WO2019235627A1 - 改変されたCas9タンパク質及びその用途 - Google Patents

改変されたCas9タンパク質及びその用途 Download PDF

Info

Publication number
WO2019235627A1
WO2019235627A1 PCT/JP2019/022795 JP2019022795W WO2019235627A1 WO 2019235627 A1 WO2019235627 A1 WO 2019235627A1 JP 2019022795 W JP2019022795 W JP 2019022795W WO 2019235627 A1 WO2019235627 A1 WO 2019235627A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
positions
domain
protein according
Prior art date
Application number
PCT/JP2019/022795
Other languages
English (en)
French (fr)
Inventor
哲也 山形
ユアンバウ シン
Original Assignee
株式会社モダリス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP19815297.7A priority Critical patent/EP3805386A4/en
Application filed by 株式会社モダリス filed Critical 株式会社モダリス
Priority to KR1020217000588A priority patent/KR20210025046A/ko
Priority to US16/972,920 priority patent/US20220017881A1/en
Priority to JP2020523211A priority patent/JP7412001B2/ja
Priority to MX2020013158A priority patent/MX2020013158A/es
Priority to AU2019281158A priority patent/AU2019281158A1/en
Priority to BR112020024992-0A priority patent/BR112020024992A2/pt
Priority to SG11202012228QA priority patent/SG11202012228QA/en
Priority to CA3103088A priority patent/CA3103088A1/en
Priority to CN201980037466.XA priority patent/CN112513266A/zh
Publication of WO2019235627A1 publication Critical patent/WO2019235627A1/ja
Priority to IL279178A priority patent/IL279178A/en
Priority to ZA2021/00092A priority patent/ZA202100092B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • C07K2319/81Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Definitions

