WO2019238041A1 - 一种丙烯酰胺类化合物的晶型及其制备方法 - Google Patents

一种丙烯酰胺类化合物的晶型及其制备方法 Download PDF

Info

Publication number
WO2019238041A1
WO2019238041A1 PCT/CN2019/090702 CN2019090702W WO2019238041A1 WO 2019238041 A1 WO2019238041 A1 WO 2019238041A1 CN 2019090702 W CN2019090702 W CN 2019090702W WO 2019238041 A1 WO2019238041 A1 WO 2019238041A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pattern
preparation
ccr2
ccr5
Prior art date
Application number
PCT/CN2019/090702
Other languages
English (en)
French (fr)
Inventor
巴庾勇
姚婷
罗云富
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2019238041A1 publication Critical patent/WO2019238041A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members

Definitions

  • the invention relates to a crystal form of an acrylamide compound and a preparation method thereof, and further includes the application of the crystal form in the preparation of a medicine for treating diseases related to the CCR2 / CCR5 receptor.
  • Chemokines are a small, secreting family of pro-inflammatory cytokines that act as leukocyte chemical attractants. They promote the transport of white blood cells from the vascular bed to surrounding tissues that respond to inflammatory signals. Chemotaxis begins with binding of chemokines to receptors (GPCRs), by initiating signals that involve increased calcium flux, inhibition of cyclic adenosine monophosphate production, rearrangement of the cytoskeleton, activation of integrin, and cell movement Conduction pathways and increased expression of adhesion proteins.
  • GPCRs chemokines to receptors
  • the chemical inducer cytokine is a relatively small protein (8-10 kD) that stimulates cell migration.
  • the chemokine family is divided into four subfamilies based on the number of amino acid residues between the first and second highly conserved cysteine.
  • Monocyte chemotactic protein-1 (MCP-1) is a member of the CC chemokine subfamily (where CC represents a subfamily with adjacent first and second cysteine) and binds to cell surface chemokines Receptor 2 (CCR2).
  • MCP-1 is a potent chemokine that mediates the migration (ie, chemotaxis) of monocytes and lymphocytes to sites of inflammation after binding to CCR2.
  • MCP-1 is also expressed by cardiomyocytes, vascular endothelial cells, fibroblasts, chondrocytes, smooth muscle cells, mesangial cells, alveolar cells, T lymphocytes, and esophageal cancer.
  • monocytes enter inflammatory tissue, they differentiate into CCR5-expressing macrophages, providing secondary sources of several proinflammatory regulators, including tumor necrosis factor- ⁇ (TNF- ⁇ ), interleukin-1 (IL-1 ), IL-8CXC chemokine subfamily, where CXC represents an amino acid residue between the first and second cysteine), IL-12, arachidonic acid metabolites (such as PGE 2 and LTB 4) , Oxygen-derived free radicals, matrix metalloproteinases and complement components.
  • TNF- ⁇ tumor necrosis factor- ⁇
  • IL-1 interleukin-1
  • IL-8CXC chemokine subfamily where CXC represents an amino acid residue between the first and second cysteine
  • CCR2 (also known as CKR-2, MCP-1RA or MCIRB) is mainly expressed on monocytes and macrophages and is required for macrophage-dependent inflammation.
  • CCR2 is a G protein-coupled receptor (GPCR) that binds several members of the MCP family of chemokines (CCL2, CCL7, CCL8, etc.) with high affinity, triggering chemotaxis signals, leading to the migration of targeted receptor-bearing cells.
  • GPCR G protein-coupled receptor
  • CCR5 is a G protein-coupled receptor that binds a variety of CC chemokine ligands, including CCL3, CCL3L1, CCL4, CCL5, CCL7, CCL11, and CCL13.
  • CCR5's in vivo function is less clear.
  • CCR5 is mainly expressed in activated Th1 cells and tissue macrophages differentiated from blood monocytes, which is accompanied by down-regulation of CCR2 expression.
  • CCR5 has been shown to contribute to the survival of macrophages during inflammation and infection, and can also play a role in retaining macrophages in inflamed tissues.
  • CCR5 mediates the recruitment and activation of Th1 cells in inflammation.
  • CCR5 is also expressed on osteoclasts and is important for osteoclast formation, indicating the contribution of CCR5 in rheumatoid arthritis pathology. Activation of vascular smooth cells through CCL4 / CCR5 can also contribute to atherosclerosis and AIH pathology (accelerated intimal hyperplasia).
  • CCR2 and CCR5 provide the theoretical basis that dual targeting of two receptors may have greater efficacy than targeting single receptors.
  • CCR2 plays an important role in mediating the migration of monocytes from bone marrow to blood and from blood to tissues, among which CCR5 mainly regulates the activation of macrophages in inflammatory tissues, Survival and possible retention.
  • CCR5 blockade can improve the therapeutic potential of dual antagonists by inhibiting T cell responses in addition to effects on monocytes / macrophages. Based on the advantages of CCR2 and CCR5 dual targets, CCR2 / 5 dual antagonists have also begun to be studied in depth.
  • CCR2 / 5 dual antagonists have good drug-making potential.
  • the biphenyl compounds of CCR2 / 5 dual antagonists are described.
  • the present invention provides the crystal form A of compound 1, and its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 14.52 ⁇ 0.2 °, 15.33 ⁇ 0.2 °, 16.32 ⁇ 0.2 °.
  • the X-ray powder diffraction pattern of the crystal form A of the above compound 1 has characteristic diffraction peaks at the following 2 ⁇ angles: 11.48 ⁇ 0.2 °, 14.52 ⁇ 0.2 °, 15.33 ⁇ 0.2 °, 16.32 ⁇ 0.2 ° , 16.85 ⁇ 0.2 °, 20.06 ⁇ 0.2 °, 23.84 ⁇ 0.2 °, 26.82 ⁇ 0.2 °.
  • the XRPD pattern of the crystal form A of the aforementioned compound 1 is shown in FIG. 1.
  • the XRPD analysis data of the crystal form A of the aforementioned compound 1 is shown in Table 1.
  • the differential scanning calorimetry curve of the Form A of the above Compound 1 has a starting point of an endothermic peak at 145.75 ⁇ 2 ° C.
  • the DSC spectrum of the A-form of Compound 1 is shown in FIG. 2.
  • thermogravimetric analysis curve of the crystal form A of the above compound 1 has a weight loss of 0.5992% at 157.61 ⁇ 2 ° C.
