WO2011083773A1 - Multi-carrier modulated signal receiving device and integrated circuit - Google Patents

Multi-carrier modulated signal receiving device and integrated circuit Download PDF

Info

Publication number
WO2011083773A1
WO2011083773A1 PCT/JP2011/000057 JP2011000057W WO2011083773A1 WO 2011083773 A1 WO2011083773 A1 WO 2011083773A1 JP 2011000057 W JP2011000057 W JP 2011000057W WO 2011083773 A1 WO2011083773 A1 WO 2011083773A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
mapping
information
data
point
Prior art date
Application number
PCT/JP2011/000057
Other languages
French (fr)
Japanese (ja)
Inventor
友彦 谷口
誠 關藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010001673A external-priority patent/JP2013055368A/en
Priority claimed from JP2010038338A external-priority patent/JP2013055369A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011083773A1 publication Critical patent/WO2011083773A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • H03M13/2927Decoding strategies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2933Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code
    • H03M13/2936Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code comprising an outer Reed-Solomon code and an inner convolutional code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • the present invention relates to a technique for detecting an interference signal superimposed on a reception signal and removing the influence of the interference signal from the reception signal when receiving a multi-carrier modulated signal.
  • a mechanism to prevent interference from preceding and following symbols makes it less susceptible to interference from reflected waves, or converts the transmission signal to a digital code and performs error correction code processing. As a result, the noise resistance of the received signal is improved.
  • the ISDB-T standard introduces a data rearrangement called interleaving and a mechanism called hierarchical transmission that transmits a plurality of broadcasts with different noise immunity and selectively views them on the viewer side. Even when it drops, it is possible to view stable broadcasts.
  • the above error correction code processing is an example, and various other signal processing techniques are incorporated, and by performing appropriate processing in the receiving device, it is normal even if there is a decrease in received signal level or radio wave interference. It is possible to keep the reception state.
  • the multicarrier modulation signal receiving apparatus includes an antenna unit 601, a tuner unit 602, an A / D conversion processing unit 603, an orthogonal detection processing unit 611, an FFT processing unit 612, a TMCC decoding processing unit 613, and an equalization process.
  • Unit 614 deinterleave processing unit 621, demapping processing unit 622, bit deinterleaving processing unit 631, decoding processing unit 632, energy despreading processing unit 634, and RS (Reed-Solomon) decoding processing unit 635.
  • the tuner unit 602 selects a signal in a predetermined frequency band from the signal received by the antenna unit 601 and outputs it to the A / D conversion processing unit 603.
  • the A / D conversion processing unit 603 samples the OFDM signal output from the tuner unit 602, converts it to a digital signal, and outputs the digital signal to the quadrature detection processing unit 611.
  • the quadrature detection processing unit 611 multiplies the OFDM signal obtained from the A / D conversion processing unit 603 by a sine wave signal having the same frequency as that of the reference carrier wave, converts the signal into a baseband OFDM signal, and outputs it to the FFT processing unit 612. To do.
  • the FFT processing unit 612 extracts a signal sequence of an effective symbol period from the baseband OFDM signal output from the quadrature detection processing unit 611. Then, the FFT processing unit 612 performs discrete Fourier transform on the extracted signal sequence, generates a complex signal, and converts the complex signal obtained by the discrete Fourier transform to the TMCC decoding processing unit 613 and the equalization processing unit 614. Output.
  • the TMCC decoding processing unit 613 obtains a complex signal from the FFT processing unit 612.
  • Complex signals obtained from the FFT processing unit 112 exist in the number of FFT points, and each of them is OFDM symbol data.
  • the number of FFT points is 8192, and 8192 complex signals are obtained.
  • 5617 are signals to be processed and are called OFDM symbols.
  • the OFDM symbol data is arranged on a plurality of carriers defined in each of mode 1 to mode 3, and includes a TMCC (Transmission and Multiplexing Configuration Control) signal for transmitting control information.
  • TMCC Transmission and Multiplexing Configuration Control
  • the TMCC signal is information that assists the demodulation and decoding operations of the receiver, such as system identification, transmission parameter switching index, emergency warning broadcast activation flag, current information, and next information.
  • the transmission parameter information of the received signal includes the presence / absence of the partial reception layer, the number of segments for each layer, the time interleave length, the carrier modulation scheme, and the coding rate of the inner code (convolutional code in the ISDB-T standard).
  • the carrier on which the TMCC signal is arranged is known on the receiving side, and the TMCC decoding processing unit 613 detects and extracts the TMCC signal from the OFDM symbol.
  • the TMCC decoding processing unit 613 performs demodulation processing corresponding to DBPSK (Difference Binary Phase Shift Keying) on the extracted TMCC signal in the time direction, and acquires control information transmitted by the TMCC signal from the result of the demodulation processing To do.
  • the TMCC decoding processing unit 613 outputs the information included in the control information to the components that require the information for processing, although the output destination components are not explicitly shown in FIG.
  • the maximum number of layers is three.
  • the output of the deinterleave processing unit 621 is divided into hierarchies, and the demapping processing unit 622 to the energy despreading processing unit 634 perform processing for each hierarchy, and then the hierarchies are synthesized.
  • the data is input to the RS decoding processing unit 635.
  • the equalization processing unit 614 receives a complex signal from the FFT processing unit 612.
  • Complex signals obtained from the FFT processing unit 612 exist as many as the number of FFT points, and each of them is OFDM symbol data.
  • the number of FFT points is 8192, and 8192 complex signals are obtained.
  • 5617 are signals to be processed and are called OFDM symbols.
  • the OFDM symbol data includes an SP (Scattered Pilot) signal every 12 carriers in the carrier direction. Further, the SP signals are arranged so as to be shifted by 3 carriers in the time direction. Therefore, the equalization processing unit 614 detects and extracts SP signals that are discretely arranged from the OFDM symbol.
  • the equalization processing unit 614 divides the extracted SP signal by a known complex signal value to thereby determine a transmission path characteristic (SP signal) between transmission and reception of the SP signal position. Is estimated).
  • the equalization processing unit 614 performs interpolation processing based on the estimated values of the transmission path characteristics of the SP signal positions discretely arranged in the OFDM signal, thereby transmitting the transmission path characteristics of each carrier between the SP signals. Is estimated.
  • the equalization processing unit 614 divides each OFDM symbol by the estimated transmission path characteristic of each carrier to obtain information on OFDM symbol points that compensate for the influence of the transmission path.
  • the equalization processing unit 614 includes information on the OFDM symbol points (hereinafter referred to as “received OFDM symbol points”) compensated for the influence of the transmission channels, and transmission path characteristics corresponding to the “received OFDM symbol points”.
  • the estimated complex signal is output to the deinterleave processing unit 621.
  • the deinterleave processing unit 621 sequentially receives the “received OFDM symbol point” and the data string of the estimation result of the transmission path characteristics from the equalization processing unit 614. Then, the deinterleave processing unit 621 rearranges the received “received OFDM symbol point” and the data string of the estimation result of the transmission path characteristics.
  • the rearrangement rules are stipulated in the ISDB-T standard, and the deinterleave processing unit 621 performs a process of returning the signals rearranged randomly in the time direction and the frequency direction to the original order in the interleaving process on the transmission side. Do.
  • the deinterleave processing unit 621 outputs the “received OFDM symbol points” rearranged to the demapping processing unit 622 and the data string of the estimation result of the channel characteristics.
  • the rearrangement in the time direction is performed according to the time interleave length of each segment included in the control information acquired by the TMCC decoding processing unit 613.
  • the demapping processing unit 622 obtains the “received OFDM symbol points” rearranged from the deinterleaving processing unit 621 and the data string of the estimation result of the transmission path characteristics.
  • the OFDM symbol is mapped on the complex plane according to the carrier modulation scheme on the signal transmission side. For example, if the carrier modulation method is 64QAM, the signal is converted into one of 64 mapping points according to the obtained bit data.
  • the demapping processing unit 622 regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 613, Generate bit data. Further, the demapping processing unit 622 performs distance information (hereinafter referred to as “reception symbol point distance information”) between the “received OFDM symbol point” and the mapping point (transmission signal point) closest to the “received OFDM symbol point”. And reliability information is generated based on information on the magnitude of the channel characteristics of the carrier including the “received OFDM symbol point” obtained from the deinterleave processing unit 621 separately.
  • the demapping processing unit 622 accumulates the “distance information of received symbol points” for each OFDM symbol for a certain period, separately calculates the noise amount for each carrier included in the carrier including the OFDM symbol, Reliability information may be generated from the amount of noise for each, the estimation result of transmission path characteristics, and “distance information of received symbol points”.
  • the demapping processing unit 622 outputs the bit data generated from the mapping point closest to the “received OFDM symbol point” and the reliability information to the bit deinterleaving processing unit 631.
  • the bit deinterleave processing unit 631 rearranges the bit data and reliability information obtained from the demapping processing unit 622 into the original order in accordance with the ISDB-T standard, and the rearranged bit data and reliability information. Is output to the decoding processing unit 632.
  • the decryption processing unit 632 obtains bit data and reliability information from the bit deinterleave processing unit 631.
  • the decoding processing unit 632 obtains the bit data obtained from the bit deinterleaving processing unit 631 according to the coding rate of the inner code of each layer (coding rate of the convolutional code) included in the control information acquired by the TMCC decoding processing unit 613. A dummy bit is inserted in the bit position thinned out on the transmission side with respect to the data string, and the value is undefined.
  • the decoding processing unit 632 performs decoding processing on the received bit data by weighting the input data according to the reliability information.
  • a decoding process called Viterbi decoding is widely used, but a process according to another decoding algorithm may be used.
  • the decryption processing unit 632 outputs a data string as a decryption result to the byte deinterleave processing unit 633.
  • the byte deinterleave processing unit 633 receives the data sequence of the decoding result from the decoding processing unit 632, rearranges the received data sequence of the decoding result into the original order according to the ISDB-T standard, and the energy despreading processing unit 634. Outputs the data sequence rearranged to.
  • the energy despreading processing unit 634 performs processing for restoring the energy spreading processing performed on the transmission side according to the ISDB-T standard for the data sequence obtained from the byte deinterleaving processing unit 633, and after conversion.
  • the data string is output to the RS decoding processing unit 635.
  • the RS decoding processing unit 635 receives the data sequence from the energy spreading processing unit 634, performs a Reed-Solomon decoding process on the received data sequence using the assigned outer code, and sends the Reed-Solomon to the TS reproduction processing unit 671. Output the decrypted data string.
  • the TS reproduction processing unit 671 obtains the data string after Reed-Solomon decoding from the RS decoding processing unit 635.
  • the data string after Reed-Solomon decoding obtained from the RS decoding processing unit 635 is a packet of a transport stream. Since the number of packets of the transport stream obtained from the RS decoding processing unit 635 differs depending on the transmission parameter, the TS reproduction processing unit 671 supplements an appropriate number of null packets, and does not depend on the transmission parameter, Adjust so that the number of packets is output.
  • the TS reproduction processing unit 671 outputs the transport stream packet after complementing the null packet to the TS decoding processing unit 672.
  • the TS decode processing unit 672 obtains the transport stream packet output from the TS playback processing unit 671, and based on the information included in the transport stream, a video packet, an audio packet, and a PCR (Program Clock Reference) packet Are output to the MPEG decoding processing unit 673.
  • the MPEG decode processing unit 673 includes a video decoder and an audio decoder.
  • the video decoder extracts video packets from the transport stream packets obtained from the TS decoding processing unit 672, decodes the data, and generates image data.
  • the audio decoder extracts an audio packet from the transport stream obtained from the TS decode processing unit 672, decodes the data, and generates audio data.
  • the MPEG decoding processing unit 673 adjusts the output timing of the image data and the audio data based on the time information included in the PCR packet, and then outputs the image data and the audio data to a display device or the like.
  • the reception state deteriorates rapidly, and images and sounds are partially lost, and video and Audio interruption occurs.
  • the factors that cause deterioration in the reception quality of terrestrial digital broadcasting include delayed waves that are reflected from the signal itself to buildings and mountains, analog TV broadcast waves that are received in the same frequency band, and signals that are at a high level outside the band. Intermodulation distortion caused by distortion due to noise, noise signals such as unwanted radiation generated in the receiver or other devices, etc. can be considered, and if the interference signal level is higher than a certain level with respect to the signal to be received, the reception quality The impact on will appear.
  • analog TV broadcast waves superimposed on frequency bands used in digital broadcasting intermodulation distortion, noise signals due to unnecessary radiation such as harmonics of clock signals, etc.
  • An interference signal having a biased characteristic is called a frequency selective interference signal, and a technique for improving resistance to the frequency selective interference signal will be described.
  • Patent Document 1 in the process of demodulating an OFDM signal, the distance between the demodulation signal point of each of a plurality of carriers and the representative reception symbol point is measured for each carrier and integrated in the time direction to determine the magnitude of the dispersion of the demodulation signal.
  • the C / N for each carrier is detected by comparing the magnitude of dispersion for each carrier, and the carrier having a poor C / N is considered to be disturbed by frequency selectivity.
  • an OFDM receiving apparatus that performs stepwise weighting on a demodulated signal based on information and performs error correction processing by a method called soft decision.
  • the value of the distance between the demodulated signal point and the representative reception symbol point is also called MER (Modulation Error Ratio), and uses the MER value calculated for each carrier in the soft decision processing.
  • MER Modulation Error Ratio
  • Patent Document 2 when a transmission path characteristic between transmission and reception is estimated and compensated using a pilot signal regularly arranged in an OFDM signal, a frequency selective interference signal is detected. Is detected, the pilot signal that exists in the vicinity of the disturbed carrier is not used for estimating the channel characteristics, and the pilot signal that has detected the disturbing signal from the pilot signal that is not affected by the disturbing signal is not used.
  • An OFDM receiver used for signal processing by estimating peripheral transmission path characteristics is disclosed.
  • a frequency-selective interference signal is detected from an integral value of distances between demodulated signal points and representative reception symbol points of a plurality of carriers. Specifically, a hard decision process is performed in which the equalized symbol is regarded as being received at the closest representative symbol point, and the distance between the equalized symbol point and the closest representative symbol point in the time direction for each carrier. Is used as an indicator of the amount of interference signal.
  • the interference signal amount is larger than the inter-code distance of the 64QAM signal, or the interference signal overlaps with the pilot carrier, resulting in a large estimation error of the transmission path characteristics.
  • the equalized symbol point may be far away from the transmission symbol point. At this time, if the distance between the symbol point after equalization and the closest symbol point is calculated, the original transmission signal point exists further away, and there is a problem that the amount of interference signal is estimated to be small.
  • the error correction capability is improved by using the calculated interference signal amount as reliability information in the error correction code processing unit, but as described above, the distance between the symbol point after equalization and the closest symbol point If the integrated value of is an interference signal amount, there is a possibility that the detected value of the interference signal amount includes an error, so that the error correction effect in the error correction processing unit cannot be maximized.
  • a frequency-selective interference signal is detected. If a frequency-selective interference signal is detected, a pilot signal existing around the interfered carrier is not used for estimation of transmission path characteristics. I have to. However, when the carrier that transmits the actual data is affected by the frequency selective interference signal, the signal processing is performed in a state where the influence of the frequency selective interference signal of the carrier that transmits the actual data remains as it is. Therefore, a sufficient error correction effect cannot be expected.
  • An object of the present invention is to solve the above-described conventional problems, and to provide a multicarrier modulation signal receiving apparatus and an integrated circuit capable of maximizing the effect of error correction.
  • a multicarrier modulation signal receiver of the present invention demodulates a multicarrier modulation signal and generates a data sequence of reception symbol points and transmission path characteristic estimation results for each carrier;
  • a deinterleave processing unit for rearranging a data sequence of estimation results of reception symbol points and transmission path characteristics input from the demodulation unit, and a rearranged reception symbol point and transmission path characteristics input from the deinterleaving processing unit
  • a first demapping processing unit that generates bit data and reliability information of the bit data from the estimation result data sequence, and based on the reliability information of the bit data input from the first demapping processing unit
  • a first error correction unit that performs error correction processing and generates data obtained by restoring a transmission signal sequence; and a transmission signal that is input from the first error correction unit
  • An encoding unit that performs an encoding process on the data whose columns have been restored, and generates a signal indicating an error-correctable range for determining whether the data after the encoding process is generated from data that could not be error
  • the integrated circuit of the present invention also includes a demodulation circuit that demodulates a multi-carrier modulation signal and generates a data sequence of estimation results of reception symbol points and transmission path characteristics for each carrier, and reception symbol points input from the demodulation circuit And a deinterleaving processing circuit for rearranging the data sequence of the estimation result of the transmission path characteristics, bit data from the data string of the rearranged received symbol points and the estimation result of the transmission path characteristics inputted from the deinterleaving processing circuit, and A first demapping processing circuit for generating reliability information of the bit data, and error correction processing based on the reliability information of the bit data input from the first demapping processing circuit, A first error correction circuit that generates restored data, and data obtained by restoring a transmission signal sequence input from the first error correction circuit An encoding circuit that performs encoding processing and generates a signal indicating an error-correctable range for determining whether or not the data after encoding processing was generated from data that could not be error-corrected, and input from the encoding
  • the effect of error correction can be maximized.
  • the first demapping processing unit further generates the reliability information, and further receives the received symbol point input from the inter-code distance calculation / accumulation processing unit. You may make it perform using distance information with the information of the said mapping point.
  • the first demapping processing circuit further generates the reliability information, and further adds the received symbol points and the mapping points input from the inter-code distance calculation / accumulation processing circuit. You may make it perform using distance information with information.
  • the first demapping processing unit in addition to the second demapping processing unit, also uses the calculation result of the inter-code distance calculation / accumulation processing unit. The reception performance can be further improved.
  • the second demapping processing unit is input from the deinterleaving processing unit based on error presence / absence information of mapping point information input from the mapping processing unit.
  • the reliability information may be generated by generating a new signal point from the rearranged received symbol points and the mapping point information input from the mapping processing unit.
  • the accuracy of the reliability information of the second demapping processing unit can be improved.
  • the inter-code distance calculation / accumulation processing unit may perform mapping input from the mapping processing unit based on mapping point error presence / absence information input from the mapping processing unit.
  • mapping point information is generated only from the data that has been error-corrected
  • the rearranged received symbol points input from the deinterleave processing unit and the mapping point information input from the mapping processing unit
  • the mapping point information input from the mapping processor is determined to have been generated only from data that could not be error-corrected, it is input from the deinterleave processor.
  • the rearranged received symbol point and the transmission signal point closest to the received symbol point When the Euclidean distance is integrated for each carrier, and it is determined that the mapping point information input from the mapping processing unit is generated from data that could be corrected and data that could not be corrected, the error could be corrected.
  • the code point closest to the rearranged received symbol point input from the deinterleave processing unit is regarded as a transmission signal point, and the rearranged input input from the deinterleave processing unit
  • the Euclidean distance between the reception symbol point and the code point regarded as the transmission signal point may be integrated for each carrier, and the integration result may be output as the distance between the reception symbol point and the mapping point information.
  • the accuracy of the calculation result of the inter-code distance calculation / accumulation processing unit can be improved.
  • the inter-symbol distance calculation / accumulation processing unit is configured to calculate the mapping point information input from the mapping processing unit from data that has been error-corrected and data that has not been error-corrected.
  • the Euclidean distance may be integrated in units of carriers.
  • the accuracy of the calculation result of the inter-code distance calculation / accumulation processing unit can be further improved.
  • the second error correction unit counts the number of error correction processes performed by the second error correction unit and the number of error correction processes is less than a predetermined number. May be further provided with an error correction count unit that outputs the output of the above to the encoding unit.
  • the number of error correction processes is set to 2 or more, for example, the error correction process in the second error correction unit is repeated, so that the reception performance can be further improved.
  • the multi-carrier modulation signal receiving apparatus of the present invention demodulates a multi-carrier modulation signal, generates a data sequence of reception symbol points and transmission path characteristic estimation results for each carrier, and a reception input from the demodulation unit
  • a deinterleave processing unit that rearranges the data sequence of the symbol point and the channel characteristic estimation result, and a bit from the rearranged received symbol point and the channel sequence estimation result data sequence that are input from the deinterleave processing unit.
  • a first demapping unit that generates data and reliability information of the bit data, a first error correction unit that performs error correction processing and generates data obtained by restoring a transmission signal sequence, and the first error Data on which the transmission signal sequence generated by the correction unit is restored and the data after the encoding process cannot be error-corrected
  • An encoder that generates a signal indicating an error-correctable range for determining whether or not the error correction has been generated, and the number of error correction processes performed by the first error correction unit.
  • An error correction count unit that outputs the output of the first error correction unit to the encoding unit when the number of times is less than a predetermined number of times, and data that has been subjected to encoding processing input from the encoding unit is divided according to a carrier modulation scheme Then, mapping is performed to generate mapping point information, and mapping point error presence / absence information is obtained from a signal indicating an error correctable range corresponding to one or a plurality of data from which the mapping point information is calculated.
  • the inter-code distance calculation / accumulation processing unit that calculates the distance between the received symbol point and the mapping point information based on the information on the ping point and the error presence / absence information on the mapping point, and the deinterleave processing unit.
  • a second demapping processing unit that generates bit data and reliability information of the bit data from distance information between the received symbol point and the mapping point information to be output to the first error correction unit
  • the first error correction unit performs error correction based on reliability information of bit data input from the first demapping processing unit. Processing is performed to generate data in which the transmission signal sequence is restored, and error correction processing is performed based on the bit data input from the second demapping processing unit 153 and the reliability information of the bit data.
  • the effect of error correction can be maximized. Further, since only one processing block for performing error correction processing is required, it is possible to avoid an increase in the scale of the apparatus. Furthermore, when the number of error correction processes is set to 3 or more, for example, the error correction process is repeated, so that the reception performance can be further improved.
  • the first demapping processing unit further generates the reliability information, and further receives the received symbol point input from the inter-code distance calculation / accumulation processing unit. You may make it perform using distance information with the information of the said mapping point.
  • the first demapping processing unit in addition to the second demapping processing unit, also uses the calculation result of the inter-code distance calculation / accumulation processing unit. Improvement is achieved.
  • FIG. 1 is a block diagram showing a configuration of a multicarrier modulation signal receiving apparatus in Embodiment 1 of the present invention.
  • the block diagram which shows the detailed structure of the multicarrier modulation signal receiver of FIG.
  • FIG. 3 is a configuration diagram of a convolutional code processing unit 145 in FIG. 2.
  • FIG. 3 is a configuration diagram of an error information calculation processing unit 146 in FIG. 2.
  • FIG. 3 is a supplementary explanatory diagram of processing of the mapping processing unit 151 of FIGS. 1 and 2.
  • the block diagram which shows the detailed structure of the multicarrier modulation signal receiver of FIG. The block diagram which shows the structure of the multicarrier modulation signal receiver in the modification of Embodiment 2 of this invention.
  • the description of the first embodiment will be made according to the ISDB-T system, which is a Japanese terrestrial digital broadcasting standard. Although there is a difference from other systems such as the DVB-T system, which does not necessarily include processing called interleave processing or hierarchical transmission, it does not greatly affect the concept of the present invention. The description of is omitted. Further, since the ISDB-T system is a known standard, only a minimum description will be given here. The same applies to the second embodiment described later.
  • FIG. 1 is a block diagram showing a configuration of a multicarrier modulation signal receiving apparatus according to Embodiment 1
  • FIG. 2 is a block diagram showing a detailed configuration of the multicarrier modulation signal receiving apparatus of FIG.
  • the multicarrier modulation signal receiving apparatus includes an antenna unit 101, a tuner unit 102, an A / D conversion processing unit 103, a demodulation unit 110, and a deinterleave processing unit 121.
  • the demodulation unit 110 in FIG. 1 includes an orthogonal detection processing unit 111, an FFT processing unit 112, a TMCC decoding processing unit 113, and an equalization processing unit 114.
  • the first error correction unit 130 of FIG. 1 includes a first bit deinterleaving processing unit 131, a first decoding processing unit 132, and a first byte deinterleaving processing unit 133. And a first energy despreading processing unit 134 and a first RS decoding processing unit 135.
  • the second error correction unit 160 in FIG. 1 includes a second bit deinterleaving processing unit 161, a second decoding processing unit 162, and a second byte deinterleaving processing unit 163. And a second energy despreading processing unit 164 and a second RS decoding processing unit 165.
  • the multicarrier modulation signal receiving apparatus in Embodiment 1 includes a configuration of antenna unit 101 to deinterleave processing unit 121, and antenna unit 601 to deinterleave processing unit 621.
  • the configuration is the same, and the configuration of the TS playback processing unit 171 to the MPEG decoding processing unit 173 is the same as the configuration of the TS playback processing unit 671 to the MPEG decoding processing unit 673.
  • the multicarrier modulation signal receiving apparatus according to the first embodiment has a configuration in which different processing blocks are added between the deinterleave processing unit 621 and the TS reproduction processing unit 671 of the conventional multicarrier modulation signal receiving apparatus.
  • the output signal of the first RS decoding processing unit 135 in FIG. 2 passes through the encoding unit 140 and the mapping processing unit 151 for performing the encoding process again, and then to the second demapping processing unit 153.
  • the TS reproduction processing unit 171 outputs a transport stream signal after the second error correction unit 160 performs decoding processing again on the input signal output from the second demapping processing unit 153. Yes.
  • the tuner unit 102 selects a signal in a predetermined frequency band from the signal received by the antenna unit 101 and outputs it to the A / D conversion processing unit 103.
  • the A / D conversion processing unit 103 samples the OFDM signal output from the tuner unit 102, converts the signal into a digital signal, and outputs the digital signal to the demodulation unit 110.
  • the demodulation unit 110 demodulates the OFDM signal obtained from the A / D conversion processing unit 103, and generates carrier unit data.
  • the operation of the demodulation unit 110 will be described in detail with reference to FIG.
  • the quadrature detection processing unit 111 multiplies the OFDM signal obtained from the A / D conversion processing unit 103 by a sine wave signal having the same frequency as the reference carrier wave, converts the signal into a baseband OFDM signal, and outputs the signal to the FFT processing unit 112. To do.
  • the FFT processing unit 112 extracts a signal sequence of an effective symbol period from the baseband OFDM signal output from the quadrature detection processing unit 111. Then, the FFT processing unit 112 performs discrete Fourier transform on the extracted signal sequence, generates a complex signal, and transmits the complex signal obtained by the discrete Fourier transform to the TMCC decoding processing unit 113 and the equalization processing unit 114. Is output.
  • the TMCC decoding processing unit 113 obtains a complex signal from the FFT processing unit 112.
  • the TMCC decoding processing unit 113 detects and extracts a TMCC signal from the OFDM symbol, performs demodulation processing corresponding to DBPSK in the time direction on the extracted TMCC signal, and transmits control information transmitted as a TMCC signal from the result of the demodulation processing
  • the TMCC decoding processing unit 113 does not clearly indicate the output destination component in FIG. 2, but outputs the information included in the control information to the component that requires the information for processing. To do.
  • the control signal transmitted by the TMCC signal includes, for example, the time interleave length, the carrier modulation scheme of each layer, and the coding rate of the inner code (convolutional code in the ISDB-T standard). Details of the TMCC signal are described in the prior art.
  • the maximum number of layers is three.
  • the output of the deinterleave processing unit 121 is divided into layers, and the first energy despreading processing unit 134 from the first demapping processing unit 122 performs processing for each layer, Thereafter, the layers are combined and input to the first RS decoding processing unit 135. Further, the outputs of the RS code processing unit 141 and the error information addition processing unit 142 are divided into layers, and the energy diffusion unit 143 to the second energy diffusion processing unit 164 perform processing for each layer, and then the layers are combined and processed. 2 to the RS decoding processing unit 165.
  • the equalization processing unit 114 receives the complex signal from the FFT processing unit 112.
  • the equalization processing unit 114 detects and extracts SP signals that are discretely arranged from the OFDM symbol.
  • the equalization processing unit 114 divides the extracted SP signal by a known complex signal value to estimate the transmission path characteristic (transmission path characteristic of the carrier on which the SP signal is arranged) between transmission and reception of the SP signal position.
  • the equalization processing unit 114 performs interpolation processing based on the estimated values of the transmission path characteristics of the SP signal positions discretely arranged in the OFDM signal, so that the transmission path characteristics of each carrier between the SP signals. Is estimated.
  • the equalization processing unit 114 divides each OFDM symbol by the estimated transmission path characteristic of each carrier to obtain information on the OFDM symbol point that compensates for the influence of the transmission path.
  • the equalization processing unit 114 includes information on OFDM symbol points (“received OFDM symbol points”) in which the influence of the transmission channel is compensated, and complex signal that is an estimation result of transmission channel characteristics corresponding to each of the “received OFDM symbol points”. Is output to the deinterleave processing unit 121.
  • the deinterleave processing unit 121 sequentially receives the “received OFDM symbol point” and the data string of the estimation result of the channel characteristics from the equalization processing unit 114. Then, the deinterleave processing unit 121 rearranges the received “received OFDM symbol point” and the data string of the transmission path characteristic estimation result.
  • the rearrangement rules are defined in the ISDB-T standard, and the deinterleave processing unit 121 performs processing for returning the signals rearranged randomly in the time direction and the frequency direction to the original order in the interleaving process on the transmission side. Do.
  • the deinterleaving unit 121 outputs the “received OFDM symbol points” rearranged to the first demapping processing unit 122 and the data string of the estimation result of the transmission path characteristics.
  • the deinterleaving unit 121 rearranges the data string of “received OFDM symbol points” rearranged in the inter-code distance calculation / accumulation processing unit 152 with respect to the second demapping processing unit 153 and receives “received”.
  • the data string of the “OFDM symbol point” and the estimation result of the transmission path characteristics is output. However, the rearrangement in the time direction is performed according to the time interleave length of each segment included in the control information acquired by the TMCC decoding processing unit 113.
  • the first demapping processing unit 122 obtains the “received OFDM symbol points” rearranged from the deinterleaving processing unit 121 and the data string of the estimation result of the transmission path characteristics.
  • the first demapping processing unit 122 regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. , Generate bit data.
  • the first demapping processing unit 122 performs distance information between the “received OFDM symbol point” and the mapping point (transmission signal point) closest to the “received OFDM symbol point” (“distance information of the received symbol point”). And reliability information is generated based on the information of the data string of the estimation result of the transmission path characteristics separately obtained from the deinterleave processing unit 121.
  • the first demapping processing unit 122 accumulates the “distance information of received symbol points” for each OFDM symbol for a certain period, and separately calculates the amount of noise for each carrier included in the carrier including the OFDM symbol.
  • the reliability information may be generated from the noise amount for each carrier, the estimation result of the transmission path characteristics, and the “distance information of received symbol points”.
  • the generation of reliability information in the first demapping processing unit 122 of Embodiment 1 can use the same known method as the generation of reliability information in the demapping processing unit 622 of the conventional example, Detailed description is omitted.
  • the first demapping processing unit 122 outputs the generated bit data and reliability information to the first error correction unit 130.
  • the first error correction unit 130 performs error correction processing based on the bit data obtained from the first demapping processing unit 122 and the reliability information, and generates an original signal sequence.
  • the operation of the first error correction unit 130 will be described in detail with reference to FIG.
  • the first bit deinterleave processing unit 131 rearranges the bit data and reliability information obtained from the first demapping processing unit 122 into the original order according to the ISDB-T standard, and rearranges the bit data. And the reliability information are output to the first decoding processing unit 132.
  • the first decoding processing unit 132 obtains bit data and reliability information from the first bit deinterleaving processing unit 131.
  • the first decoding processing unit 132 is a first bit deinterleaving processing unit according to the coding rate of the inner code of each layer (coding rate of the convolutional code) included in the control information acquired by the TMCC decoding processing unit 113 A dummy bit is inserted into the bit position thinned out on the transmission side with respect to the data string of bit data obtained from 131, and the value is undefined.
  • the first decoding processing unit 132 performs decoding processing by weighting the received bit data according to the reliability information.
  • a decoding process called Viterbi decoding is widely used, but a process according to another decoding algorithm may be used.
  • the first decoding processing unit 132 outputs a data string as a decoding result to the first byte deinterleaving processing unit 133.
  • the first byte deinterleave processing unit 133 receives the data sequence of the decoding result from the first decoding processing unit 132, rearranges the received data sequence of the decoding result to the original order in accordance with the ISDB-T standard, The rearranged data string is output to the first energy despreading processing unit 134.
  • the first energy despreading processing unit 134 performs processing for returning the energy spreading processing performed on the transmission side to the data sequence obtained from the first byte deinterleaving processing unit 133 according to the ISDB-T standard.
  • the converted data string is output to the first RS decoding processing unit 135.
  • Processing blocks from the first RS decoding processing unit 135 to the second RS decoding processing unit 165 described below are processing blocks newly added to FIG. 14 or processing blocks having different connection destinations of output signals.
  • the first RS decoding processing unit 135 receives the data sequence from the first energy diffusion processing unit 134, performs Reed-Solomon decoding processing on the received data sequence using the assigned outer code, and performs Reed-Solomon decoding
  • the data stream of the transport stream packet thus processed is output to the RS code processing unit 141 in the encoding unit 140.
  • the first RS decoding processing unit 135 transmits to the error information addition processing unit 142 in the encoding unit 140 information indicating whether error correction has been performed in units of transport stream packets, A signal for determining the first byte of the port stream packet is output. Note that an error flag attached to a transport stream packet can be used as information on whether or not an error has been corrected in units of transport stream packets.
  • the transport stream includes a synchronization byte, and the synchronization byte can be used as a signal for determining the first byte of the transport stream packet. For this reason, it is assumed that first RS decoding processing section 135 outputs a data stream of the transport stream to error information addition processing section 142 in encoding section 140.
  • the encoding unit 140 performs the same encoding process as the encoding process performed in the transmission apparatus on the data stream of the transport stream packet obtained from the first RS decoding processing unit 135. Then, in parallel with the encoding process, the encoding unit 140 generates a signal for determining whether the encoded signal is generated from a signal including an error.
  • the operation of the encoding unit 140 will be described in detail with reference to FIG.
  • the RS code processing unit 141 performs Reed-Solomon code processing on the transport stream packet data obtained from the first RS decoding processing unit 135 for each transport stream.
  • a process called a shortened Reed-Solomon code (204, 188) is performed, and an outer code for enabling correction of random errors from 204 bytes to 8 bytes is given.
  • the RS code processing unit 141 outputs data obtained by adding an outer code to the transport stream data to the energy spreading processing unit 143.
  • the error information addition processing unit 142 obtains the data stream of the transport stream packet subjected to Reed-Solomon decoding from the first RS decoding processing unit 135. Then, the error information addition processing unit 142 is based on the information on the result of whether or not the error correction of the packet given to each packet in the transport stream data is possible (error flag given to the transport stream packet). In addition, information indicating whether or not error correction is possible (information indicating whether or not error correction has been performed) is generated for each packet, and a signal for determining the synchronization byte part at the head of the packet from the synchronization byte included in the transport stream is generated. . Then, the error information addition processing unit 142 outputs to the byte interleaving processing unit 144 a signal for determining whether or not error correction is possible and a synchronous byte portion at the beginning of the packet.
  • the error information addition processing unit 142 obtains the data stream of the transport stream that is output from the first RS decoding processing unit 135 to the RS code processing unit 141, and the RS code processing unit 141 and an energy spreading process to be described later If the processing delay time in the unit 143 is known, only information on whether or not error correction is possible in units of packets is generated, and the output timing of a signal indicating whether or not error correction is possible is output from the energy diffusion processing unit 143 described later. It is good also as a structure aligned with a data sequence. At this time, it is necessary to generate a signal indicating whether or not error correction is possible in consideration of the parity part signal added by the RS code processing unit 141.
  • the energy spread processing unit 143 obtains a data string obtained by adding an outer code to the data of the transport stream from the RS code processing unit 141. Then, the energy spread processing unit 143 performs energy spread processing on the transport stream signal excluding the synchronization bytes using a pseudo-random code sequence defined by the ISDB-T standard, and sends data to the byte interleave processing unit 144. Output a column.
  • the byte interleave processing unit 144 receives the data string from the energy diffusion processing unit 143, “error correction availability information” from the error information addition processing unit 142 (the data obtained from the energy diffusion processing unit 143 is the first RS decoding processing unit In 135, information indicating whether or not error correction has been performed is obtained. At this time, it is assumed that the “error correction propriety information” is aligned with the data sequence obtained from the energy diffusion processing unit 143.
  • the byte interleave processing unit 144 then converts the data sequence obtained from the energy diffusion processing unit 143 and the “error correction availability information” obtained from the error information addition processing unit 142 into byte units in the order defined by the ISDB-T standard. Then, the rearranged data string is output to the convolutional code processing unit 145, and the rearranged “error correction availability information” is output to the error information calculation processing unit 146.
  • the byte interleave processing unit 144 performs the delay correction processing at the same time. Shall be done.
  • the convolutional code processing unit 145 performs convolutional code processing on the data sequence obtained from the byte interleaving processing unit 144, and encodes the inner-code coding rate of each layer included in the control information acquired by the TMCC decoding processing unit 113 ( After the data is thinned according to the convolutional code rate, the data string is output to the bit interleave processing unit 147.
  • the error information calculation processing unit 146 obtains, from the byte interleaving processing unit 144, “error correction enable / disable information” data that has undergone byte interleaving rearrangement processing.
  • the data processing unit of the error information calculation processing unit 146 is a bit unit.
  • the error information calculation processing unit 146 generates data indicating a range in which data including an error affects the calculation in the convolutional code processing unit 145.
  • the error information calculation processing unit 146 provides the bit interleaving processing unit 147 with data indicating whether or not the data output from the convolutional code processing unit 145 may have an error (hereinafter, “error correction is possible”). This is called a “signal indicating the range.”).
  • FIG. 3 is a configuration example of an encoding circuit for generating a convolutional code in the convolutional code processing unit 145.
  • One code generator polynomial G1 (1,1,1,1,0,0,1)
  • the other code generator polynomial G2 (1,0,1,1,0,1,1)
  • Data input from the input side is input to the delay circuit, the output of each delay element (“D” in FIG. 3) is subjected to an exclusive OR operation according to a generator polynomial, and two data of X output and Y output are obtained. Is output.
  • FIG. 4 shows an arithmetic processing circuit performed by the error information arithmetic processing unit 146.
  • the arithmetic processing circuit of FIG. 4 is different from the encoding circuit of FIG. 4 in that the exclusive OR calculator for generating the X output and the Y output is a logical OR calculator. If the “error correction enable / disable information” obtained from the byte interleave processing unit 144 by the error information calculation processing unit 146 in FIG. 4 is data that can be corrected by the first RS decoding processing unit 135, the error correction is performed. If the data could not be obtained, it is assumed to be “1”.
  • the error information arithmetic processing unit 146 is data indicating whether or not the data output from the convolutional code processing unit 145 is generated from data that may have an error (“signal indicating error-correctable range”). ) Is “1” if the data output from the convolutional code processing unit 145 is generated from data that may have an error, and is generated from data that may have an error. Otherwise, “0” is output.
  • the convolutional code processing unit 145 and the error information calculation processing unit 146 are configured according to the encoding rate of the inner code of each layer (coding rate of the convolutional code) acquired by the TMCC decoding processing unit 113. Select and output X output and Y output (thinning out the X output and Y output of the encoder). For this reason, the selection procedure of the X output and the Y output in the convolutional code processing unit 145 and the error information calculation processing unit 146 is the same procedure.
  • the bit interleave processing unit 147 obtains the data string subjected to the convolutional code processing from the convolutional code processing unit 145 and obtains a “signal indicating an error-correctable range” from the error information calculation processing unit 146.
  • the bit interleave processing unit 147 takes into consideration that the data sequence obtained from the convolutional code processing unit 145 and the “signal indicating the error-correctable range” obtained from the error information calculation processing unit 146 do not shift in the time direction. Then, the rearrangement processing of the bits of the two data strings is performed according to the ISDB-T standard, and the information of the rearranged data strings and the “signal indicating the error-correctable range” is output to the mapping processing unit 151.
  • the mapping processing unit 151 obtains a data string after bit interleaving and a “signal indicating an error-correctable range” after bit interleaving from the bit interleaving processing unit 147. Then, the mapping processing unit 151 performs mapping by dividing the data sequence after bit interleaving into carrier units according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. Using the case where the carrier modulation scheme is 16QAM as an example, the processing of the mapping processing unit 151 will be described with reference to FIG.
  • FIG. 5 shows the relationship between the input data pattern to the mapping processing unit 151 and mapping points when the carrier modulation scheme is 16QAM, and how the real number I and the imaginary number Q are assigned to 4-bit data. It is illustrated.
  • complex signal points are assigned so that the inter-code distance between adjacent codes is 2.
  • the mapping processing unit 151 converts the data sequence after bit interleaving obtained from the bit interleaving processing unit 147 into a complex signal (hereinafter referred to as “mapping point information”) representing a mapping point determined from the carrier modulation scheme.
  • mapping point error presence / absence information information including a “signal indicating an error-correctable range” after bit interleaving corresponding to each of one or a plurality of pieces of data of the mapping point calculation source.
  • the intersymbol distance calculation / accumulation processing unit 152 obtains from the mapping processing unit 151 a data string of “mapping point information” and “mapping point error presence / absence information” mapped according to the carrier modulation scheme. Further, the inter-code distance calculation / accumulation processing unit 152 obtains an OFDM symbol data sequence (hereinafter referred to as “information of received OFDM symbol points”) from the deinterleaving processing unit 121.
  • the inter-code distance calculation / accumulation processing unit 152 aligns the timings of “received OFDM symbol point information”, “mapping point information”, and “mapping point error presence / absence information”. Since the processing delay amount from the first demapping processing unit 122 to the mapping processing unit 151 or the data is processed in units of OFDM symbols, for example, the beginning of the OFDM symbol is determined, and “mapping point information” and “ The acquisition timing difference from “received OFDM symbol point information” may be counted and adjusted, or a signal indicating the OFDM symbol head may be generated and transmitted in each processing block.
  • the inter-code distance calculation / accumulation processing unit 152 calculates a distance between “received OFDM symbol point information” and “mapping point information”. The distance is calculated according to the Euclidean distance calculation procedure. However, “mapping point error presence / absence information” needs to be considered when calculating the distance.
  • the inter-code distance calculation / accumulation processing unit 152 determines the content of the “mapping point error presence / absence information” corresponding to the “mapping point information”, and performs the following processing according to the content.
  • the inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the complex signal of “mapping point information” and the complex signal of “received OFDM symbol point information”.
  • the accumulation processing unit 152 calculates the Euclidean distance between the complex signal of “information of received OFDM symbol points” and the complex signal of “information of mapping points” replaced by the following procedure.
  • the inter-code distance calculation / accumulation processing unit 152 replaces the imaginary part of “mapping point information” with “received OFDM”. Replace the imaginary part of the symbol point information with the imaginary part of the nearest symbol point. The real part of “mapping point information” is not replaced. Then, the inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the “mapping point information” complex signal in which the imaginary part is replaced and the “received OFDM symbol point information” complex signal.
  • the inter-code distance calculation / accumulation processing unit 152 replaces the real part of “mapping point information” with “received OFDM symbol points”. Is replaced with the real part of the nearest symbol point. The imaginary part of the “mapping point information” is not replaced. Then, the inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the “mapping point information” complex signal and the “received OFDM symbol point information” complex signal with the real part replaced.
  • the inter-code distance calculation / accumulation processing unit 152 determines the real number of the “mapping point information”. The imaginary part and the imaginary part are replaced with a complex signal at a symbol point closest to “information on received OFDM symbol points”. Then, the inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the complex signal of “mapping point information” in which the real part and the imaginary part are replaced and the complex signal of “information of the received OFDM symbol point”. .
  • Modulation Error Ratio Modulation error ratio is calculated by accumulating the Euclidean distance values calculated when there is a possibility that both the real part and the imaginary part of the data used for generating the “mapping point information” contain errors. ) And generally called value.
  • the inter-code distance calculation / The accumulation processing unit 152 performs processing for replacing one of the real part or the imaginary part, or both of the real part and the imaginary part, and then receives the “symbol point closest to“ information of received OFDM symbol point ”and“ reception ”.
  • the Euclidean distance with the “information on the OFDM symbol points” is calculated.
  • the inter-code distance calculation / accumulation processing unit 152 corrects the calculated Euclidean distance value. The correction procedure will be described with reference to FIGS.
  • FIG. 6 illustrates the relationship between the MER value obtained by integrating the Euclidean distance between the “symbol point closest to the“ received OFDM symbol point ”and the“ received OFDM symbol point ”and the amount of noise added to the signal.
  • the horizontal axis represents the amount of noise
  • the vertical axis represents the magnitude of the MER value.
  • the solid line in FIG. 6 indicates the MER value
  • the dotted line indicates the amount of noise added to the signal.
  • FIG. 7 shows the error rate of the output signal (transport stream packet) of the first RS decoding processing unit 135 of FIG. 2 with respect to the noise amount, and the Euclidean distance calculated by the inter-code distance calculation / accumulation processing unit 152 for the noise amount. The cumulative value of is simultaneously shown. The relationship between the MER value and the accumulated value of the Euclidean distance calculated by the inter-code distance calculation / accumulation processing unit 152 with respect to the amount of noise added to the signal is shown.
  • the demapping processing units such as the first demapping processing unit 122 and the second demapping processing unit 153, it is desirable to accurately obtain the amount of noise added to the signal.
  • MER Modulation Error Ratio
  • the MER is one of the commonly used techniques for calculating the amount of noise added to this signal.
  • the MER is calculated from a value obtained by averaging the distance between the transmission signal point closest to the reception signal point and the reception signal point for a certain period.
  • the noise amount can be estimated with high accuracy.
  • the nearest signal point from which the MER is calculated is not the correct transmission signal point, which is incorrect.
  • the MER value is calculated based on the distance between the transmitted signal point and the received signal point, and a value smaller than the actually added noise amount is calculated.
  • the noise amount for which a value smaller than the noise amount actually added by the MER value is “A”.
  • the cumulative value of the Euclidean distance value calculated by the inter-code distance calculation / accumulation processing unit 152 in the first embodiment is the first value even if the amount of noise added to the signal is larger than “A”. Since the error-corrected information is used in the RS decoding processing unit 135, an accurate noise amount can be estimated.
  • the amount of noise that is added to the signal and the output signal of the first RS decoding processing unit 135 starts to contain an error is defined as “B”. Then, since the distance between the correct transmission signal point and the reception signal point can be calculated while the noise amount is between “A” and “B”, the inter-code distance calculation / accumulation processing unit 152 estimates an accurate noise amount. be able to.
  • the first RS decoding processing unit 135 cannot perform error correction, and the output signal includes an error. Further, a noise amount at which all the output signals of the first RS decoding processing unit 135 start to contain errors is defined as “C”.
  • the noise amount ranges from “B” to “C”
  • the data error-corrected by the first RS decoding processing unit 135 decreases, and when the amount of noise becomes “C”, error correction of all data becomes impossible.
  • the noise amount is “C”
  • the noise amount calculated by the intersymbol distance calculation / accumulation processing unit 152 is the same value as the value calculated by the MER.
  • the amount of noise calculated at 152 is the same value as the value calculated by MER.
  • the inter-code distance calculation / accumulation processing unit 152 when the amount of noise added to the signal is greater than “B”, the amount of noise calculated by the inter-code distance calculation / accumulation processing unit 152 does not match the amount of noise added to the signal. In particular, when the noise amount is from “B” to “C”, the calculation result of the noise amount shows that the noise amount is decreasing, although the noise amount actually added to the signal increases. can get. For this reason, in the inter-code distance calculation / accumulation processing unit 152, when the data used for generating the “mapping point information” includes an error, the “symbol point closest to the“ received OFDM symbol point ”and the“ reception point ”are received. A value obtained by correcting the “Euclidean distance from the“ OFDM symbol point ”is corrected.
  • the inter-code distance calculation / accumulation processing unit 152 applies the error to the signal whose error could not be corrected by the first RS decoding processing unit 135.
  • the Euclidean distance calculated according to the “mapping point error presence / absence information” as described above is calculated in units of OFDM carriers. Then, it is integrated a certain number of times in the symbol direction.
  • the number of integrations may be the same as the longest time of time interleaving performed by the deinterleave processing unit 121.
  • the longest time interleaving time does not indicate the maximum value of the parameters that can be set among the parameters of the time interleaving length specified in the broadcast standard.
  • the inter-code distance calculation / accumulation processing unit 152 outputs the distance information between the “received OFDM symbol point information” and the “mapping point information” integrated in symbol units to the second demapping processing unit 153.
  • frequency reordering processing called “intra-segment carrier rotation” is performed within a segment during frequency interleaving processing on the transmission side. The data is rearranged to the same frequency position.
  • the data location differs depending on the symbol number in other broadcasting systems, etc., consider the data rearrangement process according to the symbol number when performing the integration process for the Euclidean distance in the symbol direction a certain number of times. Then, it is necessary to integrate the Euclidean distance between the complex signal of “mapping point information” calculated for the signals at the same frequency position and the complex signal of “information of received OFDM symbol points”.
  • inter-code distance calculation / accumulation processing unit 152 can calculate distance information between “information on received OFDM symbol points” and “information on mapping points” through further detailed processing.
  • the correction procedure of “mapping point information” used for calculating the distance information will be described with reference to FIG. 5 again.
  • FIG. 5 shows the mapping rule when the carrier modulation scheme is 16QAM.
  • “mapping point information” is calculated from 4-bit data.
  • mapping point is uniquely determined according to FIG. Is the value obtained from the mapping processing unit 151.
  • the inter-code distance calculation / accumulation processing unit 152 determines from the “mapping point error presence / absence information” that 1-bit data is “possibly containing an error”, first, the bit including the error ( It is determined whether it is included in (b0, b2) or (b1, b3). As shown in FIG. 5, in the 16QAM modulation system, the real part of the mapping point is uniquely determined from (b0, b2) and the imaginary part is uniquely determined from (b1, b3). On the other hand, since a code point cannot be determined from a pair of bits including an error, a temporary value is assigned.
  • the inter-code distance calculation / accumulation processing unit 152 may have an error in b0 that is the calculation source of the real part value and b2 is correct information, and the “mapping” obtained from the mapping processing unit 151
  • the real part of “point information” is replaced with the real part of the code point closest to the real part of “information of received OFDM symbol point”, out of the two code points obtained from b2.
  • the imaginary part of the “mapping point information” is not replaced.
  • the inter-code distance calculation / accumulation processing unit 152 calculates the real part of the “mapping point information” obtained from the mapping processing unit 151 when there is a possibility of an error in b2 and b0 is correct information.
  • B0 the real part of the code point closest to the real part of the "information on received OFDM symbol points” is replaced.
  • the imaginary part of the “mapping point information” is not replaced.
  • the inter-code distance calculation / accumulation processing unit 152 may have an error in b1 that is the source of calculation of the imaginary part value, and b3 is correct information, and the “mapping” obtained from the mapping processing unit 151 is obtained.
  • the imaginary part of the "point information” is replaced with the imaginary part of the code point closest to the imaginary part of the "received OFDM symbol point information” among the two code points obtained from b3.
  • the real part of “mapping point information” is not replaced.
  • the inter-code distance calculation / accumulation processing unit 152 calculates the imaginary part of the “mapping point information” obtained from the mapping processing unit 151 when there is a possibility of error in b3 and b1 is correct information.
  • B1 is replaced with the imaginary part of the code point closest to the imaginary part of “information of received OFDM symbol point”.
  • the real part of “mapping point information” is not replaced.
  • the inter-code distance calculation / accumulation processing unit 152 determines that 2-bit errors are concentrated on (b0, b2) based on the “mapping point error presence / absence information”, the “mapping” obtained from the mapping processing unit 151 The real part of “point information” is replaced with the real part of the code point closest to the real part of “received OFDM symbol point information”. The imaginary part of the “mapping point information” is not replaced.
  • the inter-code distance calculation / accumulation processing unit 152 determines from the “mapping point error presence / absence information” that the 2-bit errors are concentrated on (b1, b3), the “mapping point error information” obtained from the mapping processing unit 151 The imaginary part of “information” is replaced with the imaginary part of the symbol point closest to the imaginary part of “information on received OFDM symbol points”. The real part of “mapping point information” is not replaced.
  • the intersymbol distance calculation / accumulation processing unit 152 indicates that the “mapping point error presence / absence information” indicates that all the errors have been corrected, In other cases, the Euclidean distance between the corrected “mapping point information” and the “received OFDM symbol point information” is calculated for each OFDM carrier, and is further integrated a certain number of times in the symbol direction. Then, the inter-code distance / accumulation processing unit 152 outputs the distance information between “received OFDM symbol point information” and “mapping point information” integrated in symbol units to the second demapping processing unit 153. .
  • distance information between “received OFDM symbol point information” and “mapping point information” integrated in symbol units calculated by the inter-code distance calculation / accumulation processing unit 152 is referred to as “carrier-based interference information”.
  • the carrier modulation method is described as the 16QAM modulation method.
  • the carrier modulation method is a modulation method including multi-value information, such as 64QAM, the combination of data error occurrences is different.
  • the same calculation method is adopted by replacing the point closest to “information of received OFDM symbol point” with new “mapping point information” among mapping points calculated from bits without error. be able to.
  • the inter-code distance calculation / accumulation processing unit 152 also outputs new “mapping point information” to the second demapping processing unit 153 at the subsequent stage, and the second demapping processing unit 153 includes the mapping processing unit. Instead of “mapping point information” input from 151, reliability information may be calculated using new “mapping point information” input from the inter-code distance calculation / accumulation processing unit 152.
  • the “interference information in units of carriers” calculated by the inter-code distance calculation / accumulation processing unit 152 is calculated from signals obtained as a result of rearranging the data arrangement order in the frequency and time directions by the deinterleave processing unit 121. Value.
  • a memory or the like for integrating and holding the Euclidean distances of transmission / reception signal points is required.
  • the values of the Euclidean distances of the transmission / reception signal points may be rearranged according to the frequency interleaving processing procedure at the time of signal transmission and stored in the memory.
  • the “carrier-based interference information” can be rearranged in order from the low-frequency OFDM carrier. For example, when a frequency selective interference signal is superimposed around a specific OFDM carrier of the received signal, A large value is biased toward a certain range of “jamming information per carrier”. In this way, it is possible to determine whether or not the received signal is affected by the frequency selective interference signal from the distribution state in the frequency direction of the “carrier-based interference information”. In addition, the position of the OFDM carrier that is affected by the frequency selective interference signal can be identified more accurately. It is also possible to interpolate or blunt the result of “interference information per carrier” or “subject interference information per carrier” when the number of integrations when calculating “interference information per carrier” is small. .
  • the frequency selective interference signal may be separately use information on the frequency of the frequency selective interference signal. For example, it is conceivable to calculate a frequency range to be cut off by a filter when a notch filter process for removing an interference signal is performed on a signal upstream of the FFT processing unit.
  • the second demapping processing unit 153 at the subsequent stage uses the “carrier-based interference information”. Then, it is necessary to rearrange the “jamming information per carrier” again so that the data and the “jamming information per carrier” are generated from the same carrier position.
  • the inter-code distance calculation / accumulation processing unit 152 transmits the “carrier-based interference information” to the first demapping processing unit 122A corresponding to the first demapping processing unit 122. However, the same processing needs to be performed on the first demapping processing unit 122A.
  • the second demapping processing unit 153 obtains “received OFDM symbol point information” and a data string of the estimation result of the transmission path characteristics from the deinterleaving processing unit 121, and “mapping point information” from the mapping processing unit 151. And “mapping point error presence / absence information” from the inter-symbol distance calculation / accumulation processing unit 152, which is integrated on a symbol-by-symbol basis, information on the distance between “received OFDM symbol point information” and “mapping point information” Get unit interference information). Then, the second demapping processing unit 153 performs demapping processing according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. However, since the second demapping processing unit 153 processes the data after the error correction processing is performed once, the second demapping processing unit 153 switches the processing method depending on whether or not the data may contain an error.
  • the second demapping processing unit 153 determines, based on the “mapping point error presence / absence information”, whether or not the data from which the “mapping point information” is calculated may have an error. When there is no possibility of an error, the second demapping processing unit 153 uses “mapping point information” from the mapping processing unit 151 and “received OFDM symbol point” from the deinterleaving processing unit 121 as mapping point information. After obtaining the processing information and selecting the “processing point”, the “mapping point information” is selected as the code point, and the value of the estimation result of the transmission path characteristics is given a large value. The large value is given as “1”, for example, assuming that the magnitude of the transmission line characteristic when there is no amplitude fluctuation in the transmission line is “1”.
  • the second demapping processing unit 153 uses the “received OFDM symbol point information” to calculate the reliability information.
  • the information of the estimation result of the transmission path characteristics used is the magnitude of the estimation result of the transmission path characteristics obtained from the deinterleave processing unit 121 (the magnitude of the estimation result of the transmission path characteristics H ( ⁇ ) calculated for each carrier) and To do.
  • the “mapping point information” newly generated by the intersymbol distance calculation / accumulation processing unit 152 is used as the information of the reception symbol points used for the calculation of the reliability information, and then the size of the transmission path characteristics May be a value obtained from the deinterleave processing unit 121.
  • the second demapping processing unit 153 determines whether or not there is a possibility that the data from which the “mapping point information” is calculated has an error.
  • the processing unit 153 uses distance information (interference information in carrier units) between “information on received OFDM symbol points” and “information on mapping points” integrated in symbol units by the inter-code distance calculation / accumulation processing unit 152. Then, the reliability information value calculated from the “information of received OFDM symbol point” and the size of the transmission path characteristic is corrected. By the way, the distance information between “received OFDM symbol point information” and “mapping point information” integrated in symbol units calculated by the inter-code distance calculation / accumulation processing unit 152 is calculated as “mapping point information”.
  • the Euclidean distance of the signal points can be regarded as a value obtained by integrating the same data carrier for a certain period of time.
  • the reliability information of each received data is corrected using “jamming information per carrier”. To do. Specifically, it is calculated from received symbol points and transmission path characteristics so that the reliability of data carriers with a large “carrier interference information” is low and the reliability of data carriers with a small “carrier interference information” is high. The reliability information value is divided by “jamming information per carrier”. In addition, a carrier that always indicates that the “mapping point error presence / absence information” is an error, or that “carrier-based interference information” is prominently large, sets the reliability information value to “0”, The data contained in the carrier may not be trusted at all.
  • the second demapping processing unit 153 outputs the generated bit data and reliability information to the second bit deinterleaving processing unit 161 in the second error correction unit 160.
  • the second demapping processing unit 153 obtains “interference information per carrier” from the inter-code distance calculation / accumulation processing unit 152. By averaging the “jamming information for each carrier” in the carrier direction, it can be used separately as an indicator of the amount of jamming signals included in the received signal. If the C / N of the received OFDM signal fluctuates so that the signal level changes in a short time, the second demapping processing unit uses the average value of the interference information for each carrier as the noise amount of the received signal. The reliability information output from 153 to the second bit deinterleave processing unit 161 in the second error correction unit 160 may be further corrected. It can also be used as a signal quality value of a signal received by the multicarrier modulation signal receiving apparatus separately.
  • the following measures can be taken as the signal quality value of the received signal. Since the “information on received OFDM symbol points” obtained by the inter-code distance calculation / accumulation processing unit 152 is a value that has passed through the deinterleaving processing unit 121, the memory amount of the deinterleaving processing unit 121 is reduced. It is conceivable that the bit width is limited by quantization. As a result, when the signal quality is high, it is difficult to calculate the signal quality index value with high accuracy in the processing block subsequent to the deinterleave processing unit 121 due to the influence of the quantization error.
  • the deinterleaving processing unit 121 If the value calculated in the previous stage is used as the signal quality index value and the signal quality is lower than a certain value, the “interference information per carrier” obtained from the inter-code distance calculation / accumulation processing unit 152 is used in the carrier direction. The averaged value is used as the signal quality index value.
  • the second error correction unit 160 performs error correction processing based on the bit data and reliability information obtained from the second demapping processing unit 153, and generates an original signal sequence.
  • the operation of the second error correction unit 160 will be described in detail with reference to FIG.
  • the second bit deinterleave processing unit 161 rearranges the bit data and reliability information obtained from the second demapping processing unit 153 into the original order in accordance with the ISDB-T standard, and rearranges the bit data. And the reliability information are output to the second decoding processing unit 162.
  • the second decoding processing unit 162 obtains bit data and reliability information from the second bit deinterleaving processing unit 161.
  • the second decoding processing unit 162 is a second bit deinterleaving processing unit according to the coding rate of the inner code of each layer (coding rate of the convolutional code) included in the control information acquired by the TMCC decoding processing unit 113 A dummy bit is inserted into the bit position thinned out on the transmission side with respect to the data string of bit data obtained from 131, and the value is undefined.
  • the second decoding processing unit 162 performs decoding processing by weighting the received bit data according to the reliability information.
  • a decoding process called Viterbi decoding is widely used, but a process according to another decoding algorithm may be used.
  • the second decoding processing unit 162 outputs the decoding result data string to the second byte deinterleaving processing unit 163.
  • the second byte deinterleave processing unit 163 receives the data sequence of the decoding result from the second decoding processing unit 162, rearranges the received data sequence of the decoding result into the original order in accordance with the ISDB-T standard, The rearranged data string is output to the second energy despreading processing unit 164.
  • the second energy spreading processing unit 164 restores the energy spreading processing performed on the signal transmission side according to the ISDB-T standard for the data string obtained from the second byte deinterleaving processing unit 163. And the converted data string is output to the second RS decoding processing unit 165.
  • the second RS decoding processing unit 165 receives the data string from the second energy spreading processing unit 164, performs Reed-Solomon decoding processing using the assigned outer code, and performs a Reed-Solomon decoded transport stream
  • the data string of the packet is output to the TS reproduction processing unit 171.
  • the TS reproduction processing unit 171 obtains the data sequence after Reed-Solomon decoding from the second RS decoding processing unit 165, and in order to make the number of packets of the transport stream constant regardless of the transmission parameters, an appropriate number of Complement processing is performed on the null packet, and the packet data of the transport stream after supplementing the null packet is output to the TS decode processing unit 172.
  • the TS decode processing unit 172 obtains the transport stream packet output from the TS playback processing unit 171, and based on the information included in the transport stream, a video packet, an audio packet, and a PCR (Program Clock Reference) packet Are output to the MPEG decoding processing unit 173.
  • the MPEG decoding processing unit 173 includes a video decoder and an audio decoder.
  • the video decoder extracts video packets from the transport stream packets obtained from the TS decoding processing unit 172, decodes the data, and generates image data.
  • the audio decoder extracts an audio packet from the transport stream obtained from the TS decoding processing unit 172, decodes the data, and generates audio data.
  • the MPEG decode processing unit 173 adjusts the output timing of the image data and the audio data based on the time information included in the PCR packet, and then outputs the image data and the audio data to a display device or the like.
  • the multicarrier modulation signal receiving apparatus restores the transmission signal point generated at the signal transmission station from the data resulting from the error correction processing once, and demodulates the transmission signal point and the demodulation.
  • the received signal point obtained from the unit is compared in units of carriers, and a value obtained by integrating the Euclidean distance obtained from the comparison result for a certain period of time is regarded as an interference signal amount included in each carrier and transmitted to the second error correction unit 160 Sex information can be corrected. For this reason, it is possible to obtain high reception performance as compared with the conventional method.
  • the received signal is affected by a frequency-selective interference signal, it is possible to more accurately calculate the amount of interference signal that is biased in units of carriers, so that a high effect can be obtained.
  • the processing timing is adjusted for each layer as the signal is transmitted by a different carrier modulation method for each layer.
  • all procedures are not necessarily described for the processing specified in the ISDB-T standard, processing according to the ISDB-T standard is performed in an appropriate block unless otherwise specified.
  • the error correction process is performed once in the second error correction unit 160 from the encoding unit 140 and output to the TS reproduction processing unit 171 as shown in FIG.
  • the second error correction unit 160 may perform error correction processing a plurality of times from the unit 140 and output to the TS reproduction processing unit 171.
  • an error correction count unit 166 for inputting the output signal of the second error correction unit 160 is provided. .
  • the error correction count unit 166 outputs a signal to the encoding unit 140 when the number of error correction processes in the second error correction unit 160 is 1, and error correction is performed.
  • the data is output to the TS reproduction processing unit 171. Further, for example, the signal processing from the error correction count unit 166 to the encoding unit 140 is repeated a plurality of times within the range where the operation speed of the second error correction processing unit 160 is increased and the output signal output time is not delayed, It is also possible to increase the error correction effect.
  • two blocks that perform the same processing are provided as in the first decoding processing unit 132 and the second decoding processing unit 162 as shown in FIG. 2, but may be shared. .
  • the output signal from the second demapping processing unit 153 is input to the first error correction unit 130.
  • an error correction count unit 136 for inputting an output signal of the first error correction unit 130 is provided.
  • the error correction count unit 136 outputs a signal to the encoding unit 140 when the number of error correction processes in the first error correction unit 130 is one, and the number of error correction processes reaches a specified number.
  • a signal is output to the TS reproduction processing unit 171.
  • the operation speed of the first error correction processing unit 130 is set high, and the delay from the output time of the output signal does not increase so that the second demapping processing unit 153 transfers to the first error correction unit 130. It is also possible to increase the error correction effect by repeating this signal processing a plurality of times.
  • Embodiment 2 of the present invention will be described below with reference to the drawings.
  • components that perform substantially the same processing as the components in the first embodiment are denoted by the same reference numerals, and the description thereof can be applied. Omit or keep a simple description.
  • FIG. 10 is a block diagram showing a configuration of the multicarrier modulation signal receiving apparatus according to the second embodiment
  • FIG. 11 is a block diagram showing a detailed configuration of the multicarrier modulation signal receiving apparatus of FIG.
  • the multicarrier modulation signal receiving apparatus includes an antenna unit 101, a tuner unit 102, an A / D conversion processing unit 103, a demodulation unit 110, and a deinterleaving processing unit 121.
  • the demodulation unit 110 in FIG. 10 includes an orthogonal detection processing unit 111, an FFT processing unit 112, and an equalization processing unit 113.
  • the first error correction unit 130 of FIG. 10 includes a first bit deinterleaving processing unit 131, a first decoding processing unit 132, and a first byte deinterleaving processing unit 133. And a first energy despreading processing unit 134 and a first RS decoding processing unit 135.
  • the second error correction unit 160 in FIG. 10 includes a second bit deinterleaving processing unit 161, a second decoding processing unit 162, and a second byte deinterleaving processing unit 163. And a second energy despreading processing unit 164 and a second RS decoding processing unit 165.
  • the multicarrier modulation signal receiving apparatus in the second embodiment is such that the inter-code distance calculation / accumulation processing unit 152 sets the “carrier-based interference information” to the second value.
  • the first demapping processing unit 122A obtains the “received OFDM symbol points” rearranged from the deinterleaving processing unit 121 and the data string of the estimation result of the transmission path characteristics.
  • the first demapping processing unit 122A regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. , Generate bit data.
  • the first demapping processing unit 122A performs distance information between the “received OFDM symbol point” and the mapping point (transmission signal point) closest to the “received OFDM symbol point” (“distance information of the received symbol point”).
  • the first demapping processing unit 122A outputs the generated bit data and reliability information to the first bit deinterleaving processing unit 131 in the first error correction unit 130.
  • the first demapping processing unit 122A generates information for performing error correction processing called soft decision in the first decoding processing unit 132 in the subsequent stage.
  • the first demapping processing unit 122A obtains a data string of “received OFDM symbol points” and “estimation results of transmission path characteristics” after the deinterleaving processing from the deinterleaving processing unit 121.
  • the first demapping processing unit 122A regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point, and calculates the data of the complex signal point of the closest mapping point.
  • the first demapping processing unit 122A converts the complex signal into a bit string according to the complex signal point and information bit allocation rule as shown in FIG. And a bit data string are output.
  • the first demapping processing unit 122A performs “distance information of received symbol points”, “data string of transmission path characteristic estimation results” obtained from the deinterleaving processing unit 121, and inter-code distance calculation / accumulation.
  • the reliability information is generated by combining the “interference information in units of carriers” obtained from the processing unit 152.
  • the reliability information generated by the first demapping processing unit 122 is also called likelihood, and is a value indicating 1-likeness and 0-likeness of data in bit units. For example, when there is a high possibility that a certain bit is 1, a positive value is given as the value of reliability information, and when there is a high possibility that a certain bit is 0, a negative value is given. If a bit has the same probability of 1 and 0, 0 is given.
  • the reliability value is as follows: Can be calculated.
  • the influence of the transmission path characteristics between the former transmission and reception is divided in two: transmission path estimation error due to transmission path fluctuation (fading) and signal attenuation between transmission and reception (including multipath attenuation for a specific carrier) and It can be divided into two.
  • the reliability value of the demodulated signal can be calculated from the estimated value of signal attenuation per OFDM carrier between transmission and reception.
  • the size (for example, the square value) of the estimated value H ( ⁇ ) of the transmission path characteristic used for the division of the received signal by the equalization processing unit 113 is calculated.
  • the estimation error can be reduced by devising the interpolation processing method, and the transmission path estimation error can be further reduced by using a technique for estimating / removing the amount of intercarrier interference called ICI (Inter Carrier Interference).
  • ICI Inter Carrier Interference
  • the amount of thermal noise inside the latter tuner can be estimated from the C / N amount of the entire OFDM signal band, assuming that the thermal noise generated inside the tuner is white noise and follows Gaussian characteristics. This can be replaced by a value obtained by integrating the “reception symbol point distance information” in the carrier direction.
  • the reliability information value for each bit data is the size of the transmission path characteristics in units of OFDM carriers, considering fluctuations in transmission path characteristics between transmission and reception and the influence of the amount of thermal noise inside the tuner on the received signal level.
  • the value of the reliability information may be given so as to be proportional and inversely proportional to the noise amount of the entire signal (proportional to the C / N amount).
  • the reliability value calculated as described above is further calculated by the inter-code distance calculation / accumulation processing unit 152. What is necessary is just to correct
  • the Euclidean distance between the "mapping point information” and the “received OFDM symbol point information” is accumulated in the time direction for a fixed number of carriers. This value is used as “carrier-based interference information”.
  • the first demapping processing unit 122A determines that the “symbol point closest to the received OFDM symbol point” until “interference information per carrier” is calculated by the inter-code distance calculation / accumulation processing unit 152.
  • the reliability value may be corrected using the MER value obtained by integrating the Euclidean distance from the “received OFDM symbol point”.
  • a carrier that always indicates that the “mapping point error presence / absence information” is an error, or that “carrier-based interference information” is prominently large, sets the reliability information value to “0”, The data contained in the carrier may not be trusted at all.
  • the multicarrier modulation signal receiving apparatus restores the transmission signal point generated at the signal transmission station from the data resulting from the error correction processing once, and demodulates the transmission signal point and the demodulation.
  • the received signal points obtained from the unit are compared in carrier units, and the value obtained by integrating the Euclidean distance obtained from the comparison result for a certain period of time is regarded as the amount of interfering signals included in each carrier and the reliability information transmitted to the error correction unit is corrected. Therefore, it is possible to obtain higher reception performance as compared with the conventional method.
  • the received signal is affected by a frequency-selective interference signal, it is possible to more accurately calculate the amount of interference signal that is biased in units of carriers, so that a high effect can be obtained.
  • the error correction process is performed once by the second error correction unit 160 from the encoding unit 140 and output to the TS reproduction processing unit 171 as shown in FIG.
  • the second error correction unit 160 may perform error correction processing a plurality of times from the unit 140 and output to the TS reproduction processing unit 171.
  • an error correction count unit 166 for inputting the output signal of the second error correction unit 160 is provided. .
  • the error correction count unit 166 outputs a signal to the encoding unit 140 when the number of error correction processes in the second error correction unit 160 is 1, and error correction is performed.
  • the data is output to the TS reproduction processing unit 171. Further, for example, the signal processing from the error correction count unit 166 to the encoding unit 140 is repeated a plurality of times within the range where the operation speed of the second error correction processing unit 160 is increased and the output signal output time is not delayed, It is also possible to increase the error correction effect.
  • the output signal from the second demapping processing unit 153 is input to the first error correction unit 130.
  • an error correction count unit 136 for inputting an output signal of the first error correction unit 130 is provided. Then, the error correction count unit 136 outputs a signal to the encoding unit 140 when the number of error correction processes in the first error correction unit 130 is one, and the number of error correction processes reaches a specified number.
  • a signal is output to the TS reproduction processing unit 171.
  • the operation speed of the first error correction processing unit 130 is set high, and the delay from the output time of the output signal does not increase so that the second demapping processing unit 153 transfers to the first error correction unit 130. It is also possible to increase the error correction effect by repeating this signal processing a plurality of times.
  • All or some of the components other than the antenna unit 101 of the multicarrier modulation signal receiving apparatus described in the first and second embodiments may be realized by an LSI that is an integrated circuit. At this time, all or a part of the constituent elements may be individually made into one chip, or may be made into one chip so as to include a part or all. Further, although it is referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration. Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor capable of reconfiguring connection and setting of circuit cells inside the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Possible applications include biotechnology.
  • the present invention can be used for a multicarrier modulation signal receiving apparatus and an integrated circuit that receive a received signal that is affected by a frequency selective interference signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

A signal is received by an antenna unit, and processes that are normally carried out upon a receiving device, quadrature detection processing, FFT processing, equalization processing, de-interleaving processing, de-mapping processing, decoding processing, energy despreading processing, Reed-Solomon decoding processing, are carried out. The signal that is inputted into the de-mapping processing unit (the post-equalization symbol point) is retained separately, and re-coding processing is carried out once more upon the data sequence of the result of the Reed-Solomon decoding in the same sequence as the modulation processing upon the transmitting device. Energy spreading processing, convolutional code processing, and mapping processing are carried out at time thereof.