  • the present invention relates to a modified Cas9 protein that has been reduced in size while maintaining the ability to bind to guide RNA, and uses thereof.
  • CRISPR Clustered Regularly Arranged Short Palindromic Repeats
  • Cas Cas-associated genes
  • exogenous DNA is cleaved into fragments of about 30 bp by the Cas protein family and inserted into CRISPR.
  • Cas1 and Cas2 proteins which are one of the Cas protein family, recognize a base sequence called proto-spacer adadient motif (PAM) of foreign DNA, cut the upstream, and insert it into the CRISPR sequence of the host. It becomes immune memory of bacteria.
  • RNA generated by transcription of a CRISPR sequence including immune memory (referred to as pre-crRNA) is part of the Cas protein family by pairing with partially complementary RNA (trans-activating crRNA). It is incorporated into Cas9 protein.
  • the pre-crRNA and tracrRNA incorporated into Cas9 are cleaved by RNaseIII to form small RNA fragments (CRISPR-RNAs: crRNAs) containing a foreign sequence (guide sequence) to form a Cas9-crRNA-tracrRNA complex.
  • CRISPR-RNAs crRNAs
  • the Cas9-crRNA-tracrRNA complex binds to a foreign invasive DNA complementary to crRNA, and the Cas9 protein, which is an enzyme that cleaves the DNA, cleaves the foreign invasive DNA, thereby invading DNA from outside. Suppress and eliminate the function of
  • crRNA and tracrRNA are fused and expressed as a tracrRNA-crRNA chimera (hereinafter referred to as guide RNA: gRNA) and utilized.
  • guide RNA gRNA
  • nuclease RNA-guided nuclease: RGN
  • RGN genomic DNA is cleaved at the target site.
  • a mutant (nuclease-null, dCas9) inactivated by a nuclease of Cas9 protein in CRISPR / Cas9 which is one of genome editing systems, is a transcription activator such as VP64 or VP160, or a transcription repressor such as KRAB.
  • a system capable of controlling the expression level of a target gene can be obtained by fusing a transcriptional control factor such as
  • a transcriptional control factor such as For example, in order to further increase the efficiency of gene activation, three transcriptional activators are fused with linked activators (VP64-p65-Rta, VPR), and the fused dCas9 protein (dCas9-VPR; dCas9 fusion) Protein) strongly activates the expression of the target gene without cleaving the DNA.
  • the Cas9 protein consists of two lobes, a REC lobe (REC) and a NUC lobe (NUC: nuclease).
  • the REC lobe is composed of an ⁇ -helix rich in arginine residues, the REC1 domain and the REC2 domain, and the NUC lobe is a RuvC lobe. It consists of a domain, an HNH domain, and a PI domain (PI: PAM interacting).
  • RuvC-I to RuvC-III There are three motifs (RuvC-I to RuvC-III) in the RuvC domain.
  • SaCas9 ie, mini-SaCas9 in which all or a part of each functional domain is removed and linked with a linker has been reported.
  • As the linker GS-linker (GGGGSGGGGG: SEQ ID NO: 10), R-linker (KRRRRR: SEQ ID NO: 11) and GSK linker (GSK) are known (Patent Document 4, Non-Patent Document 1).
  • Expression vectors are required for expression of the dCas9 fusion protein in vivo.
  • adeno-associated virus vectors AAV
  • AAV adeno-associated virus vectors
  • the size that AAV can be loaded is about 4.4 kb, whereas dCas9 protein already occupies about 4 kb.
  • the composition of the fusion protein is extremely limited for mounting on AAV. Therefore, the present inventors have aimed to provide a more compact dCas9 protein variant having a DNA binding affinity substantially equivalent to that of the full-length protein.
  • the dSaCas9 protein before the mutation is introduced may be referred to as a wild-type dSaCas9 (protein), and the dSaCas9 protein after the mutation is introduced may be referred to as a dSaCas9 mutant (protein). That is, the present invention is as follows.
  • the deletion region being (I) all or part of the L1 domain (positions 481-519) and (ii) all of the HNH domain (positions 520-628), and optionally the deletion region comprises (iii) the L2 domain (629- 649)) or part of Consisting of a sequence comprising an amino acid sequence in which the amino acids adjacent to the deletion region are linked by a linker consisting of 3 to 10 amino acid residues, And a protein having an ability to bind to a guide RNA.
  • the deletion region is (I) all of the L1 domains (positions 481-519), (Ii) all of the HNH domain region (positions 520-628), and (iii) all of the L2 domain (positions 629-649)
  • the deletion region is (I) a portion of the L1 domain (positions 482 to 519), and (ii) the entire HNH domain (positions 520 to 628).
  • the amino acid sequence represented by SEQ ID NO: 2 comprises a sequence comprising an amino acid sequence in which the glutamic acid (E) at position 45 and / or 163 is substituted with another amino acid, and the binding ability to guide RNA
  • a protein having [6] The protein according to [5] above, wherein the other amino acid is a basic amino acid.
  • the basic amino acid is lysine (K).
  • [8] The protein according to any one of [1] to [4] above, wherein glutamic acid (E) at position 45 and / or 163 is substituted with another amino acid.
  • [13] The protein according to any one of [1] to [12] above, having 80% or more identity at a site other than the position where mutation and / or deletion of SEQ ID NO: 2 has been performed.
  • [14] The above [1] to [12], wherein 1 to several amino acids are substituted, deleted, inserted and / or added at a site other than the position where the mutation and / or deletion of SEQ ID NO: 2 has been performed.
  • [15] The protein according to any one of [1] to [14] above, which is a transcription regulator protein or domain linked.
  • [16] The protein according to [15] above, wherein the transcriptional regulatory factor is a transcriptional activator.
  • [18] A nucleic acid encoding the protein according to any one of [1] to [17].
  • [19] From one base upstream to 20 bases to 24 bases upstream of the protein according to any one of [1] to [18] above and a PAM (Proto-spacer Adjacent Motif) sequence in the target double-stranded polynucleotide And a guide RNA containing a polynucleotide having a base sequence complementary to the base sequence of the protein-RNA complex.
  • PAM Proto-spacer Adjacent Motif
  • a method for site-specific modification of a target double-stranded polynucleotide comprising: Mixing and incubating the target double-stranded polynucleotide, the protein, and the guide RNA; Modifying the target double-stranded polynucleotide at a binding site located upstream of the PAM sequence, wherein the protein comprises: The protein is the protein according to any one of the above [1] to [17], The method wherein the guide RNA includes a polynucleotide having a base sequence complementary to a base sequence from 1 base upstream to 20 bases to 24 bases upstream of the PAM sequence in the target double-stranded polynucleotide.
  • [21] A method for increasing the expression of a target gene in a cell, comprising expressing the protein according to [16] above and one or more guide RNAs for the target gene in the cell, Method.
  • [22] A method for reducing the expression of a target gene in a cell, comprising expressing the protein according to [17] above and one or more guide RNAs for the target gene in the cell, Method.
  • the method according to [21] or [22] above, wherein the cell is a yeast cell, plant cell or animal cell.
  • a more compact dSaCas9 protein can be obtained while having guide RNA binding ability.
  • the miniaturized dSaCas9 protein makes it possible to mount more genes in an expression vector with limited capacity.
  • FIG. 1 is a diagram schematically showing the structures of wild-type dSaCas9 (WT) and dSaCas9 mutants (T1 to T3).
  • T1 dsaCas9-d (E481-T649) with "GGSGGS” as linker
  • T2 dsaCas9-d (K482-V647) with "SGGGS” as linker
  • T3 dsaCas9-d (K482-E628) with "SGGGS” as linker
  • FIG. 2 is a graph showing the (T1-T3) DNA binding affinity of wild-type dSaCas9 (WT) and dSaCas9 mutants.
  • FIG. 3 is a graph showing the DNA binding affinity of wild-type dSaCas9 (WT) and dSaCas9 mutants (M1 to M14).
  • M1 E782K on dsaCas9-d (E481-T649) with "GGSGGS” as linker
  • M2 N968K on dsaCas9-d (E481-T649) with "GGSGGS” as linker
  • M3 L988H on dsaCas9-649 (E481-T) with "GGSGGS” as linker
  • M4 N806R on dsaCas9-d (E481-T649) with "GGSGGS” as linker
  • M6 D786R -d (E481-T649) with "GGSGGS” as linker
  • M15 E163K on dsaCas9-d (E481-T649) + E45K
  • M20 Q456K on dsaCas9-d (E481-T649) + E45K
  • the dSaCas9 mutant of the present invention is a dSaCas9 protein that is more miniaturized while having the ability to bind to guide RNA. If a miniaturized dSaCas9 mutant is used, more genes can be mounted on the vector.
  • the “guide RNA” is a mimic of the hairpin structure of tracrRNA-crRNA, preferably from 20 to 24 bases from one base upstream of the PAM sequence in the target double-stranded polynucleotide. More preferably, the 5 ′ end region contains a polynucleotide comprising a base sequence complementary to a base sequence of 22 to 24 bases. Furthermore, it comprises one or more polynucleotides comprising a base sequence that is non-complementary to the target double-stranded polynucleotide, arranged so as to be symmetrically complementary with one point as an axis, and can have a hairpin structure. You may go out.
  • the guide RNA has a function of binding to the dSaCas9 mutant of the present invention and guiding the protein to the target DNA.
  • the guide RNA has a sequence complementary to the target DNA at its 5 ′ end, and binds to the target DNA via the complementary sequence, thereby leading the dSaCas9 mutant of the present invention to the target DNA. Since the dSaCas9 mutant has no DNA endonuclease, it binds to the target DNA but does not cleave it.
  • the guide RNA is designed and prepared based on the sequence information of the target DNA. Specific examples include sequences as used in the examples.
  • polypeptide means polymers of amino acid residues and are used interchangeably. It also means an amino acid polymer in which one or more amino acids are chemical analogues or modified derivatives of the corresponding naturally occurring amino acids.
  • basic amino acid means an amino acid having a basic residue in addition to one amino group in a molecule such as lysine, arginine and histidine.
  • sequence means a nucleotide sequence having an arbitrary length, which is deoxyribonucleotide or ribonucleotide, linear, circular, or branched, single-stranded or double-stranded. Is a chain.
  • PAM sequence means a sequence that exists in the target double-stranded polynucleotide and can be recognized by the Cas9 protein, and the length and base sequence of the PAM sequence vary depending on the bacterial species.
  • N means any one base selected from the group consisting of adenine, cytosine, thymine and guanine
  • A means adenine
  • G means guanine
  • C means Cytosine
  • T means thymine
  • R means a base having a purine skeleton (adenine or guanine)
  • Y means a base having a pyrimidine skeleton (cytosine or thymine).
  • polynucleotide refers to a deoxyribonucleotide or ribonucleotide polymer that is in a linear or circular conformation and is in either a single-stranded or double-stranded form, and the length of the polymer. Is not to be construed as limiting. Also included are known analogs of natural nucleotides, as well as nucleotides (eg, phosphorothioate backbones) that are modified in at least one of a base moiety, a sugar moiety and a phosphate moiety. In general, analogs of specific nucleotides have the same base-pairing specificity, for example, analogs of A base-pair with T.
  • the present invention relates to the amino acid sequence represented by SEQ ID NO: 2, Having a continuous deletion region between positions 481-649, the deletion region being (I) all or part of the L1 domain (positions 481-519) and (ii) all of the HNH domain (positions 520-628), and optionally the deletion region comprises (iii) the L2 domain (629- 649)) or part of Consisting of a sequence comprising an amino acid sequence in which the amino acids adjacent to the deletion region are linked by a linker consisting of 3 to 10 amino acid residues, And the protein (aspect 1) which has the binding ability with guide RNA is provided.
  • SEQ ID NO: 2 is the full-length amino acid sequence of dSaCas9 protein.
  • the dSaCas9 protein is SaCas9 (Cas9 derived from S. aureus) in which aspartic acid at position 10 is replaced by alanine and asparagine at position 580 is replaced by alanine, respectively.
  • SaCas9 Cas9 derived from S. aureus
  • aspartic acid at position 10 is replaced by alanine
  • asparagine at position 580 is replaced by alanine, respectively.
  • NUC lobes As shown in FIG. Group) and NUC lobes (residues 1-40 and 435-1053). The two lobes are linked via an arginine-rich bridge helix (BH: 41-73 residues) and a linker loop (426-434 residues).
  • NUC lobes are RuvC domains (1-40, 435-480 and 650-774 residues), HNH domains (520-628 residues), WED domains (788-909 residues) and PI domains (910-1053 residues) Consists of.
  • the PI domain is divided into a topoisomerase homology (TOPO) domain and a C-terminal domain (CTD).
  • the RuvC domain is composed of three separated motifs (RuvC-I to III) and is associated with the HNH domain and the PI domain.
  • the HNH domain is linked to RuvC-II and RuvC-III via L1 (481-519 residues) linker and L2 (629-649 residues) linker, respectively.
  • the WED domain and the RucV domain are linked by a “phosphate lock” loop (residues 775 to 787) (H. Nishimasu et al., Cell, Volume 162, Issue 5, pp. 1113-1126).
  • the deletion region present continuously between positions 481 to 649 in the amino acid sequence represented by SEQ ID NO: 2 is (I) all of the L1 domains (positions 481-519), (Ii) all of the HNH domains (positions 520-628) and (iii) all of the L2 domains (positions 629-649) (Aspect 1-1)
  • the deletion region present continuously between positions 481 to 649 in the amino acid sequence represented by SEQ ID NO: 2 is (I) part of the L1 domain (positions 482 to 519), (Ii) all of the HNH domain (positions 520-628), and (iii) a portion of the L2 domain (positions 629-647) (Aspect 1-2)
  • the deletion region present continuously between positions 481 to 649 in the amino acid sequence represented by SEQ ID NO: 2 is The deleted region is (I) Part of the L1 domain (positions 482 to 519), and (ii) All of the HNH domain (520 to 628) (Aspect 1-3)
  • the present invention has a mutation at position 45 and / or 163 in addition to the mutations in aspects 1, 1-1, 1-2 and 1-3.
  • the protein (aspect 2) which has the binding ability with guide RNA is provided.
  • the mutation at positions 45 and / or 163 is specifically a substitution of glutamic acid with a basic amino acid, preferably a substitution with lysine, arginine or histidine, more preferably a substitution with lysine.
  • the present invention consists of a sequence comprising the amino acid sequence represented by SEQ ID NO: 2 wherein the glutamic acid at position 45 and / or 163 is substituted with another amino acid, And the protein (aspect 3) which has the binding ability with guide RNA is provided.
  • the mutation at positions 45 and / or 163 is specifically a substitution of glutamic acid with a basic amino acid, preferably a substitution with lysine, arginine or histidine, more preferably a substitution with lysine.
  • a conventional site-directed mutagenesis is performed on DNA encoding a predetermined amino acid sequence, and then this DNA is expressed by a conventional method.
  • a site-specific mutagenesis method for example, a method using amber mutation (gapped duplex method, Nucleic Acids Res., 12, 9441-9456 (1984)), a method using PCR using a primer for mutagenesis Etc.
  • NEB Q5 Site-Directed Mutagenesis Kit
  • the present invention provides a protein (Aspect 4) functionally equivalent to the proteins of Aspects 1, 1-1, 1-2, 1-3, 2 and 3.
  • a protein (Aspect 4) functionally equivalent to the proteins of Aspects 1, 1-1, 1-2, 1-3, 2 and 3.
  • SEQ ID NO: 2 in the amino acid sequence represented by SEQ ID NO: 2, It should be 80% or more of sequence identity and have the ability to bind to guide RNA at sites other than the positions where mutations have been made in 1-2, 1-3, 2 and 3.
  • the “site other than the position where the mutation has been applied” can be interpreted as “the site other than the position corresponding to the position where the mutation has been applied”.
  • amino acid sequence identity can be determined by a method known per se. For example, amino acid sequence identity (%) can be determined using a program commonly used in the art (eg, BLAST, FASTA, etc.) by default. In another aspect, identity (%) is determined by any algorithm known in the art, such as Needleman et al. (1970) (J. Mol. Biol. 48: 444-453), Myers and Miller (CABIOS, 1988, 4: 11-17) can be used.
  • Needleman et al.'S algorithm is incorporated into the GAP program in the GCG software package (available at www.gcg.com), and the percent identity is, for example, BLOSUM 62 matrix or PAM250 matrix, and gap weight: 16, It can be determined by using either 14, 12, 10, 8, 6 or 4 and length weight: 1, 2, 3, 4, 5 or 6.
  • the Myers and Miller algorithms are also incorporated into the ALIGN program that is part of the GCG sequence alignment software package. When using the ALIGN program to compare amino acid sequences, for example, PAM120 weight residue table, gap length penalty 12, gap penalty 4 can be used.
  • amino acid sequence represented by SEQ ID NO: 2 as a protein functionally equivalent to the proteins of the above embodiments 1, 1-1, 1-2, 1-3, 2 and 3, the above embodiments 1, 1-1, 1 -1, 1-3, 2 and 3 other than the positions where mutations are made, 1 to several amino acids are substituted, deleted, inserted and / or added, and have the ability to bind to guide RNA.
  • a protein having the above (Aspect 4-1) is provided. When amino acids are increased or decreased due to mutation, the “site other than the position where the mutation has been applied” can be interpreted as “the site other than the position corresponding to the position where the mutation has been applied”.
  • a technique for artificially performing “amino acid substitution, deletion, insertion and / or addition” for example, conventional site-directed mutagenesis is performed on DNA encoding a predetermined amino acid sequence, and then this is performed.
  • a technique for expressing DNA by a conventional method is mentioned.
  • the site-directed mutagenesis method include a method using amber mutation (gapped duplex method, Nucleic Acids Res., 12, 9441-9456 (1984)), and a PCR method using a mutagenesis primer. Etc. Moreover, it can be simply carried out according to the manual using the Q5 Site-Directed Mutagenesis Kit (NEB).
  • the number of amino acids modified as described above is at least one residue, specifically one or several, or more.
  • amino acid substitution is particularly preferred.
  • the substitution is more preferably substitution with an amino acid having similar properties such as hydrophobicity, charge, pK, and steric features.
  • Such substitutions include, for example, i) glycine, alanine; ii) valine, isoleucine, leucine; iii) aspartic acid, glutamic acid, asparagine, glutamine; iv) serine, threonine; v) lysine, arginine; vi) phenylalanine, Substitution within the tyrosine group.
  • the dSaCas9 mutant of the present invention is in a state in which the dSaCas9 mutant protein is cleaved by a deletion mutation, and both ends of the deletion region are connected by a linker. That is, in the dSaCas9 mutant of the present invention, amino acids at positions adjacent to the deletion region are linked by a linker consisting of 3 to 10 amino acid residues. By such ligation, the dSaCas9 mutant of the present invention has a continuous amino acid sequence.
