WO2019237858A1 - 用于正电子发射成像设备的探测器及正电子发射成像设备 - Google Patents

用于正电子发射成像设备的探测器及正电子发射成像设备 Download PDF

Info

Publication number
WO2019237858A1
WO2019237858A1 PCT/CN2019/086350 CN2019086350W WO2019237858A1 WO 2019237858 A1 WO2019237858 A1 WO 2019237858A1 CN 2019086350 W CN2019086350 W CN 2019086350W WO 2019237858 A1 WO2019237858 A1 WO 2019237858A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
module
array
scintillation crystal
layer
Prior art date
Application number
PCT/CN2019/086350
Other languages
English (en)
French (fr)
Inventor
解强强
谢思维
张熙
赵指向
黄秋
彭旗宇
Original Assignee
中派科技(深圳)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中派科技(深圳)有限责任公司 filed Critical 中派科技(深圳)有限责任公司
Publication of WO2019237858A1 publication Critical patent/WO2019237858A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Definitions

  • the invention relates to the field of positron emission imaging, in particular to a detector for positron emission imaging equipment and a positron emission imaging equipment.
  • Positron radiography is a functional imaging method because its detection principle is to detect metabolic activity in organisms, so it has a good early diagnosis effect on major diseases such as cancer, neurological diseases, and cardiovascular and cerebrovascular diseases.
  • detector crystals widely used in the field of positron emission imaging mainly include discrete crystal arrays, continuous crystals and lamellar crystal arrays, etc., among which the detectors using discrete crystals use long crystal arrays and photoelectric converter arrays to interact with each other. Coupling, using anger logic or light sharing to realize the application of incident high-energy photons.
  • Continuous crystal detectors often use bulk crystals to couple to photoelectric converter arrays, and use complex algorithms such as neural networks, SBP, maximum likelihood, and least squares to locate incident photons. The centre dropped severely.
  • Laminar crystals are similar to the detector construction method of continuous crystals, and they also need to use complex positioning algorithms to ensure high spatial resolution.
  • Detectors composed of discrete crystals do not require the use of complex decoding algorithms compared to the latter two, but due to the limitations of current technology, traditional detectors composed of discrete crystals can only decode two-dimensional position information, and the depth of response of photons (DOI Depth of information is often lost, which is a major reason for the imaging effect of discrete crystal detectors. At the same time, the light output and time resolution of long discrete crystals are relatively poor. Photons must be reflected many times in the crystal to reach the sensor. .
  • a detector for a positron emission imaging device and a positron emission imaging device including the detector to improve the positioning ability for gamma photons, improve the system sensitivity and spatial resolution, and improve the decoding accuracy. Further increase the system resolution.
  • a detector for a positron emission imaging device which has an upper end face and a lower end face, and includes a plurality of layers of detector modules arranged up and down in a height direction, and each layer of the detector modules include:
  • a layer of scintillation crystal module which is a scintillation crystal array coupled by a plurality of scintillation crystals along the length and width directions;
  • a layer of a photosensor array coupled by a plurality of photosensors along the length and width directions is coupled to the lower surface of the scintillation crystal module and is used to detect visible photons generated by the reaction of the gamma photons and the scintillation crystal module. Or ultraviolet light;
  • one layer of the photoelectric sensor array is arranged between each two layers of the scintillation crystal array in the multilayer detector module arranged up and down, and one layer of the blinking is arranged between each two layers of the photo sensor array
  • the gamma photons are incident from the upper end surface, and the upper end surface is an upper surface of the scintillation crystal module at an uppermost layer.
  • the number of layers of the detector module is 2, including a top detector module and a bottom detector module.
  • the upper surface of the top detector module is the upper end surface
  • the lower surface of the bottom detector module is The lower end surface.
  • the number of layers of the detector module is n, and n is greater than 2, including a top detector module and a bottom detector module, and an upper surface of the top detector module is the upper end surface, and the bottom detector module The lower surface is the lower end surface.
  • At least two of the scintillation crystals are coupled to an upper surface of each of the photosensors.
  • the scintillation crystal array is an a ⁇ a array
  • the photosensor array is Array.
  • the scintillation crystal has a long shape, the height of the scintillation crystal is h, the length is b, and h> b.
