前記復調結果を用いて伝送路を推定する伝送路推定部をさらに具備し、
     前記フレームは、前記分割データを含み、
     前記処理部は、前記復調結果から前記分割単位を取得する
    請求項1記載の受信装置。
    Further comprising a transmission path estimator for generating a demodulation result by performing orthogonal frequency division multiplex demodulation on the orthogonal frequency division multiplex modulated frame and estimating a transmission path using the demodulation result;
    The frame includes the divided data,
    The receiving apparatus according to claim 1, wherein the processing unit acquires the division unit from the demodulation result.
  5.  前記受信部は、差動変調された伝送制御信号キャリアをさらに受信し、
     前記処理部は、
     前記伝送制御信号キャリアを差動復調して誤り訂正符号を取得する差動復調部と、
     前記誤り訂正符号を復号して伝送制御信号を取得する誤り訂正符号復号部と、
     前記伝送制御信号および前記分割単位から前記サイズを求めて前記先頭位置を算出する算出部と、
     前記算出された先頭位置を含む前記伝送制御信号を誤り訂正符号化して新たな誤り訂正符号を生成する誤り訂正符号化部と、
     前記新たな誤り訂正符号を差動変調して新たな伝送制御信号キャリアを生成する差動変調部と
    を備え、
     前記伝送路推定部は、前記新たな伝送制御信号キャリアに基づいて伝送路推定を行う
    請求項4記載の受信装置。
    The receiving unit further receives a differentially modulated transmission control signal carrier;
    The processor is
    A differential demodulator for differentially demodulating the transmission control signal carrier to obtain an error correction code;
    An error correction code decoding unit for decoding the error correction code to obtain a transmission control signal;
    A calculation unit that calculates the head position by obtaining the size from the transmission control signal and the division unit;
    An error correction encoding unit that generates an error correction code by performing error correction encoding on the transmission control signal including the calculated head position;
    A differential modulation unit that differentially modulates the new error correction code to generate a new transmission control signal carrier,
    The receiving apparatus according to claim 4, wherein the transmission path estimation unit performs transmission path estimation based on the new transmission control signal carrier.
  6.  前記誤り訂正符号復号部は、軟判定復号を行う
    請求項5記載の受信装置。
    The receiving apparatus according to claim 5, wherein the error correction code decoding unit performs soft decision decoding.
  7.  前記誤り訂正符号化部は、前記伝送制御信号を分割して誤り訂正符号化する
    請求項5記載の受信装置。
    The receiving apparatus according to claim 5, wherein the error correction encoding unit divides the transmission control signal and performs error correction encoding.
  8.  前記フレームを直交周波数分割多重復調し、当該復調結果内の前記分割データから前記先頭位置を用いて前記FECブロックを抽出して復号する復調データ復号部をさらに具備する請求項5記載の受信装置。 The receiving apparatus according to claim 5, further comprising a demodulated data decoding unit that performs orthogonal frequency division multiplexing demodulation on the frame, extracts the FEC block from the divided data in the demodulation result, and decodes the FEC block.
  9.  各々が所定のサイズの所定数のFECブロックを配列した系列を前記サイズと異なる分割単位で分割して送信する送信装置と、
     前記分割データを受信する受信部と、前記分割データ内の前記FECブロックの先頭位置を前記所定サイズおよび前記分割単位から算出する処理を行う処理部とを備える受信装置と
    を具備する通信システム。
    A transmission apparatus that divides and transmits a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged, in a division unit different from the size;
    A communication system comprising: a receiving unit that receives the divided data; and a processing unit that performs a process of calculating a head position of the FEC block in the divided data from the predetermined size and the division unit.
  10.  各々が所定のサイズの所定数のFECブロックを配列した系列を前記サイズと異なる分割単位で分割することにより生成された分割データを受信する受信手順と、
     前記分割データ内の前記FECブロックの先頭位置を前記サイズおよび前記分割単位から算出する処理を行う処理手順と
    を具備する受信方法。
    A reception procedure for receiving divided data generated by dividing a sequence in which a predetermined number of FEC blocks each having a predetermined size are arranged in division units different from the size;
    And a processing procedure for performing a process of calculating the start position of the FEC block in the divided data from the size and the division unit.
PCT/JP2019/015055 2018-06-13 2019-04-05 Reception device, communication system, and reception method WO2019239689A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112020024830-4A BR112020024830A2 (en) 2018-06-13 2019-04-05 receiving apparatus and method, and communication system
JP2020525285A JP7157807B2 (en) 2018-06-13 2019-04-05 Receiving device, communication system and receiving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112391 2018-06-13
JP2018112391 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019239689A1 true WO2019239689A1 (en) 2019-12-19

