WO2019237931A1 - 波束状态检测方法及终端 - Google Patents

波束状态检测方法及终端 Download PDF

Info

Publication number
WO2019237931A1
WO2019237931A1 PCT/CN2019/089157 CN2019089157W WO2019237931A1 WO 2019237931 A1 WO2019237931 A1 WO 2019237931A1 CN 2019089157 W CN2019089157 W CN 2019089157W WO 2019237931 A1 WO2019237931 A1 WO 2019237931A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
counter
failure detection
terminal
indication information
Prior art date
Application number
PCT/CN2019/089157
Other languages
English (en)
French (fr)
Inventor
吴昱民
莫毅韬
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19820130.3A priority Critical patent/EP3809619A4/en
Publication of WO2019237931A1 publication Critical patent/WO2019237931A1/zh
Priority to US17/114,536 priority patent/US20210091845A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a beam state detection method and a terminal.
  • an embodiment of the present disclosure provides a beam state detection method, which is applied to a terminal and includes:
  • beam state detection is performed according to the instruction information.
  • an embodiment of the present disclosure provides a terminal, including:
  • a monitoring module configured to monitor instruction information generated by the terminal when a reference signal for detecting beam failure is not detected by the terminal;
  • a detection module is configured to detect a beam state according to the instruction information if the instruction information is monitored.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, the foregoing beam is implemented. Steps of the state detection method.
  • an embodiment of the present disclosure provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the foregoing beam state detection method. .
  • the above solution introduces the feature of indication information generated when a reference signal for detecting beam failure is not detected, and performs beam state detection based on the indication information, so that the terminal can perform channel quality evaluation according to the actual transmission situation of the reference signal.
  • the judgment ensures the accuracy of the beam state detection.
  • FIG. 1 is a schematic flowchart of a beam state detection method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic block diagram of a terminal according to an embodiment of the present disclosure
  • the present disclosure provides a beam state detection method and a terminal for judging a problem that channel quality is not judged in combination with an actual transmission situation of a reference signal, which is prone to misjudgment of a beam state.
  • a beam state detection method provided by an embodiment of the present disclosure, which is applied to a terminal includes:
  • Step 101 Monitor the instruction information
  • the indication information is generated by the terminal when a reference signal for detecting beam failure detection is not detected.
  • the indication information generated when a reference signal for detecting beam failure detection is not detected is introduced.
  • the terminal detects a reference signal used for beam failure detection. When the reference signal is not detected, it generates indication information that the reference signal is not detected.
  • the reference signal mentioned above Is a synchronization signal block (SSB) and / or a channel state information reference signal (CSI-RS).
  • Step 102 if the instruction information is monitored, perform beam state detection according to the instruction information.
  • the indication information when the indication information is monitored, it indicates that the terminal has not detected a reference signal for detecting beam failure, and the terminal performs beam state detection according to this situation to ensure the accuracy of the beam state detection as much as possible.
  • the beam state detection here is mainly to perform beam failure detection.
  • the embodiment of the present disclosure introduces a parameter of indication information generated when a reference signal for detecting beam failure is not detected, a counter needs to be set for this parameter, that is, the indication information corresponds to Counter (for example, NO_RS_COUNTER), and a preset threshold (that is, the maximum threshold of the count value) is set for the counter, and the preset threshold is configured by the network-side device or agreed upon by the protocol.
  • the indication information corresponds to Counter (for example, NO_RS_COUNTER)
  • a preset threshold that is, the maximum threshold of the count value
  • step 102 when step 102 is specifically implemented, at least one of the following methods is adopted:
  • the target counter includes a beam failure detection counter
  • setting the target counter is implemented by maintaining a count value of the beam failure detection counter unchanged
  • the specific implementation is that after the terminal monitors the indication information of an undetected reference signal for measurement beam failure detection, the terminal maintains the current beam failure detection counter (BFI_COUNTER) unchanged (that is, keeps the current count value unchanged). ) Or reset the beam failure detection counter (that is, set the beam failure detection counter to an initial value, such as "0").
  • BFI_COUNTER current beam failure detection counter
  • A2 When the count value of the counter corresponding to the instruction information reaches a preset threshold, perform setting of a beam failure detection counter;
  • the count value of the counter corresponding to the instruction information reaches the preset threshold means that the count value of the counter is greater than or equal to the preset maximum threshold value; the specific method for setting the beam failure detection counter is to reset all The count value of the beam failure detection counter; or
  • the terminal when the count value of the counter corresponding to the indication information reaches a preset threshold, the terminal resets the current beam failure detection counter (ie, sets the beam failure detection counter to an initial value, such as "0") or counts the beam failure detection counter Values are incremented.
  • A3 When it is detected that the indication information and the counter value corresponding to the indication information reach at least one of preset thresholds, setting a beam failure detection timer;
  • the setting of the beam failure detection timer in this way may be implemented in one of the following ways:
