WO2019238040A1 - 可正前角加工的有序微槽结构pcd砂轮及其制备方法 - Google Patents

可正前角加工的有序微槽结构pcd砂轮及其制备方法 Download PDF

Info

Publication number
WO2019238040A1
WO2019238040A1 PCT/CN2019/090698 CN2019090698W WO2019238040A1 WO 2019238040 A1 WO2019238040 A1 WO 2019238040A1 CN 2019090698 W CN2019090698 W CN 2019090698W WO 2019238040 A1 WO2019238040 A1 WO 2019238040A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
grinding
grinding wheel
pcd
positive rake
Prior art date
Application number
PCT/CN2019/090698
Other languages
English (en)
French (fr)
Inventor
毛聪
钟宇杰
蒋艺峰
蔡培浩
胡永乐
李长河
Original Assignee
长沙理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙理工大学 filed Critical 长沙理工大学
Priority to US16/677,635 priority Critical patent/US20200070313A1/en
Publication of WO2019238040A1 publication Critical patent/WO2019238040A1/zh
Priority to US17/321,394 priority patent/US20210268626A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/02Wheels in one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/009Tools not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/10Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor with cooling provisions, e.g. with radial slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels
    • B24D5/123Cut-off wheels having different cutting segments

Definitions

  • the invention relates to a grinding wheel and a preparation method thereof, in particular, an ordered micro-groove structure PCD grinding wheel capable of processing positive rake angles and a preparation method thereof.
  • the patent No. CN107962510A “A surface ordered micro-structured CVD diamond grinding wheel”, deposits a diamond film on the outer circumferential surface of the grinding wheel hub by chemical vapor deposition, and then The pulsed laser beam was used to process a large number of staggered and orderly arranged microgrooves and a grinding unit with a top surface on the entire outer surface of the diamond film, which improved the removal rate and grinding efficiency of the surface material, and increased the grinding wheel.
  • the holding force of the wheel on the grinding unit increases the service life of the grinding wheel, but the single grinding unit is still processed at zero rake angle during the grinding process, so it cannot improve the grinding efficiency and the surface quality better.
  • the circumferential spacing of the grinding units is arranged in an orderly manner up to 1mm, which is a typical intermittent grinding. The periodic vibrations generated will also affect the integrity of the machining surface.
  • the patent No. CN105728961A “A new method for manufacturing positive rake angle diamond grinding tools based on pulsed laser processing”, proposes a laser-processed diamond abrasive grain. Positive rake angle method.
  • the invention uses laser processing technology to ablate single-layer large-grain diamond abrasive grains arranged on the working surface of the grinding wheel in an orderly manner, so that the vertex angle of the diamond abrasive grains is less than 90 °, so that the grinding process becomes positive rake grinding It effectively solves the problem that the traditional diamond grinding wheel abrasive particles cut the workpiece surface with a large negative rake angle, improves the machining efficiency, reduces the damage on the machining surface, and improves the integrity of the machining surface.
  • the patent of CN107243848A "a spirally ordered fiber cutter capable of processing positive rake angles and a preparation method thereof" is prepared on the wheel hub by pressing and sintering Out of the carcass and using drill bits to process small holes arranged in an orderly manner, the positive rake angle fibers are consolidated in the small holes by epoxy resin, thereby realizing positive rake cutting and further improving processing
  • Surface quality improves processing accuracy; however, because the fiber cross-sectional size is as high as 0.8mm and 0.8mm, the number of fibers per square centimeter on the tool surface is only 14.26, so the single fiber cut depth is very large, and it is difficult to ensure the processing accuracy, and Once a single fiber is stressed or concentrated, it will inevitably break, which will affect the service life of the grinding wheel. At the same time, the problem of excessively difficult preparation process of inserting all the fibers into the small holes one by one and consolidating them cannot be ignored.
  • the present invention proposes an ordered micro-groove structure PCD grinding wheel that can be processed at a positive rake angle and a preparation method thereof.
  • the diamond grinding wheel prepared by this method is characterized in that a layer of polycrystalline diamond film, namely a PCD film, is deposited on the outer circumferential surface of the wheel hub, and the outer circumferential surface of the PCD film is processed with an axial length equal to the thickness of the grinding wheel and a circumferential width of only It is a micro-groove with a depth of several tens of microns, a depth of several hundred microns, and an aspect ratio of several tens.
  • a micro-grinding unit with a positive rake angle is located between two adjacent micro-grooves. Ordered arrangement, and the micro-groove and micro-grinding unit are connected into a whole by the PCD film, which can greatly improve the holding force of the grinding wheel to the micro-grinding unit and prevent the micro-grinding unit from being caused by excessive force or concentrated force
  • the single drop-off increases the service life of the grinding wheel.
