WO2019237737A1 - 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法 - Google Patents

铁水联运铁路港湾站至港区堆场卸车的作业系统及方法 Download PDF

Info

Publication number
WO2019237737A1
WO2019237737A1 PCT/CN2019/071960 CN2019071960W WO2019237737A1 WO 2019237737 A1 WO2019237737 A1 WO 2019237737A1 CN 2019071960 W CN2019071960 W CN 2019071960W WO 2019237737 A1 WO2019237737 A1 WO 2019237737A1
Authority
WO
WIPO (PCT)
Prior art keywords
railway
port
line
container
unloading
Prior art date
Application number
PCT/CN2019/071960
Other languages
English (en)
French (fr)
Inventor
肖宇松
黄泽星
余永金
方亚非
王增力
张佳楠
周伟丽
蔡云峰
李�瑞
黄瑞
丁跃凡
国巍
Original Assignee
中铁武汉勘察设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁武汉勘察设计研究院有限公司 filed Critical 中铁武汉勘察设计研究院有限公司
Publication of WO2019237737A1 publication Critical patent/WO2019237737A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G63/00Transferring or trans-shipping at storage areas, railway yards or harbours or in opening mining cuts; Marshalling yard installations
    • B65G63/04Transferring or trans-shipping at storage areas, railway yards or harbours or in opening mining cuts; Marshalling yard installations with essentially-horizontal transit by bridges equipped with conveyors
    • B65G63/042Transferring or trans-shipping at storage areas, railway yards or harbours or in opening mining cuts; Marshalling yard installations with essentially-horizontal transit by bridges equipped with conveyors for articles
    • B65G63/045Transferring or trans-shipping at storage areas, railway yards or harbours or in opening mining cuts; Marshalling yard installations with essentially-horizontal transit by bridges equipped with conveyors for articles for containers