Description

マルチキャリア変調信号受信装置及び集積回路Multi-carrier modulation signal receiving apparatus and integrated circuit
 本発明は、マルチキャリア変調された信号を受信する際に、受信信号に重畳した妨害信号を検出し、受信信号から妨害信号の影響を取り除く技術に関する。 The present invention relates to a technique for detecting an interference signal superimposed on a reception signal and removing the influence of the interference signal from the reception signal when receiving a multi-carrier modulated signal.
 近年、世界各国において地上デジタル放送が開始され、従来のアナログテレビ放送からの置き換えが進められている。欧州の地上デジタル放送規格(DVB-T)や、日本の地上デジタル放送規格(ISDB-T)では、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式が採用され、多数の搬送波を用いることにより高い伝送容量の信号を伝送することができる。 In recent years, terrestrial digital broadcasting has started in various countries around the world, and replacement with conventional analog television broadcasting is being promoted. The European terrestrial digital broadcasting standard (DVB-T) and the Japanese terrestrial digital broadcasting standard (ISDB-T) employ an OFDM (Orthogonal Frequency Division Multiplexing) system, and use a large number of carriers. A signal with a high transmission capacity can be transmitted.
 OFDM方式では、ガードインターバルと呼ばれる前後のシンボルからの干渉を防止するための仕組みにより、反射波による干渉の影響を受けにくくしたり、伝送信号をデジタル符号に変換し、誤り訂正符号処理を施すことにより、受信信号のノイズ耐性を向上させたりしている。特に、ISDB-T規格においては、インタリーブと呼ばれるデータの並び替えや、階層伝送と呼ばれるノイズ耐性が異なる複数の放送を伝送し視聴側で選択視聴する仕組みなども導入されており、さらに受信品質が低下した際にも安定した放送の視聴が行えるようになっている。前記の誤り訂正符号処理は一例であり、他にも様々な信号処理技術が組み込まれており、受信装置において適切な処理を施すことで、受信信号レベルの低下や電波障害があっても正常な受信状態を保つことが可能である。 In the OFDM system, a mechanism to prevent interference from preceding and following symbols called guard intervals makes it less susceptible to interference from reflected waves, or converts the transmission signal to a digital code and performs error correction code processing. As a result, the noise resistance of the received signal is improved. In particular, the ISDB-T standard introduces a data rearrangement called interleaving and a mechanism called hierarchical transmission that transmits a plurality of broadcasts with different noise immunity and selectively views them on the viewer side. Even when it drops, it is possible to view stable broadcasts. The above error correction code processing is an example, and various other signal processing techniques are incorporated, and by performing appropriate processing in the receiving device, it is normal even if there is a decrease in received signal level or radio wave interference. It is possible to keep the reception state.
 ここで、図14を用いて、日本の地上デジタル放送規格であるISDB-T方式の放送を受信するためのマルチキャリア変調信号受信装置の構成を説明する。マルチキャリア変調信号受信装置は、アンテナ部601と、チューナ部602と、A/D変換処理部603と、直交検波処理部611と、FFT処理部612と、TMCC復号処理部613と、等化処理部614と、デインタリーブ処理部621と、デマッピング処理部622と、ビットデインタリーブ処理部631と、復号処理部632と、エネルギー逆拡散処理部634と、RS(リード・ソロモン)復号処理部635と、TS(トランスポートストリーム)再生処理部671と、TSデコード処理部672と、MPEG(Moving Picture Experts Group)デコード処理部673とで構成されている。 Here, the configuration of a multicarrier modulation signal receiving apparatus for receiving ISDB-T broadcasting, which is a Japanese terrestrial digital broadcasting standard, will be described with reference to FIG. The multicarrier modulation signal receiving apparatus includes an antenna unit 601, a tuner unit 602, an A / D conversion processing unit 603, an orthogonal detection processing unit 611, an FFT processing unit 612, a TMCC decoding processing unit 613, and an equalization process. Unit 614, deinterleave processing unit 621, demapping processing unit 622, bit deinterleaving processing unit 631, decoding processing unit 632, energy despreading processing unit 634, and RS (Reed-Solomon) decoding processing unit 635. A TS (transport stream) reproduction processing unit 671, a TS decoding processing unit 672, and an MPEG (Moving Picture Experts Group) decoding processing unit 673.
 チューナ部602は、アンテナ部601により受信された信号から所定の周波数帯域の信号を選局し、A/D変換処理部603へと出力する。A/D変換処理部603は、チューナ部602から出力されたOFDM信号をサンプリングし、デジタル信号へと変換した上で、直交検波処理部611へと出力する。 The tuner unit 602 selects a signal in a predetermined frequency band from the signal received by the antenna unit 601 and outputs it to the A / D conversion processing unit 603. The A / D conversion processing unit 603 samples the OFDM signal output from the tuner unit 602, converts it to a digital signal, and outputs the digital signal to the quadrature detection processing unit 611.
 直交検波処理部611は、A/D変換処理部603から入手したOFDM信号に、基準搬送波と同一周波数の正弦波信号を乗じてベースバンドのOFDM信号へと変換し、FFT処理部612へと出力する。 The quadrature detection processing unit 611 multiplies the OFDM signal obtained from the A / D conversion processing unit 603 by a sine wave signal having the same frequency as that of the reference carrier wave, converts the signal into a baseband OFDM signal, and outputs it to the FFT processing unit 612. To do.
 FFT処理部612は、直交検波処理部611から出力されたベースバンドのOFDM信号から、有効シンボル期間の信号列を抽出する。そして、FFT処理部612は、抽出した信号列に対し離散フーリエ変換を施し、複素信号を生成し、離散フーリエ変換して得られた複素信号をTMCC復号処理部613と等化処理部614へと出力する。 The FFT processing unit 612 extracts a signal sequence of an effective symbol period from the baseband OFDM signal output from the quadrature detection processing unit 611. Then, the FFT processing unit 612 performs discrete Fourier transform on the extracted signal sequence, generates a complex signal, and converts the complex signal obtained by the discrete Fourier transform to the TMCC decoding processing unit 613 and the equalization processing unit 614. Output.
 TMCC復号処理部613は、FFT処理部612から複素信号を入手する。FFT処理部112から入手した複素信号は、FFTポイント数だけ存在し、その1つ1つがOFDMシンボルのデータとなっている。例えば、ISDB-T放送規格のモード3と呼ばれる運用規格に従えば、FFTポイント数は8192となり、8192個の複素信号が得られる。このうち5617個が処理対象となる信号であり、これをOFDMシンボルと呼ぶ。OFDMシンボルのデータは、モード1からモード3の夫々において規定されたる複数のキャリアに配置され、制御情報を伝送するためのTMCC(Transmission and Multiplexing Configuration Control)信号を含んでいる。TMCC信号は、システム識別、伝送パラメータ切り替え指標、緊急警報放送用起動フラグ、カレント情報、ネクスト情報など、受信機の復調と復号動作を補助する情報である。このうち、受信信号の伝送パラメータ情報は、部分受信階層の有無、階層毎のセグメント数、時間インタリーブ長、キャリア変調方式及び内符号(ISDB-T規格では畳み込み符号)の符号化率を含む。TMCC信号が配置されるキャリアは受信側で既知であり、TMCC復号処理部613は、OFDMシンボルからTMCC信号を検出・抽出する。そして、TMCC復号処理部613は、抽出したTMCC信号に対して時間方向にDBPSK(Difference Binary Phase Shift Keying)に対応する復調処理を施し、復調処理の結果からTMCC信号で伝送された制御情報を取得する。そして、TMCC復号処理部613は、図14には出力先の構成要素を明示していないが、制御情報に含まれる情報をその情報を処理に必要とする構成要素に対して出力する。 The TMCC decoding processing unit 613 obtains a complex signal from the FFT processing unit 612. Complex signals obtained from the FFT processing unit 112 exist in the number of FFT points, and each of them is OFDM symbol data. For example, according to an operation standard called mode 3 of the ISDB-T broadcasting standard, the number of FFT points is 8192, and 8192 complex signals are obtained. Of these, 5617 are signals to be processed and are called OFDM symbols. The OFDM symbol data is arranged on a plurality of carriers defined in each of mode 1 to mode 3, and includes a TMCC (Transmission and Multiplexing Configuration Control) signal for transmitting control information. The TMCC signal is information that assists the demodulation and decoding operations of the receiver, such as system identification, transmission parameter switching index, emergency warning broadcast activation flag, current information, and next information. Among these, the transmission parameter information of the received signal includes the presence / absence of the partial reception layer, the number of segments for each layer, the time interleave length, the carrier modulation scheme, and the coding rate of the inner code (convolutional code in the ISDB-T standard). The carrier on which the TMCC signal is arranged is known on the receiving side, and the TMCC decoding processing unit 613 detects and extracts the TMCC signal from the OFDM symbol. Then, the TMCC decoding processing unit 613 performs demodulation processing corresponding to DBPSK (Difference Binary Phase Shift Keying) on the extracted TMCC signal in the time direction, and acquires control information transmitted by the TMCC signal from the result of the demodulation processing To do. The TMCC decoding processing unit 613 outputs the information included in the control information to the components that require the information for processing, although the output destination components are not explicitly shown in FIG.
 なお、ISDB-T規格では、伝送特性の異なる複数の階層を同時に伝送することが可能になっており、階層数は最大3である。階層数が2や3の場合には、デインタリーブ処理部621の出力は階層分割され、デマッピング処理部622からエネルギー逆拡散処理部634は階層毎に処理を実施し、その後、階層合成されてRS復号処理部635に入力される。 In the ISDB-T standard, a plurality of layers having different transmission characteristics can be transmitted simultaneously, and the maximum number of layers is three. When the number of hierarchies is 2 or 3, the output of the deinterleave processing unit 621 is divided into hierarchies, and the demapping processing unit 622 to the energy despreading processing unit 634 perform processing for each hierarchy, and then the hierarchies are synthesized. The data is input to the RS decoding processing unit 635.
 等化処理部614は、FFT処理部612から複素信号を受け取る。FFT処理部612から入手した複素信号は、FFTポイント数だけ存在し、その1つ1つがOFDMシンボルのデータとなっている。例えば、ISDB-T放送規格のモード3と呼ばれる運用規格に従えば、FFTポイント数は8192となり、8192個の複素信号が得られる。このうち5617個が処理対象となる信号であり、これをOFDMシンボルと呼ぶ。OFDMシンボルのデータは、キャリア方向に12キャリア毎にSP(Scattered Pilot:スキャッタードパイロット)信号を含んでいる。また、SP信号は、時間方向に3キャリアずつずらして配置されている。よって、等化処理部614は、OFDMシンボルから離散配置されたSP信号を検出・抽出する。 The equalization processing unit 614 receives a complex signal from the FFT processing unit 612. Complex signals obtained from the FFT processing unit 612 exist as many as the number of FFT points, and each of them is OFDM symbol data. For example, according to an operation standard called mode 3 of the ISDB-T broadcasting standard, the number of FFT points is 8192, and 8192 complex signals are obtained. Of these, 5617 are signals to be processed and are called OFDM symbols. The OFDM symbol data includes an SP (Scattered Pilot) signal every 12 carriers in the carrier direction. Further, the SP signals are arranged so as to be shifted by 3 carriers in the time direction. Therefore, the equalization processing unit 614 detects and extracts SP signals that are discretely arranged from the OFDM symbol.
 次に、SP信号は、既知の信号であるため、等化処理部614は、抽出したSP信号を既知の複素信号値で除算することによりSP信号位置の送受間での伝送路特性(SP信号が配置されるキャリアの伝送路特性)を推定する。等化処理部614は、OFDM信号の中に離散的に配置されたSP信号位置の伝送路特性の推定値をもとに補間処理することで、SP信号の間にある各キャリアの伝送路特性を推定する。そして、等化処理部614は、推定した各キャリアの伝送路特性で各OFDMシンボルを除算することで、伝送路の影響を補償したOFDMシンボル点の情報を得る。等化処理部614は、伝送路の影響を補償したOFDMシンボル点の情報(以下、「受信したOFDMシンボル点」と呼ぶ。)と、「受信したOFDMシンボル点」それぞれに対応する伝送路特性の推定結果の複素信号をデインタリーブ処理部621へと出力する。 Next, since the SP signal is a known signal, the equalization processing unit 614 divides the extracted SP signal by a known complex signal value to thereby determine a transmission path characteristic (SP signal) between transmission and reception of the SP signal position. Is estimated). The equalization processing unit 614 performs interpolation processing based on the estimated values of the transmission path characteristics of the SP signal positions discretely arranged in the OFDM signal, thereby transmitting the transmission path characteristics of each carrier between the SP signals. Is estimated. Then, the equalization processing unit 614 divides each OFDM symbol by the estimated transmission path characteristic of each carrier to obtain information on OFDM symbol points that compensate for the influence of the transmission path. The equalization processing unit 614 includes information on the OFDM symbol points (hereinafter referred to as “received OFDM symbol points”) compensated for the influence of the transmission channels, and transmission path characteristics corresponding to the “received OFDM symbol points”. The estimated complex signal is output to the deinterleave processing unit 621.
 デインタリーブ処理部621は、等化処理部614から「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を順次受け取る。そして、デインタリーブ処理部621は、受け取った「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列の並び替えを行う。並び替えの規則は、ISDB-T規格で規定されており、デインタリーブ処理部621は、送信側のインタリーブ処理において時間方向および周波数方向にランダムに並び替えられた信号を元の順序に戻す処理を行う。そして、デインタリーブ処理部621は、デマッピング処理部622へと並び替えた「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を出力する。但し、時間方向の並び替えは、TMCC復号処理部613によって取得された制御情報に含まれる各セグメントの時間インタリーブ長に従って行われる。 The deinterleave processing unit 621 sequentially receives the “received OFDM symbol point” and the data string of the estimation result of the transmission path characteristics from the equalization processing unit 614. Then, the deinterleave processing unit 621 rearranges the received “received OFDM symbol point” and the data string of the estimation result of the transmission path characteristics. The rearrangement rules are stipulated in the ISDB-T standard, and the deinterleave processing unit 621 performs a process of returning the signals rearranged randomly in the time direction and the frequency direction to the original order in the interleaving process on the transmission side. Do. Then, the deinterleave processing unit 621 outputs the “received OFDM symbol points” rearranged to the demapping processing unit 622 and the data string of the estimation result of the channel characteristics. However, the rearrangement in the time direction is performed according to the time interleave length of each segment included in the control information acquired by the TMCC decoding processing unit 613.
 デマッピング処理部622は、デインタリーブ処理部621から並び替えられた「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を入手する。OFDMシンボルは、信号の送信側において、キャリア変調方式に従って複素平面上にマッピングされている。例えばキャリア変調方式が64QAMであれば、入手したビットデータに応じ64点のマッピング点のいずれかの信号へと変換される。 The demapping processing unit 622 obtains the “received OFDM symbol points” rearranged from the deinterleaving processing unit 621 and the data string of the estimation result of the transmission path characteristics. The OFDM symbol is mapped on the complex plane according to the carrier modulation scheme on the signal transmission side. For example, if the carrier modulation method is 64QAM, the signal is converted into one of 64 mapping points according to the obtained bit data.
 よって、デマッピング処理部622は、TMCC復号処理部613によって取得された制御情報に含まれる各階層のキャリア変調方式に従って、「受信したOFDMシンボル点」から最も近いマッピング点を送信信号点とみなし、ビットデータを生成する。また、デマッピング処理部622は、「受信したOFDMシンボル点」と「受信したOFDMシンボル点」から最も近いマッピング点(送信信号点)との距離情報(以下、「受信シンボル点の距離情報」と呼ぶ。)と、別途デインタリーブ処理部621から入手した「受信したOFDMシンボル点」が含まれるキャリアの伝送路特性の大きさの情報を基に信頼性情報を生成する。 Therefore, the demapping processing unit 622 regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 613, Generate bit data. Further, the demapping processing unit 622 performs distance information (hereinafter referred to as “reception symbol point distance information”) between the “received OFDM symbol point” and the mapping point (transmission signal point) closest to the “received OFDM symbol point”. And reliability information is generated based on information on the magnitude of the channel characteristics of the carrier including the “received OFDM symbol point” obtained from the deinterleave processing unit 621 separately.
 この際、デマッピング処理部622は、OFDMシンボル単位で前記「受信シンボル点の距離情報」を一定期間累積し、OFDMシンボルが含まれるキャリアに含まれるキャリア毎のノイズ量を別途算出した上、キャリア毎のノイズ量、伝送路特性の推定結果および「受信シンボル点の距離情報」から信頼性情報を生成してもよい。 At this time, the demapping processing unit 622 accumulates the “distance information of received symbol points” for each OFDM symbol for a certain period, separately calculates the noise amount for each carrier included in the carrier including the OFDM symbol, Reliability information may be generated from the amount of noise for each, the estimation result of transmission path characteristics, and “distance information of received symbol points”.
 以上のように信頼性情報を算出し後段の復号処理部632で利用する処理は、「軟判定」と呼ばれる。 The process of calculating the reliability information and using it in the subsequent decoding processing unit 632 as described above is called “soft decision”.
 そして、デマッピング処理部622は、「受信したOFDMシンボル点」から最も近いマッピング点から生成したビットデータと信頼性情報とをビットデインタリーブ処理部631へと出力する。 Then, the demapping processing unit 622 outputs the bit data generated from the mapping point closest to the “received OFDM symbol point” and the reliability information to the bit deinterleaving processing unit 631.
 ビットデインタリーブ処理部631は、デマッピング処理部622より入手したビットデータと信頼性情報を、ISDB-T規格の規定に従い元の順序へと並び替えを行い、並び替えたビットデータと信頼性情報を復号処理部632へと出力する。 The bit deinterleave processing unit 631 rearranges the bit data and reliability information obtained from the demapping processing unit 622 into the original order in accordance with the ISDB-T standard, and the rearranged bit data and reliability information. Is output to the decoding processing unit 632.
 復号処理部632は、ビットデインタリーブ処理部631よりビットデータと信頼性情報を入手する。復号処理部632は、TMCC復号処理部613によって取得された制御情報に含まれる各階層の内符号の符号化率(畳み込み符号の符号化率)に従って、ビットデインタリーブ処理部631から入手したビットデータのデータ列に対して送信側で間引かれたビット位置にダミービットを挿入し、その値を不定とする。復号処理部632は、受け取ったビットデータを信頼性情報に応じて入力データの重み付けを行って復号処理を行う。現在、ビタビ復号と呼ばれる復号処理が広く用いられているが、他の復号アルゴリズムに沿った処理でもよい。復号処理部632は、バイトデインタリーブ処理部633へと復号結果のデータ列を出力する。 The decryption processing unit 632 obtains bit data and reliability information from the bit deinterleave processing unit 631. The decoding processing unit 632 obtains the bit data obtained from the bit deinterleaving processing unit 631 according to the coding rate of the inner code of each layer (coding rate of the convolutional code) included in the control information acquired by the TMCC decoding processing unit 613. A dummy bit is inserted in the bit position thinned out on the transmission side with respect to the data string, and the value is undefined. The decoding processing unit 632 performs decoding processing on the received bit data by weighting the input data according to the reliability information. Currently, a decoding process called Viterbi decoding is widely used, but a process according to another decoding algorithm may be used. The decryption processing unit 632 outputs a data string as a decryption result to the byte deinterleave processing unit 633.
 バイトデインタリーブ処理部633は、復号処理部632より復号結果のデータ列を受け取り、受け取った復号結果のデータ列をISDB-T規格の規定に従い元の順序へと並び替え、エネルギー逆拡散処理部634へと並び替えたデータ列を出力する。 The byte deinterleave processing unit 633 receives the data sequence of the decoding result from the decoding processing unit 632, rearranges the received data sequence of the decoding result into the original order according to the ISDB-T standard, and the energy despreading processing unit 634. Outputs the data sequence rearranged to.
 エネルギー逆拡散処理部634は、バイトデインタリーブ処理部633より得られたデータ列に対してISDB-T規格の規定に従い送信側で施されたエネルギー拡散処理を元に戻す処理を行い、変換後のデータ列をRS復号処理部635へと出力する。 The energy despreading processing unit 634 performs processing for restoring the energy spreading processing performed on the transmission side according to the ISDB-T standard for the data sequence obtained from the byte deinterleaving processing unit 633, and after conversion. The data string is output to the RS decoding processing unit 635.
 RS復号処理部635は、エネルギー拡散処理部634よりデータ列を受け取り、付与されている外符号を用いて受け取ったデータ列のリード・ソロモン復号処理を行い、TS再生処理部671へとリード・ソロモン復号後のデータ列を出力する。 The RS decoding processing unit 635 receives the data sequence from the energy spreading processing unit 634, performs a Reed-Solomon decoding process on the received data sequence using the assigned outer code, and sends the Reed-Solomon to the TS reproduction processing unit 671. Output the decrypted data string.
 TS再生処理部671は、RS復号処理部635からリード・ソロモン復号後のデータ列を入手する。RS復号処理部635から得られたリード・ソロモン復号後のデータ列は、トランスポートストリームのパケットとなっている。TS再生処理部671は、RS復号処理部635から得たトランスポートストリームのパケット数が伝送パラメータにより異なるため、適切な数のヌルパケットを補完し、伝送パラメータに依存せず一定のトランスポートストリームのパケット数が出力されるように調整する。TS再生処理部671は、ヌルパケットを補完した後のトランスポートストリームのパケットをTSデコード処理部672へと出力する。 The TS reproduction processing unit 671 obtains the data string after Reed-Solomon decoding from the RS decoding processing unit 635. The data string after Reed-Solomon decoding obtained from the RS decoding processing unit 635 is a packet of a transport stream. Since the number of packets of the transport stream obtained from the RS decoding processing unit 635 differs depending on the transmission parameter, the TS reproduction processing unit 671 supplements an appropriate number of null packets, and does not depend on the transmission parameter, Adjust so that the number of packets is output. The TS reproduction processing unit 671 outputs the transport stream packet after complementing the null packet to the TS decoding processing unit 672.
 TSデコード処理部672は、TS再生処理部671から出力されるトランスポートストリームのパケットを入手し、トランスポートストリームに含まれる情報をもとに、ビデオパケット、オーディオパケット、PCR(Program Clock Reference)パケット等のパケットに分類し、MPEGデコード処理部673へと出力する。 The TS decode processing unit 672 obtains the transport stream packet output from the TS playback processing unit 671, and based on the information included in the transport stream, a video packet, an audio packet, and a PCR (Program Clock Reference) packet Are output to the MPEG decoding processing unit 673.
 MPEGデコード処理部673は、ビデオデコーダおよびオーディオデコーダから構成される。ビデオデコーダは、TSデコード処理部672から入手したトランスポートストリームパケットのうちビデオパケットを抽出し、データを復号し画像データを生成する。オーディオデコーダは、TSデコード処理部672から入手したトランスポートストリームのうちオーディオパケットを抽出し、データを復号し音声データを生成する。 The MPEG decode processing unit 673 includes a video decoder and an audio decoder. The video decoder extracts video packets from the transport stream packets obtained from the TS decoding processing unit 672, decodes the data, and generates image data. The audio decoder extracts an audio packet from the transport stream obtained from the TS decode processing unit 672, decodes the data, and generates audio data.
 そして、MPEGデコード処理部673は、PCRパケットに含まれる時間情報を基に、画像データと音声データの出力タイミングを調整した上で、画像データと音声データを表示装置等に出力する。 Then, the MPEG decoding processing unit 673 adjusts the output timing of the image data and the audio data based on the time information included in the PCR packet, and then outputs the image data and the audio data to a display device or the like.
 以上のように、図14に示した構成により、ISDB-T方式の放送波を受信した後、各種の処理を行った結果、画像や音声の視聴や記録が可能となる。 As described above, according to the configuration shown in FIG. 14, after receiving the ISDB-T broadcast wave, various processes are performed, so that viewing and recording of images and sounds can be performed.
 しかしながら、デジタル放送では、受信信号レベルが一定のレベルを下回ったり、電波障害量が一定のレベルを超えると急激に受信状態が悪化し、画像や音声が部分的に欠落したり、さらには映像や音声の途切れが生じる。地上デジタル放送の受信品質劣化の要因としては、自身の信号が建造物や山岳等に反射し生じる遅延波や、同一周波数帯で受信されたアナログテレビ放送波、帯域外で強いレベルの信号がアンプ等で歪むことにより生ずる相互変調歪みや、受信装置内や他の機器にて発生する不要輻射等のノイズ信号が考えられ、受信しようとする信号に対し妨害信号レベルが一定レベルより大きくなると受信品質への影響が現れる。 However, in digital broadcasting, when the received signal level falls below a certain level, or when the amount of radio interference exceeds a certain level, the reception state deteriorates rapidly, and images and sounds are partially lost, and video and Audio interruption occurs. The factors that cause deterioration in the reception quality of terrestrial digital broadcasting include delayed waves that are reflected from the signal itself to buildings and mountains, analog TV broadcast waves that are received in the same frequency band, and signals that are at a high level outside the band. Intermodulation distortion caused by distortion due to noise, noise signals such as unwanted radiation generated in the receiver or other devices, etc. can be considered, and if the interference signal level is higher than a certain level with respect to the signal to be received, the reception quality The impact on will appear.
 本明細書においては、デジタル放送で用いられている周波数帯域に重畳されたアナログテレビ放送波、相互変調歪み、たとえばクロック信号の高調波など不要輻射によるノイズ信号のように、OFDM信号と比べて周波数特性に偏りがある妨害信号のことを、周波数選択性妨害信号と呼び、周波数選択性妨害信号への耐性を向上させるための技術について説明を行う。 In this specification, analog TV broadcast waves superimposed on frequency bands used in digital broadcasting, intermodulation distortion, noise signals due to unnecessary radiation such as harmonics of clock signals, etc. An interference signal having a biased characteristic is called a frequency selective interference signal, and a technique for improving resistance to the frequency selective interference signal will be described.
 これまでOFDM変調方式などマルチキャリア変調された信号を受信・復調する際に、信号に重畳された周波数選択性妨害信号の影響を検出・除去するための技術が様々な文献に開示されている。 Various techniques for detecting and removing the influence of a frequency selective interference signal superimposed on a signal when receiving and demodulating a signal subjected to multicarrier modulation such as OFDM modulation have been disclosed.
 たとえば、特許文献1では、OFDM信号を復調する過程で、複数のキャリアそれぞれの復調信号点と代表受信シンボル点との距離をキャリア毎に計測・時間方向に積分し復調信号の分散の大きさを求め、分散の大きさをキャリア毎に比較することで、キャリア毎のC/Nを検出し、C/Nが悪いキャリアは周波数選択性の妨害を受けているとみなし、検出したC/Nの情報に基づいて復調信号に段階的に重み付けを行い、軟判定と呼ばれる方法により誤り訂正処理を行うOFDM受信装置が開示されている。復調信号点と代表受信シンボル点との距離の値は、MER(Modulation Error Ratio:変調誤差比)とも呼ばれ、軟判定処理においてキャリア毎に算出したMERの値を利用している。 For example, in Patent Document 1, in the process of demodulating an OFDM signal, the distance between the demodulation signal point of each of a plurality of carriers and the representative reception symbol point is measured for each carrier and integrated in the time direction to determine the magnitude of the dispersion of the demodulation signal. The C / N for each carrier is detected by comparing the magnitude of dispersion for each carrier, and the carrier having a poor C / N is considered to be disturbed by frequency selectivity. There is disclosed an OFDM receiving apparatus that performs stepwise weighting on a demodulated signal based on information and performs error correction processing by a method called soft decision. The value of the distance between the demodulated signal point and the representative reception symbol point is also called MER (Modulation Error Ratio), and uses the MER value calculated for each carrier in the soft decision processing.
 また、特許文献2では、OFDM信号に規則的に配置されたパイロット信号を用いて送受間の伝送路特性を推定し補償する際に、周波数選択性妨害信号を検出し、もし周波数選択性妨害信号が検出された場合には、妨害を受けたキャリアの周辺に存在するパイロット信号は伝送路特性の推定には使用せず、妨害信号の影響を受けていないパイロット信号から妨害信号を検出したキャリアの周辺の伝送路特性を推定し、信号処理に用いるOFDM受信装置が開示されている。 Further, in Patent Document 2, when a transmission path characteristic between transmission and reception is estimated and compensated using a pilot signal regularly arranged in an OFDM signal, a frequency selective interference signal is detected. Is detected, the pilot signal that exists in the vicinity of the disturbed carrier is not used for estimating the channel characteristics, and the pilot signal that has detected the disturbing signal from the pilot signal that is not affected by the disturbing signal is not used. An OFDM receiver used for signal processing by estimating peripheral transmission path characteristics is disclosed.
特許第2954570号公報Japanese Patent No. 2945570 特許第3363086号公報Japanese Patent No. 3363806
 特許文献1では、周波数選択性妨害信号を、複数のキャリアそれぞれの復調信号点と代表受信シンボル点との距離の積分値から検出している。具体的には、等化後のシンボルを最も近接した代表シンボル点での受信とみなす硬判定処理を行い、等化後のシンボル点と最も近接した代表シンボル点との距離をキャリア毎に時間方向に積分したものを妨害信号量の指標として用いている。しかしながら、キャリアが、たとえば64QAMといった多値QAM変調を施されていると、妨害信号量が64QAM信号の符号間距離よりも大きい場合や、パイロットキャリアに妨害信号が重なり伝送路特性の推定誤差が大きく、受信信号を推定誤差を含んだ伝送路特性で除算した結果、等化後のシンボル点が送信シンボル点から大きく離れる場合がある。このとき、等化後のシンボル点と最も近接したシンボル点との距離を算出すると、本来の送信信号点はさらに離れたところに存在するため、妨害信号量を小さく見積もってしまう課題がある。 In Patent Document 1, a frequency-selective interference signal is detected from an integral value of distances between demodulated signal points and representative reception symbol points of a plurality of carriers. Specifically, a hard decision process is performed in which the equalized symbol is regarded as being received at the closest representative symbol point, and the distance between the equalized symbol point and the closest representative symbol point in the time direction for each carrier. Is used as an indicator of the amount of interference signal. However, when the carrier is subjected to multi-level QAM modulation such as 64QAM, the interference signal amount is larger than the inter-code distance of the 64QAM signal, or the interference signal overlaps with the pilot carrier, resulting in a large estimation error of the transmission path characteristics. As a result of dividing the received signal by the transmission path characteristic including the estimation error, the equalized symbol point may be far away from the transmission symbol point. At this time, if the distance between the symbol point after equalization and the closest symbol point is calculated, the original transmission signal point exists further away, and there is a problem that the amount of interference signal is estimated to be small.
 また、算出した妨害信号量を誤り訂正符号処理部において信頼性情報として用いることにより誤り訂正能力を向上させているが、上述したように等化後のシンボル点と最も近接したシンボル点との距離の積分値を妨害信号量とすると、妨害信号量の検出値に誤差を含む可能性があるため、誤り訂正処理部での誤り訂正の効果を最大限に引き出すことができない。 Further, the error correction capability is improved by using the calculated interference signal amount as reliability information in the error correction code processing unit, but as described above, the distance between the symbol point after equalization and the closest symbol point If the integrated value of is an interference signal amount, there is a possibility that the detected value of the interference signal amount includes an error, so that the error correction effect in the error correction processing unit cannot be maximized.
 特許文献2では、周波数選択性妨害信号を検出し、もし周波数選択性妨害信号が検出された場合には、妨害を受けたキャリアの周辺に存在するパイロット信号を伝送路特性の推定に使用しないようにしている。しかしながら、実データを伝送するキャリアが周波数選択性妨害信号の影響を受けた場合に、実データを伝送するキャリアの周波数選択性妨害信号の影響がそのまま残留した状態での信号処理が行われることになるため、十分な誤り訂正の効果を期待できない。 In Patent Document 2, a frequency-selective interference signal is detected. If a frequency-selective interference signal is detected, a pilot signal existing around the interfered carrier is not used for estimation of transmission path characteristics. I have to. However, when the carrier that transmits the actual data is affected by the frequency selective interference signal, the signal processing is performed in a state where the influence of the frequency selective interference signal of the carrier that transmits the actual data remains as it is. Therefore, a sufficient error correction effect cannot be expected.
 本発明は、前記従来の課題を解決するもので、誤り訂正の効果を最大限に引き出せることを可能としたマルチキャリア変調信号受信装置及び集積回路を提供することを目的とする。 An object of the present invention is to solve the above-described conventional problems, and to provide a multicarrier modulation signal receiving apparatus and an integrated circuit capable of maximizing the effect of error correction.
 上記目的を達成するために、本発明のマルチキャリア変調信号受信装置は、マルチキャリア変調信号を復調し、キャリア毎に受信シンボル点と伝送路特性の推定結果のデータ列を生成する復調部と、前記復調部から入力される受信シンボル点と伝送路特性の推定結果のデータ列の並び替えを行うデインタリーブ処理部と、前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列からビットデータ及び当該ビットデータの信頼性情報を生成する第1のデマッピング処理部と、前記第1のデマッピング処理部から入力されるビットデータの信頼性情報に基づいて誤り訂正処理を行い、送信信号系列を復元したデータを生成する第1の誤り訂正部と、前記第1の誤り訂正部から入力される送信信号系列を復元したデータに対し符号化処理を行うとともに、符号処理後のデータが誤り訂正できなかったデータから生成されたかどうかを判定するためのエラー訂正可能範囲を示す信号を生成する符号化部と、前記符号化部から入力される符号化処理を行ったデータをキャリア変調方式に従い分割した上でマッピングを行ってマッピング点の情報を生成するととともに、当該マッピング点の情報の算出元の1又は複数のデータの夫々に対応するエラー訂正可能範囲を示す信号からマッピング点の誤り有無情報を生成するマッピング処理部と、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報及びマッピング点の誤り有無情報とに基づいて、前記受信シンボル点と前記マッピング点の情報との距離を算出する符号間距離算出・累積処理部と、前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列、前記マッピング処理部から入力されるマッピング点の情報とマッピング点の誤り有無情報、及び前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報と、からビットデータ及び当該ビットデータの信頼性情報を生成する第2のデマッピング処理部と、前記第2のデマッピング処理部から入力されるビットデータと信頼性情報に基づいて、誤り訂正処理を行い、元の信号系列を生成する第2の誤り訂正部と、を備える。 In order to achieve the above object, a multicarrier modulation signal receiver of the present invention demodulates a multicarrier modulation signal and generates a data sequence of reception symbol points and transmission path characteristic estimation results for each carrier; A deinterleave processing unit for rearranging a data sequence of estimation results of reception symbol points and transmission path characteristics input from the demodulation unit, and a rearranged reception symbol point and transmission path characteristics input from the deinterleaving processing unit A first demapping processing unit that generates bit data and reliability information of the bit data from the estimation result data sequence, and based on the reliability information of the bit data input from the first demapping processing unit A first error correction unit that performs error correction processing and generates data obtained by restoring a transmission signal sequence; and a transmission signal that is input from the first error correction unit An encoding unit that performs an encoding process on the data whose columns have been restored, and generates a signal indicating an error-correctable range for determining whether the data after the encoding process is generated from data that could not be error-corrected; , By dividing the data subjected to the encoding process input from the encoding unit in accordance with a carrier modulation scheme and performing mapping to generate mapping point information, and one or a plurality of calculation source information of the mapping point information A mapping processor that generates error presence / absence information of mapping points from a signal indicating an error-correctable range corresponding to each of the data, rearranged received symbol points input from the deinterleaver, and the mapping process The received symbol based on mapping point information and mapping point error presence / absence information input from the unit An inter-code distance calculation / accumulation processing unit that calculates a distance between the mapping point information and the mapping point information, a rearranged received symbol point input from the deinterleave processing unit, and a data string of estimation results of transmission path characteristics, the mapping Bits from mapping point information inputted from the processing unit, mapping point error presence / absence information, and distance information between the received symbol point and the mapping point information inputted from the inter-code distance calculation / accumulation processing unit A second demapping processing unit for generating data and reliability information of the bit data, and performing error correction processing based on the bit data and the reliability information input from the second demapping processing unit, And a second error correction unit for generating the signal sequence.