  • the terminal each time the terminal monitors the indication information of an undetected reference signal for measurement beam failure detection, the terminal maintains the current beam failure detection timer (that is, keeps the current count value unchanged). Change, and continue running), or stop the beam failure detection timer (that is, set to an initial value, such as "0", and stop running the timer), or start (if the beam failure detection timer did not start before, here It is called a startup) beam failure detection timer, or restarted (if the beam failure detection timer has been started before, it is called restart here) the beam failure detection timer.
  • the current beam failure detection timer that is, keeps the current count value unchanged. Change, and continue running
  • stop the beam failure detection timer that is, set to an initial value, such as "0", and stop running the timer
  • start if the beam failure detection timer did not start before, here It is called a startup
  • beam failure detection timer or restarted (if the beam failure detection timer has been started before, it is called restart here) the beam failure detection timer.
  • the current beam failure detection timer is maintained (that is, the current count value is maintained and continues to run), or the beam failure detection timer is stopped. (That is, set to an initial value, such as "0", and stop running the timer), or start (if the beam failure detection timer has not been started before, this is called startup) the beam failure detection timer, or restart ( If the beam failure detection timer has been started before, this is referred to as restarting) the beam failure detection timer.
  • a preset threshold that is, a preset maximum threshold
  • the count value of the counter corresponding to the indication information is set to an initial value, such as "0".
  • step 102 in the embodiment of the present disclosure in a specific implementation manner further includes:
  • the beam state detection according to the beam failure indication and the indication information may be implemented in the following manner:
  • This implementation method is specifically: when the terminal detects each beam failure indication (for example, "beam failure instance"), the terminal resets the counter corresponding to the indication information (that is, it is set to an initial value, such as "0") .
  • step 102 when the terminal executes step 102, it may be implemented by using any combination of one or more of the above-mentioned A1-A6.
  • the terminal's beam state detection also includes the following behaviors:
  • the terminal After the terminal detects a beam failure indication, the terminal starts or restarts the beam failure detection timer.
  • the terminal When the beam failure detection counter reaches the maximum count threshold (for example, the count value of the beam failure detection counter is greater than or equal to the maximum count threshold), the terminal considers that the detected beam has a beam failure;
  • the maximum count threshold value of the beam failure detection counter in this mode is determined by the configuration or protocol of the network-side device.
  • the terminal when a beam failure occurs after the beam state detection is performed, the terminal triggers a beam failure recovery process.
  • the terminal can monitor the beam state according to the parameter whether the reference signal is generated when no reference signal is detected, so that the result of the beam state detection of the terminal is closer to that used for measuring the beam failure detection.
  • the beam status of the reference signal transmission condition reduces the probability of misjudgment of beam failure, ensures the accuracy of beam status detection, and further ensures the reliability of network communication.
  • a terminal 200 provided by an embodiment of the present disclosure includes:
  • a monitoring module 201 configured to monitor instruction information generated by a terminal when a reference signal for detecting beam failure is not detected by the terminal;
  • the detecting module 202 is configured to detect a beam state according to the instruction information if the instruction information is monitored.
  • the detection module 202 includes at least one of the following units:
  • a first setting unit configured to set a target counter after detecting the instruction information, where the target counter includes: at least one of a counter corresponding to the instruction information and a beam failure detection counter;
  • a third setting unit configured to set a beam failure detection timer when it is detected that the indication information and the counter value corresponding to the indication information reach at least one of preset thresholds;
  • a determining unit configured to determine a beam state as a beam failure when a count value of a counter corresponding to the indication information reaches a preset threshold
  • the resetting unit is configured to reset a count value of a counter corresponding to the indication information when a beam failure detection timer expires.
  • the first setting unit is configured to:
  • the first setting unit is configured to:
  • the second setting unit is configured to:
  • the third setting unit is configured to perform one of the following modes:
  • the preset threshold is determined by a network-side device configuration or protocol.
  • the detection module 202 further includes:
  • a detection unit configured to detect a beam state according to the beam failure indication and the indication information.
  • the detection unit is configured to:
  • the count value of a counter corresponding to the indication information is reset.
  • the terminal further includes:
  • a triggering module is configured to trigger a beam failure recovery process when a beam failure is detected.
  • this terminal embodiment is a terminal corresponding to the above-mentioned beam state detection method applied on the terminal side, and all implementation methods of the above embodiments are applicable to this terminal embodiment and can also achieve the same technical effects .
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present disclosure.
  • the terminal 30 includes, but is not limited to, a radio frequency unit 310, a network module 320, an audio output unit 330, an input unit 340, a sensor 350, a display unit 360, a user input unit 370, an interface unit 380, a memory 390, a processor 311, and a power supply. 312 and other components.