Definitions

  • the present invention relates to the technical field of transportation, and in particular, to an operation system and method for unloading a truck from a harbor station to a port yard in a molten iron combined transport railway.
  • Multimodal container transportation has the advantages of long industrial chain, high efficiency, fast economy, intensive economy, safety and reliability, etc., and is an important direction for the development of freight transportation.
  • Water-rail combined transportation and public-rail combined transportation have become the main forms of container long-distance door-to-door transportation services.
  • the workload of railway container train transfer and marshalling has increased significantly.
  • the hot metal combined transport project when one railway port front station (gangwan station) corresponds to multiple port terminal railway container yards (port area, cargo area), the order of the container trains arriving at the port is chaotic, and it cannot meet the requirements of multiple port special lines (ports).
  • the requirements for fast delivery in order of classification need to be reorganized and regrouped according to the requirements of the special line of the port (port area, cargo area), and then distributed to different port special lines (port area) for unloading. Heavy, long transit time.
  • the disassembly and marshalling methods of railway container trains can be divided into two categories at present, the first category is the traditional disassembly and marshalling method of moving cars and stationary boxes, and the second category is the disassembly and marshalling method of moving boxes and stationary cars.
  • the first type of traditional container train marshalling of moving cars and fixed boxes includes:
  • the disassembly and marshalling method of the moving car Push the train to be disassembled in front of the moving car, remove the hooks one by one or multiple cars, and then send it to the moving car by the puller, and then traverse to the need through the moving car Grouped stocks. After the vehicles are classified, they are assembled on the marshalling lines of different group numbers and sent by the shunting locomotive to their respective cargo areas (port areas). Because each car (or group of cars) needs to be unhooked, the moving speed of the moving platform is slow, so the efficiency of train disassembly and marshalling is low, and it takes about 120 to 180 minutes to disassemble a train (60 cars). This marshalling method is only used for unloading and empty car marshalling of bulk cargo in ports and power plants.
  • Plane shunting operation is the most commonly used railway system, the simplest and feasible train disassembly and marshalling operation method, which can be implemented at any station.
  • the shunting locomotive is used to pull out the train to be dismantled through the pull-out line, and the train is pushed on a car-by-car basis to classify the group number according to the destination of the cargo of the vehicle to each of the specified lanes. Then return to the pull-out line. After switching the turnout, the next group of vehicles is sent to the corresponding group number of tracks. Repeatedly, all arriving vehicles are classified according to the group number.
  • the mode of plane shunting operation is that locomotive vehicles have long round trip distances and need frequent picking. If the number of hooks in the entire train disassembly process is large, the disassembly operation takes the longest time and the train marshalling efficiency is not high. It is suitable to be used when the number of train decomposing hooks is not large and the train decomposing group number is not large. Generally, it takes 60 to 120 minutes to disassemble a train (60 cars).
  • Hump humbling shunting operation mode The railway hump is a camel hump-shaped profile.
  • the shunting locomotive is used to pull the train to be disassembled through the pull-out line, and then push the train to the hump peak (uphill).
  • the vehicle Utilizing the potential energy difference between the hump and the marshalling line, the vehicle relies on the gravitational potential energy (downhill) to slip into each of the strands that need to be marshalled. After the vehicles are classified, they are assembled on the marshalling lines of different group numbers and sent by the shunting locomotive to their respective cargo areas (port areas).
  • This type of train marshalling is a common train marshalling method at railway marshalling stations, which has high efficiency and is suitable for frequent disassembly and assembly line operations with large volumes. It takes about 15 to 20 minutes to disassemble a train (60 cars) by automated hump. It takes 30 to 40 minutes for a train (60 cars) to disintegrate a simple hump in the station. To dehumidify trains by using hump, railway hump facilities need to be constructed. The railway marshalling yard has high requirements on the topographical conditions in terms of planes and longitudinal sections, a large number of marshalling lines, a large area, and a large engineering investment.
  • the second type of marshalling container train marshalling methods mainly includes container landing transfer and marshalling operations: railway container landing transfer and marshalling operations are currently an individual transfer operation method of railway container freight stations for container trains. After the container train arrives, the container is unloaded and landed, and then reassembled and loaded according to the container train direction group number. The container landed and reloaded needs to be completed at the container yard. Because all the containers on the train need to be unloaded and stacked, the box body After being assembled to a certain number, it becomes an assembly vehicle. Therefore, a larger container stacking site is required, occupying a large area, low operating efficiency, and slow logistics speed. This method is only used for the transfer operation of railway container stations, not for the handover of containers at harbor stations.
  • the most commonly used plane operation shunting operation methods in the prior art have low efficiency, long cargo transit time, high manual labor intensity, low level of automation and informatization, and are basically in the field manual operation stage.
  • the hump slipping operation method is highly efficient, it has a high level of automation and informatization of vehicle control. It requires a large station area and many control equipment. It is mainly used for marshalling stations and large-volume section stations.
  • the cargo area port area
  • railways loaded with container vehicles are parked in a fixed row.
  • the container group numbers on the cars are randomly arranged.
  • some loading and unloading tools have a long travel distance, which is not conducive to the parallel unloading of multiple equipment. , Lower loading and unloading operations.
  • the purpose of the present invention is to provide an operation system and method for unloading a truck from the Gangwan Station of the molten iron and rail transport railway to the port yard in a small area, with simple equipment and high efficiency.
  • the invention is implemented as follows:
  • the present invention provides an operation system for unloading an iron-water rail transport railway harbor station to a dock yard, including a railway to the departure yard and a plurality of port areas corresponding to the railway to the departure yard.
  • An arrival line also includes a flip field disposed adjacent to the arrival line, the flip field is provided with at least one flip line parallel to the arrival line, and the flip line is In the port area of China Unicom, there are multiple rail-powered flat cars running on the flip line, and the railway harbor station is also provided with container loading and unloading equipment. The arrival and departure lines and the flip line are located in the loading and unloading range of the container loading and unloading equipment. Inside.
  • the container loading and unloading tool includes a plurality of gantry cranes and two traveling rails for the gantry cranes to walk, and the gantry cranes span the arrival and departure lines and the flip line.
  • the rail-powered flat car is a self-driving vehicle, which is provided with a power driving device.
  • a split turnout area is provided between the inverted line and each of the port areas, the split turnout area is connected to the inverted line through a railway line, and the split turnout area enters through the port area.
  • the route connects with each of the said port areas.
  • it further comprises a track power flat car maintenance line connected with the railway line.
  • the present invention also provides an operation method for unloading a truck from the Gangwan Station of the molten iron railway to the port yard, including the following steps:
  • the container train arrives at the departure site and stays on the arrival line.
  • An unloaded rail-powered flat car stays on the flip line parallel to the arrival line. All containers on the train are inverted by the container loading and unloading equipment. Go to the train of flat rail cars;