 また、本発明の集積回路は、マルチキャリア変調信号を復調し、キャリア毎に受信シンボル点と伝送路特性の推定結果のデータ列を生成する復調回路と、前記復調回路から入力される受信シンボル点と伝送路特性の推定結果のデータ列の並び替えを行うデインタリーブ処理回路と、前記デインタリーブ処理回路から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列からビットデータ及び当該ビットデータの信頼性情報を生成する第1のデマッピング処理回路と、前記第1のデマッピング処理回路から入力されるビットデータの信頼性情報に基づいて誤り訂正処理を行い、送信信号系列を復元したデータを生成する第1の誤り訂正回路と、前記第1の誤り訂正回路から入力される送信信号系列を復元したデータに対し符号化処理を行うとともに、符号処理後のデータが誤り訂正できなかったデータから生成されたかどうかを判定するためのエラー訂正可能範囲を示す信号を生成する符号化回路と、前記符号化回路から入力される符号化処理を行ったデータをキャリア変調方式に従い分割した上でマッピングを行ってマッピング点の情報を生成するととともに、当該マッピング点の情報の算出元の1又は複数のデータの夫々に対応するエラー訂正可能範囲を示す信号からマッピング点の誤り有無情報を生成するマッピング処理回路と、前記デインタリーブ処理回路から入力される並び替えられた受信シンボル点と、前記マッピング処理回路から入力されるマッピング点の情報及びマッピング点の誤り有無情報とに基づいて、前記受信シンボル点と前記マッピング点の情報との距離を算出する符号間距離算出・累積処理回路と、前記デインタリーブ処理回路から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列、前記マッピング処理回路から入力されるマッピング点の情報とマッピング点の誤り有無情報、及び前記符号間距離算出・累積処理回路から入力される前記受信シンボル点と前記マッピング点の情報との距離情報と、からビットデータ及び当該ビットデータの信頼性情報を生成する第2のデマッピング処理回路と、前記第2のデマッピング処理回路から入力されるビットデータと信頼性情報に基づいて、誤り訂正処理を行い、元の信号系列を生成する第2の誤り訂正回路と、を備える。 The integrated circuit of the present invention also includes a demodulation circuit that demodulates a multi-carrier modulation signal and generates a data sequence of estimation results of reception symbol points and transmission path characteristics for each carrier, and reception symbol points input from the demodulation circuit And a deinterleaving processing circuit for rearranging the data sequence of the estimation result of the transmission path characteristics, bit data from the data string of the rearranged received symbol points and the estimation result of the transmission path characteristics inputted from the deinterleaving processing circuit, and A first demapping processing circuit for generating reliability information of the bit data, and error correction processing based on the reliability information of the bit data input from the first demapping processing circuit, A first error correction circuit that generates restored data, and data obtained by restoring a transmission signal sequence input from the first error correction circuit An encoding circuit that performs encoding processing and generates a signal indicating an error-correctable range for determining whether or not the data after encoding processing was generated from data that could not be error-corrected, and input from the encoding circuit The encoded data is divided according to the carrier modulation method and mapped to generate mapping point information, and corresponds to each of one or a plurality of data from which the mapping point information is calculated Mapping processing circuit for generating error presence / absence information of mapping points from a signal indicating an error correctable range, rearranged received symbol points input from the deinterleave processing circuit, and mapping points input from the mapping processing circuit The received symbol point and the mapping An inter-code distance calculation / accumulation processing circuit for calculating a distance to point information, a rearranged received symbol point input from the deinterleave processing circuit, and a data string of estimation results of transmission path characteristics, from the mapping processing circuit From the input mapping point information and mapping point error presence / absence information, and the distance information between the received symbol point and the mapping point information input from the inter-code distance calculation / accumulation processing circuit, bit data and A second demapping processing circuit for generating bit data reliability information; and an original signal sequence that performs error correction processing based on the bit data and the reliability information input from the second demapping processing circuit. And a second error correction circuit for generating.
 上記マルチキャリア変調信号受信装置及び集積回路の夫々によれば、誤り訂正の効果を最大限に引き出すことができる。 According to each of the multicarrier modulation signal receiving apparatus and the integrated circuit, the effect of error correction can be maximized.
 また、上記のマルチキャリア変調信号受信装置において、前記第1のデマッピング処理部は、前記信頼性情報の生成を、更に、前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報を用いて行うようにしてもよい。 In the multicarrier modulation signal receiving apparatus, the first demapping processing unit further generates the reliability information, and further receives the received symbol point input from the inter-code distance calculation / accumulation processing unit. You may make it perform using distance information with the information of the said mapping point.
 また、上記の集積回路において、前記第1のデマッピング処理回路は、前記信頼性情報の生成を、更に、前記符号間距離算出・累積処理回路から入力される前記受信シンボル点と前記マッピング点の情報との距離情報を用いて行うようにしてもよい。 In the above integrated circuit, the first demapping processing circuit further generates the reliability information, and further adds the received symbol points and the mapping points input from the inter-code distance calculation / accumulation processing circuit. You may make it perform using distance information with information.
 上記マルチキャリア変調信号受信装置及び集積回路の夫々によれば、第2のデマッピング処理部に加えて、第1のデマッピング処理部も符号間距離算出・累積処理部の算出結果を用いるため、受信性能の更なる向上が図られる。 According to each of the multicarrier modulation signal receiving apparatus and the integrated circuit, in addition to the second demapping processing unit, the first demapping processing unit also uses the calculation result of the inter-code distance calculation / accumulation processing unit. The reception performance can be further improved.
 また、上記のマルチキャリア変調信号受信装置において、前記第2のデマッピング処理部は、前記マッピング処理部から入力されるマッピング点の情報の誤り有無情報を基に、前記デインタリーブ処理部から入力される並び替えた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報とから新たな信号点を生成して、前記信頼性情報の生成を行うようにしてもよい。 In the multicarrier modulation signal receiving apparatus, the second demapping processing unit is input from the deinterleaving processing unit based on error presence / absence information of mapping point information input from the mapping processing unit. The reliability information may be generated by generating a new signal point from the rearranged received symbol points and the mapping point information input from the mapping processing unit.
 これによれば、第2のデマッピング処理部の信頼性情報の精度の向上が図られる。 According to this, the accuracy of the reliability information of the second demapping processing unit can be improved.
 また、上記のマルチキャリア変調信号受信装置において、前記符号間距離算出・累積処理部は、前記マッピング処理部から入力されるマッピング点の誤り有無情報に基づいて、前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータのみから生成されたと判定した場合には、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報とのユークリッド距離をキャリア単位に積算し、前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できなかったデータのみから生成されたと判定した場合には、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、当該受信シンボル点から最も近い送信信号点とのユークリッド距離をキャリア単位に積算し、前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータと誤り訂正できなかったデータとから生成されたと判定した場合には、誤り訂正できたデータから決定される符号点のうち前記デインタリーブ処理部から入力される並び替えられた受信シンボル点から最も近い符号点を送信信号点とみなし、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記送信信号点とみなした符号点とのユークリッド距離をキャリア単位に積算し、積算結果を前記受信シンボル点と前記マッピング点の情報との距離として出力するようにしてもよい。 In the multicarrier modulation signal receiving apparatus, the inter-code distance calculation / accumulation processing unit may perform mapping input from the mapping processing unit based on mapping point error presence / absence information input from the mapping processing unit. When it is determined that the point information is generated only from the data that has been error-corrected, the rearranged received symbol points input from the deinterleave processing unit and the mapping point information input from the mapping processing unit When the mapping point information input from the mapping processor is determined to have been generated only from data that could not be error-corrected, it is input from the deinterleave processor. The rearranged received symbol point and the transmission signal point closest to the received symbol point When the Euclidean distance is integrated for each carrier, and it is determined that the mapping point information input from the mapping processing unit is generated from data that could be corrected and data that could not be corrected, the error could be corrected. Among the code points determined from the data, the code point closest to the rearranged received symbol point input from the deinterleave processing unit is regarded as a transmission signal point, and the rearranged input input from the deinterleave processing unit The Euclidean distance between the reception symbol point and the code point regarded as the transmission signal point may be integrated for each carrier, and the integration result may be output as the distance between the reception symbol point and the mapping point information.
 これによれば、符号間距離算出・累積処理部の算出結果の精度の向上が図られる。 According to this, the accuracy of the calculation result of the inter-code distance calculation / accumulation processing unit can be improved.
 また、上記のマルチキャリア変調信号受信装置において、前記符号間距離算出・累積処理部は、前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータと誤り訂正できなかったデータとから生成されたと判定した場合における、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記送信信号点とみなした符号点とのユークリッド距離が小さくなるように補正して、補正後のユークリッド距離をキャリア単位に積算するようにしてもよい。 In the multicarrier modulation signal receiving apparatus, the inter-symbol distance calculation / accumulation processing unit is configured to calculate the mapping point information input from the mapping processing unit from data that has been error-corrected and data that has not been error-corrected. When it is determined that the generated Euclidean distance between the rearranged received symbol point input from the deinterleave processing unit and the code point regarded as the transmission signal point is reduced, The Euclidean distance may be integrated in units of carriers.
 これによれば、符号間距離算出・累積処理部の算出結果の精度の更なる向上が図られる。 According to this, the accuracy of the calculation result of the inter-code distance calculation / accumulation processing unit can be further improved.
 また、上記のマルチキャリア変調信号受信装置において、前記第2の誤り訂正部で実施された誤り訂正処理回数をカウントし、当該誤り訂正処理回数が所定回数未満のときに前記第2の誤り訂正部の出力を前記符号化部へ出力する誤り訂正カウント部を更に備えるようにしてもよい。 In the multicarrier modulation signal receiving apparatus, the second error correction unit counts the number of error correction processes performed by the second error correction unit and the number of error correction processes is less than a predetermined number. May be further provided with an error correction count unit that outputs the output of the above to the encoding unit.
 これによれば、誤り訂正処理回数を例えば2以上などに設定した場合には、第2の誤り訂正部での誤り訂正処理が繰り返されることになるので、受信性能の更なる向上が図られる。 According to this, when the number of error correction processes is set to 2 or more, for example, the error correction process in the second error correction unit is repeated, so that the reception performance can be further improved.
 本発明のマルチキャリア変調信号受信装置は、マルチキャリア変調信号を復調し、キャリア毎に受信シンボル点と伝送路特性の推定結果のデータ列を生成する復調部と、前記復調部から入力される受信シンボル点と伝送路特性の推定結果のデータ列の並び替えを行うデインタリーブ処理部と、前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列からビットデータ及び当該ビットデータの信頼性情報を生成する第1のデマッピング処理部と、誤り訂正処理を行い、送信信号系列を復元したデータを生成する第1の誤り訂正部と、前記第1の誤り訂正部によって生成される送信信号系列を復元したデータに対し符号化処理を行うとともに、符号処理後のデータが誤り訂正できなかったデータから生成されたかどうかを判定するためのエラー訂正可能範囲を示す信号を生成する符号化部と、前記第1の誤り訂正部で実施された誤り訂正処理回数をカウントし、当該誤り訂正処理回数が所定回数未満のときに前記第1の誤り訂正部の出力を前記符号化部へ出力する誤り訂正カウント部と、前記符号化部から入力される符号化処理を行ったデータをキャリア変調方式に従い分割した上でマッピングを行ってマッピング点の情報を生成するととともに、当該マッピング点の情報の算出元の1又は複数のデータの夫々に対応するエラー訂正可能範囲を示す信号からマッピング点の誤り有無情報を生成するマッピング処理部と、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報及びマッピング点の誤り有無情報とに基づいて、前記受信シンボル点と前記マッピング点の情報との距離を算出する符号間距離算出・累積処理部と、前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列、前記マッピング処理部から入力されるマッピング点の情報とマッピング点の誤り有無情報、及び前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報と、からビットデータ及び当該ビットデータの信頼性情報を生成して前記第1の誤り訂正部へ出力する第2のデマッピング処理部と、を備え、前記第1の誤り訂正部は、前記第1のデマッピング処理部から入力されるビットデータの信頼性情報に基づいて誤り訂正処理を行い、送信信号系列を復元したデータを生成し、前記第2のデマッピング処理部153から入力されるビットデータ及び当該ビットデータの信頼性情報に基づいて誤り訂正処理を行う。 The multi-carrier modulation signal receiving apparatus of the present invention demodulates a multi-carrier modulation signal, generates a data sequence of reception symbol points and transmission path characteristic estimation results for each carrier, and a reception input from the demodulation unit A deinterleave processing unit that rearranges the data sequence of the symbol point and the channel characteristic estimation result, and a bit from the rearranged received symbol point and the channel sequence estimation result data sequence that are input from the deinterleave processing unit. A first demapping unit that generates data and reliability information of the bit data, a first error correction unit that performs error correction processing and generates data obtained by restoring a transmission signal sequence, and the first error Data on which the transmission signal sequence generated by the correction unit is restored and the data after the encoding process cannot be error-corrected An encoder that generates a signal indicating an error-correctable range for determining whether or not the error correction has been generated, and the number of error correction processes performed by the first error correction unit. An error correction count unit that outputs the output of the first error correction unit to the encoding unit when the number of times is less than a predetermined number of times, and data that has been subjected to encoding processing input from the encoding unit is divided according to a carrier modulation scheme Then, mapping is performed to generate mapping point information, and mapping point error presence / absence information is obtained from a signal indicating an error correctable range corresponding to one or a plurality of data from which the mapping point information is calculated. A mapping processor to be generated, a rearranged received symbol point input from the deinterleave processor, and an input from the mapping processor The inter-code distance calculation / accumulation processing unit that calculates the distance between the received symbol point and the mapping point information based on the information on the ping point and the error presence / absence information on the mapping point, and the deinterleave processing unit. A data string of rearranged received symbol points and transmission path characteristic estimation results, mapping point information input from the mapping processing unit and mapping point error presence / absence information, and input from the inter-code distance calculation / accumulation processing unit A second demapping processing unit that generates bit data and reliability information of the bit data from distance information between the received symbol point and the mapping point information to be output to the first error correction unit And the first error correction unit performs error correction based on reliability information of bit data input from the first demapping processing unit. Processing is performed to generate data in which the transmission signal sequence is restored, and error correction processing is performed based on the bit data input from the second demapping processing unit 153 and the reliability information of the bit data.
 上記マルチキャリア変調信号受信装置によれば、誤り訂正の効果を最大限に引き出すことができる。また、誤り訂正処理を行う処理ブロックが1つで済むので、装置規模が大きくなることを回避できる。さらに、誤り訂正処理回数を例えば3以上などに設定した場合には、誤り訂正処理が繰り返されることになるので、受信性能の更なる向上が図られる。 According to the above multicarrier modulation signal receiver, the effect of error correction can be maximized. Further, since only one processing block for performing error correction processing is required, it is possible to avoid an increase in the scale of the apparatus. Furthermore, when the number of error correction processes is set to 3 or more, for example, the error correction process is repeated, so that the reception performance can be further improved.
 また、上記のマルチキャリア変調信号受信装置において、前記第1のデマッピング処理部は、前記信頼性情報の生成を、更に、前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報を用いて行うようにしてもよい。 In the multicarrier modulation signal receiving apparatus, the first demapping processing unit further generates the reliability information, and further receives the received symbol point input from the inter-code distance calculation / accumulation processing unit. You may make it perform using distance information with the information of the said mapping point.
 上記マルチキャリア変調信号受信装置によれば、第2のデマッピング処理部に加えて、第1のデマッピング処理部も符号間距離算出・累積処理部の算出結果を用いるため、受信性能の更なる向上が図られる。 According to the multicarrier modulation signal receiving apparatus, in addition to the second demapping processing unit, the first demapping processing unit also uses the calculation result of the inter-code distance calculation / accumulation processing unit. Improvement is achieved.
本発明の実施の形態1におけるマルチキャリア変調信号受信装置の構成を示すブロック図。1 is a block diagram showing a configuration of a multicarrier modulation signal receiving apparatus in Embodiment 1 of the present invention. 図1のマルチキャリア変調信号受信装置の詳細構成を示すブロック図。The block diagram which shows the detailed structure of the multicarrier modulation signal receiver of FIG. 図2の畳み込み符号処理部145の構成図。FIG. 3 is a configuration diagram of a convolutional code processing unit 145 in FIG. 2. 図2のエラー情報演算処理部146の構成図。FIG. 3 is a configuration diagram of an error information calculation processing unit 146 in FIG. 2. 図1及び図2のマッピング処理部151の処理の補足説明図。FIG. 3 is a supplementary explanatory diagram of processing of the mapping processing unit 151 of FIGS. 1 and 2. ノイズ量とMER(Modulation Error Ratio:変調誤差比)との関係を示す図。The figure which shows the relationship between noise amount and MER (Modulation Error Ratio: modulation error ratio). 図1及び図2の符号間距離算出・累積処理部152において算出するユークリッド距離の補正方法を説明するための図。The figure for demonstrating the correction method of the Euclidean distance calculated in the intersymbol distance calculation and accumulation process part 152 of FIG.1 and FIG.2. 本発明の実施の形態1の変形例におけるマルチキャリア変調信号受信装置の構成を示すブロック図。The block diagram which shows the structure of the multicarrier modulation signal receiver in the modification of Embodiment 1 of this invention. 本発明の実施の形態1の他の変形例におけるマルチキャリア変調信号受信装置の構成を示すブロック図。The block diagram which shows the structure of the multicarrier modulation signal receiver in the other modification of Embodiment 1 of this invention. 本発明の実施の形態2におけるマルチキャリア変調信号受信装置の構成を示すブロック図。The block diagram which shows the structure of the multicarrier modulation signal receiver in Embodiment 2 of this invention. 図10のマルチキャリア変調信号受信装置の詳細構成を示すブロック図。The block diagram which shows the detailed structure of the multicarrier modulation signal receiver of FIG. 本発明の実施の形態2の変形例におけるマルチキャリア変調信号受信装置の構成を示すブロック図。The block diagram which shows the structure of the multicarrier modulation signal receiver in the modification of Embodiment 2 of this invention. 本発明の実施の形態2の他の変形例におけるマルチキャリア変調信号受信装置の構成を示すブロック図。The block diagram which shows the structure of the multicarrier modulation signal receiver in the other modification of Embodiment 2 of this invention. 従来のマルチキャリア変調信号受信装置の構成を示すブロック図。The block diagram which shows the structure of the conventional multicarrier modulation signal receiver.
 (実施の形態1)
 以下、本発明の実施の形態1について、図面を参照しながら説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.
 本実施の形態1の説明は、日本の地上デジタル放送規格であるISDB-T方式に従って説明を行うものとする。そして、DVB-T方式など他の方式とは、必ずしもインタリーブ処理や階層伝送と呼ばれる処理が含まれない等の差異はあるが、本発明の概念に大きな影響を与えるものではないため、他の方式の説明を省略する。また、ISDB-T方式については、公知の規格であるため、ここでは最低限の説明に留める。なお、後述する実施の形態2についても同様とする。 The description of the first embodiment will be made according to the ISDB-T system, which is a Japanese terrestrial digital broadcasting standard. Although there is a difference from other systems such as the DVB-T system, which does not necessarily include processing called interleave processing or hierarchical transmission, it does not greatly affect the concept of the present invention. The description of is omitted. Further, since the ISDB-T system is a known standard, only a minimum description will be given here. The same applies to the second embodiment described later.
 図1は、本実施の形態1におけるマルチキャリア変調信号受信装置の構成を示すブロック図であり、図2は、図1のマルチキャリア変調信号受信装置の詳細構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a multicarrier modulation signal receiving apparatus according to Embodiment 1, and FIG. 2 is a block diagram showing a detailed configuration of the multicarrier modulation signal receiving apparatus of FIG.
 本実施の形態1のマルチキャリア変調信号受信装置は、図1に示すように、アンテナ部101と、チューナ部102と、A/D変換処理部103と、復調部110と、デインタリーブ処理部121と、第1のデマッピング処理部122と、第1の誤り訂正部130と、符号化部140と、マッピング処理部151と、符号間距離算出・累積処理部152と、第2のデマッピング処理部153と、第2の誤り訂正部160と、TS再生処理部171と、TSデコード処理部172と、MPEGデコード処理部173とで構成されている。 As shown in FIG. 1, the multicarrier modulation signal receiving apparatus according to the first embodiment includes an antenna unit 101, a tuner unit 102, an A / D conversion processing unit 103, a demodulation unit 110, and a deinterleave processing unit 121. The first demapping processing unit 122, the first error correction unit 130, the encoding unit 140, the mapping processing unit 151, the inter-code distance calculation / accumulation processing unit 152, and the second demapping processing. Section 153, second error correction section 160, TS reproduction processing section 171, TS decode processing section 172, and MPEG decode processing section 173.
 図1の復調部110は、図2に示すように、直交検波処理部111と、FFT処理部112と、TMCC復号処理部113と、等化処理部114とによって構成される。また、図1の第1の誤り訂正部130は、図2に示すように、第1のビットデインタリーブ処理部131と、第1の復号処理部132と、第1のバイトデインタリーブ処理部133と、第1のエネルギー逆拡散処理部134と、第1のRS復号処理部135とによって構成される。また、図1の符号化部140は、図2に示すように、RS符号処理部141と、エラー情報付加処理部142と、エネルギー拡散処理部143と、バイトインタリーブ処理部144と、畳み込み符号処理部145と、エラー情報演算処理部146と、ビットインタリーブ処理部147とによって構成される。また、図1の第2の誤り訂正部160は、図2に示すように、第2のビットデインタリーブ処理部161と、第2の復号処理部162と、第2のバイトデインタリーブ処理部163と、第2のエネルギー逆拡散処理部164と、第2のRS復号処理部165とによって構成される。 As shown in FIG. 2, the demodulation unit 110 in FIG. 1 includes an orthogonal detection processing unit 111, an FFT processing unit 112, a TMCC decoding processing unit 113, and an equalization processing unit 114. Further, as shown in FIG. 2, the first error correction unit 130 of FIG. 1 includes a first bit deinterleaving processing unit 131, a first decoding processing unit 132, and a first byte deinterleaving processing unit 133. And a first energy despreading processing unit 134 and a first RS decoding processing unit 135. Further, as shown in FIG. 2, the encoding unit 140 in FIG. 1 includes an RS code processing unit 141, an error information addition processing unit 142, an energy spread processing unit 143, a byte interleave processing unit 144, and a convolutional code processing. 145, error information calculation processing unit 146, and bit interleaving processing unit 147. Further, as shown in FIG. 2, the second error correction unit 160 in FIG. 1 includes a second bit deinterleaving processing unit 161, a second decoding processing unit 162, and a second byte deinterleaving processing unit 163. And a second energy despreading processing unit 164 and a second RS decoding processing unit 165.
 次に、図1及び図2の本実施の形態1におけるマルチキャリア変調信号受信装置の構成を、図14の従来のマルチキャリア変調信号受信装置の構成と比較する。 Next, the configuration of the multicarrier modulation signal receiving apparatus according to the first embodiment in FIGS. 1 and 2 is compared with the configuration of the conventional multicarrier modulation signal receiving apparatus in FIG.
 本実施の形態1におけるマルチキャリア変調信号受信装置は、従来のマルチキャリア変調信号受信装置と比較して、アンテナ部101からデインタリーブ処理部121の構成と、アンテナ部601からデインタリーブ処理部621の構成とが同じで、かつ、TS再生処理部171からMPEGデコード処理部173の構成と、TS再生処理部671からMPEGデコード処理部673の構成とが同じである。そして、本実施の形態1におけるマルチキャリア変調信号受信装置は、従来のマルチキャリア変調信号受信装置のデインタリーブ処理部621からTS再生処理部671の間に異なる処理ブロックを追加した構成となる。具体的には、図2の第1のRS復号処理部135の出力信号は、再度符号処理するための符号部140とマッピング処理部151とを経た後に、第2のデマッピング処理部153へと入力され、第2のデマッピング処理部153の出力信号に対して第2の誤り訂正部160が再度復号処理を施した後に、TS再生処理部171からトランスポートストリーム信号を出力する構成となっている。 Compared with the conventional multicarrier modulation signal receiving apparatus, the multicarrier modulation signal receiving apparatus in Embodiment 1 includes a configuration of antenna unit 101 to deinterleave processing unit 121, and antenna unit 601 to deinterleave processing unit 621. The configuration is the same, and the configuration of the TS playback processing unit 171 to the MPEG decoding processing unit 173 is the same as the configuration of the TS playback processing unit 671 to the MPEG decoding processing unit 673. The multicarrier modulation signal receiving apparatus according to the first embodiment has a configuration in which different processing blocks are added between the deinterleave processing unit 621 and the TS reproduction processing unit 671 of the conventional multicarrier modulation signal receiving apparatus. Specifically, the output signal of the first RS decoding processing unit 135 in FIG. 2 passes through the encoding unit 140 and the mapping processing unit 151 for performing the encoding process again, and then to the second demapping processing unit 153. The TS reproduction processing unit 171 outputs a transport stream signal after the second error correction unit 160 performs decoding processing again on the input signal output from the second demapping processing unit 153. Yes.
 以下、図1及び図2の各ブロックの動作を順に説明する。 Hereinafter, the operation of each block in FIGS. 1 and 2 will be described in order.
 チューナ部102は、アンテナ部101により受信された信号から所定の周波数帯域の信号を選局し、A/D変換処理部103へと出力する。A/D変換処理部103は、チューナ部102から出力されたOFDM信号をサンプリングし、デジタル信号へと変換した上で、復調部110へと出力する。 The tuner unit 102 selects a signal in a predetermined frequency band from the signal received by the antenna unit 101 and outputs it to the A / D conversion processing unit 103. The A / D conversion processing unit 103 samples the OFDM signal output from the tuner unit 102, converts the signal into a digital signal, and outputs the digital signal to the demodulation unit 110.
 復調部110は、A/D変換処理部103から入手したOFDM信号を復調し、キャリア単位のデータを生成する。以下、図2を参照しながら、復調部110の動作を詳細に説明する。 The demodulation unit 110 demodulates the OFDM signal obtained from the A / D conversion processing unit 103, and generates carrier unit data. Hereinafter, the operation of the demodulation unit 110 will be described in detail with reference to FIG.
 直交検波処理部111は、A/D変換処理部103から入手したOFDM信号に、基準搬送波と同一周波数の正弦波信号を乗じてベースバンドのOFDM信号へと変換し、FFT処理部112へと出力する。 The quadrature detection processing unit 111 multiplies the OFDM signal obtained from the A / D conversion processing unit 103 by a sine wave signal having the same frequency as the reference carrier wave, converts the signal into a baseband OFDM signal, and outputs the signal to the FFT processing unit 112. To do.
 FFT処理部112は、直交検波処理部111から出力されたベースバンドのOFDM信号から、有効シンボル期間の信号列を抽出する。そして、FFT処理部112は、抽出した信号列に対し離散フーリエ変換を施し、複素信号を生成し、離散フーリエ変換して得られた複素信号をTMCC復号処理部113と等化処理部114とへと出力する。 The FFT processing unit 112 extracts a signal sequence of an effective symbol period from the baseband OFDM signal output from the quadrature detection processing unit 111. Then, the FFT processing unit 112 performs discrete Fourier transform on the extracted signal sequence, generates a complex signal, and transmits the complex signal obtained by the discrete Fourier transform to the TMCC decoding processing unit 113 and the equalization processing unit 114. Is output.
 TMCC復号処理部113は、FFT処理部112から複素信号を入手する。TMCC復号処理部113は、OFDMシンボルからTMCC信号を検出・抽出し、抽出したTMCC信号に対して時間方向にDBPSKに対応する復調処理を施し、復調処理の結果からTMCC信号で伝送された制御情報を取得する、そして、TMCC復号処理部113は、図2には出力先の構成要素を明示していないが、制御情報に含まれる情報をその情報を処理に必要とする構成要素に対して出力する。TMCC信号で伝送される制御信号は、例えば、時間インタリーブ長、並びに、各階層のキャリア変調方式及び内符号(ISDB-T規格では畳み込み符号)の符号化率を含む。なお、TMCC信号の詳細は従来技術において記載している。 The TMCC decoding processing unit 113 obtains a complex signal from the FFT processing unit 112. The TMCC decoding processing unit 113 detects and extracts a TMCC signal from the OFDM symbol, performs demodulation processing corresponding to DBPSK in the time direction on the extracted TMCC signal, and transmits control information transmitted as a TMCC signal from the result of the demodulation processing The TMCC decoding processing unit 113 does not clearly indicate the output destination component in FIG. 2, but outputs the information included in the control information to the component that requires the information for processing. To do. The control signal transmitted by the TMCC signal includes, for example, the time interleave length, the carrier modulation scheme of each layer, and the coding rate of the inner code (convolutional code in the ISDB-T standard). Details of the TMCC signal are described in the prior art.
 なお、ISDB-T規格では、伝送特性の異なる複数の階層を同時に伝送することが可能になっており、階層数は最大3である。階層数が2や3の場合には、デインタリーブ処理部121の出力は階層分割され、第1のデマッピング処理部122から第1のエネルギー逆拡散処理部134は階層毎に処理を実施し、その後、階層合成されて第1のRS復号処理部135に入力される。また、RS符号処理部141及びエラー情報付加処理部142の出力は階層分割され、エネルギー拡散部143から第2のエネルギー拡散処理部164は階層毎に処理を実施し、その後、階層合成されて第2のRS復号処理部165に入力される。 In the ISDB-T standard, a plurality of layers having different transmission characteristics can be transmitted simultaneously, and the maximum number of layers is three. When the number of layers is 2 or 3, the output of the deinterleave processing unit 121 is divided into layers, and the first energy despreading processing unit 134 from the first demapping processing unit 122 performs processing for each layer, Thereafter, the layers are combined and input to the first RS decoding processing unit 135. Further, the outputs of the RS code processing unit 141 and the error information addition processing unit 142 are divided into layers, and the energy diffusion unit 143 to the second energy diffusion processing unit 164 perform processing for each layer, and then the layers are combined and processed. 2 to the RS decoding processing unit 165.
 等化処理部114は、FFT処理部112から複素信号を受け取る。等化処理部114は、OFDMシンボルから離散配置されたSP信号を検出・抽出する。等化処理部114は、抽出したSP信号を既知の複素信号値で除算することによりSP信号位置の送受間での伝送路特性(SP信号が配置されるキャリアの伝送路特性)を推定する。等化処理部114は、OFDM信号の中に離散的に配置されたSP信号位置の伝送路特性の推定値をもとに補間処理することで、SP信号の間にある各キャリアの伝送路特性を推定する。そして、等化処理部114は、推定した各キャリアの伝送路特性で各OFDMシンボルを除算することで、伝送路の影響を補償したOFDMシンボル点の情報を得る。等化処理部114は、伝送路の影響を補償したOFDMシンボル点の情報(「受信したOFDMシンボル点」)と、「受信したOFDMシンボル点」それぞれに対応する伝送路特性の推定結果の複素信号をデインタリーブ処理部121へと出力する。 The equalization processing unit 114 receives the complex signal from the FFT processing unit 112. The equalization processing unit 114 detects and extracts SP signals that are discretely arranged from the OFDM symbol. The equalization processing unit 114 divides the extracted SP signal by a known complex signal value to estimate the transmission path characteristic (transmission path characteristic of the carrier on which the SP signal is arranged) between transmission and reception of the SP signal position. The equalization processing unit 114 performs interpolation processing based on the estimated values of the transmission path characteristics of the SP signal positions discretely arranged in the OFDM signal, so that the transmission path characteristics of each carrier between the SP signals. Is estimated. Then, the equalization processing unit 114 divides each OFDM symbol by the estimated transmission path characteristic of each carrier to obtain information on the OFDM symbol point that compensates for the influence of the transmission path. The equalization processing unit 114 includes information on OFDM symbol points (“received OFDM symbol points”) in which the influence of the transmission channel is compensated, and complex signal that is an estimation result of transmission channel characteristics corresponding to each of the “received OFDM symbol points”. Is output to the deinterleave processing unit 121.
 デインタリーブ処理部121は、等化処理部114から「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を順次受け取る。そして、デインタリーブ処理部121は、受け取った「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列の並び替えを行う。並び替えの規則は、ISDB-T規格で規定されており、デインタリーブ処理部121は、送信側のインタリーブ処理において時間方向および周波数方向にランダムに並び替えられた信号を元の順序に戻す処理を行う。そして、デインタリーブ部121は、第1のデマッピング処理部122へと並び替えた「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を出力する。また、デインタリーブ部121は、符号間距離算出・累積処理部152へ並び替えた「受信したOFDMシンボル点」のデータ列を、第2のデマッピング処理部153に対して並び替えた「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を出力する。但し、時間方向の並び替えは、TMCC復号処理部113によって取得された制御情報に含まれる各セグメントの時間インタリーブ長に従って行われる。 The deinterleave processing unit 121 sequentially receives the “received OFDM symbol point” and the data string of the estimation result of the channel characteristics from the equalization processing unit 114. Then, the deinterleave processing unit 121 rearranges the received “received OFDM symbol point” and the data string of the transmission path characteristic estimation result. The rearrangement rules are defined in the ISDB-T standard, and the deinterleave processing unit 121 performs processing for returning the signals rearranged randomly in the time direction and the frequency direction to the original order in the interleaving process on the transmission side. Do. Then, the deinterleaving unit 121 outputs the “received OFDM symbol points” rearranged to the first demapping processing unit 122 and the data string of the estimation result of the transmission path characteristics. In addition, the deinterleaving unit 121 rearranges the data string of “received OFDM symbol points” rearranged in the inter-code distance calculation / accumulation processing unit 152 with respect to the second demapping processing unit 153 and receives “received”. The data string of the “OFDM symbol point” and the estimation result of the transmission path characteristics is output. However, the rearrangement in the time direction is performed according to the time interleave length of each segment included in the control information acquired by the TMCC decoding processing unit 113.
 第1のデマッピング処理部122は、デインタリーブ処理部121から並び替えられた「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を入手する。第1のデマッピング処理部122は、TMCC復号処理部113によって取得された制御情報に含まれる各階層のキャリア変調方式に従って、「受信したOFDMシンボル点」から最も近いマッピング点を送信信号点とみなし、ビットデータを生成する。また、第1のデマッピング処理部122は、「受信したOFDMシンボル点」と「受信したOFDMシンボル点」から最も近いマッピング点(送信信号点)との距離情報(「受信シンボル点の距離情報」)と、別途デインタリーブ処理部121から入手した伝送路特性の推定結果のデータ列の情報を基に、信頼性情報を生成する。 The first demapping processing unit 122 obtains the “received OFDM symbol points” rearranged from the deinterleaving processing unit 121 and the data string of the estimation result of the transmission path characteristics. The first demapping processing unit 122 regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. , Generate bit data. In addition, the first demapping processing unit 122 performs distance information between the “received OFDM symbol point” and the mapping point (transmission signal point) closest to the “received OFDM symbol point” (“distance information of the received symbol point”). And reliability information is generated based on the information of the data string of the estimation result of the transmission path characteristics separately obtained from the deinterleave processing unit 121.