  • the linker (hereinafter also referred to as the linker of the present invention) is not particularly limited as long as it can link both ends of the cleaved protein and does not affect its function, but preferably it is combined with other proteins. It is a group capable of adopting a naturally modified structure that binds while freely changing its own shape, preferably consisting of 3 to 10 amino acid residues composed of glycine (G) and serine (S) It is a linker. More preferably, the linker of the present invention is a peptide residue 5 to 9 amino acids long. Specifically, the following residues are mentioned. -SGGGS- (SEQ ID NO: 3) -GGSGGS- (SEQ ID NO: 4) -SGSGSGSG- (SEQ ID NO: 5) -SGSGSGGS- (SEQ ID NO: 6)
  • a conventional site-directed mutagenesis is performed on DNA encoding a predetermined amino acid sequence to insert a base sequence encoding the linker, and then this DNA is expressed by a conventional method. It can be implemented by a technique. Examples of the site-specific mutagenesis method include the same methods as described above.
  • the dSaCas9 mutant in this embodiment can be prepared, for example, by the following method. First, a host is transformed with a vector containing a nucleic acid encoding the dSaCas9 mutant of the present invention. Subsequently, the host is cultured to express the protein. Conditions such as medium composition, culture temperature, time, addition of inducer, etc. can be determined by those skilled in the art according to known methods so that transformants grow and the protein is efficiently produced. For example, when an antibiotic resistance gene is incorporated into an expression vector as a selection marker, a transformant can be selected by adding an antibiotic to the medium.
  • the dSaCas9 mutant of the present invention can be obtained by appropriately purifying the protein expressed by the host by a method known per se.
  • the host is not particularly limited, and examples include animal cells, plant cells, insect cells, or microorganisms such as Escherichia coli, Bacillus subtilis, and yeast. Animal cells are preferred.
  • the present invention relates to the protein shown in the above ⁇ dSaCas9 variant> and 20 to 24 bases from one base upstream of the PAM (Proto-spacer Adjacent Motif) sequence in the target double-stranded polynucleotide.
  • PAM Proto-spacer Adjacent Motif
  • a protein-RNA complex comprising a guide RNA containing a polynucleotide consisting of a base sequence complementary to the base sequence up to the upstream.
  • the protein and the guide RNA can form a protein-RNA complex by mixing under mild conditions in vitro and in vivo.
  • Mild conditions indicate a temperature and pH at which protein is not degraded or denatured, and the temperature is preferably 4 ° C. or higher and 40 ° C. or lower, and the pH is preferably 4 or higher and 10 or lower.
  • the time for mixing and incubating the protein and the guide RNA is preferably 0.5 hours or more and 1 hour or less.
  • the complex of the protein and the guide RNA is stable, and can remain stable even when left at room temperature for several hours.
  • the present invention provides a first vector comprising a gene encoding the protein shown in ⁇ dSaCas9 mutant> described above, and 20 bases from one base upstream of the PAM sequence in the target double-stranded polynucleotide.
  • a CRISPR-Cas vector system comprising a second vector containing a guide RNA containing a polynucleotide comprising a base sequence complementary to a base sequence up to 24 bases or less upstream.
  • the present invention relates to a gene encoding the protein shown in ⁇ dSaCas9 mutant> described above, and 20 to 24 bases upstream from 1 base upstream of the PAM sequence in the target double-stranded polynucleotide.
  • a CRISPR-Cas vector system having a guide RNA containing a polynucleotide consisting of a base sequence complementary to the above base sequences in the same vector.
  • the guide RNA consists of a base sequence complementary to a base sequence of preferably 20 to 24 bases, more preferably 22 to 24 bases from one base upstream of the PAM sequence in the target double-stranded polynucleotide.
  • region should just be designed suitably.
  • it comprises one or more polynucleotides comprising a base sequence that is non-complementary to the target double-stranded polynucleotide, arranged so as to be symmetrically complementary with one point as an axis, and can have a hairpin structure. You may go out.
  • the vector of this embodiment is preferably an expression vector.
  • expression vectors include plasmids derived from E. coli such as pBR322, pBR325, pUC12, and pUC13; plasmids derived from Bacillus subtilis such as pUB110, pTP5, and pC194; plasmids derived from yeast such as pSH19 and pSH15; bacteriophages such as ⁇ phage; Viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, cytomegalovirus; and modified vectors thereof can be used, but in view of activation of gene expression in vivo, Viral vectors, particularly adeno-associated viruses are preferred.
  • the dSaCas9 mutant protein and the guide RNA expression promoter are not particularly limited.
  • the EF1 ⁇ promoter, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, HSV- Promoter for expression in animal cells such as tk promoter, cauliflower mosaic virus (CaMV) 35S promoter, promoter for expression in plant cells such as REF (rubber elongation factor) promoter, insect cells such as polyhedrin promoter, p10 promoter A promoter for expression in can be used.
  • These promoters can be appropriately selected depending on the type of cells that express the dSaCas9 mutant protein and the guide RNA, or the Cas9 protein and the guide RNA.
  • the above-described expression vector may further have a multicloning site, an enhancer, a splicing signal, a poly A addition signal, a selection marker (drug resistance), its promoter, a replication origin, and the like.
  • the present invention is a method for site-specific modification of a target double-stranded polynucleotide comprising: Mixing and incubating a target double-stranded polynucleotide, protein and guide RNA; modifying the target double-stranded polynucleotide at a binding site where the protein is located upstream of a PAM sequence; With The target double-stranded polynucleotide has a PAM sequence; The protein is a protein shown in ⁇ dSaCas9 mutant> described above,
  • the guide RNA includes a method comprising a polynucleotide having a base sequence complementary to a base sequence from 1 base upstream to 20 bases to 24 bases upstream of the PAM sequence in the target double-stranded polynucleotide. .
  • the target double-stranded polynucleotide is not particularly limited as long as it has a PAM sequence.
  • the protein and the guide RNA are as described in the above ⁇ dSaCas9 mutant>.
  • the protein and the guide RNA are mixed and incubated under mild conditions.
  • the mild conditions are as described above.
  • the incubation time is preferably 0.5 hours or more and 1 hour or less.
  • the complex of the protein and the guide RNA is stable, and can remain stable even when left at room temperature for several hours.
  • the protein and the guide RNA form a complex on the target double-stranded polynucleotide.
  • the protein recognizes a PAM sequence and binds to the target double-stranded polynucleotide at a binding site located upstream of the PAM sequence.
  • a target double-stranded polynucleotide that has been modified according to the purpose can be obtained.
  • modification means that the target double-stranded polynucleotide is structurally or functionally changed.
  • structural or functional changes of the target double-stranded polynucleotide due to addition of a functional protein or base sequence can be mentioned.
  • modification enables modification, deletion, enhancement, or suppression of the function of the target double-stranded polynucleotide, and addition of a new function.
  • the dSaCas9 mutant of the present invention does not have endonuclease activity, the protein can bind to the target double-stranded polynucleotide at a binding site located upstream of the PAM sequence, but stays there and cleaves. I can't.
  • the labeled protein when a labeled protein such as a fluorescent protein (eg, GFP) is fused to the protein, the labeled protein can be bound to the target double-stranded polynucleotide via the dSaCas9 mutant protein-guide RNA.
  • Various functions can be imparted to the target double-stranded polynucleotide by appropriately selecting a substance to be bound to the dSaCas9 mutant.
  • a transcription factor protein or domain can be linked to the N-terminus or C-terminus of the dSaCas9 mutant protein.
  • Transcriptional regulators or domains thereof include transcriptional activators or domains thereof (eg, VP64, VP160, NF- ⁇ B p65) and transcription silencers or domains thereof (eg, heterochromatin protein 1 (HP1)) or transcriptional repressors or The domain (eg, Kruppel related box (KRAB), ERF repressor domain (ERD), mSin3A interaction domain (SID)).
  • transcriptional activators or domains thereof eg, VP64, VP160, NF- ⁇ B p65
  • transcription silencers or domains thereof eg, heterochromatin protein 1 (HP1)
  • transcriptional repressors or The domain eg, Kruppel related box (KRAB), ERF repressor domain (ERD), mSin3A interaction domain (SID)
  • Enzymes that modify the methylation state of DNA eg, DNA methyltransferase (DNMT), TET
  • enzymes that modify histone subunits eg, histone acetyltransferase (HAT), histone deacetylase (HDAC), histone methyltransferase
  • Histone demethylase eg., DNA methyltransferase (DNMT), TET
  • HAT histone acetyltransferase
  • HDAC histone deacetylase
  • Histone demethylase Histone demethylase
  • the method before the incubation step, further comprises an expression step of expressing the protein shown in the ⁇ dSaCas9 mutant> and the guide RNA using the CRISPR-Cas vector system described above. Also good.
  • the dSaCas9 mutant protein and the guide RNA are expressed using the above-described CRISPR-Cas vector system.
  • Specific examples of the expression method include an expression vector containing a gene encoding a dSaCas9 mutant protein and an expression vector containing a guide RNA (or an expression vector containing a gene encoding a dSaCas9 mutant protein and a guide RNA simultaneously). Is used to transform the host. Subsequently, the host is cultured to express dSaCas9 mutant protein and guide RNA. Conditions such as medium composition, culture temperature, time, addition of inducer, etc.
  • a transformant can be determined by those skilled in the art according to known methods so that the transformant grows and the fusion protein is efficiently produced. For example, when an antibiotic resistance gene is incorporated into an expression vector as a selection marker, a transformant can be selected by adding an antibiotic to the medium. Subsequently, the dSaCas9 mutant protein and the guide RNA expressed by the host are purified by an appropriate method to obtain the dSaCas9 mutant protein and the guide RNA.
  • the present invention is a method for site-specific modification of a target double-stranded polynucleotide in a cell comprising: An expression step of introducing the above-described CRISPR-Cas vector system into a cell and expressing the above-described ⁇ dSaCas9 mutant> and a guide RNA; The protein binds to the target double-stranded polynucleotide at a binding site located upstream of the PAM sequence; Obtaining the modified target double-stranded polynucleotide in a region determined by complementary binding of the guide RNA and the target double-stranded polynucleotide,
  • the guide RNA includes a method comprising a polynucleotide having a base sequence complementary to a base sequence from 1 base upstream to 20 bases to 24 bases upstream of the PAM sequence in the target double-stranded poly
  • the dSaCas9 mutant protein and the guide RNA are expressed in cells using the above-described CRISPR-Cas vector system.
  • Examples of organisms from which cells to which the method of this embodiment is applied include prokaryotes, yeasts, animals, plants, insects, and the like. There is no special limitation as said animal, For example, a human, a monkey, a dog, a cat, a rabbit, a pig, a cow, a mouse, a rat etc. are mentioned, It is not limited to these.
  • the type of organism from which the cells are derived can be arbitrarily selected depending on the type, purpose, etc. of the desired target double-stranded polynucleotide.
  • animal-derived cells to which the method of the present embodiment is applied include, for example, germ cells (sperm, ova, etc.), somatic cells constituting the living body, stem cells, progenitor cells, cancer cells separated from living bodies, living bodies Cells that have been isolated from the body and have acquired immortalization and are stably maintained outside the body (cell lines), cells that have been isolated from the living body and have been artificially genetically modified, and cells that have been isolated from the living body and have been artificially exchanged in the nucleus
  • germ cells sperm, ova, etc.
  • somatic cells constituting the living body
  • stem cells progenitor cells
  • cancer cells separated from living bodies living bodies
  • living bodies Cells that have been isolated from the body and have acquired immortalization and are stably maintained outside the body (cell lines)
  • cells that have been isolated from the living body and have been artificially genetically modified cells that have been isolated from the living body and have been artificially exchanged in the nucleus
  • somatic cells constituting the living body include skin, kidney, spleen, adrenal gland, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thymus, muscle, connective tissue, Examples include, but are not limited to, cells collected from any tissue such as bone, cartilage, vascular tissue, blood, heart, eye, brain, and nerve tissue.
  • somatic cells for example, fibroblasts, bone marrow cells, immune cells (for example, B lymphocytes, T lymphocytes, neutrophils, macrophages, monocytes, etc.), erythrocytes, platelets, bone cells Bone marrow cells, pericytes, dendritic cells, keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, lymphatic endothelial cells, hepatocytes, islet cells (eg, ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, PP cells, etc.), chondrocytes, cumulus cells, glial cells, neurons (neurons), oligodendrocytes, microglia, astrocytes, cardiomyocytes, esophageal cells, muscle cells (For example, smooth muscle cells, skeletal muscle cells, etc.), melanocytes, mononucle
  • Stem cells are cells that have both the ability to replicate themselves and the ability to differentiate into other multiple cell lines.
  • Stem cells include, for example, embryonic stem cells (ES cells), embryonic tumor cells, embryonic germ stem cells, induced pluripotent stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells , Muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells, hair follicle stem cells, and the like.
  • Cancer cells are cells that are derived from somatic cells and have acquired unlimited proliferative capacity.
  • cancers from which cancer cells are derived include breast cancer (eg, invasive breast cancer, non-invasive breast cancer, inflammatory breast cancer, etc.), prostate cancer (eg, hormone-dependent prostate).
  • pancreatic cancer eg, pancreatic duct cancer, etc.
  • stomach cancer eg, papillary adenocarcinoma, mucinous adenocarcinoma, adenosquamous carcinoma, etc.
  • lung cancer eg, Non-small cell lung cancer, small cell lung cancer, malignant mesothelioma, etc.
  • colon cancer eg, gastrointestinal stromal tumor
  • rectal cancer eg, gastrointestinal stromal tumor
  • colorectal cancer eg, Familial colorectal cancer, hereditary nonpolyposis colorectal cancer, gastrointestinal stromal tumor, etc.
  • small intestine cancer eg, non-Hodgkin lymphoma, gastrointestinal stromal tumor, etc.
  • esophageal cancer duodenal cancer, tongue Cancer, pharyngeal cancer (eg, nasopharyngeal cancer, oropharyngeal cancer, hypophary
  • a cell line is a cell that has acquired infinite proliferative capacity through artificial manipulation in vitro.
  • Examples of cell lines include HCT116, Huh7, HEK293 (human embryonic kidney cells), HeLa (human cervical cancer cell line), HepG2 (human hepatoma cell line), UT7 / TPO (human leukemia cell line), CHO (Chinese hamster ovary cell line), MDCK, MDBK, BHK, C-33A, HT-29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five, Vero, etc. However, it is not limited to these.
  • a method for introducing the CRISPR-Cas vector system into cells it can be performed by a method suitable for the living cells to be used. Electroporation method, heat shock method, calcium phosphate method, lipofection method, DEAE dextran method, microinjection method , Particle gun method, method using virus, FuGENE (registered trademark) 6 Transfection Reagent (manufactured by Roche), Lipofectamine 2000 Reagent (manufactured by Invitrogen), Lipofectamine LTX Reagent (manufactured by Invitrogen), Lipofectamine Reingen And methods using commercially available transfection reagents such as It is possible.
  • FuGENE registered trademark 6 Transfection Reagent
  • Lipofectamine 2000 Reagent manufactured by Invitrogen
  • Lipofectamine LTX Reagent manufactured by Invitrogen
  • Lipofectamine Reingen And methods using commercially available transfection reagents such as It is possible.
  • the subsequent modification step is the same as the method described in [First embodiment] in ⁇ Method for site-specific modification of target double-stranded nucleotide> described above.
  • a cell in which the target double-stranded polynucleotide is altered can be obtained.
  • Example 1 DNA binding affinity evaluation (method) of dSaCas9 mutant 1. Cloning Using the NEB Q5 Site-Directed Mutagenesis Kit, create a specific deletion region in the dSaCas9 gene, introduce a linker-encoding gene, and fuse the KRAB gene, which is a transcriptional regulatory factor, to produce various dSaCas9 mutations. A body was prepared (FIG. 1). About these variants, the expression suppression activity was investigated using MYD88 gene. All dSaCas9 mutant gene constructs were incorporated into the pX601 vector (F. Ann Ran et al., Nature 2015; 520 (7546); pp. 186-191).
  • a crRNA sequence GGAGCCACAGTTCTTCCCACGG (SEQ ID NO: 7) is transformed into a tracRNA sequence;
  • the following sequence was used as a control guide RNA (control sgRNA) sequence: ACGGAGGCTAAGCGTCGCAA (SEQ ID NO: 9).
  • cDNA was prepared from 1.5 ⁇ g of total RNA using TaqMan TM High-Capacity RNA-to-cDNA Kit (Applied Biosystems) in a volume of 20 ⁇ l. The prepared cDNA was diluted 20 times and 6.33 ⁇ l was used per Taqman reaction.
  • Taqman primers and probes for the MYD88 gene were obtained from Applied Biosystems. Taqman reaction was performed using Taqman gene expression master mix (ThermoFisher) in Roche LightCycler 96 or LightCycler 480, and analyzed using LightCycler 96 analysis software. Taqman probe product IDs: MYD88: Hs01573837_g1 (FAM) HPRT: Hs99999909_m1 (FAM, VIC) Taqman QPCR condition: Step 1; 95C 10 min Step 2; 95C 15 sec Step 3; 60C 30 sec Repeat Step 2 and 3; 40 times
  • the gene expression level in the dSaCas9 mutant of the present invention was lower than that of the control to a level comparable to wild-type dSaCas9 (FIG. 2). From this result, the dSaCas9 mutant of the present invention has a deletion region and is capable of binding to guide RNA, and thus DNA, even though it is reduced to about 80% of the size of full-length dSaCas9. It was shown that binding affinity was maintained. In the above results, various point mutations were further introduced for T1, which had particularly high DNA binding affinity, and the effects were confirmed. The results are shown in FIG.
  • DNA binding affinity superior to that of T1 was confirmed for M12 (T1 mutant in which glutamic acid at position 45 was substituted with lysine).
  • M12 various point mutations were further introduced to confirm the effect. The results are shown in FIG. DNA binding affinity superior to M12 was confirmed for M15 (M12 mutant in which glutamic acid at position 163 was substituted with lysine).
  • a miniaturized dSaCas9 protein can be obtained while maintaining DNA binding affinity.
  • the use of a miniaturized dSaCas9 protein allows the loading of more genes into the vector, thus providing a variety of genome editing techniques.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