  • a radio frequency unit 310 includes, but is not limited to, a radio frequency unit 310, a network module 320, an audio output unit 330, an input unit 340, a sensor 350, a display unit 360, a user input unit 370, an interface unit 380, a memory 390, a processor 311, and a power supply. 312 and other components.
  • the terminal structure shown in FIG. 3 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined, or different components may be arranged.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer,
  • the processor 311 is configured to monitor the indication information generated by the terminal when a reference signal for detecting beam failure is not detected; if the indication information is monitored, the beam is performed according to the indication information Status detection.
  • the terminal in this embodiment of the present disclosure introduces the feature of indicating information generated when a reference signal for detecting beam failure is not detected, and performs beam state detection according to the instruction information, so that the terminal can perform The judgment of the channel quality ensures the accuracy of the beam state detection.
  • the radio frequency unit 310 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, after receiving downlink data from a network device, the processor 311 processes the data; in addition, Send the uplink data to the network device.
  • the radio frequency unit 310 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 310 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 320, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 330 may convert audio data received by the radio frequency unit 310 or the network module 320 or stored in the memory 390 into audio signals and output them as sound. Moreover, the audio output unit 330 may also provide audio output (for example, a call signal reception sound, a message reception sound, etc.) related to a specific function performed by the terminal 30.
  • the audio output unit 330 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 340 is used to receive audio or video signals.
  • the input unit 340 may include a Graphics Processing Unit (GPU) 341 and a microphone 342, and the graphics processor 341 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode Data is processed.
  • the processed image frames may be displayed on the display unit 360.
  • the image frames processed by the graphics processor 341 may be stored in the memory 390 (or other storage medium) or transmitted via the radio frequency unit 310 or the network module 320.
  • the microphone 342 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to the mobile communication network device via the radio frequency unit 310 in the case of a telephone call mode and output.
  • the terminal 30 further includes at least one sensor 350, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 361 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 361 and / or when the terminal 30 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the attitude of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 350 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 360 is configured to display information input by the user or information provided to the user.
  • the display unit 360 may include a display panel 361, and the display panel 361 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 370 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 370 includes a touch panel 371 and other input devices 372.
  • the touch panel 371 also known as a touch screen, can collect touch operations performed by the user on or near the touch panel (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 371 or near the touch panel 371. operating).
  • the touch panel 371 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 311, receive the command sent by the processor 311 and execute it.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 371.
  • the user input unit 370 may further include other input devices 372.
  • other input devices 372 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which are not repeated here.
  • the touch panel 371 may be overlaid on the display panel 361.
  • the touch panel 371 detects a touch operation on or near the touch panel 371, the touch panel 371 transmits the touch operation to the processor 311 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 361.
  • the touch panel 371 and the display panel 361 are implemented as input and output functions of the terminal as two separate components, in some embodiments, the touch panel 371 and the display panel 361 may be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 380 is an interface through which an external device is connected to the terminal 30.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 380 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 30 or may be used to communicate between the terminal 30 and an external device. Transfer data.
  • the memory 390 may be used to store software programs and various data.
  • the memory 390 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 390 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 311 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal. Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 311 may include one or more processing units; optionally, the processor 311 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 311.
  • the terminal 30 may further include a power source 312 (such as a battery) for supplying power to various components.
  • a power source 312 such as a battery
  • the power source 312 may be logically connected to the processor 311 through a power management system, so as to manage charge, discharge, and power consumption management through the power management system. And other functions.
  • the terminal 30 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 311, a memory 390, and a computer program stored on the memory 390 and executable on the processor 311.
  • a terminal including a processor 311, a memory 390, and a computer program stored on the memory 390 and executable on the processor 311.
  • the computer program is executed by the processor 311.
  • the processes of the embodiment of the beam state detection method applied on the terminal side are implemented, and the same technical effects can be achieved. To avoid repetition, details are not described herein again.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that, when executed by a processor, implements each process of a beam state detection method embodiment applied to a terminal side, and Can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种波束状态检测方法及终端。该波束状态检测方法,应用于终端,包括:对指示信息进行监控,指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;若监控到指示信息,根据指示信息进行波束状态检测。