  • the TGA spectrum of the A-form of the above-mentioned compound 1 is shown in FIG. 3.
  • the present invention provides the B-form of Compound 1, and its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 13.63 ⁇ 0.2 °, 15.13 ⁇ 0.2 °, 17.42 ⁇ 0.2 °.
  • the X-ray powder diffraction pattern of the B-form of Compound 1 has characteristic diffraction peaks at the following 2 ⁇ angles: 5.07 ⁇ 0.2 °, 10.89 ⁇ 0.2 °, 13.63 ⁇ 0.2 °, 15.13 ⁇ 0.2 ° , 17.42 ⁇ 0.2 °, 21.19 ⁇ 0.2 °, 23.05 ⁇ 0.2 °, 24.55 ⁇ 0.2 °.
  • the XRPD pattern of the B-form of Compound 1 is shown in FIG. 4.
  • the XRPD analysis data of the B-form of the above-mentioned compound 1 is shown in Table 2.
  • the differential scanning calorimetry curve of the B-form of the above-mentioned compound 1 has a starting point of an endothermic peak at 137.55 ° C ⁇ 2 ° C.
  • the DSC pattern of the B-form of Compound 1 is shown in FIG. 5.
  • thermogravimetric analysis curve of the crystal form B of the above compound 1 has a weight loss of 0.4098% at 157.36 ⁇ 2 ° C.
  • the TGA spectrum of the B-form of Compound 1 is shown in FIG. 6.
  • the invention also provides the application of the A-form or B-form of the above-mentioned compound 1 in the preparation of a medicine related to the CCR2 / CCR5 receptor.
  • the crystal form A and the crystal form B of compound 1 have stable properties, low hygroscopicity, and good drug prospects.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • NMP stands for N-methylpyrrolidone
  • Pd (dppf) Cl 2 stands for [1,1'-bis (diphenylphosphino) ferrocene] palladium dichloride
  • DMAc stands for N , N-dimethylacetamide.
  • Test method about 10 ⁇ 20mg sample is used for XRPD detection.
  • Light tube voltage 40kV
  • light tube current 40mA
  • Anti-scattering slit 7.10mm
  • DSC Differential thermal analysis
  • Test method Take a sample ( ⁇ 1mg) and place it in a DSC aluminum pan for testing. Under the condition of 50mL / min N 2 , heat the sample from 25 ° C to 350 ° C at a heating rate of 10 ° C / min.
  • Thermogravimetric (Analyzer, TGA) method of the present invention is thermogravimetric (Analyzer, TGA) method of the present invention
  • Test method Take a sample (2 ⁇ 5mg) and place it in a TGA platinum pot for testing. Under the condition of 25mL / min N 2 , heat the sample from room temperature to 350 ° C at a heating rate of 10 ° C / min.
  • FIG. 1 is an XRPD spectrum of Cu-K ⁇ radiation of Form A of Compound 1.
  • FIG. 2 is a DSC spectrum of Compound A Form A.
  • FIG. 3 is a TGA spectrum of the Form A of Compound 1.
  • FIG. 4 is an XRPD spectrum of Cu-K ⁇ radiation of Form B of Compound 1.
  • FIG. 5 is a DSC spectrum of the Form B of Compound 1.
  • FIG. 6 is a TGA spectrum of Form B of Compound 1.
  • reaction solution in the three-necked flask A was slowly dropped into the three-necked flask B.
  • the mixed reaction solution was stirred at 0 ° C to 5 ° C for 3 hours, and then heated to 25 ° C to 30 ° C for 19 hours.
  • the reaction solution was concentrated to obtain a solid.
  • the solid was washed with acetone (5 mL), filtered, and the filtrate was spin-dried to obtain a solid.
  • Acetonitrile (5 mL) was added, and the mixture was stirred at 80 ° C for 2 hours. Cool slowly to room temperature, precipitate a solid, filter, and filter cake to obtain compound 1.
  • the change of intracellular calcium signal was detected by FLIPR, and the inhibitory effect of the compound on CCR2 and CCR5 receptors was evaluated using the compound's IC50 value as an indicator.
  • Cell line inoculate cells and incubate in 37 ° C, 5% CO 2 incubator overnight
  • the compound was dissolved in DMSO to prepare a 10 mM solution, and the compound solution was placed in a nitrogen box.
  • MCP-1 was diluted 10 points in FLIPR assay buffer 1: 2, starting at 0.5 ⁇ M (final 100 nM).
  • RANTES was diluted 10 points in FLIPR assay buffer 1: 3, starting from 0.5 uM (final 100 nM).
  • 20 ⁇ L of serially diluted compound buffer was added to each well of the DRC plate.
  • Standard compounds were diluted 11 points in DMSO 1: 3, starting at 1 mM.
  • Compound 1 was diluted 11 points in DMSO 1: 3, starting at 2 mM.
  • Transfer 250nL compound solution to cell plate using Echo (Greiner # 781946)
  • test compound was injected into SD rats via the tail vein (overnight fast, 7-10 weeks of age), and the test compound was administered orally to SD rats (overnight fast, 7-10 weeks of age).
  • the animals were collected about 200 ⁇ L of blood from the jugular or tail vein at 0.0833, 0.25, 0.5, 1, 2, 4, 6, 8 and 24 hours after administration, and placed in an anticoagulated tube with EDTA-K2, 4 ° C, 3000g Centrifuge for 15 min to take plasma.
  • Table 4 shows the pharmacokinetic parameters of test compound 1 and standard compounds in rats.
  • a clear solution of the test compound is injected into the cynomolgus monkey via the cephalic vein or saphenous vein (overnight fast, 2.5-7 kg), and the test compound is administered orally to the cynomolgus monkey.
  • Animals were transferred from peripheral veins with about 400 ⁇ L of 0.0833, 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 24 hours after dosing to commercial centrifuge tubes containing 0.85-1.15 mg of K2EDTA * 2H2O anticoagulant The plasma was collected by centrifugation at 4 ° C and 3000g for 10min.
  • Table 5 shows the pharmacokinetic parameters of test compound 1 and standard compounds in cynomolgus monkeys.
  • a total of 5 specific probe substrates of 5 isozymes of CYP namely phenacetin (CYP1A2), diclofenac (CYP2C9), (S) -Mephenytoin ((S) -Mephenytoin, CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A4) were incubated with human liver microsomes and test compounds, respectively, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) was added to start the reaction.
  • CYP1A2 phenacetin
  • CYP2C9 diclofenac
  • S S) -Mephenytoin
  • CYP2D6 dextromethorphan
  • CYP3A4 midazolam
  • the reference compound has a weak inhibitory effect on CYP3A4, while compound 1 has no risk of inhibition on the five isozymes of human liver microsomal cytochrome P450 (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) Better than standard compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