配列番号2で表されるアミノ酸配列において、 481~649位の間に連続した欠失領域を有し、該欠失領域が、 (i)L1ドメイン(481~519位)の全部または一部、及び (ii)HNHドメイン(520~628位)の全部を含み、さらに任意で該欠失領域は (iii)L2ドメイン(629~649位)の全部または一部を含み、 該欠失領域にそれぞれ隣接したアミノ酸が3乃至10個のアミノ酸残基からなるリンカーによって連結しているアミノ酸配列を含む配列からなり、 且つ、ガイドRNAとの結合能を有するタンパク質は、DNA結合親和性を保ちながら、小型化されたdSaCas9タンパク質として機能する。小型化されたdSaCas9タンパク質の使用はより多くの遺伝子のベクターへの搭載が可能となる。

Description

改変されたCas9タンパク質及びその用途
 本発明は、ガイドRNAとの結合能を維持しながら小型化された、改変されたCas9タンパク質及びその用途に関する。
 クラスター化した規則的な配置の短い回文反復配列(Clustered Regularly Interspaced Short Palindromic Repeats:CRISPR)は、Cas(CRISPR-associated)遺伝子と共に、細菌及び古細菌において侵入外来核酸に対する獲得耐性を提供する適応免疫系を構成することが知られている。CRISPRは、ファージまたはプラスミドDNAに起因することが多く、大きさの類似するスペーサーと呼ばれる独特の可変DNA配列が間に入った、24~48bpの短い保存された反復配列からなる。また、リピート及びスペーサー配列の近傍には、Casタンパク質ファミリーをコードする遺伝子群が存在する。
 CRISPR/Casシステムにおいて、外来性のDNAは、Casタンパク質ファミリーによって30bp程度の断片に切断され、CRISPRに挿入される。Casタンパク質ファミリーの一つであるCas1及びCas2タンパク質は、外来性DNAのproto-spacer adjacent motif(PAM)と呼ばれる塩基配列を認識して、その上流を切り取って、宿主のCRISPR配列に挿入し、これが細菌の免疫記憶となる。免疫記憶を含むCRISPR配列が転写されて生成したRNA(pre-crRNAと呼ぶ。)は、一部相補的なRNA(trans-activating crRNA:tracrRNA)と対合し、Casタンパク質ファミリーの一つであるCas9タンパク質に取り込まれる。Cas9に取り込まれたpre-crRNA及びtracrRNAはRNaseIIIにより切断され、外来配列(ガイド配列)を含む小さなRNA断片(CRISPR-RNAs:crRNAs)となり、Cas9-crRNA-tracrRNA複合体が形成される。Cas9-crRNA-tracrRNA複合体はcrRNAと相補的な外来侵入性DNAに結合し、DNAを切断する酵素(nuclease)であるCas9タンパク質が、外来侵入性DNAを切断することよって、外から侵入したDNAの機能を抑制及び排除する。
 近年、CRISPR/Casシステムを、ゲノム編集に応用する技術が盛んに開発されている。crRNAとtracrRNAを融合させて、tracrRNA-crRNAキメラ(以下、ガイドRNA(guide RNA:gRNA)と呼ぶ。)として発現させ、活用している。これによりnuclease(RNA-guided nuclease:RGN)を呼び込み、目的の部位でゲノムDNAを切断する。
 一方で、ゲノム編集システムの一つであるCRISPR/Cas9におけるCas9タンパク質のヌクレアーゼを不活化した変異体(nuclease-null,dCas9)にVP64やVP160等の転写活性化因子、あるいはKRAB等の転写抑制因子等の転写制御因子を融合させることで標的遺伝子の発現レベルを調節可能なシステムとすることができる。例えば、遺伝子活性化の効率をさらに高める為には、3つの転写活性因子を連結した活性化因子(VP64-p65-Rta,VPR)と融合させ、該融合したdCas9タンパク質(dCas9-VPR;dCas9融合タンパク質)はDNAを切断することなく標的遺伝子の発現を強力に活性化する。
 Cas9タンパク質についてPAM特異性の緩和やヌクレアーゼ活性の改変(活性化/不活性化)、小型化を目的として、種々の変異体が創製され報告されている(特許文献1~3)。
 Cas9タンパク質は、RECローブ(REC:recognition)とNUCローブ(NUC:nuclease)という2つのローブからなり、RECローブはアルギニン残基に富むαヘリックス、REC1ドメイン及びREC2ドメインから構成され、NUCローブはRuvCドメイン、HNHドメイン及びPIドメイン(PI:PAMinteracting)から構成されている。RuvCドメインには3つのモチーフ(RuvC-I~RuvC-III)が存在する。小型化されたCas9タンパク質として、各機能的ドメインの全部又は部分が除去されリンカーで連結されたSaCas9(即ち、mini-SaCas9)が報告されている。リンカーとしては、GS-リンカー(GGGGSGGGG:配列番号10)、R-リンカー(KRRRRHR:配列番号11)及びGSKリンカー(GSK)が知られている(特許文献4、非特許文献1)。
WO2016/141224A1 WO2017/010543A1 WO2018/074979A1 WO2018/209712A1
Dacheng Ma, et al., ACS Synth. Biol. 2018, 7, 978-985
 インビボにおけるdCas9融合タンパク質の発現には、発現ベクターが必要である。遺伝子治療では安全性と効率の高い面でアデノ随伴ウイルスベクター(AAV)が主流となりつつあるが、AAVの搭載可能なサイズは4.4kb程度であるのに対し、dCas9タンパク質は既に4kb程度を占め、AAVに搭載するには融合タンパク質の構成が極めて制限される。
 従って、本発明者らは、全長タンパク質と実質的に同等のDNA結合親和性を有しながら、より小型化されたdCas9タンパク質の変異体を提供することを目的とする。
 本発明者らは、Cas9タンパク質として、S.aureus由来のCas9(本明細書中、SaCas9とも称する)のnuclease-null変異体(dSaCas9)に着目し、上記課題を解決すべく鋭意検討した。結果、欠失させてもガイドRNAへの結合能に影響が少ない特定の領域を見出し、さらに、所定の位置のアミノ酸を特定のアミノ酸に置換することによって、DNA結合親和性を維持乃至増強しつつ小型化されたdSaCas9タンパク質を製造することに成功し、本発明を完成するに至った。
 欠失及び置換を併せて変異とも称する。
 本明細書中、変異を導入する前のdSaCas9タンパク質を野生型dSaCas9(タンパク質)、変異を導入した後のdSaCas9タンパク質をdSaCas9変異体(タンパク質)と称する場合がある。
 即ち、本発明は以下の通りである。
[1]配列番号2で表されるアミノ酸配列において、
481~649位の間に連続した欠失領域を有し、該欠失領域が、
(i)L1ドメイン(481~519位)の全部または一部、及び
(ii)HNHドメイン(520~628位)の全部を含み、さらに任意で該欠失領域は
(iii)L2ドメイン(629~649位)の全部または一部を含み、
該欠失領域にそれぞれ隣接したアミノ酸が3乃至10個のアミノ酸残基からなるリンカーによって連結しているアミノ酸配列を含む配列からなり、
且つ、ガイドRNAとの結合能を有するタンパク質。
[2]該欠失領域が、
(i)L1ドメインの全部(481~519位)、
(ii)HNHドメイン領域の全部(520~628位)、及び
(iii)L2ドメインの全部(629~649位)
である、上記[1]記載のタンパク質。
[3]該欠失領域が、
(i)L1ドメインの一部(482~519位)、
(ii)HNHドメインの全部(520~628位)、及び
(iii)L2ドメインの一部(629~647位)
である、上記[1]記載のタンパク質。
[4]該欠失領域が、
(i)L1ドメインの一部(482~519位)、及び
(ii)HNHドメインの全部(520~628位)
である、上記[1]記載のタンパク質。
[5]配列番号2で表されるアミノ酸配列において、45位及び/又は163位のグルタミン酸(E)が他のアミノ酸に置換されたアミノ酸配列を含む配列からなり、且つ、ガイドRNAとの結合能を有するタンパク質。
[6]他のアミノ酸が塩基性アミノ酸である、上記[5]記載のタンパク質。
[7]塩基性アミノ酸が、リジン(K)である、上記[6]記載のタンパク質。
[8]さらに、45位及び/又は163位のグルタミン酸(E)が他のアミノ酸に置換されている、上記[1]~[4]のいずれかに記載のタンパク質。
[9]他のアミノ酸が塩基性アミノ酸である、上記[8]記載のタンパク質。
[10]塩基性アミノ酸がリジン(K)である、上記[9]記載のタンパク質。
[11]リンカーが、グリシン(G)及びセリン(S)で構成される、5~9アミノ酸長のリンカーである、上記[1]~[8]のいずれかに記載のタンパク質。
[12]リンカーが、以下から選択される、上記[1]~[11]のいずれかに記載のタンパク質:
-SGGGS-
-GGSGGS-
-SGSGSGSG-
-SGSGSGSGS-。
[13]配列番号2の変異及び/又は欠失が施された位置以外の部位において80%以上の同一性を有する、上記[1]~[12]のいずれかに記載のタンパク質。
[14]配列番号2の変異及び/又は欠失が施された位置以外の部位において1~数個のアミノ酸が置換、欠失、挿入及び/又は付加された、上記[1]~[12]のいずれかに記載のタンパク質。
[15]転写制御因子タンパク質又はドメインを連結した、上記[1]~[14]のいずれかに記載のタンパク質。
[16]転写制御因子が転写活性化因子である、上記[15]記載のタンパク質。
[17]転写制御因子が転写サイレンサー又は転写抑制因子である、上記[15]記載のタンパク質。
[18]上記[1]~[17]のいずれかに記載のタンパク質をコードする核酸。
[19]上記[1]~[18]のいずれかに記載のタンパク質と、標的二本鎖ポリヌクレオチド中のPAM(Proto-spacer Adjacent Motif)配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むガイドRNAと、を備えるタンパク質-RNA複合体。
[20]標的二本鎖ポリヌクレオチドを部位特異的に改変するための方法であって、
 標的二本鎖ポリヌクレオチドと、タンパク質と、ガイドRNAとを混合し、インキュベートする工程と、
 前記タンパク質が、PAM配列の上流に位置する結合部位で前記標的二本鎖ポリヌクレオチドを改変する工程と、を備え、
 前記タンパク質は、上記[1]~[17]のいずれかに記載のタンパク質であり、
 前記ガイドRNAは、前記標的二本鎖ポリヌクレオチド中の前記PAM配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むものである方法。
[21]細胞の標的遺伝子の発現を増大させる方法であって、前記細胞内で上記[16]に記載のタンパク質と、前記標的遺伝子に対する1つ又は複数のガイドRNAとを発現させることを含む、方法。
[22]細胞の標的遺伝子の発現を減少させる方法であって、前記細胞内で上記[17]に記載のタンパク質と、前記標的遺伝子に対する1つ又は複数のガイドRNAとを発現させることを含む、方法。
[23]細胞が真核細胞である、上記[21]又は[22]に記載の方法。
[24]細胞が酵母細胞、植物細胞又は動物細胞である、上記[21]又は[22]に記載の方法。
 本発明によれば、ガイドRNA結合能を有しながら、より小型化されたdSaCas9タンパク質を得ることができる。該小型化されたdSaCas9タンパク質により、より多くの遺伝子を容量に制限のある発現ベクターに搭載することが可能になる。
図1は、野生型dSaCas9(WT)及びdSaCas9変異体(T1~T3)の構造を模式的に示した図である。T1: dsaCas9-d(E481-T649) with "GGSGGS" as linker、T2: dsaCas9-d(K482-V647) with "SGGGS" as linker、T3: dsaCas9-d(K482-E628) with "SGGGS" as linker 図2は、野生型dSaCas9(WT)及びdSaCas9変異体の(T1~T3)DNA結合親和性を示したグラフである。T1: dsaCas9-d(E481-T649) with "GGSGGS" as linker、T2: dsaCas9-d(K482-V647) with "SGGGS" as linker、T3: dsaCas9-d(K482-E628) with "SGGGS" as linker 図3は、野生型dSaCas9(WT)及びdSaCas9変異体(M1~M14)のDNA結合親和性を示したグラフである。M1: E782K on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M2: N968K on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M3: L988H on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M4: N806R on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M5: A889N on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M6: D786R on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M7: K50H on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M8: A53K on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M9: K57H on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M10: I64K on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M11: V41N on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M12: E45K on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M13: G52K on dsaCas9-d(E481-T649) with "GGSGGS" as linker、M14: L56K on dsaCas9-d(E481-T649) with "GGSGGS" as linker 図4は、野生型dSaCas9(WT)及びdSaCas9変異体(M15~M27)のDNA結合親和性を示したグラフである。M15: E163K on dsaCas9-d(E481-T649) + E45K、M16: N806Q on dsaCas9-d(E481-T649) + E45K、M17: D896K on dsaCas9-d(E481-T649) + E45K、M18: E42R on dsaCas9-d(E481-T649) + E45K、M19: D73R on dsaCas9-d(E481-T649) + E45K、M20: Q456K on dsaCas9-d(E481-T649) + E45K、M21: T787Q on dsaCas9-d(E481-T649) + E45K、M22: N873K on dsaCas9-d(E481-T649) + E45K、M23: Q835K on dsaCas9-d(E481-T649) + E45K、M24: L891K on dsaCas9-d(E481-T649) + E45K、M25: N899K on dsaCas9-d(E481-T649) + E45K、M26: N902R on dsaCas9-d(E481-T649) + E45K、M27: E739R on dsaCas9-d(E481-T649) + E45K
 以下、本発明を説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味を有する。
<dSaCas9変異体>
 本発明のdSaCas9変異体は、ガイドRNAとの結合能を有しながら、より小型化されたdSaCas9タンパク質である。小型化されたdSaCas9変異体を用いれば、より多くの遺伝子をベクターに搭載することができる。
 本明細書中において、「ガイドRNA」とは、tracrRNA-crRNAのヘアピン構造を模倣したものであり、標的二本鎖ポリヌクレオチド中のPAM配列の1塩基上流から、好ましくは20塩基以上24塩基以下、より好ましくは22塩基以上24塩基以下までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを5’末端領域に含むものである。さらに、標的二本鎖ポリヌクレオチドと非相補的な塩基配列からなり、一点を軸として対称に相補的な配列になるように並び、ヘアピン構造をとり得る塩基配列からなるポリヌクレオチドを1つ以上含んでいてもよい。