  • a positron emission imaging device which includes a readout circuit module, a data processing module, and a detector as described above, wherein:
  • the readout circuit module is connected to the photosensor array, and is configured to receive electrical signals output by the photosensor array, and output energy information and time information of gamma photons.
  • the electrical signals pass through the photosensor array. Obtained by converting the optical signals of the visible photons detected by them;
  • the data processing module is connected to the readout circuit module and is configured to perform data processing and image reconstruction on the energy information and the time information to obtain a scanned image of an object to be imaged.
  • the photoelectric sensor array of the multilayer detector module leads signal lines from different directions and is connected to the readout circuit module.
  • the present invention has the following advantages: the height of a single scintillation crystal is short, the time for ⁇ photons to travel in a single scintillation crystal is shortened, and the time resolution is good, because the height of the scatter crystal and the reaction depth measurement directly affect
  • the multi-layer detector module is equivalent to increasing the total height of the scattered crystals, improving the gamma photon interception efficiency and the reaction depth measurement capability.
  • decoding can be performed by utilizing light leakage between the crystals.
  • the number of layers of the detector module is three, that is, a detector composed of a three-layer detector module, it has a certain detection function for Compton scattering, and can more accurately locate the accuracy of gamma photons.
  • FIG. 1 is a structural diagram of a detector for a positron emission imaging device according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a detector module according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of a scintillation crystal array according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a photosensor array according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a coupling between a scintillation crystal array and a photosensor array according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a positron emission imaging device according to an embodiment of the present invention.
  • the invention provides a detector for a positron emission imaging device, which includes a multilayer detector module.
  • the probe 100 has an upper end surface 101 and a lower end surface 102.
  • the detector 100 includes a multi-layered detector module 110 arranged up and down in the height direction (although only three layers are shown in the figure, in practical applications, it can be two layers, three layers, four layers, ... ...), Referring to FIG. 2, each layer of the detector module 110 includes a layer of scintillation crystal module 10 and a layer of photoelectric sensor array 20.
  • the scintillation crystal module 10 is a scintillation crystal array formed by coupling a plurality of scintillation crystals 11 along the length and width directions.
  • the coupled scintillation crystal array has an upper surface 111 and a lower surface 112.
  • the scintillation crystal 11 can be formed by cutting.
  • the direction indicated by arrow X corresponds to the length direction
  • the direction indicated by arrow Y corresponds to the width direction
  • the direction indicated by arrow Z corresponds to the height direction.
  • the photosensor array 20 is a photosensor array in which a plurality of photosensors 21 are coupled along the length and width directions.
  • the coupled photosensor array 20 has an upper surface 211 and a lower surface 212.
  • the photo sensor array 20 is coupled to the lower surface 112 of the scintillation crystal 10 and is used to detect visible photons or ultraviolet light generated by a reaction between the gamma photon and the scintillation crystal module 10.
  • a photo sensor array 20 is arranged between every two layers of the scintillation crystal array 10 in the multilayer detector module arranged up and down, and a layer of scintillation crystal array 10 is provided between every two layers of the photo sensor array 20
  • Gamma photons are incident from the upper end surface 101, and the upper end surface 101 is the upper surface 111 of the scintillation crystal module 10 located at the uppermost layer, that is, the incident surface of the gamma photon does not have a photosensor array.
  • Photoelectric sensor array is an important part of the detector. Its size, detection efficiency, position distribution and other factors will directly affect the position decoding accuracy and determine the quality of image reconstruction later. The performance of the photoelectric sensor itself is determined by the production process.