Family

ID=68842075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015055 WO2019239689A1 (en) 2018-06-13 2019-04-05 Reception device, communication system, and reception method

Country Status (3)

Country Link
JP (1) JP7157807B2 (en)
BR (1) BR112020024830A2 (en)
WO (1) WO2019239689A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065627A (en) * 2013-09-26 2015-04-09 日本放送協会 Transmitter, receiver, digital broadcast system and chip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065627A (en) * 2013-09-26 2015-04-09 日本放送協会 Transmitter, receiver, digital broadcast system and chip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYASAKA H. ET. AL.: "A study on the forward error correction pointer for the next generation terrestrial broadcasting", ITE TECHNICAL REPORT, vol. 39, no. 38, 16 October 2015 (2015-10-16), pages 1 - 4, ISSN: 1342-6893 *

Also Published As

Publication number Publication date
JP7157807B2 (en) 2022-10-20
JPWO2019239689A1 (en) 2021-07-08
BR112020024830A2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
EP2502378B1 (en) Transmitter and transmission method for broadcasting data in a broadcasting system providing incremental redundancy
US9258167B2 (en) Transmitting apparatus, receiving apparatus and control methods thereof
US7773682B2 (en) OFDM reception apparatus and OFDM reception method
RU2609067C2 (en) Method and apparatus for transmitting and receiving information in broadcasting/communication system
JP2016026420A (en) Method and apparatus for transmitting and receiving fec frame headers with variable header modulation
WO2012152589A9 (en) Encoder and encoding method providing incremental redundancy
US10432221B2 (en) Transmitting apparatus and interleaving method thereof
JP5860379B2 (en) Method for transmitting and receiving signaling information
WO2018155544A1 (en) Broadcast system
JP7161531B2 (en) Receiving device, communication system, and receiving device control method
EP2999231A1 (en) Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, method for transmitting broadcast signal and method for receiving broadcast signal
WO2019239689A1 (en) Reception device, communication system, and reception method
WO2011083773A1 (en) Multi-carrier modulated signal receiving device and integrated circuit
US20090060072A1 (en) Decoding method for receiving ofdm signals, and decoding apparatus and receiving apparatus using the same
EP2502351B1 (en) Receiver and receiving method for receiving data in a broadcasting system using incremental redundancy
JP7168001B2 (en) Broadcast transmission system, broadcast transmission/reception system, broadcast transmission method, and broadcast transmission program
CN109428678B (en) Physical layer frame scrambling parameter searching method and circuit
JP6296847B2 (en) Transmitting device, receiving device, chip, and digital broadcasting system
JP7168002B2 (en) Broadcast transmission system, broadcast transmission/reception system, broadcast transmission method, and broadcast transmission program
JP5395617B2 (en) Receiving apparatus and receiving method for repeatedly decoding concatenated code data
KR20150094365A (en) Modified Block Turbo Decoding Apparatus Using Channel State Information and Algorithm thereof
US20090060071A1 (en) Demodulation method for receiving ofdm signals, and demodulation apparatus and receiving apparatus using the same
WO2014076745A1 (en) Reception device and reception processing method
JP2013055368A (en) Multicarrier modulation signal receiver
JP2017112583A (en) Ofdm transmission device and ofdm reception device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024830

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020024830

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201204

122 Ep: pct application non-entry in european phase

Ref document number: 19819417

Country of ref document: EP

Kind code of ref document: A1