WO2019235745A1 - 전기 이륜차의 배터리 충전 시스템 - Google Patents

전기 이륜차의 배터리 충전 시스템 Download PDF

Info

Publication number
WO2019235745A1
WO2019235745A1 PCT/KR2019/005457 KR2019005457W WO2019235745A1 WO 2019235745 A1 WO2019235745 A1 WO 2019235745A1 KR 2019005457 W KR2019005457 W KR 2019005457W WO 2019235745 A1 WO2019235745 A1 WO 2019235745A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
battery
electric
motor
main battery
Prior art date
Application number
PCT/KR2019/005457
Other languages
English (en)
French (fr)
Inventor
최정복
Original Assignee
주식회사 코터스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코터스 filed Critical 주식회사 코터스
Publication of WO2019235745A1 publication Critical patent/WO2019235745A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/24Personal mobility vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3084Electric currents sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention in the electric two-wheeled vehicle having a main battery as an electric power source, and drives the motor by the electric energy supplied from the main battery, selectively assists the electric energy generated from the generator driven by the rotational force of the wheel of the electric two-wheeled vehicle
  • the present invention relates to a battery charging system for an electric two-wheeled vehicle capable of optimizing energy consumption by charging the battery and selectively recovering the main battery through the battery charging unit.
  • This technology relates to an auxiliary power charging technology of an electric vehicle, characterized in that the charging is performed by receiving power through a large capacity battery so that the auxiliary power supply unit for supplying electric equipment of the electric vehicle is not placed in a low voltage and over discharge state. do.
  • the present invention relates to a charging control method for an electric vehicle and an electric vehicle auxiliary battery, and includes a high voltage battery for driving an electric vehicle, an auxiliary battery for supplying driving power to a plurality of electric loads and a plurality of electric loads, and PWM switching. And a converter for converting the voltage of the high voltage battery into a voltage required by the electric load, and a current detector for detecting the output current of the converter.
  • the converter includes energy required by the load based on the current detected by the current detector. If greater than the rated capacity of the converter includes a converter control unit for reducing the output voltage.
  • This technology detects an input voltage change of various electric loads driven by a voltage of an auxiliary battery in an electric vehicle and compensates the voltage charged in the auxiliary battery so that a stable constant voltage is supplied to the electric load.
  • An electric vehicle having a plurality of electric loads and an auxiliary battery for supplying a driving voltage to the plurality of electric loads comprising: a main controller for outputting a PWM control signal for supplying a main battery voltage to a voltage of the electric load; A DC / DC converter for converting the main battery voltage into a voltage required by the electric load by performing PWM switching according to the control signal of the first signal, a first voltage detector for detecting the output terminal voltage of the DC / DC converter, and an input end voltage of the electric load side.
  • a second voltage detector for detecting a voltage, a detected voltage and a second voltage of the first voltage detector Detecting a compensation value from the output voltage detection portion and includes a compensation value detector that is fed back to the main control part side.
  • the present invention is to charge the battery of the electric motorcycle that can optimize the energy consumption by charging the secondary battery with electrical energy generated from the generator driven by the rotational force of the wheel of the electric motorcycle, and selectively recovered to the main battery through the battery charging unit
  • the problem is to provide a system.
  • the present invention provides a motor driving inverter and a motor including a main battery as an electric power source and driving a motor by PWM controlling the power of the main battery and the main battery in an electric motorcycle that drives a motor with electric energy supplied from the main battery.
  • an auxiliary battery charger having a generator driven by the rotational force of the wheel of the electric motorcycle and configured to separately charge an auxiliary battery charging unit for charging the electric energy generated from the generator to the auxiliary battery, and controlling the electric energy stored in the auxiliary battery to control the main battery.
  • a battery charging system for an electric two-wheeled vehicle to be charged as an apparatus is provided.
  • the battery charging system of the electric two-wheeled vehicle of the present invention can optimize the energy consumption by charging electric energy generated from the generator driven by the rotational force of the wheel of the electric two-wheeled battery to the auxiliary battery and selectively recovering the main battery through the battery charging part. It can provide a technical effect.
  • FIG. 2 is a background of another embodiment of the present invention, the configuration of a battery control device and a control method of an electric vehicle
  • 3 is another background technology of the present invention, the configuration of the auxiliary battery voltage compensation device of an electric vehicle
  • Figure 6 is the overall configuration of the present invention.
  • Figure 7 is a configuration associated with the motor for rotating the drive wheel
  • Figure 8 is a configuration associated with the generator
  • the battery charging system of the electric two-wheeled vehicle of the present invention is directed to a vehicle driven by an electric motor (hereinafter referred to as a motor) and relates to a battery charging system that can be applied to not only a small two-wheeled vehicle but also an electric vehicle.
  • a motor an electric motor
  • a battery charging system that can be applied to not only a small two-wheeled vehicle but also an electric vehicle.
  • FIG. 4 shows the technical idea of the present invention.
  • the figure shows a basic configuration of an electric two-wheeled vehicle having a main battery as an electric power source and driving the motor 100 with electric energy supplied from the main battery.
  • the drawings illustrate a wheel motor provided in the driving wheel
  • the present invention may be applied to a structure in which a motor is provided at a position separate from the wheel and drives the driving wheel as a power transmission device.
  • a motor driving unit is provided between the main battery and the motor 100 to control the current Im supplied to the motor 100.
  • the motor driving unit is provided with a pulse width modulation (PWM) control signal according to a user's operation of the electric motorcycle so that the current Im supplied from the motor driving unit to the motor 100 is controlled, thereby increasing the speed of the electric motorcycle.
  • PWM pulse width modulation
  • the present invention includes a generator 200 driven by the rotational force of a wheel of an electric motorcycle, and selectively recovers electrical energy generated from the generator 200 to a main battery through a battery charging unit, thereby optimizing energy consumption.
  • a battery charging system for an electric two-wheeled vehicle the generator 200 may be applied to a structure in which a rotation force is transmitted from the driving wheel to the power transmission device provided at a position separate from the wheel.
  • the electrical energy generated by the generator 200 is connected to the main battery through the battery charger to charge there are many problems.
  • the motor driving current supplied from the main battery while the motor 100 is being driven is Im
  • the main charging current charged from the generator 200 to the main battery through the battery charging unit is Ic
  • Ic is set to Im. It is a small amount of current. If the main battery is being charged while the motor 100 is being driven, the battery charger cannot provide the motor driving current Im and the main charging current Ic, and thus, the effect of charging the main battery cannot be expected. Therefore, a novel configuration is needed to solve this problem.
  • the present invention in the electric two-wheeled vehicle having a main battery as an electric power source and driving the motor 100 by the electric energy supplied from the main battery, the motor drive to drive the motor by PWM control the power of the main battery and the main battery And an auxiliary battery charger having an inverter and a motor 100 and a generator 200 driven by a rotational force of a wheel of an electric motorcycle, and configured to separately charge an auxiliary battery charging unit for charging electric energy generated from the generator 200 to the auxiliary battery.
  • a battery charging system for an electric two-wheeled vehicle that controls the electrical energy stored in the auxiliary battery to charge with the main battery.