  • the railway information system provides the information of the arriving train to the railway container yard management system.
  • the railway container yard management system compiles the flipping operation strategy and process based on the information of the arriving train.
  • the railway container yard management system issues an operation plan to the container handling equipment and rail-powered flat cars.
  • the container loading and unloading tool includes a plurality of gantry cranes and two traveling rails for the gantry cranes to walk, and the plurality of gantry cranes grab containers on the vehicle to be unloaded according to a railway container upside-down operation plan, and flip the containers to adjacent On the unloaded track power flat car until all the arriving container trains are completely inverted.
  • each of the track-powered flat cars running in sequence to the designated port area specifically includes: each of the track-powered flat cars runs sequentially in the order of entry into the port, and the track-powered flat-car bikes or dump trucks that are ranked first
  • the same and connected multiple rail-powered flat cars in the port area are connected and run in groups to the entrance of the branch turnout area, and enter the corresponding port area through the branch turnout area, and the subsequent rail-powered flat cars or groups of cars continue to be sorted. Run to the entrance of the branch turnout zone and enter another corresponding port area route through the branch turnout zone.
  • the subsequent rail power flat cars will sequentially run to the corresponding port area route in the above method sequence; The car then runs along the route of the port area to the designated port area.
  • each of the rail-powered flat cars running along the route of the port area to the designated port area specifically includes: the rail-powered flat cars entering the route of the port area run directly to the designated port along the corresponding route of the port area Area, or all rail-powered flat cars entering the same port area entry route are connected in groups at the port area entry route and run along the corresponding port area entry route to the designated port area.
  • the present invention has the following beneficial effects:
  • the rail-powered flat car is used as the transit vehicle, and the transshipment marshalling containers are not stacked on the ground. Therefore, the railway harbor station does not need a container stacking site. It only needs to arrange flip lines.
  • the container flip site has a small footprint and saves land.
  • the station layout is flexible. It solves the problem that the traditional train disassembly and marshalling needs to set up a railway yard or a railway freight yard for container landing and stacking.
  • the rail-powered flat car can be disassembled and marshalled during the operation of the fork zone, and then delivered to the designated port area for unloading instead of the existing dismantling, marshalling, delivery, and unloading operations.
  • Reducing the operating process reducing the area of the harbor station, improving the operating efficiency, suitable for reorganizing container trains at narrow railway intermediate stations or harbor stations, and suitable for the arrival of multiple harbor-only lines connected to the harbor station Container trains for disassembly and marshaling operations.
  • FIG. 1 is a schematic diagram of an operation system for unloading a truck from a harbour station to a port yard in a molten iron combined transport railway according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of ordering before and after a container is inverted according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a rail turn flat car entering a branch turnout sequence according to an embodiment of the present invention.
  • an embodiment of the present invention provides an operation system for unloading an iron-water rail transport railway harbor station to a dock yard, including a railway to the departure yard and a plurality of port areas corresponding to the railway to the departure yard.
  • the railway departure site is provided with at least one arrival site 1 and further includes a flip site adjacent to the arrival site 1 for transit of containers.
  • the inverted site is provided with at least one To the hair line 1 is a parallel flip line 2.
  • the flip line 2 is connected to each of the port areas, and a plurality of rail-powered flat cars 5 are running on the flip-line 2.
  • the rail-powered flat cars 5 are used to transport containers from the railway bay stations to the port areas.
  • the flip lines 2 are preferably provided in multiples, so that when the rail-powered flat car 5 carries containers from the railway harbor station to the port area and empty cars return to the railway harbor station, different flip lines 2 can be used to avoid meeting cars. Both the arrival and departure lines 1 and the flip line 2 are connected to the waiting line 7 of the railway to the departure site, which is convenient for container trains and rail power flat cars 5 to switch lines.
  • the railway harbor station is also provided with a container loading and unloading tool.
  • the arrival and departure line 1 and the flip line 2 are located within the loading and unloading range of the container loading and unloading device.
  • the container loading and unloading device is used for loading and unloading containers located on the arrival and departure line 1. Flip onto a rail-powered flat car 5 on a flip line 2.
  • the container train 4 After the container train 4 arrives at the railway station, it stops on arrival line 1 and a row of empty rail power flat cars 5 on the flip line 2. All the containers are parallelly inverted to the adjacent rail power flat cars through the container loading and unloading equipment. On track 5, the track-powered flat car 5 is transferred to the port area for unloading through the operation route conversion group.
  • the container loading and unloading implement includes a gantry crane 6 and two running rails 3 for the gantry crane 6 to walk, and the gantry crane 6 spans the arrival and departure line 1 and the flip line 2, Therefore, the container on the train to the departure line 1 can be transferred to the rail power flat car 5 on the flip line 2.
  • the travel rail 3 is provided to facilitate the walking of the gantry crane 6, and the gantry crane 6 can be used in multiple positions.
  • Container for operation Preferably, a plurality of the gantry cranes 6 are run on two of the traveling rails 3, so that during the reversing operation of the container train 4, the plurality of gantry cranes 6 can be operated simultaneously, the reversing time is short, and the efficiency is high.
  • the rail-powered flat car 5 is a self-driving vehicle, which is provided with a power driving device and can run along the track automatically. It can use manual driving or unmanned driving and unmanned driving. Time, can reduce manpower, and can avoid personnel accidents on the scene.
  • the rail-powered flat car 5 is powered by a rail-powered flat car power network (power supply contact network) to provide a power source for the rail-powered flat car 5. Of course, other forms of energy can also be used to provide power.
  • the rail-powered flat car 5 can be operated by a single vehicle or by multiple vehicles.
  • a split turnout area 10 is provided between the flip line 2 and each of the port areas, and the split turnout area 10 communicates with the flip line 2 through a railway line 8
  • the branch turnout area 10 is connected to each of the port areas through a port area entry line 9.
  • Each of the track-powered flat cars 5 firstly runs to the entrance of the turnout zone 10 in the order of arrangement, and determines the port area to be reached by the loaded container according to the container number information of the container and enters the corresponding port area via the turnout.
  • each track powered flat car 5 entering the same port area route 9 is connected into a group at the entrance of line 9 route, and the grouped track powered flat cars 5 run along the corresponding port area route 9 to the designated In the port area of Shanghai, the containers are unloaded from the yard loading and unloading equipment (such as rail gantry cranes) to the designated location of the yard. Further preferably, it further comprises a track-powered flat car maintenance line 11 connected to the railway line, for parking the track-powered flat car 5 to be inspected, and facilitating the maintenance of the track-powered flat car 5.
  • a rail-powered flat car is used as a transit vehicle, and the transshipment marshalling container is not stacked on the ground. Therefore, the railway harbor station does not need a container stacking site, and only needs to arrange a flip line.
  • the container flip site has a small footprint and saves land.
  • the station layout is flexible. It solves the problem that the traditional train disassembly and marshalling needs to set up a railway yard or a railway freight yard for container landing and stacking.