Description

波束状态检测方法及终端
相关申请的交叉引用
本申请主张在2018年6月15日在中国提交的中国专利申请号No.201810623951.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种波束状态检测方法及终端。
背景技术
用户设备(User Equipment,UE)(也称终端)的媒体接入控制(Medium Access Control,MAC)实体接收来自物理层的波束失败指示(beam failure instance indication)。MAC实体每次接收到该波束失败指示后,启动或重启动波束失败检测定时器(beam Failure Detection Timer),并将波束失败检测计数器(BFI_COUNTER)进行累加。若波束失败检测定时器超时,波束失败计数器重置(如,设置为“0”值)。当波束失败计数器达到网络配置的门限值(如,beam Failure Instance Max Count)的时候,MAC实体认为发生了波束失败,从而触发波束失败恢复过程(如,通过触发随机接入过程进行波束恢复)。
对于非授权的频段,发送端在发送信号之前需要监听该频段是否被占用,如果没有被占用,则发送端可以进行信号的发送,网络侧在发送给UE的波束失败检测(Beam Failure Detection,BFD)测量用的参考信号(如,同步信号块(Synchronous Signal Block,SSB)和/或信道状态信息参考信号(Channel State Information–Reference Signal,CSI-RS))的时候,如果频点被占用了,则网络侧不会发送该参考信号。在BFD用的参考信号没有被发送的情况,终端测量得到的测量结果值会很差,而实际在发送BFD用的参考信号的情况,该测量结果值会好。上述情况会导致UE错误的将信道质量判断为差而指示“beam failure instance indication”,从而会导致错误判断该监测的波束出现问题。
发明内容
本公开实施例提供一种波束状态检测方法及终端,以解决因没有结合参考信号的实际发送情况进行信道质量的判断,易发生波束状态误判的问题。
第一方面,本公开实施例提供一种波束状态检测方法,应用于终端,包括:
对指示信息进行监控,所述指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;
若监控到所述指示信息,根据所述指示信息进行波束状态检测。
第二方面,本公开实施例提供一种终端,包括:
监控模块,用于对指示信息进行监控,所述指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;
检测模块,用于若监控到所述指示信息,根据所述指示信息进行波束状态检测。
第三方面,本公开实施例提供一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的波束状态检测方法的步骤。
第四方面,本公开实施例提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的波束状态检测方法的步骤。
本公开的有益效果是:
上述方案,通过引入在未检测到用于进行波束失败检测的参考信号时生成的指示信息这一特征,根据该指示信息进行波束状态检测,使得终端可以根据参考信号的实际发送情况进行信道质量的判断,保证了波束状态检测的准确性。
附图说明
图1表示本公开实施例提供的波束状态检测方法的流程示意图;
图2表示本公开实施例提供的终端的模块示意图;
图3表示本公开实施例提供的终端的结构框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开进行详细描述。
本公开针对没有结合参考信号的实际发送情况进行信道质量的判断,易发生波束状态误判的问题,提供一种波束状态检测方法及终端。
如图1所示,本公开实施例提供的波束状态检测方法,应用于终端,包括:
步骤101,对指示信息进行监控;
其中,所述指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;本公开实施例中,引入在未检测到用于进行波束失败检测的参考信号时生成的指示信息这一特征,终端会对用于进行波束失败检测的参考信号进行检测,当没有检测到该参考信号时,便会生成未检测到参考信号的指示信息,需要说明的是,上述提到的参考信号为同步信号块(SSB)和/或信道状态信息参考信号(CSI-RS)。
步骤102,若监控到所述指示信息,根据所述指示信息进行波束状态检测。
需要说明的是,当监控到有该指示信息时,表明终端没有检测到用于进行波束失败检测的参考信号,终端根据此种情况再进行波束状态检测,以尽可能保证波束状态检测的准确性;此处的波束状态检测主要是进行波束失败检测。
需要说明的是,本公开实施例中因引入了在未检测到用于进行波束失败检测的参考信号时生成的指示信息这一参数,需要为这一参数设置一计数器,即所述指示信息对应的计数器(如,NO_RS_COUNTER),且为该计数器设置一预设门限(即计数值的最大门限),该预设门限由网络侧设备配置或协议约定。
进一步地,步骤102在具体实现方式时,采用如下方式中的至少一项:
A1、在检测到所述指示信息后,进行目标计数器的设置;
需要说明的是,所述目标计数器包括:所述指示信息对应的计数器和波束失败检测计数器中的至少一项;
具体地,在目标计数器包括所述指示信息对应的计数器时,进行目标计数器的设置的实现方式为:对所述指示信息对应的计数器进行计数,需要说明的是,此处计数器进行计数指的是为计数器加1的操作。具体的实现为:当终端每监控到1个未检测到的测量波束失败检测的参考信号的指示信息后,终端将该未检测到的测量波束失败检测的参考信号的指示信息对应的计数器的计数值加1。
具体地,在目标计数器包括波束失败检测计数器时,进行目标计数器的设置的实现方式为:维持波束失败检测计数器的计数值不变;或
重置所述波束失败检测计数器的计数值。
具体的实现为,当终端每监控到1个未检测到的测量波束失败检测的参考信号的指示信息后,终端将当前的波束失败检测计数器(BFI_COUNTER)维持不变(即保持当前计数值不变)或重置该波束失败检测计数器(即设置波束失败检测计数器为初始值,如“0”)。
A2、当所述指示信息对应的计数器的计数值达到预设门限时,进行波束失败检测计数器的设置;
需要说明的是,指示信息对应的计数器的计数值达到预设门限指的是计数器的计数值大于或等于预设的最大门限值;进行波束失败检测计数器的设置的具体方式为:重置所述波束失败检测计数器的计数值;或
对所述波束失败检测计数器进行计数。