  • the positional arrangement of the photosensor array adopts a lower coupling method as shown in FIG. 2, that is, the photosensor array 20 is coupled to the lower surface 112 of the scintillation crystal module 10, and the lower surface 112 is the light readout of the scintillation crystal module 10. surface.
  • the number of layers of the detector module is two.
  • the two-layer detector module includes a top detector module and a bottom detector module.
  • the upper surface of the top detector module is the upper end surface 101 of the detector and the bottom layer.
  • the lower surface of the detector module is the lower end surface 102 of the detector.
  • the number of layers of the detector module may be n, where n is greater than 2, the uppermost detector module is the top detector module, and the lowermost detector module is the lower detector module.
  • the upper surface of the top detector module is the upper end surface 101 of the detector, and the lower surface of the bottom detector module is the lower end surface 102 of the detector.
  • Gamma photons can penetrate the first n-1 layers to reach the bottom detector module and then be intercepted and converted into ultraviolet or visible light by the scintillation crystal of the bottom detector module, or they can be directly intercepted and converted into ultraviolet or visible light by the scintillation crystal of the top detector module. , Can also pass directly through all scintillation crystal arrays.
  • the top SiPM array will receive a part of the energy, change Photons behind the direction may deposit energy in the first, second, third, ..., n-layer crystals, and the energy deposited every time they change the direction of flight is random.
  • multiple positions can be calculated through the energy information collected by each layer of SiPM.
  • the photoreaction model is established by simulation or the optimal reaction position is determined using statistical methods to solve the actual position of the ⁇ photon reaction in the crystal. .
  • the Compton scattering principle can be used to obtain the photon reaction depth information through the photon energy deposition on different layer detectors.
  • algorithms such as the center of gravity (COG), neural network algorithm, maximum likelihood method, and least squares method can be used to analyze the photon response position.
  • At least two scintillation crystals can be coupled to the upper surface of each photoelectric sensor.
  • two, four, six, eight, nine ... scintillation crystals can be coupled to the upper surface of one photoelectric sensor.
  • the upper surface of each photosensor is coupled with 9 scintillation crystals.
  • the scintillation crystal array 10 is an a ⁇ a array, and the photosensor array is Array, that is, 9 scintillation crystals are coupled to the upper surface of each photosensor. In this way, a size a ⁇ a photosensor can be used to decode a size a / 3 ⁇ a / 3 crystal.
  • the scintillation crystal is preferably in a long shape.
  • the height of the scintillation crystal is set to h, the length is b, and the relationship between the height h and the length b is preferably h> b.
  • the positron emission imaging device includes a readout circuit module 200, a data processing module 300, and the above-mentioned detector 100.
  • the readout circuit module 200 is connected to the photosensor array in the detector and is used for receiving the photosensor array.
  • the output electrical signal is output energy information and time information of the gamma photon.
  • the electrical signal is obtained by converting the optical signal of the visible photon detected by the photoelectric sensor array.
  • the data processing module 300 is connected to the readout circuit module 200 and is configured to perform data processing and image reconstruction on the energy information and the time information to obtain a scanned image of the object to be imaged.
  • the readout circuit module 200 and the data processing module 300 may be implemented using any suitable hardware, software, and / or firmware.
  • the data processing module 300 may use a field programmable gate array (FPGA), a digital signal processor (DSP), a complex programmable logic device (CPLD), a micro control unit (MCU), or a central processing unit (CPU).
  • FPGA field programmable gate array
  • DSP digital signal processor
  • CPLD complex programmable logic device
  • MCU micro control unit
  • CPU central processing unit
  • the photoelectric sensor array of the multilayer detector module is connected to the readout circuit module with signal lines drawn from different directions, and signal lines drawn from different directions can avoid interference between the signal lines in a small space.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种用于正电子发射成像设备的探测器及正电子发射成像设备,探测器(100)具有上端面(101)和下端面(102),包括在高度方向上呈上下排列的多层探测器模块(110),每层探测器模块(110)包括一层闪烁晶体模块(10)和一层由多个光电传感器(21)沿着长度和宽度方向耦合成的光电传感器阵列(20),闪烁晶体模块(10)为由多个闪烁晶体(11)沿着长度和宽度方向耦合成的闪烁晶体阵列,光电传感器阵列(20)耦合在闪烁晶体模块(10)的下端面(102),用于检测伽玛光子与所述闪烁晶体模块(10)发生反应所产生的可见光子。上下排列而成的多层探测器模块(110)中每两层闪烁晶体阵列之间设置一层光电传感器阵列(20),每两层光电传感器阵列(20)之间设置一层闪烁晶体阵列,伽玛光子从上端面(101)入射,且上端面(101)为位于最上层的闪烁晶体模块(10)的上表面。