 ガイドRNAは、本発明のdSaCas9変異体と結合して、該タンパク質を標的DNAに導く機能を有する。ガイドRNAは、その5’末端に標的DNAに相補的な配列を有し、該相補的な配列を介して標的DNAに結合することにより、本発明のdSaCas9変異体を標的DNAに導く。dSaCas9変異体はDNAエンドヌクレアーゼを有さない為、標的DNAに結合はするが切断することはない。
 ガイドRNAは、標的DNAの配列情報に基づき設計され調製される。具体的には実施例で用いられるような配列が挙げられる。
 本明細書において、「ポリペプチド」、「ペプチド」及び「タンパク質」とは、アミノ酸残基のポリマーを意味し、互換的に使用される。また、1つ若しくは複数のアミノ酸が、天然に存在する対応アミノ酸の化学的類似体、又は修飾誘導体である、アミノ酸ポリマーを意味する。
 本明細書において、「塩基性アミノ酸」とは、リジン、アルギニン、ヒスチジン等の分子内に一つのアミノ基のほかに、塩基性を示す残基をもつアミノ酸を意味する。
 本明細書中において、「配列」とは、任意の長さのヌクレオチド配列を意味しており、デオキシリボヌクレオチド又はリボヌクレオチドであり、線状、環状、又は分岐状であり、一本鎖又は二本鎖である。
 本明細書中において、「PAM配列」とは、標的二本鎖ポリヌクレオチド中に存在し、Cas9タンパク質により認識可能な配列を意味し、PAM配列の長さや塩基配列は細菌種によって異なる。
 なお、本明細書において、「N」は、アデニン、シトシン、チミン及びグアニンからなる群から選択された任意の1塩基を意味し、「A」はアデニン、「G」はグアニン、「C」はシトシン、「T」はチミン、「R」はプリン骨格を有する塩基(アデニン又はグアニン)、「Y」はピリミジン骨格を有する塩基(シトシン又はチミン)を意味する。
 本明細書中において、「ポリヌクレオチド」とは、線状又は環状配座であり、一本鎖又は二本鎖形態のいずれかである、デオキシリボヌクレオチド又はリボヌクレオチドポリマーを意味し、ポリマーの長さに関して制限するものとして解釈されるものではない。また、天然ヌクレオチドの公知の類似体、並びに塩基部分、糖部分及びリン酸部分のうち少なくとも一つの部分において修飾されるヌクレオチド(例えば、ホスホロチオエート骨格)を包含する。一般に、特定ヌクレオチドの類似体は、同一の塩基対合特異性を有し、例えば、Aの類似体は、Tと塩基対合する。
 本発明は、配列番号2で表されるアミノ酸配列において、
481~649位の間に連続した欠失領域を有し、該欠失領域が、
(i)L1ドメイン(481~519位)の全部または一部、及び
(ii)HNHドメイン(520~628位)の全部を含み、さらに任意で該欠失領域は
(iii)L2ドメイン(629~649位)の全部または一部を含み、
該欠失領域にそれぞれ隣接したアミノ酸が3乃至10個のアミノ酸残基からなるリンカーによって連結しているアミノ酸配列を含む配列からなり、
且つ、ガイドRNAとの結合能を有するタンパク質(態様1)を提供する。
 配列番号2は、dSaCas9タンパク質の全長アミノ酸配列である。dSaCas9タンパク質は、10位のアスパラギン酸がアラニンに、580位のアスパラギンがアラニンにそれぞれ置換したSaCas9(S.aureus由来のCas9)で、図1にも示されるように、RECローブ(41~425残基)及びNUCローブ(1~40残基及び435~1053残基)の2つのローブから成っている。2つのローブはアルギニンに富んだブリッジヘリックス(BH:41~73残基)とリンカーループ(426~434残基)を介して連結している。NUCローブはRuvCドメイン(1~40、435~480及び650~774残基)、HNHドメイン(520~628残基)、WEDドメイン(788~909残基)及びPIドメイン(910~1053残基)で構成される。PIドメインは、トポイソメラーゼホモロジー(TOPO)ドメインとC末端ドメイン(CTD)にわけられる。RuvCドメインは3つの隔てられたモチーフ(RuvC-I~III)で構成され、HNHドメイン及びPIドメインと関連している。HNHドメインはRuvC-II及びRuvC-IIIにL1(481~519残基)リンカー及びL2(629~649残基)リンカーを介してそれぞれ連結している。WEDドメイン及びRucVドメインは「phosphate lock」ループ(775~787残基)により連結している(H. Nishimasu et al., Cell, Volume 162, Issue 5, pp. 1113-1126)。
 本発明の一実施態様において、配列番号2で表されるアミノ酸配列における481~649位の間に連続して存在する欠失領域は、
(i)L1ドメインの全部(481~519位)、
(ii)HNHドメインの全部(520~628位)、及び
(iii)L2ドメインの全部(629~649位)
である(態様1-1)。
 本発明の一実施態様において、配列番号2で表されるアミノ酸配列における481~649位の間に連続して存在する欠失領域は、
(i)L1ドメインの一部(482~519位)、
(ii)HNHドメインの全部(520~628位)、及び
(iii)L2ドメインの一部(629~647位)
である(態様1-2)。
 本発明の一実施態様において、配列番号2で表されるアミノ酸配列における481~649位の間に連続して存在する欠失領域は、
 該欠失領域が、
(i)L1ドメインの一部(482~519位)、及び
(ii)HNHドメインの全部(520~628)
である(態様1-3)。
 本発明の別の一実施態様において、本発明は、前記態様1、1-1、1-2及び1-3におけるそれぞれの変異に加えて、さらに45位及び/又は163位に変異を有し、且つ、ガイドRNAとの結合能を有するタンパク質(態様2)を提供する。
 45位及び/又は163位における変異は、具体的には、グルタミン酸の塩基性アミノ酸への置換、好ましくはリジン、アルギニン又はヒスチジンへの置換、より好ましくはリジンへの置換である。
 本発明の別の一実施態様において、本発明は、配列番号2で表されるアミノ酸配列において、45位及び/又は163位のグルタミン酸が他のアミノ酸に置換されたアミノ酸配列を含む配列からなり、且つ、ガイドRNAとの結合能を有するタンパク質(態様3)を提供する。
 45位及び/又は163位における変異は、具体的には、グルタミン酸の塩基性アミノ酸への置換、好ましくはリジン、アルギニン又はヒスチジンへの置換、より好ましくはリジンへの置換である。
 配列番号2で表されるアミノ酸配列において、「481~649位の間に連続した欠失領域」を任意的に創出する場合の手法、及び「45位及び/又は163位のグルタミン酸を他のアミノ酸に置換」する場合の手法としては、所定のアミノ酸配列をコードするDNAに対して慣用の部位特異的変異導入を施し、その後このDNAを常法により発現させる手法が挙げられる。ここで部位特異的変異導入法としては、例えば、アンバー変異を利用する方法(ギャップド・デュプレックス法、Nucleic Acids Res., 12, 9441-9456 (1984))、変異導入用プライマーを用いたPCRによる方法等が挙げられる。また、Q5 Site-Directed Mutagenesis Kit (NEB)を用いて、マニュアルに従い簡便に実施することができる。
 本発明の別の一実施態様において、本発明は、前記態様1、1-1、1-2、1-3、2及び3のタンパク質と機能的に同等なタンパク質(態様4)を提供する。前記態様1、1-1、1-2、1-3、2及び3のタンパク質と機能的に同等であるためには配列番号2で表されるアミノ酸配列において、前記態様1、1-1、1-2、1-3、2及び3で変異が施された位置以外の部位において、80%以上の配列同一性を有し、且つガイドRNAとの結合能を有する必要がある。変異によりアミノ酸に増減があった場合には、該「変異が施された位置以外の部位」は「変異が施された位置に相当する位置以外の部位」と解することができる。係る同一性としては、80%以上が好ましく、85%以上がより好ましく、90%以上が更に好ましく、95%以上が特に好ましく、99%以上が最も好ましい。アミノ酸配列同一性は自体公知の方法により決定できる。例えば、アミノ酸配列同一性(%)は、当該分野で慣用のプログラム(例えば、BLAST、FASTA等)を初期設定で用いて決定することができる。また、別の局面では、同一性(%)は、当該分野で公知の任意のアルゴリズム、例えば、Needlemanら(1970) (J. Mol. Biol. 48: 444-453)、Myers及びMiller (CABIOS, 1988, 4: 11-17)のアルゴリズム等を使用して決定することができる。Needlemanらのアルゴリズムは、GCGソフトウェアパッケージ(www.gcg.comで入手可能)のGAPプログラムに組み込まれており、同一性(%)は、例えば、BLOSUM 62 matrix又はPAM250 matrix、並びにgap weight: 16、14、12、10、8、6若しくは4、及びlength weight: 1、2、3、4、5若しくは6のいずれかを使用することによって決定することができる。また、Myers及びMillerのアルゴリズムは、GCG配列アラインメントソフトウェアパッケージの一部であるALIGNプログラムに組み込まれている。アミノ酸配列を比較するためにALIGNプログラムを利用する場合、例えば、PAM120 weight residue table、gap length penalty 12、gap penalty 4を用いることができる。
 前記態様1、1-1、1-2、1-3、2及び3のタンパク質と機能的に同等なタンパク質として、配列番号2で表されるアミノ酸配列において、前記態様1、1-1、1-2、1-3、2及び3で変異が施された位置以外の部位において、1~数個のアミノ酸が置換、欠失、挿入及び/又は付加され、且つ、ガイドRNAとの結合能を有するタンパク質(態様4-1)が提供される。変異によりアミノ酸に増減があった場合には、該「変異が施された位置以外の部位」は「変異が施された位置に相当する位置以外の部位」と解することができる。
 「アミノ酸の置換、欠失、挿入及び/又は付加」を人為的に行う場合の手法としては、例えば、所定のアミノ酸配列をコードするDNAに対して慣用の部位特異的変異導入を施し、その後このDNAを常法により発現させる手法が挙げられる。ここで部位特異的変異導入法としては、例えば、アンバー変異を利用する方法(ギャップド・デュプレックス法、Nucleic Acids Res., 12, 9441-9456 (1984))、変異導入用プライマーを用いたPCRによる方法等が挙げられる。また、Q5 Site-Directed Mutagenesis Kit (NEB)を用いて、マニュアルに従い簡便に実施することができる。
 前記で改変されるアミノ酸の数については、少なくとも1残基、具体的には1若しくは数個、またはそれ以上である。また前記置換、欠失、挿入または付加のうち、特にアミノ酸の置換が好ましい。当該置換は、疎水性、電荷、pK、立体構造上における特徴等の類似した性質を有するアミノ酸への置換がより好ましい。このような置換としては、例えば、i)グリシン、アラニン;ii)バリン、イソロイシン、ロイシン;iii)アスパラギン酸、グルタミン酸、アスパラギン、グルタミン;iv)セリン、スレオニン;v)リジン、アルギニン;vi)フェニルアラニン、チロシンのグループ内での置換が挙げられる。
 本発明のdSaCas9変異体は、欠失変異によりdSaCas9変異体タンパク質が切断された状態にあり、該欠失領域の両端がリンカーによって連結されている。即ち、本発明のdSaCas9変異体は、欠失領域にそれぞれ隣接した位置にあるアミノ酸が3乃至10個のアミノ酸残基からなるリンカーによって連結している。かかる連結によって本願発明のdSaCas9変異体は連続したアミノ酸配列を有する。
 リンカー(以下、本発明のリンカーとも称する)は、切断されたタンパク質の両端を連結することができ、且つ、その機能に影響を及ぼさない限りは特に限定されないが、好ましくは、他のタンパク質に合わせて自己の形状を自在に変化させながら結合する天然変性構造をとることが可能な基であり、好ましくはグリシン(G)及びセリン(S)で構成される3乃至10個のアミノ酸残基からなるリンカーである。より好ましくは本発明のリンカーは、5~9アミノ酸長のペプチド残基である。具体的には、以下の残基が挙げられる。
-SGGGS-(配列番号3)
-GGSGGS-(配列番号4)
-SGSGSGSG-(配列番号5)
-SGSGSGSGS-(配列番号6)
 各変異体におけるリンカーの導入もまた、所定のアミノ酸配列をコードするDNAに対して慣用の部位特異的変異導入を施してリンカーをコードする塩基配列を挿入し、その後このDNAを常法により発現させる手法によって実施することができる。部位特異的変異導入法としては、上述と同様の手法が挙げられる。
 本実施形態におけるdSaCas9変異体は、例えば次のような方法により作成することができる。まず、前記本発明のdSaCas9変異体をコードする核酸を含むベクターを用いて、宿主を形質転換する。続いて、当該宿主を培養して前記タンパク質を発現させる。培地の組成、培養の温度、時間、誘導物質の添加等の条件は、形質転換体が生育し、前記タンパク質が効率よく産生されるよう、公知の方法に従って当業者が決定できる。また、例えば、選択マーカーとして抗生物質抵抗性遺伝子を発現ベクターに組み込んだ場合、培地に抗生物質を加えることにより、形質転換体を選択することができる。続いて、宿主が発現した前記タンパク質を適宜自体公知の方法により精製することにより、本発明のdSaCas9変異体が得られる。
 宿主としては、特に限定されず、動物細胞、植物細胞、昆虫細胞、又は、大腸菌、枯草菌、酵母等の微生物が挙げられる。好ましくは動物細胞である。 
<dSaCas9変異体-ガイドRNA複合体>
 一実施形態において、本発明は、上述の<dSaCas9変異体>において示されたタンパク質と、標的二本鎖ポリヌクレオチド中のPAM(Proto-spacer Adjacent Motif)配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むガイドRNAと、を備えるタンパク質-RNA複合体を提供する。
 前記タンパク質及び前記ガイドRNAは、in vitro及びin vivoにおいて、温和な条件で混合することで、タンパク質-RNA複合体を形成することができる。温和な条件とは、タンパク質が分解又は変性しない程度の温度及びpHを示しており、温度は4℃以上40℃以下が好ましく、pHは4以上10以下が好ましい。
 また、前記タンパク質及び前記ガイドRNAを混合し、インキュベートする時間は、0.5時間以上1時間以下が好ましい。前記タンパク質及び前記ガイドRNAによる複合体は、安定しており、室温で数時間静置しても安定性を保つことができる。 
<CRISPR-Casベクターシステム>
 一実施形態において、本発明は、上述の<dSaCas9変異体>において示されたタンパク質をコードする遺伝子を含む第1のベクターと、標的二本鎖ポリヌクレオチド中のPAM配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むガイドRNAを含む第2のベクターと、を備えるCRISPR-Casベクターシステムを提供する。
 別の一実施形態において、本発明は上述の<dSaCas9変異体>において示されたタンパク質をコードする遺伝子と、標的二本鎖ポリヌクレオチド中のPAM配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むガイドRNAとを同一のベクター中に有するCRISPR-Casベクターシステムを提供する。
 ガイドRNAは、標的二本鎖ポリヌクレオチド中のPAM配列の1塩基上流から、好ましくは20塩基以上24塩基以下、より好ましくは22塩基以上24塩基以下までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを5’末端領域に含むものを適宜設計すればよい。さらに、標的二本鎖ポリヌクレオチドと非相補的な塩基配列からなり、一点を軸として対称に相補的な配列になるように並び、ヘアピン構造をとり得る塩基配列からなるポリヌクレオチドを1つ以上含んでいてもよい。
 本実施形態のベクターは、発現ベクターであることが好ましい。発現ベクターとしては、例えば、pBR322、pBR325、pUC12、pUC13等の大腸菌由来のプラスミド;pUB110、pTP5、pC194等の枯草菌由来のプラスミド;pSH19、pSH15等の酵母由来プラスミド;λファージ等のバクテリオファージ;アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルス、サイトメガロウイルス等のウイルス;及びこれらを改変したベクター等を用いることができるが、インビボでの遺伝子発現の活性化を鑑みた場合、ウイルスベクター、特にアデノ随伴ウイルスが好ましい。