  • the operating system also includes facilities such as railway information system, railway container yard management system, railway signal station interlocking access control system, etc.
  • the railway information system includes railway freight information system, railway train number system, railway ticket information system, railway confirmation report
  • the system, the station's existing vehicle system, etc. are used to realize the communication of various parts of the system, and to realize the control of rail-powered flat cars 5 and container handling equipment. For details, refer to the following method embodiments.
  • an embodiment of the present invention also provides an operation method for unloading a railroad from a port station to a port yard in a molten iron railroad.
  • the above-mentioned operation system for unloading a railroad station in a port station to a dockyard in a riverside railroad can be adopted.
  • the method includes the following steps: :
  • the container train arrives at the departure site and stays on the departure line, and a line of no-load rail power flat cars stays on the flip line parallel to the arrival line.
  • the number of vehicles is greater than or equal to the number of containers on the train, ensuring that each container corresponds to a rail-powered flat car. All containers on the train are loaded upside down on the rail-powered flat car in parallel by container loading and unloading equipment.
  • the marshalling sequence is the same as that of the arriving train, as shown in FIG. 2.
  • the container loading and unloading tool includes a plurality of gantry cranes and two traveling rails for the gantry cranes to travel.
  • the number of gantry cranes is less than the number of all containers on the train. By moving on the two traveling rails, any position can be realized.
  • a plurality of the gantry cranes are operated simultaneously, the flip time is short, and the efficiency is high.
  • the rail-powered flat cars run to the designated port area in order. Specifically, each of the rail-powered flat cars runs in the order of the port direction. The same and connected multiple rail-powered flat cars are connected and run in groups to the branch turnout zone entrance, and then enter the corresponding port area through the branch-turn turnout zone. The entrance of the branch turnout zone passes through the branch turnout zone and enters another corresponding port route. The subsequent track-powered flat cars sequentially run to the corresponding port zone route according to the method described above. Each of the track-powered flat cars runs along the port route to the designated port area.
  • the track-powered flat cars entering the port zone run directly to the designated port area along the corresponding port-area route, or enter All rail-powered flat cars in the same port area route are connected in groups at the port area route entrance and run along the corresponding port area route to the designated port area, as shown in Figure 3.
  • the container is unloaded from the rail-powered flat car by the yard loading and unloading equipment (such as a rail gantry crane) to the designated location in the port area.
  • the yard loading and unloading equipment such as a rail gantry crane
  • a container is parallelly flipped to a rail-powered flat car.
  • the rail-powered flat car is marshalled and sent to a designated port area for unloading in place of the existing disassembly, marshalling, car-unloading, and unloading operations, reducing operations.
  • the process reduces the area of the harbor station and improves the operating efficiency. It is suitable for reorganizing and grouping container trains at narrow railway intermediate stations or harbor stations. It is applicable to the arrival of container trains at the harbor stations connected by multiple port-dedicated lines. Disintegrate marshalling and delivery operations. Due to the use of parallel flips with the same sequence of arrival and departure lines, the number of strands on the flip line can be less than the number of connecting port areas.
  • the direction of the track power flat car is determined by the container destination group number.
  • the container group number is completed during operation Grouping has solved the problems of small stations in some harbor stations and insufficient disassembly and disassembly of the stock market.
  • the railway freight information system and railway forecast / confirmation system predict the arrival of the train and provide the railway arrival station with information about the arriving train, including the location, time, train number, and train number of the arriving train , Vehicle arrangement order (train formation), container number, ticket number, type of cargo, destination of cargo, etc.
  • the station arranges the train access route according to the instructions of the Railway Train Dispatching Command System (CTC / TDCS), opens the signal, and the train enters the station.
  • the train number system collects train vehicle number data and arrangement order during the course of the train entering the station.
  • the railway ticket information system and railway confirmation report system check the vehicle number and arrangement order of the vehicles entering the station.
  • the verified vehicle number and sequence enter the station's existing vehicle system and provide data to the railway container cargo yard management system.
  • the railway container yard management system compiles flip-flop operation strategies and processes based on the vehicle number, location, arrangement order, container box number, cargo name, weight, destination and other data provided by the railway freight information system and the existing railway system. After arriving at the departure site, the railway container yard management system issues an operation plan to the container handling equipment and rail-powered flat cars.
  • the flip line stays in a row of empty flat track power flat cars.
  • the number of empty flat track power flat cars is greater than or equal to the number of containers to be flipped on the departure line.
  • a number of gantry cranes grab the containers on the unloaded vehicles according to the railway container inversion operation plan, and invert to the adjacent unloaded rail power flat cars until all the arriving container trains are completely inverted.
  • Each of the track-powered flat cars runs to the entrance of the branch turnout area in sequence.
  • the track-powered flat-car carrying container is provided in the port area according to the railway container upside-down operation plan.
  • the railway station interlocking approach control system opens the approach and issues operation permission instructions to the rail power flat cars (vehicle units) in order.
  • Rail-powered flat cars enter the corresponding port area route.
  • Each rail-powered flat car that enters the same port area route forms a container group at the entrance of the port area.
  • the grouped track-powered flat cars run along the corresponding port area route. To the designated port area.
  • the first container destination for the rail-powered flat car is port A. Apply to the railway station interlocking access control system for an inversion line to port A. After obtaining the authorization, you can switch to the road via a turnout.
  • the first Rail-powered flat cars automatically run to the loading and unloading line of Port A via the incoming route of Port A;
  • the container destination corresponding to the second rail-powered flat car is port B, and applied to the railway station interlocking access control system to apply an inverted line to port B. After obtaining the authorization, the switch was converted to the road via a turnout.
  • the second vehicle Rail-powered flat cars automatically run to the loading and unloading line of Port B via the incoming route of Port B;
  • the destination of the container for the third rail-powered flat car is port D. Apply to the road station interlocking access control system for an inversion line to port D. After obtaining the authorization and approval, switch to the road via a turnout.
  • the third vehicle Rail-powered flat cars automatically run to the loading and unloading line of Port D via the incoming route of Port D;
  • the yard loading and unloading equipment (such as a rail gantry crane) runs to the unloading position according to the railway container inversion operation plan to grab the container on the rail-powered flat-car and read the container box number and place it according to instructions. At the designated storage yard.
  • the railway and water transport companies jointly inspect the integrity of the containers and cargo in the port area, and the railway transport enterprises hand over container tickets, containers and cargo to the port area water transport enterprises.
  • the bicycles or groups are returned to the flip yard according to the pick-up and delivery operation plan and the idle conditions of the running line. After returning the track power flat car to the line, it will enter the route via the port area and queue up again at the flip line, waiting for the next train to reach the container train.