Description

用于正电子发射成像设备的探测器及正电子发射成像设备 技术领域
本发明涉及正电子发射成像领域,具体地,涉及一种用于正电子发射成像设备的探测器及正电子发射成像设备。
背景技术
正电子放射成像由于其检测原理是检测生物体中代谢活跃度,因此对癌症、神经疾病、心脑血管疾病等重大疾病的早期诊断效果较好,是一种功能成像方式。目前在正电子放射成像领域广泛采用的几种探测器晶体主要有离散晶体阵列、连续晶体和片层晶体阵列等等,其中使用离散晶体的探测器采用长条形晶体阵列与光电转换器阵列相互耦合,利用重心法(anger logic)或者光共享(light sharing)等方式实现入射高能光子的应用。连续晶体探测器往往使用块状晶体耦合到光电转换器阵列上,利用神经网络、SBP、最大似然法、最小二乘法等复杂算法对入射光子进行定位,且其晶体边缘空间分辨率相较于中心下降严重。片层晶体与连续晶体的探测器构建方法类似,同样需要使用复杂的定位算法以保证较高空间分辨率。
离散晶体组成的探测器相较于后两者不需要使用复杂的解码算法,但是由于目前的技术所限,传统离散晶体组成的探测器只能解码二维位置信息,光子的反应深度方向(DOI,Depth of lnteraction)信息往往丢失,这也是影响离散晶体探测器成像效果的一大原因,同时长条状离散晶体的光输出和时间分辨率比较差,光子在晶体中要反射很多次才能到达传感器。
因此,有必要提出一种用于正电子发射成像设备的探测器、以及包括该探测器的正电子发射成像设备,以提高对γ光子的定位能力,提高系统灵敏度和空间分辨率,提高解码精度进一步提高系统分辨率。
发明内容
根据本发明的一个方面,提供一种用于正电子发射成像设备的探测器, 具有上端面和下端面,包括在高度方向上呈上下排列的多层探测器模块,每层所述探测器模块包括:
一层闪烁晶体模块,所述闪烁晶体模块为由多个闪烁晶体沿着长度和宽度方向耦合成的闪烁晶体阵列;以及
一层由多个光电传感器沿着长度和宽度方向耦合成的光电传感器阵列,耦合在所述闪烁晶体模块的下表面,用于检测伽玛光子与所述闪烁晶体模块发生反应所产生的可见光子或紫外光;
其中,上下排列而成的所述多层探测器模块中每两层所述闪烁晶体阵列之间设置一层所述光电传感器阵列,每两层所述光电传感器阵列之间设置一层所述闪烁晶体阵列,所述伽玛光子从所述上端面入射,且所述上端面为位于最上层的所述闪烁晶体模块的上表面。
优选地,所述探测器模块的层数为2,包括顶层探测器模块和底层探测器模块,所述顶层探测器模块的上表面为所述上端面,所述底层探测器模块的下表面为所述下端面。
优选地,所述探测器模块的层数为n,n大于2,包括顶层探测器模块和底层探测器模块,所述顶层探测器模块的上表面为所述上端面,所述底层探测器模块的下表面为所述下端面。
优选地,每一所述光电传感器的上表面耦合有至少两个所述闪烁晶体。
优选地,每一所述光电传感器的上表面耦合有9个所述闪烁晶体,所述闪烁晶体阵列为a×a的阵列,所述光电传感器阵列为
Figure PCTCN2019086350-appb-000001
的阵列。
优选地,所述闪烁晶体为长条形状,所述闪烁晶体的高度为h,长度为b,h>b。
根据本发明的另一个方面,还提供一种正电子发射成像设备,所述正电子发射成像设备包括读出电路模块、数据处理模块和如上述的探测器,其中,
所述读出电路模块与所述光电传感器阵列连接,用于接收所述光电传感器阵列输出的电信号,并输出伽玛光子的能量信息和时间信息,所述电信号是通过所述光电传感器阵列对其检测到的可见光子的光信号进行转换而获得的;
所述数据处理模块与所述读出电路模块连接,用于对所述能量信息和所述时间信息进行数据处理和图像重建,以获得待成像对象的扫描图像。