 この際、第1のデマッピング処理部122は、OFDMシンボル単位で前記「受信シンボル点の距離情報」を一定期間累積し、OFDMシンボルが含まれるキャリアに含まれるキャリア毎のノイズ量として別途算出した上、キャリア毎のノイズ量、伝送路特性の推定結果および「受信シンボル点の距離情報」から信頼性情報を生成してもよい。 At this time, the first demapping processing unit 122 accumulates the “distance information of received symbol points” for each OFDM symbol for a certain period, and separately calculates the amount of noise for each carrier included in the carrier including the OFDM symbol. In addition, the reliability information may be generated from the noise amount for each carrier, the estimation result of the transmission path characteristics, and the “distance information of received symbol points”.
 なお、実施の形態1の第1のデマッピング処理部122での信頼性情報の生成は従来例のデマッピング処理部622での信頼性情報の生成と同じ既知の手法を用いることができるので、詳細説明は省略する。 In addition, since the generation of reliability information in the first demapping processing unit 122 of Embodiment 1 can use the same known method as the generation of reliability information in the demapping processing unit 622 of the conventional example, Detailed description is omitted.
 そして、第1のデマッピング処理部122は、生成したビットデータと、信頼性情報とを第1の誤り訂正部130へと出力する。 Then, the first demapping processing unit 122 outputs the generated bit data and reliability information to the first error correction unit 130.
 第1の誤り訂正部130は、第1のデマッピング処理部122より入手したビットデータと信頼性情報に基づいて、誤り訂正処理を行い、元の信号系列を生成する。以下、図2を参照しながら、第1の誤り訂正部130の動作を詳細に説明する。 The first error correction unit 130 performs error correction processing based on the bit data obtained from the first demapping processing unit 122 and the reliability information, and generates an original signal sequence. Hereinafter, the operation of the first error correction unit 130 will be described in detail with reference to FIG.
 第1のビットデインタリーブ処理部131は、第1のデマッピング処理部122より入手したビットデータと信頼性情報を、ISDB-T規格の規定に従い元の順序へと並び替え、並び替えたビットデータと信頼性情報を第1の復号処理部132へと出力する。 The first bit deinterleave processing unit 131 rearranges the bit data and reliability information obtained from the first demapping processing unit 122 into the original order according to the ISDB-T standard, and rearranges the bit data. And the reliability information are output to the first decoding processing unit 132.
 第1の復号処理部132は、第1のビットデインタリーブ処理部131よりビットデータと信頼性情報を入手する。第1の復号処理部132は、TMCC復号処理部113によって取得された制御情報に含まれる各階層の内符号の符号化率(畳み込み符号の符号化率)に従って、第1のビットデインタリーブ処理部131から入手したビットデータのデータ列に対して送信側で間引かれたビット位置にダミービットを挿入し、その値を不定とする。第1の復号処理部132は、受け取ったビットデータを信頼性情報に応じて重み付けし復号処理を行う。現在、ビタビ復号と呼ばれる復号処理が広く用いられているが、他の復号アルゴリズムに沿った処理でもよい。第1の復号処理部132は、第1のバイトデインタリーブ処理部133へと復号結果のデータ列を出力する。 The first decoding processing unit 132 obtains bit data and reliability information from the first bit deinterleaving processing unit 131. The first decoding processing unit 132 is a first bit deinterleaving processing unit according to the coding rate of the inner code of each layer (coding rate of the convolutional code) included in the control information acquired by the TMCC decoding processing unit 113 A dummy bit is inserted into the bit position thinned out on the transmission side with respect to the data string of bit data obtained from 131, and the value is undefined. The first decoding processing unit 132 performs decoding processing by weighting the received bit data according to the reliability information. Currently, a decoding process called Viterbi decoding is widely used, but a process according to another decoding algorithm may be used. The first decoding processing unit 132 outputs a data string as a decoding result to the first byte deinterleaving processing unit 133.
 第1のバイトデインタリーブ処理部133は、第1の復号処理部132より復号結果のデータ列を受け取り、受け取った復号結果のデータ列をISDB-T規格の規定に従い元の順序へと並び替え、第1のエネルギー逆拡散処理部134へと並び替えたデータ列を出力する。 The first byte deinterleave processing unit 133 receives the data sequence of the decoding result from the first decoding processing unit 132, rearranges the received data sequence of the decoding result to the original order in accordance with the ISDB-T standard, The rearranged data string is output to the first energy despreading processing unit 134.
 第1のエネルギー逆拡散処理部134は、第1のバイトデインタリーブ処理部133より得られたデータ列に対しISDB-T規格の規定に従い送信側で施されたエネルギー拡散処理を元に戻す処理を行い、変換後のデータ列を第1のRS復号処理部135へと出力する。 The first energy despreading processing unit 134 performs processing for returning the energy spreading processing performed on the transmission side to the data sequence obtained from the first byte deinterleaving processing unit 133 according to the ISDB-T standard. The converted data string is output to the first RS decoding processing unit 135.
 以下で説明する第1のRS復号処理部135から第2のRS復号処理部165までの処理ブロックは、図14に対し新たに追加した処理ブロックまたは出力信号の接続先が異なる処理ブロックである。 Processing blocks from the first RS decoding processing unit 135 to the second RS decoding processing unit 165 described below are processing blocks newly added to FIG. 14 or processing blocks having different connection destinations of output signals.
 第1のRS復号処理部135は、第1のエネルギー拡散処理部134よりデータ列を受け取り、付与されている外符号を用いて受け取ったデータ列のリード・ソロモン復号処理を行い、リード・ソロモン復号されたトランスポートストリームパケットのデータ列を符号化部140内のRS符号処理部141に出力する。これとともに、第1のRS復号処理部135は、符号化部140内のエラー情報付加処理部142に対して、トランスポートストリームパケット単位でエラーの訂正が行われたか否かを示す情報と、トランスポートストリームパケットの先頭バイトを判別するための信号とを出力する。なお、トランスポートストリームパケット単位でエラーの訂正が行われたか否かの情報は、トランスポートストリームパケットに付与されているエラーフラグを用いることができる。また、トランスポートストリームには同期バイトが含まれており、トランスポートストリームパケットの先頭バイトを判別するための信号として同期バイトを用いることができる。このため、第1のRS復号処理部135は、符号化部140内のエラー情報付加処理部142へトランスポートストリームのデータ列を出力するものとする。 The first RS decoding processing unit 135 receives the data sequence from the first energy diffusion processing unit 134, performs Reed-Solomon decoding processing on the received data sequence using the assigned outer code, and performs Reed-Solomon decoding The data stream of the transport stream packet thus processed is output to the RS code processing unit 141 in the encoding unit 140. At the same time, the first RS decoding processing unit 135 transmits to the error information addition processing unit 142 in the encoding unit 140 information indicating whether error correction has been performed in units of transport stream packets, A signal for determining the first byte of the port stream packet is output. Note that an error flag attached to a transport stream packet can be used as information on whether or not an error has been corrected in units of transport stream packets. Further, the transport stream includes a synchronization byte, and the synchronization byte can be used as a signal for determining the first byte of the transport stream packet. For this reason, it is assumed that first RS decoding processing section 135 outputs a data stream of the transport stream to error information addition processing section 142 in encoding section 140.
 符号化部140は、第1のRS復号処理部135から入手したトランスポートストリームパケットのデータ列に対し、送信装置で行われている符号化処理と同じ符号化処理を行う。そして、符号化部140は、符号化処理と並行して、符号処理した信号が誤りを含んだ信号から生成されたかどうかを判定する信号を生成する。以下、図2を参照しながら、符号化部140の動作を詳細に説明する。 The encoding unit 140 performs the same encoding process as the encoding process performed in the transmission apparatus on the data stream of the transport stream packet obtained from the first RS decoding processing unit 135. Then, in parallel with the encoding process, the encoding unit 140 generates a signal for determining whether the encoded signal is generated from a signal including an error. Hereinafter, the operation of the encoding unit 140 will be described in detail with reference to FIG.
 RS符号処理部141は、第1のRS復号処理部135から入手したトランスポートストリームパケットのデータに対し、トランスポートストリーム毎にリード・ソロモン符号処理を施す。日本の地上デジタル放送方式では、短縮化リード・ソロモン符号(204,188)と呼ばれる処理が行われ、204バイトから8バイトまでのランダム誤りを訂正可能とするための外符号が付与される。RS符号処理部141は、トランスポートストリームのデータに外符号を加えたデータをエネルギー拡散処理部143へと出力する。 The RS code processing unit 141 performs Reed-Solomon code processing on the transport stream packet data obtained from the first RS decoding processing unit 135 for each transport stream. In the Japanese terrestrial digital broadcasting system, a process called a shortened Reed-Solomon code (204, 188) is performed, and an outer code for enabling correction of random errors from 204 bytes to 8 bytes is given. The RS code processing unit 141 outputs data obtained by adding an outer code to the transport stream data to the energy spreading processing unit 143.
 エラー情報付加処理部142は、第1のRS復号処理部135からリード・ソロモン復号されたトランスポートストリームパケットのデータ列を入手する。そして、エラー情報付加処理部142は、トランスポートストリームのデータのうち、パケット単位に与えられているパケットのエラー訂正可否の結果の情報(トランスポートストリームパケットに付与されているエラーフラグ)をもとに、パケット単位でエラー訂正可否の情報(エラー訂正できたか否かを示す情報)を生成するとともに、トランスポートストリームに含まれる同期バイトからパケット先頭の同期バイト部を判別するための信号を生成する。そして、エラー情報付加処理部142は、エラー訂正可否の情報とパケット先頭の同期バイト部を判別するための信号をバイトインタリーブ処理部144へと出力する。 The error information addition processing unit 142 obtains the data stream of the transport stream packet subjected to Reed-Solomon decoding from the first RS decoding processing unit 135. Then, the error information addition processing unit 142 is based on the information on the result of whether or not the error correction of the packet given to each packet in the transport stream data is possible (error flag given to the transport stream packet). In addition, information indicating whether or not error correction is possible (information indicating whether or not error correction has been performed) is generated for each packet, and a signal for determining the synchronization byte part at the head of the packet from the synchronization byte included in the transport stream is generated. . Then, the error information addition processing unit 142 outputs to the byte interleaving processing unit 144 a signal for determining whether or not error correction is possible and a synchronous byte portion at the beginning of the packet.
 もしくは、エラー情報付加処理部142は、第1のRS復号処理部135からRS符号処理部141へと出力されるトランスポートストリームのデータ列を入手し、RS符号処理部141および後述のエネルギー拡散処理部143での処理遅延時間が既知であるならば、パケット単位でのエラー訂正可否の情報のみ生成した上で、エラー訂正可否を示す信号の出力タイミングを後述のエネルギー拡散処理部143から出力されるデータ列と揃える構成としてもよい。このとき、RS符号処理部141にて追加されるパリティ部の信号の分を考慮してエラー訂正可否を示す信号を生成する必要がある。 Alternatively, the error information addition processing unit 142 obtains the data stream of the transport stream that is output from the first RS decoding processing unit 135 to the RS code processing unit 141, and the RS code processing unit 141 and an energy spreading process to be described later If the processing delay time in the unit 143 is known, only information on whether or not error correction is possible in units of packets is generated, and the output timing of a signal indicating whether or not error correction is possible is output from the energy diffusion processing unit 143 described later. It is good also as a structure aligned with a data sequence. At this time, it is necessary to generate a signal indicating whether or not error correction is possible in consideration of the parity part signal added by the RS code processing unit 141.
 エネルギー拡散処理部143は、RS符号処理部141からトランスポートストリームのデータに外符号を追加したデータ列を入手する。そして、エネルギー拡散処理部143は、同期バイトを除くトランスポートストリームの信号に対し、ISDB-T規格で規定された疑似ランダム符号系列を用いてエネルギー拡散処理を施し、バイトインタリーブ処理部144へとデータ列を出力する。 The energy spread processing unit 143 obtains a data string obtained by adding an outer code to the data of the transport stream from the RS code processing unit 141. Then, the energy spread processing unit 143 performs energy spread processing on the transport stream signal excluding the synchronization bytes using a pseudo-random code sequence defined by the ISDB-T standard, and sends data to the byte interleave processing unit 144. Output a column.
 バイトインタリーブ処理部144は、エネルギー拡散処理部143からデータ列を、エラー情報付加処理部142から「エラー訂正可否の情報」(エネルギー拡散処理部143から得られたデータが第1のRS復号処理部135においてエラー訂正できたか否かを示す情報)を入手する。この際、「エラー訂正可否の情報」は、エネルギー拡散処理部143から入手するデータ列とタイミングが揃えてあるものとする。 The byte interleave processing unit 144 receives the data string from the energy diffusion processing unit 143, “error correction availability information” from the error information addition processing unit 142 (the data obtained from the energy diffusion processing unit 143 is the first RS decoding processing unit In 135, information indicating whether or not error correction has been performed is obtained. At this time, it is assumed that the “error correction propriety information” is aligned with the data sequence obtained from the energy diffusion processing unit 143.
 そして、バイトインタリーブ処理部144は、エネルギー拡散処理部143から得たデータ列と、エラー情報付加処理部142から入手した「エラー訂正可否の情報」とをISDB-T規格で規定された順にバイト単位で並び替え、並び替え後のデータ列を畳み込み符号処理部145へ、並び替えた「エラー訂正可否の情報」をエラー情報演算処理部146へと出力する。ところで、ISDB-T規格では、階層によってキャリア変調方式が異なる場合、階層毎の遅延時間を合わせることが必要であるため、図2の構成においては、バイトインタリーブ処理部144にて遅延補正処理も同時に行われるものとする。 The byte interleave processing unit 144 then converts the data sequence obtained from the energy diffusion processing unit 143 and the “error correction availability information” obtained from the error information addition processing unit 142 into byte units in the order defined by the ISDB-T standard. Then, the rearranged data string is output to the convolutional code processing unit 145, and the rearranged “error correction availability information” is output to the error information calculation processing unit 146. By the way, in the ISDB-T standard, when the carrier modulation method differs depending on the layer, it is necessary to match the delay time for each layer. Therefore, in the configuration of FIG. 2, the byte interleave processing unit 144 performs the delay correction processing at the same time. Shall be done.
 畳み込み符号処理部145は、バイトインタリーブ処理部144より入手したデータ列に対して畳み込み符号処理を施し、TMCC復号処理部113によって取得された制御情報に含まれる各階層の内符号の符号化率(畳み込み符号の符号化率)に従ってデータの間引きを行った後、データ列をビットインタリーブ処理部147へと出力する。 The convolutional code processing unit 145 performs convolutional code processing on the data sequence obtained from the byte interleaving processing unit 144, and encodes the inner-code coding rate of each layer included in the control information acquired by the TMCC decoding processing unit 113 ( After the data is thinned according to the convolutional code rate, the data string is output to the bit interleave processing unit 147.
 エラー情報演算処理部146は、バイトインタリーブ処理部144から、バイトインタリーブの並び替え処理を行った「エラー訂正可否の情報」のデータを入手する。エラー情報演算処理部146のデータの処理単位は、ビット単位とする。そして、エラー情報演算処理部146は、畳み込み符号処理部145での演算においてエラーを含んだデータが影響を及ぼす範囲を示すデータを生成する。そして、エラー情報演算処理部146は、ビットインタリーブ処理部147に対して、畳み込み符号処理部145から出力されるデータが誤りを持つ可能性があるか否かを示すデータ(以下、「エラー訂正可能範囲を示す信号」と呼ぶ。)を出力する。 The error information calculation processing unit 146 obtains, from the byte interleaving processing unit 144, “error correction enable / disable information” data that has undergone byte interleaving rearrangement processing. The data processing unit of the error information calculation processing unit 146 is a bit unit. Then, the error information calculation processing unit 146 generates data indicating a range in which data including an error affects the calculation in the convolutional code processing unit 145. Then, the error information calculation processing unit 146 provides the bit interleaving processing unit 147 with data indicating whether or not the data output from the convolutional code processing unit 145 may have an error (hereinafter, “error correction is possible”). This is called a “signal indicating the range.”).
 ここで、図3と図4を用いて畳み込み符号処理部145とエラー情報演算処理部146の処理手順を説明する。 Here, the processing procedure of the convolutional code processing unit 145 and the error information calculation processing unit 146 will be described with reference to FIGS. 3 and 4.
 図3は、畳み込み符号処理部145において畳み込み符号を生成するための符号化回路の構成例である。一方の符号の生成多項式G1=(1,1,1,1,0,0,1)、他方の符号の生成多項式G2=(1,0,1,1,0,1,1)であり、拘束長k=7、符号化率1/2の符号化回路を示す。入力側から入ったデータが遅延回路に入力され、各遅延素子(図3中の「D」)の出力を生成多項式に従って排他的論理和の演算を行い、X出力とY出力の2つのデータが出力される。 FIG. 3 is a configuration example of an encoding circuit for generating a convolutional code in the convolutional code processing unit 145. One code generator polynomial G1 = (1,1,1,1,0,0,1), the other code generator polynomial G2 = (1,0,1,1,0,1,1), An encoding circuit with a constraint length k = 7 and an encoding rate of 1/2 is shown. Data input from the input side is input to the delay circuit, the output of each delay element (“D” in FIG. 3) is subjected to an exclusive OR operation according to a generator polynomial, and two data of X output and Y output are obtained. Is output.
 一方、図4は、エラー情報演算処理部146で行う演算処理回路である。図4の演算処理回路は、図4の符号化回路と比較して、X出力とY出力を生成するための排他的論理和演算器がそれぞれ論理和演算器となっている点が異なる。図4のエラー情報演算処理部146がバイトインタリーブ処理部144から入手する「エラー訂正可否の情報」が、第1のRS復号処理部135においてエラー訂正できたデータであれば「0」、エラー訂正できなかったデータであれば「1」であるとする。エラー情報演算処理部146は、畳み込み符号処理部145から出力されるデータが誤りを持つ可能性のあるデータから生成されたものであるか否かを示すデータ(「エラー訂正可能範囲を示す信号」)として、畳み込み符号処理部145から出力されるデータが誤りを持つ可能性のあるデータから生成されたものであれば「1」を、データが誤りを持つ可能性のあるデータから生成されたものでなければ「0」を出力する。 On the other hand, FIG. 4 shows an arithmetic processing circuit performed by the error information arithmetic processing unit 146. The arithmetic processing circuit of FIG. 4 is different from the encoding circuit of FIG. 4 in that the exclusive OR calculator for generating the X output and the Y output is a logical OR calculator. If the “error correction enable / disable information” obtained from the byte interleave processing unit 144 by the error information calculation processing unit 146 in FIG. 4 is data that can be corrected by the first RS decoding processing unit 135, the error correction is performed. If the data could not be obtained, it is assumed to be “1”. The error information arithmetic processing unit 146 is data indicating whether or not the data output from the convolutional code processing unit 145 is generated from data that may have an error (“signal indicating error-correctable range”). ) Is “1” if the data output from the convolutional code processing unit 145 is generated from data that may have an error, and is generated from data that may have an error. Otherwise, “0” is output.
 但し、畳み込み符号処理部145とエラー情報演算処理部146は、TMCC復号処理部113によって取得された各階層の内符号の符号化率(畳み込み符号の符号化率)に応じて、符号化器のX出力とY出力を選択出力する(符号化器のX出力とY出力を間引く)。このため、畳み込み符号処理部145とエラー情報演算処理部146とにおけるX出力とY出力の選択手順は同一の手順となる。 However, the convolutional code processing unit 145 and the error information calculation processing unit 146 are configured according to the encoding rate of the inner code of each layer (coding rate of the convolutional code) acquired by the TMCC decoding processing unit 113. Select and output X output and Y output (thinning out the X output and Y output of the encoder). For this reason, the selection procedure of the X output and the Y output in the convolutional code processing unit 145 and the error information calculation processing unit 146 is the same procedure.
 ビットインタリーブ処理部147は、畳み込み符号処理部145から畳み込み符号処理されたデータ列を入手し、エラー情報演算処理部146から「エラー訂正可能範囲を示す信号」を入手する。そして、ビットインタリーブ処理部147は、畳み込み符号処理部145から得たデータ列と、エラー情報演算処理部146から得た「エラー訂正可能範囲を示す信号」が時間方向にずれないよう配慮した上で、ISDB-Tの規格に従って2つのデータ列のビットの並び替え処理を行い、並び替えたデータ列と「エラー訂正可能範囲を示す信号」の情報それぞれをマッピング処理部151へと出力する。 The bit interleave processing unit 147 obtains the data string subjected to the convolutional code processing from the convolutional code processing unit 145 and obtains a “signal indicating an error-correctable range” from the error information calculation processing unit 146. The bit interleave processing unit 147 takes into consideration that the data sequence obtained from the convolutional code processing unit 145 and the “signal indicating the error-correctable range” obtained from the error information calculation processing unit 146 do not shift in the time direction. Then, the rearrangement processing of the bits of the two data strings is performed according to the ISDB-T standard, and the information of the rearranged data strings and the “signal indicating the error-correctable range” is output to the mapping processing unit 151.
 マッピング処理部151は、ビットインタリーブ処理部147からビットインタリーブ後のデータ列と、ビットインタリーブ後の「エラー訂正可能範囲を示す信号」とを入手する。そして、マッピング処理部151は、TMCC復号処理部113によって取得された制御情報に含まれる各階層のキャリア変調方式に従い、ビットインタリーブ後のデータ列をキャリア単位に分割し、マッピングを行う。キャリア変調方式が16QAMの場合を例として、マッピング処理部151の処理を図5を用いて説明する。 The mapping processing unit 151 obtains a data string after bit interleaving and a “signal indicating an error-correctable range” after bit interleaving from the bit interleaving processing unit 147. Then, the mapping processing unit 151 performs mapping by dividing the data sequence after bit interleaving into carrier units according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. Using the case where the carrier modulation scheme is 16QAM as an example, the processing of the mapping processing unit 151 will be described with reference to FIG.
 図5は、キャリア変調方式が16QAMの場合のマッピング処理部151への入力データパターンとマッピング点の関係を示し、4ビットのデータに対して実数Iと虚数Qがどのように割り当てされるかを図示したものである。図5では、隣り合う符号との符号間距離が2となるように複素信号点を割り当てており、たとえば、入力データが(b0,b1,b2,b3)=(0,0,0,0)であれば、(I,Q)=(+3,+3)の複素信号がマッピング点として割り当てられる。マッピング処理部151は、ビットインタリーブ処理部147から入手したビットインタリーブ後のデータ列をキャリア変調方式から決定されるマッピング点を表す複素信号(以下、「マッピング点の情報」と呼ぶ。)へと変換し、同時に、マッピング点算出元の1又は複数のデータの夫々に対応するビットインタリーブ後の「エラー訂正可能範囲を示す信号」を含む情報(以下、「マッピング点の誤り有無情報」と呼ぶ。)を符号間距離算出・累積処理部152および第2のデマッピング処理部153へと出力する。 FIG. 5 shows the relationship between the input data pattern to the mapping processing unit 151 and mapping points when the carrier modulation scheme is 16QAM, and how the real number I and the imaginary number Q are assigned to 4-bit data. It is illustrated. In FIG. 5, complex signal points are assigned so that the inter-code distance between adjacent codes is 2. For example, the input data is (b0, b1, b2, b3) = (0, 0, 0, 0). If so, a complex signal of (I, Q) = (+ 3, +3) is assigned as a mapping point. The mapping processing unit 151 converts the data sequence after bit interleaving obtained from the bit interleaving processing unit 147 into a complex signal (hereinafter referred to as “mapping point information”) representing a mapping point determined from the carrier modulation scheme. At the same time, information including a “signal indicating an error-correctable range” after bit interleaving corresponding to each of one or a plurality of pieces of data of the mapping point calculation source (hereinafter referred to as “mapping point error presence / absence information”). Is output to the inter-code distance calculation / accumulation processing unit 152 and the second demapping processing unit 153.
 符号間距離算出・累積処理部152は、マッピング処理部151より、キャリア変調方式に応じてマッピングされた「マッピング点の情報」と「マッピング点の誤り有無情報」のデータ列を入手する。また、符号間距離算出・累積処理部152は、デインタリーブ処理部121より、OFDMシンボルのデータ列(以下、「受信したOFDMシンボル点の情報」と呼ぶ。)を入手する。 The intersymbol distance calculation / accumulation processing unit 152 obtains from the mapping processing unit 151 a data string of “mapping point information” and “mapping point error presence / absence information” mapped according to the carrier modulation scheme. Further, the inter-code distance calculation / accumulation processing unit 152 obtains an OFDM symbol data sequence (hereinafter referred to as “information of received OFDM symbol points”) from the deinterleaving processing unit 121.
 まず、符号間距離算出・累積処理部152は、「受信したOFDMシンボル点の情報」と、「マッピング点の情報」および「マッピング点の誤り有無情報」のタイミングをそろえる。第1のデマッピング処理部122からマッピング処理部151までの処理遅延量もしくは、データがOFDMシンボル単位で処理されることから、例えば、OFDMシンボルの先頭を判別し、「マッピング点の情報」と「受信したOFDMシンボル点の情報」との入手タイミング差をカウントし差を調整するか、各処理ブロックにおいて、OFDMシンボル先頭を示す信号を生成し伝達すればよい。 First, the inter-code distance calculation / accumulation processing unit 152 aligns the timings of “received OFDM symbol point information”, “mapping point information”, and “mapping point error presence / absence information”. Since the processing delay amount from the first demapping processing unit 122 to the mapping processing unit 151 or the data is processed in units of OFDM symbols, for example, the beginning of the OFDM symbol is determined, and “mapping point information” and “ The acquisition timing difference from “received OFDM symbol point information” may be counted and adjusted, or a signal indicating the OFDM symbol head may be generated and transmitted in each processing block.
 次に、符号間距離算出・累積処理部152は、「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離を算出する。距離の算出は、ユークリッド距離の算出手順に従う。ただし、距離算出時に「マッピング点の誤り有無情報」を考慮する必要がある。 Next, the inter-code distance calculation / accumulation processing unit 152 calculates a distance between “received OFDM symbol point information” and “mapping point information”. The distance is calculated according to the Euclidean distance calculation procedure. However, “mapping point error presence / absence information” needs to be considered when calculating the distance.
 符号間距離算出・累積処理部152は、「マッピング点の情報」に対応する「マッピング点の誤り有無情報」の内容を判断し、その内容に応じて次の処理を行う。 The inter-code distance calculation / accumulation processing unit 152 determines the content of the “mapping point error presence / absence information” corresponding to the “mapping point information”, and performs the following processing according to the content.
 もし、「マッピング点の情報」に対応する「マッピング点の誤り有無情報」が誤りなしの場合には(「マッピング点の情報」の生成に用いたデータの全てが誤り訂正できたデータである場合には)、符号間距離算出・累積処理部152は、「マッピング点の情報」の複素信号と、「受信したOFDMシンボル点の情報」の複素信号間のユークリッド距離を算出する。 If the “mapping point error presence / absence information” corresponding to the “mapping point information” is error-free (if all of the data used to generate the “mapping point information” is error-corrected data) The inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the complex signal of “mapping point information” and the complex signal of “received OFDM symbol point information”.
 また、「マッピング点の誤り有無情報」のうち、「マッピング点の情報」の生成に用いたデータのうち実数部または虚数部の一方の算出データに誤りが偏った場合には、符号間距離算出・累積処理部152は、「受信したOFDMシンボル点の情報」の複素信号と次の手順で置き換えた「マッピング点の情報」の複素信号間のユークリッド距離を算出する。 If the error is biased to one of the real part or imaginary part of the data used to generate the "mapping point information" in the "mapping point error presence / absence information", the inter-code distance is calculated. The accumulation processing unit 152 calculates the Euclidean distance between the complex signal of “information of received OFDM symbol points” and the complex signal of “information of mapping points” replaced by the following procedure.
 例えば、「マッピング点の情報」の虚数部のみが誤りを持つ可能性がある場合には、符号間距離算出・累積処理部152は、「マッピング点の情報」の虚数部を、「受信したOFDMシンボル点の情報」の虚数部から最も近いシンボル点の虚数部に置き換える。「マッピング点の情報」の実数部の置き換えは行わない。そして、符号間距離算出・累積処理部152は、虚数部を置き換えた「マッピング点の情報」の複素信号と、「受信したOFDMシンボル点の情報」の複素信号間のユークリッド距離を算出する。 For example, when only the imaginary part of “mapping point information” may have an error, the inter-code distance calculation / accumulation processing unit 152 replaces the imaginary part of “mapping point information” with “received OFDM”. Replace the imaginary part of the symbol point information with the imaginary part of the nearest symbol point. The real part of “mapping point information” is not replaced. Then, the inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the “mapping point information” complex signal in which the imaginary part is replaced and the “received OFDM symbol point information” complex signal.
 「マッピング点の情報」の実数部のみが誤りを持つ可能性がある場合には、符号間距離算出・累積処理部152は、「マッピング点の情報」の実数部を、「受信したOFDMシンボル点の情報」の実数部から最も近いシンボル点の実数部に置き換える。「マッピング点の情報」の虚数部の置き換えは行わない。そして、符号間距離算出・累積処理部152は、実数部を置き換えた「マッピング点の情報」の複素信号と「受信したOFDMシンボル点の情報」の複素信号間のユークリッド距離を算出する。 When there is a possibility that only the real part of “mapping point information” may have an error, the inter-code distance calculation / accumulation processing unit 152 replaces the real part of “mapping point information” with “received OFDM symbol points”. Is replaced with the real part of the nearest symbol point. The imaginary part of the “mapping point information” is not replaced. Then, the inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the “mapping point information” complex signal and the “received OFDM symbol point information” complex signal with the real part replaced.
 「マッピング点の情報」の生成に用いたデータの実数部も虚数部も共に誤りを含む可能性がある場合には、符号間距離算出・累積処理部152は、「マッピング点の情報」の実数部と虚数部を「受信したOFDMシンボル点の情報」に最も近いシンボル点の複素信号へと置き換える。そして、符号間距離算出・累積処理部152は、実数部と虚数部を置き換えた「マッピング点の情報」の複素信号と「受信したOFDMシンボル点の情報」の複素信号間のユークリッド距離を算出する。なお、「マッピング点の情報」の生成に用いたデータの実数部も虚数部も共に誤りを含む可能性がある場合に算出されるユークリッド距離の値を累積するとMER(Modulation Error Ratio:変調誤差比)と一般に呼ばれる値となる。 When there is a possibility that both the real part and the imaginary part of the data used for generating the “mapping point information” may contain an error, the inter-code distance calculation / accumulation processing unit 152 determines the real number of the “mapping point information”. The imaginary part and the imaginary part are replaced with a complex signal at a symbol point closest to “information on received OFDM symbol points”. Then, the inter-code distance calculation / accumulation processing unit 152 calculates the Euclidean distance between the complex signal of “mapping point information” in which the real part and the imaginary part are replaced and the complex signal of “information of the received OFDM symbol point”. . The MER (Modulation Error Ratio): Modulation error ratio is calculated by accumulating the Euclidean distance values calculated when there is a possibility that both the real part and the imaginary part of the data used for generating the “mapping point information” contain errors. ) And generally called value.
 このように、「マッピング点の情報」の生成に用いたデータの実数部もしくは虚数部の一方、または実数部及び虚数部の両方が誤りを含む可能性がある場合には、符号間距離算出・累積処理部152は、実数部もしくは虚数部の一方、または実数部及び虚数部の両方を置き換える処理を施した上で、「「受信したOFDMシンボル点の情報」から最も近いシンボル点」と「受信したOFDMシンボル点の情報」とのユークリッド距離を算出する。 Thus, when there is a possibility that one of the real part or the imaginary part of the data used for generating the “mapping point information” or both the real part and the imaginary part may contain an error, the inter-code distance calculation / The accumulation processing unit 152 performs processing for replacing one of the real part or the imaginary part, or both of the real part and the imaginary part, and then receives the “symbol point closest to“ information of received OFDM symbol point ”and“ reception ”. The Euclidean distance with the “information on the OFDM symbol points” is calculated.
 本実施の形態1では、符号間距離算出・累積処理部152は、算出したユークリッド距離の値に対して補正を加える。補正の手順を図6と図7を用いて説明する。 In the first embodiment, the inter-code distance calculation / accumulation processing unit 152 corrects the calculated Euclidean distance value. The correction procedure will be described with reference to FIGS.
 図6は、「「受信したOFDMシンボル点」から最も近いシンボル点」と「受信したOFDMシンボル点」とのユークリッド距離を積算したMER値と、信号に付加されるノイズ量との関係を図示したものである。横軸がノイズ量、縦軸がMER値の大きさを表す。図6中の実線がMER値を示し、点線が信号に付加されたノイズ量を示す。図6に示すように、ノイズ量が「A」の値より小さくなる場合には、MER値とノイズ量はほぼ一致する。一方、ノイズ量が「A」の値より大きくなると、MER値とノイズ量に差が生じ、MER値がノイズ量に比べて小さくなる。これは、付加されたノイズ量がQAM信号の符号間距離よりも大きくなる一方で、ユークリッド距離は最も近い符号点との距離から算出する結果、MER値が小さく算出されるためである。 FIG. 6 illustrates the relationship between the MER value obtained by integrating the Euclidean distance between the “symbol point closest to the“ received OFDM symbol point ”and the“ received OFDM symbol point ”and the amount of noise added to the signal. Is. The horizontal axis represents the amount of noise, and the vertical axis represents the magnitude of the MER value. The solid line in FIG. 6 indicates the MER value, and the dotted line indicates the amount of noise added to the signal. As shown in FIG. 6, when the amount of noise is smaller than the value “A”, the MER value and the amount of noise substantially match. On the other hand, when the noise amount becomes larger than the value “A”, a difference occurs between the MER value and the noise amount, and the MER value becomes smaller than the noise amount. This is because the added noise amount is larger than the inter-code distance of the QAM signal, while the Euclidean distance is calculated from the distance to the nearest code point, and as a result, the MER value is calculated to be small.
 図7は、ノイズ量に対する図2の第1のRS復号処理部135の出力信号(トランスポートストリームパケット)のエラー率と、ノイズ量に対する符号間距離算出・累積処理部152にて算出したユークリッド距離の累積値とを同時に示したものである。信号に加算されたノイズ量に対する、MER値および符号間距離算出・累積処理部152にて算出したユークリッド距離の累積値との関係を示している。 7 shows the error rate of the output signal (transport stream packet) of the first RS decoding processing unit 135 of FIG. 2 with respect to the noise amount, and the Euclidean distance calculated by the inter-code distance calculation / accumulation processing unit 152 for the noise amount. The cumulative value of is simultaneously shown. The relationship between the MER value and the accumulated value of the Euclidean distance calculated by the inter-code distance calculation / accumulation processing unit 152 with respect to the amount of noise added to the signal is shown.
 本来、第1のデマッピング処理部122や第2のデマッピング処理部153などのデマッピング処理部においては、正確に信号に加算されたノイズ量を得ることが望ましい。 Originally, in the demapping processing units such as the first demapping processing unit 122 and the second demapping processing unit 153, it is desirable to accurately obtain the amount of noise added to the signal.
 この信号に加算されたノイズ量を算出するために、通常よく用いられる手法の1つに、MER(Modulation Error Ratio)がある。MERは、受信信号点に最も近い送信信号点と、受信信号点との距離を一定期間平均した値から算出される。信号に付加されるノイズ量が小さく、受信信号点が送信信号点から大きく離れない場合には、高い精度でノイズ量を推定できる。しかしながら、例えば、16QAMなど多値変調方式において、付加されるノイズ量が符号間距離よりも大きくなる場合には、MERの算出元となる最も近い信号点が正しい送信信号点では無いために、間違った送信信号点と受信信号点間の距離をもとにMER値の計算が行われることになり、実際に付加されたノイズ量よりも小さい値を算出してしまう。図7では、MER値が実際に加算したノイズ量よりも小さい値が算出されるノイズ量を、「A」とした。 MER (Modulation Error Ratio) is one of the commonly used techniques for calculating the amount of noise added to this signal. The MER is calculated from a value obtained by averaging the distance between the transmission signal point closest to the reception signal point and the reception signal point for a certain period. When the amount of noise added to the signal is small and the reception signal point is not far from the transmission signal point, the noise amount can be estimated with high accuracy. However, for example, in a multi-level modulation scheme such as 16QAM, when the amount of added noise is larger than the intersymbol distance, the nearest signal point from which the MER is calculated is not the correct transmission signal point, which is incorrect. The MER value is calculated based on the distance between the transmitted signal point and the received signal point, and a value smaller than the actually added noise amount is calculated. In FIG. 7, the noise amount for which a value smaller than the noise amount actually added by the MER value is “A”.