 上述の発現ベクターにおいて、前記dSaCas9変異体タンパク質、及び前記ガイドRNA発現用プロモーターとしては特に限定されず、例えば、EF1αプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、HSV-tkプロモーター等の動物細胞における発現用のプロモーター、カリフラワーモザイクウイルス(CaMV)の35Sプロモーター、REF(rubber elongation factor)プロモーター等の植物細胞における発現用のプロモーター、ポリヘドリンプロモーター、p10プロモーター等の昆虫細胞における発現用のプロモーター等を使用することができる。これらプロモーターは、前記dSaCas9変異体タンパク質、及び前記ガイドRNA、又は前記Cas9タンパク質、及び前記ガイドRNAを発現する細胞の種類に応じて、適宜選択することができる。
 上述の発現ベクターは、さらに、マルチクローニングサイト、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー(薬剤耐性)及びそのプロモーター、複製起点等を有していてもよい。
<標的二本鎖ポリヌクレオチドを部位特異的に改変するための方法>
[第1実施形態]
 一実施形態において、本発明は、標的二本鎖ポリヌクレオチドを部位特異的に改変するための方法であって、
 標的二本鎖ポリヌクレオチドと、タンパク質と、ガイドRNAとを混合し、インキュベートする工程と、前記タンパク質が、PAM配列の上流に位置する結合部位で前記標的二本鎖ポリヌクレオチドを改変する工程と、を備え、
 前記標的二本鎖ポリヌクレオチドは、PAM配列を有し、
 前記タンパク質は、上述の<dSaCas9変異体>において示されたタンパク質であり、
 前記ガイドRNAは、前記標的二本鎖ポリヌクレオチド中の前記PAM配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むものである方法を提供する。
 本実施形態において、標的二本鎖ポリヌクレオチドは、PAM配列を有するものであればよく、特別な限定はない。
 本実施形態において、タンパク質及びガイドRNAについては、上述の<dSaCas9変異体>において示されたとおりである。
 標的二本鎖ポリヌクレオチドを部位特異的に改変するための方法について、以下に詳細を説明する。
 まず、前記タンパク質及び前記ガイドRNAを温和な条件で混合し、インキュベートする。温和な条件とは、上述のとおりである。インキュベートする時間は、0.5時間以上1時間以下が好ましい。前記タンパク質及び前記ガイドRNAによる複合体は、安定しており、室温で数時間静置しても安定性を保つことができる。
 次に、前記標的二本鎖ポリヌクレオチド上において、前記タンパク質及び前記ガイドRNAは複合体を形成する。前記タンパク質は、PAM配列を認識し、PAM配列の上流に位置する結合部位で、前記標的二本鎖ポリヌクレオチドに結合する。続いて、前記ガイドRNAと前記二本鎖ポリヌクレオチドの相補的結合によって決定される領域において、目的に応じた改変が施された標的二本鎖ポリヌクレオチドを得ることができる。
 本明細書中において、「改変」とは、標的二本鎖ポリヌクレオチドが構造的あるいは機能的に変化することを意味する。例えば、機能的なタンパク質や塩基配列の付加による標的二本鎖ポリヌクレオチドの構造的あるいは機能的な変化が挙げられる。当該改変により標的二本鎖ポリヌクレオチドの機能を改変、欠失、増強、又は抑制すること、新しい機能の付加が可能となる。 
 本発明のdSaCas9変異体は、エンドヌクレアーゼ活性を有さないので該タンパク質はPAM配列の上流に位置する結合部位で前記標的二本鎖ポリヌクレオチドに結合することができるが、そこにとどまって切断することができない。従って、例えば該タンパク質に蛍光タンパク質(例、GFP)等の標識タンパク質を融合させておくと、dSaCas9変異体タンパク質-ガイドRNAを介して標識タンパク質を標的二本鎖ポリヌクレオチドに結合させることができる。dSaCas9変異体に結合させる物質を適宜選択することによって多様な機能を標的二本鎖ポリヌクレオチドに与えることが可能となる。
 さらに、dSaCas9変異体タンパク質のN末端あるいはC末端に転写制御因子タンパク質又はドメインを連結することができる。転写制御因子又はそのドメインとしては、転写活性化因子又はそのドメイン(例、VP64、VP160、NF-κB p65)及び転写サイレンサー又はそのドメイン(例、ヘテロクロマチンタンパク質1(HP1))又は転写抑制因子又はそのドメイン(例、クルッペル関連ボックス(KRAB)、ERFリプレッサードメイン(ERD)、mSin3A相互作用ドメイン(SID))が挙げられる。
 DNAのメチル化状態を修飾する酵素(例、DNAメチルトランスフェラーゼ(DNMT)、TET)やヒストンサブユニットを修飾する酵素(例、ヒストンアセチルトランスフェラーゼ(HAT)、ヒストンデアセチラーゼ(HDAC)、ヒストンメチルトランスフェラーゼ、ヒストンデメチラーゼ)を連結することもできる。
[第2実施形態]
 本実施形態において、インキュベート工程の前に、さらに、上述のCRISPR-Casベクターシステムを用いて、上述の<dSaCas9変異体>において示されたタンパク質と、ガイドRNAとを発現させる発現工程を備えていてもよい。 
 本実施形態の発現工程において、まず、上述のCRISPR-Casベクターシステムを用いて、dSaCas9変異体タンパク質及びガイドRNAを発現させる。発現させる具体的な方法としては、dSaCas9変異体タンパク質をコードする遺伝子を含む発現ベクター、及びガイドRNAを含む発現ベクターをそれぞれ(あるいはdSaCas9変異体タンパク質をコードする遺伝子及びガイドRNAを同時に含む発現ベクター)を用いて宿主を形質転換する。続いて、当該宿主を培養してdSaCas9変異体タンパク質、及びガイドRNAを発現させる。培地の組成、培養の温度、時間、誘導物質の添加等の条件は、形質転換体が生育し、融合タンパク質が効率よく産生されるよう、公知の方法に従って当業者が決定できる。また、例えば、選択マーカーとして抗生物質抵抗性遺伝子を発現ベクターに組み込んだ場合、培地に抗生物質を加えることにより、形質転換体を選択することができる。続いて、宿主が発現したdSaCas9変異体タンパク質、及びガイドRNAを適宜の方法により精製することにより、dSaCas9変異体タンパク質、及びガイドRNAが得られる。
<標的二本鎖ポリヌクレオチドを細胞内において部位特異的に改変するための方法>
 一実施形態において、本発明は、標的二本鎖ポリヌクレオチドを細胞内において部位特異的に改変するための方法であって、
 上述のCRISPR-Casベクターシステムを細胞に導入し、上述の<dSaCas9変異体>において示されたタンパク質と、ガイドRNAとを発現させる発現工程と、
 前記タンパク質が、PAM配列の上流に位置する結合部位で前記標的二本鎖ポリヌクレオチドに結合する工程と、
前記ガイドRNAと前記標的二本鎖ポリヌクレオチドの相補的結合によって決定される領域において、改変された前記標的二本鎖ポリヌクレオチドを得る工程と、を備え、
 前記ガイドRNAは、前記標的二本鎖ポリヌクレオチド中の前記PAM配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むものである方法を提供する。 
 本実施形態の発現工程において、まず、上述のCRISPR-Casベクターシステムを用いて、細胞内において、dSaCas9変異体タンパク質及びガイドRNAを発現させる。 
 本実施形態の方法の適用対象となる細胞の由来となる生物としては、例えば、原核生物、酵母、動物、植物、昆虫等が挙げられる。前記動物としては、特別な限定はなく、例えば、ヒト、サル、イヌ、ネコ、ウサギ、ブタ、ウシ、マウス、ラット等が挙げられ、これらに限定されない。また、細胞の由来となる生物の種類は、所望の標的二本鎖ポリヌクレオチドの種類、目的等により任意に選択することができる。 
 本実施形態の方法の適用対象となる動物由来の細胞としては、例えば、生殖細胞(精子、卵子等)、生体を構成する体細胞、幹細胞、前駆細胞、生体から分離されたがん細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変された細胞、生体から分離され人為的に核が交換された細胞等が挙げられ、これらに限定されない。
 生体を構成する体細胞としては、例えば、皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液、心臓、眼、脳、神経組織等の任意の組織から採取される細胞等が挙げられ、これらに限定されない。体細胞として、より具体的には、例えば、線維芽細胞、骨髄細胞、免疫細胞(例えば、Bリンパ球、Tリンパ球、好中球、マクロファージ、単球、等)、赤血球、血小板、骨細胞、骨髄細胞、周皮細胞、樹状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、リンパ管内皮細胞、肝細胞、膵島細胞(例えば、α細胞、β細胞、δ細胞、ε細胞、PP細胞等)、軟骨細胞、卵丘細胞、グリア細胞、神経細胞(ニューロン)、オリゴデンドロサイト、マイクログリア、星状膠細胞、心筋細胞、食道細胞、筋肉細胞(例えば、平滑筋細胞、骨格筋細胞等)、メラニン細胞、単核細胞等が挙げられ、これらに限定されない。 
 幹細胞とは、自分自身を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞である。幹細胞としては、例えば、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、がん幹細胞、毛包幹細胞等が挙げられ、これらに限定されない。 
 がん細胞とは、体細胞から派生して無限の増殖能を獲得した細胞である。がん細胞の由来となるがんとしては、例えば、乳がん(例えば、浸潤性乳管がん、非浸潤性乳管がん、炎症性乳がん等)、前立腺がん(例えば、ホルモン依存性前立腺がん、ホルモン非依存性前立腺がん等)、膵がん(例えば、膵管がん等)、胃がん(例えば、乳頭腺がん、粘液性腺がん、腺扁平上皮がん等)、肺がん(例えば、非小細胞肺がん、小細胞肺がん、悪性中皮腫等)、結腸がん(例えば、消化管間質腫瘍等)、直腸がん(例えば、消化管間質腫瘍等)、大腸がん(例えば、家族性大腸がん、遺伝性非ポリポーシス大腸がん、消化管間質腫瘍等)、小腸がん(例えば、非ホジキンリンパ腫、消化管間質腫瘍等)、食道がん、十二指腸がん、舌がん、咽頭がん(例えば、上咽頭がん、中咽頭がん、下咽頭がん等)、頭頚部がん、唾液腺がん、脳腫瘍(例えば、松果体星細胞腫瘍、毛様細胞性星細胞腫、びまん性星細胞腫、退形成性星細胞腫等)、神経鞘腫、肝臓がん(例えば、原発性肝がん、肝外胆管がん等)、腎臓がん(例えば、腎細胞がん、腎盂と尿管の移行上皮がん等)、胆嚢がん、胆管がん、膵臓がん、子宮内膜がん、子宮頸がん、卵巣がん(例、上皮性卵巣がん、性腺外胚細胞腫瘍、卵巣性胚細胞腫瘍、卵巣低悪性度腫瘍等)、膀胱がん、尿道がん、皮膚がん(例えば、眼内(眼)黒色腫、メルケル細胞がん等)、血管腫、悪性リンパ腫(例えば、細網肉腫、リンパ肉腫、ホジキン病等)、メラノーマ(悪性黒色腫)、甲状腺がん(例えば、甲状腺髄様ガン等)、副甲状腺がん、鼻腔がん、副鼻腔がん、骨腫瘍(例えば、骨肉腫、ユーイング腫瘍、子宮肉腫、軟部組織肉腫等)、転移性髄芽腫、血管線維腫、隆起性皮膚線維肉腫、網膜肉腫、陰茎癌、精巣腫瘍、小児固形がん(例えば、ウィルムス腫瘍、小児腎腫瘍等)、カポジ肉腫、AIDSに起因するカポジ肉腫、上顎洞腫瘍、線維性組織球腫、平滑筋肉腫、横紋筋肉腫、慢性骨髄増殖性疾患、白血病(例えば、急性骨髄性白血病、急性リンパ芽球性白血病等)等が挙げられ、これらに限定されない。
 細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞である。細胞株としては、例えば、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮頸がん細胞株)、HepG2(ヒト肝がん細胞株)、UT7/TPO(ヒト白血病細胞株)、CHO(チャイニーズハムスター卵巣細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five、Vero等が挙げられ、これらに限定されない。
 CRISPR-Casベクターシステムの細胞への導入方法としては、使用する生細胞に適した方法で行うことができ、エレクトロポレーション法、ヒートショック法、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法、マイクロインジェクション法、パーティクル・ガン法、ウイルスを用いた方法や、FuGENE(登録商標) 6 Transfection Reagent(ロシュ社製)、Lipofectamine 2000 Reagent(インビトロジェン社製)、Lipofectamine LTX Reagent(インビトロジェン社製)、Lipofectamine 3000 Reagent(インビトロジェン社製)などの市販のトランスフェクション試薬を用いた方法などを挙げることができる。 
 続く、改変工程については、上述の<標的二本鎖ヌクレオチドを部位特異的に改変するための方法>の[第1実施形態]に示された方法と同様である。
 本実施形態における標的二本鎖ポリヌクレオチドの修飾により、標的二本鎖ポリヌクレオチドが改変された細胞を得ることができる。
 以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。
実施例1:dSaCas9変異体のDNA結合親和性評価
(方法)
1.クローニング
 NEB Q5 Site-Directed Mutagenesis Kitを用いて、dSaCas9遺伝子内に、所定の欠失領域を作り、リンカーをコードする遺伝子を導入し、さらに転写制御因子であるKRAB遺伝子を融合させて種々のdSaCas9変異体を作製した(図1)。これらの変異体について、MYD88遺伝子を用いてその発現抑制活性を調べた。全てのdSaCas9変異体の遺伝子構築物をpX601ベクターに組み込んだ(F. Ann Ran et al., Nature 2015; 520(7546); pp.186-191)。DNA結合アッセイには、crRNA配列;GGAGCCACAGTTCTTCCACGG(配列番号7)をtracrRNA配列;GTTTTAGTACTCTGGAAACAGAATCTACTAAAACAAGGCAAAATGCCGTGTTTATCACGTCAACTTGTTGGCGAGATTTTTTT(配列番号8)と融合させガイドRNA(sgRNA)を形成させベクターから発現させるようにした。
 尚、コントロールのガイドRNA(コントロールsgRNA)配列としては、以下の配列を用いた:ACGGAGGCTAAGCGTCGCAA(配列番号9)。
2.細胞トランスフェクション
 HEK293FT細胞をトランスフェクションの24時間に1ウェルあたり75,000細胞の密度で24ウェルプレートに播種し、10%FBS、2mMの新鮮なL-グルタミン、1mMのピルビン酸ナトリウム及び非必須アミノ酸を添加したDMEM培地で培養した。細胞を500ngの各dSaCas9変異体(レプレッサー)発現ベクター及び各sgRNA発現ベクターを1.5μlのリポフェクトアミン2000(Life technologies)を用い、取扱説明書に従ってトランスフェクトした。遺伝子発現解析の為に、トランスフェクション後48~72時間で細胞を回収しRLTバッファー(Qiagen)に溶解しRNeasy kit (Qiagen)を用いて全RNAを抽出した。
3.遺伝子発現解析
 Taqman解析の為に、1.5μgの全RNAから、20μlの容量でTaqManTM High-Capacity RNA-to-cDNA Kit (Applied Biosystems)を用いてcDNAを調製した。調製されたcDNAを20倍に希釈し、Taqman反応あたり6.33μlを用いた。MYD88遺伝子に対するTaqmanプライマー及びプローブはApplied Biosystemsより入手した。Roche LightCycler 96又はLightCycler 480中、Taqman gene expression master mix (ThermoFisher)を用いてTaqman反応を reaction was run using Taqman gene expression master mix (ThermoFisher)行い、LightCycler 96 analysisソフトウェアを用いて解析した。
Taqman probe product IDs: 
MYD88: Hs01573837_g1 (FAM)
HPRT: Hs99999909_m1 (FAM, VIC)
 