优选地,多层探测器模块的光电传感器阵列从不同方向引出信号线与 所述读出电路模块连接。
本发明由于使用多层探测器模块,具有以下优势:单个闪烁晶体高度短,γ光子在单个闪烁晶体中传播的时间缩短,时间分辨率好,由于散烁晶体的高度与反应深度测量有直接影响,多层探测器模块相当于增大了散烁晶体的总高度,提高了γ光子拦截效率和反应深度测量能力。
进一步地,当一个光电传感器耦合两个闪烁晶体时,可以利用晶体间的漏光完成解码。
进一步地,当探测器模块的层数为3,即为三层探测器模块构成的探测器时,对康普顿散射具有一定的探测功能,能更加准确定位γ光子的精度。
在发明内容中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
以下结合附图,详细说明本发明的优点和特征。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施方式及其描述,用来解释本发明的原理。在附图中,
图1为根据本发明一实施例的用于正电子发射成像设备的探测器的结构图;
图2为根据本发明的一实施例的探测器模块的结构图;
图3为根据本发明的一实施例的闪烁晶体阵列的结构图;
图4为根据本发明的一实施例的光电传感器阵列的结构图;
图5为根据本发明实施例的闪烁晶体阵列与光电传感器阵列相耦合的示意图;
图6为根据本发明一实施例的正电子发射成像设备的示意图。
其中,附图标记为
110-探测器模块
101-上端面
102-下端面
10-闪烁晶体模块
11-闪烁晶体
111-上表面
112-下表面
20-光电传感器阵列
21-光电传感器
211-上表面
212-下表面
100-探测器模块
200-读出电路模块
300-数据处理模块
具体实施方式
在下文的描述中,提供了大量的细节以便能够彻底地理解本发明。然而,本领域技术人员可以了解,如下描述仅涉及本发明的较佳实施例,本发明可以无需一个或多个这样的细节而得以实施。此外,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
本发明提供一种用于正电子发射成像设备的探测器,其包括多层探测器模块。
如图1所示,探测器100具有上端面101和下端面102。探测器100包括在高度方向上呈上下排列的多层探测器模块110(虽然图中仅仅给出了三层的实施例,但在实际应用中,可以是两层,三层,四层,……),结合参阅图2,每层探测器模块110包括一层闪烁晶体模块10和一层光电传感器阵列20。
结合参阅图3,闪烁晶体模块10为由多个闪烁晶体11沿着长度和宽度方向耦合成的闪烁晶体阵列,耦合而成的闪烁晶体阵列具有上表面111和下表面112。闪烁晶体11可通过切割而成,其中,箭头X所指的方向对应长度方向,箭头Y所指的方向对应宽度方向,箭头Z所指的方向对应高度方向。
结合参阅图4,光电传感器阵列20由多个光电传感器21沿着长度和宽度方向耦合成的光电传感器阵列,耦合而成的光电传感器阵列20具有上表面211和下表面212。光电传感器阵列20耦合在闪烁晶体10的下表面112,用于检测伽玛光子与闪烁晶体模块10发生反应所产生的可见光子或 紫外光。
再一次参阅图1,上下排列而成的多层探测器模块中每两层闪烁晶体阵列10之间设置一层光电传感器阵列20,每两层光电传感器阵列20之间设置一层闪烁晶体阵列10,伽玛光子从上端面101入射,且上端面101为位于最上层的闪烁晶体模块10的上表面111,也就是说,γ光子的入射表面没有光电传感器阵列。