Abstract

一种铁水联运铁路港湾站至港区堆场卸车的作业系统及方法,该系统包括铁路到发场以及与铁路到发场对应的多个港区,所述铁路到发场设置有至少一条到发线(1),还包括与所述到发线(1)相邻设置的倒装场,所述倒装场设有至少一条与所述到发线(1)平行的倒装线(2),所述倒装线(2)与各所述港区联通,所述倒装线(2)上运行有多个轨道动力平车(5),铁路港湾站还设有集装箱装卸机具(6),所述到发线(1)和所述倒装线(2)位于所述集装箱装卸机具(6)的装卸范围内。该作业系统采用轨道动力平车(5)作为中转运载工具,中转编组作业集装箱不落地堆码,因此铁路港湾站不需要集装箱堆放场地,仅需布置倒装线,集装箱倒装场占地面积小,节省用地,站场布置灵活。

Description

铁水联运铁路港湾站至港区堆场卸车的作业系统及方法 技术领域
本发明涉及交通运输技术领域,尤其涉及一种铁水联运铁路港湾站至港区堆场卸车的作业系统及方法。
背景技术
集装箱多式联运具有产业链长、高效快捷、集约经济、安全可靠等优势,是货物运输发展的重要方向。水铁联运、公铁联运已成为集装箱长距离门到门运输服务的主要形式,随着铁路集装箱运输量的增长,铁路集装箱列车中转及编组工作量显著增加。特别是铁水联运项目,一个铁路港前车站(港湾站)对应多个港口码头铁路集装箱场(港区、货区)时,到达的集装箱列车车辆排列顺序杂乱,无法满足多处港口专用线(港区)分类依次快速送达的要求,需重新按港口专用线(港区、货区)线别要求进行重新解体编组后分送到不同的港口专用线(港区)卸车,解编工作量十分繁重,运输中转时间长。
铁路集装箱列车解体编组方式目前可分为两大类,第一大类为传统的动车不动箱的解体编组方式,第二大类为动箱不动车的解体编组方式。
其中第一大类传统的动车不动箱的集装箱列车编组方式包括:
1、移车台列车解体编组方式:将待解体的列车推送至移车台前,逐车或多车摘钩后由牵车机送至移车台上,再通过移车台横移至需要编组的股道。车辆分类后集结在不同组号的编组线上,由调车机车送至各自货区(港区)。由于每辆车(或车组)均需摘钩,移车台移动速度慢,因此列车解体编组效率低,一列车(60个车厢)解编大约需要120~180min。这种编组方式仅用于港口、电厂散装货物的卸车作业和空车编组作业。
2、平面调车作业方式:平面调车作业是一种铁路系统最常用,最简单可行的列车解体、编组的作业方式,可以在任何车站实施。利用调车机车经牵出线将待解体车列牵出,逐车推送车列按车辆货物目的地分类组号至各条规定组号的股道。然后返回牵出线,转换道岔后把下一组车辆送到相应组号的股道,如此反复,将全部到达车辆按组号完成分类。车辆分类后集结在不同组号的编组线上,由调车机车送至各自货区(港区)。平面调车作业方式机车车辆往返走行距离长,且需要频繁摘钩,整个列车解编过程若钩数较多,则解编作业时间最长,列车编组效率不高。适合列车解编钩数不多且列车解编组号不多时采用,一般解体一列车(60个车厢)需要60~120min。
3、驼峰溜放调车作业方式:铁路驼峰是纵断面为骆驼驼峰形状的线路,利用调车机车将待解体车列经牵出线牵出,然后推送列车至驼峰峰顶(上坡),车辆利用位于驼峰与编组线高差势能,车辆依靠重力势能(下坡)自行溜入各条需要编组的股道。车辆分类后集结在不同组号的编组线上,由调车机车送至各自货区(港区)。此种列车编组方式为铁路编组站常见的列车编组方式,效率较高,适合大运量频繁的解体作业和流水线作业,自动化驼峰解体一列列车(60个车厢)大约需要15~20min。区段站简易驼峰解体一列列车(60个车厢)需要30~40min。利用驼峰解编列车,需建设铁路驼峰设施,铁路编组场平面、纵断面对地形条件要求较高,编组线数量多,占地面积大,工程投资大。
第二大类动箱不动车的集装箱列车编组方式主要包括集装箱落地中转编组作业方式:铁路集装箱落地中转编组作业方式是目前铁路集装箱货运车站对集装箱专列的一种个别中转作业方式。集装箱列车到达后,集装箱卸车落地,然后按集装箱列车方向组号重新集结装车,集装箱落地集结重新装车需要在集装箱堆场完成,由于需要将列车上的集装箱全部卸下落地堆码,箱体集结到一定 数量后成组装车。因此需要较大的集装箱堆放场地,占地面积较大,作业效率低,物流速度慢。这种方式仅用于铁路集装箱车站中转作业,不用于港湾站集装箱交接。
综上所述,现有技术中最常用的平面作业调车作业方式效率低,货物中转时间长,人工体力劳动强度大,自动化、信息化水平较低,基本处于现场手工作业阶段。驼峰溜放作业方式虽然效率高,但对车辆控制的自动化、信息化水平高,需要的站场面积大,控制设备多,主要用于编组站和大运量的区段站。在货区(港区)铁路装载集装箱车辆整列固定停放,车上集装箱组号随机排列,相对于固定集装箱组号的堆场货位,部分装卸机具走行距离长,不利于多台设备平行卸车作业,装卸作业效率较低。
发明内容
本发明的目的在于提供一种占地面积小、设备简单且效率较高的铁水联运铁路港湾站至港区堆场卸车的作业系统及方法。
本发明是这样实现的:
一方面,本发明提供一种铁水联运铁路港湾站至港区堆场卸车的作业系统,包括铁路到发场以及与铁路到发场对应的多个港区,所述铁路到发场设置有至少一条到发线,还包括与所述到发线相邻设置的倒装场,所述倒装场设有至少一条与所述到发线平行的倒装线,所述倒装线与各所述港区联通,所述倒装线上运行有多个轨道动力平车,铁路港湾站还设有集装箱装卸机具,所述到发线和所述倒装线位于所述集装箱装卸机具的装卸范围内。
进一步地,所述集装箱装卸机具包括多个龙门吊以及供所述龙门吊行走的两条走行轨,所述龙门吊横跨于所述到发线和所述倒装线上方。
进一步地,所述轨道动力平车为自动力运行车辆,其设置有动力驱动装置。
进一步地,所述倒装线与各所述港区之间设置有分路道岔区,所述分路道岔区通过铁路线路与所述倒装线联通,所述分路道岔区通过港区进路线与各所述港区联通。
进一步地,还包括与所述铁路线路联通的轨道动力平车检修线。
另一方面,本发明还提供一种铁水联运铁路港湾站至港区堆场卸车的作业方法,包括以下步骤:
(1)集装箱列车到达铁路到发场且停留在到发线上,与到发线平行的倒装线上停留一列空载轨道动力平车,通过集装箱装卸机具将列车上的所有集装箱平行倒装到该列轨道动力平车上;
(2)轨道动力平车按排列顺序依次运行至指定的港区;
(3)轨道动力平车到达港区的装卸线后,通过堆场装卸机具将集装箱从轨道动力平车卸至港区堆场指定位置;
(4)轨道动力平车返回倒装线。
进一步地,在集装箱列车到达铁路到发场的过程中,铁路信息系统向铁路集装箱货场管理系统提供到达列车的信息,铁路集装箱货场管理系统依据到达列车的信息编制倒装作业策略及流程,列车到达铁路到发场之后,铁路集装箱货场管理系统向集装箱装卸机具以及轨道动力平车下达作业计划。
进一步地,所述集装箱装卸机具包括多个龙门吊以及供所述龙门吊行走的两条走行轨,多个所述龙门吊根据铁路集装箱倒装作业计划抓取待卸车辆上的集装箱,倒装到相邻的空载轨道动力平车上,直至全部到达的集装箱列车全部倒装完毕。
进一步地,各所述轨道动力平车按排列顺序依次运行至指定的港区具体包括:各所述轨道动力平车按进港方向排列顺序先后运行,排序在前的轨道动力 平车单车或者卸车港区相同且相连的多个轨道动力平车连接成组运行至分路道岔区入口,并经过分路道岔区进入相应的港区进路线,排序在后的轨道动力平车单车或车组继续运行至分路道岔区入口,并经过分路道岔区进入另一条相应的港区进路线,后续的轨道动力平车按上述方法顺序依次运行至相应的港区进路线;各所述轨道动力平车再沿港区进路线运行至指定的港区。
进一步地,所述各所述轨道动力平车再沿港区进路线运行至指定的港区具体包括:进入港区进路线的轨道动力平车直接沿相应的港区进路线运行至指定的港区,或者进入同一条港区进路线的所有轨道动力平车在港区进路线入口连接成组后沿相应的港区进路线运行至指定的港区。