 一方、本実施の形態1における符号間距離算出・累積処理部152にて算出するユークリッド距離の値の累積値は、信号に付加されるノイズ量が「A」よりも大きくなっても、第1のRS復号処理部135にてエラー訂正された情報を用いるため、正確なノイズ量を推定することができる。ここで、信号に付加されるノイズ量が増加し、第1のRS復号処理部135の出力信号がエラーを含みはじめるノイズ量を「B」と定義する。すると、ノイズ量が「A」から「B」の間は、正しい送信信号点と受信信号点との距離を算出できるため、符号間距離算出・累積処理部152は、正確なノイズ量を推定することができる。 On the other hand, the cumulative value of the Euclidean distance value calculated by the inter-code distance calculation / accumulation processing unit 152 in the first embodiment is the first value even if the amount of noise added to the signal is larger than “A”. Since the error-corrected information is used in the RS decoding processing unit 135, an accurate noise amount can be estimated. Here, the amount of noise that is added to the signal and the output signal of the first RS decoding processing unit 135 starts to contain an error is defined as “B”. Then, since the distance between the correct transmission signal point and the reception signal point can be calculated while the noise amount is between “A” and “B”, the inter-code distance calculation / accumulation processing unit 152 estimates an accurate noise amount. be able to.
 次に、信号に付加されるノイズ量が「B」よりも増加すると、第1のRS復号処理部135はエラー訂正ができなくなり、出力信号がエラーを含むようになる。また、この第1のRS復号処理部135の出力信号全てがエラーを含みはじめるノイズ量を「C」と定義する。ノイズ量が「B」から「C」にかけては、第1のRS復号処理部135のエラー率に従い、MER値、及び、「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離から算出したユークリッド距離の値の累積値を組み合わせた値が出力される。 Next, when the amount of noise added to the signal increases from “B”, the first RS decoding processing unit 135 cannot perform error correction, and the output signal includes an error. Further, a noise amount at which all the output signals of the first RS decoding processing unit 135 start to contain errors is defined as “C”. When the noise amount ranges from “B” to “C”, the MER value and the distance between “received OFDM symbol point information” and “mapping point information” according to the error rate of the first RS decoding processing unit 135. A value obtained by combining the accumulated values of the Euclidean distance values calculated from the above is output.
 ノイズ量が増加するに従い、第1のRS復号処理部135にてエラー訂正されたデータが減少し、ノイズ量が「C」になると、全てのデータのエラー訂正ができなくなる。ノイズ量が「C」の場合、符号間距離算出・累積処理部152にて算出するノイズ量は、MERにより算出した値と同じ値となる。 As the amount of noise increases, the data error-corrected by the first RS decoding processing unit 135 decreases, and when the amount of noise becomes “C”, error correction of all data becomes impossible. When the noise amount is “C”, the noise amount calculated by the intersymbol distance calculation / accumulation processing unit 152 is the same value as the value calculated by the MER.
 さらにノイズ量が「C」よりも増加すると、第1のRS復号処理部135にて訂正可能なデータが無く、正確な送信信号点の情報が得られないため、符号間距離算出・累積処理部152にて算出されるノイズ量は、MERにより算出した値と同じ値となる。 If the amount of noise further increases from “C”, there is no data that can be corrected by the first RS decoding processing unit 135, and accurate transmission signal point information cannot be obtained. The amount of noise calculated at 152 is the same value as the value calculated by MER.
 このように、信号に加算されるノイズ量が「B」よりも大きくなると、符号間距離算出・累積処理部152にて算出されるノイズ量が信号に付加されたノイズ量と一致しない。特に、ノイズ量が「B」から「C」にかけては、実際に信号に付加されるノイズ量が増加するにも関わらず、ノイズ量の算出結果はノイズ量が減少していることを示す結果が得られる。このため、符号間距離算出・累積処理部152では、「マッピング点の情報」の生成に用いるデータが誤りを含む場合には、「「受信したOFDMシンボル点」から最も近いシンボル点」と「受信したOFDMシンボル点」とのユークリッド距離」に補正を加えた値を累積する。 Thus, when the amount of noise added to the signal is greater than “B”, the amount of noise calculated by the inter-code distance calculation / accumulation processing unit 152 does not match the amount of noise added to the signal. In particular, when the noise amount is from “B” to “C”, the calculation result of the noise amount shows that the noise amount is decreasing, although the noise amount actually added to the signal increases. can get. For this reason, in the inter-code distance calculation / accumulation processing unit 152, when the data used for generating the “mapping point information” includes an error, the “symbol point closest to the“ received OFDM symbol point ”and the“ reception point ”are received. A value obtained by correcting the “Euclidean distance from the“ OFDM symbol point ”is corrected.
 補正方法は、図7のノイズ量が「B」の場合に、符号間距離算出・累積処理部152にて算出したユークリッド距離の累積値と、MER値との差をあらかじめ算出しておき、符号間距離算出・累積処理部152にて算出したユークリッド距離の累積値に補正を加えることが考えられる。符号間距離算出・累積処理部152は、算出したユークリッド距離の累積値と、MER値との差をNdとすると、第1のRS復号処理部135にてエラーが訂正できなかった信号に対しては、MER値の算出元となる「「受信したOFDMシンボル点」から最も近いシンボル点」と「受信したOFDMシンボル点」とのユークリッド距離」からNdを引いた値を平均化し、ノイズ量を推定する。この結果、第1のRS復号処理部135において、エラー訂正が可能な場合と不可能な場合とのノイズ量の算出結果の意味づけをほぼ同等とすることができる。 In the correction method, when the noise amount in FIG. 7 is “B”, the difference between the accumulated value of the Euclidean distance calculated by the inter-code distance calculation / accumulation processing unit 152 and the MER value is calculated in advance. It is conceivable to correct the accumulated value of the Euclidean distance calculated by the inter-distance calculation / accumulation processing unit 152. When the difference between the calculated Euclidean distance accumulated value and the MER value is Nd, the inter-code distance calculation / accumulation processing unit 152 applies the error to the signal whose error could not be corrected by the first RS decoding processing unit 135. Averages the value obtained by subtracting Nd from the “Euclidean distance between the“ symbol point closest to the received OFDM symbol point ”and the“ received OFDM symbol point ”, which is the MER value calculation source, and estimates the noise amount To do. As a result, in the first RS decoding processing unit 135, the meanings of the calculation results of the noise amount when error correction is possible and when error correction is impossible can be made substantially equal.
 ところで、以上のように「マッピング点の誤り有無情報」に応じて算出したユークリッド距離は、OFDMキャリア単位で算出される。そして、シンボル方向へ一定回数積分される。積分回数は、たとえば、デインタリーブ処理部121で行われる時間インタリーブの最長時間と同一とする等が考えられる。時間インタリーブの最長時間とは、放送規格で規定される時間インタリーブ長のパラメータのうち設定可能なパラメータの最大値を指すのでは無く、例えば、Mode3の放送信号において、インタリーブ長のパラメータI=2であれば、1OFDMフレーム(204OFDMシンボル分)のフレーム長を指す。つまり、Mode3、インタリーブ長I=2の場合は、ユークリッド距離の積分回数は204とする。例えば、256などより大きな積分回数を設定してもよい。 By the way, the Euclidean distance calculated according to the “mapping point error presence / absence information” as described above is calculated in units of OFDM carriers. Then, it is integrated a certain number of times in the symbol direction. For example, the number of integrations may be the same as the longest time of time interleaving performed by the deinterleave processing unit 121. The longest time interleaving time does not indicate the maximum value of the parameters that can be set among the parameters of the time interleaving length specified in the broadcast standard. For example, in the Mode 3 broadcast signal, the interleaving length parameter I = 2 If there is, it indicates the frame length of one OFDM frame (for 204 OFDM symbols). That is, in the case of Mode 3 and interleave length I = 2, the number of integrations of the Euclidean distance is 204. For example, a larger number of integrations such as 256 may be set.
 そして、符号間距離算出・累積処理部152は、シンボル単位に積分した「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離情報を第2のデマッピング処理部153へと出力する。なお、ISDB-T規格では、送信側での周波数インタリーブ処理の際、セグメント内で「セグメント内キャリアローテーション」と呼ばれる、周波数方向のデータの並び替え処理が行われているが、シンボル番号に関わらず同じ周波数位置へとデータの並び替えが行われる。一方、他の放送方式などでシンボル番号によってデータの配置場所が異なる場合には、上記のユークリッド距離をシンボル方向に一定回数積分処理を行う際に、シンボル番号に応じたデータの並び替え処理を考慮し、同じ周波数位置の信号に対して算出した「マッピング点の情報」の複素信号と「受信したOFDMシンボル点の情報」の複素信号間のユークリッド距離を積算する必要がある。 Then, the inter-code distance calculation / accumulation processing unit 152 outputs the distance information between the “received OFDM symbol point information” and the “mapping point information” integrated in symbol units to the second demapping processing unit 153. To do. In the ISDB-T standard, frequency reordering processing called “intra-segment carrier rotation” is performed within a segment during frequency interleaving processing on the transmission side. The data is rearranged to the same frequency position. On the other hand, if the data location differs depending on the symbol number in other broadcasting systems, etc., consider the data rearrangement process according to the symbol number when performing the integration process for the Euclidean distance in the symbol direction a certain number of times. Then, it is necessary to integrate the Euclidean distance between the complex signal of “mapping point information” calculated for the signals at the same frequency position and the complex signal of “information of received OFDM symbol points”.
 また、符号間距離算出・累積処理部152は、更に細かな処理を経て「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離情報を算出することも可能である。ここで距離情報の算出に用いる「マッピング点の情報」の補正手順を再び図5用いて説明する。 Further, the inter-code distance calculation / accumulation processing unit 152 can calculate distance information between “information on received OFDM symbol points” and “information on mapping points” through further detailed processing. Here, the correction procedure of “mapping point information” used for calculating the distance information will be described with reference to FIG. 5 again.
 図5は、キャリア変調方式が16QAMの場合のマッピング規則である。16QAM変調方式では、「マッピング点の情報」は4ビットのデータから算出される。 FIG. 5 shows the mapping rule when the carrier modulation scheme is 16QAM. In the 16QAM modulation system, “mapping point information” is calculated from 4-bit data.
 符号間距離算出・累積処理部152は、「マッピング点の誤り有無情報」がすべて「エラーなし」を示していると判定すれば、マッピング点は図5に従って一意に決定されるため、「マッピング点の情報」をマッピング処理部151から得られた値とする。 If the inter-code distance calculation / accumulation processing unit 152 determines that all of the “mapping point error presence / absence information” indicates “no error”, the mapping point is uniquely determined according to FIG. Is the value obtained from the mapping processing unit 151.
 次に、符号間距離算出・累積処理部152は、「マッピング点の誤り有無情報」より1ビットのデータが「エラーを含む可能性がある」と判定した場合、まず、エラーを含むビットが(b0,b2)もしくは(b1,b3)のいずれに含まれるかを判断する。図5に示すように16QAM変調方式では、マッピング点の実数部が(b0,b2)から、虚数部が(b1,b3)からそれぞれ一意に決定される。一方、エラーを含むビットのペアからは符号点を決められないため、仮の値を割り当てる。 Next, when the inter-code distance calculation / accumulation processing unit 152 determines from the “mapping point error presence / absence information” that 1-bit data is “possibly containing an error”, first, the bit including the error ( It is determined whether it is included in (b0, b2) or (b1, b3). As shown in FIG. 5, in the 16QAM modulation system, the real part of the mapping point is uniquely determined from (b0, b2) and the imaginary part is uniquely determined from (b1, b3). On the other hand, since a code point cannot be determined from a pair of bits including an error, a temporary value is assigned.
 たとえば、符号間距離算出・累積処理部152は、実数部の値の算出元のb0に誤りの可能性があり、b2は正しい情報である場合には、マッピング処理部151から得られた「マッピング点の情報」の実数部を、b2から求まる2つの符号点のうち、「受信したOFDMシンボル点の情報」の実数部に最も近い符号点の実数部に置き換える。「マッピング点の情報」の虚数部の置き換えは行わない。また、符号間距離算出・累積処理部152は、b2に誤りの可能性があり、b0は正しい情報である場合には、マッピング処理部151から得られた「マッピング点の情報」の実数部を、b0から求まる2つの符号点のうち、「受信したOFDMシンボル点の情報」の実数部に最も近い符号点の実数部に置き換える。「マッピング点の情報」の虚数部の置き換えは行わない。 For example, the inter-code distance calculation / accumulation processing unit 152 may have an error in b0 that is the calculation source of the real part value and b2 is correct information, and the “mapping” obtained from the mapping processing unit 151 The real part of “point information” is replaced with the real part of the code point closest to the real part of “information of received OFDM symbol point”, out of the two code points obtained from b2. The imaginary part of the “mapping point information” is not replaced. Further, the inter-code distance calculation / accumulation processing unit 152 calculates the real part of the “mapping point information” obtained from the mapping processing unit 151 when there is a possibility of an error in b2 and b0 is correct information. , B0, the real part of the code point closest to the real part of the "information on received OFDM symbol points" is replaced. The imaginary part of the “mapping point information” is not replaced.
 また、符号間距離算出・累積処理部152は、虚数部の値の算出元のb1に誤りの可能性があり、b3は正しい情報である場合には、マッピング処理部151から得られた「マッピング点の情報」の虚数部を、b3から求まる2つの符号点のうち、「受信したOFDMシンボル点の情報」の虚数部に最も近い符号点の虚数部に置き換える。「マッピング点の情報」の実数部の置き換えは行わない。また、符号間距離算出・累積処理部152は、b3に誤りの可能性があり、b1は正しい情報である場合には、マッピング処理部151から得られた「マッピング点の情報」の虚数部を、b1から求まる2つの符号点のうち、「受信したOFDMシンボル点の情報」の虚数部に最も近い符号点の虚数部に置き換える。「マッピング点の情報」の実数部の置き換えは行わない。 Further, the inter-code distance calculation / accumulation processing unit 152 may have an error in b1 that is the source of calculation of the imaginary part value, and b3 is correct information, and the “mapping” obtained from the mapping processing unit 151 is obtained. The imaginary part of the "point information" is replaced with the imaginary part of the code point closest to the imaginary part of the "received OFDM symbol point information" among the two code points obtained from b3. The real part of “mapping point information” is not replaced. Further, the inter-code distance calculation / accumulation processing unit 152 calculates the imaginary part of the “mapping point information” obtained from the mapping processing unit 151 when there is a possibility of error in b3 and b1 is correct information. , B1 is replaced with the imaginary part of the code point closest to the imaginary part of “information of received OFDM symbol point”. The real part of “mapping point information” is not replaced.
 「マッピング点の誤り有無情報」より2ビットのデータが「エラーを含む可能性がある」と判定された場合、誤りビットが(b0,b2)と(b1,b3)のペアそれぞれに1つずつ含まれる場合と、2ビットの誤りが(b0,b2)または(b1,b3)のペアの一方に偏る場合が考えられる。このうち、前者の場合には、上記の4ビットのうち1ビットだけエラーが含まれる場合と同じ手順で「マッピング点の情報」の実数部と虚数部の置き換えを行う。 If it is determined from the “mapping point error presence / absence information” that the 2-bit data is “possibly containing an error”, one error bit exists for each of the pairs (b0, b2) and (b1, b3). It is conceivable that a 2-bit error is biased to one of the pair (b0, b2) or (b1, b3). Of these, in the former case, the real part and the imaginary part of the “mapping point information” are replaced by the same procedure as in the case where only one bit of the above four bits contains an error.
 一方、符号間距離算出・累積処理部152は、「マッピング点の誤り有無情報」より2ビットの誤りが(b0,b2)に集中したと判定した場合、マッピング処理部151から得られた「マッピング点の情報」の実数部を、「受信したOFDMシンボル点の情報」の実数部に最も近い符号点の実数部に置き換える。「マッピング点の情報」の虚数部の置き換えは行わない。符号間距離算出・累積処理部152は、「マッピング点の誤り有無情報」より2ビットの誤りが(b1,b3)に集中したと判定した場合、マッピング処理部151から得られた「マッピング点の情報」の虚数部を、「受信したOFDMシンボル点の情報」の虚数部に最も近いシンボル点の虚数部に置き換える。「マッピング点の情報」の実数部の置き換えは行わない。 On the other hand, if the inter-code distance calculation / accumulation processing unit 152 determines that 2-bit errors are concentrated on (b0, b2) based on the “mapping point error presence / absence information”, the “mapping” obtained from the mapping processing unit 151 The real part of “point information” is replaced with the real part of the code point closest to the real part of “received OFDM symbol point information”. The imaginary part of the “mapping point information” is not replaced. If the inter-code distance calculation / accumulation processing unit 152 determines from the “mapping point error presence / absence information” that the 2-bit errors are concentrated on (b1, b3), the “mapping point error information” obtained from the mapping processing unit 151 The imaginary part of “information” is replaced with the imaginary part of the symbol point closest to the imaginary part of “information on received OFDM symbol points”. The real part of “mapping point information” is not replaced.
 「マッピング点の誤り有無情報」より4ビットのデータうち3ビットのデータ誤りもしくは、4ビットのデータ全てが誤りを含む可能性がある場合には、マッピング処理部151から得られた「マッピング点の情報」の実数部と虚数部の置き換えを上述の手順より実施する。 If there is a possibility that 3 bits out of 4 bits of data or all 4 bits of data contain errors from the “mapping point error presence / absence information”, the “mapping point The replacement of the real part and the imaginary part of "information" is performed according to the above-described procedure.
 以上の処理により、符号間距離算出・累積処理部152は、「マッピング点の誤り有無情報」が全て誤り訂正できたことを示している場合にはマッピング処理部151から入力された「マッピング点の情報」、これ以外の場合には補正した「マッピング点の情報」と、「受信したOFDMシンボル点の情報」とのユークリッド距離をOFDMキャリア単位で算出し、さらに、シンボル方向へ一定回数積分する。そして、符号間距離・累積処理部152は、シンボル単位に積分した「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離情報を第2のデマッピング処理部153へと出力する。 Through the above processing, the intersymbol distance calculation / accumulation processing unit 152 indicates that the “mapping point error presence / absence information” indicates that all the errors have been corrected, In other cases, the Euclidean distance between the corrected “mapping point information” and the “received OFDM symbol point information” is calculated for each OFDM carrier, and is further integrated a certain number of times in the symbol direction. Then, the inter-code distance / accumulation processing unit 152 outputs the distance information between “received OFDM symbol point information” and “mapping point information” integrated in symbol units to the second demapping processing unit 153. .
 以下、符号間距離算出・累積処理部152にて算出したシンボル単位に積分した「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離情報を「キャリア単位の妨害情報」と呼ぶ。 Hereinafter, distance information between “received OFDM symbol point information” and “mapping point information” integrated in symbol units calculated by the inter-code distance calculation / accumulation processing unit 152 is referred to as “carrier-based interference information”. .
 ところで、以上の説明ではキャリア変調方式を16QAM変調方式として説明を行ったが、キャリア変調方式がたとえば64QAMなどより多値の情報を含んだ変調方式となる場合には、データ誤りの発生の組み合わせが増加するが、誤りの無いビットから算出されるマッピング点のうち、最も「受信したOFDMシンボル点の情報」に近い点を新たな「マッピング点の情報」に置き換えることで、同様の算出方法を採ることができる。 In the above description, the carrier modulation method is described as the 16QAM modulation method. However, when the carrier modulation method is a modulation method including multi-value information, such as 64QAM, the combination of data error occurrences is different. The same calculation method is adopted by replacing the point closest to “information of received OFDM symbol point” with new “mapping point information” among mapping points calculated from bits without error. be able to.
 また、符号間距離算出・累積処理部152は新たな「マッピング点の情報」も、後段の第2のデマッピング処理部153へと出力し、第2のデマッピング処理部153は、マッピング処理部151から入力される「マッピング点の情報」の代わりに符号間距離算出・累積処理部152から入力される新たな「マッピング点の情報」を用いて信頼性情報を算出してもよい。 The inter-code distance calculation / accumulation processing unit 152 also outputs new “mapping point information” to the second demapping processing unit 153 at the subsequent stage, and the second demapping processing unit 153 includes the mapping processing unit. Instead of “mapping point information” input from 151, reliability information may be calculated using new “mapping point information” input from the inter-code distance calculation / accumulation processing unit 152.
 ところで、符号間距離算出・累積処理部152において算出する「キャリア単位の妨害情報」は、データの並び順がデインタリーブ処理部121にて周波数および時間方向に並び替えられた結果の信号から算出した値である。符号間距離算出・累積処理部152における「キャリア単位の妨害情報」を算出する際には、送受の信号点のユークリッド距離を積算・保持するためのメモリ等が必要となるが、例えば、メモリへ値を格納する際に信号の送信時の周波数インタリーブ処理手順に従って送受の信号点のユークリッド距離の値を並び替えた上でメモリに格納してもよい。 By the way, the “interference information in units of carriers” calculated by the inter-code distance calculation / accumulation processing unit 152 is calculated from signals obtained as a result of rearranging the data arrangement order in the frequency and time directions by the deinterleave processing unit 121. Value. When calculating the “interference information for each carrier” in the inter-code distance calculation / accumulation processing unit 152, a memory or the like for integrating and holding the Euclidean distances of transmission / reception signal points is required. When the values are stored, the values of the Euclidean distances of the transmission / reception signal points may be rearranged according to the frequency interleaving processing procedure at the time of signal transmission and stored in the memory.
 すると、「キャリア単位の妨害情報」は、低い周波数のOFDMキャリアから順番に並び替えることができ、例えば、受信信号の特定のOFDMキャリア周辺に周波数選択性妨害信号が重畳している場合には、ある範囲の「キャリア単位の妨害情報」に偏って大きな値を示す。このように、「キャリア単位の妨害情報」の周波数方向の分布状況から受信した信号が周波数選択性妨害信号の影響を受けているか否かの判定ができる。また、周波数選択性妨害信号の影響を受けているOFDMキャリア位置をより正確に特定できる。また、「キャリア単位の妨害情報」算出時の積算回数が少ない場合など、「キャリア単位の妨害情報」を補間処理したり鈍らせた結果を「キャリア単位の妨害情報」に置き換えたりすることもできる。 Then, the “carrier-based interference information” can be rearranged in order from the low-frequency OFDM carrier. For example, when a frequency selective interference signal is superimposed around a specific OFDM carrier of the received signal, A large value is biased toward a certain range of “jamming information per carrier”. In this way, it is possible to determine whether or not the received signal is affected by the frequency selective interference signal from the distribution state in the frequency direction of the “carrier-based interference information”. In addition, the position of the OFDM carrier that is affected by the frequency selective interference signal can be identified more accurately. It is also possible to interpolate or blunt the result of “interference information per carrier” or “subject interference information per carrier” when the number of integrations when calculating “interference information per carrier” is small. .
 その他、周波数選択性妨害信号の発生周波数の情報を別途利用することも考えられる。例えば、FFT処理部よりも前段の信号に対し、妨害信号を除去するためのノッチフィルタ処理を施すような場合に、フィルタにより遮断させる周波数範囲を算出すること等が考えられる。 In addition, it may be possible to separately use information on the frequency of the frequency selective interference signal. For example, it is conceivable to calculate a frequency range to be cut off by a filter when a notch filter process for removing an interference signal is performed on a signal upstream of the FFT processing unit.
 なお、上記に述べたように、「キャリア単位の妨害情報」算出時にデータの並びを入れ替える場合には、後段の第2のデマッピング処理部153において「キャリア単位の妨害情報」を利用する際に、再度「キャリア単位の妨害情報」を並び替え、データと「キャリア単位の妨害情報」が同じキャリア位置から生成されたものとなるようにする必要がある。なお、後述する実施の形態2では、符号間距離算出・累積処理部152は、「キャリア単位の妨害情報」を、第1のデマッピング処理部122に対応する第1のデマッピング処理部122Aへ出力することになるが、第1のデマッピング処理部122Aに関しても同様の処理を施す必要がある。 In addition, as described above, when the data arrangement is changed at the time of calculating the “carrier-based interference information”, the second demapping processing unit 153 at the subsequent stage uses the “carrier-based interference information”. Then, it is necessary to rearrange the “jamming information per carrier” again so that the data and the “jamming information per carrier” are generated from the same carrier position. In the second embodiment, which will be described later, the inter-code distance calculation / accumulation processing unit 152 transmits the “carrier-based interference information” to the first demapping processing unit 122A corresponding to the first demapping processing unit 122. However, the same processing needs to be performed on the first demapping processing unit 122A.
 第2のデマッピング処理部153は、デインタリーブ処理部121から「受信したOFDMシンボル点の情報」と伝送路特性の推定結果のデータ列を入手し、マッピング処理部151より「マッピング点の情報」および「マッピング点の誤り有無情報」を、符号間距離算出・累積処理部152からは、シンボル単位に積分した「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離情報(キャリア単位の妨害情報)を入手する。そして、第2のデマッピング処理部153は、TMCC復号処理部113によって取得された制御情報に含まれる各階層のキャリア変調方式に従って、デマッピング処理を行う。ただし、第2のデマッピング処理部153は、一度誤り訂正処理を行った後のデータを処理するため、データが誤りを含む可能性がある場合と無い場合で処理方法を切り替える。 The second demapping processing unit 153 obtains “received OFDM symbol point information” and a data string of the estimation result of the transmission path characteristics from the deinterleaving processing unit 121, and “mapping point information” from the mapping processing unit 151. And “mapping point error presence / absence information” from the inter-symbol distance calculation / accumulation processing unit 152, which is integrated on a symbol-by-symbol basis, information on the distance between “received OFDM symbol point information” and “mapping point information” Get unit interference information). Then, the second demapping processing unit 153 performs demapping processing according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. However, since the second demapping processing unit 153 processes the data after the error correction processing is performed once, the second demapping processing unit 153 switches the processing method depending on whether or not the data may contain an error.
 第2のデマッピング処理部153は、「マッピング点の誤り有無情報」を基準に、「マッピング点の情報」の算出元のデータが誤りを持つ可能性の有無を判断する。第2のデマッピング処理部153は、誤りの可能性が無い場合には、マッピング点の情報として、マッピング処理部151から「マッピング点の情報」とデインタリーブ処理部121から「受信したOFDMシンボル点の情報」を入手し、それぞれの処理タイミングをそろえた上で、「マッピング点の情報」を符号点として選択し、伝送路特性の推定結果の値は大きな値を与える。大きな値とは、たとえば、伝送路において振幅変動が無い場合の伝送路特性の大きさを「1」として、「1」を与える。 The second demapping processing unit 153 determines, based on the “mapping point error presence / absence information”, whether or not the data from which the “mapping point information” is calculated may have an error. When there is no possibility of an error, the second demapping processing unit 153 uses “mapping point information” from the mapping processing unit 151 and “received OFDM symbol point” from the deinterleaving processing unit 121 as mapping point information. After obtaining the processing information and selecting the “processing point”, the “mapping point information” is selected as the code point, and the value of the estimation result of the transmission path characteristics is given a large value. The large value is given as “1”, for example, assuming that the magnitude of the transmission line characteristic when there is no amplitude fluctuation in the transmission line is “1”.
 一方、「マッピング点の情報」の算出元のデータが誤りを持つ可能性ある場合には、第2のデマッピング処理部153は、「受信したOFDMシンボル点の情報」を信頼性情報の算出に用い、伝送路特性の推定結果の情報は、デインタリーブ処理部121から得た伝送路特性の推定結果の大きさ(キャリア毎に算出した伝送路特性H(ω)の推定結果の大きさ)とする。このとき、信頼性情報の算出に用いる受信シンボル点の情報として、符号間距離算出・累積処理部152にて新たに生成した「マッピング点の情報」を用いた上で、伝送路特性の大きさの情報をデインタリーブ処理部121から入手した値としてもよい。 On the other hand, when there is a possibility that the data from which the “mapping point information” is calculated has an error, the second demapping processing unit 153 uses the “received OFDM symbol point information” to calculate the reliability information. The information of the estimation result of the transmission path characteristics used is the magnitude of the estimation result of the transmission path characteristics obtained from the deinterleave processing unit 121 (the magnitude of the estimation result of the transmission path characteristics H (ω) calculated for each carrier) and To do. At this time, the “mapping point information” newly generated by the intersymbol distance calculation / accumulation processing unit 152 is used as the information of the reception symbol points used for the calculation of the reliability information, and then the size of the transmission path characteristics May be a value obtained from the deinterleave processing unit 121.
 そして、第2のデマッピング処理部153は、「マッピング点の情報」の算出元のデータが誤りを持つ可能性の有無を判断し、誤りの可能性が無い場合には、第2のデマッピング処理部153は、符号間距離算出・累積処理部152にてシンボル単位に積分した「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離情報(キャリア単位の妨害情報)を用いて、上記「受信したOFDMシンボル点の情報」と伝送路特性の大きさから算出される信頼性情報の値を補正する。ところで、符号間距離算出・累積処理部152にて算出したシンボル単位に積分した「受信したOFDMシンボル点の情報」と「マッピング点の情報」との距離情報は、「マッピング点の情報」の算出に用いたデータがエラーを訂正されたデータから算出されるために、信号の送信局で生成される信号と同一の送信信号点と、復調処理の結果得られた受信点とを比較し、送受の信号点のユークリッド距離を同じデータキャリアについて一定時間積算した値とみなすことができる。 Then, the second demapping processing unit 153 determines whether or not there is a possibility that the data from which the “mapping point information” is calculated has an error. The processing unit 153 uses distance information (interference information in carrier units) between “information on received OFDM symbol points” and “information on mapping points” integrated in symbol units by the inter-code distance calculation / accumulation processing unit 152. Then, the reliability information value calculated from the “information of received OFDM symbol point” and the size of the transmission path characteristic is corrected. By the way, the distance information between “received OFDM symbol point information” and “mapping point information” integrated in symbol units calculated by the inter-code distance calculation / accumulation processing unit 152 is calculated as “mapping point information”. Since the data used in the calculation is calculated from the error-corrected data, the same transmission signal point as the signal generated by the signal transmission station is compared with the reception point obtained as a result of the demodulation process, The Euclidean distance of the signal points can be regarded as a value obtained by integrating the same data carrier for a certain period of time.
 「キャリア単位の妨害情報」は、より正しく各キャリアに含まれる妨害信号量を時間方向に平均化した結果とみなせるため、「キャリア単位の妨害情報」を用いて各受信データの信頼性情報を補正する。具体的には、「キャリア単位の妨害情報」が大きいデータキャリアの信頼性を低く、「キャリア単位の妨害情報」が小さいデータキャリアの信頼性を高くなるよう、受信シンボル点と伝送路特性から算出した信頼性情報の値を「キャリア単位の妨害情報」で除算する。また、常に「マッピング点の誤り有無情報」がエラーであることを示したり、「キャリア単位の妨害情報」が突出して大きいことを示したりするキャリアは、信頼性情報の値を「0」として、当該キャリアに含まれるデータは全く信頼できないとしてもよい。 Since “jamming information per carrier” can be regarded as a result of more accurately averaging the amount of jamming signals contained in each carrier in the time direction, the reliability information of each received data is corrected using “jamming information per carrier”. To do. Specifically, it is calculated from received symbol points and transmission path characteristics so that the reliability of data carriers with a large “carrier interference information” is low and the reliability of data carriers with a small “carrier interference information” is high. The reliability information value is divided by “jamming information per carrier”. In addition, a carrier that always indicates that the “mapping point error presence / absence information” is an error, or that “carrier-based interference information” is prominently large, sets the reliability information value to “0”, The data contained in the carrier may not be trusted at all.
 そして、第2のデマッピング処理部153は、生成したビットデータと信頼性情報とを第2の誤り訂正部160内の第2のビットデインタリーブ処理部161へと出力する。 Then, the second demapping processing unit 153 outputs the generated bit data and reliability information to the second bit deinterleaving processing unit 161 in the second error correction unit 160.
 さらに、第2のデマッピング処理部153は、先に述べたように符号間距離算出・累積処理部152より、「キャリア単位の妨害情報」を入手している。この「キャリア単位の妨害情報」をキャリア方向に平均化することで、受信信号に含まれる妨害信号量の指標として別途用いることができる。もし、受信するOFDM信号のC/Nが信号レベルで短時間に変化するように時間変動する場合など、キャリア単位の妨害情報の平均値を受信信号のノイズ量として、第2のデマッピング処理部153から第2の誤り訂正部160内の第2のビットデインタリーブ処理部161に対し出力する信頼性情報をさらに補正してもよい。また、別途マルチキャリア変調信号受信装置が受信する信号の信号品質値として利用することも可能である。 Furthermore, as described above, the second demapping processing unit 153 obtains “interference information per carrier” from the inter-code distance calculation / accumulation processing unit 152. By averaging the “jamming information for each carrier” in the carrier direction, it can be used separately as an indicator of the amount of jamming signals included in the received signal. If the C / N of the received OFDM signal fluctuates so that the signal level changes in a short time, the second demapping processing unit uses the average value of the interference information for each carrier as the noise amount of the received signal. The reliability information output from 153 to the second bit deinterleave processing unit 161 in the second error correction unit 160 may be further corrected. It can also be used as a signal quality value of a signal received by the multicarrier modulation signal receiving apparatus separately.
 さらに、受信信号の信号品質値として、次の工夫をすることができる。符号間距離算出・累積処理部152にて入手する「受信したOFDMシンボル点の情報」は、デインタリーブ処理部121を経由した値であるため、デインタリーブ処理部121のメモリ量を削減するために量子化を行いビット幅を制限した値とすることが考えられる。この結果、信号品質が高い場合には、量子化誤差の影響によりデインタリーブ処理部121より後段の処理ブロックにおいては、高い精度で信号品質指標値を算出することが困難である。その一方で、デインタリーブ処理部121よりも前段の等化処理部113の出力信号に対してMER値を算出しておき、信号品質が一定値よりも高い場合には、デインタリーブ処理部121よりも前段で算出した値を信号品質指標値として用い、信号品質が一定値よりも低い場合には、符号間距離算出・累積処理部152よりから入手した「キャリア単位の妨害情報」をキャリア方向に平均化した値を信号品質指標値として用いる。 Furthermore, the following measures can be taken as the signal quality value of the received signal. Since the “information on received OFDM symbol points” obtained by the inter-code distance calculation / accumulation processing unit 152 is a value that has passed through the deinterleaving processing unit 121, the memory amount of the deinterleaving processing unit 121 is reduced. It is conceivable that the bit width is limited by quantization. As a result, when the signal quality is high, it is difficult to calculate the signal quality index value with high accuracy in the processing block subsequent to the deinterleave processing unit 121 due to the influence of the quantization error. On the other hand, if the MER value is calculated for the output signal of the equalization processing unit 113 before the deinterleaving processing unit 121 and the signal quality is higher than a certain value, the deinterleaving processing unit 121 If the value calculated in the previous stage is used as the signal quality index value and the signal quality is lower than a certain value, the “interference information per carrier” obtained from the inter-code distance calculation / accumulation processing unit 152 is used in the carrier direction. The averaged value is used as the signal quality index value.
 第2の誤り訂正部160は、第2のデマッピング処理部153より入手したビットデータと信頼性情報に基づいて、誤り訂正処理を行い、元の信号系列を生成する。以下に、図2を参照しながら、第2の誤り訂正部160の動作を詳細に説明する。 The second error correction unit 160 performs error correction processing based on the bit data and reliability information obtained from the second demapping processing unit 153, and generates an original signal sequence. Hereinafter, the operation of the second error correction unit 160 will be described in detail with reference to FIG.
 第2のビットデインタリーブ処理部161は、第2のデマッピング処理部153より入手したビットデータと信頼性情報を、ISDB-T規格の規定に従い元の順序へと並び替え、並び替えたビットデータと信頼性情報を第2の復号処理部162へと出力する。 The second bit deinterleave processing unit 161 rearranges the bit data and reliability information obtained from the second demapping processing unit 153 into the original order in accordance with the ISDB-T standard, and rearranges the bit data. And the reliability information are output to the second decoding processing unit 162.