光电传感器阵列作为探测器重要的组成部分,其尺寸、探测效率、位置分布等因素,将直接影响位置解码精度,并决定后期图像重建的质量。而光电传感器本身的性能由生产工艺过程决定。本发明中,光电传感器阵列的位置布置采用如图2所示的下耦合方式,即,光电传感器阵列20耦合至闪烁晶体模块10的下表面112,下表面112为闪烁晶体模块10的光读出面。
在未示出的实施例中,探测器模块的层数为2,两层探测器模块包括顶层探测器模块和底层探测器模块,顶层探测器模块的上表面为探测器的上端面101,底层探测器模块的下表面为探测器的下端面102。
在未示出的实施例中,探测器模块的层数可以为n,n大于2,其最上层的探测器模块为顶层探测器模块,最下层的探测器模块为底层探测器模块,同样的,顶层探测器模块的上表面为探测器的上端面101,底层探测器模块的下表面为探测器的下端面102。γ光子可穿透前n-1层到达底层探测器模块然后被底层探测器模块的闪烁晶体拦截转化成紫外光或者可见光,也可被顶层探测器模块的闪烁晶体直接拦截转化成紫外光或者可见光,也可直接穿过所有闪烁晶体阵列。不考虑康普顿散射时,当γ光子在顶层晶体反应,有且仅有顶层探测器模块采集到能量;当γ光子在第m层晶体反应,有且仅有第m层探测器模块采集到能量;通过判断收集到能量的探测器模块,确定γ光子的反应深度。假设伽马光子在顶层晶体阵列发生康普顿散射(LYSO晶体康普顿散射概率约2/3,不同闪烁晶体发生康普顿散射的概率不同),顶层SiPM阵列将会接收到一部分能量,改变方向后的光子可能在第一、二、三、…、n层晶体中发生能量沉积,每一次改变飞行方向沉积的能量是随机的。一次康普顿事件,通过每层SiPM采集到的能量信息可以计算得到多个位置,通过仿真建立光反应模型或者使用统计学方法确定最佳的反应位置以求解γ光子在晶体中反应的实际位置。本发明中,可 利用康普顿散射原理通过光子在不同层探测器上能量沉积获取光子的反应深度信息。此处可以使用重心算法(COG)、神经网络算法、最大似然法、最小二乘法等算法对光子反应位置进行分析。
每一光电传感器的上表面可以耦合有至少两个闪烁晶体,例如,一个光电传感器的上表面可以耦合2个,4个,6个,8个,9个……闪烁晶体。结合参阅图5,每一光电传感器的上表面耦合有9个闪烁晶体,闪烁晶体阵列10为a×a的阵列,光电传感器阵列为
Figure PCTCN2019086350-appb-000002
的阵列,即,每一光电传感器的上表面耦合有9个闪烁晶体,这样,就可以利用大小为a×a的光电传感器解码大小为a/3×a/3的晶体。
再一次参阅图3,闪烁晶体较佳地为长条形状,设定闪烁晶体的高度为h,长度为b,高度h与长度b之间的关系较佳为h>b。
根据本发明另一方面,提供一种正电子发射成像设备。如图6所示,正电子发射成像设备包括读出电路模块200、数据处理模块300和上述的探测器100,读出电路模块200与探测器中的光电传感器阵列连接,用于接收光电传感器阵列输出的电信号,并输出伽玛光子的能量信息和时间信息,所述电信号是通过光电传感器阵列对其检测到的可见光子的光信号进行转换而获得的。数据处理模块300与读出电路模块200连接,用于对所述能量信息和所述时间信息进行数据处理和图像重建,以获得待成像对象的扫描图像。读出电路模块200和数据处理模块300可以采用任何合适的硬件、软件和/或固件实现。示例性地,数据处理模块300可以采用现场可编程门阵列(FPGA)、数字信号处理器(DSP)、复杂可编程逻辑器件(CPLD)、微控制单元(MCU)或中央处理单元(CPU)等实现。
较佳地,多层探测器模块的光电传感器阵列从不同方向引出信号线与读出电路模块连接,不同方向引出信号线可以在较小的空间内避免信号线之间的干扰。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (8)