与现有技术相比,本发明具有以下有益效果:
1、采用轨道动力平车作为中转运载工具,中转编组作业集装箱不落地堆码,因此铁路港湾站不需要集装箱堆放场地,仅需布置倒装线,集装箱倒装场占地面积小,节省用地,站场布置灵活。解决了传统列车解体编组需设置铁路调车场或铁路货场集装箱落地堆码占地大的问题。
2、采用集装箱平行倒装至轨道动力平车,轨道动力平车在岔区运行过程中实现解体和编组并送车至指定港区卸车的方法代替既有解体、编组、送车、卸车作业方法,减少了作业流程,减少了港湾站场地面积,提高作业效率,适用于在场地狭窄的铁路中间站或港湾站对集装箱列车进行重新解体编组,适用于多条港口专用线接轨的港湾站对到达的集装箱列车进行解体编组和送车作业。
3、由于采用到发线与倒装线排列顺序相同的平行倒装,倒装线股道数量可以小于接轨港区数量,轨道动力平车进路方向由集装箱目的组号确定,在进路运行中完成集装箱组号分组,解决了部分港湾站站场狭小,解体编组股道不足的问题。
附图说明
图1为本发明实施例提供的一种铁水联运铁路港湾站至港区堆场卸车的作业系统的示意图;
图2为本发明实施例提供的集装箱倒装前后排序的示意图;
图3为本发明实施例提供的轨道动力平车进入分路道岔排序的示意图。
附图标记说明:1-到发线、2-倒装线、3-走行轨、4-集装箱列车、5-轨道动力平车、6-龙门吊、7-机待线、8-铁路线路、9-港区进路线、10-分路道岔区、11-轨道动力平车检修线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1和图2所示,本发明实施例提供一种铁水联运铁路港湾站至港区堆场卸车的作业系统,包括铁路到发场以及与铁路到发场对应的多个港区,所述铁路到发场设置有至少一条到发线1,还包括与所述到发线1相邻设置的倒装场,用于进行集装箱的中转,所述倒装场设有至少一条与所述到发线1平行的倒装线2。所述倒装线2与各所述港区联通,所述倒装线2上运行有多个轨道动力平车5,轨道动力平车5用于将集装箱从铁路港湾站运往各港区。所述倒装线2优选设置为多条,从而轨道动力平车5运载集装箱从铁路港湾站向港区运行以及空车返回铁路港湾站时可以采用不同的倒装线2,以免产生会车。所述到发线1以及所述倒装线2均与铁路到发场的机待线7联通,方便集装箱列车以及轨道动力平车5转换线路。铁路港湾站还设有集装箱装卸机具,所述到发线1和所 述倒装线2位于所述集装箱装卸机具的装卸范围内,所述集装箱装卸机具用于将位于到发线1上的集装箱倒装到位于倒装线2上的轨道动力平车5上。集装箱列车4到达铁路到发场后停留在到发线1上,倒装线2上停留一列空载轨道动力平车5,通过集装箱装卸机具将所有集装箱平行倒装至相邻的轨道动力平车5上,轨道动力平车5通过运行进路转换分组中转至港区卸车。
作为实施方式之一,所述集装箱装卸机具包括龙门吊6以及供所述龙门吊6行走的两条走行轨3,所述龙门吊6横跨于所述到发线1和所述倒装线2上方,从而能够将位于到发线1的列车上的集装箱转移至位于倒装线2上的轨道动力平车5上,通过设置走行轨3,方便龙门吊6的行走,使得龙门吊6可以对多个位置上的集装箱进行操作。作为优选地,两条所述走行轨3上运行有多个所述龙门吊6,从而在集装箱列车4倒装作业中多个龙门吊6可以同时作业,倒装时间短,效率高。
作为本实施例的优选,所述轨道动力平车5为自动力运行车辆,其设置有动力驱动装置,能够沿着轨道自动力运行,可以采用人工驾驶或者无人驾驶的方式,采用无人驾驶时,可以减少人力,且能够避免人员在现场发生安全事故。所述轨道动力平车5由轨道动力平车动力网络(供电接触网)进行供电,为轨道动力平车5提供动力源,当然也可以采用其他形式的能源为其提供动力。轨道动力平车5可以单车运行或多车重联运行。
如图3所示,进一步地,所述倒装线2与各所述港区之间设置有分路道岔区10,所述分路道岔区10通过铁路线路8与所述倒装线2联通,所述分路道岔区10通过港区进路线9与各所述港区联通。各所述轨道动力平车5(车组)先按排列顺序依次运行至分路道岔区10入口,按照集装箱的箱号信息确定所装载的集装箱要到达的港区并经过道岔进入相应的港区进路线9,进入同一条港区进 路线9的各轨道动力平车5在港区进路线9入口连接成组,成组后的轨道动力平车5沿相应的港区进路线9运行至指定的港区,集装箱由堆场装卸机具(例如轨道龙门吊)卸至堆场指定位置。进一步优选地,还包括与所述铁路线路联通的轨道动力平车检修线11,用于停置待检测的轨道动力平车5,方便对轨道动力平车5进行检修。
本实施例采用轨道动力平车作为中转运载工具,中转编组作业集装箱不落地堆码,因此铁路港湾站不需要集装箱堆放场地,仅需布置倒装线,集装箱倒装场占地面积小,节省用地,站场布置灵活。解决了传统列车解体编组需设置铁路调车场或铁路货场集装箱落地堆码占地大的问题。
该作业系统还包括铁路信息系统、铁路集装箱货场管理系统、铁路信号车站联锁进路控制系统等设施,其中铁路信息系统包括铁路货运信息系统、铁路车次号系统、铁路货票信息系统、铁路确报系统、车站现车系统等,用于实现系统各部分的通信,以及实现轨道动力平车5以及集装箱装卸机具等的控制。具体可参照下述的方法实施例。
另一方面,本发明实施例还提供一种铁水联运铁路港湾站至港区堆场卸车的作业方法,可以采用上述铁水联运铁路港湾站至港区堆场卸车的作业系统,该方法包括以下步骤:
(1)集装箱列车到达铁路到发场且停留在到发线上,与到发线平行的倒装线上停留一列空载轨道动力平车,所述倒装线上停留的空载轨道动力平车的数量大于或等于列车上集装箱的数量,保证每一集装箱均对应有一个轨道动力平车,通过集装箱装卸机具将列车上的所有集装箱平行倒装到该列轨道动力平车上,倒装后的编组顺序与到达列车相同,参照图2所示。优选地,所述集装箱装卸机具包括多个龙门吊以及供所述龙门吊行走的两条走行轨,龙门吊的数量 少于列车上所有集装箱的数量,通过在两条走行轨上移动可以实现对任一位置的集装箱的抓取。多个所述龙门吊同时运行,倒装时间短,效率高。
(2)轨道动力平车按排列顺序依次运行至指定的港区,具体地,各所述轨道动力平车按进港方向排列顺序先后运行,排序在前的轨道动力平车单车或者卸车港区相同且相连的多个轨道动力平车连接成组运行至分路道岔区入口,并经过分路道岔区进入相应的港区进路线,排序在后的轨道动力平车单车或车组继续运行至分路道岔区入口,并经过分路道岔区进入另一条相应的港区进路线,后续的轨道动力平车按上述方法顺序依次运行至相应的港区进路线。各所述轨道动力平车再沿港区进路线运行至指定的港区,具体地,进入港区进路线的轨道动力平车直接沿相应的港区进路线运行至指定的港区,或者进入同一条港区进路线的所有轨道动力平车在港区进路线入口连接成组后沿相应的港区进路线运行至指定的港区,参照图3所示。
(3)轨道动力平车到达港区的装卸线后,由堆场装卸机具(例如轨道龙门吊)将集装箱从轨道动力平车卸至港区堆场指定位置。
(4)轨道动力平车空车返回倒装线。
本实施例采用集装箱平行倒装至轨道动力平车,轨道动力平车在运行过程中编组并送车至指定港区卸车的方法代替既有解体、编组、送车、卸车作业方法,减少了作业流程,减少了港湾站场地面积,提高作业效率,适用于在场地狭窄的铁路中间站或港湾站对集装箱列车进行重新解体编组,适用于多条港口专用线接轨的港湾站对到达的集装箱列车进行解体编组和送车作业。由于采用到发线与倒装线排列顺序相同的平行倒装,倒装线股道数量可以小于接轨港区数量,轨道动力平车进路方向由集装箱目的组号确定,运行中完成集装箱组号分组,解决了部分港湾站站场狭小,解体编组股道不足的问题。
上述方法的具体作业流程如下:
1、计划阶段