  • the micro-grinding unit with a positive rake angle and the micro grooves with high aspect ratio are arranged in an order on the working surface of the grinding wheel, which can reduce the grinding force ratio and increase the chip removal capacity. Increase the chip space, promote the grinding fluid to effectively enter the grinding zone, significantly improve the cooling effect of the grinding zone, reduce surface thermal damage, and effectively improve the grinding quality.
  • the technical solution adopted by the present invention is: manufacturing a grinding wheel hub by a mechanical processing method.
  • a polycrystalline diamond film (PCD film) with a thickness of 1 to 2 mm is deposited on the outer circumferential surface of the wheel hub by the HFCVD method of hot wire chemical vapor deposition, and the outer circumferential surface of the diamond film is polished by ion beam polishing technology.
  • the outer circumferential surface of the PCD film is processed by using micro-conducting laser processing technology, and the laser beam emitted by the laser head is focused into the nozzle through the glass window above the water cavity, The pressure of the water cavity causes the water jet to exit from the nozzle and guides the laser beam to the outer circumferential surface of the PCD film;
  • the grinding wheel is offset by a certain angle, and the axial length and the grinding wheel are processed by changing the relative motion trajectory of the water jet and the hub
  • the material of the hub is a titanium alloy with a diameter of 100-200 mm and a thickness of 6-20 mm.
  • each micro groove is equal to the thickness of the grinding wheel, the circumferential width is only 20-50 micrometers, the depth is 500-800 micrometers, and the aspect ratio is 10-40.
  • each micro-grinding unit is equal to the thickness of the grinding wheel, the circumferential width is 80-150 microns, the radial height is 500-800 microns, and the circumferential pitch is only 100-200 microns.
  • the step of offsetting the grinding wheel by a certain angle as described in step 3 refers to a micro-grinding unit formed by processing a PCD film by a laser beam with a positive rake angle of 10 ° to 40 ° and a rear angle of 20 ° ⁇ 50 °.
  • the laser device in the micro-water-guided laser processing technology is an ND: YAG pulse laser, the laser wavelength is 532 nm, and the focal spot diameter is ⁇ 30-100 ⁇ m.
  • the pressure of the water cavity is 2 to 4 MPa, and the diameter of the water jet is ⁇ 20 to 50 ⁇ m.
  • the present invention has the following beneficial effects.
  • the micro-grinding unit is arranged in an orderly manner, so that an orderly arrangement is formed during the grinding process of the grinding wheel.
  • the chip path greatly enhances the chip removal ability, so that the grinding wheel is less prone to blockage, and it can effectively promote the grinding fluid into the grinding zone, which significantly improves the cooling effect of the grinding zone, reduces thermal damage to the workpiece surface, and further improves Grinding quality.
  • the laser beam is focused into the nozzle through the glass window above the water cavity.
  • the pressure of the water cavity causes the water jet to exit from the nozzle and guide the laser beam.
  • the laser beam is inside the water jet. Propagates along the water jet in a total reflection.
  • the laser is guided to the surface of the PCD film by a water jet, the PCD film is ablated by the laser, and the ablated PCD film is taken away by the water flow.
  • the surface of the PCD film is cooled by the water flow, which effectively prevents the graphitization of the micro-grinding unit. It can better grind the material of the workpiece, and then greatly improve the quality of the machining surface.
  • the service life of the grinding wheel is significantly improved.
  • the PCD film on the outer circumferential surface of the grinding wheel produced by the hot-wire chemical vapor deposition method, that is, HFCVD technology is a whole, and each micro-grinding unit is a part of it, thereby greatly improving the holding force of the micro-grinding unit by the grinding wheel. Furthermore, the micro-grinding unit is prevented from falling off due to excessive force or concentrated force, which significantly improves the service life of the grinding wheel.
  • the number of effective sharpening edges is increased during the grinding process, and the periodic vibration during the grinding process is reduced.
  • the micro-groove laser processing technology has obtained a micro-groove with a circumferential width of only 20 micrometers, a micro-grinding unit with a circumferential distance of only 100 micro-meters, and the number of micro-grinding units participating in the unit area during the grinding process It is significantly increased, which greatly reduces the periodic vibration during the grinding process; and the micro-grinding unit processed by this method has the characteristics of high cutting edge and good consistency, and the grinding edge of each micro-grinding unit Both can participate in grinding, which greatly increases the number of effective grinding edges in the grinding process, and the cutting depth of a single grinding edge is reduced, thereby effectively improving the grinding accuracy and grinding efficiency.
  • the preparation process is simple and the manufacturing cost is low.
