WO2019237482A1 - 一种高效绿色环保型灭火剂及其制备方法 - Google Patents

一种高效绿色环保型灭火剂及其制备方法 Download PDF

Info

Publication number
WO2019237482A1
WO2019237482A1 PCT/CN2018/099504 CN2018099504W WO2019237482A1 WO 2019237482 A1 WO2019237482 A1 WO 2019237482A1 CN 2018099504 W CN2018099504 W CN 2018099504W WO 2019237482 A1 WO2019237482 A1 WO 2019237482A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire extinguishing
extinguishing agent
carbon black
white carbon
silicone oil
Prior art date
Application number
PCT/CN2018/099504
Other languages
English (en)
French (fr)
Inventor
汪徐春
李蔚
陈俊明
叶祥桔
张雪梅
张婷
过家好
毛杰
严家玉
Original Assignee
安徽科技学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽科技学院 filed Critical 安徽科技学院
Priority to AU2018403914A priority Critical patent/AU2018403914B2/en
Publication of WO2019237482A1 publication Critical patent/WO2019237482A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0007Solid extinguishing substances
    • A62D1/0014Powders; Granules
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/06Fire-extinguishing compositions; Use of chemical substances in extinguishing fires containing gas-producing, chemically-reactive components

Definitions

  • the invention belongs to the technical field of fire extinguishing. More specifically, it relates to a high-efficiency green environmental protection type fire extinguishing agent and a preparation method thereof.
  • Halon fire extinguishing agent is the most typical representative.
  • Halon fire extinguishing agent has the characteristics of high fire extinguishing efficiency, low dosage, good space submersion and chemical stability, non-conductive, less corrosive and less toxic, etc. It can be used to extinguish many fires, but because it is not easy to decompose, and Will reflect a substance that destroys the ozone layer of the atmosphere, seriously depletes the ozone in the atmosphere, and poses a huge threat to human health and the ecological environment. According to international conventions, China has completely abolished the use of such fire extinguishers.
  • Halon series fire extinguishing agents are commonly used as substitutes for heptafluoropropane gas fire extinguishing agent, carbon dioxide fire extinguishing agent, high pressure storage tank type, low pressure multi-component, low pressure pump station type water mist fire extinguishing system, K, S hot aerosol fire extinguishing device Then there is the superfine dry powder fire extinguishing agent.
  • the solid fire extinguishing agents currently widely used in the market are still dry powder fire extinguishing agents due to many reasons.
  • the dry powder fire extinguishing agent is composed of one or more fine inorganic powders with fire extinguishing ability.
  • the fire extinguishing mechanism is that the fire extinguishing agent covers the surface of the combustible material and blocks the contact of the combustible material with oxygen in the air, so that the combustion cannot be maintained and extinguished.
  • common dry powder fire extinguishing agents also have their unavoidable disadvantages, such as lower melting point, susceptibility to moisture, limited particle size, high production cost, and little effect on liquid fires.
  • the technical problem to be solved by the present invention is to overcome the shortcomings and deficiencies of the existing fire extinguishing agents, provide a fire extinguishing agent with high fire extinguishing efficiency and environmental protection, and break the current market that does not have a fire extinguishing effect, application scope, environmental protection and economy. Deadlock on the effectiveness of fire extinguishing agents.
  • the object of the present invention is to provide a method for preparing a high-efficiency green environmental protection type fire extinguishing agent.
  • Another object of the present invention is to provide the prepared fire extinguishing agent.
  • a method for preparing a high-efficiency green environmental protection type fire extinguishing agent is to fully grind and mix sodium dihydrogen phosphate, ammonium bicarbonate and pulverization aid; then add white carbon black, fully grind and mix; then add silicone oil, stir while heating, and Keep the temperature constant for a period of time to obtain a new type of white carbon black fire extinguishing agent coated with a silicone oil film.
  • the pulverization aid is sodium carbonate.
  • the white carbon black is a silicon dioxide having a particle size between micrometer and nanometer, including micrometer and nanometer.
  • a silicon dioxide having a particle size between micrometer and nanometer, including micrometer and nanometer.
  • micron or nanometer quartz sand Such as micron or nanometer quartz sand.
  • the silicone oil is dimethyl silicone oil.
  • the mass ratio of sodium dihydrogen phosphate, ammonium bicarbonate, pulverization aid, and white carbon is 4 to 6: 1.5 to 3: 2 to 3: 0.5 to 1.5.
  • the constant temperature is maintained at 100 to 105 ° C for a period of 2 to 3 hours.
  • the preparation method includes the following steps:
  • the third mixture is kept at 100-105 ° C for 2 to 3 hours to obtain white carbon black fire extinguishing agent.
  • the grinding time in steps (1) and (2) is 1 to 2 hours.
  • the fire extinguishing agent prepared by the above method should also be within the protection scope of the present invention.
  • the particle size range of the obtained fire extinguishing agent is 2 to 70 ⁇ m.
  • the following methods for preparing a high-efficiency green environment-friendly fire extinguishing agent according to the present invention are referred to as the method.
  • White carbon black is the soul of the fire extinguishing agent of the present invention.
  • the white carbon black used in the present invention is hydrophobic white carbon black, which is micron or nanometer silica, and has a porous amorphous structure. It is a white powder with a single particle size It is small and has a low bulk density, which gives the product excellent space filling properties.
  • White carbon black has excellent high temperature resistance, electrical insulation, oil resistance, chemical stability, and environmental friendliness. It is odorless, odorless, non-toxic, non-flammable, and can be returned to the soil.
  • white carbon black plays a major role in this method, because its ultra-high specific surface area has extremely high adsorption force, which can significantly increase the suspension rate of the final product and make the fire extinguishing agent product in response to
  • the liquid can be suspended on the surface of the liquid during fire and maintain long-lasting effect. It is easy to suspend to form a thin film that blocks oxygen. It has good oxygen barrier properties, high temperature resistance and chemical stability.
  • due to its ultra-fine particle size and ultra-light weight of single particles it can effectively improve the free flow between the particles of the fire extinguishing agent powder, make the fire extinguishing agent product difficult to agglomerate, and have a certain adhesion.
  • Sodium dihydrogen phosphate used in this method is an analytical pure reagent containing two crystal waters per molecule. Its density is 1.949 g / cm 3 and its melting point is 60 ° C. Very soluble in water, insoluble in alcohol, easy to agglomerate in humid air, crystal water will be removed at 100 °C to become anhydrous, and as the temperature rises, a variety of reactions will occur. The aqueous solution is acidic.
  • the ammonium bicarbonate used in this method is a white compound with columnar crystals and ammonia odor. It reacts with acids to generate carbon dioxide and water.
  • the sodium dihydrogen phosphate aqueous solution is acidic. This method uses this property. Under high temperature conditions, the two react with each other to generate carbon dioxide and water that are beneficial for fire extinguishing. They play an important role in fire extinguishing. Because this reaction absorbs heat, So it can not only suppress the fire, but also reduce the temperature of the fire.
  • the sodium carbonate used in this method is mainly used as a pulverization aid to help the raw material be ground more thoroughly during the grinding process, and the final product has a smaller and more uniform particle size, and the decomposition products absorb heat and produce carbon dioxide. Helps to extinguish fire.
  • the silicone oil used in this method is dimethyl silicone oil, which is a hydrophobic organic silicon material. In general, it is a colorless transparent viscous liquid, which is odorless, odorless, and non-toxic in itself. Has excellent hydrophobicity and moisture resistance, good light transmission, chemical stability. This method uses its excellent hydrophobicity, moisture resistance, chemical stability and heat resistance.
  • dimethyl silicone oil forms a thin film on the surface of the powder particles of the fire extinguishing agent, so that The fire extinguishing agent has good oxygen barrier property, hydrophobicity, heat resistance and chemical stability.
  • the invention uses these ingredients as raw materials to prepare a new type of white carbon black fire extinguishing agent. It can be seen from the water solubility test that the white carbon black fire extinguishing agent has very flexible water solubility. Generally, it can float on the liquid surface for a long time. After stirring and sinking into the liquid, it can remain insoluble for a period of time. Fire extinguishing provides great advantages. After a long period of time, it is easily soluble in liquids and reduces environmental hazards.
  • thermogravimetric thermogravimetric analysis it can be seen from the thermogravimetric thermogravimetric curve that the white carbon black fire extinguishing agent undergoes multi-stage decomposition at high temperature to decompose the CO 2 which suppresses the fire, and decomposes into an endothermic reaction, which can effectively reduce the fire field temperature ;
  • the temperature reaches above 500 °C, the sample of white carbon black fire extinguishing agent no longer decomposes and tends to be stable, which reflects the high temperature resistance properties of white carbon black.
  • the laser particle size test found that 97.36% of the samples of the white carbon black fire extinguishing agent were below 39.23 ⁇ m, and the fire extinguishing performance of the dry powder fire extinguishing agent was inversely proportional to the particle size, the particle size was small, the specific surface area was large, and the flame contact area was large. It also has strong adhesion ability. After spraying, it can form aerosol in the space and isolate the air, which is good for fire extinguishing. It can be seen in the fire performance test that under the same conditions, the white carbon black fire extinguishing agent is much less than the ordinary fire extinguishing agent without white carbon black in terms of time and amount of fire extinguishing agent, and can effectively suppress the smoke of the fire.
  • the comprehensive fire extinguishing performance of the white carbon black fire extinguishing agent of the present invention is significantly better than that of ordinary fire extinguishing agents without white carbon black, the fire extinguishing efficiency is more than doubled, the raw materials are cheap, and the environment protection is green before and after the fire extinguishing.
  • the invention researches a high-efficiency green environmental protection fire extinguishing agent to fill various deficiencies in the current fire extinguishing agent market, and breaks the stalemate in the current market that does not have a fire extinguishing agent that can take into account the fire extinguishing effect, scope of application, environmental protection and economic benefits.
  • the white carbon black fire extinguishing agent not only has high fire extinguishing efficiency (easy to form an oxygen barrier film), but also has the characteristics of high temperature resistance, water repellency, moisture resistance, and agglomeration resistance compared with ordinary fire extinguishing agents, and is environmentally friendly and has low production costs. It is bound to have a very good market environment and development prospects, which is also in line with the scientific development concept and the concept of green development, and will definitely produce considerable economic and environmental benefits.
  • FIG. 1 is a differential thermal curve of a fire extinguishing agent prepared by this method.
  • FIG. 2 is a thermogravimetric curve of a fire extinguishing agent prepared by this method.
  • FIG. 3 is a particle size distribution curve of the fire extinguishing agent prepared by this method.
  • FIG. 4 is an X-ray diffraction pattern (XRD) of a fire extinguishing agent prepared by this method.
  • the present invention is further described below with reference to the accompanying drawings and specific embodiments, but the embodiments do not limit the present invention in any form.
  • the reagents, methods, and equipment used in the present invention are conventional reagents, methods, and equipment in the technical field.
  • a method for preparing a high-efficiency green environment-friendly fire extinguishing agent includes the following steps:
  • a method for preparing a high-efficiency green environment-friendly fire extinguishing agent includes the following steps:
  • a method for preparing a high-efficiency green environment-friendly fire extinguishing agent includes the following steps:
  • Example 2 Taking the sample prepared in the above Example 2 as an example, the performance of the fire extinguishing agent of the present invention was tested.
  • AR-1140 electronic analytical balance Shanghai METTLER TOLEDO Instrument Co., Ltd.
  • GZX-9076-MBE electric constant temperature digital display blast drying oven Shanghai Boxun Industry Co., Ltd.
  • JJ-1 electric mixer Jincheng Guosheng Test Instrument Factory of Jintan City, Jiangsu province.
  • the fire extinguishing agent can dissolve in water is a major manifestation of its environmental performance. Dry powder fire extinguishing agent will leave a large amount of powder after use. If it cannot be dissolved, it will cause adverse effects on the environment. Therefore, the dry powder fire extinguishing agent should have the property of floating on the surface of common flammable liquids and being difficult to dissolve in a short time, and can be dissolved after a long time.
  • the sample powder has good water solubility, and it will not immediately dissolve into the liquid in the initial stage of fire extinguishing, forming a film that blocks oxygen, which can effectively play the role of fire extinguishing; after a long time, it is easy to dissolve and does not cause a large amount of residue to affect the environment. That is, the fire extinguishing agent prepared by the present invention has quite excellent performance in water solubility.
  • thermogravimetric test methods are: Weigh a sample of about 10mg in a small crucible, and use a thermogravimetric analyzer for comparative analysis to obtain fire suppression. Differential thermal and thermogravimetric curves of the agent samples, and then the thermogravimetric and thermal decomposition and exothermic conditions of the fire extinguishing agent samples at high temperature are obtained according to the thermogravimetric and differential thermal curve analysis.
  • thermogravimetric and differential thermal curves of the sample are obtained.
  • the results are shown in Figures 1 and 2. It can be seen that the sample's thermogravimetric curve has a first landslide at 170 ° C. At this time, ammonium bicarbonate begins to decompose. At the same time, it can be seen from the differential thermal curve. So far, there is a very obvious endothermic peak, indicating that the sample absorbs external heat during decomposition. At 310 °C, another landslide occurred in the thermogravimetric curve, at which time the sodium dihydrogen phosphate was decomposed, and the endothermic peak also appeared in the differential thermal curve. After 500 ° C, due to the high temperature resistance of silica, the thermogravimetric curve of the sample remains stable, indicating that the sample no longer decomposes and has good high temperature resistance.
  • the fire extinguishing agent sample begins to decompose in multiple stages under the action of high temperature, generating carbon dioxide gas and water vapor that suppress the fire, while absorbing the heat of the fire field and reducing the temperature of the fire field, and when the temperature reaches 500 ° C
  • the silica micro-nano particles in the sample no longer decompose, and can be effectively used as a high-temperature fire extinguishing agent.
  • the fire extinguishing agent sample prepared by this method can be effectively used for high temperature and oil-electricity fire extinguishing needs.
  • Particle size test method Weigh out a certain amount of powder of fire extinguishing agent, and use a laser particle size tester to analyze the particle size. It should be noted that, because the surface of the pattern is wrapped with a thin layer of silicone oil film, it has a certain degree of hydrophobicity. Therefore, during the process of adding the pattern, it is necessary to continuously stir with a glass plate to accelerate the powder pattern into the water body to complete the particle size analysis. test. According to the test results, the particle size distribution of the powder pattern can be obtained.
  • the particle size distribution of the fire extinguishing agent powder sample developed by the present invention is measured by a laser particle size tester, as shown in FIG. 3, and the abscissa is the particle size and the ordinate is the percentage content corresponding to different particle sizes.
  • the particle size of chemical fire extinguishing agent is inversely proportional to the fire extinguishing efficiency. It can be clearly seen from Figure 3 that the sample particle size is 97.36% below 39.23 ⁇ m, the particle size is small, the specific surface area is large, and the powder particles are The contact area with the flame is very large, and the powder's ability to absorb the heat of the flame will also be large. With the effect of nanometer white carbon black, the particle size is small and the activity is large. After pressure spraying, it can form a uniform distribution in the protective space and is relatively stable. The aerosol film is isolated from oxygen, so the overall fire extinguishing efficiency is much higher than ordinary fire extinguishing agents.
  • XRD test Pick an appropriate amount of sample with a medicine spoon and add it to the medicine tank. After the tablet is compacted, place it accurately on the sample carrier of the X-ray powder diffractometer, close the door, start the analysis program on the computer and set the analysis parameters
  • the automatic scanning test can be started, the data can be obtained after the scanning, and the diffraction pattern of the sample can be obtained after processing.
  • the composition of the sample can be analyzed by comparing the diffraction pattern with the standard card.
  • the results are shown in Figure 4.
  • the X-axis is the diffraction angle; the Y-axis is the peak intensity.
  • the XRD diffraction pattern of silica in the fire extinguishing agent sample prepared by the present invention According to the PDF standard card comparison and analysis, it is found that after the baseline is processed in Jade, the sample has characteristic silica diffraction at the (-110) crystal plane (18.29 °) and (010) crystal plane (22.10 °). Peaks, and both peaks are sharp, indicating that the micro-nano-scale silica has a higher degree of crystallization in the fire extinguishing agent sample.
  • the test fire extinguishing object is firewood and alcohol. Take equal amounts of firewood and alcohol and add them to a stainless steel basin. Under the same conditions, after igniting combustible materials and stably burning, use ordinary dry powder fire extinguishing agent and the fire extinguishing agent prepared by this method to prepare the same concentration (300g / L), use the same spray gun for fire performance test. The test results are shown in Table 2 below.
  • the fire extinguishing agent prepared by this method has much lower fire extinguishing time and amount of fire extinguishing agent than ordinary fire extinguishing agents; and because of the high temperature resistance, specific surface energy and nano-adsorption film formation of white carbon black The fire extinguishing performance of the fire extinguishing agent prepared by this method is much higher than that of ordinary fire extinguishing agents.
  • the main factors affecting the comprehensive performance of the fire extinguishing agent in this method are the addition amount of sodium dihydrogen phosphate, ammonium bicarbonate, sodium carbonate, white carbon black, and silicone oil, the uniformity of mixing, and the final fire extinguishing agent powder.
  • the particle size, heating time and temperature will affect the comprehensive performance of the sample particles.
  • the ratio of the amount of sodium dihydrogen phosphate, ammonium bicarbonate, pulverization aid, white carbon, and silicone oil is controlled to 4-6g: 1.5-3g: 2-3g: 0.5-1.5g: 0.5-1.0ml. ; Mix well. It is best to control the particle size of the extinguishing agent powder to 2 to 70 ⁇ m. The time and temperature for heating and holding are best kept at 100 ⁇ 105 °C for 2 ⁇ 3 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

公开了一种高效绿色环保型灭火剂及其制备方法。将磷酸二氢钠、碳酸氢铵和粉碎助剂充分研磨混合;然后加入白炭黑,充分研磨混合;再加入硅油,边加热边搅拌,并保持恒温一段时间,即得到包覆有硅油膜的白炭黑灭火剂。本方法所制备的灭火剂综合灭火性能显著提高,灭火效果卓越,比普通干粉灭火剂的灭火效率高一倍以上,且防潮防结块、抗复燃性、环境友好性都优于目前市场上的其他灭火剂,是一种能够兼顾灭火效率高、适用范围广、环保、经济效益好的灭火剂,具有很好的市场环境和发展前景。

Description

一种高效绿色环保型灭火剂及其制备方法 技术领域
本发明属于灭火技术领域。更具体地,涉及一种高效绿色环保型灭火剂及其制备方法。
背景技术
火灾一直是人类的大敌。从古至今,不论是自然火灾还是事故火灾,一方面造成了大量的自然资源和财产损失,另一方面,人类本身也深受其害。当前,灭火剂已经遍布人类生产生活的各个角落,年消耗量巨大,其发展至今,种类五花八门,各有优劣。世界上广泛使用的各类灭火剂产品在使用条件、适用范围、环境保护和灭火性能等方面都或多或少有着不足之处,而且对于火灾所造成的烟气的抑制作用非常有限。
哈龙灭火剂是其中最为典型的代表。哈龙灭火剂具有灭火效率较高、用量少、空间淹没性和化学稳定性较好,不导电、腐蚀性和毒性较小等特点,可用于扑救多种火灾,但是由于其不易分解,且会反应出一种破坏大气臭氧层的物质,严重消耗大气中的臭氧,对人类健康和生态环境造成巨大的威胁,根据国际公约,我国已经全面废除使用这种灭火器。
现在常见的哈龙系列灭火剂的替代品有七氟丙烷气体灭火剂、二氧化碳灭火剂、高压储罐式、低压多组分、低压泵站式细水雾灭火系统、K、S型热气溶胶灭火装置,再就是超细干粉灭火剂。前面几种灭火剂作为哈龙替代品虽然得到了较快的发展,但是由于诸多原因目前市场上广泛使用的固体类灭火剂仍是干粉类灭火剂。
干粉灭火剂由一种或多种具有灭火能力的细微无机粉末组成,其灭火机理为:灭火剂覆盖在可燃物表面,阻隔了可燃物与空气中的氧气接触,从而使燃烧无法维持而熄灭。但是,常见干粉灭火剂也有其不可避免的缺点,比如熔点较低,易受潮,颗粒尺寸受限,生产成本高,对液体火灾作用很小等。
发明内容
本发明要解决的技术问题是克服现有灭火剂的缺陷和不足,提供一种灭火效率高且绿色环保的灭火剂,打破了目前市场上没有一种能够兼顾灭火效果、适用 范围、环保、经济效益的灭火剂的僵局。
本发明的目的是提供一种高效绿色环保型灭火剂的制备方法。
本发明另一目的是提供所制备得到的灭火剂。
本发明上述目的通过以下技术方案实现:
一种高效绿色环保型灭火剂的制备方法,是将磷酸二氢钠、碳酸氢铵和粉碎助剂充分研磨混合;然后加入白炭黑,充分研磨混合;再加入硅油,边加热边搅拌,并保持恒温一段时间,得到包覆有硅油膜的新型白炭黑灭火剂。
优选地,所述粉碎助剂为碳酸钠。
优选地,所述白炭黑为颗粒尺寸介于微米级和纳米级之间的二氧化硅,包括微米级和纳米级。如微米级或纳米级石英砂。
优选地,所述硅油为二甲基硅油。
优选地,磷酸二氢钠、碳酸氢铵、粉碎助剂、白炭黑的质量比4~6:1.5~3:2~3:0.5~1.5。
优选地,磷酸二氢钠、碳酸氢铵、粉碎助剂和白炭黑的总量:硅油用量=0.5~1.0ml:10g。
优选地,所述保持恒温一段时间是100~105℃保温2~3个小时。
另外具体地,作为一种优选的可实施方式,所述制备方法包括以下步骤:
(1)取磷酸二氢钠、碳酸氢铵、粉碎助剂混合,研磨、过筛,控制粒度在200~300目之间,得到第一混合物;
(2)在第一混合物中加入白炭黑,充分混合后继续研磨、过筛,控制粒度在300~400目之间,得到第二混合物;
(3)向第二混合物中加入硅油,搅拌均匀,形成第三混合物;
(4)将第三混合物放入100~105℃保温2~3个小时,得到白炭黑灭火剂。
其中优选地,步骤(1)、(2)中研磨的时间为1~2h。
另外,由上述方法制备得到的灭火剂,也应在本发明的保护范围之内。所得灭火剂的粒度范围为2~70μm。
为简单说明问题起见,以下对本发明所述的一种高效绿色环保型灭火剂的制备方法均简称为本方法。
白炭黑是本发明灭火剂的灵魂,本发明所用白炭黑为疏水白炭黑,为微米或纳米级二氧化硅,结构为多孔性无定型态,呈白色粉末状,单个颗粒粒径很小, 堆积密度很低,这个特性赋予了产品优秀的空间填充性。白炭黑具有优良的耐高温性、电绝缘性、耐油性、化学稳定性和环境友好性,本身无味、无嗅、无毒,不能燃烧,可以归土还田。白炭黑作为一种环保、性能优异的材料,在本方法中承担着主要作用,因为它的超高比表面积具有极高吸附力,能显著提高最终产品的悬浮率,使灭火剂产品在应对液体火灾时能悬浮在液体表面且保持持久效力,易于悬浮形成隔绝氧气的薄膜,有良好的隔氧性、耐高温性质和化学稳定性。同时,由于其超细的粒径和超轻的单颗粒重量,能有效提高灭火剂粉体颗粒之间的自由流动性,使灭火剂产品不易结块,且具有一定的粘附性。
本方法采用的磷酸二氢钠为每个分子含两个结晶水的分析纯试剂,其密度为1.949g/cm 3,熔点为60℃。非常易溶于水,不溶于醇,在潮湿空气中易结块,100℃时会脱去结晶水成无水物,而且随着温度升高,会发生多种反应。水溶液呈酸性。
本方法所用碳酸氢铵是一种白色化合物,呈柱状结晶,有氨臭。与酸作用会生成二氧化碳和水。而磷酸二氢钠水溶液呈酸性,本方法正是利用了这一性质,在高温状态下两者相互反应,产生对灭火有益的二氧化碳和水,对灭火起重要作用,而且由于这个反应吸热,所以不仅能够抑制火灾,还能降低火场的温度。
本方法所用的碳酸钠主要作为一种粉碎助剂,帮助在研磨过程中使原料可以被研磨得更加彻底,最终得到的产品粒径更小更均匀,而且其分解产物吸热,产生的二氧化碳也有助于灭火。
本方法所用硅油为二甲基硅油,是一种疏水类的有机硅物料,一般状态下是一种无色透明粘稠液体,本身无味、无嗅、无毒。具有优异的憎水防潮性、良好的透光性、化学稳定性。本方法正是利用其优异的憎水防潮性、化学稳定性和耐热性,作为一种表面处理剂,一定的温度下,二甲基硅油在灭火剂粉体颗粒表面形成一层薄膜,从而使灭火剂具有良好的隔氧性、疏水性、耐热性和化学稳定性。
本发明以这些成分为原料制备出一种新型的白炭黑灭火剂。通过水溶性能测试可以看到,白炭黑灭火剂具有很灵活的水溶性,一般情况下能够长时间漂浮在液体表面,经过搅拌沉入液体中后也能保持一段时间不溶解,为对液体火灾进行灭火提供了极大的有利条件,长时间后,易溶于液体中,降低了环境危害。在热差热重分析中,根据热差热重曲线可以看到,白炭黑灭火剂在高温下进行多段分解,分解出抑制火灾的CO 2,且分解为吸热反应,可以有效降低火场温度;当温度达到500℃以上时,白炭黑灭火剂试样不再分解,趋于稳定,体现了白炭黑耐 高温的性质。通过激光粒度测试发现,白炭黑灭火剂试样的粒径97.36%都处于39.23μm以下,而干粉灭火剂的灭火性能与粒径成反比,粒径小,比表面积大,与火焰接触面积大,附着能力也强,且经过喷射,能在空间形成气溶胶,隔绝空气,有利于灭火。在灭火性能测试中可以看到,在同等条件下,白炭黑灭火剂无论是灭火时间还是灭火剂用量都要比不加白炭黑的普通灭火剂少很多,而且能够有效抑制火灾的烟气。因此,本发明的白炭黑灭火剂综合灭火性能显著优于不加白炭黑的普通灭火剂,灭火效率高一倍以上,而且原料廉价和灭火前后均绿色环保。
本发明具有以下有益效果:
本发明研究出一种高效绿色环保灭火剂来填补目前灭火剂市场上的各种不足,打破了目前市场上没有一种能够兼顾灭火效果、适用范围、环保、经济效益的灭火剂的僵局,得到一种应用范围广,灭火效果卓越,对环境无负面影响的新型灭火剂,对三种(固、液、气)不同类型的火灾都具有出色的灭火作用,并且其防潮防结块、抗复燃性、环境友好性都优于目前市场上的其他灭火剂。
本发明的白炭黑灭火剂不仅灭火效率高(易形成隔氧薄膜),而且与普通灭火剂相比,还具有耐高温、憎水防潮、抗结块的特性,绿色环保且生产成本较低,势必具有很好的市场环境和发展前景,这也符合科学发展观和绿色发展理念,定能产生相当可观的经济效益和环境效益。
附图说明
图1是本方法所制得的灭火剂的差热曲线。
图2是本方法所制得的灭火剂的热重曲线。
图3是本方法所制得的灭火剂的粒径分布曲线。
图4是本方法所制得的灭火剂的X射线衍射图谱(XRD)。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
一种高效绿色环保型灭火剂的制备方法,包括以下步骤:
(1)取4g的二水合磷酸二氢钠、1.5g的碳酸氢铵、2g的碳酸钠混合后加入玛瑙研钵中,研磨1h后过筛,控制粒度在200~250目之间,得到第一混合物;
(2)在第一混合物中加入0.5g的微米或纳米级二氧化硅,充分混合后继续研磨1h,然后过筛,控制粒度在300~350目之间得到第二混合物;
(3)向第二混合物中加入二甲基硅油,添加量为每1g第二混合物中添加0.05ml二甲基硅油,然后搅拌均匀,形成第三混合物;
(4)将第三混合物放入电恒温数显鼓风干燥箱中,设定温度100℃,保温2个小时后取出即可。所得灭火剂的粒度为2~70μm。
实施例2
一种高效绿色环保型灭火剂的制备方法,包括以下步骤:
(1)取5g的二水合磷酸二氢钠、2.25g的碳酸氢铵、2.5g的碳酸钠混合后加入玛瑙研钵中,研磨1.5h后过筛,控制粒度在230~270目之间,得到第一混合物;
(2)在第一混合物中加入1g的微米或纳米级二氧化硅,充分混合后继续研磨1.5h,然后过筛,控制粒度在330~370目之间得到第二混合物;
(3)向第二混合物中加入二甲基硅油,添加量为每1g第二混合物中添加0.075ml二甲基硅油,然后搅拌均匀,形成第三混合物;
(4)将第三混合物放入电恒温数显鼓风干燥箱中,设定温度102.5℃,保温2.5个小时后取出即可。所得灭火剂的粒度为2~70μm。
实施例3
一种高效绿色环保型灭火剂的制备方法,包括以下步骤:
(1)取6g的二水合磷酸二氢钠、3g的碳酸氢铵、3g的碳酸钠混合后加入玛瑙研钵中,研磨2h后过筛,控制粒度在250~300目之间,得到第一混合物;
(2)在第一混合物中加入1.5g的微米或纳米级二氧化硅,充分混合后继续研磨2h,然后过筛,控制粒度在350~400目之间得到第二混合物;
(3)向第二混合物中加入二甲基硅油,添加量为每1g第二混合物中添加0.1ml二甲基硅油,然后搅拌均匀,形成第三混合物;
(4)将第三混合物放入电恒温数显鼓风干燥箱中,设定温度105℃,保温3个小时后取出即可。所得灭火剂的粒度为2~70μm。
实施例4性能测试
以上述实施例2所制备的样品为例,测试本发明灭火剂的性能。
1、实验器材:
AR-1140型电子分析天平:上海梅特勒-托利多仪器有限公司。
GZX-9076-MBE型电恒温数显鼓风干燥箱:上海博讯实业有限公司。
Bettersize-2000型激光粒度分布仪:丹东百特仪器有限公司。
XD-3型X射线粉末衍射仪:北京普析仪器有限公司。
JJ-1型电动搅拌器:江苏省金坛市金城国胜试验仪器厂。
玛瑙研钵、研磨棒;烧杯。
2、水溶性测试:
灭火剂能否溶于水是其环保性能的一大体现。干粉类灭火剂在使用之后会有大量粉末残留,若是不能溶解,则会对环境造成不良影响。因此,干粉灭火剂应具备漂浮在常见易燃液体表面和短时间内不易溶解的性质,长时间后能溶解。
在水溶性测试中,分别用了生活中常见的三种液体作为测试对象,分别是水、乙醇和食用油。准备3个100ml的烧杯,分别加入60ml的蒸馏水、乙醇和食用油。称取5g的样品粉末,均匀喷洒到三种液体表面,开始计时并观察记录粉末在三种液体面上的漂浮状况和搅拌沉入液体后溶解所需的时间,测试结果如表1所示。
表1:灭火剂在三种液体中的性能表现
  乙醇 食用油
漂浮时间(不搅拌) 一直漂浮 一直漂浮 一直漂浮
溶解时间 ﹥3h ﹥3h 不溶解
在白炭黑和硅油共同作用下,可以看出,若是不搅拌,灭火剂在三种液体上都能一直漂浮,有利于形成隔氧灭火薄膜。搅拌之后,灭火剂进入液体中,在水中和乙醇中,灭火剂沉到液体底部,但并未见明显溶解。3h后,发现水和乙醇开始变得浑浊,即灭火剂开始溶解。6h时,灭火剂基本溶解完全,液体中可见少量残留,经收集检测发现为二氧化硅,即白炭黑。而在食用油中,一直未见明显溶解,灭火剂大部分随机分散在食用油中。
综合来看,试样粉末水溶性良好,灭火初期并不会马上溶解进液体中,形成隔绝氧气的薄膜,能有效发挥灭火作用;长时间后,易于溶解,不会造成大量残留影响环境。即本发明所制备灭火剂在水溶性方面有相当优异的表现。
3、灭火剂的热重和差热分析:
评判一种灭火剂灭火性能的一个重要指标就是热分解和吸放热情况,差热、热重测试方法为:用小坩埚称取10mg左右的样品,通过热重分析仪作对比分析,得到灭火剂样品的差热和热重曲线,然后根据热重、差热曲线分析得到灭火剂样品在高温下的热重和热分解吸放热情况。
通过对本方法所制得的灭火剂试样的热重分析测试,得到试样的热重、差热曲线。结果如图1、图2所示,可以看到试样的热重曲线图在170℃时有了第一个滑坡,此时碳酸氢铵开始分解,与此同时,从差热曲线上可以看到,有一个很明显的吸热峰,表明试样在分解时是吸收外界热量的。在310℃时热重曲线又出现了一个滑坡,此时磷酸二氢钠分解,同时差热曲线也出现了吸热峰。500℃以后,由于白炭黑的耐高温性质,试样热重曲线保持平稳,说明试样不再分解,耐高温性质良好。
由结果可以得出以下论断:在火灾现场,灭火剂试样在高温作用下开始多段分解,产生抑制火灾的二氧化碳气体和水蒸气,同时吸收火场热量,降低火场温度,且温度达到500℃以上时,试样中的二氧化硅微纳颗粒不再分解,能有效用于高温灭火剂。
因此,通过差热、热重分析,本方法所制得的灭火剂试样能高效用于高温和油电灭火需求。
4、灭火剂试样的粒径分布:
粒度测试方法:称取一定量的灭火剂粉末式样,利用激光粒度测试仪对其进行粒度分析。需要注意的是,由于式样表面包裹着一层薄薄的硅油膜,具有一定的疏水性,因此,在加入式样的过程中需用玻璃板不断地搅拌,加速粉末式样进入水体中,完成粒度分析测试。根据测试结果,可得到粉末式样的粒度分布情况。
通过激光粒度测试仪测试出本发明所研制的灭火剂粉末试样粒度分布如图3所示,图3横坐标为粒径大小,纵坐标为不同粒径所对应的百分比含量。众所周知,化学灭火剂的颗粒尺寸与灭火效能是成反比关系的,从图3中可以清楚地看到,试样粒径97.36%都处于39.23μm以下,颗粒粒径微小,比表面积大,粉末颗粒与火焰的接触面积就很大,粉末对火焰热量的吸收能力也会很大,配合纳米白炭黑的作用,颗粒质量小,活性大,经加压喷射,可在保护空间形成均匀分布相对稳定的气溶胶薄膜,隔绝氧气,因此,总体灭火效能比普通灭火剂高很多。
5、灭火剂粉末试样的X射线衍射图谱:
XRD测试:用药勺挑取适量样品加入药品槽中,压片严实后,准确放在X射线粉末衍射仪的载样台上,关好门,在电脑上启动分析程序,设定分析参数后,即可开始进行自动扫描测试,扫描结束得到数据,处理后可得到试样衍射图谱,根据衍射图谱与标准卡片比较分析试样的组成。
结果见图4,X轴为衍射角;Y轴为峰强度,本发明制备的灭火剂试样中二氧化硅的XRD衍射图谱。根据PDF标准卡片对比、分析发现:经过在Jade中把基线处理好后,试样在(-110)晶面(18.29°)和(010)晶面(22.10°)处出现了二氧化硅特征衍射峰,且两个峰都很尖锐,说明微纳米级二氧化硅在灭火剂试样中结晶程度较高。
6、灭火剂的灭火性能测试
测试灭火对象为木柴和酒精,取等量的木柴和酒精加入不锈钢盆中,在相同条件下,点燃可燃物且稳定燃烧后,用普通干粉灭火剂和本方法所制备的灭火剂配制相同的浓度(300g/L),用同一种喷枪进行灭火性能测试。测试结果如下表2所示。
表2:灭火性能测试结果
Figure PCTCN2018099504-appb-000001
本方法所制备的灭火剂与普通灭火剂的灭火效果相比,灭火时间和灭火剂用量远远低于普通灭火剂;而且因为白炭黑的耐高温、比表面能大、纳米吸附成膜作用强,对火灾烟气的抑制和隔氧作用更明显,所以本方法所制备的灭火剂的灭火性能要远远高于普通灭火剂。
实施例5
经过大量的研究实验显示,本方法中影响灭火剂综合性能的主要因素有磷酸二氢钠、碳酸氢铵、碳酸钠、白炭黑、硅油的添加量,混合均匀度,最终灭火剂粉体的粒度,加热保温的时间和温度等都会影响试样颗粒的综合性能。
具体地,磷酸二氢钠、碳酸氢铵、粉碎助剂、白炭黑、硅油的用量比控制在4~6g:1.5~3g:2~3g:0.5~1.5g:0.5~1.0ml为最佳;要充分混匀。灭火 剂粉体的粒度控制在2~70μm为最佳。加热保温的时间和温度以100~105℃保温2~3个小时为最佳。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种高效绿色环保型灭火剂的制备方法,其特征在于,将磷酸二氢钠、碳酸氢铵和粉碎助剂充分研磨混合;然后加入白炭黑,充分研磨混合;再加入硅油,边加热边搅拌,并保持恒温一段时间,得到包覆有硅油膜的白炭黑灭火剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述粉碎助剂为碳酸钠。
  3. 根据权利要求1所述的制备方法,其特征在于,所述白炭黑为颗粒尺寸介于微米级和纳米级之间的二氧化硅。
  4. 根据权利要求1所述的制备方法,其特征在于,所述硅油为二甲基硅油。
  5. 根据权利要求1所述的制备方法,其特征在于,磷酸二氢钠、碳酸氢铵、粉碎助剂、白炭黑的质量比4~6:1.5~3:2~3:0.5~1.5。
  6. 根据权利要求1所述的制备方法,其特征在于,磷酸二氢钠、碳酸氢铵、粉碎助剂和白炭黑的总量:硅油用量=0.5~1.0ml:10g。
  7. 根据权利要求1所述的制备方法,其特征在于,所述保持恒温一段时间是100~105℃保温2~3个小时。
  8. 根据权利要求1~7任一所述的制备方法,其特征在于,包括以下步骤:
    (1)取磷酸二氢钠、碳酸氢铵、粉碎助剂混合,研磨、过筛,控制粒度在200~300目之间,得到第一混合物;
    (2)在第一混合物中加入白炭黑,充分混合后继续研磨、过筛,控制粒度在300~400目之间,得到第二混合物;
    (3)向第二混合物中加入硅油,搅拌均匀,形成第三混合物;
    (4)将第三混合物放入100~105℃保温2~3个小时,得到白炭黑灭火剂。
  9. 根据权利要求8所述的制备方法,其特征在于,步骤(1)、(2)中研磨的时间为1~2h。
  10. 根据权利要求1~9任一所述方法制备得到的灭火剂。
PCT/CN2018/099504 2018-06-12 2018-08-09 一种高效绿色环保型灭火剂及其制备方法 WO2019237482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018403914A AU2018403914B2 (en) 2018-06-12 2018-08-09 Efficient, green and environmental friendly extinguishing agent and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810603049.4 2018-06-12
CN201810603049.4A CN108619651A (zh) 2018-06-12 2018-06-12 一种高效绿色环保型灭火剂的制备方法

Publications (1)

Publication Number Publication Date
WO2019237482A1 true WO2019237482A1 (zh) 2019-12-19

Family

ID=63691549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099504 WO2019237482A1 (zh) 2018-06-12 2018-08-09 一种高效绿色环保型灭火剂及其制备方法

Country Status (3)

Country Link
CN (1) CN108619651A (zh)
AU (1) AU2018403914B2 (zh)
WO (1) WO2019237482A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111081A (zh) * 2020-01-17 2020-05-08 刘大为 特种消防远距离灭火颗粒及其制备方法
CN112494878A (zh) * 2020-12-09 2021-03-16 安徽科技学院 一种水溶性环保型灭火剂及其制备方法和应用
CN112774077A (zh) * 2021-03-22 2021-05-11 厦门一泰消防科技开发有限公司 一种森林灭火剂及其制备方法
CN116059575A (zh) * 2023-03-02 2023-05-05 南京高昇消防药剂有限公司 一种防结块干粉灭火剂及其制备方法
CN116354652A (zh) * 2023-04-04 2023-06-30 中国海洋大学 一种耐高温碱激发白炭黑再生砂浆及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124246A (zh) * 2019-06-25 2019-08-16 安徽科技学院 一种石墨烯型高效环保灭火剂的制备方法
CN110639157B (zh) * 2019-09-24 2021-01-29 九江中船化学科技有限公司 一种高效复合灭火剂及其制备方法
CN111111079A (zh) * 2019-12-04 2020-05-08 宁波汇永聚消防设备有限公司 一种abc干粉灭火剂及其制备方法
CN111420338B (zh) * 2020-05-12 2021-05-18 安徽科技学院 一种利用石英砂尾矿制备高效环保型灭火剂的方法
CN112619019B (zh) * 2020-12-18 2021-11-02 中国民航大学 溶析结晶法制备稀土元素复合的高效超细粉体灭火剂方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686587A (zh) * 2005-04-26 2005-10-26 昆明泰康集团有限公司 磷酸铵盐干粉灭火剂的制备方法
CN101693140A (zh) * 2009-10-29 2010-04-14 刘守福 森林工艺灭火剂
CN105457212A (zh) * 2014-08-28 2016-04-06 天长市地震办公室 灭火剂

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247684A (zh) * 2011-06-13 2011-11-23 上海百友得机械设备有限公司 干粉灭火剂的生产工艺
CN102974066B (zh) * 2012-11-19 2016-06-01 浙江福兴消防设备有限公司 一种高效能abc超细干粉灭火剂及其制备方法
CN103550901B (zh) * 2013-10-31 2016-01-13 中国科学技术大学苏州研究院 新型复合粉体灭火介质及其制备方法
WO2018010663A1 (en) * 2016-07-12 2018-01-18 Optim Fire Essentials Pty. Ltd. Composition, container, system and methods
CN107670212A (zh) * 2016-08-01 2018-02-09 沈阳创达技术交易市场有限公司 一种abc干粉灭火剂
CN106861108A (zh) * 2017-04-05 2017-06-20 福建省南安市恒盾消防配套厂 一种干粉灭火组合物
CN107308585A (zh) * 2017-06-14 2017-11-03 南京工业大学 一种新型干粉灭火剂及其制备方法
CN107648785A (zh) * 2017-11-10 2018-02-02 蚌埠市龙泰消防有限公司 一种高效abc干粉灭火剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1686587A (zh) * 2005-04-26 2005-10-26 昆明泰康集团有限公司 磷酸铵盐干粉灭火剂的制备方法
CN101693140A (zh) * 2009-10-29 2010-04-14 刘守福 森林工艺灭火剂
CN105457212A (zh) * 2014-08-28 2016-04-06 天长市地震办公室 灭火剂

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111081A (zh) * 2020-01-17 2020-05-08 刘大为 特种消防远距离灭火颗粒及其制备方法
CN112494878A (zh) * 2020-12-09 2021-03-16 安徽科技学院 一种水溶性环保型灭火剂及其制备方法和应用
CN112774077A (zh) * 2021-03-22 2021-05-11 厦门一泰消防科技开发有限公司 一种森林灭火剂及其制备方法
CN116059575A (zh) * 2023-03-02 2023-05-05 南京高昇消防药剂有限公司 一种防结块干粉灭火剂及其制备方法
CN116059575B (zh) * 2023-03-02 2023-09-22 南京高昇消防药剂有限公司 一种防结块干粉灭火剂及其制备方法
CN116354652A (zh) * 2023-04-04 2023-06-30 中国海洋大学 一种耐高温碱激发白炭黑再生砂浆及其制备方法
CN116354652B (zh) * 2023-04-04 2024-06-07 中国海洋大学 一种耐高温碱激发白炭黑再生砂浆及其制备方法

Also Published As

Publication number Publication date
CN108619651A (zh) 2018-10-09
AU2018403914B2 (en) 2020-02-13
AU2018403914A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2019237482A1 (zh) 一种高效绿色环保型灭火剂及其制备方法
CN108343464B (zh) 一种矿用亲水型抗氧化阻化剂及其制备方法
Zou et al. Inspiration from a thermosensitive biomass gel: A novel method to improving the stability of core-shell “dry water” fire extinguishing agent
CN114504758B (zh) 一种无氟泡沫灭火剂及其制备方法
CN110639157B (zh) 一种高效复合灭火剂及其制备方法
Han et al. A novel environmental-friendly gel dry-water extinguishant containing additives with efficient combustion suppression efficiency
Li et al. Experimental study on the optimum concentration of ferrocene in composite ultrafine dry powder
CN115364420B (zh) 一种热气溶胶灭火剂及其制备方法
CN105903146A (zh) 新型超细干粉灭火剂及制备方法
Liang et al. Preparation and fire extinguishing mechanism of novel fire extinguishing powder based on recyclable struvite
CN105903147A (zh) 一种abc超细干粉灭火剂及其制备方法
Sun et al. Experimental study on prevention of spontaneous combustion of coal by ionic surfactant solution injection in coal seam
Wang et al. Gas explosion suppression by ammonium dihydrogen phosphate-modified dry water powder
CN103111035B (zh) 一种bc干粉灭火剂
Zheng et al. Preparation and properties of a new core–shell-modified gel dry-water powder
CN109854292A (zh) 一种抑制煤尘爆炸的粉体抑爆剂及其制备方法
CN113827906A (zh) 一种含有脲基甲酸酯盐的干粉灭火剂的制备方法
KR20110135482A (ko) 강화액 소화약제 조성물과 그 제조방법
Zhang et al. Preparation and inhibition performance of dry water materials for preventing spontaneous combustion of coal
CN111569348B (zh) 一种环保灭火剂及制备方法
CN105944276A (zh) 复合高性能干粉灭火剂及制备工艺
Wang et al. Study on the effects of inorganic salts and ionic surfactants on the wettability of coal based on the experimental and molecular dynamics investigations
US2697691A (en) Fire extinguishing foam composition
Koshiba et al. Combustion inhibition ability of calcium halides—an experimental study
CN101224329B (zh) 一种抑制硫化矿石氧化自燃的复合防灭火剂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018403914

Country of ref document: AU

Date of ref document: 20180809

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922657

Country of ref document: EP

Kind code of ref document: A1