 第2の復号処理部162は、第2のビットデインタリーブ処理部161よりビットデータと信頼性情報を入手する。第2の復号処理部162は、TMCC復号処理部113によって取得された制御情報に含まれる各階層の内符号の符号化率(畳み込み符号の符号化率)に従って、第2のビットデインタリーブ処理部131から入手したビットデータのデータ列に対して送信側で間引かれたビット位置にダミービットを挿入し、その値を不定とする。第2の復号処理部162は、受け取ったビットデータを信頼性情報に応じて重み付けし復号処理を行う。現在、ビタビ復号と呼ばれる復号処理が広く用いられているが、他の復号アルゴリズムに沿った処理でもよい。第2の復号処理部162は、第2のバイトデインタリーブ処理部163へと復号結果のデータ列を出力する。 The second decoding processing unit 162 obtains bit data and reliability information from the second bit deinterleaving processing unit 161. The second decoding processing unit 162 is a second bit deinterleaving processing unit according to the coding rate of the inner code of each layer (coding rate of the convolutional code) included in the control information acquired by the TMCC decoding processing unit 113 A dummy bit is inserted into the bit position thinned out on the transmission side with respect to the data string of bit data obtained from 131, and the value is undefined. The second decoding processing unit 162 performs decoding processing by weighting the received bit data according to the reliability information. Currently, a decoding process called Viterbi decoding is widely used, but a process according to another decoding algorithm may be used. The second decoding processing unit 162 outputs the decoding result data string to the second byte deinterleaving processing unit 163.
 第2のバイトデインタリーブ処理部163は、第2の復号処理部162より復号結果のデータ列を受け取り、受け取った復号結果のデータ列をISDB-T規格の規定に従い元の順序へと並び替え、第2のエネルギー逆拡散処理部164へと並び替えたデータ列を出力する。 The second byte deinterleave processing unit 163 receives the data sequence of the decoding result from the second decoding processing unit 162, rearranges the received data sequence of the decoding result into the original order in accordance with the ISDB-T standard, The rearranged data string is output to the second energy despreading processing unit 164.
 第2のエネルギー拡散処理部164は、第2のバイトデインタリーブ処理部163より得られたデータ列に対しISDB-T規格の規定に従い信号の送信側で施されたエネルギー拡散処理を元に戻す処理を行い、変換後のデータ列を第2のRS復号処理部165へと出力する。 The second energy spreading processing unit 164 restores the energy spreading processing performed on the signal transmission side according to the ISDB-T standard for the data string obtained from the second byte deinterleaving processing unit 163. And the converted data string is output to the second RS decoding processing unit 165.
 第2のRS復号処理部165は、第2のエネルギー拡散処理部164よりデータ列を受け取り、付与されている外符号を用いてリード・ソロモン復号処理を行い、リード・ソロモン復号されたトランスポートストリームパケットのデータ列をTS再生処理部171に出力する。 The second RS decoding processing unit 165 receives the data string from the second energy spreading processing unit 164, performs Reed-Solomon decoding processing using the assigned outer code, and performs a Reed-Solomon decoded transport stream The data string of the packet is output to the TS reproduction processing unit 171.
 TS再生処理部171は、第2のRS復号処理部165からリード・ソロモン復号後のデータ列を入手し、トランスポートストリームのパケット数が伝送パラメータによらず一定とするために、適切な数のヌルパケットに補完処理を行い、ヌルパケットを補完した後のトランスポートストリームのパケットデータをTSデコード処理部172へと出力する。 The TS reproduction processing unit 171 obtains the data sequence after Reed-Solomon decoding from the second RS decoding processing unit 165, and in order to make the number of packets of the transport stream constant regardless of the transmission parameters, an appropriate number of Complement processing is performed on the null packet, and the packet data of the transport stream after supplementing the null packet is output to the TS decode processing unit 172.
 TSデコード処理部172は、TS再生処理部171から出力されるトランスポートストリームのパケットを入手し、トランスポートストリームに含まれる情報をもとに、ビデオパケット、オーディオパケット、PCR(Program Clock Reference)パケット等のパケットに分類し、MPEGデコード処理部173へと出力する。 The TS decode processing unit 172 obtains the transport stream packet output from the TS playback processing unit 171, and based on the information included in the transport stream, a video packet, an audio packet, and a PCR (Program Clock Reference) packet Are output to the MPEG decoding processing unit 173.
 MPEGデコード処理部173は、ビデオデコーダおよびオーディオデコーダから構成される。ビデオデコーダは、TSデコード処理部172から入手したトランスポートストリームパケットのうちビデオパケットを抽出し、データを復号し画像データを生成する。オーディオデコーダは、TSデコード処理部172から入手したトランスポートストリームのうちオーディオパケットを抽出し、データを復号し音声データを生成する。 The MPEG decoding processing unit 173 includes a video decoder and an audio decoder. The video decoder extracts video packets from the transport stream packets obtained from the TS decoding processing unit 172, decodes the data, and generates image data. The audio decoder extracts an audio packet from the transport stream obtained from the TS decoding processing unit 172, decodes the data, and generates audio data.
 そして、MPEGデコード処理部173は、PCRパケットに含まれる時間情報を基に、画像データと音声データの出力タイミングを調整した上で、画像データと音声データを表示装置等に出力する。 Then, the MPEG decode processing unit 173 adjusts the output timing of the image data and the audio data based on the time information included in the PCR packet, and then outputs the image data and the audio data to a display device or the like.
 以上の処理により、本実施の形態1のマルチキャリア変調信号受信装置は、一度誤り訂正処理を施した結果のデータから信号の送信局で生成される送信信号点を復元し、送信信号点と復調部から得られた受信信号点とをキャリア単位で比較し、比較結果から求まるユークリッド距離を一定時間積算した値をキャリア毎に含まれる妨害信号量とみなし第2の誤り訂正部160に伝達する信頼性情報を補正することができる。このため、従来の方法と比較し高い受信性能を得ることができる。特に、受信信号が周波数選択性の妨害信号の影響を受けている場合には、キャリア単位で偏りのある妨害信号量をより正確に算出できるため、高い効果を得ることができる。 Through the above processing, the multicarrier modulation signal receiving apparatus according to the first embodiment restores the transmission signal point generated at the signal transmission station from the data resulting from the error correction processing once, and demodulates the transmission signal point and the demodulation. The received signal point obtained from the unit is compared in units of carriers, and a value obtained by integrating the Euclidean distance obtained from the comparison result for a certain period of time is regarded as an interference signal amount included in each carrier and transmitted to the second error correction unit 160 Sex information can be corrected. For this reason, it is possible to obtain high reception performance as compared with the conventional method. In particular, when the received signal is affected by a frequency-selective interference signal, it is possible to more accurately calculate the amount of interference signal that is biased in units of carriers, so that a high effect can be obtained.
 ところで、以上の実施の形態1のマルチキャリア変調信号受信装置の構成の説明においては、例えば、階層毎に異なるキャリア変調方式で信号が伝送されることに伴い、階層毎に処理タイミングを調整する等のISDB-T規格で規定された処理について必ずしも全ての手順を説明していないが、特別な記載が無い限りISDB-T規格に沿った処理を適切なブロックにて行うものとする。 By the way, in the description of the configuration of the multicarrier modulation signal receiving apparatus of the first embodiment described above, for example, the processing timing is adjusted for each layer as the signal is transmitted by a different carrier modulation method for each layer. Although all procedures are not necessarily described for the processing specified in the ISDB-T standard, processing according to the ISDB-T standard is performed in an appropriate block unless otherwise specified.
 なお、本実施の形態1において、図1のように符号化部140から第2の誤り訂正部160において1回の誤り訂正処理をして、TS再生処理部171へ出力するとしたが、符号化部140から第2の誤り訂正部160で複数回の誤り訂正処理をして、TS再生処理部171へ出力するとしても良い。この場合、図8のように第2の誤り訂正部160での誤り訂正処理が何回目かをカウントするために、第2の誤り訂正部160の出力信号を入力する誤り訂正カウント部166を設ける。例えば、繰り返し回数が2回の場合には、誤り訂正カウント部166は第2の誤り訂正部160での誤り訂正処理の回数が1回のときに符号化部140に信号を出力し、誤り訂正処理の回数が2回のときにTS再生処理部171に出力する。さらに、例えば、第2の誤り訂正処理部160の動作速度を高め、出力信号の出力時間の遅れが発生しない範囲で、誤り訂正カウント部166から符号化部140への信号処理を複数回繰り返し、誤り訂正効果を高めることも可能である。 In the first embodiment, the error correction process is performed once in the second error correction unit 160 from the encoding unit 140 and output to the TS reproduction processing unit 171 as shown in FIG. The second error correction unit 160 may perform error correction processing a plurality of times from the unit 140 and output to the TS reproduction processing unit 171. In this case, as shown in FIG. 8, in order to count the number of times of error correction processing in the second error correction unit 160, an error correction count unit 166 for inputting the output signal of the second error correction unit 160 is provided. . For example, when the number of repetitions is 2, the error correction count unit 166 outputs a signal to the encoding unit 140 when the number of error correction processes in the second error correction unit 160 is 1, and error correction is performed. When the number of processes is two, the data is output to the TS reproduction processing unit 171. Further, for example, the signal processing from the error correction count unit 166 to the encoding unit 140 is repeated a plurality of times within the range where the operation speed of the second error correction processing unit 160 is increased and the output signal output time is not delayed, It is also possible to increase the error correction effect.
 なお、本実施の形態1において、図2のように第1の復号処理部132と第2の復号処理部162というように同一処理を行うブロックを2個設けたが、共用化するとしても良い。この場合、図9のように第2のデマッピング処理部153からの出力信号を第1の誤り訂正部130に入力するようにする。第1の誤り訂正部130での誤り訂正処理が何回目かをカウントするために、第1の誤り訂正部130の出力信号を入力する誤り訂正カウント部136を設ける。そして、誤り訂正カウント部136は、第1の誤り訂正部130での誤り訂正処理の回数が1回のときに符号化部140に信号を出力し、誤り訂正処理の回数が規定の回数に達したときにTS再生処理部171に信号を出力する。また、例えば、第1の誤り訂正処理部130の動作速度を高く設定し、出力信号の出力時間の遅れが大きくならない範囲で、第2のデマッピング処理部153から第1の誤り訂正部130への信号処理を複数回繰り返し、誤り訂正効果を高めることも可能である。 In the first embodiment, two blocks that perform the same processing are provided as in the first decoding processing unit 132 and the second decoding processing unit 162 as shown in FIG. 2, but may be shared. . In this case, as shown in FIG. 9, the output signal from the second demapping processing unit 153 is input to the first error correction unit 130. In order to count how many times the error correction processing in the first error correction unit 130 is performed, an error correction count unit 136 for inputting an output signal of the first error correction unit 130 is provided. Then, the error correction count unit 136 outputs a signal to the encoding unit 140 when the number of error correction processes in the first error correction unit 130 is one, and the number of error correction processes reaches a specified number. A signal is output to the TS reproduction processing unit 171. In addition, for example, the operation speed of the first error correction processing unit 130 is set high, and the delay from the output time of the output signal does not increase so that the second demapping processing unit 153 transfers to the first error correction unit 130. It is also possible to increase the error correction effect by repeating this signal processing a plurality of times.
 (実施の形態2)
 以下、本発明の実施の形態2について、図面を参照しながら説明する。なお、本実施の形態2において、実施の形態1の構成要素と実質的に同じ処理を行う構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態2ではその説明を省略し、或いは、簡単な記載に留める。
(Embodiment 2)
Embodiment 2 of the present invention will be described below with reference to the drawings. In the second embodiment, components that perform substantially the same processing as the components in the first embodiment are denoted by the same reference numerals, and the description thereof can be applied. Omit or keep a simple description.
 図10は、本実施の形態2におけるマルチキャリア変調信号受信装置の構成を示すブロック図であり、図11は、図10のマルチキャリア変調信号受信装置の詳細構成を示すブロック図である。 FIG. 10 is a block diagram showing a configuration of the multicarrier modulation signal receiving apparatus according to the second embodiment, and FIG. 11 is a block diagram showing a detailed configuration of the multicarrier modulation signal receiving apparatus of FIG.
 本実施の形態2のマルチキャリア変調信号受信装置は、図10に示すように、アンテナ部101と、チューナ部102と、A/D変換処理部103と、復調部110と、デインタリーブ処理部121と、第1のデマッピング処理部122Aと、第1の誤り訂正部130と、符号化部140と、マッピング処理部151と、符号間距離算出・累積処理部152と、第2のデマッピング処理部153と、第2の誤り訂正部160と、TS(Transport Stream:トランスポートストリーム)再生処理部171と、TSデコード処理部172と、MPEG(Moving Picture Experts Group)デコード処理部173とで構成されている。 As shown in FIG. 10, the multicarrier modulation signal receiving apparatus according to the second embodiment includes an antenna unit 101, a tuner unit 102, an A / D conversion processing unit 103, a demodulation unit 110, and a deinterleaving processing unit 121. The first demapping processing unit 122A, the first error correction unit 130, the encoding unit 140, the mapping processing unit 151, the inter-code distance calculation / accumulation processing unit 152, and the second demapping processing. Section 153, second error correction section 160, TS (Transport Stream: transport stream) reproduction processing section 171, TS decoding processing section 172, and MPEG (Moving Picture Experts Group) decoding processing section 173. ing.
 図10の復調部110は、図11に示すように、直交検波処理部111と、FFT処理部112と、等化処理部113とによって構成される。また、図10の第1の誤り訂正部130は、図11に示すように、第1のビットデインタリーブ処理部131と、第1の復号処理部132と、第1のバイトデインタリーブ処理部133と、第1のエネルギー逆拡散処理部134と、第1のRS復号処理部135とによって構成される。また、図10の符号化部140は、図11に示すように、RS符号処理部141と、エラー情報付加処理部142と、エネルギー拡散処理部143と、バイトインタリーブ処理部144と、畳み込み符号処理部145と、エラー情報演算処理部146と、ビットインタリーブ処理部147とによって構成される。また、図10の第2の誤り訂正部160は、図11に示すように、第2のビットデインタリーブ処理部161と、第2の復号処理部162と、第2のバイトデインタリーブ処理部163と、第2のエネルギー逆拡散処理部164と、第2のRS復号処理部165とによって構成される。 As shown in FIG. 11, the demodulation unit 110 in FIG. 10 includes an orthogonal detection processing unit 111, an FFT processing unit 112, and an equalization processing unit 113. Further, as shown in FIG. 11, the first error correction unit 130 of FIG. 10 includes a first bit deinterleaving processing unit 131, a first decoding processing unit 132, and a first byte deinterleaving processing unit 133. And a first energy despreading processing unit 134 and a first RS decoding processing unit 135. Further, as shown in FIG. 11, the encoding unit 140 in FIG. 10 includes an RS code processing unit 141, an error information addition processing unit 142, an energy spread processing unit 143, a byte interleave processing unit 144, and a convolutional code processing. 145, error information calculation processing unit 146, and bit interleaving processing unit 147. Further, as shown in FIG. 11, the second error correction unit 160 in FIG. 10 includes a second bit deinterleaving processing unit 161, a second decoding processing unit 162, and a second byte deinterleaving processing unit 163. And a second energy despreading processing unit 164 and a second RS decoding processing unit 165.
 次に、図10及び図11の本実施の形態2におけるマルチキャリア変調信号受信装置の構成を、図1及び図2の実施の形態1におけるマルチキャリア変調信号受信装置の構成と比較する。 Next, the configuration of the multicarrier modulation signal receiving apparatus in the second embodiment in FIGS. 10 and 11 is compared with the configuration of the multicarrier modulation signal receiving apparatus in the first embodiment in FIGS.
 本実施の形態2におけるマルチキャリア変調信号受信装置は、実施の形態1におけるマルチキャリア変調信号受信装置と比較して、符号間距離算出・累積処理部152が「キャリア単位の妨害情報」を第2のデマッピング処理部153に加えて第1のデマッピング処理部122Aへ出力し、第1のデマッピング処理部122Aが「キャリア単位の妨害情報」も利用してデマッピング処理を行う点で異なっている。 Compared with the multicarrier modulation signal receiving apparatus in the first embodiment, the multicarrier modulation signal receiving apparatus in the second embodiment is such that the inter-code distance calculation / accumulation processing unit 152 sets the “carrier-based interference information” to the second value. Output to the first demapping processing unit 122A in addition to the demapping processing unit 153, and the first demapping processing unit 122A performs demapping processing also using “carrier-based interference information”. Yes.
 第1のデマッピング処理部122Aは、デインタリーブ処理部121から並び替えられた「受信したOFDMシンボル点」と伝送路特性の推定結果のデータ列を入手する。第1のデマッピング処理部122Aは、TMCC復号処理部113によって取得された制御情報に含まれる各階層のキャリア変調方式に従って、「受信したOFDMシンボル点」から最も近いマッピング点を送信信号点とみなし、ビットデータを生成する。また、第1のデマッピング処理部122Aは、「受信したOFDMシンボル点」と「受信したOFDMシンボル点」から最も近いマッピング点(送信信号点)との距離情報(「受信シンボル点の距離情報」)と、別途デインタリーブ処理部121から入手した伝送路特性の推定結果のデータ列の情報と、後段の符号間距離算出・累積処理部152から入手した「キャリア単位の妨害情報」とを組み合わせ信頼性情報を生成する。そして、第1のデマッピング処理部122Aは、生成したビットデータと、信頼性情報とを第1の誤り訂正部130内の第1のビットデインタリーブ処理部131へと出力する。 The first demapping processing unit 122A obtains the “received OFDM symbol points” rearranged from the deinterleaving processing unit 121 and the data string of the estimation result of the transmission path characteristics. The first demapping processing unit 122A regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point according to the carrier modulation scheme of each layer included in the control information acquired by the TMCC decoding processing unit 113. , Generate bit data. In addition, the first demapping processing unit 122A performs distance information between the “received OFDM symbol point” and the mapping point (transmission signal point) closest to the “received OFDM symbol point” (“distance information of the received symbol point”). ) And the information of the data string of the estimation result of the transmission path characteristics obtained separately from the deinterleave processing unit 121 and the “interference information per carrier” obtained from the inter-symbol distance calculation / accumulation processing unit 152 in combination. Generate sex information. Then, the first demapping processing unit 122A outputs the generated bit data and reliability information to the first bit deinterleaving processing unit 131 in the first error correction unit 130.
 ここで、第1のデマッピング処理部122Aにおける信頼性情報の生成方法の説明を行う。第1のデマッピング処理部122Aは、後段の第1の復号処理部132にて軟判定と呼ばれる誤り訂正処理を行うための情報の生成を行う。まず、第1のデマッピング処理部122Aは、デインタリーブ処理部121からデインタリーブ処理後の「受信したOFDMシンボル点」と「伝送路特性の推定結果」のデータ列を入手する。そして、第1のデマッピング処理部122Aは、「受信したOFDMシンボル点」から最も近いマッピング点を送信信号点とみなし、最も近いマッピング点の複素信号点のデータを算出する。そして、第1のデマッピング処理部122Aは、図5に示したような、複素信号点と情報ビットの割り当て規則に従って、複素信号をビット列へと変換し、第1のビットデインタリーブ処理部131へとビットデータ列を出力する。 Here, a method of generating reliability information in the first demapping processing unit 122A will be described. The first demapping processing unit 122A generates information for performing error correction processing called soft decision in the first decoding processing unit 132 in the subsequent stage. First, the first demapping processing unit 122A obtains a data string of “received OFDM symbol points” and “estimation results of transmission path characteristics” after the deinterleaving processing from the deinterleaving processing unit 121. Then, the first demapping processing unit 122A regards the mapping point closest to the “received OFDM symbol point” as the transmission signal point, and calculates the data of the complex signal point of the closest mapping point. Then, the first demapping processing unit 122A converts the complex signal into a bit string according to the complex signal point and information bit allocation rule as shown in FIG. And a bit data string are output.
 また、第1のデマッピング処理部122Aは、「受信シンボル点の距離情報」と、別途デインタリーブ処理部121から入手した「伝送路特性の推定結果のデータ列」と、符号間距離算出・累積処理部152から入手した「キャリア単位の妨害情報」とを組み合わせ信頼性情報を生成する。第1のデマッピング処理部122にて生成する信頼性情報は尤度とも呼ばれ、ビット単位でデータの1らしさと0らしさを示す値である。例えば、あるビットが1であった可能性が高い場合は信頼性情報の値として正の値を与え、0であった可能性が高い場合には負の値を与える。あるビットが1らしさと0らしさが同等であれば0を与える。また、信頼性が高いほど絶対値が大きい値を与える。これにより、ビタビ復号器などによる誤り訂正処理において、入力されたビット列の0らしさと1らしさをもとに送信された符号列へと復号処理が行われる。 Further, the first demapping processing unit 122A performs “distance information of received symbol points”, “data string of transmission path characteristic estimation results” obtained from the deinterleaving processing unit 121, and inter-code distance calculation / accumulation. The reliability information is generated by combining the “interference information in units of carriers” obtained from the processing unit 152. The reliability information generated by the first demapping processing unit 122 is also called likelihood, and is a value indicating 1-likeness and 0-likeness of data in bit units. For example, when there is a high possibility that a certain bit is 1, a positive value is given as the value of reliability information, and when there is a high possibility that a certain bit is 0, a negative value is given. If a bit has the same probability of 1 and 0, 0 is given. Also, the higher the reliability, the larger the absolute value. Thereby, in an error correction process by a Viterbi decoder or the like, a decoding process is performed on a code string transmitted based on the zeroness and the oneness of the input bit string.
 ところで、OFDM信号の受信信号の誤り発生要因としては、送受間の伝送路特性の変動と、受信信号レベルに対するチューナ内部の熱雑音量が主要なものとみなせば、次のように信頼性値を算出することができる。 By the way, as the cause of error in the received signal of the OFDM signal, if the fluctuation of the transmission path characteristics between transmission and reception and the amount of thermal noise inside the tuner with respect to the received signal level are considered to be main, the reliability value is as follows: Can be calculated.
 まず、前者の送受間の伝送路特性の影響については、二分すると、伝送路変動(フェージング)による伝送路推定誤りと、送受間での信号減衰(特定のキャリアに対するマルチパスによる減衰を含む)とに分けて考えることができる。受信アンテナが固定されている場合を考えると、このうち送受間でのOFDMキャリア単位の信号減衰量を推定値から、復調信号の信頼性値を算出することができる。OFDMシンボルそれぞれについて、等化処理部113で受信信号の除算に用いた伝送路特性の推定値H(ω)の大きさ(例えば二乗値)を算出し、これを「伝送路特性の推定結果」のデータ列として入手することで、OFDMキャリア単位の信号減衰量の推定値を得ることができる。 First, the influence of the transmission path characteristics between the former transmission and reception is divided in two: transmission path estimation error due to transmission path fluctuation (fading) and signal attenuation between transmission and reception (including multipath attenuation for a specific carrier) and It can be divided into two. Considering the case where the receiving antenna is fixed, the reliability value of the demodulated signal can be calculated from the estimated value of signal attenuation per OFDM carrier between transmission and reception. For each OFDM symbol, the size (for example, the square value) of the estimated value H (ω) of the transmission path characteristic used for the division of the received signal by the equalization processing unit 113 is calculated. By obtaining the data string, it is possible to obtain an estimated value of signal attenuation in OFDM carrier units.
 なお、伝送路変動による伝送路推定誤りについては、車などの移動受信を想定した場合には、伝送路変動に伴う伝送路推定誤りの影響は無視できないが、パイロット信号から推定した伝送路特性の補間処理方法の工夫で推定誤りを小さくでき、さらにICI(Inter Carrior Interference)と呼ばれるキャリア間干渉量を推定・除去する技術等を用いることでさらに伝送路推定誤差を小さくすることも可能である。 As for transmission path estimation errors due to transmission path fluctuations, assuming mobile reception such as cars, the effects of transmission path estimation errors due to transmission path fluctuations cannot be ignored, but the transmission path characteristics estimated from pilot signals The estimation error can be reduced by devising the interpolation processing method, and the transmission path estimation error can be further reduced by using a technique for estimating / removing the amount of intercarrier interference called ICI (Inter Carrier Interference).
 後者のチューナ内部の熱雑音量は、チューナ内部で発生する熱雑音が白色雑音でありガウス特性に従うと仮定すれば、ノイズ量はOFDM信号帯域全体のC/N量より推定することができる。これは、「受信シンボル点の距離情報」をキャリア方向に積算した値で代用することができる。 The amount of thermal noise inside the latter tuner can be estimated from the C / N amount of the entire OFDM signal band, assuming that the thermal noise generated inside the tuner is white noise and follows Gaussian characteristics. This can be replaced by a value obtained by integrating the “reception symbol point distance information” in the carrier direction.
 つまり、各ビットデータに対する信頼性情報の値は、送受間の伝送路特性の変動と、受信信号レベルに対するチューナ内部の熱雑音量による影響を考慮すると、OFDMキャリア単位の伝送路特性の大きさに比例し、信号全体のノイズ量に反比例(C/N量に比例)するように信頼性情報の値を与えればよい。 In other words, the reliability information value for each bit data is the size of the transmission path characteristics in units of OFDM carriers, considering fluctuations in transmission path characteristics between transmission and reception and the influence of the amount of thermal noise inside the tuner on the received signal level. The value of the reliability information may be given so as to be proportional and inversely proportional to the noise amount of the entire signal (proportional to the C / N amount).
 さらに、チューナ内部での熱雑音以外に周波数選択性妨害信号により受信誤りが生じている場合を考えると、前述のように算出した信頼性値をさらに、符号間距離算出・累積処理部152にてOFDMキャリア単位に算出した「キャリア単位の妨害情報」に応じて補正すれば良い。「キャリア単位の妨害情報」が大きければ、信頼性値を低く補正するか、信頼性値を「0」と設定する。信頼性値の補正手順は、従来MER値により施していた補正方法に準ずるが、「キャリア単位の妨害情報」が、誤り訂正処理により訂正された符号から再度生成された「マッピング点の情報」と、「受信したOFDMシンボル点の情報」とのユークリッド距離の場合には、当該キャリアに加わった妨害量の大きさを直接示す値となるために、より正確な妨害信号量により信頼性値の補正が可能となる。 Further, considering the case where a reception error occurs due to the frequency selective interference signal other than the thermal noise inside the tuner, the reliability value calculated as described above is further calculated by the inter-code distance calculation / accumulation processing unit 152. What is necessary is just to correct | amend according to the "jamming information per carrier" calculated per OFDM carrier. If the “carrier-based interference information” is large, the reliability value is corrected to be low or the reliability value is set to “0”. The procedure for correcting the reliability value is in accordance with the correction method conventionally performed by the MER value. However, the “interference information for each carrier” is “mapping point information” generated again from the code corrected by the error correction process. In the case of the Euclidean distance with “information of received OFDM symbol points”, the value directly indicates the magnitude of the interference added to the carrier, and therefore the reliability value is corrected by a more accurate interference signal amount. Is possible.
 ただし、妨害信号の影響を受けたデータがすべて誤り訂正できるとは限らず、一定キャリア分だけ「マッピング点の情報」と、「受信したOFDMシンボル点の情報」とのユークリッド距離を時間方向に累積した値を「キャリア単位の妨害情報」としている。なお、第1のデマッピング処理部122Aは、符号間距離算出・累積処理部152において「キャリア単位の妨害情報」が算出されるまでは、「受信したOFDMシンボル点」から最も近いシンボル点」と「受信したOFDMシンボル点」とのユークリッド距離を積算したMER値を用いて信頼性値の補正を行えばよい。また、常に「マッピング点の誤り有無情報」がエラーであることを示したり、「キャリア単位の妨害情報」が突出して大きいことを示したりするキャリアは、信頼性情報の値を「0」として、当該キャリアに含まれるデータは全く信頼できないとしてもよい。 However, not all data affected by the interference signal can be error-corrected, and the Euclidean distance between the "mapping point information" and the "received OFDM symbol point information" is accumulated in the time direction for a fixed number of carriers. This value is used as “carrier-based interference information”. Note that the first demapping processing unit 122A determines that the “symbol point closest to the received OFDM symbol point” until “interference information per carrier” is calculated by the inter-code distance calculation / accumulation processing unit 152. The reliability value may be corrected using the MER value obtained by integrating the Euclidean distance from the “received OFDM symbol point”. In addition, a carrier that always indicates that the “mapping point error presence / absence information” is an error, or that “carrier-based interference information” is prominently large, sets the reliability information value to “0”, The data contained in the carrier may not be trusted at all.
 以上の処理により、本実施の形態2のマルチキャリア変調信号受信装置は、一度誤り訂正処理を施した結果のデータから信号の送信局で生成される送信信号点を復元し、送信信号点と復調部から得られた受信信号点とをキャリア単位で比較し、比較結果から求まるユークリッド距離を一定時間積算した値をキャリア毎に含まれる妨害信号量とみなし誤り訂正部に伝達する信頼性情報を補正することができるため、従来の方法と比較し高い受信性能を得ることができる。特に、受信信号が周波数選択性の妨害信号の影響を受けている場合には、キャリア単位で偏りのある妨害信号量をより正確に算出できるため、高い効果を得ることができる。 Through the above processing, the multicarrier modulation signal receiving apparatus according to the second embodiment restores the transmission signal point generated at the signal transmission station from the data resulting from the error correction processing once, and demodulates the transmission signal point and the demodulation. The received signal points obtained from the unit are compared in carrier units, and the value obtained by integrating the Euclidean distance obtained from the comparison result for a certain period of time is regarded as the amount of interfering signals included in each carrier and the reliability information transmitted to the error correction unit is corrected. Therefore, it is possible to obtain higher reception performance as compared with the conventional method. In particular, when the received signal is affected by a frequency-selective interference signal, it is possible to more accurately calculate the amount of interference signal that is biased in units of carriers, so that a high effect can be obtained.
 なお、本実施の形態2において、図10のように符号化部140から第2の誤り訂正部160において1回の誤り訂正処理をして、TS再生処理部171へ出力するとしたが、符号化部140から第2の誤り訂正部160で複数回の誤り訂正処理をして、TS再生処理部171へ出力するとしても良い。この場合、図12のように第2の誤り訂正部160での誤り訂正処理が何回目かをカウントするために、第2の誤り訂正部160の出力信号を入力する誤り訂正カウント部166を設ける。例えば、繰り返し回数が2回の場合には、誤り訂正カウント部166は第2の誤り訂正部160での誤り訂正処理の回数が1回のときに符号化部140に信号を出力し、誤り訂正処理の回数が2回のときにTS再生処理部171に出力する。さらに、例えば、第2の誤り訂正処理部160の動作速度を高め、出力信号の出力時間の遅れが発生しない範囲で、誤り訂正カウント部166から符号化部140への信号処理を複数回繰り返し、誤り訂正効果を高めることも可能である。 In the second embodiment, the error correction process is performed once by the second error correction unit 160 from the encoding unit 140 and output to the TS reproduction processing unit 171 as shown in FIG. The second error correction unit 160 may perform error correction processing a plurality of times from the unit 140 and output to the TS reproduction processing unit 171. In this case, as shown in FIG. 12, in order to count the number of times of error correction processing in the second error correction unit 160, an error correction count unit 166 for inputting the output signal of the second error correction unit 160 is provided. . For example, when the number of repetitions is 2, the error correction count unit 166 outputs a signal to the encoding unit 140 when the number of error correction processes in the second error correction unit 160 is 1, and error correction is performed. When the number of processes is two, the data is output to the TS reproduction processing unit 171. Further, for example, the signal processing from the error correction count unit 166 to the encoding unit 140 is repeated a plurality of times within the range where the operation speed of the second error correction processing unit 160 is increased and the output signal output time is not delayed, It is also possible to increase the error correction effect.
 なお、本実施の形態2において、図11のように第1の復号処理部132と第2の復号処理部162というように同一処理を行うブロックを2個設けたが、共用化するとしても良い。この場合、図13のように第2のデマッピング処理部153からの出力信号を第1の誤り訂正部130に入力するようにする。第1の誤り訂正部130での誤り訂正処理が何回目かをカウントするために、第1の誤り訂正部130の出力信号を入力する誤り訂正カウント部136を設ける。そして、誤り訂正カウント部136は、第1の誤り訂正部130での誤り訂正処理の回数が1回のときに符号化部140に信号を出力し、誤り訂正処理の回数が規定の回数に達したときにTS再生処理部171に信号を出力する。また、例えば、第1の誤り訂正処理部130の動作速度を高く設定し、出力信号の出力時間の遅れが大きくならない範囲で、第2のデマッピング処理部153から第1の誤り訂正部130への信号処理を複数回繰り返し、誤り訂正効果を高めることも可能である。 In the second embodiment, as shown in FIG. 11, two blocks that perform the same processing are provided, such as the first decoding processing unit 132 and the second decoding processing unit 162, but they may be shared. . In this case, as shown in FIG. 13, the output signal from the second demapping processing unit 153 is input to the first error correction unit 130. In order to count how many times the error correction processing in the first error correction unit 130 is performed, an error correction count unit 136 for inputting an output signal of the first error correction unit 130 is provided. Then, the error correction count unit 136 outputs a signal to the encoding unit 140 when the number of error correction processes in the first error correction unit 130 is one, and the number of error correction processes reaches a specified number. A signal is output to the TS reproduction processing unit 171. In addition, for example, the operation speed of the first error correction processing unit 130 is set high, and the delay from the output time of the output signal does not increase so that the second demapping processing unit 153 transfers to the first error correction unit 130. It is also possible to increase the error correction effect by repeating this signal processing a plurality of times.
 上記の実施の形態1,2で説明したマルチキャリア変調信号受信装置のアンテナ部101を除く構成要素の全部又は一部は、集積回路であるLSIで実現してもよい。このとき、構成要素の全部又は一部は、個別に1チップ化されてもよいし、一部もしくは全てを含むように1チップ化されてもよい。また、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。また、集積回路化の手法はLSIに限られるものではなく、専用回路又は汎用プロセサで実現してもよい。FPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセサを利用してもよい。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあげられる。 All or some of the components other than the antenna unit 101 of the multicarrier modulation signal receiving apparatus described in the first and second embodiments may be realized by an LSI that is an integrated circuit. At this time, all or a part of the constituent elements may be individually made into one chip, or may be made into one chip so as to include a part or all. Further, although it is referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration. Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. Further, the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) or a reconfigurable processor capable of reconfiguring connection and setting of circuit cells inside the LSI may be used. Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Possible applications include biotechnology.
 本発明は、周波数選択性の妨害信号の影響を受けている受信信号を受信するマルチキャリア変調信号受信装置及び集積回路に利用できる。 The present invention can be used for a multicarrier modulation signal receiving apparatus and an integrated circuit that receive a received signal that is affected by a frequency selective interference signal.
 101 アンテナ部
 102 チューナ部
 103 A/D変換処理部
 110 復調部
 111 直交検波処理部
 112 FFT処理部
 113 等化処理部
 121 デインタリーブ処理部
 122,122A 第1のデマッピング処理部
 130 第1の誤り訂正部
 131 第1のビットデインタリーブ処理部
 132 第1の復号処理部
 133 第1のバイトデインタリーブ処理部
 134 第1のエネルギー拡散処理部
 135 第1のRS復号処理部
 136 誤り訂正カウント部
 140 符号化部
 141 RS符号処理部
 142 エラー情報付加処理部
 143 エネルギー拡散処理部
 144 バイトインタリーブ処理部
 145 畳み込み符号処理部
 146 エラー情報演算処理部
 147 ビットインタリーブ処理部
 151 マッピング処理部
 152 符号間距離算出・累積処理部
 153 第2のデマッピング処理部
 160 第2の誤り訂正部
 161 第2のビットデインタリーブ処理部
 162 第2の復号処理部
 163 第2のバイトデインタリーブ処理部
 164 第2のエネルギー逆拡散処理部
 165 第2のRS復号処理部
 166 誤り訂正カウント部
 171 TS再生処理部
 172 TSデコード処理部
 173 MPEGデコード処理部
DESCRIPTION OF SYMBOLS 101 Antenna part 102 Tuner part 103 A / D conversion process part 110 Demodulation part 111 Orthogonal detection process part 112 FFT process part 113 Equalization process part 121 Deinterleave process part 122,122A 1st demapping process part 130 1st error Correction unit 131 First bit deinterleave processing unit 132 First decoding processing unit 133 First byte deinterleaving processing unit 134 First energy spread processing unit 135 First RS decoding processing unit 136 Error correction counting unit 140 Code Conversion unit 141 RS code processing unit 142 error information addition processing unit 143 energy spread processing unit 144 byte interleave processing unit 145 convolutional code processing unit 146 error information calculation processing unit 147 bit interleave processing unit 151 mapping processing unit 152 inter-code distance calculation / accumulation Processing Unit 153 Second Demapping Processing Unit 160 Second Error Correction Unit 161 Second Bit Deinterleaving Processing Unit 162 Second Decoding Processing Unit 163 Second Byte Deinterleaving Processing Unit 164 Second Energy Despreading Processing Unit 165 second RS decoding processing unit 166 error correction counting unit 171 TS reproduction processing unit 172 TS decoding processing unit 173 MPEG decoding processing unit