  • the size and shape of the micro-grinding unit on the outer circumference of the grinding wheel have good periodicity. Therefore, during the preparation process, the relative movement relationship between the micro-water-guided laser processing equipment and the grinding wheel to be controlled can be controlled by numerical control technology, which greatly reduces the grinding wheel The difficulty of preparation significantly reduces the manufacturing cost.
  • FIG. 1 is a perspective view of a polycrystalline diamond film deposited on the outer circumferential surface of a wheel hub.
  • FIG. 2 is a schematic diagram of processing a micro groove by using a micro-water-guided laser processing technology.
  • FIG. 3 is a schematic diagram of a micro groove processed on the outer circumferential surface of the grinding wheel and a partial enlarged view thereof.
  • FIG. 4 is a schematic diagram of a workpiece processed by a grinding wheel and a partial enlarged view of a contact area with the workpiece.
  • Figures 1 to 4 are: 1, wheel hub, 2, PCD film, 3, laser head, 4, glass window, 5, water cavity, 6, nozzle, 7, laser beam, 8, water jet, 9 , Miniature grinding unit, 10, Micro groove, 11, Positive rake angle, 12, Workpiece, 13, Back angle.
  • an ordered micro-groove structure PCD grinding wheel capable of processing positive rake angles is characterized in that the grinding wheel is composed of a hub 1, a PCD film 2, a large number of micro-grinding units 9 with positive rake angles 11 and a high depth-width PCD film 2 with a thickness of 1 to 2 mm is deposited on the outer circumferential surface of the hub 1; the outer circumferential surface of the PCD film 2 is processed with a large number of axial lengths equal to the thickness of the grinding wheel, and the circumferential width is only tens of microns,
  • the microgrooves 10 with a depth of hundreds of microns and an aspect ratio of several tens, between the two adjacent microgrooves 10 are the micro-grinding units 9 with positive rake angles 11, while the micro-grooves 10 and the micro-grinding units 9 are both It is arranged in order; when the grinding wheel is grinding the workpiece 12, the micro-grinding unit 9 is in
  • the micro-grinding unit 9 with a positive rake angle 11 is processed at a positive rake angle during the machining process, which reduces the grinding force ratio and the grinding temperature, effectively reduces the occurrence of surface processing damage, and greatly improves the cutting performance and grinding. Cutting efficiency.
  • a method for preparing an ordered micro-groove PCD grinding wheel capable of processing positive rake angles includes the following steps:
  • Step 1 Use a machining method to manufacture a hub 1 made of titanium alloy with a diameter of ⁇ 100mm and a thickness of 12mm, and then deposit a layer on the outer circumferential surface of the titanium alloy hub 1 by HFCVD technology, which is a hot wire chemical vapor deposition method.
  • the PCD film 2 is a polycrystalline diamond film with a thickness of 2 mm, and the outer circumferential surface of the PCD film 2 is polished by the ion beam polishing technology, so that the surface roughness of the PCD film 2 reaches 0.2 ⁇ m.
  • the PCD film 2 prepared in this way is a whole, which can be better combined with the wheel hub, withstand greater grinding forces, and is less prone to spalling, thereby increasing the service life of the wheel.
  • Step 2 Use the micro-water-guided laser processing technology to process the outer circumferential surface of the PCD film 2.
  • the laser head 3 emits a laser beam 7 and focuses on the nozzle 6 through the glass window 4 above the water cavity 5.
  • the water cavity 5 is pressed to make the water jet 8
  • the laser beam 7 emitted from the nozzle 6 is guided to the outer peripheral surface of the PCD film 2; the grinding wheel is offset by a certain angle, and the relative motion of the water jet 8 and the grinding wheel hub 1 is changed to obtain an axial length of 12 mm and the grinding wheel.
  • the width of the grinding unit 9 in the circumferential direction, and the next micro groove 10 is processed.
  • a micro grinding unit 9 with a positive rake angle 11 of 30 ° is formed between the two micro grooves 10; and then the micro grinding unit 9 is processed.
  • the formed back angle 13 is 40 °; the micro-grinding unit 9 can cut the workpiece at a positive rake angle during the grinding process, which can reduce the grinding force ratio and the grinding temperature, effectively reduce the occurrence of surface micro-cracks, greatly Improved cutting performance and grinding efficiency; Moisture guided laser processing technology can effectively prevent the occurrence of micro-graphitized grinding unit 9, the micro grinding unit 9 so as to better cutting surface, thereby greatly extending the service life of the grinding wheel and improve the surface quality.
  • Step 3 Repeat step 2 until the outer peripheral surface of the entire PCD film 2 is processed with a large number of micro grooves 10 with a high aspect ratio and a large number of micro-grinding units 9 with positive rake angles 11 are arranged in an orderly manner.
  • the grinding units 9 all have the same geometric dimensions; in this way, the micro grooves 10 and micro grinding units 9 arranged in an orderly manner can significantly increase the chip space and make the grinding wheel form an orderly chip discharge path during the grinding process.
  • Step 4 The prepared grinding wheel is pickled, placed in deionized water and ultrasonically cleaned for 15 minutes to form an ordered micro-groove structure PCD grinding wheel capable of positive rake angle processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Laser Beam Processing (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