  1. 一种用于正电子发射成像设备的探测器,具有上端面和下端面,其特征在于,包括在高度方向上呈上下排列的多层探测器模块,每层所述探测器模块包括:
    一层闪烁晶体模块,所述闪烁晶体模块为由多个闪烁晶体沿着长度和宽度方向耦合成的闪烁晶体阵列;以及
    一层由多个光电传感器沿着长度和宽度方向耦合成的光电传感器阵列,耦合在所述闪烁晶体模块的下表面,用于检测伽玛光子与所述闪烁晶体模块发生反应所产生的可见光子或紫外光;
    其中,上下排列而成的所述多层探测器模块中每两层所述闪烁晶体阵列之间设置一层所述光电传感器阵列,每两层所述光电传感器阵列之间设置一层所述闪烁晶体阵列,所述伽玛光子从所述上端面入射,且所述上端面为位于最上层的所述闪烁晶体模块的上表面。
  2. 如权利要求1所述的探测器,其特征在于,所述探测器模块的层数为2,包括顶层探测器模块和底层探测器模块,所述顶层探测器模块的上表面为所述上端面,所述底层探测器模块的下表面为所述下端面。
  3. 如权利要求1所述的探测器,其特征在于,所述探测器模块的层数为n,n大于2,包括顶层探测器模块和底层探测器模块,所述顶层探测器模块的上表面为所述上端面,所述底层探测器模块的下表面为所述下端面。
  4. 如权利要求1所述的探测器,其特征在于,每一所述光电传感器的上表面耦合有至少两个所述闪烁晶体。
  5. 如权利要求4所述的探测器,其特征在于,每一所述光电传感器的上表面耦合有9个所述闪烁晶体,所述闪烁晶体阵列为a×a的阵列,所述光电传感器阵列为
    Figure PCTCN2019086350-appb-100001
    的阵列。
  6. 如权利要求1所述的探测器,其特征在于,所述闪烁晶体为长条形,所述闪烁晶体为高度为h,长度为b,h>b。
  7. 一种正电子发射成像设备,其特征在于,所述正电子发射成像设备包括读出电路模块、数据处理模块和如权利要求1-6中任一项所述的探测器,其中,
    所述读出电路模块与所述光电传感器阵列连接,用于接收所述光电传 感器阵列输出的电信号,并输出伽玛光子的能量信息和时间信息,所述电信号是通过所述光电传感器阵列对其检测到的可见光子的光信号进行转换而获得的;
    所述数据处理模块与所述读出电路模块连接,用于对所述能量信息和所述时间信息进行数据处理和图像重建,以获得待成像对象的扫描图像。
  8. 如权利要求7所述的正电子发射成像设备,其特征在于,多层探测器模块的光电传感器阵列从不同方向引出信号线与所述读出电路模块连接。
PCT/CN2019/086350 2018-06-15 2019-05-10 用于正电子发射成像设备的探测器及正电子发射成像设备 WO2019237858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810621968.4 2018-06-15
CN201810621968.4A CN108957517A (zh) 2018-06-15 2018-06-15 用于正电子发射成像设备的探测器及正电子发射成像设备

Publications (1)

Publication Number Publication Date
WO2019237858A1 true WO2019237858A1 (zh) 2019-12-19

Family

ID=64489002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086350 WO2019237858A1 (zh) 2018-06-15 2019-05-10 用于正电子发射成像设备的探测器及正电子发射成像设备

Country Status (2)

Country Link
CN (1) CN108957517A (zh)
WO (1) WO2019237858A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957517A (zh) * 2018-06-15 2018-12-07 中派科技(深圳)有限责任公司 用于正电子发射成像设备的探测器及正电子发射成像设备
CN110376634B (zh) * 2019-07-19 2023-10-31 沈阳智核医疗科技有限公司 用于pet探测器的探测单元和pet探测器
CN110368014B (zh) * 2019-07-19 2023-10-31 沈阳智核医疗科技有限公司 用于pet探测器的晶体阵列、探测器环和pet探测器
CN114442138A (zh) * 2020-11-04 2022-05-06 天津市通透医疗科技有限公司 一种新型伽马射线成像探测器
CN114035221B (zh) * 2021-10-12 2024-04-16 中山大学 多通道宇生缪子探测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796429A (zh) * 2007-09-07 2010-08-04 皇家飞利浦电子股份有限公司 具有若干转换层的辐射探测器
JP2010216893A (ja) * 2009-03-13 2010-09-30 Toshiba Corp X線検出器
CN101937094A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 双能x射线阵列探测器
CN103513266A (zh) * 2012-06-21 2014-01-15 苏州瑞派宁科技有限公司 多层闪烁晶体及pet探测器
CN104391316A (zh) * 2014-12-08 2015-03-04 上海太弘威视安防设备有限公司 三维空间曲面多能量闪烁探测器
WO2018077681A1 (en) * 2016-10-26 2018-05-03 Koninklijke Philips N.V. Radiation detector scintillator with an integral through-hole interconnect
CN108957517A (zh) * 2018-06-15 2018-12-07 中派科技(深圳)有限责任公司 用于正电子发射成像设备的探测器及正电子发射成像设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2252993C (en) * 1998-11-06 2011-04-19 Universite De Sherbrooke Detector assembly for multi-modality scanners
DE102004049677B3 (de) * 2004-10-12 2006-06-14 Siemens Ag Detektoranordnung zur Verwendung in einem kombinierten Transmissions- / Emissions-Tomographiegerät
CN102707310B (zh) * 2012-06-21 2014-06-11 苏州瑞派宁科技有限公司 多层闪烁晶体的正电子发射断层成像探测器
JP6694213B2 (ja) * 2016-03-31 2020-05-13 国立研究開発法人量子科学技術研究開発機構 積層型放射線3次元位置検出器
TWI599790B (zh) * 2016-06-29 2017-09-21 長庚醫療財團法人林口長庚紀念醫院 加馬光子偵測成像裝置與方法
CN107121692B (zh) * 2017-06-05 2019-07-26 中派科技(深圳)有限责任公司 检测器和具有该检测器的发射成像设备
CN108132483B (zh) * 2017-12-18 2020-10-23 中派科技(深圳)有限责任公司 用于正电子发射成像设备的检测器及正电子发射成像设备
CN107894605A (zh) * 2017-12-27 2018-04-10 合肥吾法自然智能科技有限公司 一种新型的高空间分辨率pet探测器模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796429A (zh) * 2007-09-07 2010-08-04 皇家飞利浦电子股份有限公司 具有若干转换层的辐射探测器
JP2010216893A (ja) * 2009-03-13 2010-09-30 Toshiba Corp X線検出器
CN101937094A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 双能x射线阵列探测器
CN103513266A (zh) * 2012-06-21 2014-01-15 苏州瑞派宁科技有限公司 多层闪烁晶体及pet探测器
CN104391316A (zh) * 2014-12-08 2015-03-04 上海太弘威视安防设备有限公司 三维空间曲面多能量闪烁探测器
WO2018077681A1 (en) * 2016-10-26 2018-05-03 Koninklijke Philips N.V. Radiation detector scintillator with an integral through-hole interconnect
CN108957517A (zh) * 2018-06-15 2018-12-07 中派科技(深圳)有限责任公司 用于正电子发射成像设备的探测器及正电子发射成像设备

Also Published As

Publication number Publication date
CN108957517A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2019237858A1 (zh) 用于正电子发射成像设备的探测器及正电子发射成像设备
WO2016074560A1 (zh) 光电转换器、探测器及扫描设备
CN102707310B (zh) 多层闪烁晶体的正电子发射断层成像探测器
US7109489B2 (en) SPECT gamma camera
WO2018072721A1 (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
WO2018223918A1 (zh) 检测器和具有该检测器的发射成像设备
US5532489A (en) Positron imaging apparatus
EP3290956B1 (en) Semiconductor detector
WO2017000711A1 (zh) 一种探测器信号读出的通道复用方法
Murayama et al. Design of a depth of interaction detector with a PS-PMT for PET
CN104820233B (zh) 闪烁体阵列结构及应用该闪烁体阵列结构的中子探测器
US10175368B2 (en) Detector for Compton camera and Compton camera
JP4367903B2 (ja) 放射線位置検出器の校正方法及び放射線位置検出器
CN108132483B (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
CN107874773B (zh) 光子检测方法、装置、设备和系统及存储介质
Wen et al. Optimization of Timepix3-based conventional Compton camera using electron track algorithm
KR101587339B1 (ko) 양전자방출 단층촬영장치용 검출기 모듈 및 이를 이용한 양전자방출 단층촬영장치
WO2020063232A1 (zh) Pet设备、多层晶体pet探测器及其电子读出模块和方法
CN108508474B (zh) 用于正电子发射成像设备的检测器及正电子发射成像设备
CN113874758A (zh) 面板辐射检测器
US20090045345A1 (en) Electromagnetic and particle detector with reduced number of connections
CN219126405U (zh) 晶体阵列探测器和发射成像设备
RU2549612C1 (ru) Устройство для определения направления прихода широких атмосферных ливней
JP2020020577A (ja) チェレンコフ検出器
KR102316574B1 (ko) 컴프턴 영상 장치 및 이를 포함하는 단일 광자 및 양전자 단층 촬영 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (14.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19820119

Country of ref document: EP

Kind code of ref document: A1