在集装箱列车到达铁路到发场之前,铁路货运信息系统、铁路预报/确报系统预告列车到达,并向铁路到发场提供到达列车的信息,包括到达列车的地点、时间、车次号、车号、车辆排列顺序(列车编组)、集装箱箱号、货票号码、货物种类、货物的目的地等信息。
2、列车到达阶段
车站按铁路列车调度指挥系统(CTC/TDCS)指令排列列车接车进路,开放信号,列车进站。列车在进站过程中铁路车次号系统采集列车车辆车号数据和排列顺序,铁路货票信息系统、铁路确报系统核对进入站内的车辆车号及车辆排列顺序。核对后的车辆车号及排列顺序进入车站现车系统,同时向铁路集装箱货场管理系统提供数据。
3、集装箱送货计划作业阶段
铁路集装箱货场管理系统依据铁路货运信息系统和铁路现车系统提供的车辆车号、位置、排列顺序、集装箱箱号、货物名称、重量、目的地等数据编制倒装作业策略及流程,列车到达铁路到发场之后,铁路集装箱货场管理系统向集装箱装卸机具以及轨道动力平车下达作业计划。
4、集装箱倒装作业阶段
在与到发线相邻的倒装场上设有倒装线,倒装线停留一列空载轨道动力平车,空载轨道动力平车的数量大于或等于到发线待倒装集装箱数量。多个龙门吊根据铁路集装箱倒装作业计划抓取待卸车辆上的集装箱,倒装到相邻的空载轨道动力平车上,直至全部到达的集装箱列车全部倒装完毕。
5、轨道动力平车自动力运行至指定港区阶段
各所述轨道动力平车先按排列顺序依次运行至分路道岔区入口,轨道动力平车运载集装箱按照铁路集装箱倒装作业计划提供的港区,轨道动力平车按排列顺序逐车(车组)申请港区进路的开通指令。铁路车站联锁进路控制系统开通进路,按顺序向轨道动力平车(车组)下发运行许可指令。轨道动力平车进入相应的港区进路线,进入同一条港区进路线的各轨道动力平车在港区进路线入口形成集装箱分组,分组后的轨道动力平车沿相应的港区进路线运行至指定的港区。
下面结合图3对轨道动力平车运行至指定港区的过程进行说明。由于倒装后的集装箱编组顺序与到达列车相同,因此在到达分路岔道前集装箱的排序混乱。
第1辆轨道动力平车对应的集装箱目的地为A港区,向铁路车站联锁进路控制系统申请倒装线至A港区进路,获得同意授权后经道岔转换进路,第1辆轨道动力平车经A港区进路线自动力运行至A港区装卸线;
第2辆轨道动力平车对应的集装箱目的地为B港区,向铁路车站联锁进路控制系统申请倒装线至B港区进路,获得同意授权后经道岔转换进路,第2辆轨道动力平车经B港区进路线自动力运行至B港区装卸线;
第3辆轨道动力平车对应的集装箱目的地为D港区,向路车站联锁进路控制系统申请倒装线至D港区进路,获得同意授权后经道岔转换进路,第3辆轨道动力平车经D港区进路线自动力运行至D港区装卸线;
后续轨道动力平车(车组)按顺序启动运行至相应的港区装卸线。
6、轨道动力平车港区堆场卸车阶段
轨道动力平车到达港区装卸线后,堆场装卸机具(例如轨道龙门吊)根据铁路集装箱倒装作业计划运行至卸车货位抓取轨道动力平车上的集装箱,读取集装箱箱号按照指令放置在指定堆场货位。
7、货物中转移交阶段
铁路、水运承运企业在港区联合检查集装箱及货物完整状态,铁路运输企业向港区水运企业移交集装箱货票、集装箱及货物。
8、轨道动力平车返回阶段
轨道动力平车卸车完毕,按照取送车作业计划和运行线路空闲情况,单车或集结成组向倒装场回送。回送轨道动力平车转线后,经港区进路线,在倒装线再次排队集结,等待下一列到达集装箱列车倒装作业。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种铁水联运铁路港湾站至港区堆场卸车的作业系统,包括铁路到发场以及与铁路到发场对应的多个港区,所述铁路到发场设置有至少一条到发线,其特征在于:还包括与所述到发线相邻设置的倒装场,所述倒装场设有至少一条与所述到发线平行的倒装线,所述倒装线与各所述港区联通,所述倒装线上运行有多个轨道动力平车,铁路港湾站还设有集装箱装卸机具,所述到发线和所述倒装线位于所述集装箱装卸机具的装卸范围内。
  2. 如权利要求1所述的铁水联运铁路港湾站至港区堆场卸车的作业系统,其特征在于:所述集装箱装卸机具包括多个龙门吊以及供所述龙门吊行走的两条走行轨,所述龙门吊横跨于所述到发线和所述倒装线上方。
  3. 如权利要求1所述的铁水联运铁路港湾站至港区堆场卸车的作业系统,其特征在于:所述轨道动力平车为自动力运行车辆,其设置有动力驱动装置。
  4. 如权利要求1所述的铁水联运铁路港湾站至港区堆场卸车的作业系统,其特征在于:所述倒装线与各所述港区之间设置有分路道岔区,所述分路道岔区通过铁路线路与所述倒装线联通,所述分路道岔区通过港区进路线与各所述港区联通。
  5. 如权利要求4所述的铁水联运铁路港湾站至港区堆场卸车的作业系统,其特征在于:还包括与所述铁路线路联通的轨道动力平车检修线。
  6. 一种铁水联运铁路港湾站至港区堆场卸车的作业方法,其特征在于,包括以下步骤:
    (1)集装箱列车到达铁路到发场且停留在到发线上,与到发线平行的倒装线上停留一列空载轨道动力平车,通过集装箱装卸机具将列车上的所有集装箱平行倒装到该列轨道动力平车上;
    (2)轨道动力平车按排列顺序依次运行至指定的港区;
    (3)轨道动力平车到达港区的装卸线后,通过堆场装卸机具将集装箱从轨道动力平车卸至港区堆场指定位置;
    (4)轨道动力平车返回倒装线。
  7. 如权利要求6所述的铁水联运铁路港湾站至港区堆场卸车的作业方法,其特征在于:在集装箱列车到达铁路到发场的过程中,铁路信息系统向铁路集装箱货场管理系统提供到达列车的信息,铁路集装箱货场管理系统依据到达列车的信息编制倒装作业策略及流程,列车到达铁路到发场之后,铁路集装箱货场管理系统向集装箱装卸机具以及轨道动力平车下达作业计划。
  8. 如权利要求6所述的铁水联运铁路港湾站至港区堆场卸车的作业方法,其特征在于:所述集装箱装卸机具包括多个龙门吊以及供所述龙门吊行走的两条走行轨,多个所述龙门吊根据铁路集装箱倒装作业计划抓取待卸车辆上的集装箱,倒装到相邻的空载轨道动力平车上,直至全部到达的集装箱列车全部倒装完毕。
  9. 如权利要求6所述的铁水联运铁路港湾站至港区堆场卸车的作业方法,其特征在于,各所述轨道动力平车按排列顺序依次运行至指定的港区具体包括:各所述轨道动力平车按进港方向排列顺序先后运行,排序在前的轨道动力平车单车或者卸车港区相同且相连的多个轨道动力平车连接成组运行至分路道岔区入口,并经过分路道岔区进入相应的港区进路线,排序在后的轨道动力平车单车或车组继续运行至分路道岔区入口,并经过分路道岔区进入另一条相应的港区进路线,后续的轨道动力平车按上述方法顺序依次运行至相应的港区进路线;各所述轨道动力平车再沿港区进路线运行至指定的港区。
  10. 如权利要求9所述的铁水联运铁路港湾站至港区堆场卸车的作业方法,其特征在于,所述各所述轨道动力平车再沿港区进路线运行至指定的港区具体 包括:进入港区进路线的轨道动力平车直接沿相应的港区进路线运行至指定的港区,或者进入同一条港区进路线的所有轨道动力平车在港区进路线入口连接成组后沿相应的港区进路线运行至指定的港区。
PCT/CN2019/071960 2018-06-13 2019-01-16 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法 WO2019237737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810609434.X 2018-06-13
CN201810609434.XA CN108861642A (zh) 2018-06-13 2018-06-13 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法