一种可正前角加工的有序微槽结构PCD砂轮,包括轮毂(1),轮毂(1)外圆周面沉积有PCD膜(2),PCD膜(2)外圆周面加工有大量轴向长度与砂轮厚度相等、周向宽度仅为几十微米、深度为数百微米的高深宽比微槽(10),并形成大量带正前角的微型磨削单元(9),微型磨削单元(9)和微槽(10)均呈有序排布。有序微槽结构PCD砂轮能够实现正前角加工,提高磨削性能,提高砂轮寿命。还提供了一种可正前角加工的有序微槽结构PCD砂轮的制备方法。

Description

可正前角加工的有序微槽结构PCD砂轮及其制备方法 技术领域
本发明涉及一种砂轮及其制备方法,特别是可正前角加工的有序微槽结构PCD砂轮及其制备方法。
背景技术
磨削加工作为一种精密加工技术,具有加工精度高、表面质量好的特点,在精密加工制造领域有着广泛的应用。然而在传统的磨削加工中,磨粒在砂轮工作表面上呈无规则排布,而且磨粒的几何形状、尺寸大小均不一致,因此在磨削加工过程中,往往会出现磨粒呈大负前角切削工件表面的情况,这样会增大磨削力比,加速磨削能转化为磨削热能,提高磨削温度,从而影响加工表面质量和磨削效率;同时砂轮的容屑空间小,磨粒出刃度低且易脱落,容易造成砂轮堵塞而产生局部高温损伤工件表面,也会降低砂轮使用寿命。
为了提高砂轮的磨削效率和使用寿命,公开号为CN107962510A的专利“一种表面有序微型结构化的CVD金刚石砂轮”,通过化学气相沉积法在砂轮轮毂外圆周面沉积一层金刚石膜,再采用脉冲激光束在整个金刚石膜外圆周面加工出大量交错有序排布微槽和顶面均为腰型的磨削单元,提高了加工表面材料的去除率和磨削效率,增大了砂轮轮毂对磨削单元的把持力,提高了砂轮的使用寿命,但是单个的磨削单元在磨削过程中仍然是以零前角进行加工,从而未能够更好地提高磨削效率和加工表面质量,同时在磨削过程中有序排布磨削单元的周向间距高达1mm,属于典型的断续磨削,从而产生的周期性振动也会影响加工表面的完整性。
为了改善加工表面的完整性,实现正前角磨削加工,公开号为CN105728961A的专利“一种基于脉冲激光加工的新型正前角金刚石磨具制造方法”,提出了一种激光加工金刚石磨粒正前角的方法。该发明采用激光加工技术对有序排布在砂轮工作表面上的单层大颗粒金刚石磨粒进行烧蚀处理,使得金刚石磨粒顶角小于90°,从而磨削过程变成正前角磨削,有效地解决了传统金刚石砂轮磨粒呈大负前角切削工件表面的问题,提高了加工效率,减轻了加工表面的损伤,改善了加工表面的完整性。但是,在激光加工大颗粒金刚石磨粒的过程中,由于激光烧蚀温度过高难免会导致大颗粒金刚石磨粒产生部分石墨化,从而影响磨粒以正前角切削工件表面,降低了加工表面质量,同时单个的大颗金刚石磨粒一旦受 力过大或受力集中就可能会发生整颗脱落,影响磨削效率甚至降低砂轮的使用寿命。
为了进一步改善加工表面质量,提高磨削效率,公开号CN107243848A的专利“一种可正前角加工的螺旋有序排布纤维刀具及其制备方法”,通过压制和烧结的方法在砂轮轮毂上制备出胎体并采用钻头在胎体上加工出有序排布的小孔,再将正前角纤维由环氧树脂固结在小孔内,从而实现了正前角切削加工,进一步改善了加工表面质量,提高了加工精度;但是由于纤维的截面尺寸高达0.8mm 0.8mm,刀具表面上每平方厘米的纤维数量仅为14.26根,从而单纤维切深很大,也就难以保证加工精度,并且单个的纤维一旦受力过大或受力集中就难免会发生断裂,从而影响砂轮的使用寿命,同时将所有纤维逐个插入小孔内并固结这一制备过程难度过大的问题也不容忽视。
发明内容
为解决上述砂轮和现有技术存在的问题,本发明提出可正前角加工的有序微槽结构PCD砂轮及其制备方法。采用该方法制备的金刚石砂轮,其特征是在砂轮轮毂的外圆周面上沉积有一层聚晶金刚石膜即PCD膜,在PCD膜外圆周面加工有轴向长度与砂轮厚度相等、周向宽度仅为几十微米、深度为数百微米、深宽比达到几十的微槽,相邻两微槽之间即为带正前角的微型磨削单元,同时微槽和微型磨削单元均呈有序排布,并且微槽和微型磨削单元由PCD膜连成为一个整体,能够大大提高砂轮对微型磨削单元的把持力,防止微型磨削单元因受力过大或受力集中而发生单个脱落,提高砂轮的使用寿命;同时带正前角的微型磨削单元和高深宽比的微槽在砂轮工作表面均呈有序排布,能够降低磨削力比,增大排屑能力,提高容屑空间,促使磨削液有效地进入磨削区,显著地改善磨削区的冷却效果,减轻表面热损伤,有效地提高磨削质量。