公开了一种丙烯酰胺类化合物晶型及其制备方法,还包括所述晶型在制备治疗与CCR2/CCR5相关疾病药物中的应用。

Description

一种丙烯酰胺类化合物的晶型及其制备方法
相关申请的引用
本申请主张如下优先权:
CN201810603877.8,申请日2018-06-12。
技术领域
本发明涉及一种丙烯酰胺类化合物晶型及其制备方法,还包括所述晶型在制备治疗与CCR2/CCR5受体相关疾病药物中的应用。
背景技术
趋化因子是一种小的,分泌促炎细胞因子的家族,起到白细胞化学引诱物的作用。它们促进白细胞从血管床到响应炎症信号的周围组织的运输。趋化性起始于趋化因子与受体结合(GPCR),通过启动涉及增加的钙流量,环磷酸腺苷产生的抑制,细胞骨架的重排,整联蛋白的活化和细胞运动过程的信号传导途径以及增加粘附蛋白的表达。
化学诱导剂细胞因子(即趋化因子)是相对小的蛋白质(8-10kD),其刺激细胞的迁移。基于第一和第二高度保守的半胱氨酸之间的氨基酸残基的数目,将趋化因子家族分成四个亚家族。单核细胞趋化蛋白-1(MCP-1)是CC趋化因子亚家族(其中CC代表具有相邻的第一和第二半胱氨酸的亚家族)的成员并且结合细胞表面趋化因子受体2(CCR2)。MCP-1是有效的趋化因子,其在结合CCR2后介导单核细胞和淋巴细胞向炎症位点的迁移(即趋化性)。MCP-1也由心肌细胞,血管内皮细胞,成纤维细胞,软骨细胞,平滑肌细胞,肾小球系膜细胞,肺泡细胞,T淋巴细胞,食管癌等表达。单核细胞进入炎症组织后,分化成表达CCR5的巨噬细胞,提供几种促炎调节剂的次级来源,包括肿瘤坏死因子-α(TNF-α),白细胞介素-1(IL-1),IL-8CXC趋化因子亚家族,其中CXC代表第一和第二半胱氨酸之间的一个氨基酸残基),IL-12,花生四烯酸代谢物(例如PGE 2和LTB 4),氧衍生的自由基,基质金属蛋白酶和补体成分。
CCR2(也称为CKR-2,MCP-1RA或MCIRB)主要在单核细胞和巨噬细胞上表达,并且对于巨噬细胞依赖性炎症是必需的。CCR2是以高亲和力结合趋化因子MCP家族(CCL2,CCL7,CCL8等)的几个成员的G蛋白偶联受体(GPCR),引发趋化信号,导致定向受体携带细胞的迁移。慢性炎性疾病的动物模型研究已经证明,拮抗剂抑制MCP-1和CCR2之间的结合抑制炎症反应。
CCR5是结合多种CC趋化因子配体的G蛋白偶联受体,包括CCL3,CCL3L1,CCL4,CCL5,CCL7,CCL11和CCL13。相对于CCR2,CCR5的体内功能较不明确。与CCR2相比,CCR5主要表达在活化的Th1细胞和从血液单核细胞分化的组织巨噬细胞,其伴随地下调CCR2表达。已经显示CCR5在炎症和感染过程中有助于巨噬细胞的存活,并且还可以起到在发炎组织内保留巨噬细胞的作用。此外,CCR5介导Th1细胞在炎症中的募集和激活。CCR5也在破骨细胞上表达,并且对于破骨细胞形成是重要的,这表明CCR5在类风湿性关节炎病理学中的贡献作用。通过CCL4/CCR5参与的血管平滑细胞的活化也可以促成动脉粥样硬化和 AIH的病理学(加速的内膜增生)。
CCR2和CCR5的互补细胞分布和差异细胞功能提供了两个受体的双重靶向可能比靶向单独受体具有更大功效的理论基础。在单核细胞/巨噬细胞生物学中,CCR2在介导从骨髓到血液和从血液到组织的单核细胞的迁移中起重要作用,其中CCR5主要调节巨噬细胞在发炎组织中的活化,存活和可能的保留。此外,CCR5阻断可以通过除了对单核细胞/巨噬细胞的影响之外抑制T细胞应答来改善双重拮抗剂的治疗潜力。基于CCR2和CCR5双重靶点的优势,CCR2/5双重拮抗剂也开始被深入研究,进入临床的有4个药物,分别为Tobira公司的Cenicriviroc,百时美施贵宝公司的BMS-813160和辉瑞的PF-04634817。因此,CCR2/5双重拮抗剂具有较好的成药潜力,在这我们对CCR2/5双重拮抗剂的联苯化合物进行专利保护。
发明内容
本发明提供了化合物1的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:14.52±0.2°、15.33±0.2°、16.32±0.2°。
Figure PCTCN2019090702-appb-000001
本发明的一些方案中,上述化合物1的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.48±0.2°、14.52±0.2°、15.33±0.2°、16.32±0.2°、16.85±0.2°、20.06±0.2°、23.84±0.2°、26.82±0.2°。
本发明的一些方案中,上述化合物1的A晶型,其XRPD图谱如图1所示。
本发明的一些方案中,上述化合物1的A晶型,其XRPD解析数据如表1所示。
表1:化合物1的A晶型XRPD图谱解析数据
Figure PCTCN2019090702-appb-000002
Figure PCTCN2019090702-appb-000003
本发明的一些方案中,上述化合物1的A晶型,其差示扫描量热曲线在145.75±2℃处具有吸热峰的起始点。
本发明的一些方案中,上述化合物1的A晶型,其DSC图谱如图2所示。
本发明的一些方案中,上述化合物1的A晶型,热重分析曲线在157.61±2℃处失重达0.5992%。
本发明的一些方案中,上述化合物1的A晶型,其TGA图谱如图3所示。
本发明提供了化合物1的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.63±0.2°、15.13±0.2°、17.42±0.2°。
本发明的一些方案中,上述化合物1的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.07±0.2°、10.89±0.2°、13.63±0.2°、15.13±0.2°、17.42±0.2°、21.19±0.2°、23.05±0.2°、24.55±0.2°。
本发明的一些方案中,上述化合物1的B晶型,其XRPD图谱如图4所示。
本发明的一些方案中,上述化合物1的B晶型,其XRPD解析数据如表2所示。
表2:化合物1的B晶型XRPD图谱解析数据