  • auxiliary charging current Is for charging the auxiliary battery from the generator 200 through the auxiliary battery charging unit and the motor driving current Im provided from the main battery.
  • the electric two-wheeled vehicle travels without driving the motor 100, including downhill driving
  • the inertia travels without supplying power to the motor 100 after stopping or accelerating, that is, When driving without power, a control for selectively charging the electric energy stored in the auxiliary battery with the main battery is required.
  • FIG. 6 shows the overall configuration of the present invention.
  • the present invention in the electric motorcycle driven by the motor 100,
  • a main battery 130 as an electric power source of an electric motorcycle; and a motor drive inverter 110 for pulse width modulation (PWM) of the power of the main battery 130;
  • An overload protection circuit 120 as a protection circuit connected to the motor drive inverter 110;
  • a motor 100 receiving the output power of the pulse width modulated motor driving inverter 110 to rotate the driving wheel of the electric motorcycle;
  • a generator (200) for outputting AC power by the rotational force of the driving wheel; and an AC-DC converter (210) for receiving the AC power of the generator (200) and converting it into direct current;
  • An auxiliary battery charger 220 for charging the auxiliary battery using the DC output of the AC-DC converter 210;
  • an auxiliary battery 230 in which the output power of the generator 200 is charged by the auxiliary battery charging unit 220.
  • a switch SW2 electrically connected to or disconnected from an electrode of the auxiliary battery 230; and a main battery charger 250 that charges the power of the auxiliary battery 230 to the main battery 130 according to the connection of the switch SW2. ); And a switch SW1 connected to the output of the main battery charger 250 and the main battery 130 to be electrically connected or disconnected.
  • the output of the current sensing means is connected to drive the motor according to the amount of current
  • An inverter operation monitoring unit 140 determining whether the inverter 110 and the motor 100 are driven to provide a logic output
  • An output monitoring unit 240 receiving the output voltage of the generator 200 and providing a logic output according to whether the driving wheel is rotated;
  • a charging control unit 300 which receives the logic outputs of the inverter operation monitoring unit 140 and the output monitoring unit 240 and controls the connection and disconnection of the switch SW1 and the switch SW2;
  • the power drive unit of the present invention includes a main battery 130 as an electric power source of an electric motorcycle; and a motor drive inverter 110 for pulse width modulation (PWM) of the power of the main battery 130; An overload protection circuit 120 as a protection circuit connected to the motor drive inverter 110; And a motor 100 receiving the output power of the pulse width modulated motor driving inverter 110 to rotate the driving wheel of the electric motorcycle.
  • PWM pulse width modulation
  • the connection path between the main battery 130 and the motor driving inverter 110 is provided.
  • a current sensing means for sensing an amount of current flowing to the motor driving inverter 110, and the output of the current sensing means is connected to determine whether the motor driving inverter 110 and the motor 100 are driven according to the amount of current and logic.
  • Inverter operation monitoring unit for providing an output; is configured.
  • the inverter operation monitoring unit 140 is connected to the output of the current sensing means to determine whether to drive the motor drive inverter 110 and the motor 100 according to the amount of current to provide a logic output.
  • FIG. 8 shows a configuration associated with the generator 200 for outputting the AC power by the rotational force of the drive wheel of the present invention.
  • the present invention the generator 200 for outputting the AC power by the rotational force of the drive wheel; and AC-DC converter 210 for receiving the AC power of the generator 200 to convert to DC;
  • An auxiliary battery charger 220 for charging the auxiliary battery using the DC output of the AC-DC converter 210;
  • an auxiliary battery 230 in which the output power of the generator 200 is charged by the auxiliary battery charging unit 220.
  • the illustrated output monitoring unit 240 when the output voltage of the generator 200 is generated, the driving wheel rotates, and the logic output "1". If the output voltage does not occur, the driving wheel does not rotate. Can be configured to output "
  • the auxiliary battery 230 in which the output power of the generator 200 is charged by the auxiliary battery charger 220 includes: a switch SW2 connected to be electrically connected to or disconnected from the electrode of the auxiliary battery 230; A main battery charger 250 for charging the power of the auxiliary battery 230 with the main battery 130 according to the connection of the switch SW2; And a switch SW1 connected to the output of the main battery charger 250 and the main battery 130 to be electrically connected or disconnected.
  • the inverter operation monitoring unit 140 is connected to the output of the current sensing means to determine whether to drive the motor drive inverter 110 and the motor 100 according to the amount of current to provide a logic output, the generator 200 And an output monitoring unit 240 that receives an output voltage and provides a logic output according to whether the driving wheel is rotated.
  • the logic output of the inverter operation monitoring unit 140 and the output monitoring unit 240 is input.
  • the charging controller 300 controls the connection and disconnection of the switch SW1 and the switch SW2.
  • the inverter operation monitoring unit 140 of the present invention determines whether the driving inverter 110 and the motor 100 are driven to provide a logic output and outputs the output.
  • the monitoring unit 240 provides the charging control unit 300 with a logic output depending on whether the driving wheel is rotated. Therefore, the inverter operation monitoring unit 140 outputs "1" when the motor driving inverter 110 and the motor 100 are driven, and "0" when the motor driving inverter 110 and the motor 100 are not driven.
  • the charging control unit 300 may switch the switch SW1 and the switch SW2 according to the above case. It can be designed to control access and disconnection.
  • the mode I is a state in which the power of the main battery 130 is driving the motor 100, the driving wheel is rotated to generate the output of the generator 200, the driving state by the power of the motor 100
  • the main battery 130 and the auxiliary battery 230 are turned off by the switch SW1 and the switch SW2, respectively.
  • Mode II is a case in which the motor 100 is not driven but the driving wheel is rotated so that there is an output of the generator 200, and thus, when driving inertia without supplying power of the motor 100 after acceleration, driving downhill is performed. In the case of driving without driving the motor 100, that is, driving without using the power of the main battery.
  • the switch SW1 and the switch SW2 are turned on so that the electric energy stored in the auxiliary battery 230 is charged to the main battery 130 through the main battery charging unit 250.
  • the power of the main battery 130 drives the motor 100
  • the driving wheel does not rotate, and may be regarded as a non-existent state or may be treated as a failure state.
  • the mode VI may be determined to be in a stopped state because the motor 100 is not driven and the driving wheel does not rotate. Therefore, in this case, as in the mode II, the switch SW1 and the switch SW2 are turned on so that the electric energy stored in the auxiliary battery 230 is charged to the main battery 130 through the main battery charging unit 250.
  • the operation of the output control unit 300 as described above may be implemented as a NAND gate having two inputs, the output of the inverter monitoring unit 140 and the output of the output monitoring unit 240, and a switch operated as an output of the NAND gate.
  • SW1 and the switch SW2 may be configured as a semiconductor switch such as a relay, a binary junction transistor (BJT), a field effect transistor (FET), and a solid state relay (SSR).
  • the electric energy generated from the generator 200 driven by the rotational force of the wheel of the electric two-wheeled vehicle is charged to the auxiliary battery, and selectively selected as the main battery through the battery charging unit By recovering, the battery charging system of the electric motorcycle which can optimize energy consumption is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은, 전기 동력원으로 메인 배터리를 구비하여 모터를 구동하는 전기 이륜차에 있어서, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터로부터 발생되는 전기 에너지를 선택적으로 보조 배터리에 충전하고, 배터리 충전부를 통해 메인 배터리로 선택적으로 회수함으로써, 에너지 소비를 최적화할 수 있는 전기 이륜차의 배터리 충전 시스템에 관한 것이다. 본 발명은, 메인 배터리와 상기 메인 배터리의 전력을 PWM 제어하여 모터를 구동하는 모터 구동 인버터 및 모터와, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터를 구비하고 상기 제너레이터로부터 발생되는 전기 에너지를 보조 배터리에 충전시키는 보조 배터리 충전부를 구분하여 구성하고, 상기 보조 배터리에 저장되는 전기 에너지를 제어하여 메인 배터리로 충전시키는 전기 이륜차의 배터리 충전 시스템을 특징으로 한다.