为了实现上述目的,本发明采用的技术方案是:采用机械加工方法制造出砂轮轮毂。通过热丝化学气相沉积法即HFCVD技术在轮毂的外圆周面上沉积一层厚度为1~2mm的聚晶金刚石膜即PCD膜,再用离子束研抛技术对金刚石膜外圆周面进行研抛处理,并使得金刚石膜的表面粗糙度达到0.15~0.2μm;采用微水导激光加工技术对PCD膜外圆周面进行加工,激光头发射的激光束通过水腔上方的玻璃窗口聚焦于喷嘴中,水腔受压使得水射流从喷嘴中射出并引导激光束传播到PCD膜的外圆周面上;将砂轮偏置一定的角度,通过改变水射流与轮毂的相对运动轨迹加工出轴向长度与砂轮厚度相等、周向宽度仅为几十微米、深度为数百微米、深宽比达到几十的单个微槽;将砂轮分度,并使得PCD膜外圆周转过一个微型磨削单元的周向宽度,开展下一个微槽的加工,两个微槽之间即形成了带正前角的微型磨削单元;再对微型磨削单元进行加工并形成后角;重复上述步骤,直至整个PCD 膜外圆周面加工有大量高深宽比的微槽并形成大量带正前角且有序排布的微型磨削单元,并保证所有的微型磨削单元都具有相同几何尺寸;将制得的砂轮进行酸洗处理,再置入去离子水中通过超声波清洗,形成可正前角加工的有序微槽结构PCD砂轮。
所述的轮毂材质为钛合金,直径为Φ100~200mm,厚度为6~20mm。
所述的每个微槽的轴向长度与砂轮厚度相等、周向宽度仅为20~50微米、深度为500~800微米、深宽比为10~40。
所述的每个微型磨削单元的轴向长度与砂轮厚度相等、周向宽度为80~150微米、径向高度为500~800微米、周向间距仅为100~200微米。
步骤三中所述的将砂轮偏置一定的角度,指的是激光束对PCD膜进行加工后形成的微型磨削单元所具有正前角的角度为10°~40°、后角为20°~50°。
所述微水导激光加工技术中的激光装置为ND:YAG脉冲激光,激光波长为532nm,焦斑直径为Φ30~100μm。
所述微水导激光加工技术中水腔的压力为2~4MPa,水射流的直径为Φ20~50μm。
与现有技术相比较,本发明具有以下有益效果。
①大大提高了磨削性能和磨削效率。砂轮的外圆周工作面上具有大量带正前角的微型磨削单元,使得砂轮在加工过程中微型磨削单元以正前角进行加工,降低了磨削力比和磨削温度,有效地减少了表面损伤的产生,大大地提高了磨削性能和磨削效率。
②显著增大了容屑空间、排屑能力。在砂轮外圆周工作面有大量高深宽比的微槽,极大地提高了砂轮的容屑空间;同时微型磨削单元是呈有序排布,使得在砂轮磨削过程中形成了有序的排屑路径,大大增强了排屑能力,从而砂轮更不容易发生堵塞,也能有效促使磨削液进入磨削区,显著改善了磨削区的冷却效果,减轻了工件表面热损伤,进一步提高了磨削质量。
③有效防止了微型磨削单元的石墨化,极大地延长了砂轮工作寿命。采用微水导激光加工技术加工微型磨削单元时,激光束通过水腔上方的玻璃窗口聚焦于喷嘴中,水腔受压使得水射流从喷嘴中射出并引导激光束,激光束在水射流里面以全反射的方式沿水射流传播。在加工过程中,激光被水射流引导至PCD膜表面,激光烧蚀PCD膜,被烧蚀的PCD膜被水流带走,同时水流冷却PCD膜表面,有效防止了微型磨削单元的石墨化,使其能够更好地磨削工件材料,进而极大地提高了加工表面质量。
④显著提高了砂轮的使用寿命。采用热丝化学气相沉积法即HFCVD技术所制备砂轮外圆周面上的PCD膜是一个整体,每个微型磨削单元都是其中的一部分,从而大大提高了砂 轮对微型磨削单元的把持力,进而防止了微型磨削单元因受力过大或受力集中而发生单个脱落,显著地提高砂轮的使用寿命。
⑤增大了磨削过程的有效磨刃数,减轻了磨削过程中的周期性振动。采用微水导激光加工技术加工所得到微槽的周向宽度仅为20微米,微型磨削单元周向间距仅为100微米,在磨削过程中单位面积内参与磨削的微型磨削单元数得到显著地增大,大大减轻了磨削过程中的周期性振动;并且采用该方法加工得到的微型磨削单元具有出刃度高、一致性好的特点,进而每个微型磨削单元的磨刃都能参与磨削,这极大地增加了磨削过程的有效磨刃数,单个磨刃的切削深度得到降低,从而有效地提高了磨削精度和磨削效率。