Figure PCTCN2019090702-appb-000004
Figure PCTCN2019090702-appb-000005
本发明的一些方案中,上述述化合物1的B晶型,其差示扫描量热曲线在137.55℃±2℃处具有吸热峰的起始点。
本发明的一些方案中,上述化合物1的B晶型,其DSC图谱如图5所示。
本发明的一些方案中,上述化合物1的B晶型,热重分析曲线在157.36±2℃处失重达0.4098%。
本发明的一些方案中,上述化合物1的B晶型,其TGA图谱如图6所示。
本发明还提供了上述化合物1的A晶型或B晶型在制备治疗与CCR2/CCR5受体相关药物中的应用。
技术效果
化合物1的A晶型及B晶型性质稳定,吸湿性小,成药前景良好。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时, 旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:NMP代表N-甲基吡咯烷酮;Pd(dppf)Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯;DMAc代表N,N-二甲基乙酰胺。
化合物经手工或者
Figure PCTCN2019090702-appb-000006
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D8 advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
Figure PCTCN2019090702-appb-000007
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:4-40deg
步径:0.02deg
步长:0.12秒
样品盘转速:15rpm
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从25℃到350℃。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000IR热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N 2条件下,以10℃/min的升温 速率,加热样品从室温到350℃。
附图说明
图1为化合物1的A晶型的Cu-Kα辐射的XRPD谱图。
图2为化合物1的A晶型的DSC谱图。
图3为化合物1的A晶型的TGA谱图。
图4为化合物1的B晶型的Cu-Kα辐射的XRPD谱图。
图5为化合物1的B晶型的DSC谱图。
图6为化合物1的B晶型的TGA谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:化合物1的制备
Figure PCTCN2019090702-appb-000008
第一步:化合物1-2的制备
25℃氮气保护下,将氢氧化钾(3.47kg,4.15eq)溶于NMP(15L)中,10℃~20℃下滴加磷酰基乙酸三乙酯(7.70kg,6.81L,2.3eq)继续搅拌1小时,10℃~20℃下将化合物1-1(3kg,1eq)溶于NMP(12L)滴加到反应液中,25℃下搅拌16个小时。10℃~20℃下将碘乙烷(3.49kg,1.79L,1.5eq)滴加到反应液中,继续搅拌3个小时。将反应液缓慢倒入冰的饱和氯化铵水溶液(120L)中搅拌30分钟,过滤,然后用水(50L*2)洗涤滤饼,得化合物1-2。
MS-ESI(m/z):299.9(M+1)+
1H NMR(400MHz,CHLOROFORM-d)δppm 1.34(t,J=7.03Hz,3H)1.47(t,J=6.90Hz,3H)4.08(q,J=6.86Hz,2H)4.27(q,J=7.19Hz,2H)6.50(d,J=16.06Hz,1H)6.78(d,J=8.78Hz,1H)7.40(dd,J=8.78,2.51Hz,1H)7.61(d,J=2.26Hz,1H)7.91(d,J=16.31Hz,1H)
第二步:化合物1-3的制备
将化合物1-2(3000g,1eq)、对羟基苯硼酸(1509g,1.1eq)、碳酸钾(4119g,3eq)依次溶于二甲亚砜(27L)与水(5.4L)的混合溶剂中,氮气保护下,25℃加入Pd(dppf)Cl 2(109.2g,0.015eq)。氮气保护下加热到80-90℃,搅拌反应4小时反应完全。反应液趁热经少许硅藻土过滤,滤液冷却到室温,将滤液在搅拌下缓慢倒入冰水中,搅拌过程中有大量灰色沉淀析出,陈化0.3h后过滤,滤饼用水洗涤。25℃下将滤饼加入到异丙醇(19L)里,加热到80℃至滤饼溶清。继续搅拌1小时后逐渐降温至25℃,析出固体,接着缓慢搅拌16小时。将析出的固体过滤。25℃下将滤饼加入到乙酸乙酯(20L)里,加热到60℃,至化合物全溶。逐渐加入活性炭(1000g),继续搅拌3小时。混合液趁热经硅藻土过滤,滤液浓缩得到化合物1-3。
MS-ESI(m/z):313.0(M+1)+
1H NMR(400MHz,CHLOROFORM-d)δppm 1.35(t,J=7.15Hz,3H)1.49(t,J=6.90Hz,3H)4.14(q,J=7.03Hz,2H)4.28(q,J=7.03Hz,2H)5.40(s,1H)6.61(d,J=16.06Hz,1H)6.91(d,J=8.53Hz,2H)6.94(d,J=8.53Hz,1H)7.41(d,J=8.53Hz,2H)7.48(dd,J=8.53,2.26Hz,1H)7.65(d,J=2.26Hz,1H)8.04(d,J=16.06Hz,1H)
第三步:化合物1-4的制备
25℃下将DMAc(50mL)加入单口瓶中,开启搅拌。将化合物1-3(3g,1eq)、碘化钾(0.531g,0.2eq)、碳酸铯(10.43g,2eq)。反应液25℃下搅拌0.5小时。接着滴加丁氧乙氧氯(2.41g,1.1eq)。将反应液加热到100℃,反应15.5小时。反应液冷却至20-30℃,搅拌下,将反应液倒入150ml的冰水中,搅拌15-30min。过滤得到黄色滤饼,滤饼加入20ml水,乙酸乙酯(30ml*3)萃取。有机相加入无水硫酸钠干燥,过滤。有机相浓缩干。得到化合物1-4。