Taqman QPCR condition:
Step 1; 95C 10 min
Step 2; 95C 15 sec
Step 3; 60C 30 sec 
Repeat Step 2 and 3; 40 times
(結果)
 本発明のdSaCas9変異体における遺伝子発現レベルはコントロールに比べ野生型dSaCas9に匹敵する程度に低かった(図2)。この結果より、本発明のdSaCas9変異体は、欠失領域が存在し、全長のdSaCas9に比べて80%程度の大きさに縮小されているにもかかわらず、ガイドRNAとの結合能、ひいてはDNA結合親和性が維持されていることが示された。
 上記結果において、特にDNA結合親和性が高かったT1について、さらに様々な点変異を導入し、その効果を確認した。結果を図3に示す。
 M12(45位のグルタミン酸がリジンに置換されたT1変異体)にT1よりも優れたDNA結合親和性が確認された。
 M12について、さらに様々な点変異を導入し、その効果を確認した。結果を図4に示す。
 M15(163位のグルタミン酸がリジンに置換されたM12変異体)にM12よりも優れたDNA結合親和性が確認された。
 本発明によれば、DNA結合親和性を保ちながら、小型化されたdSaCas9タンパク質を得ることができる。小型化されたdSaCas9タンパク質の使用はより多くの遺伝子のベクターへの搭載を可能とし、従って多様なゲノム編集技術を提供することができる。
 本出願は、米国で出願された米国仮特許出願第62/682,244(出願日:2018年6月8日)を基礎としておりその内容は本明細書に全て包含されるものである。

Claims (24)

  1.  配列番号2で表されるアミノ酸配列において、
    481~649位の間に連続した欠失領域を有し、該欠失領域が、
    (i)L1ドメイン(481~519位)の全部または一部、及び
    (ii)HNHドメイン(520~628位)の全部を含み、さらに任意で該欠失領域は
    (iii)L2ドメイン(629~649位)の全部または一部を含み、
    該欠失領域にそれぞれ隣接したアミノ酸が3乃至10個のアミノ酸残基からなるリンカーによって連結しているアミノ酸配列を含む配列からなり、
    且つ、ガイドRNAとの結合能を有するタンパク質。
  2.  該欠失領域が、
    (i)L1ドメインの全部(481~519位)、
    (ii)HNHドメイン領域の全部(520~628位)、及び
    (iii)L2ドメインの全部(629~649位)
    である、請求項1記載のタンパク質。
  3.  該欠失領域が、
    (i)L1ドメインの一部(482~519位)、
    (ii)HNHドメインの全部(520~628位)、及び
    (iii)L2ドメインの一部(629~647位)
    である、請求項1記載のタンパク質。
  4.  該欠失領域が、
    (i)L1ドメインの一部(482~519位)、及び
    (ii)HNHドメインの全部(520~628位)
    である、請求項1記載のタンパク質。
  5.  配列番号2で表されるアミノ酸配列において、45位及び/又は163位のグルタミン酸(E)が他のアミノ酸に置換されたアミノ酸配列を含む配列からなり、且つ、ガイドRNAとの結合能を有するタンパク質。
  6.  他のアミノ酸が塩基性アミノ酸である、請求項5記載のタンパク質。
  7.  塩基性アミノ酸が、リジン(K)である、請求項6記載のタンパク質。
  8.  さらに、45位及び/又は163位のグルタミン酸(E)が他のアミノ酸に置換されている、請求項1~4のいずれか1項に記載のタンパク質。
  9.  他のアミノ酸が塩基性アミノ酸である、請求項8記載のタンパク質。
  10.  塩基性アミノ酸がリジン(K)である、請求項9記載のタンパク質。
  11.  リンカーが、グリシン(G)及びセリン(S)で構成される、5~9アミノ酸長のリンカーである、請求項1~8のいずれか1項に記載のタンパク質。
  12.  リンカーが、以下から選択される、請求項1~11のいずれか1項に記載のタンパク質:
    -SGGGS-
    -GGSGGS-
    -SGSGSGSG-
    -SGSGSGSGS-。
  13.  配列番号2の変異及び/又は欠失が施された位置以外の部位において80%以上の同一性を有する、請求項1~12のいずれか1項に記載のタンパク質。
  14.  配列番号2の変異及び/又は欠失が施された位置以外の部位において1~数個のアミノ酸が置換、欠失、挿入及び/又は付加された、請求項1~12のいずれか1項に記載のタンパク質。
  15.  転写制御因子タンパク質又はドメインを連結した、請求項1~14のいずれか1項に記載のタンパク質。
  16.  転写制御因子が転写活性化因子である、請求項15記載のタンパク質。
  17.  転写制御因子が転写サイレンサー又は転写抑制因子である、請求項15記載のタンパク質。
  18.  請求項1~17のいずれか1項に記載のタンパク質をコードする核酸。
  19.  請求項1~18のいずれか1項に記載のタンパク質と、標的二本鎖ポリヌクレオチド中のPAM(Proto-spacer Adjacent Motif)配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むガイドRNAと、を備えるタンパク質-RNA複合体。
  20.  標的二本鎖ポリヌクレオチドを部位特異的に改変するための方法であって、
     標的二本鎖ポリヌクレオチドと、タンパク質と、ガイドRNAとを混合し、インキュベートする工程と、
     前記タンパク質が、PAM配列の上流に位置する結合部位で前記標的二本鎖ポリヌクレオチドを改変する工程と、を備え、
     前記タンパク質は、請求項1~17のいずれか1項に記載のタンパク質であり、
     前記ガイドRNAは、前記標的二本鎖ポリヌクレオチド中の前記PAM配列の1塩基上流から20塩基以上24塩基以下上流までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを含むものである方法。
  21.  細胞の標的遺伝子の発現を増大させる方法であって、前記細胞内で請求項16に記載のタンパク質と、前記標的遺伝子に対する1つ又は複数のガイドRNAとを発現させることを含む、方法。
  22.  細胞の標的遺伝子の発現を減少させる方法であって、前記細胞内で請求項17に記載のタンパク質と、前記標的遺伝子に対する1つ又は複数のガイドRNAとを発現させることを含む、方法。
  23.  細胞が真核細胞である、請求項21又は22に記載の方法。
  24.  細胞が酵母細胞、植物細胞又は動物細胞である、請求項21又は22に記載の方法。
PCT/JP2019/022795 2018-06-08 2019-06-07 改変されたCas9タンパク質及びその用途 WO2019235627A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2019281158A AU2019281158A1 (en) 2018-06-08 2019-06-07 Modified Cas9 protein and use thereof
KR1020217000588A KR20210025046A (ko) 2018-06-08 2019-06-07 개변된 Cas9 단백질 및 그의 용도
US16/972,920 US20220017881A1 (en) 2018-06-08 2019-06-07 MODIFIED Cas9 PROTEIN AND USE THEREOF
JP2020523211A JP7412001B2 (ja) 2018-06-08 2019-06-07 改変されたCas9タンパク質及びその用途
MX2020013158A MX2020013158A (es) 2018-06-08 2019-06-07 Proteina cas9 modificada y uso de la misma.
EP19815297.7A EP3805386A4 (en) 2018-06-08 2019-06-07 MODIFIED CAS9 PROTEIN AND USE THEREOF
BR112020024992-0A BR112020024992A2 (pt) 2018-06-08 2019-06-07 proteína cas9 modificada e uso da mesma
CN201980037466.XA CN112513266A (zh) 2018-06-08 2019-06-07 经修饰的Cas9蛋白及其用途
CA3103088A CA3103088A1 (en) 2018-06-08 2019-06-07 Modified cas9 protein and use thereof
SG11202012228QA SG11202012228QA (en) 2018-06-08 2019-06-07 MODIFIED Cas9 PROTEIN AND USE THEREOF
IL279178A IL279178A (en) 2018-06-08 2020-12-03 Weird Cas9 protein and its use
ZA2021/00092A ZA202100092B (en) 2018-06-08 2021-01-06 Modified cas9 protein and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862682244P 2018-06-08 2018-06-08
US62/682,244 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019235627A1 true WO2019235627A1 (ja) 2019-12-12

Family

ID=68770337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022795 WO2019235627A1 (ja) 2018-06-08 2019-06-07 改変されたCas9タンパク質及びその用途

Country Status (13)

Country Link
US (1) US20220017881A1 (ja)
EP (1) EP3805386A4 (ja)
JP (1) JP7412001B2 (ja)
KR (1) KR20210025046A (ja)
CN (1) CN112513266A (ja)
AU (1) AU2019281158A1 (ja)
BR (1) BR112020024992A2 (ja)
CA (1) CA3103088A1 (ja)
IL (1) IL279178A (ja)
MX (1) MX2020013158A (ja)
SG (1) SG11202012228QA (ja)
WO (1) WO2019235627A1 (ja)
ZA (1) ZA202100092B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241903A1 (en) 2019-05-28 2020-12-03 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting dmpk gene
WO2021230385A1 (en) 2020-05-15 2021-11-18 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting utrophin gene
WO2022045366A1 (en) * 2020-08-31 2022-03-03 Modalis Therapeutics Corporation Method for treating facioscapulohumeral muscular dystrophy (fshd) by targeting dux4 gene
WO2022114243A1 (en) 2020-11-25 2022-06-02 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting dmpk gene

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008008523A1 (en) * 2006-07-14 2008-01-17 Regents Of The University Of Minnesota COMPOUNDS THAT BIND α5β1 INTEGRIN AND METHODS OF USE
JP2010505437A (ja) * 2006-10-13 2010-02-25 ノボ ノルディスク ヘルス ケア アーゲー 塩基性タンパク質タグに融合したプロセシング酵素
WO2016141224A1 (en) 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
JP2016533332A (ja) * 2013-09-24 2016-10-27 マサチューセッツ インスティテュート オブ テクノロジー 自己集合型ナノ粒子ワクチン
WO2016196655A1 (en) * 2015-06-03 2016-12-08 The Regents Of The University Of California Cas9 variants and methods of use thereof
WO2016205613A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Crispr enzyme mutations reducing off-target effects
WO2016205759A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
WO2017010543A1 (ja) 2015-07-14 2017-01-19 国立大学法人東京大学 改変されたFnCas9タンパク質及びその使用
JP2017527284A (ja) * 2014-09-01 2017-09-21 ブイアイビー ブイゼットダブリュVib Vzw 変異体ポア
WO2017217768A1 (ko) * 2016-06-15 2017-12-21 주식회사 툴젠 온타겟 및 오프타겟의 다중 타겟 시스템을 이용하는, 표적 특이적 유전자 가위 스크리닝 방법 및 이의 용도
JP2018502572A (ja) * 2015-01-02 2018-02-01 ダイアックス コーポレーション 血漿カリクレインおよび第xii因子に対する二重特異性抗体
WO2018074979A1 (en) 2016-10-17 2018-04-26 Nanyang Technological University Truncated crispr-cas proteins for dna targeting
WO2018209712A1 (en) 2017-05-19 2018-11-22 Tsinghua University Engineering of a minimal sacas9 crispr/cas system for gene editing and transcriptional regulation optimized by enhanced guide rna
WO2019089910A1 (en) * 2017-11-01 2019-05-09 Ohio State Innovation Foundation Highly compact cas9-based transcriptional regulators for in vivo gene regulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3119618A1 (en) * 2018-11-16 2020-05-22 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting utrophin gene

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008008523A1 (en) * 2006-07-14 2008-01-17 Regents Of The University Of Minnesota COMPOUNDS THAT BIND α5β1 INTEGRIN AND METHODS OF USE
JP2010505437A (ja) * 2006-10-13 2010-02-25 ノボ ノルディスク ヘルス ケア アーゲー 塩基性タンパク質タグに融合したプロセシング酵素
JP2016533332A (ja) * 2013-09-24 2016-10-27 マサチューセッツ インスティテュート オブ テクノロジー 自己集合型ナノ粒子ワクチン
JP2017527284A (ja) * 2014-09-01 2017-09-21 ブイアイビー ブイゼットダブリュVib Vzw 変異体ポア
JP2018502572A (ja) * 2015-01-02 2018-02-01 ダイアックス コーポレーション 血漿カリクレインおよび第xii因子に対する二重特異性抗体
WO2016141224A1 (en) 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
WO2016196655A1 (en) * 2015-06-03 2016-12-08 The Regents Of The University Of California Cas9 variants and methods of use thereof
WO2016205759A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
WO2016205613A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Crispr enzyme mutations reducing off-target effects
WO2017010543A1 (ja) 2015-07-14 2017-01-19 国立大学法人東京大学 改変されたFnCas9タンパク質及びその使用
WO2017217768A1 (ko) * 2016-06-15 2017-12-21 주식회사 툴젠 온타겟 및 오프타겟의 다중 타겟 시스템을 이용하는, 표적 특이적 유전자 가위 스크리닝 방법 및 이의 용도
WO2018074979A1 (en) 2016-10-17 2018-04-26 Nanyang Technological University Truncated crispr-cas proteins for dna targeting
WO2018209712A1 (en) 2017-05-19 2018-11-22 Tsinghua University Engineering of a minimal sacas9 crispr/cas system for gene editing and transcriptional regulation optimized by enhanced guide rna
WO2019089910A1 (en) * 2017-11-01 2019-05-09 Ohio State Innovation Foundation Highly compact cas9-based transcriptional regulators for in vivo gene regulation

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
DACHENG MA ET AL., ACS SYNTH. BIOL., vol. 7, 2018, pages 978 - 985
F. ANN RAN ET AL., NATURE, vol. 520, no. 7546, 2015, pages 186 - 191
H. NISHIMASU ET AL., CELL, vol. 162, pages 1113 - 1126
MA, D. C. ET AL.: "Rational design of Mini-Cas9 for transcriptional activation", ACS SYNTH. BIOL., vol. 7, no. 4, 21 March 2018 (2018-03-21), pages 978 - 985, XP055661686 *
MYERSMILLER, CABIOS, vol. 4, 1988, pages 11 - 17
NEEDLEMAN ET AL., J. MOL. BIOL., vol. 48, 1970, pages 444 - 453
NISHIMASU, HIROSHI ET AL.: "Crystal structure of staphylococcus aureus Cas9", CELL, vol. 162, 2015, pages 1113 - 1126, XP055304450 *
NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456
See also references of EP3805386A4
STERNBERG, S. H. ET AL.: "Conformational control of DNA target cleavage by CRISPR-Cas9", NATURE, vol. 527, 2015, pages 110 - 113, XP055535411 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241903A1 (en) 2019-05-28 2020-12-03 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting dmpk gene
WO2021230385A1 (en) 2020-05-15 2021-11-18 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting utrophin gene
WO2022045366A1 (en) * 2020-08-31 2022-03-03 Modalis Therapeutics Corporation Method for treating facioscapulohumeral muscular dystrophy (fshd) by targeting dux4 gene
WO2022114243A1 (en) 2020-11-25 2022-06-02 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting dmpk gene

Also Published As

Publication number Publication date
EP3805386A1 (en) 2021-04-14
KR20210025046A (ko) 2021-03-08
BR112020024992A2 (pt) 2021-03-23
JP7412001B2 (ja) 2024-01-12
EP3805386A4 (en) 2022-03-23
MX2020013158A (es) 2021-04-29
SG11202012228QA (en) 2021-01-28
IL279178A (en) 2021-01-31
US20220017881A1 (en) 2022-01-20
CA3103088A1 (en) 2019-12-12
JPWO2019235627A1 (ja) 2021-06-24
ZA202100092B (en) 2021-10-27
AU2019281158A1 (en) 2021-01-14
CN112513266A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US11702645B2 (en) Polynucleotide encoding modified CAS9 protein
WO2020085441A1 (ja) 改変されたCas9タンパク質及びその用途
JP7412001B2 (ja) 改変されたCas9タンパク質及びその用途
US20230279374A1 (en) Modified cas9 protein, and use thereof
JPWO2018221685A6 (ja) 改変されたCas9タンパク質及びその用途
WO2017010543A1 (ja) 改変されたFnCas9タンパク質及びその使用
EP3712272A1 (en) Method for modulating rna splicing by inducing base mutation at splice site or base substitution in polypyrimidine region
JP2023505234A (ja) ヌクレアーゼを含む組成物及びその使用
WO2019026976A1 (ja) 改変されたCas9タンパク質及びその用途
JP2023539569A (ja) ヌクレアーゼを含む組成物及びその使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523211

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3103088

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024992

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217000588

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019281158

Country of ref document: AU

Date of ref document: 20190607

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019815297

Country of ref document: EP

Effective date: 20210111

ENP Entry into the national phase

Ref document number: 112020024992

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201207