Publications (1)

Publication Number Publication Date
WO2019237737A1 true WO2019237737A1 (zh) 2019-12-19

Family

ID=64338329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071960 WO2019237737A1 (zh) 2018-06-13 2019-01-16 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法

Country Status (2)

Country Link
CN (1) CN108861642A (zh)
WO (1) WO2019237737A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108861642A (zh) * 2018-06-13 2018-11-23 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN109740864B (zh) * 2018-12-14 2023-04-18 上海中交水运设计研究有限公司 集装箱港区用地面积定量确定方法
CN110422209B (zh) * 2019-07-31 2021-09-07 中铁武汉勘察设计研究院有限公司 一种铁路集装箱货场调车作业的控制方法及系统
CN112498422B (zh) * 2019-09-16 2022-04-05 山东启和云梭物流科技有限公司 一种多式联运复合轨道运输系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107318A1 (en) * 2009-03-18 2010-09-23 Greendoor Data As A cargo storage and a system and method for cargo handling
CN102491102A (zh) * 2011-12-21 2012-06-13 吉林省明普光学科技有限公司 一种铁路港口转运散货装卸作业方法和系统
US20140072398A1 (en) * 2007-06-26 2014-03-13 Mi-Jack Products, Inc. Method for Transferring a Shipping Container in a Rail Yard
CN104973432A (zh) * 2010-04-30 2015-10-14 超级多克有限责任公司 用于联运集装箱的转移、储存和分配的系统
CN106115283A (zh) * 2016-07-06 2016-11-16 武汉理工大学 一种自动化集装箱码头装卸系统和方法
CN108861642A (zh) * 2018-06-13 2018-11-23 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN108861641A (zh) * 2018-06-13 2018-11-23 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站与港区交换货物的作业系统及方法
CN108891936A (zh) * 2018-06-13 2018-11-27 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN109081125A (zh) * 2018-06-13 2018-12-25 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN109095196A (zh) * 2018-06-13 2018-12-28 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES391179A1 (es) * 1970-06-24 1974-03-16 Salzgitter A G Procedimiento para descargar yno cargar barcos conteniendo unidades de carga, especialmente containers.
US4973219A (en) * 1986-04-30 1990-11-27 Sea-Land Corporation Grid rail container transport and storage system
EP0834459B1 (de) * 1996-10-04 2003-08-27 Noell Crane Systems GmbH Containertransportsystem mit Schienen
US20110280696A1 (en) * 2010-05-11 2011-11-17 David Kun Railroad Freight Car Loading Or Unloading
CN105059955B (zh) * 2015-06-29 2017-03-29 天津东方海陆集装箱码头有限公司 配送中心式自动化集装箱码头装卸系统
CN106853831A (zh) * 2017-01-03 2017-06-16 马瑞志 一种磁动火车

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140072398A1 (en) * 2007-06-26 2014-03-13 Mi-Jack Products, Inc. Method for Transferring a Shipping Container in a Rail Yard
WO2010107318A1 (en) * 2009-03-18 2010-09-23 Greendoor Data As A cargo storage and a system and method for cargo handling
CN104973432A (zh) * 2010-04-30 2015-10-14 超级多克有限责任公司 用于联运集装箱的转移、储存和分配的系统
CN102491102A (zh) * 2011-12-21 2012-06-13 吉林省明普光学科技有限公司 一种铁路港口转运散货装卸作业方法和系统
CN106115283A (zh) * 2016-07-06 2016-11-16 武汉理工大学 一种自动化集装箱码头装卸系统和方法
CN108861642A (zh) * 2018-06-13 2018-11-23 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN108861641A (zh) * 2018-06-13 2018-11-23 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站与港区交换货物的作业系统及方法
CN108891936A (zh) * 2018-06-13 2018-11-27 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN109081125A (zh) * 2018-06-13 2018-12-25 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN109095196A (zh) * 2018-06-13 2018-12-28 中铁武汉勘察设计研究院有限公司 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法

Also Published As

Publication number Publication date
CN108861642A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2019237737A1 (zh) 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN109242379B (zh) 铁水联运铁路港湾站集装箱卸车和装车运输系统及方法
CN109143997B (zh) 铁水联运铁路港湾站集装箱货场自动化控制系统及方法
EP3805136A1 (en) River and ocean combined transportation container transportation system and method based on rail container trucks
EA011069B1 (ru) Способ и перевалочная система для перегрузки или, соответственно, погрузки по меньшей мере одной грузовой единицы
WO2021213344A1 (zh) 一种铁路站场公铁联运模式转换的作业方法及系统
CN104527649B (zh) 一种铁路无调车编组站系统
CN109160296A (zh) 基于轨道集卡车的江海联运集装箱中转运输系统及方法
WO2022227686A1 (zh) 一种基于深层地下通道的地下集装箱物流装卸系统
Hansen Automated shunting of rail container wagons in ports and terminal areas
CN111646227B (zh) 一种基于地下通道的集装箱海铁联运系统
CN109081125A (zh) 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN110589524A (zh) 一种用于高铁快运动车组的站台装卸搬运系统及方法
CN108861641A (zh) 铁水联运铁路港湾站与港区交换货物的作业系统及方法
CN211254507U (zh) 一种用于高铁快运动车组的站台装卸搬运系统
CN112573219B (zh) 一种基于多式联运轨道系统的智能港口
CN108891936A (zh) 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
Zimmer Designing intermodal terminals for efficiency
CN212268855U (zh) 铁水联运铁路港湾站至港区堆场卸车的作业系统
CN212291996U (zh) 铁水联运铁路港湾站至港区堆场卸车的作业系统
CN212291995U (zh) 铁水联运铁路港湾站至港区堆场卸车的作业系统
CN109319514B (zh) 一种基于江海联运的集装箱运输系统及方法
CN212291997U (zh) 铁水联运铁路港湾站与港区交换货物的作业系统
CN109095196A (zh) 铁水联运铁路港湾站至港区堆场卸车的作业系统及方法
CN208636829U (zh) 一种重载铁路环形装车站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819279

Country of ref document: EP

Kind code of ref document: A1