⑥制备工艺简单,制造成本低。砂轮外圆周面上微型磨削单元的尺寸和形状均具有良好的周期性,因此在制备过程中,可以采用数控技术控制微水导激光加工设备与待加工砂轮的相对运动关系,大大降低了砂轮的制备难度,显著降低了制造成本。
附图说明
图1是砂轮轮毂外圆周面沉积聚晶金刚石膜后的立体图。
图2是采用微水导激光加工技术加工微槽的示意图。
图3是砂轮外圆周面加工有微槽的示意图及其局部放大图。
图4是砂轮加工工件时的示意图及其与工件接触区域的局部放大图。
以上图1至图4中的标示为:1、轮毂,2、PCD膜,3、激光头,4、玻璃窗口,5、水腔,6、喷嘴,7、激光束,8、水射流,9、微型磨削单元,10、微槽,11、正前角,12、工件,13、后角。
具体实施方式
下面结合附图对发明具体实施方式做进一步说明。
参见图1至图4,可正前角加工的有序微槽结构PCD砂轮,其特征在于:砂轮是由轮毂1、PCD膜2、大量带正前角11的微型磨削单元9和高深宽比的微槽10组成;轮毂1外圆周面沉积有厚度为1~2mm的PCD膜2;PCD膜2外圆周面加工有大量轴向长度与砂轮厚度相等、周向宽度仅为几十微米、深度为数百微米、深宽比达到几十的微槽10,相邻两微槽10之间即为带正前角11的微型磨削单元9,同时微槽10和微型磨削单元9均呈有序排布;当砂轮磨削工件12时,微型磨削单元9与工件12呈正前角11接触,可以实现微型磨削单元9以正前角11进行加工,微槽10主要起容屑、储液的作用。带正前角11的微 型磨削单元9在加工过程中以正前角加工,降低了磨削力比和磨削温度,有效地减少了表面加工损伤的产生,大大地提高了切削性能和磨削效率。
可正前角加工的有序微槽结构PCD砂轮的制备方法,包括下列步骤:
步骤一:采用机械加工的方法制造出材质为钛合金、直径为Φ100mm、厚度为12mm的轮毂1,然后通过热丝化学气相沉积法即HFCVD技术在钛合金轮毂1的外圆周面上沉积一层厚度为2mm的聚晶金刚石膜即PCD膜2,再采用离子束研抛技术对PCD膜2外圆周面进行研抛处理,并使得PCD膜2的表面粗糙度达到0.2μm。这样制备的PCD膜2是一个整体,能够更好地与砂轮轮毂相结合,承受更大的磨削力,更不容易发生剥落,从而提高砂轮使用寿命。
步骤二:采用微水导激光加工技术对PCD膜2外圆周面进行加工,激光头3发射激光束7通过水腔5上方的玻璃窗口4聚焦于喷嘴6,水腔5受压使得水射流8从喷嘴6射出并引导激光束7传播到PCD膜2的外圆周面上;将砂轮偏置一定的角度,通过改变水射流8和砂轮轮毂1的相对运动从而加工得到轴向长度为12mm与砂轮厚度相等、周向宽度为20微米、深度为500微米、深宽比为25的单个微槽10;加工完后,将砂轮分度,并使得PCD膜2外圆周转过100微米即一个微型磨削单元9的周向宽度,开展下一个微槽10的加工,两个微槽10之间即形成了正前角11为30°的微型磨削单元9;再对微型磨削单元9进行加工并形成后角13为40°;微型磨削单元9能够在磨削过程中以正前角切削工件,能够降低磨削力比和磨削温度,有效地减少了表面微裂纹的产生,大大地提高了切削性能和磨削效率;同时采用微水导激光加工技术可以有效地防止微型磨削单元9发生石墨化,从而微型磨削单元9能够更好地切削加工表面,进而极大地延长了砂轮使用寿命并提高了加工表面质量。
步骤三:重复步骤二,直至整个PCD膜2外圆周面加工有大量高深宽比的微槽10并形成大量带正前角11且有序排布的微型磨削单元9,并保证所有的微型磨削单元9都具有相同几何尺寸;这样有序排布的微槽10和微型磨削单元9能够显著地增大容屑空间,并使得砂轮在磨削过程中形成了有序的排屑路径,大大地增强了排屑能力,使砂轮更不容易发生堵塞,促使磨削液能够有效地进入磨削区,显著地改善了磨削区的冷却效果,减轻了表面热损伤,极大地提高了磨削质量和加工表面的精度;同时微型磨削单元的几何形状、尺寸大小均保持一致,那么在磨削过程中单位面积内参与磨削的微型磨削单元数得到显著增大,并且每个微型磨削单元的磨刃都能参与磨削,这极大地增加了磨削过程的有效磨刃数,单个磨刃的切削深度得到降低,从而有效地提高了磨削精度和磨削效率。
步骤四:将制得的砂轮进行酸洗处理,置入去离子水中通过超声波清洗15分钟,形成可正前角加工的有序微槽结构PCD砂轮。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

Claims (8)

  1. 可正前角加工的有序微槽结构PCD砂轮,其特征在于:砂轮是由轮毂(1)、PCD膜(2)、大量带正前角(11)的微型磨削单元(9)和高深宽比的微槽(10)组成;轮毂(1)外圆周面沉积有厚度为1~2mm的PCD膜(2);PCD膜(2)外圆周面加工有大量轴向长度与砂轮厚度相等、周向宽度仅为几十微米、深度为数百微米、深宽比达到几十的微槽(10),相邻两微槽(10)之间即为带正前角(11)的微型磨削单元(9),同时微槽(10)和微型磨削单元(9)均呈有序排布;当砂轮磨削工件(12)时,微型磨削单元(9)与工件(12)呈正前角(11)接触,可以实现微型磨削单元(9)进行正前角(11)加工,微槽(10)主要起容屑、储液的作用。
  2. 可正前角加工的有序微槽结构PCD砂轮的制备方法,其特征在于,制备步骤如下:
    步骤一:采用HFCVD技术在轮毂(1)的外圆周面上沉积一层厚度为1~2mm的PCD膜(2);
    步骤二:采用离子束研抛技术对PCD膜(2)外圆周面进行研抛处理,并使得PCD膜(2)的表面粗糙度为0.15~0.2μm;
    步骤三:采用微水导激光加工技术对PCD膜(2)外圆周面进行加工,激光头(3)发射激光束(7)通过水腔(5)上方的玻璃窗口(4)聚焦于喷嘴(6)中,水腔(5)受压使得水射流(8)从喷嘴(6)射出并引导激光束(7)传播到PCD膜(2)的外圆周面上;将砂轮偏置一定的角度,根据水射流(8)与轮毂(1)的相对运动轨迹加工出轴向长度与砂轮厚度相等、周向宽度仅为几十微米、深度为数百微米、深宽比达到几十的单个微槽(10);将砂轮分度,并使得PCD膜(2)外圆周转过一个微型磨削单元(9)的周向宽度,开展下一个微槽(10)的加工,两个微槽(10)之间即形成了带正前角(11)的微型磨削单元(9);再对微型磨削单元(9)进行加工并形成后角(13);
    步骤四:重复步骤三,直至整个PCD膜(2)外圆周面加工有大量高深宽比的微槽(10)并形成大量带正前角(11)且有序排布的微型磨削单元(9),并保证所有的微型磨削单元(9)都具有相同几何尺寸;
    步骤五:将制得的砂轮进行酸洗处理,再置入去离子水中通过超声波清洗,形成可正前角加工的有序微槽结构PCD砂轮。
  3. 根据权利要求1所述的可正前角加工的有序微槽结构PCD砂轮或权利要求2所述的可正前角加工的有序微槽结构PCD砂轮的制备方法,所述的轮毂(1)材质为钛合金、直径为Φ100~200mm、厚度为6~20mm。
  4. 根据权利要求1所述的可正前角加工的有序微槽结构PCD砂轮或权利要求2所述的可正前角加工的有序微槽结构PCD砂轮的制备方法,所述的每个微槽(10)轴向长度与砂轮厚度 相等、周向宽度仅为20~50微米、深度为500~800微米、深宽比为10~40。
  5. 根据权利要求1所述的可正前角加工的有序微槽结构PCD砂轮或权利要求2所述的可正前角加工的有序微槽结构PCD砂轮的制备方法,所述的每个微型磨削单元(9)的轴向长度与砂轮厚度相等、周向宽度为80~150微米、径向高度为500~800微米、周向间距仅为100~200微米。
  6. 根据权利要求2所述的可正前角加工的有序微槽结构PCD砂轮的制备方法,步骤三所述的将砂轮偏置一定的角度,指的是激光束(7)对PCD膜(2)进行加工后形成的微型磨削单元(9)所具有正前角(11)的角度为10°~40°、后角(13)为20°~50°。
  7. 根据权利要求2所述的可正前角加工的有序微槽结构PCD砂轮的制备方法,步骤三中所述的微水导激光加工技术中激光装置为ND:YAG脉冲激光,激光波长为532nm,焦斑直径为Φ10~30μm。
  8. 根据权利要求2所述的可正前角加工的有序微槽结构PCD砂轮的制备方法,步骤三中所述的微水导激光加工技术中水腔(5)的压力为2~4MPa,水射流(8)的直径为Φ20~50μm。
PCT/CN2019/090698 2018-06-13 2019-06-11 可正前角加工的有序微槽结构pcd砂轮及其制备方法 WO2019238040A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/677,635 US20200070313A1 (en) 2018-06-13 2019-11-07 Orderly-micro-grooved pcd grinding wheel for positive rake angle processing and method for making same
US17/321,394 US20210268626A1 (en) 2018-06-13 2021-05-14 Orderly-micro-grooved pcd grinding wheel and method for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810608183.3A CN108747858B (zh) 2018-06-13 2018-06-13 可正前角加工的有序微槽结构pcd砂轮的制备方法
CN201810608183.3 2018-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/677,635 Continuation US20200070313A1 (en) 2018-06-13 2019-11-07 Orderly-micro-grooved pcd grinding wheel for positive rake angle processing and method for making same

Publications (1)

Publication Number Publication Date
WO2019238040A1 true WO2019238040A1 (zh) 2019-12-19

Family

ID=64022630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090698 WO2019238040A1 (zh) 2018-06-13 2019-06-11 可正前角加工的有序微槽结构pcd砂轮及其制备方法

Country Status (3)