MS-ESI(m/z):413.2(M+1)+
1H NMR(400MHz,CHLOROFORM-d)δppm 0.86(t,J=7.40Hz,3H)1.24-1.30(m,3H)1.31-1.38(m,2H)1.42(t,J=7.03Hz,3H)1.47-1.59(m,2H)3.48(t,J=6.65Hz,2H)3.71-3.75(m,2H)4.03-4.11(m,4H)4.20(q,J=7.03Hz,2H)6.53(d,J=16.31Hz,1H)6.84-6.93(m,3H)7.36-7.40(m,1H)7.39-7.44(m,2H)7.61(d,J=2.26Hz,1H)7.97(d,J=16.31Hz,1H)
第四步:化合物1-5的制备
25℃~30℃下将乙醇(20.8mL)加入单口瓶中,开启搅拌。将化合物1-4(5g,1eq)加入反应瓶中。将氢氧化钠0.63g,1.3eq)加入到水(4.2mL)中溶解。接着将氢氧化钠的水溶液滴加加到反应瓶中,反应液25℃~30℃下搅 拌16小时。反应液旋蒸旋去乙醇后滴加盐酸(12M),调节PH到3。过滤得到白色滤饼,滤饼加入水(4mL)洗涤。浓缩干得到化合物1-5。
MS-ESI(m/z):385.1(M+1)+
1H NMR(400MHz,CHLOROFORM-d)δppm 0.86(t,J=7.28Hz,3H)1.33(dq,J=14.90,7.41Hz,2H)1.43(t,J=6.90Hz,3H)1.49-1.58(m,2H)3.48(t,J=6.78Hz,2H)3.72-3.77(m,2H)4.04-4.13(m,4H)6.56(d,J=16.31Hz,1H)6.87-6.96(m,3H)7.39(d,J=8.53Hz,2H)7.45(dd,J=8.78,2.26Hz,1H)7.63(d,J=2.26Hz,1H)8.08(d,J=16.06Hz,1H)
第五步:化合物1的制备
25℃~30℃,将二氯甲烷(3mL)加入三口瓶中A,开启搅拌。氮气保护下,加入化合物1-5(1g,1eq)。接着将草酰氯(0.363g,1.1eq)缓慢滴加到反应瓶中。搅拌3小时。25℃~30℃,将二氯甲烷(3mL)加入另一三口瓶B中,开启搅拌。氮气保护下,将氨基亚砜(0.617g,0.9eq)及碳酸钾(0.72g,2eq)加入三口瓶B中。将反应液降温至0℃~5℃,将三口瓶A中的反应液缓慢滴加到三口瓶B中。混合反应液在0℃~5℃搅拌3小时,接着升温到25℃~30℃搅拌19小时。反应液浓缩得到固体,固体用丙酮(5mL)洗涤,过滤,滤液旋干得到固体,加入乙腈(5mL),80℃搅拌2小时。缓慢冷却至室温,析出固体,过滤,滤饼干燥得到化合物1。
MS-ESI(m/z):630.3(M+1)+
1H NMR(400MHz,DMSO-d6)δppm 0.88(t,J=7.40Hz,3H)1.25-1.35(m,5H)1.44(t,J=6.90Hz,3H)1.46-1.55(m,2H)1.63(s,3H)3.46(t,J=6.65Hz,2H)3.69-3.74(m,2H)3.90(br d,J=7.03Hz,2H)4.10-4.22(m,5H)4.30(s,1H)6.97(d,J=15.81Hz,1H)7.03(d,J=8.78Hz,2H)7.16(d,J=8.78Hz,1H)7.42(d,J=8.53Hz,2H)7.60(d,J=8.78Hz,2H)7.62-7.69(m,2H)7.80-7.87(m,3H)7.91(d,J=15.81Hz,1H)10.45(s,1H)
实施例2:化合物1的A晶型的制备
将30克化合物1加入到150mL乙酸乙酯中,升温至40℃,搅拌15小时,然后过滤得到滤饼,然后将滤饼加入到100mL乙酸乙酯中,升温至80℃,搅拌40小时,自然冷却至室温,过滤得到13.8g白色晶体即为A晶型。
实施例3:化合物1的B晶型的制备
称量大约30mg化合物1于样品瓶中,加入500μL丙酮,该悬浊液样品加入磁子后置于磁力加热搅拌器上(40℃)进行搅拌(避光)。两天后,收集残留固体样品,并于40℃真空干燥箱中干燥得到固体,即为B晶型。
实验例1:CCR2/CCR5体外测试
实验目的:
通过FLIPR检测细胞内钙信号变化,以化合物的IC50值为指标,来评价化合物对CCR2和CCR5受体的抑制作用。
实验材料:
1、细胞系:将细胞接种并在37℃,5%CO 2培养箱中温育过夜
CCR2/CCR5密度:每孔20000个细胞
细胞株 克隆数 细胞代数 宿主细胞
CCR2 C7 P6 HEK293
CCR5 C13 P4 HEK293
2、试剂:Fluo-4 Direct,(Invitrogen,Cat#F10471)
3、装置设备:
384 well Poly-D-Lysine protein coating plate,Greiner#781946
384 compound plate,Greiner#781280
FLIPR,Molecular Device
ECHO,Labcyte
4、化合物:
将化合物溶解于DMSO制备成10mM溶液,并将化合物溶液放置在氮气箱中。
标准化合物 纯度 化合物量(毫克)
Cenicriviroc 97.00 1.15
激动剂参考化合物:
MCP-1 Sigma SRP3109 10μM stock in H2O
RANTES Sigma SRP3269 10μM stock in H2O
实验步骤和方法:
在FLIPR测定缓冲液中制备丙磺舒:向77mg丙磺舒中加入1mL FLIPR测定缓冲液,制成250mM溶液。每天新鲜制备。
2X(8uM)Fluo-4Direct TM上样缓冲液(每10mL)
●解冻一瓶Fluo-4Direct TM晶体(F10471)
●向样品瓶中加入10mL FLIPR测定缓冲液.
●向每10mL的Fluo-Direct TM中加入0.2mL的丙磺舒。最终测定浓度为2.5mM
●旋转,放置>5分钟(避光)
●每天新鲜制备
实验步骤:
a)激动剂化合物制备:
将MCP-1在FLIPR测定缓冲液1:2中稀释10个点,从0.5μM(最终100nM)开始。将RANTES在FLIPR测定缓冲液1:3中稀释10个点,从0.5uM(最终100nM)开始。根据化合物板图,将20μL连续稀释的化合物缓冲液加入DRC板的每个孔中。
b)拮抗剂化合物制备:拮抗剂参考化合物
将标准化合物在DMSO 1:3中稀释11个点,从1mM开始。将化合物1在DMSO 1:3中稀释11个点,从2mM开始。使用Echo将250nL化合物溶液转移至细胞板(Greiner#781946)
c)从培养箱中取出细胞板,并使用移液器轻轻地分配20uL 2X Fluo-4Direct无洗涤上样缓冲液到384孔细胞培养板。最终细胞板中为体积40μL
d)在37℃5%CO 2下孵育50分钟,室温10分钟
e)从培养箱中取出细胞板,并将其放入FLIPR。将复合板和吸头盒放入FLIPR
f)对于DRC板:
1)在FLIPRTETRA上运行方案
2)读取荧光信号
3)将10μL的化合物从DRC板转移到细胞板
4)读取荧光信号
5)计算从Read 90到最大允许的“最大-最小”。使用FLIPR计算每个细胞株的EC80值
6)准备激动剂参考化合物的5X EC80浓度
g)对于复合板(1-添加):
1)在FLIPRTETRA上运行方案
2)转移10微升的5X EC80浓度的激动剂参考化合物从复合板到细胞板。
3)读取荧光信号。
4)计算从Read 90到最大允许的“最大-最小”
h)使用Prism分析数据,计算化合物的IC50值。
实验结果见表3:
表3:FLIPR检测IC 50(nM)测试结果
化合物 CCR2 CCR5
标准化合物 2.5 6.6
化合物1 8.2 6.7
结论:化合物1对CCR2和CCR5受体的拮抗作用显著。
实验例2大鼠药代动力学对比试验
本研究选用SD雄性大鼠受试动物,应用LC/MS/MS法定量测定了大鼠分别静脉注射或口服给予测试化 合物1和参比化合物不同时间点的血浆中的药物浓度,以评价这两个受试药物在大鼠体内的药代动力学特征。
将试验化合物的澄清溶液经尾静脉注射到SD大鼠体内(过夜禁食,7-10周龄),将试验化合物灌胃给予到SD大鼠(过夜禁食,7-10周龄)。动物均于给药后0.0833,0.25,0.5,1,2,4,6,8和24小时从颈静脉或尾静脉采血约200μL置于添加了EDTA-K2的抗凝管中,4℃,3000g离心15min取血浆。采用LC-MS/MS法测定血药浓度,使用WinNonlin TMVersion 6.3(Pharsight,Mountain View,CA)药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
表4展示了测试化合物1和标准化合物在大鼠中的药代动力学参数。
表4:化合物1和标准化合物在大鼠中的药代动力学参数
Figure PCTCN2019090702-appb-000009
实验结果表明,化合物1的血浆清除率比标准化合物低,为标准化合物的33%;化合物1的口服血浆系统暴露量(AUC 0-inf)为标准化合物的6.4倍。因此在啮齿动物大鼠中,化合物1的药代动力学显著优于标准化合物。
实验例3食蟹猴药代动力学对比试验
本研究受试动物选用雄性食蟹猴,应用LC/MS/MS法定量测定了食蟹猴静脉注射或口服给予测试化合物1和参比化合物不同时间点的血浆中的药物浓度,以评价这两个受试药物在食蟹猴体内的药代动力学特征。
将试验化合物的澄清溶液经头静脉或隐静脉注射到食蟹猴体内(过夜禁食,2.5-7kg),将试验化合物灌胃给予食蟹猴。动物均于给药后0.0833,0.25,0.5,1,2,4,6,8,12和24小时从外周静脉采血约400μL转移至含有0.85-1.15mg的K2EDTA*2H2O抗凝剂商品化离心管中,4℃,3000g离心10min取血浆。采用LC-MS/MS法测定血药浓度,使用WinNonlin TMVersion 6.3(Pharsight,Mountain View,CA)药动学软件,以非房室模型线性对数梯形法计算相关药代动力学参数。
表5展示了测试化合物1和标准化合物在食蟹猴中的药代动力学参数。
表5:化合物1和标准化合物在食蟹猴中的药代动力学参数
Figure PCTCN2019090702-appb-000010
Figure PCTCN2019090702-appb-000011
实验结果表明,化合物1的口服生物利用度是标准化合物的7.6倍,化合物1的口服血浆系统暴露量(AUC 0-inf)为标准化合物的10.8倍,因此化合物1在食蟹猴中的药代动力学显著优于标准化合物。
实验例4人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的抑制作用
将CYP的5种同工酶的一共5个特异性探针底物非那西丁(Phenacetin,CYP1A2)、双氯芬酸(Diclofenac,CYP2C9)、(S)-美芬妥英((S)-Mephenytoin,CYP2C19)、右美沙芬(Dextromethorphan,CYP2D6)、咪达唑仑(Midazolam,CYP3A4)分别与人肝微粒体以及测试化合物共同孵育,加入还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)启动反应,在反应结束后对样品处理并采用液相色谱串联质谱联用(LC-MS/MS)法定量检测特异性底物产生的8种代谢产物对乙酰氨基酚(Acetaminophen)、4’-羟基双氯芬酸(4’-Hydroxydiclofenac)、4’-羟基美芬妥英(4’-Hydroxymephenytoin)、右啡烷(Dextrorphan)、1’-羟基咪达唑仑(1’-Hydroxymidazolam)的浓度,以计算相应的半抑制浓度(IC 50)。
表6化合物1和标准化合物对于五种CYP酶的抑制作用参数
Figure PCTCN2019090702-appb-000012
实验结论:参比化合物对CYP3A4有弱抑制作用,而化合物1对人肝微粒体细胞色素P450的5种同工酶(CYP1A2、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6和CYP3A4)不存在抑制风险,优于标准化合物。