Claims (14)

  1.  マルチキャリア変調信号を復調し、キャリア毎に受信シンボル点と伝送路特性の推定結果のデータ列を生成する復調部と、
     前記復調部から入力される受信シンボル点と伝送路特性の推定結果のデータ列の並び替えを行うデインタリーブ処理部と、
     前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列からビットデータ及び当該ビットデータの信頼性情報を生成する第1のデマッピング処理部と、
     前記第1のデマッピング処理部から入力されるビットデータの信頼性情報に基づいて誤り訂正処理を行い、送信信号系列を復元したデータを生成する第1の誤り訂正部と、
     前記第1の誤り訂正部から入力される送信信号系列を復元したデータに対し符号化処理を行うとともに、符号処理後のデータが誤り訂正できなかったデータから生成されたかどうかを判定するためのエラー訂正可能範囲を示す信号を生成する符号化部と、
     前記符号化部から入力される符号化処理を行ったデータをキャリア変調方式に従い分割した上でマッピングを行ってマッピング点の情報を生成するととともに、当該マッピング点の情報の算出元の1又は複数のデータの夫々に対応するエラー訂正可能範囲を示す信号からマッピング点の誤り有無情報を生成するマッピング処理部と、
     前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報及びマッピング点の誤り有無情報とに基づいて、前記受信シンボル点と前記マッピング点の情報との距離を算出する符号間距離算出・累積処理部と、
     前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列、前記マッピング処理部から入力されるマッピング点の情報とマッピング点の誤り有無情報、及び前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報と、からビットデータ及び当該ビットデータの信頼性情報を生成する第2のデマッピング処理部と、
     前記第2のデマッピング処理部から入力されるビットデータと信頼性情報に基づいて、誤り訂正処理を行い、元の信号系列を生成する第2の誤り訂正部と、
     を備えることを特徴とするマルチキャリア変調信号受信装置。
    A demodulator that demodulates a multi-carrier modulation signal and generates a data sequence of estimation results of received symbol points and transmission path characteristics for each carrier;
    A deinterleaving processing unit for rearranging a data sequence of estimation results of reception symbol points and transmission path characteristics input from the demodulation unit;
    A first demapping processing unit that generates bit data and reliability information of the bit data from a rearranged received symbol point input from the deinterleave processing unit and a data sequence of estimation results of transmission path characteristics;
    A first error correction unit that performs error correction processing based on reliability information of bit data input from the first demapping processing unit and generates data in which a transmission signal sequence is restored;
    An error for performing an encoding process on the data restored from the transmission signal sequence input from the first error correction unit and determining whether the data after the encoding process has been generated from data that could not be error-corrected An encoding unit that generates a signal indicating a correctable range;
    The data that has been subjected to the encoding process input from the encoding unit is divided in accordance with a carrier modulation scheme and then mapped to generate mapping point information, and one or more calculation sources of the mapping point information A mapping processing unit that generates error presence / absence information of a mapping point from a signal indicating an error-correctable range corresponding to each of the data;
    Based on the rearranged received symbol points input from the deinterleave processing unit, mapping point information and mapping point error presence / absence information input from the mapping processing unit, the received symbol points and the mapping points An inter-code distance calculation / accumulation processing unit that calculates the distance to the information of
    Reordered received symbol points input from the deinterleave processing unit and data string of transmission path characteristic estimation results, mapping point information input from the mapping processing unit and mapping point error presence / absence information, and between the codes A second demapping processing unit that generates bit data and reliability information of the bit data from distance information between the received symbol point and the mapping point information input from a distance calculation / accumulation processing unit;
    A second error correction unit that performs error correction processing based on the bit data and reliability information input from the second demapping processing unit, and generates an original signal sequence;
    A multi-carrier modulation signal receiving apparatus comprising:
  2.  前記第2のデマッピング処理部は、
     前記マッピング処理部から入力されるマッピング点の情報の誤り有無情報を基に、前記デインタリーブ処理部から入力される並び替えた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報とから新たな信号点を生成して、前記信頼性情報の生成を行う
     ことを特徴とする請求項1記載のマルチキャリア変調信号受信装置。
    The second demapping processing unit
    Based on error presence / absence information of mapping point information input from the mapping processing unit, rearranged received symbol points input from the deinterleaving processing unit, mapping point information input from the mapping processing unit, The multicarrier modulation signal receiving apparatus according to claim 1, wherein the reliability information is generated by generating a new signal point from.
  3.  前記符号間距離算出・累積処理部は、
     前記マッピング処理部から入力されるマッピング点の誤り有無情報に基づいて、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータのみから生成されたと判定した場合には、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報とのユークリッド距離をキャリア単位に積算し、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できなかったデータのみから生成されたと判定した場合には、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、当該受信シンボル点から最も近い送信信号点とのユークリッド距離をキャリア単位に積算し、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータと誤り訂正できなかったデータとから生成されたと判定した場合には、誤り訂正できたデータから決定される符号点のうち前記デインタリーブ処理部から入力される並び替えられた受信シンボル点から最も近い符号点を送信信号点とみなし、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記送信信号点とみなした符号点とのユークリッド距離をキャリア単位に積算し、
     積算結果を前記受信シンボル点と前記マッピング点の情報との距離として出力する
     ことを特徴とする請求項2記載のマルチキャリア変調信号受信装置。
    The inter-code distance calculation / accumulation processing unit
    Based on the error presence / absence information of the mapping point input from the mapping processing unit,
    When it is determined that the mapping point information input from the mapping processing unit is generated only from data that has been error-corrected, the rearranged received symbol points input from the deinterleaving processing unit, and the mapping processing The Euclidean distance with the mapping point information input from the
    When it is determined that the mapping point information input from the mapping processing unit is generated only from data that could not be error-corrected, the rearranged received symbol points input from the deinterleaving processing unit and the reception The Euclidean distance from the symbol point to the nearest transmission signal point is integrated in carrier units,
    When it is determined that the mapping point information input from the mapping processing unit is generated from data that has been error-corrected and data that has not been error-corrected, among the code points determined from the data that has been error-corrected The code point closest to the rearranged received symbol point input from the deinterleave processing unit is regarded as the transmission signal point, the rearranged received symbol point input from the deinterleave processing unit, and the transmission signal point Accumulate Euclidean distance from the regarded code point in carrier units,
    The multicarrier modulation signal receiving apparatus according to claim 2, wherein an integration result is output as a distance between the reception symbol point and the mapping point information.
  4.  前記符号間距離算出・累積処理部は、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータと誤り訂正できなかったデータとから生成されたと判定した場合における、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記送信信号点とみなした符号点とのユークリッド距離が小さくなるように補正して、補正後のユークリッド距離をキャリア単位に積算する
     ことを特徴とする請求項3記載のマルチキャリア変調信号受信装置。
    The inter-code distance calculation / accumulation processing unit
    Reordered received symbols input from the deinterleave processing unit when it is determined that mapping point information input from the mapping processing unit is generated from data that has been error-corrected and data that has not been error-corrected The multicarrier modulation signal according to claim 3, wherein correction is performed so that a Euclidean distance between a point and a code point regarded as the transmission signal point is small, and the corrected Euclidean distance is integrated in units of carriers. Receiver device.
  5.  前記第2の誤り訂正部で実施された誤り訂正処理回数をカウントし、当該誤り訂正処理回数が所定回数未満のときに前記第2の誤り訂正部の出力を前記符号化部へ出力する誤り訂正カウント部
     を更に備えたことを特徴とする請求項1記載のマルチキャリア変調信号受信装置。
    Error correction that counts the number of error correction processes performed in the second error correction unit and outputs the output of the second error correction unit to the encoding unit when the number of error correction processes is less than a predetermined number The multicarrier modulation signal receiving apparatus according to claim 1, further comprising a counting unit.
  6.  前記第1のデマッピング処理部は、前記信頼性情報の生成を、更に、前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報を用いて行う請求項1記載のマルチキャリア変調信号受信装置。 The first demapping processing unit further generates the reliability information by using distance information between the received symbol point and the mapping point information input from the inter-code distance calculation / accumulation processing unit. The multicarrier modulation signal receiver according to claim 1, wherein
  7.  前記第2のデマッピング処理部は、
     前記マッピング処理部から入力されるマッピング点の情報の誤り有無情報を基に、前記デインタリーブ処理部から入力される並び替えた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報とから新たな信号点を生成して、前記信頼性情報の生成を行う
     ことを特徴とする請求項6記載のマルチキャリア変調信号受信装置。
    The second demapping processing unit
    Based on error presence / absence information of mapping point information input from the mapping processing unit, rearranged received symbol points input from the deinterleaving processing unit, mapping point information input from the mapping processing unit, The multicarrier modulation signal receiving apparatus according to claim 6, wherein a new signal point is generated from the signal to generate the reliability information.
  8.  前記符号間距離算出・累積処理部は、
     前記マッピング処理部から入力されるマッピング点の誤り有無情報に基づいて、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータのみから生成されたと判定した場合には、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報とのユークリッド距離をキャリア単位に積算し、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できなかったデータのみから生成されたと判定した場合には、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、当該受信シンボル点から最も近い送信信号点とのユークリッド距離をキャリア単位に積算し、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータと誤り訂正できなかったデータとから生成されたと判定した場合には、誤り訂正できたデータから決定される符号点のうち前記デインタリーブ処理部から入力される並び替えられた受信シンボル点から最も近い符号点を送信信号点とみなし、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記送信信号点とみなした符号点とのユークリッド距離をキャリア単位に積算し、
     積算結果を前記受信シンボル点と前記マッピング点の情報との距離として出力する
     ことを特徴とする請求項7記載のマルチキャリア変調信号受信装置。
    The inter-code distance calculation / accumulation processing unit
    Based on the error presence / absence information of the mapping point input from the mapping processing unit,
    When it is determined that the mapping point information input from the mapping processing unit is generated only from data that has been error-corrected, the rearranged received symbol points input from the deinterleaving processing unit, and the mapping processing The Euclidean distance with the mapping point information input from the
    When it is determined that the mapping point information input from the mapping processing unit is generated only from data that could not be error-corrected, the rearranged received symbol points input from the deinterleaving processing unit and the reception The Euclidean distance from the symbol point to the nearest transmission signal point is integrated in carrier units,
    When it is determined that the mapping point information input from the mapping processing unit is generated from data that has been error-corrected and data that has not been error-corrected, among the code points determined from the data that has been error-corrected The code point closest to the rearranged received symbol point input from the deinterleave processing unit is regarded as the transmission signal point, the rearranged received symbol point input from the deinterleave processing unit, and the transmission signal point Accumulate Euclidean distance from the regarded code point in carrier units,
    The multicarrier modulation signal receiving apparatus according to claim 7, wherein an integration result is output as a distance between the received symbol point and the mapping point information.
  9.  前記符号間距離算出・累積処理部は、
     前記マッピング処理部から入力されるマッピング点の情報が誤り訂正できたデータと誤り訂正できなかったデータとから生成されたと判定した場合における、前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記送信信号点とみなした符号点とのユークリッド距離が小さくなるように補正して、補正後のユークリッド距離をキャリア単位に積算する
     ことを特徴とする請求項8記載のマルチキャリア変調信号受信装置。
    The inter-code distance calculation / accumulation processing unit
    Reordered received symbols input from the deinterleave processing unit when it is determined that mapping point information input from the mapping processing unit is generated from data that has been error-corrected and data that has not been error-corrected The multicarrier modulation signal according to claim 8, wherein correction is performed so that a Euclidean distance between a point and a code point regarded as the transmission signal point is small, and the corrected Euclidean distance is integrated in a carrier unit. Receiver device.
  10.  前記第2の誤り訂正部で実施された誤り訂正処理回数をカウントし、当該誤り訂正処理回数が所定回数未満のときに前記第2の誤り訂正部の出力を前記符号化部へ出力する誤り訂正カウント部
     を更に備えたことを特徴とする請求項6記載のマルチキャリア変調信号受信装置。
    Error correction that counts the number of error correction processes performed in the second error correction unit and outputs the output of the second error correction unit to the encoding unit when the number of error correction processes is less than a predetermined number The multicarrier modulation signal receiving apparatus according to claim 6, further comprising a counting unit.
  11.  マルチキャリア変調信号を復調し、キャリア毎に受信シンボル点と伝送路特性の推定結果のデータ列を生成する復調部と、
     前記復調部から入力される受信シンボル点と伝送路特性の推定結果のデータ列の並び替えを行うデインタリーブ処理部と、
     前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列からビットデータ及び当該ビットデータの信頼性情報を生成する第1のデマッピング処理部と、
     誤り訂正処理を行い、送信信号系列を復元したデータを生成する第1の誤り訂正部と、
     前記第1の誤り訂正部によって生成される送信信号系列を復元したデータに対し符号化処理を行うとともに、符号処理後のデータが誤り訂正できなかったデータから生成されたかどうかを判定するためのエラー訂正可能範囲を示す信号を生成する符号化部と、
     前記第1の誤り訂正部で実施された誤り訂正処理回数をカウントし、当該誤り訂正処理回数が所定回数未満のときに前記第1の誤り訂正部の出力を前記符号化部へ出力する誤り訂正カウント部と、
     前記符号化部から入力される符号化処理を行ったデータをキャリア変調方式に従い分割した上でマッピングを行ってマッピング点の情報を生成するととともに、当該マッピング点の情報の算出元の1又は複数のデータの夫々に対応するエラー訂正可能範囲を示す信号からマッピング点の誤り有無情報を生成するマッピング処理部と、
     前記デインタリーブ処理部から入力される並び替えられた受信シンボル点と、前記マッピング処理部から入力されるマッピング点の情報及びマッピング点の誤り有無情報とに基づいて、前記受信シンボル点と前記マッピング点の情報との距離を算出する符号間距離算出・累積処理部と、
     前記デインタリーブ処理部から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列、前記マッピング処理部から入力されるマッピング点の情報とマッピング点の誤り有無情報、及び前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報と、からビットデータ及び当該ビットデータの信頼性情報を生成して前記第1の誤り訂正部へ出力する第2のデマッピング処理部と、
     を備え、
     前記第1の誤り訂正部は、前記第1のデマッピング処理部から入力されるビットデータの信頼性情報に基づいて誤り訂正処理を行い、送信信号系列を復元したデータを生成し、前記第2のデマッピング処理部153から入力されるビットデータ及び当該ビットデータの信頼性情報に基づいて誤り訂正処理を行う
     ことを特徴とするマルチキャリア変調信号受信装置。
    A demodulator that demodulates a multi-carrier modulation signal and generates a data sequence of estimation results of received symbol points and transmission path characteristics for each carrier;
    A deinterleaving processing unit for rearranging a data sequence of estimation results of reception symbol points and transmission path characteristics input from the demodulation unit;
    A first demapping processing unit that generates bit data and reliability information of the bit data from a rearranged received symbol point input from the deinterleave processing unit and a data sequence of estimation results of transmission path characteristics;
    A first error correction unit that performs error correction processing and generates data obtained by restoring the transmission signal sequence;
    An error for performing an encoding process on data obtained by restoring the transmission signal sequence generated by the first error correction unit and determining whether the data after the encoding process was generated from data that could not be error-corrected An encoding unit that generates a signal indicating a correctable range;
    Error correction that counts the number of error correction processes performed by the first error correction unit and outputs the output of the first error correction unit to the encoding unit when the number of error correction processes is less than a predetermined number A counting section;
    The data that has been subjected to the encoding process input from the encoding unit is divided in accordance with a carrier modulation scheme and then mapped to generate mapping point information, and one or more calculation sources of the mapping point information A mapping processing unit that generates error presence / absence information of a mapping point from a signal indicating an error-correctable range corresponding to each of the data;
    Based on the rearranged received symbol points input from the deinterleave processing unit, mapping point information and mapping point error presence / absence information input from the mapping processing unit, the received symbol points and the mapping points An inter-code distance calculation / accumulation processing unit that calculates the distance to the information of
    Reordered received symbol points input from the deinterleave processing unit and data string of transmission path characteristic estimation results, mapping point information input from the mapping processing unit and mapping point error presence / absence information, and between the codes Generate bit data and reliability information of the bit data from the distance information between the received symbol point and the mapping point information input from the distance calculation / accumulation processing unit and output to the first error correction unit A second demapping processing unit,
    With
    The first error correction unit performs error correction processing based on reliability information of bit data input from the first demapping processing unit, generates data in which a transmission signal sequence is restored, and generates the second data An error correction process is performed based on bit data input from the demapping processing unit 153 and reliability information of the bit data.
  12.  前記第1のデマッピング処理部は、前記信頼性情報の生成を、更に、前記符号間距離算出・累積処理部から入力される前記受信シンボル点と前記マッピング点の情報との距離情報を用いて行う請求項11記載のマルチキャリア変調信号受信装置。 The first demapping processing unit further generates the reliability information by using distance information between the received symbol point and the mapping point information input from the inter-code distance calculation / accumulation processing unit. The multicarrier modulation signal receiving apparatus according to claim 11, which is performed.
  13.  マルチキャリア変調信号を復調し、キャリア毎に受信シンボル点と伝送路特性の推定結果のデータ列を生成する復調回路と、
     前記復調回路から入力される受信シンボル点と伝送路特性の推定結果のデータ列の並び替えを行うデインタリーブ処理回路と、
     前記デインタリーブ処理回路から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列からビットデータ及び当該ビットデータの信頼性情報を生成する第1のデマッピング処理回路と、
     前記第1のデマッピング処理回路から入力されるビットデータの信頼性情報に基づいて誤り訂正処理を行い、送信信号系列を復元したデータを生成する第1の誤り訂正回路と、
     前記第1の誤り訂正回路から入力される送信信号系列を復元したデータに対し符号化処理を行うとともに、符号処理後のデータが誤り訂正できなかったデータから生成されたかどうかを判定するためのエラー訂正可能範囲を示す信号を生成する符号化回路と、
     前記符号化回路から入力される符号化処理を行ったデータをキャリア変調方式に従い分割した上でマッピングを行ってマッピング点の情報を生成するととともに、当該マッピング点の情報の算出元の1又は複数のデータの夫々に対応するエラー訂正可能範囲を示す信号からマッピング点の誤り有無情報を生成するマッピング処理回路と、
     前記デインタリーブ処理回路から入力される並び替えられた受信シンボル点と、前記マッピング処理回路から入力されるマッピング点の情報及びマッピング点の誤り有無情報とに基づいて、前記受信シンボル点と前記マッピング点の情報との距離を算出する符号間距離算出・累積処理回路と、
     前記デインタリーブ処理回路から入力される並び替えた受信シンボル点と伝送路特性の推定結果のデータ列、前記マッピング処理回路から入力されるマッピング点の情報とマッピング点の誤り有無情報、及び前記符号間距離算出・累積処理回路から入力される前記受信シンボル点と前記マッピング点の情報との距離情報と、からビットデータ及び当該ビットデータの信頼性情報を生成する第2のデマッピング処理回路と、
     前記第2のデマッピング処理回路から入力されるビットデータと信頼性情報に基づいて、誤り訂正処理を行い、元の信号系列を生成する第2の誤り訂正回路と、
     を備えることを特徴とする集積回路。
    A demodulation circuit that demodulates a multicarrier modulation signal and generates a data sequence of estimation results of reception symbol points and transmission path characteristics for each carrier;
    A deinterleave processing circuit for rearranging a data sequence of estimation results of reception symbol points and transmission path characteristics input from the demodulation circuit;
    A first demapping processing circuit that generates bit data and reliability information of the bit data from a rearranged received symbol point input from the deinterleave processing circuit and a data string of estimation results of transmission path characteristics;
    A first error correction circuit for performing error correction processing based on reliability information of bit data input from the first demapping processing circuit and generating data obtained by restoring a transmission signal sequence;
    An error for performing an encoding process on the data restored from the transmission signal sequence input from the first error correction circuit and for determining whether the data after the encoding process is generated from the data that could not be error-corrected An encoding circuit for generating a signal indicating a correctable range;
    The data that has been subjected to the encoding process input from the encoding circuit is divided in accordance with a carrier modulation scheme, and mapping is performed to generate mapping point information, and one or more calculation sources of the mapping point information are calculated A mapping processing circuit that generates error presence / absence information of a mapping point from a signal indicating an error correction possible range corresponding to each of the data;
    Based on the rearranged received symbol points inputted from the deinterleave processing circuit, mapping point information inputted from the mapping processing circuit, and mapping point error presence / absence information, the received symbol points and the mapping points Inter-code distance calculation / cumulative processing circuit for calculating the distance to the information of
    A rearranged received symbol point input from the deinterleave processing circuit and a data string of transmission path characteristic estimation results, mapping point information input from the mapping processing circuit and mapping point error presence / absence information, and between the codes A second demapping processing circuit for generating bit data and reliability information of the bit data from distance information between the received symbol point and the mapping point information input from a distance calculation / accumulation processing circuit;
    A second error correction circuit that performs error correction processing based on the bit data and reliability information input from the second demapping processing circuit and generates an original signal sequence;
    An integrated circuit comprising:
  14.  前記第1のデマッピング処理回路は、前記信頼性情報の生成を、更に、前記符号間距離算出・累積処理回路から入力される前記受信シンボル点と前記マッピング点の情報との距離情報を用いて行う請求項13記載の集積回路。 The first demapping processing circuit further generates the reliability information by using distance information between the received symbol point and the mapping point information input from the inter-code distance calculation / accumulation processing circuit. 14. An integrated circuit according to claim 13, which is performed.
PCT/JP2011/000057 2010-01-07 2011-01-07 Multi-carrier modulated signal receiving device and integrated circuit WO2011083773A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010001673A JP2013055368A (en) 2010-01-07 2010-01-07 Multicarrier modulation signal receiver
JP2010-001673 2010-01-07
JP2010-038338 2010-02-24
JP2010038338A JP2013055369A (en) 2010-02-24 2010-02-24 Multicarrier modulation signal receiver