例如,在指示信息对应的计数器的计数值达到预设门限时,终端重置当前的波束失败检测计数器(即设置波束失败检测计数器为初始值,如“0”)或将波束失败检测计数器的计数值进行加1处理。
A3、当满足检测到所述指示信息和所述指示信息对应的计数器的计数值达到预设门限中的至少一项时,进行波束失败检测定时器的设置;
需要说明的是,在此种方式下进行波束失败检测定时器的设置可以采用如下方式中的一项实现:
A31、维持波束失败检测定时器的计数值不变;
A32、停止运行所述波束失败检测定时器;
A33、启动或重启动所述波束失败检测定时器。
例如,当终端每监控到1个未检测到的测量波束失败检测的参考信号的指示信息后,终端将当前的波束失败检测定时器(beam Failure Detection Timer)维持不变(即保持当前计数值不变,并继续运行),或停止该波束失败检测定时器(即设置为初始值,如“0”,并停止运行该定时器),或启动(若波束失败检测定时器之前没有启动,此处称之为启动)波束失败检测定时器,或重启动(若波束失败检测定时器之前已经启动,此处称之为重启动)波束失败检测定时器。
例如,在指示信息对应的计数器的计数值达到预设门限时,将当前的波束失败检测定时器维持不变(即保持当前计数值不变,并继续运行),或停止该波束失败检测定时器(即设置为初始值,如“0”,并停止运行该定时器),或启动(若波束失败检测定时器之前没有启动,此处称之为启动)波束失败检测定时器,或重启动(若波束失败检测定时器之前已经启动,此处称之为重启动)波束失败检测定时器。
A4、当所述指示信息对应的计数器的计数值达到预设门限时,确定波束状态为波束失败;
在此种方式下,只要获取到指示信息对应的计数器的计数值大于或等于预设门限(即预设的最大门限值),就可以直接确定为波束失败。
A5、当波束失败检测定时器超时,重置所述指示信息对应的计数器的计数值;
需要说明的是,此种实现方式在波束失败检测定时器超时,将所述指示信息对应的计数器的计数值设置为初始值,如“0”。
需要说明的是,因终端的物理层会通过对波束接收,得到波束失败指示,进一步地,本公开实施例的步骤102在具体实现方式时,还包括:
获取波束失败指示;
根据所述波束失败指示和所述指示信息,进行波束状态检测。
具体地,根据所述波束失败指示和所述指示信息,进行波束状态检测可以采用如下方式实现:
A6、当检测到波束失败指示,重置所述指示信息对应的计数器的计数值。
此种实现方式具体为:当终端每检测到1个波束失败指示(如,“beam  failure instance indication”)后,终端将指示信息对应的计数器重置(即设置为初始值,如“0”)。
需要说明的是,本公开实施例中终端在执行步骤102时,可以采用上述的A1-A6中的一项或多项的任意组合实现。
这里还需要说明的是,终端对波束状态检测还包括以下行为:
B1、当终端检测到1个波束失败指示后,终端将波束失败检测计数器进行累加(如,BFI_COUNTER=BFI_COUNTER+1);
B2、当终端检测到1个波束失败指示后,终端启动或重启动波束失败检测定时器;
B3、当波束失败检测定时器超时时,将波束失败检测计数器重置(如,设置为“0”值);
B4、当波束失败检测计数器达到最大计数门限值(如,波束失败检测计数器的计数值大于或等于最大计数门限值),终端认为该检测的波束发生了波束失败;
需要说明的是,此方式下的波束失败检测计数器的最大计数门限值由网络侧设备配置或协议约定。
还需要说明的是,当进行波束状态检测之后,发生波束失败时,终端会触发波束失败恢复过程。
需要说明的是,本公开实施例,终端可以根据在未检测到参考信号时是否生成指示信息这一参数进行波束状态的监测,从而让终端的波束状态检测的结果更接近测量波束失败检测用的参考信号发送情况的波束状态,减少误判出现波束失败的概率,保证了波束状态检测的准确性,进而保证了网络通信的可靠性。
如图2所示,本公开实施例提供的终端200,包括:
监控模块201,用于对指示信息进行监控,所述指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;
检测模块202,用于若监控到所述指示信息,根据所述指示信息进行波束状态检测。
进一步地,所述检测模块202包括以下单元中的至少一项:
第一设置单元,用于在检测到所述指示信息后,进行目标计数器的设置,所述目标计数器包括:所述指示信息对应的计数器和波束失败检测计数器中的至少一项;
第二设置单元,用于当所述指示信息对应的计数器的计数值达到预设门限时,进行波束失败检测计数器的设置;
第三设置单元,用于当满足检测到所述指示信息和所述指示信息对应的计数器的计数值达到预设门限中的至少一项时,进行波束失败检测定时器的设置;
确定单元,用于当所述指示信息对应的计数器的计数值达到预设门限时,确定波束状态为波束失败;
重置单元,用于当波束失败检测定时器超时,重置所述指示信息对应的计数器的计数值。
可选地,在目标计数器包括所述指示信息对应的计数器时,所述第一设置单元,用于:
对所述指示信息对应的计数器进行计数。
可选地,在目标计数器包括波束失败检测计数器时,所述第一设置单元,用于:
维持波束失败检测计数器的计数值不变;或
重置所述波束失败检测计数器的计数值。
进一步地,所述第二设置单元,用于:
重置所述波束失败检测计数器的计数值;或
对所述波束失败检测计数器进行计数。
进一步地,所述第三设置单元,用于执行以下方式中的一项:
维持波束失败检测定时器的计数值不变;
停止运行所述波束失败检测定时器;
启动或重启动所述波束失败检测定时器。
具体地,预设门限由网络侧设备配置或协议约定。
可选地,所述检测模块202,还包括:
获取单元,用于获取波束失败指示;
检测单元,用于根据所述波束失败指示和所述指示信息,进行波束状态检测。
进一步地,所述检测单元,用于:
当检测到波束失败指示,重置所述指示信息对应的计数器的计数值。
进一步地,所述终端,还包括:
触发模块,用于在检测到发生波束失败时,触发波束失败恢复过程。
需要说明的是,该终端实施例是与上述应用于终端侧的波束状态检测方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果。
图3为实现本公开实施例的终端的硬件结构示意图。
该终端30包括但不限于:射频单元310、网络模块320、音频输出单元330、输入单元340、传感器350、显示单元360、用户输入单元370、接口单元380、存储器390、处理器311、以及电源312等部件。本领域技术人员可以理解,图3中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器311用于对指示信息进行监控,所述指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;若监控到所述指示信息,根据所述指示信息进行波束状态检测。
本公开实施例的终端通过引入在未检测到用于进行波束失败检测的参考信号时生成的指示信息这一特征,根据该指示信息进行波束状态检测,使得终端可以根据参考信号的实际发送情况进行信道质量的判断,保证了波束状态检测的准确性。
应理解的是,本公开实施例中,射频单元310可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自网络设备的下行数据接收后,给处理器311处理;另外,将上行的数据发送给网络设备。通常,射频单元310包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元310还可以通过无线通信系统与网络和其他设备 通信。
终端通过网络模块320为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元330可以将射频单元310或网络模块320接收的或者在存储器390中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元330还可以提供与终端30执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元330包括扬声器、蜂鸣器以及受话器等。
输入单元340用于接收音频或视频信号。输入单元340可以包括图形处理器(Graphics Processing Unit,GPU)341和麦克风342,图形处理器341对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元360上。经图形处理器341处理后的图像帧可以存储在存储器390(或其它存储介质)中或者经由射频单元310或网络模块320进行发送。麦克风342可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元310发送到移动通信网络设备的格式输出。
终端30还包括至少一种传感器350,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板361的亮度,接近传感器可在终端30移动到耳边时,关闭显示面板361和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器350还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元360用于显示由用户输入的信息或提供给用户的信息。显示单元360可包括显示面板361,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配 置显示面板361。
用户输入单元370可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元370包括触控面板371以及其他输入设备372。触控面板371,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板371上或在触控面板371附近的操作)。触控面板371可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器311,接收处理器311发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板371。除了触控面板371,用户输入单元370还可以包括其他输入设备372。具体地,其他输入设备372可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板371可覆盖在显示面板361上,当触控面板371检测到在其上或附近的触摸操作后,传送给处理器311以确定触摸事件的类型,随后处理器311根据触摸事件的类型在显示面板361上提供相应的视觉输出。虽然在图3中,触控面板371与显示面板361是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板371与显示面板361集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元380为外部装置与终端30连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元380可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端30内的一个或多个元件或者可以用于在终端30和外部装置之间传输数据。
存储器390可用于存储软件程序以及各种数据。存储器390可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区 可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器390可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器311是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器390内的软件程序和/或模块,以及调用存储在存储器390内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器311可包括一个或多个处理单元;可选的,处理器311可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器311中。
终端30还可以包括给各个部件供电的电源312(比如电池),可选的,电源312可以通过电源管理系统与处理器311逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端30包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器311,存储器390,存储在存储器390上并可在所述处理器311上运行的计算机程序,该计算机程序被处理器311执行时实现应用于终端侧的波束状态检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现应用于终端侧的波束状态检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (22)

  1. 一种波束状态检测方法,应用于终端,包括:
    对指示信息进行监控,所述指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;
    若监控到所述指示信息,根据所述指示信息进行波束状态检测。
  2. 根据权利要求1所述的波束状态检测方法,其中,所述根据所述指示信息进行波束状态检测,包括以下方式中的至少一项:
    在检测到所述指示信息后,进行目标计数器的设置,所述目标计数器包括:所述指示信息对应的计数器和波束失败检测计数器中的至少一项;
    当所述指示信息对应的计数器的计数值达到预设门限时,进行波束失败检测计数器的设置;
    当满足检测到所述指示信息和所述指示信息对应的计数器的计数值达到预设门限中的至少一项时,进行波束失败检测定时器的设置;
    当所述指示信息对应的计数器的计数值达到预设门限时,确定波束状态为波束失败;
    当波束失败检测定时器超时,重置所述指示信息对应的计数器的计数值。
  3. 根据权利要求2所述的波束状态检测方法,其中,在目标计数器包括所述指示信息对应的计数器时,进行目标计数器的设置,包括:
    对所述指示信息对应的计数器进行计数。
  4. 根据权利要求2所述的波束状态检测方法,其中,在目标计数器包括波束失败检测计数器时,进行目标计数器的设置,包括:
    维持波束失败检测计数器的计数值不变;或
    重置所述波束失败检测计数器的计数值。
  5. 根据权利要求2所述的波束状态检测方法,其中,进行波束失败检测计数器的设置,包括:
    重置所述波束失败检测计数器的计数值;或
    对所述波束失败检测计数器进行计数。
  6. 根据权利要求2所述的波束状态检测方法,其中,进行波束失败检测 定时器的设置,包括以下方式中的一项:
    维持波束失败检测定时器的计数值不变;
    停止运行所述波束失败检测定时器;
    启动或重启动所述波束失败检测定时器。
  7. 根据权利要求2所述的波束状态检测方法,其中,预设门限由网络侧设备配置或协议约定。
  8. 根据权利要求2所述的波束状态检测方法,其中,所述根据所述指示信息进行波束状态检测,还包括:
    获取波束失败指示;
    根据所述波束失败指示和所述指示信息,进行波束状态检测。
  9. 根据权利要求8所述的波束状态检测方法,其中,所述根据所述波束失败指示和所述指示信息,进行波束状态检测,包括:
    当检测到波束失败指示,重置所述指示信息对应的计数器的计数值。
  10. 根据权利要求1所述的波束状态检测方法,在所述根据所述指示信息进行波束状态检测之后,还包括:
    在检测到发生波束失败时,触发波束失败恢复过程。
  11. 一种终端,包括:
    监控模块,用于对指示信息进行监控,所述指示信息由终端在未检测到用于进行波束失败检测的参考信号时生成;
    检测模块,用于若监控到所述指示信息,根据所述指示信息进行波束状态检测。
  12. 根据权利要求11所述的终端,其中,所述检测模块包括以下单元中的至少一项:
    第一设置单元,用于在检测到所述指示信息后,进行目标计数器的设置,所述目标计数器包括:所述指示信息对应的计数器和波束失败检测计数器中的至少一项;
    第二设置单元,用于当所述指示信息对应的计数器的计数值达到预设门限时,进行波束失败检测计数器的设置;
    第三设置单元,用于当满足检测到所述指示信息和所述指示信息对应的 计数器的计数值达到预设门限中的至少一项时,进行波束失败检测定时器的设置;
    确定单元,用于当所述指示信息对应的计数器的计数值达到预设门限时,确定波束状态为波束失败;
    重置单元,用于当波束失败检测定时器超时,重置所述指示信息对应的计数器的计数值。
  13. 根据权利要求12所述的终端,其中,在目标计数器包括所述指示信息对应的计数器时,所述第一设置单元,用于:
    对所述指示信息对应的计数器进行计数。
  14. 根据权利要求12所述的终端,其中,在目标计数器包括波束失败检测计数器时,所述第一设置单元,用于:
    维持波束失败检测计数器的计数值不变;或
    重置所述波束失败检测计数器的计数值。
  15. 根据权利要求12所述的终端,其中,所述第二设置单元,用于:
    重置所述波束失败检测计数器的计数值;或
    对所述波束失败检测计数器进行计数。
  16. 根据权利要求12所述的终端,其中,所述第三设置单元,用于执行以下方式中的一项:
    维持波束失败检测定时器的计数值不变;
    停止运行所述波束失败检测定时器;
    启动或重启动所述波束失败检测定时器。
  17. 根据权利要求12所述的终端,其中,预设门限由网络侧设备配置或协议约定。
  18. 根据权利要求12所述的终端,其中,所述检测模块,还包括:
    获取单元,用于获取波束失败指示;
    检测单元,用于根据所述波束失败指示和所述指示信息,进行波束状态检测。
  19. 根据权利要求18所述的终端,其中,所述检测单元,用于:
    当检测到波束失败指示,重置所述指示信息对应的计数器的计数值。
  20. 根据权利要求11所述的终端,还包括:
    触发模块,用于在检测到发生波束失败时,触发波束失败恢复过程。
  21. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的波束状态检测方法的步骤。
  22. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的波束状态检测方法的步骤。
PCT/CN2019/089157 2018-06-15 2019-05-30 波束状态检测方法及终端 WO2019237931A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19820130.3A EP3809619A4 (en) 2018-06-15 2019-05-30 BEAM AND TERMINAL STATUS DETECTION PROCESS
US17/114,536 US20210091845A1 (en) 2018-06-15 2020-12-08 Beam state detection method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810623951.2A CN110677224B (zh) 2018-06-15 2018-06-15 一种波束状态检测方法及终端
CN201810623951.2 2018-06-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/114,536 Continuation US20210091845A1 (en) 2018-06-15 2020-12-08 Beam state detection method and terminal

Publications (1)

Publication Number Publication Date
WO2019237931A1 true WO2019237931A1 (zh) 2019-12-19

Family

ID=68841797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089157 WO2019237931A1 (zh) 2018-06-15 2019-05-30 波束状态检测方法及终端

Country Status (4)

Country Link
US (1) US20210091845A1 (zh)
EP (1) EP3809619A4 (zh)
CN (1) CN110677224B (zh)
WO (1) WO2019237931A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871455B2 (en) * 2018-07-16 2024-01-09 Beijing Xiaomi Mobile Software Co., Ltd. Random access control method and random access control apparatus
CN115606103A (zh) * 2020-03-31 2023-01-13 欧芬诺有限责任公司(Us) 无线网络中的波束管理程序
CN114071537A (zh) * 2020-08-07 2022-02-18 维沃移动通信有限公司 测量参考信号的方法、终端设备和网络设备
US20230041404A1 (en) * 2021-08-06 2023-02-09 Qualcomm Incorporated Determining a beam failure instance count for beam failure detection
CN115883037A (zh) * 2021-09-26 2023-03-31 维沃软件技术有限公司 波束失败检测的方法、装置及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656292A (zh) * 2015-10-29 2017-05-10 电信科学技术研究院 一种信道状态信息的反馈方法、基站及终端
CN107567038A (zh) * 2016-07-01 2018-01-09 华硕电脑股份有限公司 无线通信中当服务波束为无效时管理通信的方法和设备
WO2018084412A1 (ko) * 2016-11-04 2018-05-11 엘지전자(주) 무선 통신 시스템에서 하향링크 채널을 수신하는 방법 및 이를 위한 장치
CN108093481A (zh) * 2017-11-28 2018-05-29 中兴通讯股份有限公司 发送波束恢复信息的方法和装置、波束检测方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656292A (zh) * 2015-10-29 2017-05-10 电信科学技术研究院 一种信道状态信息的反馈方法、基站及终端
CN107567038A (zh) * 2016-07-01 2018-01-09 华硕电脑股份有限公司 无线通信中当服务波束为无效时管理通信的方法和设备
WO2018084412A1 (ko) * 2016-11-04 2018-05-11 엘지전자(주) 무선 통신 시스템에서 하향링크 채널을 수신하는 방법 및 이를 위한 장치
CN108093481A (zh) * 2017-11-28 2018-05-29 中兴通讯股份有限公司 发送波束恢复信息的方法和装置、波束检测方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809619A4 *

Also Published As

Publication number Publication date
CN110677224B (zh) 2020-11-03
EP3809619A4 (en) 2021-07-14
CN110677224A (zh) 2020-01-10
US20210091845A1 (en) 2021-03-25
EP3809619A1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2019237931A1 (zh) 波束状态检测方法及终端
CN110366212B (zh) 一种条件切换结果的检测方法及终端
WO2021078240A1 (zh) 测量处理方法和终端
CN110366198B (zh) 一种辅小区组变更结果的检测方法及终端
CN110188016B (zh) 应用程序无响应阻塞的检测方法、终端以及存储介质
CN111328119B (zh) 一种语音业务处理方法及电子设备
WO2019237936A1 (zh) 无线链路监测方法及终端
WO2020216329A1 (zh) 切换方法及终端
CN109831359B (zh) 一种数据网络连接状态的检测方法及其终端设备
WO2019134644A1 (zh) 数据传输方法和用户终端
WO2019085718A1 (zh) 随机接入方法和用户终端
WO2019141182A1 (zh) 波束失败恢复方法及终端
CN111343710B (zh) 一种功率调整方法及电子设备
US20220311818A1 (en) Data processing method and electronic device
US20220110036A1 (en) Random access method and terminal
WO2019238027A1 (zh) 链路质量监测方法及终端
US11523442B2 (en) Random access resource selection method and terminal device
WO2021115198A1 (zh) 测量方法和终端
CN108668005B (zh) 一种终端检测方法及终端
WO2020015531A1 (zh) 监测结果的确定方法及终端
CN110798873A (zh) 一种语音服务注册方法及电子设备
WO2021098627A1 (zh) 一种链路监测方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019820130

Country of ref document: EP