Description

전기 이륜차의 배터리 충전 시스템
본 발명은, 전기 동력원으로 메인 배터리를 구비하고, 상기 메인 배터리로부터 공급되는 전기 에너지로써 모터를 구동하는 전기 이륜차에 있어서, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터로부터 발생되는 전기 에너지를 선택적으로 보조 배터리에 충전하고, 배터리 충전부를 통해 메인 배터리로 선택적으로 회수함으로써, 에너지 소비를 최적화할 수 있는 전기 이륜차의 배터리 충전 시스템에 관한 것이다.
본 발명에 대한 배경 기술로서, 도면 제1도에 도시된 대한민국 공개특허공보 제10-2012-0083066호의 전기 자동차의 보조 전원 충전 장치 및 방법 기술이 있다. 이 기술은, 전기 자동차의 보조 전원 충전 기술에 관한 것으로, 전기 자동차의 전장품에 전원을 공급하는 보조 전원부가 저전압 및 과방전 상태에 놓이지 않도록 대용량 배터리를 통해 전원을 공급받아 충전을 수행하는 것을 특징으로 한다.
본 발명에 대한 다른 배경 기술로서, 도면 제2도에 도시된 대한민국 공개특허공보 제10-2012-0012661호의 전기자동차의 배터리 제어장치 및 그 제어방법 기술이 있다. 이 기술은, 전기자동차 및 전기자동차 보조배터리의 충전제어방법에 관한 것으로서, 전기자동차를 구동하는 고압배터리와, 복수개의 전장 부하 및 복수개의 전장 부하에 구동전원을 공급하는 보조배터리와, PWM스위칭을 수행하여 고압배터리의 전압을 전장 부하에서 요구되는 전압으로 변환하는 컨버터와, 컨버터의 출력전류를 검출하는 전류검출부를 포함하고, 컨버터는, 전류검출부에서 검출된 전류를 기초로 부하에서 필요한 에너지가 컨버터의 정격용량보다 큰 경우, 컨버터의 출력전압을 감소시키는 컨버터 제어부를 포함한다.
본 발명에 대한 또 다른 배경 기술로서, 도면 제3도에 도시된 대한민국 공개특허공보 제10-2004-0001975호의 전기자동차의 보조 배터리 전압 보상장치 기술이 있다. 이 기술은, 전기자동차에서 보조 배터리의 전압에 의해 구동되어지는 각종 전장 부하의 입력 전압 변동을 검출하여 보조 배터리에 충전되는 전압을 보상하도록 함으로써 전장 부하에 안정된 정전압이 공급되도록 하는 것으로, 메인 배터리와 복수개의 전장 부하 및 상기 복수개의 전장부하에 구동 전압을 공급하는 보조 배터리를 구비하는 전기 자동차에 있어서, 메인 배터리 전압을 전장 부하의 전압으로 공급하기 위한 PWM 제어신호를 출력하는 메인 제어부와, 메인 제어부의 제어신호에 따라 PWM 스위칭을 수행하여 메인 배터리 전압을 전장 부하에서 요구되는 전압으로 변환하는 DC/DC 컨버터와, DC/DC 컨버터의 출력단 전압을 검출하는 제1전압 검출부와, 전장 부하측의 입력단 전압을 검출하는 제2전압 검출부와, 제1전압 검출부의 검출 전압과 제2전압 검출부의 검출 전압으로부터 보상값을 검출하여 메인 제어부측에 피드백 인가하는 보상값 검출부를 포함한다.
본 발명은, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터로부터 발생되는 전기 에너지를 보조 배터리에 충전하고, 배터리 충전부를 통해 메인 배터리로 선택적으로 회수함으로써, 에너지 소비를 최적화할 수 있는 전기 이륜차의 배터리 충전 시스템을 제공하는 것을 해결하고자 하는 과제로 한다.
본 발명은, 전기 동력원으로 메인 배터리를 구비하고 상기 메인 배터리로부터 공급되는 전기 에너지로써 모터를 구동하는 전기 이륜차에서, 메인 배터리와 상기 메인 배터리의 전력을 PWM 제어하여 모터를 구동하는 모터 구동 인버터 및 모터와, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터를 구비하고 상기 제너레이터로부터 발생되는 전기 에너지를 보조 배터리에 충전시키는 보조 배터리 충전부를 구분하여 구성하고, 상기 보조 배터리에 저장되는 전기 에너지를 제어하여 메인 배터리로 충전시키는 전기 이륜차의 배터리 충전 시스템을 과제의 해결 수단으로 제공한다.
본 발명의 전기 이륜차의 배터리 충전 시스템은, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터로부터 발생되는 전기 에너지를 보조 배터리에 충전하고, 배터리 충전부를 통해 메인 배터리로 선택적으로 회수함으로써, 에너지 소비를 최적화할 수 있는 기술적 효과를 제공한다.
도면 제1도는 본 발명에 대한 배경 기술로서, 전기 자동차의 보조 전원 충전 장치 및 방법의 구성
도면 제2도는 본 발명에 대한 다른 배경 기술로서, 전기자동차의 배터리 제어장치 및 그 제어방법의 구성
도면 제3도는 본 발명에 대한 또 다른 배경 기술로서, 전기자동차의 보조 배터리 전압 보상장치의 구성
도면 제4도는 본 발명의 기술적 사상
도면 제5도는 본 발명의 기본 구성
도면 제6도는 본 발명의 전체 구성
도면 제7도는 구동휠을 회전시키는 모터와 연계된 구성
도면 제8도는 제너레이터와 연계된 구성
도면 제9도는 본 발명의 메인 배터리와 보조 배터리의 구성
도면 제10도는 본 발명의 충전 제어부의 일실시예를 통한 작용 관계
이하의 내용은 단지 본 발명의 원리를 예시한다 이에 따라 이 기술이 속하는 분야에서 보통의 지식을 가진 자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 장치 및 애플리케이션을 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 본 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한. 또한, 본 발명의 원리, 관점 및 실시 예들뿐만 아니라 특정 실시 예를 열거하는 모든 상세한 설명은 이러한 사항의 구조적 및 기능적 균등 물을 포함하도록 의도되는 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점들은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 더욱 분명해 질 것이다 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명한다.
본 발명의 전기 이륜차의 배터리 충전 시스템은, 전기 모터(이하 '모터'라 한다)에 의해 주행하는 차량을 대상으로 하며, 소형의 이륜차 뿐만 아니라 전기 자동차에까지 적용할 수 있는 배터리 충전 시스템에 관한 것이다. 이하에서는 본 발명의 특징적 구성과 작용 효과를 명확히 설명하기 위해 전기 이륜차를 예로 들어 설명한다,
도면 제4도는 본 발명의 기술적 사상을 도시한다. 도면은, 전기 동력원으로 메인 배터리를 구비하고, 상기 메인 배터리로부터 공급되는 전기 에너지로써 모터(100)를 구동하는 전기 이륜차의 기본 구성을 도시한다. 도면에서는 구동휠에 구비된 휠 모터를 도시하고 있으나, 본 발명은 휠(wheel)과 별도의 위치에 모터를 구비하고 동력 전달 장치로써 구동휠을 구동하는 구조에도 적용될 수 있다. 이러한 구성에서 상기 메인 배터리와 모터(100) 사이에는 모터(100)에 공급되는 전류 Im을 제어하는 모터 구동부가 구비된다. 상기 모터 구동부는 전기 이륜차의 이용자의 조작에 따라 펄스폭 변조(PWM: pulse width modulation) 제어 신호가 제공되어 모터 구동부로부터 모터(100)에 공급되는 전류 Im이 제어되고, 이에 따라 전기 이륜차의 속도가 제어된다. 상기와 같은 구조의 전기 이륜차는 주행시, 메인 배터리-모터 구동부-모터(100) 간의 전력 소모가 불연속적이다. 다시 말해서, 주행중 정지, 가속 후 모터(100)의 전력을 공급하지 않고 관성 주행하는 경우, 내리막길 주행 등 모터(100)를 구동하지 않고 주행하는 경우 등 메인 배터리의 전력을 사용하지 않는 주행이 발생한다.
본 발명은, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터(200)를 구비하고 상기 제너레이터(200)로부터 발생되는 전기 에너지를 배터리 충전부를 통해 메인 배터리로 선택적으로 회수함으로써, 에너지 소비를 최적화할 수 있는 전기 이륜차의 배터리 충전 시스템을 제공한다. 이때 상기 제너레이터(200)는 휠(wheel)과 별도의 위치에 구비되어 구동휠로부터 동력 전달 장치로써 회전력이 전달되도록 하는 구조에도 적용될 수 있다.
그러나 도시된 바와 같이, 제너레이터(200)로부터 발생되는 전기 에너지를 배터리 충전부를 통해 메인 배터리로 연결하여 충전하는 것은 많은 문제점을 가진다. 모터(100)가 구동되고 있는 상태에서 메인 배터리로부터 공급되는 모터 구동 전류를 Im이라 하고, 제너레이터(200)로부터 배터리 충전부를 통해 메인 배터리로 충전되는 메인 충전 전류를 Ic라 하면, 상기 Ic는 Im에 비해 작은량의 전류이다. 만약 모터(100)가 구동되고 있는 상태에서 메인 배터리를 충전한다면 상기 배터리 충전부는 상기 모터 구동 전류를 Im 과 메인 충전 전류를 Ic를 제공하지 못하므로 사실상 메인 배터리를 충전하는 효과를 기대할 수 없다. 따라서 이러한 문제를 해결하기 위한 신규한 구성이 필요하게 된다.
도면 제5도는 본 발명의 기본 구성을 도시한다. 본 발명은, 전기 동력원으로 메인 배터리를 구비하고 상기 메인 배터리로부터 공급되는 전기 에너지로써 모터(100)를 구동하는 전기 이륜차에서, 메인 배터리와 상기 메인 배터리의 전력을 PWM 제어하여 모터를 구동하는 모터 구동 인버터 및 모터(100)와, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터(200)를 구비하고 상기 제너레이터(200)로부터 발생되는 전기 에너지를 보조 배터리에 충전시키는 보조 배터리 충전부를 구분하여 구성하고, 상기 보조 배터리에 저장되는 전기 에너지를 제어하여 메인 배터리로 충전시키는 전기 이륜차의 배터리 충전 시스템을 제공한다. 상기의 구성에 의하면, 제너레이터(200)로부터 보조 배터리 충전부를 통해 보조 배터리를 충전하는 보조 충전 전류 Is와 메인 배터리로부터 제공되는 모터 구동 전류 Im을 분리하여 제어할 수 있다. 이 구성에서, 전기 이륜차가 주행중 정지, 가속 후 모터(100)의 전력을 공급하지 않고 관성 주행하는 경우, 내리막길 주행 등을 포함하여 모터(100)를 구동하지 않고 주행하는 경우, 즉 메인 배터리의 전력을 사용하지 않는 주행시 선택적으로 보조 배터리에 저장된 전기 에너지를 메인 배터리로 충전시키는 제어가 필요하다.
도면 제6도는 본 발명의 전체 구성을 도시한다. 본 발명은, 모터(100)로 구동되는 전기 이륜차에서,
전기 이륜차의 전기 동력원으로서 메인 배터리(130);와, 상기 메인 배터리(130)의 전력을 펄스폭 변조(PWM: pulse width modulation)하는 모터 구동 인버터(110); 상기 모터 구동 인버터(110)에 접속되는 보호 회로로서 과부하 보호 회로(120); 상기 펄스폭 변조된 모터 구동 인버터(110)의 출력 전력을 제공받아 전기 이륜차의 구동휠을 회전시키는 모터(100);와,
구동휠의 회전력에 의해 교류 전력을 출력하는 제너레이터(200);와 상기 제너레이터(200)의 교류 전력을 제공받아 직류로 변환하는 AC-DC 변환부(210); 상기 AC-DC 변환부(210)의 직류 출력을 이용하여 보조 배터리를 충전시키는 보조 배터리 충전부(220); 그리고 상기 보조 배터리 충전부(220)에 의해 제너레이터(200)의 출력 전력이 충전되는 보조 배터리(230);와,
상기 보조 배터리(230)의 전극과 전기적으로 접속 또는 차단되도록 연결되는 스위치 SW2;와, 상기 스위치 SW2의 접속에 따라 보조 배터리(230)의 전력을 메인 배터리(130)로 충전시키는 메인 배터리 충전부(250); 상기 메인 배터리 충전부(250)의 출력과 메인 배터리(130)가 전기적으로 접속 또는 차단되도록 연결되는 스위치 SW1;을 구비한다.
상기 메인 배터리(130)와 모터 구동 인버터(110)의 접속 경로상에는 모터 구동 인버터(110)로 흐르는 전류량을 감지하는 전류 감지 수단을 구비하고, 상기 전류 감지 수단의 출력이 연결되어 전류량에 따라 모터 구동 인버터(110)와 모터(100)의 구동 여부를 판단하여 논리 출력을 제공하는 인버터 작동 감시부(140);와,
상기 제너레이터(200)의 출력 전압을 입력받아 구동휠의 회전 여부에 따른 논리 출력을 제공하는 출력 감시부(240);와
상기 인버터 작동 감시부(140)와 출력 감시부(240)의 논리 출력을 입력받아 상기 스위치 SW1과 스위치 SW2의 접속 및 차단을 제어하는 충전 제어부(300);
를 구비한다.
도면 제7도는 구동휠을 회전시키는 모터(100)와 연계된 구성을 도시한다. 본 발명의 동력 구동부는, 전기 이륜차의 전기 동력원으로서 메인 배터리(130);와, 상기 메인 배터리(130)의 전력을 펄스폭 변조(PWM: pulse width modulation)하는 모터 구동 인버터(110); 상기 모터 구동 인버터(110)에 접속되는 보호 회로로서 과부하 보호 회로(120); 상기 펄스폭 변조된 모터 구동 인버터(110)의 출력 전력을 제공받아 전기 이륜차의 구동휠을 회전시키는 모터(100);를 구비하고, 상기 메인 배터리(130)와 모터 구동 인버터(110)의 접속 경로상에는 모터 구동 인버터(110)로 흐르는 전류량을 감지하는 전류 감지 수단을 구비하고, 상기 전류 감지 수단의 출력이 연결되어 전류량에 따라 모터 구동 인버터(110)와 모터(100)의 구동 여부를 판단하여 논리 출력을 제공하는 인버터 작동 감시부(140);로 구성된다. 상기 인버터 작동 감시부(140)는 상기 전류 감지 수단의 출력이 연결되어 전류량에 따라 모터 구동 인버터(110)와 모터(100)의 구동 여부를 판단하여 논리 출력을 제공한다. 도시된 인버터 작동 감시부(140)는, 전류 감지 수단의 출력이 모터 구동 인버터(110)와 모터(100)가 구동되면 "1", 상기 모터 구동 인버터(110)와 모터(100)가 구동되지 않는 경우 "0"를 출력하는 일례를 도시한다.
도면 제8도는 본 발명의 구동휠의 회전력에 의해 교류 전력을 출력하는 제너레이터(200)와 연계된 구성을 도시한다. 본 발명은, 구동휠의 회전력에 의해 교류 전력을 출력하는 제너레이터(200);와 상기 제너레이터(200)의 교류 전력을 제공받아 직류로 변환하는 AC-DC 변환부(210); 상기 AC-DC 변환부(210)의 직류 출력을 이용하여 보조 배터리를 충전시키는 보조 배터리 충전부(220); 그리고 상기 보조 배터리 충전부(220)에 의해 제너레이터(200)의 출력 전력이 충전되는 보조 배터리(230);로 구성된다. 상기 제너레이터(200)의 출력단에는, 상기 제너레이터(200)의 출력 전압을 입력받아 구동휠의 회전 여부에 따른 논리 출력을 제공하는 출력 감시부(240);를 구비한다. 도시된 출력 감시부(240)는, 제너레이터(200)의 출력 전압이 발생하면 구동휠이 회전하는 것으로 논리출력 "1", 출력 전압이 발생하지 않으면 구동휠이 회전하지 않는 정지 상태인 것으로서 "0"을 출력하도록 구성할 수 있다.
도면 제9도는 본 발명의 메인 배터리(130)와 보조 배터리(230)의 구성을 도시한다. 본 발명에서 보조 배터리 충전부(220)에 의해 제너레이터(200)의 출력 전력이 충전되는 보조 배터리(230)는, 상기 보조 배터리(230)의 전극과 전기적으로 접속 또는 차단되도록 연결되는 스위치 SW2;와, 상기 스위치 SW2의 접속에 따라 보조 배터리(230)의 전력을 메인 배터리(130)로 충전시키는 메인 배터리 충전부(250); 상기 메인 배터리 충전부(250)의 출력과 메인 배터리(130)가 전기적으로 접속 또는 차단되도록 연결되는 스위치 SW1;을 구비한다. 그리고 상기 인버터 작동 감시부(140)는 상기 전류 감지 수단의 출력이 연결되어 전류량에 따라 모터 구동 인버터(110)와 모터(100)의 구동 여부를 판단하여 논리 출력을 제공하고, 제너레이터(200)의 출력 전압을 입력받아 구동휠의 회전 여부에 따른 논리 출력을 제공하는 출력 감시부(240);를 구비하며, 상기 인버터 작동 감시부(140)와 출력 감시부(240)의 논리 출력을 입력으로 하는 충전 제어부(300);에 의해 상기 스위치 SW1과 스위치 SW2의 접속 및 차단이 제어된다.
도면 제10도는 본 발명의 충전 제어부(300)의 일실시예를 통한 작용 관계를 도시한다. 앞의 도면 제7도 내지 제9도를 통해 설명된 바와 같이 본 발명의 인버터 작동 감시부(140)는 구동 인버터(110)와 모터(100)의 구동 여부를 판단하여 논리 출력을 제공하고, 출력 감시부(240)는 구동휠의 회전 여부에 따른 논리 출력을 충전 제어부(300)에 제공한다. 따라서 인버터 작동 감시부(140)가 모터 구동 인버터(110)와 모터(100) 구동시 "1", 모터 구동 인버터(110)와 모터(100)가 구동되지 않는 경우 "0"를 출력하고, 출력 감시부(240)가 구동휠이 회전할 때 논리출력 "1", 구동휠이 정지 상태인 경우 "0"을 출력하므로, 상기 충전 제어부(300)는 상기의 경우에 따라 스위치 SW1과 스위치 SW2의 접속 및 차단을 제어하도록 설계될 수 있다.
도시된 바와 같이, 모드 I은 메인 배터리(130)의 전력이 모터(100)를 구동하고 있으며, 구동휠이 회전하여 제너레이터(200)의 출력이 있는 경우로서 모터(100)의 동력으로 주행중인 상태이므로 이때에는 메인 배터리(130)와 보조 배터리(230)를 각각 스위치 SW1과 스위치 SW2로써 off 시켜 차단한다. 모드 II는 모터(100)가 구동되지 않고 있으나 구동휠이 회전하여 제너레이터(200)의 출력이 있는 경우이므로 가속 후 모터(100)의 전력을 공급하지 않고 관성 주행하는 경우, 내리막길 주행 등을 포함하여 모터(100)를 구동하지 않고 주행하는 경우, 즉 메인 배터리의 전력을 사용하지 않는 주행하는 상태이다. 따라서 상기 모드 II에서는 스위치 SW1과 스위치 SW2를 on 시켜 보조 배터리(230)에 저장된 전기 에너지가 메인 배터리 충전부(250)을 통해 메인 배터리(130)에 충전되도록 한다. 모드 III는 메인 배터리(130)의 전력이 모터(100)를 구동하고 있으나, 구동휠이 회전하지 않는 경우로서 존재하지 않는 상태로 간주하거나, 또는 고장 상태로 처리할 수 있다. 모드 VI는 모터(100)가 구동되지 않고 있으며 구동휠도 회전하지 않으므로 정지 상태로 판단할 수 있다. 따라서 이 경우에는 모드 II와 같이 스위치 SW1과 스위치 SW2를 on 시켜 보조 배터리(230)에 저장된 전기 에너지가 메인 배터리 충전부(250)을 통해 메인 배터리(130)에 충전되도록 한다. 상기와 같은 출력 제어부(300)의 작용은, 인버터 감시부(140)의 출력과 출력 감시부(240)의 출력을 두 입력으로하는 NAND 게이트로써 구현할 수 있으며, 상기 NAND 게이트의 출력으로써 동작되는 스위치 SW1과 스위치 SW2는 릴레이, BJT(binary junction transistor), FET(field effect transistor), SSR(solid state relay)와 같은 반도체 스위치로 구성할 수 있다.
이상과 같이 설명된 본 발명의 전기 이륜차의 배터리 충전 시스템에 의하면, 전기 이륜차의 휠의 회전력으로 구동되는 제너레이터(200)로부터 발생되는 전기 에너지를 보조 배터리에 충전하고, 배터리 충전부를 통해 메인 배터리로 선택적으로 회수함으로써, 에너지 소비를 최적화할 수 있는 전기 이륜차의 배터리 충전 시스템을 제공한다.
본 발명의 전기 이륜차의 배터리 충전 시스템은, 비록 한정된 실시예들과 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (4)

  1. 전기 동력원으로 메인 배터리를 구비하고 상기 메인 배터리로부터 공급되는 전기 에너지로써 모터를 구동하는 전기 이륜차의 배터리 충전 시스템에 있어서,
    전기 이륜차의 전기 동력원으로서 메인 배터리(130);와,
    상기 메인 배터리(130)의 전력을 펄스폭 변조(PWM: pulse width modulation)하는 모터 구동 인버터(110);
    상기 모터 구동 인버터(110)에 접속되는 보호 회로로서 과부하 보호 회로(120);
    상기 펄스폭 변조된 모터 구동 인버터(110)의 출력 전력을 제공받아 전기 이륜차의 구동휠을 회전시키는 모터(100);와,
    구동휠의 회전력에 의해 교류 전력을 출력하는 제너레이터(200);와
    상기 제너레이터(200)의 교류 전력을 제공받아 직류로 변환하는 AC-DC 변환부(210);
    상기 AC-DC 변환부(210)의 직류 출력을 이용하여 보조 배터리를 충전시키는 보조 배터리 충전부(220);
    그리고 상기 보조 배터리 충전부(220)에 의해 제너레이터(200)의 출력 전력이 충전되는 보조 배터리(230);와,
    상기 보조 배터리(230)의 전극과 전기적으로 접속 또는 차단되도록 연결되는 스위치 SW2;와,
    상기 스위치 SW2의 접속에 따라 보조 배터리(230)의 전력을 메인 배터리(130)로 충전시키는 메인 배터리 충전부(250);
    상기 메인 배터리 충전부(250)의 출력과 메인 배터리(130)가 전기적으로 접속 또는 차단되도록 연결되는 스위치 SW1;
    을 구비하고,
    상기 메인 배터리(130)는,
    모터 구동 인버터(110)와의 접속 경로상에 모터 구동 인버터(110)로 흐르는 전류량을 감지하는 전류 감지 수단;을 구비하고,
    상기 전류 감지 수단의 출력이 연결되어 전류량에 따라 모터 구동 인버터(110)와 모터(100)의 구동 여부를 판단하여 논리 출력을 제공하는 인버터 작동 감시부(140);와,
    상기 제너레이터(200)의 출력 전압을 입력받아 구동휠의 회전 여부에 따른 논리 출력을 제공하는 출력 감시부(240);와
    상기 인버터 작동 감시부(140)와 출력 감시부(240)의 논리 출력을 입력받아 상기 스위치 SW1과 스위치 SW2의 접속 및 차단을 제어하는 충전 제어부(300);
    를 구비한 것을 특징으로 하는 전기 이륜차의 배터리 충전 시스템
  2. 제1항에 있어서 상기 인버터 작동 감시부(140)는,
    모터 구동 인버터(110)와 모터(100) 구동시 "1", 모터 구동 인버터(110)와 모터(100)가 구동되지 않는 경우 "0"를 출력하고,
    출력 감시부(240)는,
    구동휠이 회전할 때 논리출력 "1", 구동휠이 정지 상태인 경우 "0"을 출력하도록 구성된 것을 특징으로 하는 전기 이륜차의 배터리 충전 시스템
  3. 제1항에 있어서 상기 충전 제어부(300)는,
    인버터 작동 감시부(140)의 출력이 "1" 이고,
    출력 감시부(240)의 출력이 "1"이면,
    메인 배터리(130)와 보조 배터리(230)를 각각 스위치 SW1과 스위치 SW2로써 off 시켜 차단시키도록 구성된 것을 특징으로 하는 전기 이륜차의 배터리 충전 시스템.
  4. 제1항에 있어서 상기 충전 제어부(300)는,
    인버터 작동 감시부(140)의 출력이 "0" 이고,
    출력 감시부(240)의 출력이 "1"이거나,
    인버터 작동 감시부(140)의 출력이 "0" 이고,
    출력 감시부(240)의 출력이 "0"이면,
    스위치 SW1과 스위치 SW2를 on 시켜,
    보조 배터리(230)에 저장된 전기 에너지가 메인 배터리 충전부(250)을 통해 메인 배터리(130)에 충전되도록 구성된 것을 특징으로 하는 전기 이륜차의 배터리 충전 시스템.
PCT/KR2019/005457 2018-06-05 2019-05-08 전기 이륜차의 배터리 충전 시스템 WO2019235745A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0064709 2018-06-05
KR1020180064709A KR101949982B1 (ko) 2018-06-05 2018-06-05 전기 이륜차의 배터리 충전 시스템

Publications (1)

Publication Number Publication Date
WO2019235745A1 true WO2019235745A1 (ko) 2019-12-12

Family

ID=62806436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005457 WO2019235745A1 (ko) 2018-06-05 2019-05-08 전기 이륜차의 배터리 충전 시스템

Country Status (2)

Country Link
KR (1) KR101949982B1 (ko)
WO (1) WO2019235745A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023896A (ko) * 1999-07-14 2000-05-06 권오석 차량의타이어휠회전력으로발전되는전기자동차
KR20010016441A (ko) * 2000-12-11 2001-03-05 정형동 전기 자동차의 자가 발전 장치
KR20060104466A (ko) * 2005-03-30 2006-10-09 이용신 디스크 회전형 발전기 및 발전방법
KR20100018238A (ko) * 2008-08-06 2010-02-17 윤도군 자가발전장치와 이를 구비하는 전기차량 및 그 구동방법
KR20140038341A (ko) * 2010-10-05 2014-03-28 타잉 펑 판 배터리 보강 시스템 및 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330049B2 (ja) * 1997-03-07 2002-09-30 本田技研工業株式会社 電気自動車の制御装置
KR100258043B1 (ko) 1997-10-27 2000-06-01 에릭 발리베 복합전기자동차용 보조동력장치의 제어시스템
KR100471236B1 (ko) 2002-06-29 2005-03-10 현대자동차주식회사 전기자동차의 보조 배터리 전압 보상장치
JP5096012B2 (ja) 2007-02-07 2012-12-12 株式会社竹内製作所 電気駆動式作業車
US8952564B2 (en) 2009-08-07 2015-02-10 Toyota Jidosha Kabushiki Kaisha Power source system for electric powered vehicle
KR101583340B1 (ko) 2010-08-02 2016-01-21 엘지전자 주식회사 전기자동차의 배터리 제어장치 및 그 제어방법
KR20120083066A (ko) 2011-01-17 2012-07-25 한국과학기술원 전기 자동차의 보조 전원 충전 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023896A (ko) * 1999-07-14 2000-05-06 권오석 차량의타이어휠회전력으로발전되는전기자동차
KR20010016441A (ko) * 2000-12-11 2001-03-05 정형동 전기 자동차의 자가 발전 장치
KR20060104466A (ko) * 2005-03-30 2006-10-09 이용신 디스크 회전형 발전기 및 발전방법
KR20100018238A (ko) * 2008-08-06 2010-02-17 윤도군 자가발전장치와 이를 구비하는 전기차량 및 그 구동방법
KR20140038341A (ko) * 2010-10-05 2014-03-28 타잉 펑 판 배터리 보강 시스템 및 방법

Also Published As

Publication number Publication date
KR20180069760A (ko) 2018-06-25
KR101949982B1 (ko) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2012018206A2 (ko) 전기자동차의 배터리 제어장치 및 그 제어방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2015126036A1 (ko) 전류 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
CN100429857C (zh) 不间断电源装置
WO2016017963A1 (ko) 전기 자동차의 급속 충전 제어 장치
WO2013018972A1 (ko) 이차 전지의 과전류 보호 장치, 보호 방법 및 전지 팩
JP2013176251A (ja) 電源装置
WO2021033956A1 (ko) 배터리 시스템 및 배터리 시스템의 운용 방법
WO2021085759A1 (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
CN107919699A (zh) 电动汽车及其电池包
WO2016064224A1 (ko) 전류 제어 장치 및 방법
CN110571888A (zh) 一种电池包控制方法、装置、及电器设备
WO2019235745A1 (ko) 전기 이륜차의 배터리 충전 시스템
US11588189B2 (en) Battery control method
US20210028642A1 (en) Electrical energy storage system and method for operating same
US7417407B1 (en) Circuit with a switch for charging a battery in a battery capacitor circuit
WO2012138010A1 (ko) 탈부착 가능한 태블릿 pc를 이용하는 전기자동차의 전원관리 시스템 및 이를 포함하는 전기자동차
WO2013089511A1 (ko) 릴레이 구동장치
KR102024466B1 (ko) 차량용 리튬 배터리 부하특성 개선 장치
WO2022103183A1 (ko) 배터리 활성화를 위한 직류 배전 기반의 충방전 시스템
WO2013183802A1 (ko) 직렬형 하이브리드 건설기계 시스템의 제어 장치 및 그 방법
WO2015080517A1 (ko) 저발열 무선 전력 수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815126

Country of ref document: EP

Kind code of ref document: A1