Claims (15)

  1. 化合物1的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:14.52±0.2°、15.33±0.2°、16.32±0.2°。
    Figure PCTCN2019090702-appb-100001
  2. 根据权利要求1所述化合物1的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:11.48±0.2°、14.52±0.2°、15.33±0.2°、16.32±0.2°、16.85±0.2°、20.06±0.2°、23.84±0.2°、26.82±0.2°。
  3. 根据权利要求2所述化合物1的A晶型,其XRPD图谱如图1所示。
  4. 根据权利要求1~3任意一项所述化合物1的A晶型,其差示扫描量热曲线在145.75℃±2℃处具有吸热峰的起始点。
  5. 根据权利要求4所述化合物1的A晶型,其DSC图谱如图2所示。
  6. 根据权利要求1~3任意一项所述化合物1的A晶型,热重分析曲线在157.61±2℃处失重达0.5992%。
  7. 根据权利要求6所述化合物1的A晶型,其TGA图谱如图3所示。
  8. 化合物1的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:13.63±0.2°、15.13±0.2°、17.42±0.2°。
  9. 根据权利要求8所述化合物1的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.07±0.2°、10.89±0.2°、13.63±0.2°、15.13±0.2°、17.42±0.2°、21.19±0.2°、23.05±0.2°、24.55±0.2°。
  10. 根据权利要求9所述化合物1的B晶型,其XRPD图谱如图4所示。
  11. 根据权利要求8~10任意一项所述化合物1的B晶型,其差示扫描量热曲线在137.55℃±2℃处具有吸热峰的起始点。
  12. 根据权利要求11所述化合物1的B晶型,其DSC图谱如图5所示。
  13. 根据权利要求8~10任意一项所述化合物1的B晶型,热重分析曲线在157.36±2℃处失重达0.4098%。
  14. 根据权利要求13所述化合物1的B晶型,其TGA图谱如图6所示。
  15. 根据权利要求1~14任意一项所述化合物1的A晶型或B晶型在制备治疗与CCR2/CCR5受体相关药物中的应用。
PCT/CN2019/090702 2018-06-12 2019-06-11 一种丙烯酰胺类化合物的晶型及其制备方法 WO2019238041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810603877.8 2018-06-12
CN201810603877 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019238041A1 true WO2019238041A1 (zh) 2019-12-19

Family

ID=68841883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090702 WO2019238041A1 (zh) 2018-06-12 2019-06-11 一种丙烯酰胺类化合物的晶型及其制备方法

Country Status (1)

Country Link
WO (1) WO2019238041A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014105A1 (en) * 2001-08-08 2003-02-20 Takeda Chemical Industries, Ltd. Bicyclic compound, production and use as hiv inhibitors
US20060160864A1 (en) * 2003-02-07 2006-07-20 Mitsuru Shiraishi Acrylamide derivative, process for producing the same, and use
WO2018045043A1 (en) * 2016-08-31 2018-03-08 Tobira Therapeutics, Inc. Solid forms of cenicriviroc mesylate and processes of making solid forms of cenicriviroc mesylate
WO2018103757A1 (zh) * 2016-12-09 2018-06-14 广东众生药业股份有限公司 作为ccr2/ccr5受体拮抗剂的联苯化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014105A1 (en) * 2001-08-08 2003-02-20 Takeda Chemical Industries, Ltd. Bicyclic compound, production and use as hiv inhibitors
US20060160864A1 (en) * 2003-02-07 2006-07-20 Mitsuru Shiraishi Acrylamide derivative, process for producing the same, and use
WO2018045043A1 (en) * 2016-08-31 2018-03-08 Tobira Therapeutics, Inc. Solid forms of cenicriviroc mesylate and processes of making solid forms of cenicriviroc mesylate
WO2018103757A1 (zh) * 2016-12-09 2018-06-14 广东众生药业股份有限公司 作为ccr2/ccr5受体拮抗剂的联苯化合物

Similar Documents

Publication Publication Date Title
JP6901479B2 (ja) Cxcr2の阻害剤
TWI542588B (zh) 新穎雜環化合物
JP5492565B2 (ja) Janusキナーゼ阻害剤としての置換複素環
WO2015192658A1 (zh) 一种新型布鲁顿酪氨酸激酶抑制剂
CN114026104B (zh) Cot调节剂及其使用方法
JP2021514375A (ja) インターフェロン遺伝子刺激因子stingのアゴニスト
CN103748096A (zh) 作为蛋白激酶抑制剂的新型吡咯并嘧啶化合物
TWI779840B (zh) 作為jak激酶抑制劑的藥物化合物
KR20160017047A (ko) 이중 선택적 pi3 델타 및 감마 키나아제 억제제
WO2020238179A1 (zh) 作为选择性jak2抑制剂的吡咯并嘧啶类化合物、其合成方法及用途
TWI821559B (zh) 一種cd73抑制劑,其製備方法和應用
WO2019238041A1 (zh) 一种丙烯酰胺类化合物的晶型及其制备方法
CN114315837B (zh) 一种erk抑制剂的结晶形式及其制备方法
WO2022068860A1 (zh) 一种吡咯并杂环类衍生物的晶型及其制备方法
JP6917910B2 (ja) (4−((3r,4r)−3−メトキシテトラヒドロ−ピラン−4−イルアミノ)ピペリジン−1−イル)(5−メチル−6−(((2r,6s)−6−(p−トリル)テトラヒドロ−2h−ピラン−2−イル)メチルアミノ)ピリミジン−4イル)メタノンクエン酸塩
US20220227722A1 (en) Sphingosine 1 phosphate receptor modulator
WO2023143112A1 (zh) 氮杂苯并八元环化合物的盐型、晶型及其应用
WO2021190623A1 (zh) Fgfr4抑制剂的盐型、晶型及其用途
JP7407309B2 (ja) Csf-1r阻害剤としての置換{5-メトキシ-6-[(5-メトキシピリジン-2-イル)メトキシ]ピリジン-3-イル}メチル化合物
WO2023093859A1 (zh) Axl激酶抑制剂的盐、其制备方法和用途
CN111499641B (zh) 一种jak抑制剂及其制备方法
EP4382528A1 (en) Crystal form of ripk1 inhibitor, acid salt thereof, and crystal form of acid salt thereof
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
WO2023045816A1 (zh) 作为axl抑制剂的苯并环庚烷类化合物
JP2023536893A (ja) Jak阻害剤の塩形、結晶及びその製造方法と使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19819665

Country of ref document: EP

Kind code of ref document: A1