Country Link
US (1) US20200070313A1 (zh)
CN (2) CN110722464B (zh)
WO (1) WO2019238040A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021175606A1 (en) 2020-03-02 2021-09-10 Unilever Ip Holdings B.V. An effective anti-acne personal care composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110722464B (zh) * 2018-06-13 2022-01-18 长沙理工大学 可正前角加工的有序微槽结构pcd砂轮的制造工艺
CN109570746A (zh) * 2018-12-13 2019-04-05 郑州元素工具技术有限公司 一种激光粗化金刚石的方法
CN111451952B (zh) * 2020-06-15 2021-11-05 郑州磨料磨具磨削研究所有限公司 一种具有微尺寸冷水槽的电镀砂轮的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084856A (ja) * 1998-09-09 2000-03-28 Osaka Diamond Ind Co Ltd 弾性体を介して超砥粒層を設けた鏡面加工用超砥粒砥石
CN101386154A (zh) * 2008-09-28 2009-03-18 广东奔朗超硬材料制品有限公司 一种树脂结合剂金刚石砂轮及其制作方法
CN107243848A (zh) * 2017-06-16 2017-10-13 长沙理工大学 一种可正前角加工的螺旋有序排布纤维刀具及其制备方法
CN107866756A (zh) * 2017-12-05 2018-04-03 长沙理工大学 一种有序微槽结构多层超硬磨料电镀砂轮及其制备方法
CN107962510A (zh) * 2017-12-05 2018-04-27 长沙理工大学 一种表面有序微型结构化的cvd金刚石砂轮及其制备方法
CN108747858A (zh) * 2018-06-13 2018-11-06 长沙理工大学 可正前角加工的有序微槽结构pcd砂轮及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7516536B2 (en) * 1999-07-08 2009-04-14 Toho Engineering Kabushiki Kaisha Method of producing polishing pad
US6840851B1 (en) * 2000-09-28 2005-01-11 Inland Diamond Products Company Bevel edging wheel with swarf clearance
US20050060941A1 (en) * 2003-09-23 2005-03-24 3M Innovative Properties Company Abrasive article and methods of making the same
DE102004027032B4 (de) * 2004-06-02 2007-04-12 MV Marketing und Vertriebs-GmbH & Co. KG Wieländer + Schill Materialabtragendes Werkzeug sowie Verfahren zum Auftrennen von Schweißnähten
CN104070467B (zh) * 2014-06-20 2016-08-17 广东工业大学 微刃磨削制品及其制备方法和应用
US9931714B2 (en) * 2015-09-11 2018-04-03 Baker Hughes, A Ge Company, Llc Methods and systems for removing interstitial material from superabrasive materials of cutting elements using energy beams

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084856A (ja) * 1998-09-09 2000-03-28 Osaka Diamond Ind Co Ltd 弾性体を介して超砥粒層を設けた鏡面加工用超砥粒砥石
CN101386154A (zh) * 2008-09-28 2009-03-18 广东奔朗超硬材料制品有限公司 一种树脂结合剂金刚石砂轮及其制作方法
CN107243848A (zh) * 2017-06-16 2017-10-13 长沙理工大学 一种可正前角加工的螺旋有序排布纤维刀具及其制备方法
CN107866756A (zh) * 2017-12-05 2018-04-03 长沙理工大学 一种有序微槽结构多层超硬磨料电镀砂轮及其制备方法
CN107962510A (zh) * 2017-12-05 2018-04-27 长沙理工大学 一种表面有序微型结构化的cvd金刚石砂轮及其制备方法
CN108747858A (zh) * 2018-06-13 2018-11-06 长沙理工大学 可正前角加工的有序微槽结构pcd砂轮及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021175606A1 (en) 2020-03-02 2021-09-10 Unilever Ip Holdings B.V. An effective anti-acne personal care composition

Also Published As

Publication number Publication date
CN108747858B (zh) 2020-04-03
CN108747858A (zh) 2018-11-06
US20200070313A1 (en) 2020-03-05
CN110722464A (zh) 2020-01-24
CN110722464B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2019238040A1 (zh) 可正前角加工的有序微槽结构pcd砂轮及其制备方法
CN107962510B (zh) 一种表面有序微型结构化的cvd金刚石砂轮的制备方法
CN107866756B (zh) 一种有序微槽结构多层超硬磨料电镀砂轮的制备方法
CN107552815B (zh) 一种表面跨尺度复合微造型刀具及制备方法
US9643282B2 (en) Micro end mill and method of manufacturing same
WO2021208485A1 (zh) 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法
US20110289855A1 (en) Superabrasive Cutting Element and Manufacturing Method with High Degree of Control of Distribution and Crystallographic Orientation of the Micro Cutting Edges
WO2013187510A1 (ja) ダイシング装置及びダイシング方法
WO2010063161A1 (zh) 切割脆性材料的刀轮及其加工方法
WO2015029988A1 (ja) ダイシング装置及びダイシング方法
CN106238758A (zh) 一种自保护控屑刀具及其加工方法
WO2022089158A1 (zh) 一种微刃切削刀具及其制造方法
CN214392488U (zh) 一种用于复合材料钻孔用环形刀具
JP6850990B2 (ja) ダイヤモンド被覆切削工具及びその製造方法
JP2016196085A (ja) 加工砥石
CN103707206B (zh) 一种复合材料纤维微刃的螺旋砂轮
CN113732366B (zh) 一种深小孔内壁超声振动加工刀具及其制备方法
TWI417169B (zh) Cutting tools with the top of the complex cutting
US20210268626A1 (en) Orderly-micro-grooved pcd grinding wheel and method for making same
CN112139601B (zh) 一种在金属带锯条表面制备点阵微结构的方法及带锯条
Wu et al. Modeling and experimental study of unequal interval intermittent (UII) diamond micro grinding tool
CN113787467A (zh) 一种超细磨粒簇有序排布的电镀砂轮及其制备方法
Fujita et al. Ultrafine ductile-mode dicing technology for SiC substrate with metal film using PCD blade
CN213548395U (zh) 一种超声滚压和激光加工的织构化割灌机刀片
Mandal et al. Improving grindability of titanium grade 1 using a pneumatic barrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820468

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19820468

Country of ref document: EP

Kind code of ref document: A1