Publications (1)

Publication Number Publication Date
WO2011083773A1 true WO2011083773A1 (en) 2011-07-14

Family

ID=44305509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000057 WO2011083773A1 (en) 2010-01-07 2011-01-07 Multi-carrier modulated signal receiving device and integrated circuit

Country Status (1)

Country Link
WO (1) WO2011083773A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169927A (en) * 2011-02-15 2012-09-06 Toshiba Corp Error correcting decoding apparatus and receiving system
JP2013171176A (en) * 2012-02-21 2013-09-02 Nippon Hoso Kyokai <Nhk> Interleave number calculation device, program thereof, and hologram recording device
CN112514337A (en) * 2018-08-07 2021-03-16 三菱电机株式会社 Distribution matching circuit, distribution dematching circuit, distribution matching method, distribution dematching method, and optical transmission system
JP2022095975A (en) * 2014-05-09 2022-06-28 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート Signal multiplexing apparatus using layered division multiplexing, and signal multiplexing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118533A (en) * 2000-10-05 2002-04-19 Toshiba Corp Frequency division multiplex transmission signal receiving device
WO2007091562A1 (en) * 2006-02-06 2007-08-16 Sony Corporation Demodulating device, method and program
JP2008010987A (en) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd Receiver and wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118533A (en) * 2000-10-05 2002-04-19 Toshiba Corp Frequency division multiplex transmission signal receiving device
WO2007091562A1 (en) * 2006-02-06 2007-08-16 Sony Corporation Demodulating device, method and program
JP2008010987A (en) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd Receiver and wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FLORENT MUNIER ET AL.: "Receiver algorithms for OFDM systems in phase noise and AWGN", PROCEEDINGS OF THE 15TH IEEE INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 2004 (PIMRC 2004), vol. 3, 5 September 2004 (2004-09-05), pages 1998 - 2002 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169927A (en) * 2011-02-15 2012-09-06 Toshiba Corp Error correcting decoding apparatus and receiving system
US8683287B2 (en) 2011-02-15 2014-03-25 Kabushiki Kaisha Toshiba Error correcting decoder and receiving system
JP2013171176A (en) * 2012-02-21 2013-09-02 Nippon Hoso Kyokai <Nhk> Interleave number calculation device, program thereof, and hologram recording device
JP2022095975A (en) * 2014-05-09 2022-06-28 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート Signal multiplexing apparatus using layered division multiplexing, and signal multiplexing method
CN112514337A (en) * 2018-08-07 2021-03-16 三菱电机株式会社 Distribution matching circuit, distribution dematching circuit, distribution matching method, distribution dematching method, and optical transmission system
CN112514337B (en) * 2018-08-07 2024-05-14 三菱电机株式会社 Distribution matching circuit, distribution dematching circuit, distribution matching method, distribution dematching method, and optical transmission system

Similar Documents

Publication Publication Date Title
JP5091218B2 (en) Digital broadcast receiver
JP4245602B2 (en) Digital demodulator, digital receiver, digital demodulator control method, digital demodulator control program, and recording medium recording the control program
US7945001B2 (en) Apparatus and method for receiving data in a wireless communication system using bit interleaving, symbol interleaving and symbol mapping
US9258167B2 (en) Transmitting apparatus, receiving apparatus and control methods thereof
US8208533B2 (en) Methods and apparatus for fast signal acquisition in a digital video receiver
US20030103575A1 (en) Apparatus and method for generating robust ATSC 8-VSB bit streams
KR20170097034A (en) Transmitter and receiver involving convolutional interleaving and corresponding methods
US8238436B2 (en) Methods and device for fast acquisition of digital video signals
JP2007519359A (en) Digital broadcast transmission / reception system with improved reception performance and signal processing method thereof
US9537698B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
JP4367276B2 (en) Diversity type receiving apparatus, receiving method and program using diversity type receiving apparatus, and recording medium storing receiving program using diversity type receiving apparatus
JP2018101862A (en) Transmitter, transmission method, receiver, and reception method
US8010880B2 (en) Forward error correction decoder and method thereof
WO2011083773A1 (en) Multi-carrier modulated signal receiving device and integrated circuit
US8571144B2 (en) Digital broadcast transmitter and receiver and method for processing stream thereof
JP4970227B2 (en) OFDM demodulation apparatus, OFDM demodulation method, OFDM demodulation program, and recording medium
US9281987B2 (en) Digital transmission apparatus and method and digital reception apparatus
TWI410130B (en) Receiver and modulation method for reducing pcr jitter
JP3979789B2 (en) Digital signal receiver
JP7168001B2 (en) Broadcast transmission system, broadcast transmission/reception system, broadcast transmission method, and broadcast transmission program
JP2013055369A (en) Multicarrier modulation signal receiver
JP2013055368A (en) Multicarrier modulation signal receiver
WO2011061030A1 (en) Receiver and receiving method for receiving data in a broadcasting system using incremental redundancy
JP4541291B2 (en) Digital demodulator, digital receiver, digital demodulator control method, digital demodulator control program, and recording medium recording the control program
JP7168002B2 (en) Broadcast transmission system, broadcast transmission/reception system, broadcast transmission method, and broadcast transmission program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11731771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP