WO2019235543A1 - 多孔質体、及び、医療用材料 - Google Patents

多孔質体、及び、医療用材料 Download PDF

Info

Publication number
WO2019235543A1
WO2019235543A1 PCT/JP2019/022418 JP2019022418W WO2019235543A1 WO 2019235543 A1 WO2019235543 A1 WO 2019235543A1 JP 2019022418 W JP2019022418 W JP 2019022418W WO 2019235543 A1 WO2019235543 A1 WO 2019235543A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer material
porous body
region
polymer
density
Prior art date
Application number
PCT/JP2019/022418
Other languages
English (en)
French (fr)
Inventor
靖元 中澤
智恵美 坂田
修平 太良
英里 小柳
Original Assignee
国立大学法人東京農工大学
学校法人日本医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/972,603 priority Critical patent/US20210299333A1/en
Application filed by 国立大学法人東京農工大学, 学校法人日本医科大学 filed Critical 国立大学法人東京農工大学
Priority to JP2020523156A priority patent/JP7392952B2/ja
Priority to EP19815108.6A priority patent/EP3804771B1/en
Publication of WO2019235543A1 publication Critical patent/WO2019235543A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/129Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a porous body and a medical material.
  • Expanded polytetrafluoroethylene is frequently used as a material for medical devices such as scaffolds. Since ePTFE is flexible and does not show activity on a living body, it has been applied to many soft tissue materials. On the other hand, ePTFE is difficult to be absorbed by a living body, and problems remain in thrombus formation, calcification, durability, etc. in a remote period. Therefore, in recent years, it has been studied to apply an absorbent material excellent in bioabsorbability to a medical device (see, for example, Patent Documents 1 to 6 and Non-Patent Documents 1 to 9). [Prior art documents] [Patent Literature] Patent Document 1 Japanese Translation of PCT International Publication No.
  • Non-Patent Document 1 Sugiura T et al., “Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft”, Ann Thorac Surg. 102, 720-727 (2016)
  • Non-Patent Document 2 Tara S et al., "Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft", J. Vasc.
  • Non-Patent Document 3 Wang S et. Al., "Fabrication of small-diameter vascular scaffolds by heparin-bonded P (LLA-CL) composite nanofibers to improve graft patency", International Journal of Nanomedicine, Dove Medical Press, June 2013 7th, Vol. 8, 2131-2139.
  • Non-Patent Document 4 Young Min Shin et.al., "Mussel-Inspired Immobilization of Vascular Endothelial Growth Factor (VEGF) for Enhanced Endothelialization of Vascular Grafts", Biomacromolecules.
  • VEGF Vascular Endothelial Growth Factor
  • Non-Patent Document 5 Tal Dvir et.al., “Prevascularization of cardiac patch on the omentum improves its therapeutic outcome”, PNAS. 106, 14990-14995 (2009)
  • Non-Patent Document 6 Erik J. Suuronen et.al., "An acellular matrix-bound ligand enhances the mobilization, recruitment and therapeutic effects of circulating progenitor cells in a hindlimb ischemia model", FASEB J. 23, 1447-1458 (2009)
  • Non-Patent Document 7 KRStevens et.al., "Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue", PNAS. 106, 16568-16573 (2009)
  • Non-Patent Document 8 N
  • Non-Patent Document 9 M. Kheradmandi et.al., “Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan / PVA scaffold”, J. Biomed. Mater. Res. Part A (J Biomed Mater Res A). 104, 1720 -1727 (2016) Non-Patent Document 10 B. M. Learoyd et.al., "Alterations with age in the viscoelastic properties of human arterial walls", Circ. Res. 18, 278-292 (1966)
  • a porous body In the first aspect of the present invention, a porous body is provided.
  • the porous body has, for example, a first surface and a second surface that face each other.
  • the porous body includes, for example, a second polymer material.
  • the Young's modulus of the porous body determined based on the tensile strength in water at 37 ° C. in purified water is 0.1 MPa or more and 10 MPa or less.
  • a first sample taken from the first region of the porous body and having a size of 10 mm ⁇ 10 mm is immersed in a simulated biological fluid at 35 to 39 ° C. for 30 days.
  • the mass loss rate of one sample is, for example, (ii) collected from the second region of the porous body, and a second sample having a size of 10 mm ⁇ 10 mm was immersed in a simulated biological fluid at 35 to 39 ° C. for 30 days. Larger than the mass loss rate of the second sample in the case.
  • the distance between the first region and the first surface is smaller than the distance between the second region and the first surface.
  • the second polymer material includes, for example, at least one substance selected from the group consisting of a second biodegradable plastic, a second biopolymer, and a second natural polymer.
  • the second biodegradable plastic may be, for example, (i) poly-D lactic acid (PDLA), poly-L lactic acid (PLLA), poly-DL lactic acid (PDLLA), poly ( ⁇ -caprolactone), polyglactin, Polyethylene carbonate, degradable polyurethane, and (ii) at least two copolymers of the monomers constituting them, or copolymers of at least one of the monomers constituting them with other monomers, and (iii) It is at least one selected from the group consisting of these salts and derivatives.
  • the second biopolymer includes, for example, (i) collagen, fibrin, and (ii) at least two copolymers of monomers constituting these, or at least monomers constituting them.
  • the second natural polymer may be, for example, (i) chitin, sericin, fibroin, carboxymethylcellulose, chitosan, and (ii) a copolymer of at least two monomers constituting these, or A copolymer of at least one of the monomers constituting these and another monomer, and (iii) at least one selected from the group consisting of salts and derivatives thereof.
  • the porous body may include a first polymer material that is more biodegradable or bioabsorbable than the second polymer material.
  • the absolute value of the difference between the mass loss rate of the first sample and the mass loss rate of the second sample may be 0.5% or more.
  • the absolute value of the difference is preferably 0.7% or more, more preferably 1.0% or more, further preferably 1.5% or more, and 2% or more. More preferably, it is 2.5% or more, more preferably 3% or more.
  • a porous body has, for example, a first surface and a second surface that face each other.
  • the porous body includes, for example, a first polymer material and a second polymer material.
  • the Young's modulus of the first polymer material is smaller than the Young's modulus of the second polymer material.
  • the disappearance rate of the first polymer material in vivo is larger than the disappearance rate of the second polymer material in vivo.
  • the composition in the first region of the porous body is different from the composition in the second region of the porous body.
  • the distance between the first region and the first surface is smaller than the distance between the second region and the first surface.
  • a porous body has, for example, a first surface and a second surface that face each other.
  • the porous body includes, for example, a first polymer material and a second polymer material.
  • the Young's modulus of the first polymer material is smaller than the Young's modulus of the second polymer material.
  • the absorbability of the first polymer material for phosphate buffered saline is greater than the absorbability of the second polymer material for phosphate buffered saline, for example.
  • the composition in the first region of the porous body is different from the composition in the second region of the porous body.
  • the distance between the first region and the first surface is smaller than the distance between the second region and the first surface.
  • the ratio of the density of the second polymer material to the density of the first polymer material in the first region of the porous body; (B) The ratio of the density of the second polymer material to the density of the first polymer material in the second region of the porous body may be different from each other.
  • Said porous body may be provided with the porous 1st surface layer distribute
  • the porous body may include a porous support layer that is disposed on the second surface side of the first surface layer and supports the first surface layer.
  • the first region may be disposed on at least a part of the first surface layer.
  • the second region may be disposed on at least a part of the support layer.
  • each of the first surface layer and the support layer may have a composite fiber web containing the first polymer material and the second polymer material.
  • the ratio of the mass of the second polymer material to the mass of the first polymer material in the composite fiber in the first region is (ii) the first in the composite fiber in the second region. It may be smaller than the ratio of the mass of the second polymer material to the mass of the polymer material.
  • each of the first surface layer and the support layer may have a composite fiber web containing the first polymer material and the second polymer material.
  • the composite fiber may have a core-shell structure including a core of the second polymer material and a shell of the first polymer material.
  • the ratio of the diameter of the core or the equivalent diameter to the diameter of the shell or the equivalent diameter in the composite fiber of the first region is (ii) the diameter of the shell or the composite fiber of the second region It may be smaller than the core diameter or the ratio of the equivalent diameter to the equivalent diameter.
  • the distance between the third region and the first surface may be smaller than the distance between the second region and the first surface.
  • the third region may be disposed on at least a part of the support layer.
  • the porous body may include a porous second surface layer disposed on the surface on the second surface side of the porous body.
  • the support layer may be disposed between the first surface layer and the second surface layer.
  • (d) the ratio of the density of the second polymer material to the density of the first polymer material in the fourth region of the porous body, and (b) in the second region of the porous body, The ratio of the density of the second polymer material to the density of the first polymer material may be different from each other.
  • the distance between the fourth region and the first surface may be larger than the distance between the second region and the first surface.
  • the fourth region may be disposed on at least a part of the second surface layer.
  • the porous body may have (i) a sheet shape or a film shape, (ii) a tube shape or a roll shape, or (iii) a block shape, a column shape, or a pad shape.
  • the first polymer material is (i) polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), hyaluronic acid, alginic acid, polyglycolic acid (PGA).
  • PMA polymethyl acrylate
  • PMMA polymethyl methacrylate
  • PVA polyvinyl alcohol
  • PGA polyglycolic acid
  • PEC polyethylene carbonate
  • collagen collagen
  • fibrin polyglactin
  • chitosan chitosan
  • It may comprise a polymer and (iii) at least one substance selected from these salts and derivatives.
  • the second polymer material is (i) collagen, fibrin, polyglactin, chitosan, chitin, fibroin, sericin, poly-D lactic acid (PDLA), poly-L lactic acid (PLLA), poly-DL lactic acid (PDLLA). ), Poly ( ⁇ -caprolactone) (PCL), polyethylene carbonate, polyurethane, carboxymethyl cellulose, and (ii) at least two copolymers of the monomers constituting them, or at least one of the monomers constituting them and others And (iii) at least one substance selected from these salts and derivatives.
  • the second polymer material is composed of (i) carboxymethyl cellulose (CMC) and (ii) at least two copolymers of monomers constituting these, or at least of monomers constituting these. It may comprise a copolymer of one and another monomer, and (iii) at least one substance selected from these salts and derivatives.
  • CMC carboxymethyl cellulose
  • the second polymer material may comprise a copolymer of one and another monomer, and (iii) at least one substance selected from these salts and derivatives.
  • the first polymer material may include at least one substance selected from the group consisting of a first biodegradable plastic, a first biopolymer, and a first natural polymer.
  • the first biodegradable plastic is composed of (i) polyglycolic acid, polyvinyl alcohol, polyglactin, polyethylene carbonate, degradable polyurethane, and (ii) at least two co-polymers of monomers constituting them. It may be at least one selected from the group consisting of a combination, a copolymer of at least one of the constituent monomers and another monomer, and (iii) salts and derivatives thereof.
  • the first biopolymer comprises (i) collagen, fibrin, alginic acid, hyaluronic acid, and (ii) at least two copolymers of monomers constituting these, or these. It may be a copolymer of at least one monomer and another monomer, and (iii) at least one selected from the group consisting of salts and derivatives thereof.
  • the first natural polymer may be (i) chitosan and (ii) at least two copolymers of monomers constituting them, or at least one of the monomers constituting these and other It may be at least one selected from the group consisting of copolymers with monomers, and (iii) salts and derivatives thereof.
  • the second polymer material may include at least one substance selected from the group consisting of a second biodegradable plastic, a second biopolymer, and a second natural polymer.
  • the second biodegradable plastic is: (i) poly-D lactic acid (PDLA), poly-L lactic acid (PLLA), poly-DL lactic acid (PDLLA), poly ( ⁇ -caprolactone), polyglactin, polyethylene carbonate Degradable polyurethanes, and (ii) at least two copolymers of the monomers constituting them, or copolymers of at least one of the monomers constituting them with other monomers, and (iii) these It may be at least one selected from the group consisting of salts and derivatives.
  • the second biopolymer includes (i) collagen, fibrin, and (ii) at least two copolymers of monomers constituting these, or at least one of monomers constituting them. It may be a copolymer with other monomers, and (iii) at least one selected from the group consisting of salts and derivatives thereof.
  • the second natural polymer is (i) chitin, sericin, fibroin, carboxymethylcellulose, chitosan, and (ii) at least two copolymers of monomers constituting these, or these It may be a copolymer of at least one of the constituting monomers and another monomer, and (iii) at least one selected from the group consisting of salts and derivatives thereof.
  • the porous body includes a first polymer material and a second polymer material.
  • the first polymer material for example, (i) Young's modulus is smaller than that of the second polymer material, and (ii) disappearance rate in the living body or pseudo-biological fluid than that of the second polymer material.
  • a material having a high absorbability with respect to is selected.
  • the Young's modulus of the first polymer material is preferably 0.001 MPa or more and 100 MPa or less, more preferably 0.01 MPa or more and 50 MPa or less, and 0.03 MPa or more and 20 MPa or less. More preferably.
  • the Young's modulus of the second polymer material is preferably from 0.01 MPa to 2000 MPa, more preferably from 0.1 MPa to 1000 MPa, and even more preferably from 1 MPa to 500 MPa.
  • the second polymer material is selected from polymer materials having a Young's modulus of 0.01 MPa to 2000 MPa.
  • the first polymer material is selected from polymer materials having a Young's modulus of 0.001 MPa to 100 MPa and a Young's modulus smaller than that of the second polymer material.
  • the disappearance rate [day / 50% mass] of the first polymer material in the living body is preferably 1 day or more and 100 days or less, and preferably 1 day or more and 50 days or less. More preferably, it is 1 day or more and 30 days or less.
  • the disappearance rate [day / 50% mass] of the second polymer material in vivo is preferably 10 days or more and 730 days or less, more preferably 10 days or more and 365 days or less, and more preferably 20 days or more and 365 days. More preferably, it is less than a day.
  • the second polymer material is selected from polymer materials having a disappearance rate [day / 50% mass] in the living body of 10 days or more and 730 days or less.
  • the first polymer material has a disappearance rate [day / 50% mass] in the living body of 1 day or more and 100 days or less, and has a higher disappearance rate in the living body than the second polymer material. Selected from molecular materials.
  • the absorbability of the first polymer material with respect to the phosphate buffered saline is preferably 1% or more and 90% or less, preferably 1% or more and 70% or less, on the seventh day of immersion. More preferably, it is 1% or more and 50% or less.
  • the absorbability of the second polymer material with respect to phosphate buffered saline may be 0% or more and 10% or less on the seventh day of immersion.
  • the absorbability of the second polymer material with respect to phosphate buffered saline is preferably 0% or more and 60% or less, more preferably 0% or more and 50% or less on the 30th day of immersion, and 0% More preferably, it is 40% or less.
  • the absorbability of the second polymer material for phosphate buffered saline is (i) 0% or more and 10% or less on the 7th day of immersion, and (ii) 0% or more and 60% on the 30th day of immersion. % Or less, 0% or more and 50% or less, or 0% or more and 40% or less.
  • the second polymer material has an absorbability with respect to phosphate buffered saline of 0% or more and 10% or less on the 7th day of immersion, and 0 on the 30th day of immersion. % Or more and 60% or less.
  • the first polymer material has an absorptivity with respect to phosphate buffered saline of 1% or more and 90% or less on the 7th day of immersion, and with respect to phosphate buffered saline as compared with the second polymer material. It is selected from highly absorbable polymer materials.
  • the first polymer material may mainly contain polyvinyl alcohol, and the second polymer material may mainly contain fibroin.
  • the first polymer material may mainly include polycaprolactone
  • the second polymer material may mainly include silk fibroin.
  • the first polymer material may mainly contain polyvinyl alcohol
  • the second polymer material may mainly contain polycaprolactone.
  • the combination of the first polymer material and the second polymer material includes (i) polyvinyl alcohol, silk fibroin, (ii) collagen, silk fibroin, (iii) hyaluronic acid, and silk.
  • Fibroin (iv) alginic acid, silk fibroin, (v) biodegradable polyurethane, silk fibroin, (vi) polyethylene carbonate, silk fibroin, (vii) polyvinyl alcohol, polylactic acid, (viii) collagen, poly ( ⁇ -caprolactone), (iX) polyethylene carbonate, polylactic acid, (Xi) polyvinyl alcohol, polylactic acid, (Xii) polyglycolic acid, polylactic acid, (Xiii) hyaluronic acid, polylactic acid, (Xiv) Alginic acid and polylactic acid It is shown.
  • a medical material is provided.
  • Said medical material contains the porous body which concerns on said 1st, 2nd or 3rd aspect.
  • FIG. 1 schematically shows an example of a soft tissue repair material 100.
  • An example of a composition profile of material 100 for soft tissue repair is shown roughly.
  • An example of the physical-property profile of the soft tissue repair material 100 is shown schematically.
  • 1 schematically shows an example of a soft tissue repair material 400.
  • An example of a composition profile of material 400 for soft tissue repair is shown roughly.
  • An example of the system configuration of electrospinning system 600 is shown roughly.
  • An example of control pattern 700 is shown roughly.
  • An example of control pattern 700 is shown roughly.
  • An example of the system configuration of electrospinning system 900 is shown roughly.
  • An example of a system configuration of electrospinning system 1000 is shown roughly.
  • An example of the soft tissue repair material 1100 is shown schematically.
  • FIG. 1 schematically shows an example of a soft tissue repair material 1200.
  • the other example of the manufacturing method of the soft tissue repair material 1200 is shown roughly.
  • the other example of the manufacturing method of the soft tissue repair material 1200 is shown roughly.
  • the SEM image of the external appearance of the reference example 1 is shown.
  • the SEM image of the external appearance of the reference example 2 is shown.
  • the SEM image of the external appearance of the reference example 3 is shown.
  • the SEM image of the external appearance of Example 1 is shown.
  • the SEM image of the external appearance of Example 1 is shown.
  • the SEM image of the external appearance of the reference example 4 is shown.
  • the ATR-FTIR measurement results of Example 1 and Reference Examples 1 to 3 are shown.
  • the tension test results of Example 1 and Reference Examples 1 to 4 are shown.
  • finish of a degradability test is shown.
  • finish of a degradability test is shown.
  • finish of a degradability test is shown.
  • the SEM image of the cross section of the thickness direction of Example 1 is shown.
  • the SEM image of the external appearance of the reference example 5 is shown.
  • the SEM image of the external appearance of the reference example 5 is shown.
  • the SEM image of the external appearance of the reference example 5 is shown.
  • the SEM image of the external appearance of the reference example 6 is shown.
  • the SEM image of the external appearance of the reference example 6 is shown.
  • the SEM image of the external appearance of the reference example 6 is shown.
  • the SEM image of the external appearance of the reference example 7 is shown.
  • the SEM image of the external appearance of the reference example 7 is shown.
  • the SEM image of the external appearance of the reference example 7 is shown.
  • FIG. 1 schematically shows an example of a soft tissue repair material 100.
  • FIG. 1 schematically shows an example of an enlarged view of a cross section 110 of a soft tissue repair material 100.
  • FIG. 1 schematically shows an example of the structure of the fiber 160 arranged in the surface layer region 120 and an example of the structure of the fiber 170 arranged in the support layer region 140.
  • the soft tissue repair material 100 has a sheet-like shape.
  • the soft tissue repair material 100 has a surface 102 and a surface 104 that face each other.
  • the soft tissue repair material 100 may be a nonwoven fabric.
  • the nonwoven fabric is an aggregate of fibers and has a large number of pores.
  • the soft tissue repair material 100 is classified into a surface layer region 120 and a support layer region 140 in the thickness direction (the z direction in the figure).
  • the surface layer region 120 is disposed closer to the surface 102 than the support layer region 140.
  • the surface layer region 120 may be a region on the surface 102 side of the soft tissue repair material 100
  • the support layer region 140 may be a region on the surface 104 side of the soft tissue repair material 100.
  • the ratio of the thickness of the surface layer region 120 to the thickness of the support layer region 140 is preferably 1:99 to 99: 1, and more preferably 20:80 to 80:20.
  • the ratio of the thicknesses of both regions is determined based on, for example, an SEM image of a cross section of the soft tissue repair material 100.
  • the fiber 160 arranged in the surface layer region 120 has a core-shell type structure.
  • the fiber 160 has a shell portion 162 and a core portion 164.
  • the fibers 170 arranged in the support layer region 140 have a core-shell type structure.
  • the fiber 170 includes a shell portion 172 and a core portion 174.
  • the fiber 160 and the fiber 170 are part of different long fibers or filaments. In other embodiments, the fibers 160 and 170 may be different parts of the same long fiber or filament.
  • the soft tissue repair material 100 may be an example of a porous body and a medical material.
  • the surface 102 may be an example of a first surface.
  • the surface 104 may be an example of a second surface.
  • the surface layer region 120 may be an example of a surface layer.
  • the support layer region 140 may be an example of a support layer.
  • the fiber 160 may be an example of a composite fiber.
  • the fiber 170 may be an example of a composite fiber.
  • each of the surface layer region 120 and the support layer region 140 is a region obtained by virtually dividing a single nonwoven fabric at an arbitrary position in the thickness direction of the nonwoven fabric. Details of the soft tissue repair material 100 will be described. In this case, each of the surface layer region 120 and the support layer region 140 is provided with a porous layered object. In addition, a single fiber can constitute a part of the surface layer region 120 and a part of the support layer region 140.
  • the structure of the soft tissue repair material 100 is not limited to this embodiment.
  • each of the surface layer region 120 and the support layer region 140 may be a porous layer having a different composition and / or structure.
  • region 140 may be integrated by arbitrary methods.
  • the two are integrated by a known method such as a thermal bond method, a chemical bond method, a needle punch method, or a hydroentanglement method.
  • the shape of the porous layer may be (i) non-woven fabric, or (ii) foam, sponge or monolith.
  • the soft tissue repair material 100 details of the soft tissue repair material 100 will be described by taking as an example the case where the surface layer region 120 and the support layer region 140 are in contact with each other.
  • the structure of the soft tissue repair material 100 is not limited to this embodiment.
  • other types of regions may be disposed between the surface layer region 120 and the support layer region 140.
  • another type of region may be disposed between the surface 102 and the surface layer region 120, and another type of region may be disposed between the surface 104 and the support layer region 140. .
  • the soft tissue repair material 100 includes two or more kinds of polymer materials.
  • the soft tissue repair material 100 includes a first polymer material and a second polymer material.
  • Each of the surface layer region 120 and the support layer region 140 may include a first polymer material and a second polymer material.
  • the composition in the surface layer region 120 of the soft tissue repair material 100 and the composition in the support layer region 140 of the soft tissue repair material 100 are different from each other.
  • the ratio of the first polymer material and the second polymer material in the surface layer region 120 and the ratio of the first polymer material and the second polymer material in the support layer region 140 are different from each other.
  • the above ratio may be a ratio of mass or density of each material.
  • the first polymer material and the second polymer material are preferably materials having excellent biocompatibility, low toxicity, and excellent safety.
  • the first polymer material and the second polymer material are preferably materials that are relatively excellent in bioabsorbability.
  • the first polymer material and the second polymer material may include at least one selected from a bioabsorbable polymer, a bioabsorbable copolymer, and salts and derivatives thereof.
  • the bioabsorbable polymer and the bioabsorbable copolymer may be a polymer compound that is degraded by a degrading enzyme or a metabolic system in a living body, or a polymer compound that is hydrolyzed nonspecifically in a living body.
  • the first polymer material and the second polymer material are each independently (i) a polysaccharide such as cellulose, hyaluronic acid, alginic acid, chitin, chitosan, glycosaminoglycan, chondroitin sulfate, heparin, (ii) ) Peptides or proteins such as collagen, gelatin, sericin, gazein, fibrin, keratin, fibroin, (iii) polymers or copolymers such as acrylic resin, polycarbonate, polyvinyl alcohol (PVA), polyester, polyurethane, and (iv) ) At least one selected from these salts and derivatives.
  • the fibroin may be silk fibroin.
  • the sericin may be silk sericin.
  • Each of the first polymer material and the second polymer material may be a composite material containing the above substances.
  • Each of the first polymer material and the second polymer material may be a composite material containing the above-described substance as a raw material.
  • cellulose derivatives include carboxymethyl cellulose.
  • acrylic resin examples include polymethyl acrylate (PMA) and polymethyl methacrylate (PMMA).
  • PMA polymethyl acrylate
  • PMMA polymethyl methacrylate
  • An example of the polycarbonate is polyethylene carbonate.
  • the polyester may be an aliphatic polyester, an aromatic polyester, or a copolyester.
  • Polyesters include: (i) polylactic acid (D, L or DL form) (PLA), polyglycolic acid (PGA), poly ( ⁇ -caprolactone) (PCL), polydioxanone (PDX, PDS or PDO), polyhydroxyalkane Acid (PHA), polyhydroxybutyric acid (PHB), polybutylene succinate (PBS), polybutyl acrylate (PBA), polyethyl acrylate (PEA), and (ii) at least two of the monomers constituting them Examples thereof include a polymer or a copolymer of at least one of the monomers constituting the polymer and another monomer, and (iii) salts and derivatives thereof.
  • PPA polylactic acid
  • PGA polyglycolic acid
  • PCL poly ( ⁇ -caprolactone)
  • PDX polydioxanone
  • PDA polyhydroxyalkane Acid
  • PBS polyhydroxybutyric acid
  • PBS polybutylene succinate
  • PBA polybuty
  • copolymer examples include (i) PBST, PBAT or PEAT in which a terephthalate unit is introduced into PBS, PBA or PEA, (ii) glycolide-lactide copolymer (polyglactin, PLGA), (iii) glycolide- ⁇ -Caprolactone copolymer (polyglycapron), (iv) lactide (D, L, DL form) - ⁇ -caprolactone copolymer, (v) glycolide-lactide (D, L, DL form) - ⁇ -caprolactone co A polymer etc. are illustrated.
  • the first polymer material and the second polymer material are preferably materials having different Young's moduli (sometimes referred to as tensile modulus).
  • Young's modulus of the first polymer material is smaller than the Young's modulus of the second polymer material.
  • the Young's modulus of the polymer material can be adjusted by the molecular weight of the polymer material, the blending ratio of monomers constituting the polymer material, and the like.
  • the Young's modulus of the polymer material is calculated according to, for example, ISO 527-1 and JIS K 7161. Specifically, first, a 40 mm ⁇ 5 mm test piece of a polymer material to be measured is prepared. Moreover, the thickness of the test piece in a dry state is measured. The thickness of the test piece may be the thickness at a single location of the test piece, or may be the average value of the thickness at multiple locations. Next, a tensile load of 10 mm / min per minute is applied to the test piece in the atmosphere at 20 ° C., and the test piece is pulled in the long side direction, and sometimes referred to as tensile stress (normal stress). ) And strain (sometimes referred to as elongation).
  • the tensile stress [MPa] is calculated by dividing the tensile load [N] by the cross-sectional area [mm 2 ] of the test piece before starting the test. Said cross-sectional area is the area of the surface which cut
  • the Young's modulus is calculated as the ratio of tensile stress to strain within the tensile proportional limit (sometimes referred to as the elastic region).
  • the Young's modulus is calculated from the slope of the tangent line of the SS curve (sometimes referred to as a stress-strain diagram).
  • the inclination of the tangent line is calculated from stress data with respect to a strain of 1% to 4%, for example. If it is difficult to calculate the Young's modulus based on the above procedure due to the convenience of the sample, etc., calculate the Young's modulus based on the procedure described in connection with the examples described later. Also good.
  • test specimens (sometimes referred to as samples) are conditioned according to the standard of the material to be tested. If there is no particular regulation regarding condition adjustment, it is recommended that condition adjustment be performed for 16 hours or more under conditions of a temperature of 21 to 25 ° C. and a humidity of 40 to 60%.
  • condition adjustment be performed for 16 hours or more under conditions of a temperature of 21 to 25 ° C. and a humidity of 40 to 60%.
  • the above materials include (i) biopolymers such as collagen, fibrin, alginic acid, hyaluronic acid, fibroin (for example, silk fibroin), sericin (for example, silk sericin), (ii) polyvinyl alcohol, poly Examples include glycolic acid and polyglactin. Therefore, in such a case, for example, the Young's modulus is calculated based on an underwater tensile test described later.
  • the Young's modulus of the first polymer material is preferably 0.001 MPa or more and 100 MPa or less, more preferably 0.01 MPa or more and 50 MPa or less, and further preferably 0.03 MPa or more and 20 MPa or less.
  • the Young's modulus of the second polymer material is preferably from 0.01 MPa to 2000 MPa, more preferably from 0.1 MPa to 1000 MPa, and even more preferably from 1 MPa to 500 MPa.
  • the second polymer material is selected from polymer materials having a Young's modulus of 0.01 MPa to 2000 MPa.
  • the first polymer material is selected from polymer materials having a Young's modulus of 0.001 MPa to 100 MPa and a Young's modulus smaller than that of the second polymer material.
  • the first polymer material and the second polymer material are preferably materials with different disappearance rates in vivo.
  • the disappearance rate of the first polymer material in vivo is greater than the disappearance rate of the second polymer material in vivo.
  • the disappearance rate of the polymer material in vivo can be adjusted by the molecular weight of the polymer material, the blending ratio of the monomers constituting the polymer material, and the like.
  • the disappearance rate in the living body is expressed, for example, as a period [day / 50% mass] until 50% of the mass disappears in the living body. In this case, the shorter the period, the greater the disappearance rate in the living body.
  • the disappearance rate [day / 50% mass] of the polymer material in vivo is calculated based on the following procedure, for example.
  • a test piece of a polymer material to be measured is prepared.
  • the shape of the test piece is a pellet having a diameter of 20 mm and a thickness of 0.6 mm.
  • an incision is made in the dorsal skin of the anesthetized mouse and the test piece is implanted. After a certain period of time has passed, the test piece is taken out from the buried site, and the test piece is washed with purified water. After the washed test piece is sufficiently dried, the mass of the test piece is measured. Then, the above operation is repeated until the mass loss rate calculated by Equation 2 below is less than 50%.
  • Mass loss rate [%] 100 ⁇ (Wo ⁇ W) / Wo
  • Wo is the mass of the specimen before the start of the test
  • W is the mass of the specimen after being implanted for a certain period. The period until the mass loss rate reaches 50% is estimated by data fitting, and the estimated value is calculated as the disappearance rate.
  • the disappearance rate [day / 50% mass] of the first polymer material in the living body is preferably 1 day or more and 100 days or less, more preferably 1 day or more and 50 days or less, and more preferably 1 day or more and 30 days or less. More preferably, it is less than a day.
  • the disappearance rate [day / 50% mass] of the second polymer material in vivo is preferably 10 days or more and 730 days or less, more preferably 10 days or more and 365 days or less, and more preferably 20 days or more and 365 days. More preferably, it is less than a day.
  • the second polymer material is selected from polymer materials having a disappearance rate [day / 50% mass] in the living body of 10 days or more and 730 days or less.
  • the first polymer material has a disappearance rate [day / 50% mass] in the living body of 1 day or more and 100 days or less, and has a higher disappearance rate in the living body than the second polymer material. Selected from molecular materials.
  • the first polymer material and the second polymer material are preferably materials having different absorbability with respect to the simulated biological fluid.
  • the absorbability of the first polymer material with respect to the simulated biological fluid is greater than the absorbability of the second polymer material with respect to the simulated biological fluid.
  • the absorbability with respect to the simulated biological fluid is an index that correlates with the disappearance rate of the polymer material in vivo.
  • the absorbability with respect to the simulated biological fluid can be adjusted by the molecular weight of the polymer material, the blending ratio of the monomers constituting the polymer material, and the like.
  • the absorbability with respect to phosphate buffered saline (sometimes referred to as PBS) is used.
  • the absorbability with respect to phosphate buffered saline is calculated based on, for example, a procedure described in connection with an example described later.
  • the absorbability of the first polymer material with respect to phosphate buffered saline is preferably 1% or more and 90% or less, more preferably 1% or more and 70% or less, on the 7th day of immersion. More preferably, it is 50% or less.
  • the absorbability of the second polymer material with respect to phosphate buffered saline may be 0% or more and 10% or less on the seventh day of immersion.
  • the absorbability of the second polymer material with respect to phosphate buffered saline is preferably 0% or more and 60% or less, more preferably 0% or more and 50% or less on the 30th day of immersion, and 0% More preferably, it is 40% or less.
  • the absorbability of the second polymer material for phosphate buffered saline is (i) 0% or more and 10% or less on the 7th day of immersion, and (ii) 0% or more and 60% on the 30th day of immersion. % Or less, 0% or more and 50% or less, or 0% or more and 40% or less.
  • the second polymer material has an absorptivity to phosphate buffered saline of 0% or more and 10% or less on the 7th day of immersion, and 0% or more and 60% or less on the 30th day of immersion. Selected from polymeric materials.
  • the first polymer material has an absorptivity with respect to phosphate buffered saline of 1% or more and 90% or less on the 7th day of immersion, and with respect to phosphate buffered saline as compared with the second polymer material. It is selected from highly absorbable polymer materials.
  • the soft tissue repair material 100 includes the first polymer material and the second polymer material.
  • the first polymer material for example, (i) Young's modulus is smaller than that of the second polymer material, and (ii) disappearance rate in the living body or pseudo-biological fluid than that of the second polymer material.
  • a material having a high absorbability with respect to is selected.
  • Examples of materials having a very large disappearance rate in vivo or pseudo-biological fluid absorbability include polymethyl acrylate (PMA), polyvinyl alcohol (PVA), hyaluronic acid, alginic acid, polyglycolic acid (PGA), and the like. Illustrated. These materials have an in vivo disappearance rate [day / 50% mass] of generally less than 30 days.
  • Examples of the material having a relatively high disappearance rate in the living body or absorbability to the simulated biological fluid include polyethylene carbonate, collagen, fibrin, polyglactin, chitosan and the like. These materials have a disappearance rate [day / 50% mass] in a living body of generally about 30 days or more and less than 90 days.
  • Materials with a relatively low disappearance rate in vivo or pseudo-biological fluid absorbability include poly-D lactic acid (PDLA), poly-L lactic acid (PLLA), poly ( ⁇ -caprolactone) (PCL), poly-DL lactic acid (PDLLA), chitin, fibroin, sericin and the like are exemplified. These materials have a disappearance rate [day / 50% mass] in vivo of approximately 90 days or more.
  • the fibroin may be silk fibroin.
  • the sericin may be silk sericin.
  • the first polymer material is, for example, (i) polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), Polyvinyl alcohol (PVA), hyaluronic acid, alginic acid, polyglycolic acid (PGA), polyethylene carbonate, collagen, fibrin, polyglactin, chitosan, and (ii) at least two copolymers of the monomers constituting them, or these And (iii) at least one substance selected from these salts and derivatives.
  • the first polymer material may be a composite material containing at least one kind of substance as described above, or may be a composite material containing at least one kind of substance as a raw material.
  • the second polymer material is, for example, (i) collagen, fibrin, polyglactin, chitosan, chitin, fibroin, sericin, poly D Lactic acid (PDLA), poly L lactic acid (PLLA), poly DL lactic acid (PDLLA), poly ( ⁇ -caprolactone) (PCL), polyethylene carbonate, polyurethane, and (ii) at least two co-polymers of the monomers constituting them Or a copolymer of at least one of the monomers constituting the polymer with other monomers, and (iii) at least one substance selected from salts and derivatives thereof.
  • PDLA poly D Lactic acid
  • PLLA poly L lactic acid
  • PLLA poly DL lactic acid
  • PCL poly ( ⁇ -caprolactone)
  • PCL polyethylene carbonate
  • polyurethane and (ii) at least two co-polymers of the monomers constituting them Or a copolymer of at least one of the monomers constituting
  • the fibroin may be silk fibroin.
  • the sericin may be silk sericin.
  • the second polymer material may include a bioabsorbable polyester other than the above.
  • the second polymer material may be a composite material containing at least one kind of substance as described above, or a composite material containing at least one kind of substance as a raw material.
  • carboxymethylcellulose is degraded relatively rapidly in the environment, while being degraded relatively gently in vivo.
  • the strength of carboxymethyl cellulose varies greatly between a dry state and a water-containing state.
  • the glass transition temperature of carboxymethyl cellulose is about 135 ° C. in the dry state, but decreases to about ⁇ 60 ° C. as the water content increases.
  • carboxymethylcellulose can be used as a raw material for the second polymeric material.
  • the first polymer material mainly includes polyvinyl alcohol
  • the second polymer material mainly includes fibroin.
  • the first polymeric material primarily comprises polycaprolactone and the second polymeric material primarily comprises silk fibroin.
  • the first polymeric material primarily includes polyvinyl alcohol and the second polymeric material primarily includes polycaprolactone.
  • the second polymer material preferably contains fibroin.
  • the fibroin may be silk fibroin derived from natural silk made by silkworms or spiders.
  • the fibroin is preferably silk fibroin derived from silk produced by silkworm (sometimes referred to as silkworm silk).
  • the fibroin may be derived from a genetically engineered silk protein. Examples of genetically engineered silk proteins include silk proteins produced by bacteria, yeasts, animal and plant cells, transgenic plants, transgenic animals, etc. whose genes have been modified to produce silk proteins. Can do.
  • Fibroin is coated with sericin in silkworm silk. Fibroin derived from natural silkworm silk can be obtained by removing sericin from silkworm silk.
  • the composition may comprise 10-35% by weight of sericin as an impurity relative to the weight of fibroin.
  • the content of sericin in the composition is preferably less than 20% (mass ratio), more preferably less than 10% (mass ratio) with respect to the mass of fibroin. More preferably, it is less than% (mass ratio).
  • the first polymer material includes, for example, at least one substance selected from the group consisting of a first biodegradable plastic, a first biopolymer, and a first natural polymer.
  • the second polymer material includes, for example, at least one substance selected from the group consisting of a second biodegradable plastic, a second biopolymer, and a second natural polymer.
  • the Young's modulus of the first polymer material alone is smaller than the Young's modulus of the second polymer material alone.
  • the first polymer material and the second high-molecular material so that the biodegradability or bioabsorbability of the single polymer material alone is better than the biodegradability or bioabsorbability of the second polymer material alone.
  • a molecular material is selected.
  • the first biodegradable plastic is, for example, (i) polyglycolic acid, polyvinyl alcohol, polyglactin, polyethylene carbonate, degradable polyurethane, and (ii) at least two copolymers of monomers constituting these, or these And (iii) at least one selected from the group consisting of salts and derivatives thereof.
  • the first biodegradable plastic may be at least one selected from the group consisting of polyglycolic acid, polyvinyl alcohol, polyglactin, polyethylene carbonate, degradable polyurethane, and salts and derivatives thereof, for example.
  • the first biopolymer includes, for example, (i) collagen, fibrin, alginic acid, hyaluronic acid, and (ii) at least two copolymers of monomers constituting these, or at least one of the monomers constituting them. A copolymer with another monomer, and (iii) at least one selected from the group consisting of these salts and derivatives.
  • the first biopolymer may be at least one selected from the group consisting of collagen, fibrin, alginic acid, hyaluronic acid, and salts and derivatives thereof.
  • the first natural polymer is, for example, (i) chitosan and (ii) at least two copolymers of monomers constituting them, or copolymerization of at least one of the monomers constituting these with other monomers And (iii) at least one selected from the group consisting of these salts and derivatives.
  • the first natural polymer may be at least one selected from the group consisting of chitosan and salts and derivatives thereof.
  • the second biodegradable plastic examples include (i) poly-D lactic acid (PDLA), poly-L lactic acid (PLLA), poly-DL lactic acid (PDLLA), and poly ( ⁇ -caprolactone) (sometimes referred to as PLC). , Polyglactin, polyethylene carbonate, degradable polyurethane, and (ii) at least two copolymers of monomers constituting them, or a copolymer of at least one of the monomers constituting these and other monomers, and (Iii) At least one selected from the group consisting of these salts and derivatives.
  • PDLA poly-D lactic acid
  • PLLA poly-L lactic acid
  • PLLA poly-DL lactic acid
  • PLC poly ( ⁇ -caprolactone)
  • the second biodegradable plastics are (i) poly-D lactic acid (PDLA), poly-L lactic acid (PLLA), poly-DL lactic acid (PDLLA), poly ( ⁇ -caprolactone) (PLC), polyglactin, polyethylene carbonate, and degradation It may be at least one selected from the group consisting of functional polyurethanes, and salts and derivatives thereof.
  • the second biopolymer includes, for example, (i) collagen, fibrin, and (ii) at least two copolymers of the monomers constituting them, or at least one of the monomers constituting these and other monomers.
  • the second biopolymer may be at least one selected from the group consisting of collagen, fibrin, and salts and derivatives thereof.
  • the second natural polymer includes, for example, (i) chitin, sericin (for example, silk sericin), fibroin (for example, silk fibroin), carboxymethylcellulose, chitosan, and (ii) monomers constituting them. It is at least one selected from the group consisting of at least two copolymers, or a copolymer of at least one monomer constituting them and another monomer, and (iii) salts and derivatives thereof.
  • the second natural polymer may be at least one selected from the group consisting of chitin, sericin, fibroin, carboxymethylcellulose, and chitosan, and salts and derivatives thereof.
  • substances listed as specific examples of the first biodegradable plastic, the first biopolymer, the first natural polymer, the second biodegradable plastic, the second biopolymer, or the second natural polymer For example, when classified into a hard material and a soft material based on the glass transition temperature of each substance, (i) a hard material whose glass transition temperature is sufficiently higher than room temperature, and (ii) its glass transition temperature is the same as room temperature. It can be classified into three categories: soft materials that are smaller than the degree or room temperature, and (iii) amphoteric materials that can be hard materials or soft materials, depending on the molding method, moisture content, and the like.
  • a substance that is relatively excellent in biodegradability or bioabsorbability can be used as a raw material for the first polymer material or the second polymer material.
  • a substance having relatively poor biodegradability or bioabsorbability can be used as a raw material for the second polymer material.
  • a substance that is relatively excellent in biodegradability or bioabsorbability can be used as a raw material for the first polymer material.
  • a substance having relatively poor biodegradability or bioabsorbability can be used as a raw material for the first polymer material or the second polymer material.
  • the hard material examples include polylactic acid, chitin and chitosan, and salts and derivatives thereof.
  • the glass transition temperatures of polylactic acid, chitin and chitosan are, for example, 60 ° C., over 240 ° C. and 140-203 ° C., respectively.
  • chitosan is superior in biodegradability or bioabsorbability compared to polylactic acid and chitin.
  • chitosan has an in vivo elimination rate [day / 50% mass] of 9 to 52 weeks (57 to 364 days or less), and absorbs the above-described phosphate buffered saline.
  • polylactic acid and chitin have the above disappearance rate [day / 50% mass] in the living body of 53 weeks or more (365 days or more), and the above-mentioned absorbability with respect to phosphate buffered saline is immersed. On the 7th day, it is over 0 and 5% or less.
  • the soft material examples include polyglycolic acid, polyvinyl alcohol, polyethylene carbonate, degradable polyurethane, collagen, fibrin, alginic acid, hyaluronic acid, and salts and derivatives thereof.
  • the glass transition temperatures of polyglycolic acid, polyvinyl alcohol, polyethylene carbonate, and degradable polyurethane are, for example, 37 ° C., less than 5 ° C., 27 ° C., and ⁇ 20 ° C., respectively.
  • biodegradability or bioabsorbability is compared among these substances, polyglycolic acid, polyvinyl alcohol, alginic acid, and hyaluronic acid are superior in biodegradability or bioabsorbability compared to other substances.
  • polyglycolic acid, polyvinyl alcohol, alginic acid and hyaluronic acid have a disappearance rate [day / 50% mass] in the above-mentioned in vivo of 1 to 8 weeks (1 to 56 days or less).
  • Absorbability for acid buffered saline is greater than 10% on the 7th day of immersion.
  • polyethylene carbonate, degradable polyurethane, collagen and fibrin have the above-mentioned disappearance rate [day / 50% mass] in the living body of 9 to 52 weeks (57 to 364 days or less), and the phosphoric acid described above.
  • Absorbability with respect to buffered saline is more than 5% and 10% or less on the 7th day of immersion.
  • amphoteric material examples include polyglactin, poly ( ⁇ -caprolactone), sericin, fibroin and carboxymethylcellulose, and salts and derivatives thereof.
  • the glass transition temperatures of polyglactin, poly ( ⁇ -caprolactone), sericin, fibroin and carboxymethylcellulose are, for example, about 40 ° C., ⁇ 60 ° C. (depending on the water content), and about 170 ° C. (depending on the water content), 178 It is about 0 ° C. (varies depending on the moisture content) and ⁇ 60 to 135 ° C. (varies depending on the moisture content).
  • polyglactin is superior in biodegradability or bioabsorbability compared to other substances.
  • polyglactin has a disappearance rate [day / 50% mass] in the living body of 1 to 8 weeks (1 to 56 days or less), and the above-described absorbability with respect to the phosphate buffered saline is immersed. It is over 5% on the 7th day.
  • poly ( ⁇ -caprolactone), sericin, fibroin and carboxymethylcellulose have the above-mentioned in vivo elimination rate [day / 50% mass] of 9 to 52 weeks (57 to 364 days or less).
  • the absorbability with respect to phosphate buffered saline is 5% or less on the seventh day of immersion.
  • first polymer material and the second polymer material that satisfy the above-described conditions include (i) polyvinyl alcohol, silk fibroin, (ii) collagen, silk fibroin, and (iii) hyaluronic acid.
  • the polylactic acid may be poly-D lactic acid, poly-L lactic acid, poly-DL lactic acid, or a mixture thereof.
  • the Young's modulus of the first polymer material, the degree of hardness or softness, or the biodegradability or bioabsorption depending on the variation of parameters such as the molecular weight of the material contained in the first polymer material and the functional group introduced into the material.
  • the Young's modulus, the degree of hardness or softness, or the biodegradability or bioabsorbability of the first polymer material satisfies the above-described conditions. A parameter may be determined.
  • the Young's modulus of the second polymer material, the degree of hardness or softness, or the biodegradability depends on the variation in parameters such as the molecular weight of the material contained in the second polymer material and the functional group introduced into the material.
  • the second polymer material is related so that the Young's modulus, the degree of hardness or softness, or the biodegradability or bioabsorbability of the second polymer material satisfies the above-described conditions.
  • the above parameters may be determined.
  • the second polymer material having a relatively high Young's modulus and having a relatively good biodegradability or bioabsorbability alone, and (ii) the Young's modulus of the single substance being the first.
  • Biocompatibility by producing a porous material from a first polymer material, which is smaller than two polymer materials but has better biodegradability or bioabsorbability as a raw material than the second polymer material And a material excellent in both strength and strength.
  • the above materials have properties that are particularly suitable as medical materials.
  • the soft tissue repair material 100 When the soft tissue repair material 100 is embedded in a living body, the soft tissue repair material 100 functions as a scaffold for regeneration of the living tissue.
  • the second polymer material is absorbed into the living body relatively early. Therefore, the growth of cells that proliferate in the early stage of regeneration of the living tissue is not inhibited, and the regeneration of the living tissue is promoted. In addition, thrombus formation and calcification in the remote phase are suppressed.
  • the first polymer material remains in the living body for a longer period than the second polymer material.
  • the strength of the soft tissue repair material 100 (for example, at least one of breaking strength and breaking elongation) is maintained until the living tissue is sufficiently regenerated. Is done. Further, when the soft tissue repair material 100 and a blood vessel, an organ, or the like are sutured, threading property, stitchability, and the like are improved.
  • vascular remodeling proceeds mainly on the surface of the scaffold, and (ii) collagen deposition proceeds due to cell infiltration from the outside of the scaffold.
  • the process of vascular remodeling is roughly divided into two phases: (i) an acute phase and (ii) a subacute phase / chronic phase.
  • the acute phase is a period of up to about 8 weeks after implantation.
  • inflammatory cells infiltrate into the scaffold, and endothelialization occurs on the surface of the scaffold lumen.
  • vascular smooth muscle cells are generated following endothelialization, and the vascular smooth muscle cells surround the endothelium.
  • the subacute phase and chronic phase are periods after about 8 weeks have elapsed since implantation. In the subacute phase and chronic phase, vascular smooth muscle cells gradually grow from the lumen side and the smooth muscle layer increases in thickness with the degradation and absorption of the scaffold.
  • the soft tissue repair material 100 when used as a blood vessel remodeling material, when the soft tissue repair material 100 is initially embedded in a living body, inflammation occurs in the pores surrounded by the second polymer material. Cells infiltrate and promote endothelialization. In addition, when the vascular smooth muscle cells proliferate, the decomposition and absorption of the second polymer material are also progressing to a considerable extent. Therefore, inhibition of proliferation of vascular smooth muscle cells by the second polymer material is suppressed. When vascular remodeling enters the subacute phase / chronic phase, the decomposition and absorption of the first polymer material also progress, and the inhibition of the proliferation of vascular smooth muscle cells by the first polymer material is suppressed.
  • the composition of the soft tissue repair material 100 varies depending on the position in the thickness direction of the soft tissue repair material 100.
  • the composition of the soft tissue repair material 100 in at least a part of the surface layer region 120 and the composition of the soft tissue repair material 100 in at least a part of the support layer region 140 are different from each other. That is, (a) the ratio of the density of the second polymer material to the density of the first polymer material in at least a part of the surface layer region 120, and (b) the first polymer in at least a part of the support layer region 140.
  • the ratio of the density of the second polymer material to the density of the material is different from each other.
  • the density of the second polymer material in at least a part of the surface layer region 120 may be smaller than the density of the second polymer material in at least a part of the support layer region 140.
  • the density of the second polymer material in at least a part of the surface layer region 120 may be greater than zero.
  • the density of the second polymer material in at least a part of the surface layer region 120 may be zero.
  • the above density may be an apparent density or a bulk density.
  • the apparent density of each polymer material in each region of the soft tissue repair material 100 is obtained by, for example, multiplying the apparent density of a sample collected from each region of the soft tissue repair material 100 by the component ratio of each polymer material in the region. It is calculated by.
  • the bulk density of each polymer material in each region of the soft tissue repair material 100 is obtained by, for example, multiplying the bulk density of a sample collected from each region of the soft tissue repair material 100 by the component ratio of each polymer material in the region. It is calculated by.
  • the apparent density of the sample is determined by, for example, an immersion method.
  • the immersion method may be an underwater immersion method.
  • the bulk density of the sample is determined by a dimensional method, for example.
  • the apparent density or bulk density of the sample may be determined using the true density value.
  • the apparent density or bulk density of the sample may be determined based on the porosity (sometimes referred to as porosity) and the true density of the sample.
  • the porosity of the sample is determined by, for example, image analysis of the surface or cross section of the sample.
  • the image may be an SEM image or a ⁇ CT image.
  • the true density of the sample is determined by, for example, a pycnometer method (sometimes referred to as a specific gravity bottle method).
  • the component ratio of each polymer material in the sample is determined by, for example, 1 H-NMR spectrum of the sample surface.
  • the component ratio of each polymer material may be a mass ratio based on the mass of the entire sample, or may be a mass ratio based on the mass of a specific component.
  • At least part of the surface layer region 120 may be a region having a predetermined area and having a predetermined thickness from the surface 102. At least a part of the support layer region 140 may be a region having a predetermined area and a predetermined thickness from the surface 104. The area may be an area on the xy plane in FIG. At least a part of the surface layer region 120 may be an example of a first region. At least a part of the support layer region 140 may be an example of a second region.
  • the composition of the soft tissue repair material 100 in at least a part of the surface layer region 120 is determined, for example, by performing FT-IR measurement on the surface 102 of the soft tissue repair material 100 by a total reflection method.
  • the composition of the soft tissue repair material 100 in at least a part of the support layer region 140 is determined, for example, by performing FT-IR measurement of the surface 104 of the soft tissue repair material 100 by a total reflection method. Details of the ATR-FTIR measurement will be described in connection with examples described below.
  • the soft tissue repair material 100 may have two or more compositions in the thickness direction, or may have three or more compositions. According to one embodiment, the content ratio of a specific component increases continuously or stepwise in the thickness direction of the soft tissue repair material 100. According to another embodiment, the content ratio of the specific component decreases continuously or stepwise in the thickness direction of the soft tissue repair material 100.
  • the Young's modulus of the soft tissue repair material 100 is, for example, 0.1 MPa or more and 10 MPa when the Young's modulus is determined based on the results of an underwater tensile test described in connection with the physical property evaluation of Examples described later. Is preferably 0.1 MPa or more and 5 MPa or less, preferably 0.2 MPa or more and 5 MPa or less, preferably 0.3 MPa or more and 3 MPa or less, and 0.3 MPa or more and 2.5 MPa. Or less, preferably 0.35 MPa or more and 2 MPa or less.
  • the soft tissue repair material 100 that exhibits a Young's modulus lower than that of an artificial blood vessel made of expanded polytetrafluoroethylene (ePTFE) and has physical properties closer to the Young's modulus of a human artery is obtained.
  • ePTFE expanded polytetrafluoroethylene
  • the Young's modulus of the soft tissue repair material 100 is determined based on the underwater tensile strength in purified water at 37 ° C.
  • the profile in the thickness direction of the test piece (sometimes referred to as a sample) is the profile in the thickness direction of the sheet-like soft tissue repair material 100.
  • the specimen used for the underwater tensile test is taken. More specifically, from the vicinity of the center of the soft tissue repair material 100, a test piece having a size of 15 mm ⁇ 3 mm and having a thickness equivalent to the thickness of the soft tissue repair material 100 at the sampling portion of the test piece is collected. Is done.
  • the soft tissue repair material 100 is a tube-shaped material
  • a part of the soft tissue repair material 100 is cut along the extending direction of the tube-shaped soft tissue repair material 100.
  • the sheet-like soft tissue repair material 100 is obtained by developing the tube-shaped soft tissue repair material 100 using the notches. Thereafter, using the sheet-like soft tissue repair material 100, a test piece is collected according to the procedure described above. Details of the underwater tensile test and the Young's modulus calculation procedure will be described later in connection with the physical property evaluation of the examples.
  • the soft tissue repair material 100 differs in the composition ratio of the first polymer material and the second polymer material in the thickness direction.
  • a substance that is more biodegradable or bioabsorbable than the raw material for the second polymer material is used as the raw material for the first high content material. Therefore, for example, (i) a first sample collected from the first region of the soft tissue repair material 100 and having a size of 10 mm ⁇ 10 mm is immersed in a simulated biological fluid at 35 to 39 ° C. for 30 days.
  • the mass loss rate of one sample was (ii) taken from the second region of the soft tissue repair material 100, and a second sample having a size of 10 mm ⁇ 10 mm was immersed in a simulated biological fluid at 35 to 39 ° C. for 30 days. In this case, the mass loss rate of the second sample is larger.
  • the absolute value of the difference between the mass loss rate of the first sample and the mass loss rate of the second sample may be 0.5% or more.
  • the content or density of the first polymer material on one surface side of the soft tissue repair material 100 is larger than the content or density of the first polymer material on the other surface side.
  • the absolute value of the difference is preferably 0.7% or more, more preferably 1.0% or more, further preferably 1.5% or more, and 2% or more. More preferably, it is 2.5% or more, more preferably 3% or more.
  • the difference between the absolute values can be appropriately set according to the use of the soft tissue repair material 100.
  • a porous body particularly suitable for a medical material for preventing adhesion is produced.
  • a porous body particularly suitable for a medical material for artificial blood vessels can be produced.
  • the absolute value of the above difference is 1.5% or more, for example, a porous body particularly suitable for a medical material for wound dressing material can be produced.
  • the use of the soft tissue repair material 100 is not limited to these.
  • the temperature of the simulated biological fluid is controlled to be around 37 ° C.
  • the temperature of the simulated biological fluid can be controlled within a range of 35 to 39 ° C. Details of the method of calculating the mass loss rate and the simulated biological fluid will be described in connection with the degradability evaluation of examples described later.
  • the shortest distance between the first region and the first surface of the soft tissue repair material 100 is smaller than the distance between the second region and the first surface.
  • two samples corresponding to two different ranges in the thickness direction profile of the soft tissue repair material 100 are prepared.
  • the first sample is collected from the first surface side of the soft tissue repair material 100
  • the second sample is collected from the second surface side facing the first surface.
  • the fact that the first surface and the second surface face each other is not limited to the case where the first surface and the second surface are substantially parallel.
  • the soft tissue repair material 100 is first cut substantially parallel to the first surface, and the soft tissue repair material 100 is divided into a slice on the first surface side and a slice on the second surface side.
  • a test piece having a size of 10 mm ⁇ 10 mm is cut out from the slice on the first surface side, and a first sample is prepared.
  • a test piece having a size of 10 mm ⁇ 10 mm is cut out from the slice on the second surface side, and a second sample is prepared.
  • the soft tissue repair material 100 may be divided into three or more slices.
  • the first sample and the second sample may be prepared using two slices of three or more slices. In this case, it is preferable that the slice from which the first sample is collected and the slice from which the second sample is collected have the same thickness.
  • a test piece having a size of 10 mm ⁇ 10 mm is cut out from one part of the soft tissue repair material 100.
  • a part on the second surface side of the test piece is removed by a technique such as polishing or cutting so that the thickness of the cut-out test piece is reduced.
  • the first sample is prepared.
  • a test piece having a size of 10 mm ⁇ 10 mm is cut out from the other part of the soft tissue repair material 100.
  • a part on the first surface side of the test piece is removed by a method such as polishing or cutting so that the thickness of the cut-out test piece is reduced.
  • the first sample and the second sample are prepared, for example, so that the mass in a dry state is about 15 mg.
  • the mass of the first sample and the second sample in the dry state may be 10 mg or more and 20 mg or less. If it is in said numerical range, the influence which it has on the measurement of a mass loss rate may be suppressed.
  • a 1st sample and a 2nd sample are extract
  • the position in the thickness direction of the soft tissue repair material 100 from the soft tissue repair material 100 A plurality of first samples having substantially the same value may be collected, and the first sample may be prepared such that the total mass of the plurality of first samples in the dry state is about 15 mg.
  • the thickness of the soft tissue repair material 100 is not sufficient and the dry mass of the single second sample is less than 10 mg, the thickness of the soft tissue repair material 100 is increased from the soft tissue repair material 100.
  • a plurality of second samples having substantially the same position in the direction may be collected, and the second sample may be prepared so that the total mass of the plurality of second samples in the dry state is about 15 mg.
  • the thickness of the first sample and the second sample is not particularly limited, but the thickness of the first sample and the second sample is preferably about 20 to 200 ⁇ m in the dry state, More preferably, it is about 180 ⁇ m, more preferably about 40 to 120 ⁇ m, and further preferably about 50 to 100 ⁇ m. If it is in said numerical range, the influence which it has on the measurement of a mass loss rate may be suppressed.
  • the thickness of each sample may be an average value of the thicknesses at three points arranged on a substantially diagonal line of the sample. Examples of the three points include a substantially central portion of the sample and two points separated by about 2.5 mm from each side of the sample.
  • the soft tissue repair material 100 can be utilized in various medical devices. Applications of the soft tissue repair material 100 include artificial blood vessels, aortic repair sheets, inferior vena cava repair sheets, artificial pericardium, heart defect filling material, bile duct filling material, stent graft outer fabric, transcatheter aortic valve replacement (TAVI) Stent graft, artificial dura mater, artificial peritoneum, artificial pleura, etc. are exemplified. Examples of the artificial blood vessel include small-diameter arterial grafts, medium-caliber arterial grafts, and vein grafts.
  • the soft tissue repair material 100 may be used as a medical device material for repairing circulatory tissue. For example, when the soft tissue repair material 100 is used as a material for an artificial blood vessel, a medical device capable of reproducing a regeneration model of a vascular tissue using the above-described scaffold can be provided.
  • the porous body has been described using the sheet-like soft tissue repair material 100 as an example.
  • the porous body is not limited to the soft tissue repair material 100 according to the present embodiment.
  • the porous body may have (i) a sheet shape or a film shape, (ii) a tube shape or a roll shape, or (iii) a block shape, a column shape, or a pad shape.
  • the tubular porous body may be a hollow wound body, and the columnar porous body may be a solid wound body.
  • the cross-sectional shapes of the tubular porous body and the columnar porous body are not particularly limited. Examples of the cross-sectional shape include a circle, an ellipse, a polygon, a free curve, and combinations thereof.
  • FIG. 2 schematically shows an example of the composition profile of the soft tissue repair material 100.
  • FIG. 3 schematically shows an example of a physical property profile of the soft tissue repair material 100.
  • the compositions of the fibers 160 and 170 are different from each other.
  • the composition of the soft tissue repair material 100 varies depending on the position of the soft tissue repair material 100 in the thickness direction.
  • At least one of the fiber 160 and the fiber 170 may include two or more polymer materials.
  • the composition of the material constituting the shell portion 162 and the composition of the material constituting the core portion 164 are different from each other.
  • the composition of the material constituting the shell portion 172 and the composition of the material constituting the core portion 174 may be different from each other.
  • the core part 164 and the core part 174 are made of, for example, a second polymer material.
  • the shell part 162 and the shell part 172 are made of, for example, a first polymer material.
  • the composition of the material constituting the shell portion 162 and the composition of the material constituting the shell portion 172 may be the same or different.
  • the composition of the material constituting the core portion 164 and the composition of the material constituting the core portion 174 may be the same or different.
  • the horizontal axis indicates the position from the surface 102 in the thickness direction, and the vertical axis indicates the R Diameter at each position.
  • T 120 indicates the thickness of the surface layer region 120
  • T 140 indicates the thickness of the support layer region 140.
  • the value of R Diameter increases stepwise from the surface 102 toward the surface 104.
  • the value of R Diameter increases stepwise from the surface 102 toward the surface 104 even in the surface layer region 120.
  • the value of R Diameter increases stepwise from the surface 102 toward the surface 104.
  • the ratio of the core diameter or equivalent diameter to the shell diameter or equivalent diameter in fiber 160 is (ii) the shell diameter or equivalent diameter in fiber 170. Smaller than the ratio of the core diameter or equivalent diameter (R Diameter ). Therefore, (i) the ratio of the mass of the second polymer material to the mass of the first polymer material in the fiber 160 is (ii) the mass of the second polymer material in the fiber 170 relative to the mass of the first polymer material. Less than
  • the ratio of the density of the second polymer material to the density of the first polymer material is different from each other.
  • the area inside the support layer area 140 may be an example of a third area.
  • the horizontal axis indicates a position from the surface 102 in the thickness direction
  • the vertical axis indicates R density at each position.
  • R Diameter increases in FIG. 2, the value of R density in FIG. 3 also increases.
  • an aggregate of fibers (sometimes referred to as a web or a fleece) having a large content of the first polymer is disposed. Further, on the surface 104 side, an aggregate of fibers having a large second polymer content is disposed.
  • a tissue repair material capable of inducing tissue regeneration is obtained.
  • a graft material is obtained that can reproduce the vascular remodeling hypothesis described above. According to the graft material described above, regeneration of blood vessels can be appropriately induced.
  • FIG. 4 schematically illustrates an example of a soft tissue repair material 400.
  • FIG. 5 schematically shows an example of a composition profile of the soft tissue repair material 400.
  • the soft tissue repair material 400 includes a surface layer region 120, a support layer region 140, and a surface layer region 420.
  • the surface layer region 420 may have the same configuration as the surface layer region 120.
  • the surface layer region 420 may be an example of a second surface layer.
  • the soft tissue repair material 400 is different from the soft tissue repair material 100 in that the support layer region 140 is disposed between the surface layer region 120 and the surface layer region 420 and supports the surface layer region 120 and the surface layer region 420.
  • the soft tissue repair material 400 may have the same configuration as the soft tissue repair material 100 except for the differences described above.
  • each of the surface layer region 120, the support layer region 140, and the surface layer region 420 includes a nonwoven fabric having a composite fiber web including the first polymer material and the second polymer material.
  • the composite fiber may have a core-shell structure including a core of the second polymer material and a shell of the first polymer material.
  • the surface layer region 120 is disposed on the surface 102 side of the support layer region 140, and the surface layer region 420 is disposed on the surface 104 side of the support layer region 140.
  • the ratio of the density of the second polymer material to the density of the first polymer material in at least a part of the surface layer region 420, and (b) the support layer region 140 is mutually different.
  • the ratio of the density of the second polymer material to the density of the first polymer material in at least part of the surface layer region 420 is (b) the first polymer in at least part of the support layer region 140.
  • At least a part of the surface layer region 420 may be an example of a fourth region.
  • FIG. 6 schematically shows an example of the system configuration of the electrospinning system 600.
  • the electrospinning system 600 includes a core shell nozzle 610, a syringe 620, a pump 622, a syringe 640, a pump 642, a collector plate 650, a position adjustment unit 652, a power source 660, and a control unit 670.
  • the core shell nozzle 610 includes an outer cylinder 612 and an inner cylinder 614.
  • the core-shell nozzle 610 injects a fiber spinning jet 66 having a core-shell structure.
  • the outer cylinder 612 and the inner cylinder 614 are arranged coaxially.
  • the discharge port of the inner cylinder 614 is disposed inside the outer cylinder 612.
  • the discharge port of the inner cylinder 614 is arranged near the discharge port of the outer cylinder 612, for example.
  • the first solution stored in the syringe 620 is supplied to the outer cylinder 612 via the pump 622.
  • the second solution stored in the syringe 640 is supplied to the inner cylinder 614 via the pump 642.
  • the second solution supplied to the inner cylinder 614 is discharged from the discharge port of the inner cylinder 614 and then mixed with the first solution supplied to the outer cylinder 612.
  • the structure of the core-shell nozzle 610 is not limited to this embodiment.
  • the core shell nozzle 610 may be a double cylinder type nozzle or a side-by-side type nozzle.
  • a positive voltage is applied by the power source 660 in the vicinity of the discharge port of the outer cylinder 612.
  • droplets containing the first solution and the second solution are ejected from the ejection port of the outer cylinder 612 and then ejected toward the collector plate 650 as the spinning jet 66.
  • the web 68 is formed on the collector plate 650.
  • the syringe 620 stores a first polymer solution (sometimes referred to as a first solution).
  • the solvent may be water, an organic solvent, or various mixed solvents.
  • the pump 622 transfers the first solution stored in the syringe 620 to the outer cylinder 612.
  • the syringe 640 stores a second polymer solution (sometimes referred to as a second solution).
  • the solvent may be water, an organic solvent, or various mixed solvents.
  • the pump 642 transfers the second solution stored in the syringe 640 to the inner cylinder 614.
  • the collector plate 650 accumulates the spinning jets 66 discharged from the core shell nozzle 610.
  • the collector plate 650 is electrically connected to the ground terminal of the power source 660, for example.
  • the position adjustment unit 652 adjusts the relative position between the core shell nozzle 610 and the collector plate 650.
  • the power source 660 applies a positive voltage to the core shell nozzle 610.
  • control unit 670 controls the operation of the electrospinning system 600.
  • control unit 670 controls the discharge amount of at least one of the pump 622 and the pump 642.
  • the control unit 670 controls the position adjustment unit 652 to adjust the relative positions of the core shell nozzle 610 and the collector plate 650.
  • the control unit 670 controls the power source 660 to adjust the potential difference between the core shell nozzle 610 and the collector plate 650.
  • FIG. 7 schematically shows an example of a control pattern 700 for the pump 622 and the pump 642.
  • FIG. 8 schematically shows an example of a control pattern 800 for the pump 622 and the pump 642.
  • the control pattern 720 includes a timing at which the pump 622 operates (for example, t 71 to t 75 ) and a discharge speed of the pump 622 at the timing (may be referred to as a discharge amount).
  • the target value may be information associated with the target value.
  • the control pattern 740 may be information in which the timing at which the pump 642 operates and the target value of the discharge speed of the pump 622 at the timing are associated with each other.
  • the discharge speed of the pump 622 increases stepwise, and the discharge speed of the pump 642 decreases stepwise.
  • the electrospinning system 600 starts operation, a web 68 of fibers having a relatively large core diameter compared to the diameter of the shell is deposited. Thereafter, in the fibers constituting the web 68, the ratio of the diameter of the core part to the diameter of the shell part gradually decreases. As a result, the soft tissue repair material 100 is produced.
  • the electrospinning system 600 can also produce the soft tissue repair material 400.
  • the control pattern 820 includes the timing at which the pump 622 operates (for example, t 81 to t 85 ) and the discharge speed of the pump 622 at this timing (sometimes referred to as a discharge amount).
  • the target value may be information associated with the target value.
  • the control pattern 840 may be information in which the timing at which the pump 642 operates and the target value of the discharge speed of the pump 622 at the timing are associated with each other.
  • control unit 670 adjusts the ratio of the diameter of the core part to the diameter of the shell part in the fibers constituting the web 68 by controlling the pump on / off ratio in the unit period.
  • the control pattern 700 is different. Accordingly, the electrospinning system 600 can produce a nonwoven fabric such as the soft tissue repair material 100 and the soft tissue repair material 400.
  • FIG. 9 schematically shows an example of the system configuration of the electrospinning system 900.
  • the electrospinning system 900 differs from the electrospinning system 600 in that it includes two single nozzles instead of the core shell nozzle 610.
  • the single nozzle for example, ejects droplets that are not phase-separated.
  • the electrospinning system 900 may have the same configuration as the electrospinning system 600 except for the above differences.
  • the first nozzle stored in the syringe 620 is supplied to the single nozzle 912 via the pump 622.
  • a positive voltage is applied by the power source 660 near the discharge port of the single nozzle 912.
  • the spinning jet of the first solution is ejected from the single nozzle 912 toward the collector plate 650.
  • the second solution stored in the syringe 640 is supplied to the single nozzle 914 via the pump 642.
  • a positive voltage is applied by the power source 660 near the discharge port of the single nozzle 914.
  • the spinning jet of the second solution is ejected from the single nozzle 914 toward the collector plate 650.
  • FIG. 10 schematically shows an example of the system configuration of the electrospinning system 1000.
  • the electrospinning system 900 includes a single single nozzle 1010 instead of the core-shell nozzle 610, and a spinning jet of a mixed solution of the first polymer material and the second polymer material is ejected. Is different.
  • the electrospinning system 1000 may have the same configuration as the electrospinning system 600 except for the above differences.
  • FIG. 11 schematically shows an example of the soft tissue repair material 1100.
  • the soft tissue repair material 1100 includes a monolith 1120 containing a first polymer material and a nonwoven fabric 1140 formed by integrating fibers containing a second polymer material.
  • the nonwoven fabric 1140 has a rough portion 1142 and a dense portion 1144.
  • the bulk density of the fibers in the rough portion 1142 is smaller than the bulk density of the fibers in the dense portion 1144.
  • the bulk density of the second polymer material in the coarse portion 1142 may be smaller than the bulk density of the second polymer material in the dense portion 1144.
  • the monolith 1120 is formed so as to cover the rough portion 1142.
  • the monolith 1120 may be formed so as to cover the rough portion 1142 and a part of the dense portion 1144. Part of the monolith 1120 may penetrate into the pores of the nonwoven fabric 1140.
  • the monolith 1120 is a block-like, sponge-like, or foam-like porous body, and can be produced by any manufacturing method.
  • the monolith 1120 may be a porous body mainly made of the first polymer material, or may be a porous body containing the first polymer material and the second polymer material.
  • the fibers constituting the nonwoven fabric 1140 may be fibers of the second polymer material, or may be composite fibers of the first polymer material and the second polymer material.
  • the composition of the fibers constituting the rough portion 1142 and the composition of the fibers constituting the dense portion 1144 may be the same or different.
  • a single fiber constitutes part of the coarse portion 1142 and part of the dense portion 1144.
  • the web constituting the rough portion 1142 and the web constituting the dense portion 1144 are integrated by any method.
  • the soft tissue repair material 1100 is classified into a surface layer region 1112 and a support layer region 1114 in the thickness direction.
  • the surface layer region 1112 is disposed closer to the surface 1102 than the support layer region 1114.
  • the surface layer region 1112 may be a region on the surface 1102 side of the soft tissue repair material 1100, and the support layer region 1114 may be a region on the surface 1104 side of the soft tissue repair material 1100.
  • the soft tissue repair material 1100 is a sheet-like porous body having a surface 1102 and a surface 1104 facing each other.
  • the soft tissue repair material 1100 includes a first polymer material and a second polymer material.
  • the first polymer material for example, (i) Young's modulus is smaller than that of the second polymer material, and (ii) disappearance rate in the living body or pseudo-biological fluid than that of the second polymer material.
  • a material having a high absorbability with respect to is selected.
  • the composition in the surface layer region 1112 and the composition in the support layer region 1114 are different from each other.
  • the density ratio of the materials is different from each other.
  • the density may be an apparent density or a bulk density.
  • the ratio of the density of the second polymer material to the density of the first polymer material in the surface layer region 1112 is the density of the second polymer material relative to the density of the first polymer material in the support layer region 1114. It may be smaller than the ratio.
  • the monolith 1120 in the surface layer region 1112 functions as a scaffold for regeneration of the living tissue in the initial stage of tissue regeneration.
  • the nonwoven fabric 1140 remains in the living body for a longer period than the monolith 1120. Thereby, the strength of the soft tissue repair material 1100 is maintained until the living tissue is sufficiently regenerated.
  • the soft tissue repair material 1100 may be an example of a porous body and a medical material.
  • the surface 1102 may be an example of a first surface.
  • the surface 1104 may be an example of a second surface.
  • the surface layer region 1112 may be an example of a surface layer.
  • the support layer region 1114 may be an example of a support layer.
  • the soft tissue repair material 1100 and each part thereof may have the same configuration as the soft tissue repair material 100, the soft tissue repair material 400, and each part within a technically consistent range.
  • the soft tissue repair material 100, the soft tissue repair material 400, and the respective parts thereof may have the same configuration as the soft tissue repair material 1100 and the respective parts within a technically consistent range.
  • the details of the soft tissue repair material 1100 have been described, taking as an example the case where the nonwoven fabric 1140 has a rough portion 1142 and a dense portion 1144.
  • the soft tissue repair material 1100 is not limited to this embodiment.
  • the fiber density of the nonwoven fabric 1140 may be substantially uniform across the thickness direction of the nonwoven fabric 1140.
  • the fiber density of the dense portion 1144 may change stepwise or continuously along the thickness direction of the dense portion 1144.
  • FIG. 12 schematically shows an example of the soft tissue repair material 1200.
  • FIG. 12 schematically shows an example of an enlarged view of a cross section of the soft tissue repair material 1200.
  • the soft tissue repair material 1200 has a tubular shape.
  • the soft tissue repair material 1200 has a lumen surface 1202 and a lumen surface 1204.
  • the soft tissue repair material 1200 can be made, for example, by utilizing a rotating collector instead of the plate-like collector plate 650 in the electrospinning system 600.
  • the soft tissue repair material 1200 may be an example of a porous body and a medical material.
  • the lumen surface 1202 may be an example of a first surface.
  • the outer surface 1204 may be an example of a second surface.
  • the soft tissue repair material 1200 and each part thereof may have the same configuration as the soft tissue repair material 100, the soft tissue repair material 400, the soft tissue repair material 1100, and the respective parts within a technically consistent range.
  • the soft tissue repair material 100, the soft tissue repair material 400, the soft tissue repair material 1100, and their respective parts may have the same configuration as the soft tissue repair material 1200 and their respective parts within a technically consistent range. Good.
  • FIG. 13 schematically shows another example of the method for producing the soft tissue repair material 1200.
  • the soft tissue repair material 1200 may be a wound body of the sheet material 1300.
  • the soft tissue repair material 1200 can be produced by winding the sheet material 1300 a plurality of times to form a hollow wound body.
  • the plurality of layers constituting the hollow wound body may be integrated by any method.
  • the soft wound repair material 1200 may be manufactured by cutting a hollow wound body along a plane substantially perpendicular to the stretching direction.
  • the sheet-like material 1300 may have the same configuration as the soft tissue repair material 100 or the soft tissue repair material 400.
  • the composition of the sheet-like material 1300 differs depending on the position in the x direction in the figure. For example, the content ratio of the specific component increases continuously or stepwise in the x direction of the sheet-like material 1300. In the x direction of the sheet-like material 1300, the content ratio of the specific component may decrease continuously or stepwise.
  • the specific component may be at least one of the first polymer material and the second polymer material.
  • the sheet-like material 1300 may have a substantially uniform composition distribution in the thickness direction.
  • FIG. 14 schematically shows another example of the method for producing the soft tissue repair material 1200.
  • the soft tissue repair material 1200 may be a tubular woven fabric 1400.
  • the fabric constituting the tubular fabric 1400 is folded a plurality of times, and a plurality of layers are formed in the radial direction of the tubular fabric 1400 (in the z direction in the figure).
  • the plurality of layers constituting the tubular woven fabric 1400 may be integrated by any method.
  • the tubular fabric 1400 may be cut along a surface substantially perpendicular to the stretching direction to produce the soft tissue repair material 1200.
  • At least two of the plurality of layers constituting the tubular woven fabric 1400 may be layers having different compositions.
  • the composition of each layer is adjusted by adjusting at least one of the composition of the filament yarn constituting the warp and the composition of the filament yarn constituting the weft.
  • the composition of the filament yarn constituting the warp or the weft is adjusted, for example, by the ratio between the number of filament yarns having the first composition and the number of filament yarns having the second composition.
  • the composition of the filament yarn is adjusted by, for example, the composition or combination of a plurality of single fibers constituting the filament yarn.
  • Example 1 A non-woven sheet was prepared by the following procedure.
  • polyvinyl alcohol sometimes abbreviated as PVA
  • silk fibroin was used as the second polymer material.
  • 0.02M sodium carbonate reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • the above SF was added to an aqueous solution of 9M lithium bromide (manufactured by Wako Pure Chemical Industries, Ltd.), and SF was dissolved under a shaking condition of 37 ° C. and 1000 rpm to obtain an SF solution. Thereafter, lithium bromide was removed from the SF solution by dialysis.
  • dialysis treatment a dialysis cell tube boiled for 20 minutes was used. The dialysis treatment was performed under 4 ° C. conditions, and water exchange was performed 3 times a day. The dialysis treatment was terminated when the electrical conductivity of the purified water became 2 ⁇ S / cm or less after 10 hours or more had passed since the water exchange.
  • impurities were removed from the SF aqueous solution after dialysis by centrifugation. Centrifugation was performed for 30 minutes at 4 ° C. and 8500 rpm. Moreover, the impurity removal work by centrifugation was performed twice in total. Thereafter, a small amount of the SF aqueous solution from which impurities were removed was dropped on a plurality of petri dishes, and the concentration was measured by measuring the weight after drying.
  • the concentration of the SF aqueous solution was adjusted to 1% (w / v).
  • the SF aqueous solution whose concentration was adjusted was transferred to an eggplant flask, pre-frozen with liquid nitrogen, and then lyophilized. Thereby, SF sponge was obtained.
  • SF silk fibroin
  • HFIP 1,1,1,3,3,3-hexafluoro-2-propanol
  • PVA polyvinyl alcohol
  • HFIP 1,1,1,3,3,3-hexafluoro-2-propanol
  • a fiber having a core-shell type fiber structure in which the inside of the fiber is SF and the outside is PVA was produced using an electrospinning apparatus (ES2000A, manufactured by Fusion).
  • ES2000A includes two syringes and a core-shell nozzle for making core-shell type fibers, similar to electrospinning system 600 described in connection with FIG.
  • Table 1 Various conditions of the electrospinning process in Example 1 are shown in Table 1.
  • one SF2000A syringe was filled with the SF HFIP solution, and the other ES2000A syringe was filled with the PVA HFIP solution.
  • the discharge distance was set to 12 cm.
  • the discharge time was set to 2 hours.
  • the applied voltage was set to 20 to 23 kV, and ejection of SF HFIP solution and PVA HFIP solution was started in accordance with pre-programmed settings.
  • Example 1 the ejection speed of the SF HFIP solution was changed from 8 ⁇ l / min to 22 ⁇ l / min during the ejection time of 2 hours. Specifically, the discharge rate of the SF HFIP solution was increased stepwise by 1 ⁇ l / min every 8 minutes. Moreover, the discharge speed of the HFIP solution of PVA was changed from 22 ⁇ l / min to 8 ⁇ l / min. Specifically, the discharge speed of the PVA HFIP solution was decreased stepwise by 1 ⁇ l / min every 8 minutes. Thereby, the nonwoven fabric-like sheet
  • the produced sheet was allowed to stand for 24 hours together with a collect plate under the conditions of a relative humidity of 100% and 37 ° C. to insolubilize silk fibroin. Thereafter, the insolubilized sheet was immersed in water together with the collect plate, and the sheet was peeled off from the collect plate. The sheet peeling operation was performed within 5 minutes. Thereby, the sheet
  • one SF2000A syringe was filled with the SF HFIP solution, and the other ES2000A syringe was filled with the SF HFIP solution.
  • the discharge distance was set to 12 cm.
  • the discharge time was set to 2.5 hours.
  • the applied voltage was set to 20 to 23 kV, and ejection of SF HFIP solution and PVA HFIP solution was started in accordance with pre-programmed settings.
  • the discharge rate of SF HFIP solution from one syringe is fixed at 12 ⁇ l / min, and the discharge rate of SF HFIP solution from the other syringe is also Fixed at 12 ⁇ l / min.
  • Other procedures were performed in the same manner as in Example 1.
  • Example 1 and Reference Examples 1 to 4 were evaluated by the following procedure. Specifically, the form, composition, physical properties and degradability of each sheet were evaluated.
  • Specimens were collected from each sheet, and each specimen was gold-deposited, and then the surface of each specimen was observed using a scanning electron microscope (JSM-6510, manufactured by JEOL Ltd.). The observation voltage of the scanning electron microscope was 10 kV, and the magnification was 3000 times. Test specimens were collected from the central part of each sheet. The size of the test piece was a circle with a diameter of 4 mm. Moreover, the image obtained by the scanning electron microscope was analyzed using image J (Ver 1.51j8, National Institutes of Health (NIH)). Specifically, the average fiber diameter of the fibers present on the surface of each sheet was calculated. The average fiber diameter of the fiber was calculated by the following procedure. First, at least 50 fibers were randomly extracted from the SEM image of each sheet. Next, the fiber diameter of each extracted fiber was determined. Then, the average value of the fiber diameter of each determined fiber was computed.
  • JSM-6510 manufactured by JEOL Ltd.
  • the observation voltage of the scanning electron microscope was 10 kV, and the magn
  • ATR-FTIR measurement For sheets (Example 1 and Reference Examples 1 to 3) formed of fibers having a core-shell structure, FT-IR measurement (sometimes referred to as ATR-FTIR measurement) by the total reflection method (ATR method). Carried out. ATR-FTIR measurement was performed using an FT / IR-4600 Fourier transform infrared spectrophotometer manufactured by JASCO Corporation. ATR-FTIR measurement was performed on the front and back surfaces of Example 1 and the surfaces of Reference Examples 1 to 3. The measurement conditions of the ATR-FTIR measurements, the accumulated number of times and 16 times, and the measurement range and 900cm -1 ⁇ 1800cm -1. ZnSe was used for the prism.
  • NMR measurement NMR measurements were performed on the sheets of Reference Examples 1 to 4. NMR measurement was performed using ECX-500 manufactured by JEOL. Specifically, 3 mg of a sample was collected from the surface near the center on the surface side of each sheet. Each sample collected from each sheet was dissolved in 0.6 ml of a heavy solvent for NMR measurement (for NMR, manufactured by Kanto Chemical Co., Inc.) and transferred to a 5 mm diameter NMR tube. The NMR tube of each sample was set in an NMR measuring apparatus, and 1 H-NMR was measured. For each sample, the mass ratio of SF and PVA in the sample was calculated by calculating the ratio of the peak area of the alanine side chain methyl group of SF and the peak area of the methylene group of PVA.
  • each sheet after insolubilization was immersed in purified water to obtain a water-containing state.
  • a test piece of 15 mm ⁇ 3 mm was cut out from each sheet.
  • the film thickness of the test piece was measured.
  • an underwater tensile test was carried out using a 100N load cell of ICROTEST200NTensileStage (manufactured by DEBEN). The underwater tensile test was carried out in water at 37 ° C. with a length between grips of 5 mm and a tensile speed of 0.5 mm / min. The number of trials for measurement was at least 8.
  • ⁇ Degradability evaluation> Using the sheet obtained in each of Reference Examples 1 to 3, a test for absorbability with respect to simulated biological fluid (sometimes referred to as a degradability test) was performed. Specifically, first, a 1 cm ⁇ 1 cm test piece was cut out from each sheet. Each cut-out test piece was subjected to a vacuum drying process to sufficiently remove moisture from each test piece, and then the mass of each test piece was measured. Next, each test piece was placed in an Eppendorf tube containing 1.2 mL of phosphate buffered saline (Calbiochem) and allowed to stand for 7 days.
  • phosphate buffered saline Calbiochem
  • the composition of PBS is 200 mg / L for potassium dihydrogen phosphate, 200 mg / L for potassium chloride, 1150 mg / L for disodium hydrogen phosphate, and 8000 mg / L for sodium chloride.
  • the temperature of PBS was maintained at 37 ° C. Moreover, PBS was replaced every two days.
  • each test piece for which the decomposability test was completed was gold-deposited, and then the surface of each test piece was observed using a scanning electron microscope (JSM-6510, manufactured by JEOL Ltd.).
  • the observation voltage of the scanning electron microscope was 10 kV, and the magnification was 3000 times.
  • FIG. 15 to 20 show SEM images of the appearances of Example 1 and Reference Examples 1 to 4.
  • FIG. FIG. 15 shows an SEM image of the surface of Reference Example 1.
  • FIG. 16 shows an SEM image of the surface of Reference Example 2.
  • FIG. 17 shows an SEM image of the surface of Reference Example 3.
  • FIG. 18 shows an SEM image of the back surface of Example 1.
  • FIG. 19 shows an SEM image of the surface of Example 1.
  • FIG. 20 shows an SEM image of the surface of Reference Example 4.
  • Table 2 shows the average fiber diameter of each sample.
  • Example 1 the average fiber diameter on the back surface of the sheet of Example 1 is larger than the average fiber diameter on the surface. Based on the above assumption, in Example 1, it is presumed that the fiber on the back surface of the sheet has a relatively large PVA content, and the fiber on the surface of the sheet has a relatively large SF content.
  • FIG. 26 shows an SEM image of a cross section in the thickness direction of the sheet 2600 of Example 1.
  • the sheet 2600 includes, in order from the back surface side of the sheet 2600, a PVA rich fiber layer 2620, a fiber layer 2640 having a larger silk content than the fibers constituting the layer 2660, and silk And a rich fiber layer 2660.
  • the bulk density of the fibers in the layer 2620 is larger than the bulk density of the fibers in the layer 2660.
  • the component ratios of PVA and silk fibroin change stepwise in the layer 2620 along the direction from the back surface to the front surface.
  • the component ratios of PVA and silk fibroin change stepwise along the direction from the back surface to the front surface.
  • FIG. 21 shows the ATR-FTIR measurement results of Example 1 and Reference Examples 1 to 3.
  • a curve 2110 shows the measurement result of Example 1.
  • a curve 2112 shows the measurement result of the back surface of the sheet of Example 1.
  • a curve 2114 shows the measurement result of the surface of the sheet of Example 1.
  • a curve 2120 shows the measurement result of Reference Example 1.
  • a curve 2130 shows the measurement result of Reference Example 2.
  • a curve 2140 shows the measurement result of Reference Example 3.
  • the peak intensity of the PVA-derived C—O stretching vibration increased as the discharge rate of PVA increased.
  • the curve 2112 and the curve 2120 are in good agreement
  • the curve 2114 and the curve 2140 are in good agreement.
  • the abundance ratio of SF and PVA is changing in steps in the thickness direction.
  • SF: PVA of Reference Example 1, Reference Example 2 and Reference Example 3 are 8:23, 15:13, and 22 respectively in mass ratios. : 7.
  • mass ratio of the discharge speed of SF solution and PVA solution can be considered as mass ratio of SF and PVA in a sheet.
  • FIG. 22 shows the tensile test results of Example 1 and Reference Examples 1 to 4.
  • a rhombus marker curve 2210 indicates the measurement result of Example 1.
  • a round marker curve 2220 shows the measurement result of Reference Example 1.
  • the curve 2230 of the horizontal bar type marker shows the measurement result of Reference Example 2.
  • a triangular marker curve 2240 shows the measurement result of Reference Example 3.
  • a square marker curve 2250 shows the measurement result of Reference Example 4.
  • Table 3 shows the measurement results of Young's modulus of each sample. As shown in FIG. 22 and Table 3, the Young's modulus decreased as the discharge rate of PVA increased. Thereby, it can confirm that the flexibility of a fiber improves because the discharge rate of PVA increases. In addition, the Young's modulus of the sheet of Example 1 was significantly lower than that of the sheet of Reference Example 4.
  • the Young's modulus of blood vessels varies somewhat depending on the site, but the Young's modulus of human arteries is about 0.4 to 1.8 MPa.
  • the elastic modulus of expanded polytetrafluoroethylene (ePTFE) which is generally used as an artificial blood vessel at present, is reported to be about 20 MPa. Therefore, it can be seen that the sheet of Example 1 has a lower Young's modulus than the existing artificial blood vessel, and has physical properties closer to those of the human artery.
  • Table 4 shows the mass loss rate in the degradability evaluation test of Reference Examples 1 to 3.
  • FIG. 23 shows the SEM image of the external appearance of the reference example 1 after completion
  • FIG. 24 shows an SEM image of the appearance of Reference Example 2 after the completion of the decomposability test.
  • FIG. 25 shows an SEM image of the appearance of Reference Example 3 after the completion of the decomposability test.
  • the weight loss rate decreased as the discharge rate of PVA decreased.
  • seat of Example 1 the sheet
  • a non-woven sheet was prepared by the following procedure.
  • atelocollagen (may be abbreviated as collagen) is used as the first polymer material
  • silk fibroin is used as the second polymer material.
  • atelocollagen solution ⁇ Preparation of atelocollagen solution> Similarly, after adding 240 g of atelocollagen (manufacturer, product number, etc.) to 6000 ⁇ L of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) (manufactured by Sigma), The mixture was stirred overnight at 300 ° C. at a temperature of 300 ° C. As a result, an HFIP solution of 4% (w / v) atelocollagen was obtained.
  • atelocollagen manufactured by 6000 ⁇ L of 1,1,1,3,3,3-hexafluoro-2-propanol
  • ⁇ Creation of sheet-like nonwoven fabric> Using an electrospinning apparatus (ES2000A, manufactured by Fusion), a fiber having a core-shell type fiber structure in which the inside of the fiber is SF and the outside is atelocollagen was produced. Specifically, in the electrospinning process, the discharge speed of SF HFIP solution is fixed at 15 ⁇ l / min, the discharge speed of collagen HFIP solution is fixed at 15 ⁇ l / min, and the discharge time is set to 4 minutes. A non-woven sheet was produced in the same procedure as in Example 1 except that the applied voltage was set to 22V. Various conditions of the electrospinning process in Reference Example 5 are shown in Table 5.
  • Reference Example 6 In the electrospinning process, a non-woven sheet was produced by the same procedure as in Reference Example 5 except that the applied voltage was set to 24V. Various conditions of the electrospinning process in Reference Example 6 are shown in Table 5.
  • FIGS. 27 to 29 show SEM images of the appearance of Reference Example 5.
  • FIG. 27 is an SEM image when the observation magnification is set to 100 times.
  • FIG. 28 is an SEM image when the observation magnification is set to 1000 times.
  • FIG. 29 is an SEM image when the observation magnification is set to 3000 times. As shown in FIGS. 27 to 29, fibers having a core-shell type structure were deposited to produce a nonwoven fabric.
  • FIGS. 30 to 32 show SEM images of the appearance of Reference Example 6.
  • FIG. 30 is an SEM image when the observation magnification is set to 100 times.
  • FIG. 31 is an SEM image when the observation magnification is set to 1000 times.
  • FIG. 32 is an SEM image when the observation magnification is set to 3000 times.
  • fibers having a core-shell type structure were deposited to produce a nonwoven fabric.
  • FIGS. 33, 34 and 35 show SEM images of the appearance of Reference Example 7.
  • FIG. 33 is an SEM image when the observation magnification is set to 100 times.
  • FIG. 34 is an SEM image when the observation magnification is set to 1000 times.
  • FIG. 35 is an SEM image when the observation magnification is set to 3000 times.
  • fibers having a core-shell type structure were deposited to produce a nonwoven fabric.
  • Example 1 Considering the results of Reference Examples 5 to 7 and the knowledge obtained in Example 1 and Reference Examples 1 to 4, for example, during the electrospinning process, the discharge rate of SF in HFIP solution is gradually increased, and collagen Even when using atelocollagen as the first polymer material and silk fibroin as the second polymer material, by gradually decreasing the discharge speed of the HFIP solution, as in the sheet of Example 1, It can be seen that a sheet in which the ratio of SF and collagen changes in the thickness direction can be produced.
  • collagen is superior in biodegradability or bioabsorbability compared to fibroin. Therefore, even when atelocollagen is used as the first polymer material and silk fibroin is used as the second polymer material, as in the sheet of Example 1, for example, in vivo from one side of the sheet It turns out that the sheet
  • 66 spinning jet, 68 web 100 soft tissue repair material, 102 surface, 104 surface, 110 cross section, 120 surface layer region, 140 support layer region, 160 fibers, 162 shell portion, 164 core portion, 170 fibers, 172 shell portion, 174 Core part, 400 soft tissue repair material, 420 surface layer area, 600 electrospinning system, 610 core shell nozzle, 612 outer cylinder, 614 inner cylinder, 620 syringe, 622 pump, 640 syringe, 642 pump, 650 collector plate, 652 position adjustment part , 660 power supply, 670 control unit, 700 control pattern, 720 control pattern, 740 control pattern, 800 control pattern, 820 control pattern, 840 control pattern, 900 electrospray System, 912 single nozzle, 914 single nozzle, 1000 electrospinning system, 1010 single nozzle, 1100 soft tissue repair material, 1102 surface, 1104 surface, 1112 surface layer region, 1114 support layer region, 1120 monolith, 1140 non-woven fabric, 1142 coarse part

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dispersion Chemistry (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cardiology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

互いに対向する第1面及び第2面を有し、第1高分子材料及び第2高分子材料を含む多孔質体において、第1高分子材料のヤング率は、第2高分子材料のヤング率より小さく、第1高分子材料の生体内での消失速度は、第2高分子材料の生体内での消失速度より大きく、多孔質体の第1領域における組成と、多孔質体の第2領域における組成とが、互いに相違する。

Description

多孔質体、及び、医療用材料
 本発明は、多孔質体、及び、医療用材料に関する。
 スキャフォルドなどの医療用デバイス用の素材として、延伸ポリテトラフルオロエチレン(ePTFE)が多用されている。ePTFEは柔軟性があり、生体に対して活性を示さないことから、多くの軟組織系材料に応用されている。一方、ePTFEは生体に吸収されにくく、遠隔期における血栓生成、石灰化、耐久性などに課題が残る。そこで、近年、生体吸収性に優れた吸収性材料を医療用デバイスに応用することが検討されている(例えば、特許文献1~6、非特許文献1~9を参照)。
[先行技術文献]
 [特許文献]
 特許文献1 特表2012-519559号公報
 特許文献2 特開2017-080116号公報
 特許文献3 特許第6294577号明細書
 特許文献4 特表2013-534978号公報
 特許文献5 特表2014-517070号公報
 特許文献6 特表2009-515569号公報
 [非特許文献]
 非特許文献1 Sugiura T et al.、"Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft"、Ann Thorac Surg. 102、 720-727 (2016)
 非特許文献2 Tara S et al.、"Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft"、J. Vasc. Surg.62、734-743 (2015) 
 非特許文献3 Wang S et. al.、"Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency"、International Journal of Nanomedicine、Dove Medical Press、 2013年6月7日、Vol. 8、2131-2139。
 非特許文献4 Young Min Shin et.al.、"Mussel-Inspired Immobilization of Vascular Endothelial Growth Factor (VEGF) for Enhanced Endothelialization of Vascular Grafts"、Biomacromolecules. 13、2020-2028 (2012)
 非特許文献5 Tal Dvir et.al.、"Prevascularization of cardiac patch on the omentum improves its therapeutic outcome"、PNAS. 106、 14990-14995(2009)
 非特許文献6 Erik J. Suuronen et.al.、"An acellular matrix-bound ligand enhances the mobilization, recruitment and therapeutic effects of circulating progenitor cells in a hindlimb ischemia model"、FASEB J. 23、 1447-1458 (2009)
 非特許文献7 K.R.Stevens et.al.、"Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue"、PNAS. 106、16568-16573 (2009)
 非特許文献8 N. Engl. J. Med. 344、 532-533(2001)、 J. Thorac. Cardiovasc. Surg.139、431-436(2010)
 非特許文献9 M. Kheradmandi et.al.、"Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold"、J. Biomed. Mater. Res. Part A(J Biomed Mater Res A).104、1720-1727(2016)
 非特許文献10 B. M. Learoyd et.al.、"Alterations with age in the viscoelastic properties of human arterial walls"、Circ. Res. 18、278-292(1966)
解決しようとする課題
 生体吸収性に優れた吸収性材料を医療用デバイスに応用する場合、当該吸収性材料の吸収速度と、医療用デバイスの強度とを両立させることが難しい。
一般的開示
 本発明の第1の態様においては、多孔質体が提供される。上記の多孔質体は、例えば、互いに対向する第1面及び第2面を有する。上記の多孔質体は、例えば、第2高分子材料を含む。上記の多孔質体は、例えば、37℃の精製水中における水中引張強度に基づいて決定された多孔質体のヤング率が、0.1MPa以上10MPa以下である。上記の多孔質体において、(i)多孔質体の第1領域から採取され、大きさが10mm×10mmの第1サンプルを、35~39℃の疑似生体液に30日間浸漬させた場合における第1サンプルの質量損失率は、例えば、(ii)多孔質体の第2領域から採取され、大きさが10mm×10mmの第2サンプルを、35~39℃の疑似生体液に30日間浸漬させた場合における第2サンプルの質量損失率よりも大きい。上記の多孔質体において、第1領域及び第1面の距離は、第2領域及び第1面の距離よりも小さい。
 上記の多孔質体において、第2高分子材料は、例えば、第2生分解性プラスチック、第2生体高分子、及び、第2天然高分子からなる群から選択される少なくとも1種の物質を含む。上記の多孔質体において、第2生分解性プラスチックは、例えば、(i)ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。上記の多孔質体において、第2生体高分子は、例えば、(i)コラーゲン、フィブリン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。上記の多孔質体において、第2天然高分子は、例えば、(i)キチン、セリシン、フィブロイン、カルボキシメチルセルロース、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。
 上記の多孔質体は、第2高分子材料よりも生分解性又は生体吸収性に優れた第1高分子材料を含んでよい。上記の多孔質体において、第1サンプルの質量損失率と、第2サンプルの質量損失率との差の絶対値は、0.5%以上であってよい。上記の差の絶対値は、0.7%以上であることが好ましく、1.0%以上であることがより好ましく、1.5%以上であることがさらに好ましく、2%以上であることがさらに好ましく、2.5%以上であることがさらに好ましく、3%以上であることがさらに好ましい。
 本発明の第2の態様においては、多孔質体が提供される。上記の多孔質体は、例えば、互いに対向する第1面及び第2面を有する。上記の多孔質体は、例えば、第1高分子材料及び第2高分子材料を含む。上記の多孔質体において、例えば、第1高分子材料のヤング率は、第2高分子材料のヤング率より小さい。上記の多孔質体において、例えば、第1高分子材料の生体内での消失速度は、第2高分子材料の生体内での消失速度より大きい。上記の多孔質体において、例えば、多孔質体の第1領域における組成と、多孔質体の第2領域における組成とが、互いに相違する。上記の多孔質体において、例えば、第1領域及び第1面の距離は、第2領域及び第1面の距離よりも小さい。
 本発明の第3の態様においては、多孔質体が提供される。上記の多孔質体は、例えば、互いに対向する第1面及び第2面を有する。上記の多孔質体は、例えば、第1高分子材料及び第2高分子材料を含む。上記の多孔質体において、例えば、第1高分子材料のヤング率は、第2高分子材料のヤング率より小さい。上記の多孔質体において、例えば、第1高分子材料のリン酸緩衝生理食塩水に対する吸収性は、例えば、第2高分子材料のリン酸緩衝生理食塩水に対する吸収性より大きい。上記の多孔質体において、例えば、多孔質体の第1領域における組成と、多孔質体の第2領域における組成とが、互いに相違する。上記の多孔質体において、例えば、第1領域及び第1面の距離は、第2領域及び第1面の距離よりも小さい。
 上記の第1、第2及び第3の態様に係る多孔質体において、(a)多孔質体の第1領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合と、(b)多孔質体の第2領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合とが、互いに相違してよい。上記の多孔質体は、多孔質体の第1面の側の表面に配される、多孔質な第1表層を備えてよい。上記の多孔質体は、第1表層の第2面の側に配され、第1表層を支持する、多孔質な支持層を備えてよい。上記の多孔質体において、第1領域は、第1表層の少なくとも一部に配されてよい。上記の多孔質体において、第2領域は、支持層の少なくとも一部に配されてよい。
 上記の多孔質体において、第1表層及び支持層のそれぞれは、第1高分子材料及び第2高分子材料を含む複合繊維のウェブを有してよい。上記の多孔質体において、(i)第1領域の複合繊維における、第1高分子材料の質量に対する第2高分子材料の質量の割合は、(ii)第2領域の複合繊維における、第1高分子材料の質量に対する第2高分子材料の質量の割合より小さくてよい。
 上記の多孔質体において、第1表層及び支持層のそれぞれは、第1高分子材料及び第2高分子材料を含む複合繊維のウェブを有してよい。上記の多孔質体において、複合繊維は、第2高分子材料のコア及び第1高分子材料のシェルを含むコア-シェル構造を有してよい。上記の多孔質体において、(i)第1領域の複合繊維における、シェルの直径又は相当直径に対するコアの直径又は相当直径の割合は、(ii)第2領域の複合繊維における、シェルの直径又は相当直径に対するコアの直径又は相当直径の割合より小さくてよい。
 上記の多孔質体において、(c)多孔質体の第3領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合と、(b)多孔質体の第2領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合とは、互いに相違してよい。上記の多孔質体において、第3領域及び第1面の距離は、第2領域及び第1面の距離よりも小さくてよい。上記の多孔質体において、第3領域は、支持層の少なくとも一部に配されてよい。
 上記の多孔質体は、多孔質体の第2面の側の表面に配される、多孔質な第2表層を備えてよい。上記の多孔質体において、支持層は、第1表層及び第2表層の間に配されてよい。上記の多孔質体において、(d)多孔質体の第4領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合と、(b)多孔質体の第2領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合とは、互いに相違してよい。上記の多孔質体において、第4領域及び第1面の距離は、第2領域及び第1面の距離よりも大きくてよい。上記の多孔質体において、第4領域は、第2表層の少なくとも一部に配されてよい。上記の多孔質体は、(i)シート状若しくはフィルム状、(ii)チューブ状若しくはロール状、又は、(iii)ブロック状、柱状若しくはパッド状の形状を有してよい。
 上記の多孔質体において、第1高分子材料は、(i)ポリアクリル酸メチル(PMA)、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVA)、ヒアルロン酸、アルギン酸、ポリグリコール酸(PGA)、ポリエチレンカーボネート(PEC)、コラーゲン、フィブリン、ポリグラクチン、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体から選択される少なくとも1種の物質を含んでよい。
 上記の多孔質体において、第2高分子材料は、(i)コラーゲン、フィブリン、ポリグラクチン、キトサン、キチン、フィブロイン、セリシン、ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)(PCL)、ポリエチレンカーボネート、ポリウレタン、カルボキシメチルセルロース、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体から選択される少なくとも1種の物質を含んでよい。
 上記の多孔質体において、第2高分子材料は、(i)カルボキシメチルセルロース(CMC)、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体から選択される少なくとも1種の物質を含んでよい。
 上記の多孔質体において、第1高分子材料は、第1生分解性プラスチック、第1生体高分子、及び、第1天然高分子からなる群から選択される少なくとも1種の物質を含んでよい。上記の多孔質体において、第1生分解性プラスチックは、(i)ポリグリコール酸、ポリビニルアルコール、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。上記の多孔質体において、第1生体高分子は、(i)コラーゲン、フィブリン、アルギン酸、ヒアルロン酸、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。上記の多孔質体において、第1天然高分子は、(i)キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 上記の多孔質体において、第2高分子材料は、第2生分解性プラスチック、第2生体高分子、及び、第2天然高分子からなる群から選択される少なくとも1種の物質を含んでよい。上記の多孔質体において、第2生分解性プラスチックは、(i)ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。上記の多孔質体において、第2生体高分子は、(i)コラーゲン、フィブリン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。上記の多孔質体において、第2天然高分子は、(i)キチン、セリシン、フィブロイン、カルボキシメチルセルロース、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 上記の多孔質体において、第1高分子材料と、第2高分子材料とを含む。第1高分子材料としては、例えば、(i)第2高分子材料よりもヤング率が小さく、且つ、(ii)第2高分子材料よりも、生体内での消失速度、又は、疑似生体液に対する吸収性の大きな材料が選択される。
 上記の多孔質体において、第1高分子材料のヤング率は、0.001MPa以上100MPa以下であることが好ましく、0.01MPa以上50MPa以下であることがより好ましく、0.03MPa以上20MPa以下であることがさらに好ましい。第2高分子材料のヤング率は、0.01MPa以上2000MPa以下であることが好ましく、0.1MPa以上1000MPa以下であることがより好ましく、1MPa以上500MPa以下であることがさらに好ましい。
 上記の多孔質体において、例えば、第2高分子材料は、ヤング率が0.01MPa以上2000MPa以下である高分子材料から選択される。一方、第1高分子材料は、ヤング率が、0.001MPa以上100MPa以下であり、且つ、第2高分子材料よりもヤング率の小さな高分子材料から選択される。
 上記の多孔質体において、第1高分子材料の生体内での消失速度[日/50%質量]は、1日以上100日以下であることが好ましく、1日以上50日以下であることがより好ましく、1日以上30日以下であることがさらに好ましい。第2高分子材料の生体内での消失速度[日/50%質量]は、10日以上730日以下であることが好ましく、10日以上365日以下であることがより好ましく、20日以上365日以下であることがさらに好ましい。
 上記の多孔質体において、例えば、第2高分子材料は、生体内での消失速度[日/50%質量]が10日以上730日以下である高分子材料から選択される。一方、第1高分子材料は、生体内での消失速度[日/50%質量]が1日以上100日以下であり、且つ、第2高分子材料よりも生体内での消失速度の大きな高分子材料から選択される。
 上記の多孔質体において、第1高分子材料のリン酸緩衝生理食塩水に対する吸収性は、浸漬7日目において、1%以上90%以下であることが好ましく、1%以上70%以下であることがより好ましく、1%以上50%以下であることがさらに好ましい。第2高分子材料のリン酸緩衝生理食塩水に対する吸収性は、浸漬7日目において、0%以上10%以下であってよい。第2高分子材料のリン酸緩衝生理食塩水に対する吸収性は、浸漬30日目において、0%以上60%以下であることが好ましく、0%以上50%以下であることがより好ましく、0%以上40%以下であることがさらに好ましい。第2高分子材料のリン酸緩衝生理食塩水に対する吸収性は、(i)浸漬7日目において、0%以上10%以下であり、且つ、(ii)浸漬30日目において、0%以上60%以下であってもよく、0%以上50%以下であってもよく、0%以上40%以下であってもよい。
 上記の多孔質体において、例えば、第2高分子材料は、リン酸緩衝生理食塩水に対する吸収性が、浸漬7日目において、0%以上10%以下であり、且つ、浸漬30日目において0%以上60%以下である高分子材料から選択される。一方、第1高分子材料は、リン酸緩衝生理食塩水に対する吸収性が、浸漬7日目において1%以上90%以下であり、且つ、第2高分子材料よりもリン酸緩衝生理食塩水に対する吸収性の大きな高分子材料から選択される。
 上記の多孔質体において、第1高分子材料は主にポリビニルアルコールを含み、第2高分子材料は主にフィブロインを含んでよい。上記の多孔質体において、第1高分子材料は主にポリカプロラクトンを含み、第2高分子材料は主にシルクフィブロインを含んでよい。上記の多孔質体において、第1高分子材料は主にポリビニルアルコールを含み、第2高分子材料は主にポリカプロラクトンを含んでよい。上記の多孔質体において、第1高分子材料及び第2高分子材料の組み合わせとしては、(i)ポリビニルアルコールと、シルクフィブロイン、(ii)コラーゲンと、シルクフィブロイン、(iii)ヒアルロン酸と、シルクフィブロイン、(iv)アルギン酸と、シルクフィブロイン、(v)生分解性ポリウレタンと、シルクフィブロイン、(vi)ポリエチレンカーボネートと、シルクフィブロイン、(vii)ポリビニルアルコールと、ポリ乳酸、(viii)コラーゲンと、ポリ(ε-カプロラクトン)、(iX)ポリエチレンカーボネートと、ポリ乳酸、(Xi)ポリビニルアルコールと、ポリ乳酸、(Xii)ポリグリコール酸と、ポリ乳酸、(Xiii)ヒアルロン酸と、ポリ乳酸、(Xiv)アルギン酸と、ポリ乳酸などが例示される。
 本発明の第4の態様においては、医療用材料が提供される。上記の医療用材料は、上記の第1、第2又は第3の態様に係る多孔質体を含む。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
軟組織修復用材料100の一例を概略的に示す。 軟組織修復用材料100の組成プロファイルの一例を概略的に示す。 軟組織修復用材料100の物性プロファイルの一例を概略的に示す。 軟組織修復用材料400の一例を概略的に示す。 軟組織修復用材料400の組成プロファイルの一例を概略的に示す。 エレクトロスピニングシステム600のシステム構成の一例を概略的に示す。 制御パターン700の一例を概略的に示す。 制御パターン700の一例を概略的に示す。 エレクトロスピニングシステム900のシステム構成の一例を概略的に示す。 エレクトロスピニングシステム1000のシステム構成の一例を概略的に示す。 軟組織修復用材料1100の一例を概略的に示す。 軟組織修復用材料1200の一例を概略的に示す。 軟組織修復用材料1200の製法の他の例を概略的に示す。 軟組織修復用材料1200の製法の他の例を概略的に示す。 参考例1の外観のSEM画像を示す。 参考例2の外観のSEM画像を示す。 参考例3の外観のSEM画像を示す。 実施例1の外観のSEM画像を示す。 実施例1の外観のSEM画像を示す。 参考例4の外観のSEM画像を示す。 実施例1及び参考例1~3のATR-FTIR測定結果を示す。 実施例1及び参考例1~4の引張試験結果を示す。 分解性試験終了後の参考例1の外観のSEM画像を示す。 分解性試験終了後の参考例2の外観のSEM画像を示す。 分解性試験終了後の参考例3の外観のSEM画像を示す。 実施例1の厚さ方向の断面のSEM画像を示す。 参考例5の外観のSEM画像を示す。 参考例5の外観のSEM画像を示す。 参考例5の外観のSEM画像を示す。 参考例6の外観のSEM画像を示す。 参考例6の外観のSEM画像を示す。 参考例6の外観のSEM画像を示す。 参考例7の外観のSEM画像を示す。 参考例7の外観のSEM画像を示す。 参考例7の外観のSEM画像を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、図面において、同一または類似の部分には同一の参照番号を付して、重複する説明を省く場合がある。
 [軟組織修復用材料100の構造]
 図1は、軟組織修復用材料100の一例を概略的に示す。図1は、軟組織修復用材料100の断面110の拡大図の一例を概略的に示す。また、図1は、表層領域120に配された繊維160の構造の一例と、支持層領域140に配された繊維170の構造の一例とを概略的に示す。
 図1に示されるとおり、本実施形態において、軟組織修復用材料100は、シート状の形状を有する。軟組織修復用材料100は、互いに対向する表面102及び表面104を有する。本実施形態において、軟組織修復用材料100は、不織布であってよい。不織布は、繊維の集積体であり、多数の細孔を有する。
 本実施形態において、軟組織修復用材料100は、その厚さ方向(図中、z方向である。)において、表層領域120と、支持層領域140とに分類される。本実施形態において、表層領域120は、支持層領域140よりも表面102の側に配される。表層領域120は、軟組織修復用材料100の表面102の側の領域であってよく、支持層領域140は、軟組織修復用材料100の表面104の側の領域であってよい。
 表層領域120の厚さと、支持層領域140の厚さとの比は、1:99~99:1であることが好ましく、20:80~80:20であることがより好ましい。両領域の厚さの比は、例えば、軟組織修復用材料100の断面のSEM画像に基づいて決定される。
 本実施形態において、表層領域120に配された繊維160は、コア-シェル型の構造を有する。例えば、繊維160は、シェル部162と、コア部164とを有する。同様に、支持層領域140に配された繊維170は、コア-シェル型の構造を有する。例えば、繊維170は、シェル部172と、コア部174とを有する。
 なお、一実施形態において、繊維160及び繊維170は、互いに異なる長繊維又はフィラメントの一部である。他の実施形態において、繊維160及び繊維170は、同一の長繊維又はフィラメントの異なる部位であってよい。
 軟組織修復用材料100は、多孔質体及び医療用材料の一例であってよい。表面102は、第1面の一例であってよい。表面104は、第2面の一例であってよい。表層領域120は、表層の一例であってよい。支持層領域140は、支持層の一例であってよい。繊維160は、複合繊維の一例であってよい。繊維170は、複合繊維の一例であってよい。
 本実施形態においては、表層領域120及び支持層領域140のそれぞれが、単一の不織布を、当該不織布の厚さ方向の任意の位置で仮想的に分割して得られた領域である場合を例として、軟組織修復用材料100の詳細が説明される。この場合、表層領域120及び支持層領域140のそれぞれには、多孔質な層状の物体が配される。また、単一の繊維が、表層領域120の一部と、支持層領域140の一部とを構成し得る。しかしながら、軟組織修復用材料100の構造は、本実施形態に限定されない。
 他の実施形態において、表層領域120及び支持層領域140のそれぞれは、組成及び構造の少なくとも一方が異なる多孔質層であってよい。また、表層領域120を構成する多孔質層と、支持層領域140を構成する多孔質層とが、任意の手法により一体化されてよい。例えば、表層領域120及び支持層領域140のそれぞれが不織布である場合、両者は、サーマルボンド法、ケミカルボンド法、ニードルパンチ法、水流絡合法などの公知の手法により一体化される。多孔質層の形状は、(i)不織布状であってもよく、(ii)発泡体状、スポンジ状又はモノリス状であってもよい。
 また、本実施形態においては、表層領域120と、支持層領域140とが接する場合を例として、軟組織修復用材料100の詳細が説明される。しかしながら、軟組織修復用材料100の構造は、本実施形態に限定されない。他の実施形態において、表層領域120と、支持層領域140との間に、他の種類の領域が配されてもよい。また、表面102と、表層領域120との間に、他の種類の領域が配されてもよく、表面104と、支持層領域140との間に、他の種類の領域が配されてもよい。
 [軟組織修復用材料100の組成]
 本実施形態において、軟組織修復用材料100は、2種以上の高分子材料を含む。例えば、軟組織修復用材料100は、第1高分子材料と、第2高分子材料とを含む。表層領域120及び支持層領域140のそれぞれが、第1高分子材料及び第2高分子材料を含んでもよい。本実施形態において、軟組織修復用材料100の表層領域120における組成と、軟組織修復用材料100の支持層領域140における組成とが、互いに相違する。例えば、表層領域120における第1高分子材料及び第2高分子材料の比率と、支持層領域140における第1高分子材料及び第2高分子材料の比率とが、互いに相違する。上記の比率は、各材料の質量又は密度の比であってよい。
 [第1高分子材料及び第2高分子材料の物性]
 第1高分子材料及び第2高分子材料は、生体適合性に優れ、毒性が少なく、安全性に優れた材料であることが好ましい。第1高分子材料及び第2高分子材料は、生体吸収性に比較的優れた材料であることが好ましい。第1高分子材料及び第2高分子材料は、生体吸収性ポリマー、生体吸収性コポリマ―、並びに、これらの塩及び誘導体から選択される少なくとも1種を含んでよい。生体吸収性ポリマー及び生体吸収性コポリマ―は、生体内の分解酵素又は代謝系により分解される高分子化合物、又は、生体内において非特異的に加水分解される高分子化合物であってよい。
 例えば、第1高分子材料及び第2高分子材料は、それぞれ独立して、(i)セルロース、ヒアルロン酸、アルギン酸、キチン、キトサン、グリコサミノグリカン、コンドロイチン硫酸、ヘパリンなどの多糖類、(ii)コラーゲン、ゼラチン、セリシン、ガゼイン、フィブリン、ケラチン、フィブロインなどのペプチド又はタンパク質、(iii)アクリル樹脂、ポリカーボネート、ポリビニルアルコール(PVA)、ポリエステル、ポリウレタンなどの重合体又は共重合体、並びに、(iv)これらの塩及び誘導体から選択される少なくとも1種を含む。フィブロインは、シルクフィブロインであってよい。セリシンは、シルクセリシンであってよい。第1高分子材料及び第2高分子材料のそれぞれは、上記の物質を含む複合材料であってよい。第1高分子材料及び第2高分子材料のそれぞれは、上記の物質を原料として含む複合材料であってもよい。
 セルロースの誘導体としては、カルボキシメチルセルロースが例示される。アクリル樹脂としては、ポリアクリル酸メチル(PMA)、ポリメタクリル酸メチル(PMMA)などが例示される。ポリカーボネートとしては、ポリエチレンカーボネートが例示される。ポリエステルは、脂肪族ポリエステルであってもよく、芳香族ポリエステルであってもよく、共重合ポリエステルであってもよい。
 ポリエステルとしては、(i)ポリ乳酸(D、L又はDL体)(PLA)、ポリグリコール酸(PGA)、ポリ(ε-カプロラクトン)(PCL)、ポリジオキサノン(PDX、PDS又はPDO)、ポリヒドロキシアルカン酸(PHA)、ポリヒドロキシ酪酸(PHB)、ポリコハク酸ブチレン(PBS)、ポリアクリル酸ブチル(PBA)、ポリアクリル酸エチル(PEA)、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体が例示される。上記の共重合体としては、(i)PBS、PBA又はPEAにテレフタレート単位が導入されたPBST、PBAT又はPEAT、(ii)グリコリド-ラクチド共重合体(ポリグラクチン、PLGA)、(iii)グリコリド-ε-カプロラクトン共重合体(ポリグリカプロン)、(iv)ラクチド(D、L、DL体)-ε-カプロラクトン共重合体、(v)グリコリド-ラクチド(D、L、DL体)-ε-カプロラクトン共重合体などが例示される。
 第1高分子材料及び第2高分子材料は、ヤング率(引張弾性率と称される場合がある。)の異なる材料であることが好ましい。例えば、第1高分子材料のヤング率は、第2高分子材料のヤング率より小さい。高分子材料のヤング率は、高分子材料の分子量、高分子材料を構成するモノマーの配合比率などにより調整され得る。
 高分子材料のヤング率は、例えば、ISO 527-1、JIS K 7161に準じて算出される。具体的には、まず、測定対象となる高分子材料の40mm×5mmの試験片を準備する。また、乾燥状態における試験片の厚みを測定する。試験片の厚みは、試験片の単一の箇所の厚みであってもよく、複数の箇所の厚みの平均値であってもよい。次に、20℃の大気中で、毎分10mm/minの引張荷重を試験片に印加して、試験片をその長辺方向に引っ張りながら、引張応力(垂直応力と称される場合もある。)及びひずみ(伸び率と称される場合もある。)を測定する。
 引張応力[MPa]は、引張荷重[N]を、試験開始前の試験片の断面積[mm]で除して算出する。上記の断面積は、試料片を引張方向に略垂直な面で切断した面の面積である。また、ひずみ[%]は、下記の数式1によって算出する。
 [数式1]
 ひずみ[%]=100×(L-Lo)/Lo
 数式1において、Loは試験開始前の試料の長さであり、Lは試験時の試料の長さである。
 ヤング率は、引張比例限度内(弾性域と称される場合もある。)における、ひずみに対する引張応力の比として算出される。本実施形態において、ヤング率は、SSカーブ(応力-歪み線図と称される場合もある。)の接線の傾きから算出される。接線の傾きは、例えば、1%~4%の歪みに対する応力のデータから算出する。なお、試料の都合などにより、上記の手順に基づいてヤング率を算出することが困難である場合には、後述される実施例に関連して説明される手順に基づいてヤング率を算出してもよい。
 例えば、JIS K 7161において、試験片(サンプルと称される場合がある。)は、試験する材料の規格に従って状態調節が実施される。状態調節に関して特に規定がない場合、状態調節は、温度21~25℃及び湿度40~60%の条件下で、16時間以上行うことが推奨されている。しかしながら、材料によっては、湿潤状態と、乾燥状態とで物性が大きく異なる場合がある。上記の材料としては、(i)コラーゲン、フィブリン、アルギン酸、ヒアルロン酸、フィブロイン(例えば、シルクフィブロインである)、セリシン(例えば、シルクセリシンである)などの生体高分子、(ii)ポリビニルアルコール、ポリグリコール酸、ポリグラクチンなどが例示される。そこで、このような場合には、例えば、後述される水中引張試験に基づいてヤング率が算出される。
 第1高分子材料のヤング率は、0.001MPa以上100MPa以下であることが好ましく、0.01MPa以上50MPa以下であることがより好ましく、0.03MPa以上20MPa以下であることがさらに好ましい。第2高分子材料のヤング率は、0.01MPa以上2000MPa以下であることが好ましく、0.1MPa以上1000MPa以下であることがより好ましく、1MPa以上500MPa以下であることがさらに好ましい。
 例えば、第2高分子材料は、ヤング率が0.01MPa以上2000MPa以下である高分子材料から選択される。一方、第1高分子材料は、ヤング率が、0.001MPa以上100MPa以下であり、且つ、第2高分子材料よりもヤング率の小さな高分子材料から選択される。
 第1高分子材料及び第2高分子材料は、生体内での消失速度の異なる材料であることが好ましい。例えば、第1高分子材料の生体内での消失速度は、第2高分子材料の生体内での消失速度より大きい。高分子材料の生体内での消失速度は、高分子材料の分子量、高分子材料を構成するモノマーの配合比率などにより調整され得る。生体内での消失速度は、例えば、質量の50%が生体内で消失するまでの期間[日/50%質量]として表される。この場合、上記の期間が小さいほど、生体内での消失速度が大きい。
 高分子材料の生体内での消失速度[日/50%質量]は、例えば、下記の手順に基づいて算出される。まず、測定対象となる高分子材料の試験片を準備する。試験片の形状は、直径20mm、厚さ0.6mmのペレット状とする。次に、麻酔下のマウスの背部皮膚を切開し、試験片を埋植する。一定期間が経過した後、埋設部位より試験片を取り出し、当該試験片を精製水にて洗浄する。洗浄後の試験片を十分に乾燥させた後、当該試験片の質量を測定する。そして、下記の数式2により算出される質量損失率が50%未満になるまで、上記の作業を繰り返す。
 [数式2]
 質量損失率[%]=100×(Wo-W)/Wo
 数式2において、Woは試験開始前の試料片の質量であり、Wは一定期間埋植後の試験片の質量である。
 データフィッティングにより、質量損失率が50%となるまでの期間を推定し、当該推定値を消失速度として算出する。
 第1高分子材料の生体内での消失速度[日/50%質量]は、1日以上100日以下であることが好ましく、1日以上50日以下であることがより好ましく、1日以上30日以下であることがさらに好ましい。第2高分子材料の生体内での消失速度[日/50%質量]は、10日以上730日以下であることが好ましく、10日以上365日以下であることがより好ましく、20日以上365日以下であることがさらに好ましい。
 例えば、第2高分子材料は、生体内での消失速度[日/50%質量]が10日以上730日以下である高分子材料から選択される。一方、第1高分子材料は、生体内での消失速度[日/50%質量]が1日以上100日以下であり、且つ、第2高分子材料よりも生体内での消失速度の大きな高分子材料から選択される。
 第1高分子材料及び第2高分子材料は、疑似生体液に対する吸収性の異なる材料であることが好ましい。例えば、第1高分子材料の疑似生体液に対する吸収性は、第2高分子材料の疑似生体液に対する吸収性より大きい。疑似生体液に対する吸収性は、高分子材料の生体内での消失速度に相関する指標である。疑似生体液に対する吸収性は、高分子材料の分子量、高分子材料を構成するモノマーの配合比率などにより調整され得る。
 高分子材料の疑似生体液に対する吸収性は、例えば、リン酸緩衝生理食塩水(PBSと称される場合がある。)に対する吸収性が用いられる。リン酸緩衝生理食塩水に対する吸収性は、例えば、後述される実施例に関連して説明される手順に基づいて算出される。
 第1高分子材料のリン酸緩衝生理食塩水に対する吸収性は、浸漬7日目において、1%以上90%以下であることが好ましく、1%以上70%以下であることがより好ましく、1%以上50%以下であることがさらに好ましい。第2高分子材料のリン酸緩衝生理食塩水に対する吸収性は、浸漬7日目において、0%以上10%以下であってよい。第2高分子材料のリン酸緩衝生理食塩水に対する吸収性は、浸漬30日目において、0%以上60%以下であることが好ましく、0%以上50%以下であることがより好ましく、0%以上40%以下であることがさらに好ましい。第2高分子材料のリン酸緩衝生理食塩水に対する吸収性は、(i)浸漬7日目において、0%以上10%以下であり、且つ、(ii)浸漬30日目において、0%以上60%以下であってもよく、0%以上50%以下であってもよく、0%以上40%以下であってもよい。
 例えば、第2高分子材料は、リン酸緩衝生理食塩水に対する吸収性が、浸漬7日目において、0%以上10%以下であり、且つ、浸漬30日目において0%以上60%以下である高分子材料から選択される。一方、第1高分子材料は、リン酸緩衝生理食塩水に対する吸収性が、浸漬7日目において1%以上90%以下であり、且つ、第2高分子材料よりもリン酸緩衝生理食塩水に対する吸収性の大きな高分子材料から選択される。
 [第1高分子材料及び第2高分子材料の組み合わせ]
 上述のとおり、軟組織修復用材料100は、第1高分子材料と、第2高分子材料とを含む。第1高分子材料としては、例えば、(i)第2高分子材料よりもヤング率が小さく、且つ、(ii)第2高分子材料よりも、生体内での消失速度、又は、疑似生体液に対する吸収性の大きな材料が選択される。
 生体内での消失速度、又は、疑似生体液に対する吸収性が非常に大きな材料としては、ポリアクリル酸メチル(PMA)、ポリビニルアルコール(PVA)、ヒアルロン酸、アルギン酸、ポリグリコール酸(PGA)などが例示される。これらの材料は、生体内での消失速度[日/50%質量]が、概ね30日未満である。
 生体内での消失速度、又は、疑似生体液に対する吸収性が比較的大きな材料としては、ポリエチレンカーボネート、コラーゲン、フィブリン、ポリグラクチン、キトサンなどが例示される。これらの材料は、生体内での消失速度[日/50%質量]が、概ね30日以上90日未満である。
 生体内での消失速度、又は、疑似生体液に対する吸収性が比較的小さな材料としては、ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリ(ε-カプロラクトン)(PCL)、ポリDL乳酸(PDLLA)、キチン、フィブロイン、セリシンなどが例示される。これらの材料は、生体内での消失速度[日/50%質量]が、概ね90日以上である。フィブロインは、シルクフィブロインであってよい。セリシンは、シルクセリシンであってよい。
 生体内での消失速度又は疑似生体液に対する吸収性と、ヤング率とを考慮すると、第1高分子材料は、例えば、(i)ポリアクリル酸メチル(PMA)、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVA)、ヒアルロン酸、アルギン酸、ポリグリコール酸(PGA)、ポリエチレンカーボネート、コラーゲン、フィブリン、ポリグラクチン、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体から選択される少なくとも1種の物質を含む。第1高分子材料は、上記の少なくとも1種の物質を含む複合材料であってもよく、上記の少なくとも1種の物質を原料として含む複合材料であってもよい。
 生体内での消失速度又は疑似生体液に対する吸収性と、ヤング率とを考慮すると、第2高分子材料は、例えば、(i)コラーゲン、フィブリン、ポリグラクチン、キトサン、キチン、フィブロイン、セリシン、ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)(PCL)、ポリエチレンカーボネート、ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体から選択される少なくとも1種の物質を含む。フィブロインは、シルクフィブロインであってよい。セリシンは、シルクセリシンであってよい。第2高分子材料は、上記以外の生体吸収性ポリエステルを含んでもよい。第2高分子材料は、上記の少なくとも1種の物質を含む複合材料であってもよく、上記の少なくとも1種の物質を原料として含む複合材料であってもよい。
 なお、カルボキシメチルセルロースは、環境中では比較的速やかに分解される一方、生体内では、比較的穏やかに分解される。また、カルボキシメチルセルロースは、乾燥状態と、含水状態とで、その強度が大きく変動する。例えば、カルボキシメチルセルロースのガラス転移温度は、乾燥状態では約135℃であるが、水分の増加とともに-60℃程度まで減少する。上記を考慮すると、カルボキシメチルセルロースは、第2高分子材料の原料として使用され得る。
 一実施形態において、第1高分子材料は主にポリビニルアルコールを含み、第2高分子材料は主にフィブロインを含む。他の実施形態において、第1高分子材料は主にポリカプロラクトンを含み、第2高分子材料は主にシルクフィブロインを含む。さらに他の実施形態において、第1高分子材料は主にポリビニルアルコールを含み、第2高分子材料は主にポリカプロラクトンを含む。
 フィブロインは、フィブロインを含む材料に優れた引っ張り強度を与える。そのため、第2高分子材料はフィブロインを含むことが好ましい。一実施形態において、フィブロインは、蚕又はクモにより作製された天然の絹に由来するシルクフィブロインであってよい。フィブロインは、蚕により作製された絹(カイコ絹と称される場合がある。)に由来するシルクフィブロインであることが好ましい。他の実施形態において、フィブロインは、遺伝子工学的に作製された絹たんぱく質に由来するものであってもよい。遺伝子工学的に作製された絹たんぱく質としては、絹たんぱく質を作製するように遺伝子を改変された細菌、酵母、動植物の細胞、トランスジェニック植物、トランスジェニック動物などにより作製された絹たんぱく質を例示することができる。
 カイコ絹においてフィブロインは、セリシンにより被覆されている。天然のカイコ絹に由来するフィブロインは、カイコ絹からセリシンを除去することで得られる。一実施形態において、組成物は、フィブロインの質量に対して、10~35%の質量のセリシンを不純物として含んでもよい。他の実施形態において、組成物中のセリシンの含有量は、フィブロインの質量に対して20%未満(質量比)であることが好ましく、10%未満(質量比)であることがより好ましく、5%未満(質量比)であることがさらに好ましい。
 他の実施形態において、第1高分子材料は、例えば、第1生分解性プラスチック、第1生体高分子、及び、第1天然高分子からなる群から選択される少なくとも1つの物質を含む。また、第2高分子材料は、例えば、第2生分解性プラスチック、第2生体高分子、及び、第2天然高分子からなる群から選択される少なくとも1つの物質を含む。第1高分子材料及び第2高分子材料の具体的な組み合わせにおいては、例えば、第1高分子材料の単体でのヤング率が、第2高分子材料の単体でのヤング率よりも小さく、第1高分子材料の単体での生分解性又は生体吸収性が、第2高分子材料の単体での生分解性又は生体吸収性よりも良好となるように、第1高分子材料及び第2高分子材料が選択される。
 第1生分解性プラスチックは、例えば、(i)ポリグリコール酸、ポリビニルアルコール、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。第1生分解性プラスチックは、例えば、ポリグリコール酸、ポリビニルアルコール、ポリグラクチン、ポリエチレンカーボネート、及び、分解性ポリウレタン、並びに、これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 第1生体高分子は、例えば、(i)コラーゲン、フィブリン、アルギン酸、ヒアルロン酸、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。第1生体高分子は、コラーゲン、フィブリン、アルギン酸、及び、ヒアルロン酸、並びに、これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 第1天然高分子は、例えば、(i)キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。第1天然高分子は、キトサン、並びに、これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 第2生分解性プラスチックは、例えば、(i)ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)(PLCと称される場合がある)、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。第2生分解性プラスチックは、(i)ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)(PLC)、ポリグラクチン、ポリエチレンカーボネート、及び、分解性ポリウレタン、並びに、これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 第2生体高分子は、例えば、(i)コラーゲン、フィブリン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。第2生体高分子は、コラーゲン、及び、フィブリン、並びに、これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 第2天然高分子は、例えば、(i)キチン、セリシン(例えば、シルクセリシンである)、フィブロイン(例えば、シルクフィブロインである)、カルボキシメチルセルロース、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である。第2天然高分子は、キチン、セリシン、フィブロイン、カルボキシメチルセルロース、及び、キトサン、並びに、これらの塩及び誘導体からなる群から選択される少なくとも1種であってよい。
 なお、第1生分解性プラスチック、第1生体高分子、第1天然高分子、第2生分解性プラスチック、第2生体高分子、又は、第2天然高分子の具体例として列挙された物質を、例えば、各物質のガラス転移温度に基づいて硬質材料及び軟質材料に分類すると、(i)そのガラス転移温度が室温よりも十分に大きな硬質材料と、(ii)そのガラス転移温度が室温と同程度又は室温よりも小さな軟質材料と、(iii)成形法、水分率などにより、硬質材料にも軟質材料にもなり得る両性材料との3つの区分に分類することができる。そして、硬質材料及び両性材料のうち、比較的生分解性又は生体吸収性に優れた物質は、第1高分子材料又は第2高分子材料の原料として使用され得る。硬質材料及び両性材料のうち、比較的生分解性又は生体吸収性に乏しい物質は、第2高分子材料の原料として使用され得る。軟質材料のうち、比較的生分解性又は生体吸収性に優れた物質は、第1高分子材料の原料として使用され得る。軟質材料のうち、比較的生分解性又は生体吸収性に乏しい物質は、第1高分子材料又は第2高分子材料の原料として使用され得る。
 上記の硬質材料としては、ポリ乳酸、キチン及びキトサン、並びに、これらの塩及び誘導体などが例示される。ポリ乳酸、キチン及びキトサンのガラス転移温度は、例えば、それぞれ、60℃、240℃超、140~203℃である。これらの物質の間で生分解性又は生体吸収性を比較すると、キトサンは、ポリ乳酸及びキチンと比較して、生分解性又は生体吸収性に優れる。例えば、キトサンは、上述された生体内での消失速度[日/50%質量]が9~52週(57以上364日以下)であり、上述されたリン酸緩衝生理食塩水に対する吸収性が浸漬7日目で(つまり、168時間以上192時間未満の浸漬期間で)5%超である。一方、ポリ乳酸及びキチンは、上述された生体内での消失速度[日/50%質量]が53週以上(365日以上)であり、上述されたリン酸緩衝生理食塩水に対する吸収性が浸漬7日目で0超5%以下である。
 上記の軟質材料としては、ポリグリコール酸、ポリビニルアルコール、ポリエチレンカーボネート、分解性ポリウレタン、コラーゲン、フィブリン、アルギン酸、及び、ヒアルロン酸、並びに、これらの塩及び誘導体などが例示される。ポリグリコール酸、ポリビニルアルコール、ポリエチレンカーボネート、分解性ポリウレタンのガラス転移温度は、例えば、それぞれ、37℃、5℃未満、27℃、-20℃である。これらの物質の間で、生分解性又は生体吸収性を比較すると、ポリグリコール酸、ポリビニルアルコール、アルギン酸及びヒアルロン酸は、他の物質と比較して、生分解性又は生体吸収性に優れる。例えば、ポリグリコール酸、ポリビニルアルコール、アルギン酸及びヒアルロン酸は、上述された生体内での消失速度[日/50%質量]が1~8週(1以上56日以下)であり、上述されたリン酸緩衝生理食塩水に対する吸収性が浸漬7日目で10%超である。一方、ポリエチレンカーボネート、分解性ポリウレタン、コラーゲン及びフィブリンは、上述された生体内での消失速度[日/50%質量]が9~52週(57以上364日以下)であり、上述されたリン酸緩衝生理食塩水に対する吸収性が浸漬7日目で5%超10%以下である。
 上記の両性材料としては、ポリグラクチン、ポリ(ε-カプロラクトン)、セリシン、フィブロイン及びカルボキシメチルセルロース、並びに、これらの塩及び誘導体などが例示される。ポリグラクチン、ポリ(ε-カプロラクトン)、セリシン、フィブロイン及びカルボキシメチルセルロースのガラス転移温度は、例えば、それぞれ、40℃程度、-60℃(水分率により異なる)、170℃程度(水分率により異なる)、178℃程度(水分率により異なる)、-60~135℃(水分率により異なる)である。これらの物質の間で、生分解性又は生体吸収性を比較すると、ポリグラクチンは、他の物質と比較して、生分解性又は生体吸収性に優れる。例えば、ポリグラクチンは、上述された生体内での消失速度[日/50%質量]が1~8週(1以上56日以下)であり、上述されたリン酸緩衝生理食塩水に対する吸収性が浸漬7日目で5%超である。一方、ポリ(ε-カプロラクトン)、セリシン、フィブロイン及びカルボキシメチルセルロースは、上述された生体内での消失速度[日/50%質量]が9~52週(57以上364日以下)であり、上述されたリン酸緩衝生理食塩水に対する吸収性が浸漬7日目で5%以下である。
 上述された条件を満たす第1高分子材料及び第2高分子材料の組み合わせの具体例としては、(i)ポリビニルアルコールと、シルクフィブロイン、(ii)コラーゲンと、シルクフィブロイン、(iii)ヒアルロン酸と、シルクフィブロイン、(iv)アルギン酸と、シルクフィブロイン、(v)生分解性ポリウレタンと、シルクフィブロイン、(vi)ポリエチレンカーボネートと、シルクフィブロイン、(vii)ポリビニルアルコールと、ポリ乳酸、(viii)コラーゲンと、ポリ(ε-カプロラクトン)、(iX)ポリエチレンカーボネートと、ポリ乳酸、(Xi)ポリビニルアルコールと、ポリ乳酸、(Xii)ポリグリコール酸と、ポリ乳酸、(Xiii)ヒアルロン酸と、ポリ乳酸、(Xiv)アルギン酸と、ポリ乳酸などが例示される。なお、上記のポリ乳酸は、ポリD乳酸であってもよく、ポリL乳酸であってもよく、ポリDL乳酸であってもよく、これらの混合物であってもよい。
 第1高分子材料に含まれる材料の分子量、当該材料に導入される官能基などのパラメータの変動により、第1高分子材料のヤング率、硬質若しくは軟質の程度、又は、生分解性若しくは生体吸収性などが大きく変動する場合、第1高分子材料のヤング率、硬質若しくは軟質の程度、又は、生分解性若しくは生体吸収性が上述された条件を満たすように、第1高分子材料に関する上記のパラメータが決定されてよい。同様に、第2高分子材料に含まれる材料の分子量、当該材料に導入される官能基などのパラメータの変動により、第2高分子材料のヤング率、硬質若しくは軟質の程度、又は、生分解性若しくは生体吸収性が大きく変動する場合、第2高分子材料のヤング率、硬質若しくは軟質の程度、又は、生分解性若しくは生体吸収性が上述された条件を満たすように、第2高分子材料に関する上記のパラメータが決定されてよい。
 上述されたとおり、(i)単体でのヤング率が比較的大きく、単体での生分解性又は生体吸収性が比較的良好な第2高分子材料と、(ii)単体でのヤング率が第2高分子材料よりも小さいものの、単体での生分解性又は生体吸収性が第2高分子材料よりも良好な第1高分子材料とを原料として多孔質体を作製することで、生体親和性及び強度の両方に優れた材料が得られる。上記の材料は、医療用材料として特に適した特性を有する。
 軟組織修復用材料100が生体内に埋設された場合、軟組織修復用材料100は、生体組織が再生するための足場として機能する。本実施形態によれば、第2高分子材料は、比較的早期に生体内に吸収される。そのため、生体組織の再生初期に増殖する細胞の増殖が阻害されず、当該生体組織の再生が促進される。また、遠隔期における血栓生成、石灰化などが抑制される。一方、第1高分子材料は、第2高分子材料よりも長期間にわたって生体内に残存する。また、第1高分子材料は比較的ヤング率が大きいので、生体組織が十分に再生するまで、軟組織修復用材料100の強度(例えば、破断強度及び破断伸度の少なくとも一方である。)が維持される。また、軟組織修復用材料100と、血管、臓器などとが縫合されるときに、糸かけ性、縫合性などが向上する。
 例えば、スキャフォルドを利用した血管組織の再生においては、(i)スキャフォルド表面を中心に血管リモデリングが進行し、(ii)スキャフォルド外側からの細胞浸潤によりコラーゲン沈着が進行するものと考えられる。そして、血管リモデリングの過程は、(i)急性期と、(ii)亜急性期・慢性期との2期に大別される。
 急性期は、埋植後8週間程度までの期間である。急性期においては、スキャフォルド内への炎症細胞の浸潤が起こり、スキャフォルド内腔面に内皮化が発生する。また、内皮化に続いて血管平滑筋細胞が発生し、血管平滑筋細胞が内皮を取り囲む。亜急性期・慢性期は、埋植後8週間程度が経過した後の期間である。亜急性期・慢性期においては、スキャフォルドの分解吸収に伴い、内腔側から徐々に血管平滑筋細胞が増殖し平滑筋層が厚みを増す。
 本実施形態に係る軟組織修復用材料100が血管リモデリング材料として用いられた場合、軟組織修復用材料100が生体内に埋設された当初は、第2高分子材料に囲まれた細孔内に炎症細胞などが浸潤し、内皮化が促進される。また、血管平滑筋細胞が増殖する段階になると、第2高分子材料の分解・吸収も、相当程度進行している。そのため、第2高分子材料による血管平滑筋細胞の増殖の阻害が抑制される。そして、血管リモデリングが亜急性期・慢性期になると、第1高分子材料の分解・吸収も進行し、第1高分子材料による血管平滑筋細胞の増殖の阻害が抑制される。
 [厚さ方向の組成分布]
 本実施形態において、軟組織修復用材料100の厚さ方向の位置によって、軟組織修復用材料100の組成が異なる。例えば、表層領域120の少なくとも一部における軟組織修復用材料100の組成と、支持層領域140の少なくとも一部における軟組織修復用材料100の組成とが、互いに異なる。つまり、(a)表層領域120の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合と、(b)支持層領域140の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合とが、互いに相違する。
 なお、表層領域120の少なくとも一部における第2高分子材料の密度は、支持層領域140の少なくとも一部における第2高分子材料の密度より小さくてもよい。また、表層領域120の少なくとも一部における第2高分子材料の密度は0より大きくてよい。表層領域120の少なくとも一部における第2高分子材料の密度は0であってもよい。
 上記の密度は、見かけ密度であってもよく、嵩密度であってもよい。軟組織修復用材料100の各領域における各高分子材料の見かけ密度は、例えば、軟組織修復用材料100の各領域から採取された試料の見かけ密度に、当該領域における各高分子材料の成分比率を乗じることで算出される。軟組織修復用材料100の各領域における各高分子材料の嵩密度は、例えば、軟組織修復用材料100の各領域から採取された試料の嵩密度に、当該領域における各高分子材料の成分比率を乗じることで算出される。各領域から採取された試料の密度及び成分比率を測定するときの条件を一定にすることで、各領域における第1高分子材料及び第2高分子材料の密度の割合の大小関係が決定され得る。
 試料の見かけ密度は、例えば、液浸法により決定される。液浸法は、水中浸漬法であってもよい。試料の嵩密度は、例えば、寸法法により決定される。試料の見かけ密度又は嵩密度は、真密度の値を用いて決定されてもよい。試料の見かけ密度又は嵩密度は、試料の空隙率(気孔率と称される場合もある。)及び真密度に基づいて決定されてもよい。試料の空隙率は、例えば、試料の表面又は断面の画像解析により決定される。上記の画像は、SEM画像であってもよく、μCT画像であってもよい。試料の真密度は、例えば、ピクノメータ法(比重瓶法と称される場合もある。)により決定される。
 試料中の各高分子材料の成分比率は、例えば、試料表面の1H‐NMRスペクトルにより決定される。各高分子材料の成分比率は、試料全体の質量を基準とした質量比であってもよく、特定の成分の質量を基準とした質量比であってもよい。
 表層領域120の少なくとも一部は、所定の面積を有し、表面102から所定の厚さを有する領域であってよい。支持層領域140の少なくとも一部は、所定の面積を有し、表面104から所定の厚さを有する領域であってよい。上記の面積は、図1におけるxy平面上の面積であってよい。表層領域120の少なくとも一部は、第1領域の一例であってよい。支持層領域140の少なくとも一部は、第2領域の一例であってよい。
 表層領域120の少なくとも一部における軟組織修復用材料100の組成は、例えば、軟組織修復用材料100の表面102を、全反射法によりFT-IR測定することにより決定される。支持層領域140の少なくとも一部における軟組織修復用材料100の組成は、例えば、軟組織修復用材料100の表面104を、全反射法によりFT-IR測定することにより決定される。ATR-FTIR測定の詳細は、後述される実施例に関連して説明される。
 軟組織修復用材料100は、その厚さ方向において、2以上の組成を有してもよく、3以上の組成を有してもよい。一実施形態によれば、軟組織修復用材料100の厚さ方向において、特定の成分の含有比率が連続的又は段階的に増加する。他の実施形態によれば、軟組織修復用材料100の厚さ方向において、特定の成分の含有比率が連続的又は段階的に減少する。
 [軟組織修復用材料100の物性]
 軟組織修復用材料100のヤング率は、例えば、当該ヤング率が、後述される実施例の物性評価に関連して説明される水中引張試験の結果に基づいて決定される場合、0.1MPa以上10MPa以下であることが好ましく、0.1MPa以上5MPa以下であることが好ましく、0.2MPa以上5MPa以下であることが好ましく、0.3MPa以上3MPa以下であることが好ましく、0.3MPa以上2.5MPa以下であることが好ましく、0.35MPa以上2MPa以下であることが好ましい。これにより、例えば、延伸ポリテトラフルオロエチレン(ePTFE)製の人工血管よりも低いヤング率を示し、ヒトの動脈のヤング率により近い物性を有する軟組織修復用材料100が得られる。
 軟組織修復用材料100のヤング率は、具体的には、37℃の精製水中における水中引張強度に基づいて決定される。例えば、軟組織修復用材料100がシート状の材料である場合、試験片(サンプルと称される場合がある)の厚み方向のプロファイルが、当該シート状の軟組織修復用材料100の厚み方向のプロファイルを反映するように、水中引張試験に用いられる試験片が採取される。より具体的には、軟組織修復用材料100の中央付近から、大きさが15mm×3mmであり、当該試験片の採取部分における軟組織修復用材料100の厚さと同等の厚さを有する試験片が採取される。
 軟組織修復用材料100がチューブ状の材料である場合、例えば、まず、チューブ状の軟組織修復用材料100の延伸方向に沿って、軟組織修復用材料100の一部が切断される。次に、切れ込みを利用してチューブ状の軟組織修復用材料100を展開することで、シート状の軟組織修復用材料100が得られる。その後、シート状の軟組織修復用材料100を用いて、上述された手順に従って試験片が採取される。水中引張試験及びヤング率の算出手順の詳細は、実施例の物性評価に関連して後述される。
 上述されたとおり、軟組織修復用材料100は、その厚さ方向において、第1高分子材料及び第2高分子材料の組成比率が異なる。そして、第1高分材料の原料としては、第2高分子材料の原料よりも生分解性又は生体吸収性に優れた物質が使用される。そのため、例えば、(i)軟組織修復用材料100の第1領域から採取され、大きさが10mm×10mmの第1サンプルを、35~39℃の疑似生体液に30日間浸漬させた場合における、第1サンプルの質量損失率が、(ii)軟組織修復用材料100の第2領域から採取され、大きさが10mm×10mmの第2サンプルを、35~39℃の疑似生体液に30日間浸漬させた場合における第2サンプルの質量損失率よりも大きくなる。
 上記の第1サンプルの質量損失率と、上記の第2サンプルの質量損失率との差の絶対値は、0.5%以上であってよい。この場合、例えば、軟組織修復用材料100の一方の面の側における第1高分子材料の含有率又は密度が、他方の面の側における第1高分子材料の含有率又は密度よりも大きい。その結果、例えば、シートの一方の側から生体内での分解又は吸収が進行するシートが作製され得る。
 上記の差の絶対値は、0.7%以上であることが好ましく、1.0%以上であることがより好ましく、1.5%以上であることがさらに好ましく、2%以上であることがさらに好ましく、2.5%以上であることがさらに好ましく、3%以上であることがさらに好ましい。上記の絶対値の差は、軟組織修復用材料100の用途に応じて適切に設定され得る。上記の差の絶対値が0.5%以上である場合、例えば、癒着防止用の医療用材料に特に適した多孔質体が作製される。上記の差の絶対値が1%以上である場合、例えば、人工血管の医療用材料に特に適した多孔質体が作製され得る。また、上記の差の絶対値が1.5%以上である場合、例えば、創傷被服材料用の医療用材料に特に適した多孔質体が作製され得る。なお、軟組織修復用材料100の用途は、これらに限定されるものではない。
 なお、質量損失率試験片の浸漬期間中において、疑似生体液の温度は、37℃前後となるように制御される。これにより、疑似生体液の温度が、35~39℃の範囲内に制御され得る。質量損失率の算出方法及び疑似生体液の詳細は、後述される実施例の分解性評価に関連して説明される。
 また、上記の第1領域と、軟組織修復用材料100の第1面との最短距離は、上記の第2領域と、当該第1面との距離よりも小さい。これにより、軟組織修復用材料100の厚さ方向のプロファイルのうち、異なる2つの範囲に対応する2つのサンプルが準備される。例えば、第1サンプルは、軟組織修復用材料100の第1面の側から採取され、第2サンプルは、第1面と対向する第2面の側から採取される。なお、第1面及び第2面が対向するとは、第1面及び第2面が略平行である場合に限定されない。
 一実施形態によれば、まず、軟組織修復用材料100が第1面に略平行に切断され、軟組織修復用材料100が、第1面側のスライスと、第2面側のスライスとに分割される。第1面側のスライスと、第2面側のスライスとは、同程度の厚さを有することが好ましい。次に、第1面側のスライスから、大きさが10mm×10mmの試験片が切り出され、第1サンプルが準備される。同様にして、第2面側のスライスから、大きさが10mm×10mmの試験片が切り出され、第2サンプルが準備される。
 なお、軟組織修復用材料100は、3以上のスライスに分割されてもよい。また、3以上のスライスのうちの2つのスライスを用いて、第1サンプル及び第2サンプルが準備されてよい。この場合、第1サンプルが採取されるスライスと、第2サンプルが採取されるスライスとが、同程度の厚さを有することが好ましい。
 他の実施形態によれば、軟組織修復用材料100の一の部分から、大きさが10mm×10mmの試験片が切り出される。研磨、切断などの手法により、切り出された試験片の厚さが減少するように、当該試験片の第2面側の一部が除去される。これにより、第1サンプルが準備される。同様にして、軟組織修復用材料100の他の部分から、大きさが10mm×10mmの試験片が切り出される。研磨、切断などの手法により、切り出された試験片の厚さが減少するように、当該試験片の第1面側の一部が除去される。
 なお、第1サンプルを準備するときに、切り出された試験片の厚さが減少するように、当該試験片の第1面側の一部と、当該試験片の第2面側の一部とが除去されてもよい。同様に、第2サンプルを準備するときに、切り出された試験片の厚さが減少するように、当該試験片の第1面側の一部と、当該試験片の第2面側の一部とが除去されてもよい。
 これらの実施形態において、第1サンプル及び第2サンプルは、例えば、乾燥状態での質量が約15mgとなるように準備される。第1サンプル及び第2サンプルの乾燥状態での質量は、10mg以上20mg以下であってよい。上記の数値範囲内であれば、質量損失率の測定に与える影響が抑制され得る。なお、第1サンプル及び第2サンプルは、乾燥状態において、軟組織修復用材料100の厚さが略均一な領域から採取されることが好ましい。
 軟組織修復用材料100の厚さが十分でなく、単一の第1サンプルの乾燥状態での質量が15mgに満たない場合、軟組織修復用材料100から、軟組織修復用材料100の厚さ方向の位置が略同一である複数の第1サンプルを採取し、複数の第1サンプルの乾燥状態での質量の合計が約15mgとなるように、第1サンプルが準備されてよい。同様に、軟組織修復用材料100の厚さが十分でなく、単一の第2サンプルの乾燥状態での質量が10mgに満たない場合、軟組織修復用材料100から、軟組織修復用材料100の厚さ方向の位置が略同一である複数の第2サンプルを採取し、複数の第2サンプルの乾燥状態での質量の合計が約15mgとなるように、第2サンプルが準備されてよい。
 また、第1サンプル及び第2サンプルの厚さは特に限定されるものではないが、第1サンプル及び第2サンプルの厚さは、乾燥状態において、20~200μm程度であることが好ましく、40~180μm程度であることがより好ましく、40~120μm程度であることがさらに好ましく、50~100μm程度であることがさらに好ましい。上記の数値範囲内であれば、質量損失率の測定に与える影響が抑制され得る。各サンプルの厚さは、サンプルの略対角線上に並ぶ3点における厚さの平均値であってよい。上記の3点としては、サンプルの略中心部分と、サンプルの各辺から約2.5mmずつ離れた2点とが例示される。
 [軟組織修復用材料100の用途]
 軟組織修復用材料100は、様々な医療デバイスに利用され得る。軟組織修復用材料100の用途としては、人工血管、大動脈修復シート、下大静脈修復シート、人工心膜、心臓欠損部補填材、胆管補填材、ステントグラフト外布、経カテーテル大動脈弁置換術(TAVI)におけるステントグラフト、人工硬膜、人工腹膜、人工胸膜、などが例示される。人工血管としては、小口径動脈グラフト、中口径動脈グラフト、静脈グラフトなどが例示される。軟組織修復用材料100は、循環器系の組織を修復するための医療機器用の材料として用いられてよい。例えば、軟組織修復用材料100が人工血管用の材料として用いられた場合、上述されたスキャフォルドを利用した血管組織の再生モデルを再現することのできる医療機器が提供され得る。
 なお、本実施形態においては、シート状の軟組織修復用材料100を例として、多孔質体の一例が説明された。しかしながら、多孔質体は、本実施形態に係る軟組織修復用材料100に限定されない。他の実施形態において、多孔質体は、(i)シート状若しくはフィルム状、(ii)チューブ状若しくはロール状、又は、(iii)ブロック状、柱状若しくはパッド状の形状を有してよい。チューブ状の多孔質体は、中空の巻回体であってもよく、柱状の多孔質体は、中実の巻回体であってもよい。チューブ状の多孔質体及び柱状の多孔質体の断面形状は、特に限定されない。上記の断面形状としては、円形、楕円形、多角形、自由曲線及びこれらの組み合わせなどが例示される。
 [軟組織修復用材料100を構成する繊維の構造]
 図2及び図3を用いて、繊維160及び繊維170の構造の詳細が説明される。図2は、軟組織修復用材料100の組成プロファイルの一例を概略的に示す。図3は、軟組織修復用材料100の物性プロファイルの一例を概略的に示す。
 本実施形態によれば、繊維160及び繊維170の組成が互いに異なる。その結果、軟組織修復用材料100の厚さ方向の位置によって、軟組織修復用材料100の組成が異なる。繊維160及び繊維170の少なくとも一方は、2種以上の高分子材料を含んでよい。例えば、シェル部162を構成する材料の組成と、コア部164を構成する材料の組成とが、互いに異なる。シェル部172を構成する材料の組成と、コア部174を構成する材料の組成とが、互いに異なってよい。
 本実施形態において、コア部164及びコア部174は、例えば、第2高分子材料により構成される。また、シェル部162及びシェル部172は、例えば、第1高分子材料により構成される。シェル部162を構成する材料の組成と、シェル部172を構成する材料の組成とは、同一であってもよく、異なってもよい。コア部164を構成する材料の組成と、コア部174を構成する材料の組成とは、同一であってもよく、異なってもよい。
 図2示されるとおり、本実施形態によれば、(i)シェル部162の直径又は相当直径Dshellに対する、コア部164の直径又は相当直径Dcoreの割合(RDiameter)と、(ii)シェル部172の直径又は相当直径Dshellに対する、コア部174の直径又は相当直径Dcoreの割合(RDiameter)とが異なる。これにより、図3に示されるとおり、(a)表層領域120の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合(Rdensity)と、(b)支持層領域140の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合(Ddensity)とが、互いに相違する。
 図2において、横軸は、厚さ方向における表面102からの位置を示し、縦軸は、各位置におけるRDiameterを示す。また、図2において、T120は表層領域120の厚さを示し、T140は支持層領域140の厚さを示す。
 図2に示されるとおり、本実施形態において、RDiameterの値が、表面102から表面104に向かって、段階的に増加する。本実施形態によれば、表層領域120の内部においても、RDiameterの値が、表面102から表面104に向かって、段階的に増加する。また、支持層領域140の内部においても、RDiameterの値が、表面102から表面104に向かって、段階的に増加する。
 図2に示されるとおり、(i)繊維160における、シェルの直径又は相当直径に対する、コアの直径又は相当直径の割合(RDiameter)は、(ii)繊維170における、シェルの直径又は相当直径に対する、コアの直径又は相当直径の割合(RDiameter)より小さい。したがって、(i)繊維160における、第1高分子材料の質量に対する第2高分子材料の質量の割合は、(ii)繊維170における、第1高分子材料の質量に対する第2高分子材料の質量の割合より小さい。
 また、例えば、(c)支持層領域140の内部の領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合と、(b)支持層領域140の表面104の近傍の領域における、第1高分子材料の密度に対する第2高分子材料の密度の割合とは、互いに相違する。支持層領域140の内部の領域は、第3領域の一例であってよい。
 図3において、横軸は、厚さ方向における表面102からの位置を示し、縦軸は、各位置におけるRdensityを示す。例えば、図3によれば、z=0~T21の位置おいて、第1高分子の密度[g/cm]に対する第2高分子の密度[g/cm]の割合Rdensityは、R31であることがわかる。図2及び図3に示されるとおり、図2においてRDiameterが増加するにつれて、図3におけるRdensityの値も増加する。
 本実施形態によれば、表面102の側には、第1高分子の含有量が大きな繊維の集積体(ウェブ又はフリースなどと称される場合がある。)が配される。また、表面104の側には、第2高分子の含有量が大きな繊維の集積体が配される。これにより、組織再生を誘導することができる組織修復用材料が得られる。特に、上述された血管リモデリング仮説を再現可能なグラフト材料が得られる。上記のグラフト材料によれば、血管の再生が適切に誘導され得る。
 図4及び図5を用いて、軟組織修復用材料の他の例が説明される。図4は、軟組織修復用材料400の一例を概略的に示す。図5は、軟組織修復用材料400の組成プロファイルの一例を概略的に示す。
 図4に示されるとおり、本実施形態において、軟組織修復用材料400は、表層領域120と、支持層領域140と、表層領域420とを備える。表層領域420は、表層領域120と同様の構成を有してよい。表層領域420は、第2表層の一例であってよい。
 軟組織修復用材料400は、支持層領域140が、表層領域120及び表層領域420の間に配され、表層領域120及び表層領域420を支持する点で、軟組織修復用材料100と相違する。軟組織修復用材料400は、上記の相違点以外を除いて、軟組織修復用材料100と同様の構成を有してよい。
 本実施形態において、表層領域120、支持層領域140、及び、表層領域420のそれぞれは、第1高分子材料及び第2高分子材料を含む複合繊維のウェブを有する不織布を有する。上記の複合繊維は、第2高分子材料のコア及び第1高分子材料のシェルを含むコア-シェル構造を有してよい。表層領域120は、支持層領域140の表面102の側に配され、表層領域420は、支持層領域140の表面104の側に配される。
 図5に示されるとおり、本実施形態において、(d)表層領域420の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合と、(b)支持層領域140の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合とが、互いに相違する。例えば、(d)表層領域420の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合は、(b)支持層領域140の少なくとも一部における、第1高分子材料の密度に対する第2高分子材料の密度の割合より小さい。表層領域420の少なくとも一部は、第4領域の一例であってよい。
 図6は、エレクトロスピニングシステム600のシステム構成の一例を概略的に示す。本実施形態において、エレクトロスピニングシステム600は、コアシェルノズル610と、シリンジ620と、ポンプ622と、シリンジ640と、ポンプ642と、コレクタ板650と、位置調整部652と、電源660と、制御部670とを備える。本実施形態において、コアシェルノズル610は、外筒612と、内筒614とを有する。
 本実施形態において、コアシェルノズル610は、コア-シェル構造を有する繊維の紡糸ジェット66を射出する。本実施形態において、外筒612及び内筒614は同軸上に配される。内筒614の吐出口は、外筒612の内部に配される。内筒614の吐出口は、例えば、外筒612の吐出口の近傍に配される。
 外筒612には、シリンジ620に貯留された第1溶液が、ポンプ622を介して供給される。内筒614には、シリンジ640に貯留された第2溶液が、ポンプ642を介して供給される。内筒614に供給された第2溶液は、内筒614の吐出口から吐出された後、外筒612に供給された第1溶液と混合される。なお、コアシェルノズル610の構造は、本実施形態に限定されない。コアシェルノズル610は、2重筒型のノズルであってもよく、サイドバイサイド型のノズルであってもよい。
 外筒612の吐出口の近傍には、電源660により正電圧が印加される。これにより、外筒612の吐出口から第1溶液及び第2溶液を含む液滴が吐出された後、紡糸ジェット66としてコレクタ板650に向かって射出される。その結果、コレクタ板650の上に、ウェブ68が形成される。
 本実施形態において、シリンジ620は、第1高分子の溶液(第1溶液と称される場合がある。)を貯留する。溶媒は、水であってもよく、有機溶媒であってもよく、各種の混合溶媒であってもよい。ポンプ622は、シリンジ620に貯留された第1溶液を、外筒612に移送する。
 本実施形態において、シリンジ640は、第2高分子の溶液(第2溶液と称される場合がある。)を貯留する。溶媒は、水であってもよく、有機溶媒であってもよく、各種の混合溶媒であってもよい。ポンプ642は、シリンジ640に貯留された第2溶液を、内筒614に移送する。
 本実施形態において、コレクタ板650は、コアシェルノズル610から吐出された紡糸ジェット66を集積する。コレクタ板650は、例えば、電源660の接地端子と電気的に接続される。本実施形態において、位置調整部652は、コアシェルノズル610と、コレクタ板650との相対位置を調整する。本実施形態において、電源660は、コアシェルノズル610に正電圧を印加する。
 本実施形態において、制御部670は、エレクトロスピニングシステム600の動作を制御する。例えば、制御部670は、ポンプ622及びポンプ642の少なくとも一方の吐出量を制御する。制御部670は、位置調整部652を制御して、コアシェルノズル610及びコレクタ板650の相対位置を調整する。制御部670は、電源660を制御して、コアシェルノズル610及びコレクタ板650の電位差を調整する。
 図7及び図8を用いて、制御部670による制御の一例が説明される。図7は、ポンプ622及びポンプ642に関する制御パターン700の一例を概略的に示す。図8は、ポンプ622及びポンプ642に関する制御パターン800の一例を概略的に示す。
 図7に示されたとおり、制御パターン720は、ポンプ622が動作するタイミング(例えば、t71~t75である。)と、当該タイミングにおけるポンプ622の吐出速度(吐出量と称される場合がある。)の目標値とが対応付けられた情報であってよい。同様に、制御パターン740は、ポンプ642が動作するタイミングと、当該タイミングにおけるポンプ622の吐出速度の目標値とが対応付けられた情報であってよい。
 本実施形態においては、時間の経過とともに、ポンプ622の吐出速度が段階的に増加し、ポンプ642の吐出速度が段階的に減少する。これにより、例えば、エレクトロスピニングシステム600が動作を開始した当初は、シェル部の直径と比較してコア部の直径が比較的大きな繊維のウェブ68が堆積される。その後、ウェブ68を構成する繊維において、シェル部の直径に対するコア部の直径の比率が徐々に小さくなっていく。その結果、軟組織修復用材料100が作製される。制御パターンを変更することで、エレクトロスピニングシステム600は、軟組織修復用材料400を作製することもできる。
 図8に示されたとおり、制御パターン820は、ポンプ622が動作するタイミング(例えば、t81~t85である。)と、当該タイミングにおけるポンプ622の吐出速度(吐出量と称される場合がある。)の目標値とが対応付けられた情報であってよい。同様に、制御パターン840は、ポンプ642が動作するタイミングと、当該タイミングにおけるポンプ622の吐出速度の目標値とが対応付けられた情報であってよい。
 制御パターン800においては、制御部670は、単位期間におけるポンプのオン/オフの比率を制御することで、ウェブ68を構成する繊維における、シェル部の直径に対するコア部の直径の比率を調整する点で、制御パターン700と相違する。これにより、エレクトロスピニングシステム600は、軟組織修復用材料100、軟組織修復用材料400などの不織布を作製することができる。
 図9は、エレクトロスピニングシステム900のシステム構成の一例を概略的に示す。エレクトロスピニングシステム900は、コアシェルノズル610の代わりに、2つのシングルノズルを備える点で、エレクトロスピニングシステム600と相違する。シングルノズルは、例えば、相分離していない液滴を吐出する。エレクトロスピニングシステム900は、上記の相違点を除いて、エレクトロスピニングシステム600と同様の構成を有してよい。
 本実施形態において、シングルノズル912には、シリンジ620に貯留された第1溶液が、ポンプ622を介して供給される。シングルノズル912の吐出口の近傍には、電源660により正電圧が印加される。これにより、シングルノズル912から、コレクタ板650に向かって、第1溶液の紡糸ジェットが射出される。
 本実施形態において、シングルノズル914には、シリンジ640に貯留された第2溶液が、ポンプ642を介して供給される。シングルノズル914の吐出口の近傍には、電源660により正電圧が印加される。これにより、シングルノズル914から、コレクタ板650に向かって、第2溶液の紡糸ジェットが射出される。
 図10は、エレクトロスピニングシステム1000のシステム構成の一例を概略的に示す。エレクトロスピニングシステム900は、コアシェルノズル610の代わりに、単一のシングルノズル1010を備え、第1高分子材料及び第2高分子材料の混合溶液の紡糸ジェットが射出される点で、エレクトロスピニングシステム600と相違する。エレクトロスピニングシステム1000は、上記の相違点を除いて、エレクトロスピニングシステム600と同様の構成を有してよい。
 図11は、軟組織修復用材料1100の一例を概略的に示す。本実施形態において、軟組織修復用材料1100は、第1高分子材料を含むモノリス1120と、第2高分子材料を含む繊維が集積されて形成された不織布1140とを備える。本実施形態において、不織布1140は、粗部1142と、緻密部1144とを有する。粗部1142における繊維の嵩密度は、緻密部1144における繊維の嵩密度よりも小さい。また、粗部1142における第2高分子材料の嵩密度は、緻密部1144における第2高分子材料の嵩密度より小さくてよい。
 本実施形態において、モノリス1120は、粗部1142を覆うように形成される。モノリス1120は、粗部1142と、緻密部1144の一部とを覆うように形成されてもよい。モノリス1120の一部が、不織布1140の細孔に侵入していてもよい。モノリス1120は、ブロック状、スポンジ状又は発泡体状の多孔質体であり、任意の製法により作製され得る。モノリス1120は、主として第1高分子材料からなる多孔質体であってもよく、第1高分子材料及び第2高分子材料を含む多孔質体であってもよい。
 本実施形態において、不織布1140を構成する繊維は、第2高分子材料の繊維であってもよく、第1高分子材料及び第2高分子材料の複合繊維であってもよい。粗部1142を構成する繊維の組成と、緻密部1144を構成する繊維の組成とは、同一であってもよく、異なってもよい。一実施形態において、単一の繊維が、粗部1142の一部と、緻密部1144の一部とを構成する。他の実施形態において、粗部1142を構成するウェブと、緻密部1144を構成するウェブとが、任意の手法により一体化される。
 本実施形態において、軟組織修復用材料1100は、その厚さ方向において、表層領域1112と、支持層領域1114とに分類される。本実施形態において、表層領域1112は、支持層領域1114よりも表面1102の側に配される。表層領域1112は、軟組織修復用材料1100の表面1102の側の領域であってよく、支持層領域1114は、軟組織修復用材料1100の表面1104の側の領域であってよい。
 上述のとおり、本実施形態において、軟組織修復用材料1100は、互いに対向する表面1102及び表面1104を有するシート状の多孔質体である。また、軟組織修復用材料1100は、第1高分子材料及び第2高分子材料を含む。第1高分子材料としては、例えば、(i)第2高分子材料よりもヤング率が小さく、且つ、(ii)第2高分子材料よりも、生体内での消失速度、又は、疑似生体液に対する吸収性の大きな材料が選択される。
 本実施形態において、表層領域1112における組成と、支持層領域1114における組成とが、互いに相違する。例えば、(a)表層領域1112における、第1高分子材料の密度に対する第2高分子材料の密度の割合と、(b)支持層領域1114における、第1高分子材料の密度に対する第2高分子材料の密度の割合とが、互いに相違する。上記の密度は、見かけ密度であってもよく、嵩密度であってもよい。
 より具体的には、表層領域1112における第1高分子材料の密度に対する第2高分子材料の密度の割合は、支持層領域1114における第1高分子材料の密度に対する第2高分子材料の密度の割合より小さくてよい。軟組織修復用材料1100が生体内に埋設された場合、表層領域1112のモノリス1120は、組織再生の初期段階において、生体組織が再生するための足場として機能する。一方、不織布1140は、モノリス1120よりも長期間にわたって生体内に残存する。これにより、生体組織が十分に再生するまで、軟組織修復用材料1100の強度が維持される。
 軟組織修復用材料1100は、多孔質体及び医療用材料の一例であってよい。表面1102は、第1面の一例であってよい。表面1104は、第2面の一例であってよい。表層領域1112は、表層の一例であってよい。支持層領域1114は、支持層の一例であってよい。なお、軟組織修復用材料1100及びその各部は、技術的に矛盾しない範囲で、軟組織修復用材料100、軟組織修復用材料400及びそれら各部と同様の構成を有してよい。同様に、軟組織修復用材料100、軟組織修復用材料400及びそれら各部は、技術的に矛盾しない範囲で、軟組織修復用材料1100及びその各部と同様の構成を有してもよい。
 なお、本実施形態においては、不織布1140が、粗部1142及び緻密部1144を有する場合を例として、軟組織修復用材料1100の詳細が説明された。しかしながら、軟組織修復用材料1100は、本実施形態に限定されない。他の実施形態において、不織布1140の繊維密度は、不織布1140の厚さ方向にわたって、略均一であってもよい。さらに他の実施形態において、緻密部1144の繊維密度が、緻密部1144の厚さ方向に沿って、段階的又は連続的に変化していてもよい。
 図12は、軟組織修復用材料1200の一例を概略的に示す。図12は、軟組織修復用材料1200の断面の拡大図の一例を概略的に示す。本実施形態において、軟組織修復用材料1200は、チューブ状の形状を有する。軟組織修復用材料1200は、内腔面1202と、外腔面1204を有する。軟組織修復用材料1200は、例えば、エレクトロスピニングシステム600において、板状のコレクタ板650の代わりに回転コレクタを利用することで、作製され得る。
 軟組織修復用材料1200は、多孔質体及び医療用材料の一例であってよい。内腔面1202は、第1面の一例であってよい。外腔面1204は、第2面の一例であってよい。なお、軟組織修復用材料1200及びその各部は、技術的に矛盾しない範囲で、軟組織修復用材料100、軟組織修復用材料400、軟組織修復用材料1100及びそれら各部と同様の構成を有してよい。同様に、軟組織修復用材料100、軟組織修復用材料400、軟組織修復用材料1100及びそれら各部は、技術的に矛盾しない範囲で、軟組織修復用材料1200及びその各部と同様の構成を有してもよい。
 図13は、軟組織修復用材料1200の製法の他の例を概略的に示す。本実施形態において、軟組織修復用材料1200は、シート状材料1300の巻回体であってよい。図13に示されるとおり、シート状材料1300を複数回巻いて、中空の巻回体を形成することで、軟組織修復用材料1200が作製され得る。中空の巻回体を構成する複数の層は、任意の手法により一体化されてよい。中空の巻回体が、延伸方向に略垂直な面で切断されて、軟組織修復用材料1200が作製されてもよい。
 一実施形態において、シート状材料1300は、軟組織修復用材料100又は軟組織修復用材料400と同様の構成を有してよい。他の実施形態において、シート状材料1300は、図中、x方向の位置によって組成が異なる。例えば、シート状材料1300のx方向において、特定の成分の含有比率が連続的又は段階的に増加する。シート状材料1300のx方向において、特定の成分の含有比率が連続的又は段階的に減少してもよい。特定の成分は、第1高分子材料及び第2高分子材料の少なくとも一方であってよい。シート状材料1300は、厚さ方向において、略均一な組成分布を有してもよい。
 図14は、軟組織修復用材料1200の製法の他の例を概略的に示す。本実施形態において、軟組織修復用材料1200は、筒状織物1400であってよい。例えば、筒状織物1400を構成する生地が複数回、折りたたまれて、筒状織物1400の径方向(図中、z方向である。)に、複数の層が形成される。筒状織物1400を構成する複数の層は、任意の手法により一体化されてよい。筒状織物1400が、延伸方向に略垂直な面で切断されて、軟組織修復用材料1200が作製されてもよい。
 本実施形態によれば、筒状織物1400を構成する複数の層の少なくとも2つが、組成の異なる層であってよい。例えば、経糸を構成するフィラメント糸の組成、及び、緯糸を構成するフィラメント糸の組成の少なくとも一方を調整することで、各層の組成が調整される。経糸又は緯糸を構成するフィラメント糸の組成は、例えば、第1の組成を有するフィラメント糸の本数と、第2の組成を有するフィラメント糸の本数との割合により調整される。フィラメント糸の組成は、例えば、フィラメント糸を構成する複数の単繊維の組成又は組み合わせにより調整される。
 以下、実施例及び参考例を挙げて、本発明をさらに具体的に説明する。本発明は、その要旨を越えない限り、下記の実施例に限定されるものではないことに留意すべきである。
 <ポリビニルアルコール及びシルクフィブロインを用いた具体例>
 [実施例1]
 下記の手順により、不織布状のシートを作製した。実施例1においては、第1高分子材料として、ポリビニルアルコール(PVAと省略する場合がある。)を用い、第2高分子材料として、シルクフィブロインを用いた。
 <シルクフィブロインスポンジの作製>
 家蚕繭から繰糸した生糸250gを、95℃の0.02M炭酸ナトリウム(試薬特級、和光純薬工業社製)水溶液に浸漬して30分間撹拌し、精練した。次に、精錬された生糸を、40℃の精製水を用いて5回洗浄した。これにより、精錬後の生糸に残留していたセリシンが、ほぼ完全に除去された。その後、セリシンが除去された繊維を、精製水を用いたさらに洗浄した後、乾燥させた。これにより、シルクフィブロイン(SFと省略する場合がある。)の繊維が得られた。
 次に、上記のSFを9M臭化リチウム(和光純薬工業社製)水溶液に加え、37℃、1000rpmの振盪条件下でSFを溶解させ、SF溶液を得た。その後、透析処理により、SF溶液から、臭化リチウムを除去した。透析処理においては、20分間煮沸した透析用セルチューブを用いた。透析処理は4℃条件下において実施し、1日3回水交換を行った。水交換から10時間以上経過後の精製水の電気電導度が2μS/cm以下になった時点で透析処理を終了した。
 次に、遠心分離処理により、透析処理後のSF水溶液から不純物を除去した。遠心分離処理は、4℃、8500rpmの条件で30分間実施した。また、遠心分離処理による不純物除去作業を計2回行った。その後、不純物が取り除かれたSF水溶液を複数のシャーレに少量滴下し、乾燥後の重量を測定することで濃度を測定した。
 次に、SF水溶液の濃度を1%(w/v)に調製した。濃度が調製されたSF水溶液をナスフラスコに移し、液体窒素で予備凍結を実施した後、凍結乾燥処理を実施した。これにより、SFスポンジが得られた。
 <シルクフィブロイン(SF)溶液の調整>
 1、1、1、3、3、3-ヘキサフルオロ-2-プロパノール(HFIP)(Sigma社製)6000μL中に、120gのSFスポンジを添加した後、室温、300rpmの条件下で、15時間攪拌した。これにより、2%(w/v)のSFのHFIP溶液が得られた。
 <ポリビニルアルコール(PVA)溶液の調整>
 1、1、1、3、3、3-ヘキサフルオロ-2-プロパノール(HFIP)(Sigma社製)6000μL中に、180gのPVA(一級、和光純薬工業社製)を添加した後、室温℃、300rpmの条件下で、一晩攪拌した。これにより、3%(w/v)のPVAのHFIP溶液が得られた。
 <シート状の不織布の作成>
 エレクトロスピニング装置(ES2000A、Fuence社製)を用いて、繊維の内側がSFであり外側がPVAである、コア-シェル型の繊維構造を有する繊維を作製した。ES2000Aは、図6に関連して説明されたエレクトロスピニングシステム600と同様に、2つのシリンジと、コア-シェル型の繊維を作製するためのコアシェルノズルとを備える。実施例1におけるエレクトロスピニング工程の諸条件を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 具体的には、まず、ES2000Aの一方のシリンジに、上記のSFのHFIP溶液を充填し、ES2000Aの他方のシリンジに、上記のPVAのHFIP溶液を充填した。吐出距離は12cmに設定した。また、吐出時間は、2時間に設定した。その後、印加電圧を20~23kVに設定し、予めプログラムされた設定に従って、SFのHFIP溶液及びPVAのHFIP溶液の吐出を開始した。
 実施例1においては、2時間の吐出時間の間で、SFのHFIP溶液の吐出速度を、8μl/minから22μl/minまで変化させた。具体的には、SFのHFIP溶液の吐出速度を、8分ごとに1μl/minずつ段階的に増加させた。また、PVAのHFIP溶液の吐出速度を、22μl/minから8μl/minまで変化させた。具体的には、PVAのHFIP溶液の吐出速度を、8分ごとに1μl/minずつ段階的に減少させた。これにより、アルミニウム製のコレクタ板の上に、不織布状のシートが作製された。上記のシートの大きさは、50mm×50mmであった。なお、シートの評価において、コレクタ板に接していた側の面を裏面と称し、裏面の反対側の面を表面と称する場合がある。
 次に、作製されたシートを、コレクト板とともに、相対湿度100%、37℃の条件下に24時間静置することで、シルクフィブロインの不溶化処理を実施した。その後、不溶化処理後のシートを、コレクト板とともに水に浸漬させて、コレクト板から、シートを剥離した。シートの剥離作業は、5分以内で実施した。これにより、PVAの溶解を抑制しつつ、コレクト板からシートを剥離することができた。
 [参考例1]
 エレクトロスピニング工程において、SFのHFIP溶液の吐出速度が8μl/minに固定され、PVAのHFIP溶液の吐出速度が22μl/minに固定された点を除いて、実施例1と同様の手順により、不織布状のシートを作製した。参考例1におけるエレクトロスピニング工程の諸条件を、表1に示す。
 [参考例2]
 エレクトロスピニング工程において、SFのHFIP溶液の吐出速度が15μl/minに固定され、PVAのHFIP溶液の吐出速度が15μl/minに固定された点を除いて、実施例1と同様の手順により、不織布状のシートを作製した。参考例2におけるエレクトロスピニング工程の諸条件を、表1に示す。
 [参考例3]
 エレクトロスピニング工程において、SFのHFIP溶液の吐出速度が22μl/minに固定され、PVAのHFIP溶液の吐出速度が8μl/minに固定された点を除いて、実施例1と同様の手順により、不織布状のシートを作製した。参考例3におけるエレクトロスピニング工程の諸条件を、表1に示す。
 [参考例4]
 エレクトロスピニング装置(ES2000A、Fuence社製)において1本のコアシェルノズルを用いる代わりに、図9に関連して説明されたエレクトロスピニングシステム900と同様に、2本のシングルノズルを用いて、不織布状のシートを作製した。参考例4におけるエレクトロスピニング工程の諸条件を、表1に示す。
 具体的には、まず、ES2000Aの一方のシリンジに、上記のSFのHFIP溶液を充填し、ES2000Aの他方のシリンジにも、上記のSFのHFIP溶液を充填した。吐出距離は12cmに設定した。また、吐出時間は、2.5時間に設定した。その後、印加電圧を20~23kVに設定し、予めプログラムされた設定に従って、SFのHFIP溶液及びPVAのHFIP溶液の吐出を開始した。具体的には、2.5時間の吐出時間の間で、一方のシリンジからのSFのHFIP溶液の吐出速度は、12μl/minに固定され他方のシリンジからのSFのHFIP溶液の吐出速度も、12μl/minに固定された。その他の手順は、実施例1と同様に実施した。
 [評価方法]
 実施例1及び参考例1~4のシートを、下記の手順により評価した。具体的には、各シートの形態、組成、物性及び分解性を評価した。
 <形態観察>
 各シートから試験片を採取し、各試験片を金蒸着した後、走査型電子顕微鏡(JSM-6510、日本電子社製)を用いて、各試験片の表面を観察した。走査型電子顕微鏡の観察電圧は10kVとし、倍率は3000倍とした。試験片は、各シートの中央部分から採取した。試験片の大きさは、直径4mmの円形であった。また、image J(Ver 1.51j8、National Institutes of Health(NIH)製)を用いて、走査型電子顕微鏡により得られた画像を解析した。具体的には、各シートの表面に存在する繊維の平均繊維径を算出した。繊維の平均繊維径は、下記の手順で算出した。まず、各シートのSEM画像において最低50本の繊維をランダムに抽出した。次に、抽出された各繊維の繊維径を決定した。その後、決定された各繊維の繊維径の平均値を算出した。
 <組成評価>
 (ATR-FTIR測定)
 コア-シェル構造を有する繊維により形成されたシート(実施例1及び参考例1~3)について、全反射法(ATR法)によるFT-IR測定(ATR-FTIR測定と称する場合がある。)を実施した。ATR-FTIR測定は、日本分光社製のFT/IR-4600 フーリエ変換赤外分光光度計を用いて実施した。ATR-FTIR測定は、実施例1の表面及び裏面、並びに、参考例1~3の表面について実施した。ATR-FTIR測定の測定条件は、積算回数を16回とし、測定範囲を900cm-1~1800cm-1とした。プリズムにはZnSeを用いた。各観察対象を測定して得られたスペクトルを、1650cm-1~1630cm-1に現れるSF由来のアミドIのピークで規格化した。規格化後のスペクトルにおいて、1095cm-1に現れるPVA由来のC-O伸縮振動のピーク強度を比較した。これにより、実施例1のシートにおいて、厚さ方向に、SF及びPVAの存在比率が変化していることを確認した。
 (NMR測定)
 参考例1~4のシートについて、NMR測定を実施した。NMR測定は、日本電子社製のECX-500を用いて実施した。具体的には、各シートの表面側の中央近傍の表面から、3mgの試料を採取した。各シートから採取された試料を、それぞれ、0.6mlのNMR測定用の重化溶媒(NMR用、関東化学社製)に溶解させ、5mm径のNMRチューブに移した。各試料のNMRチューブをNMR測定装置にセットし、H-NMRを測定した。各試料について、SFのアラニン側鎖メチル基のピーク面積と、PVAのメチレン基のピーク面積の比を算出することにより、当該試料における、SF及びPVAの質量比を算出した。
 <物性評価>
 まず、不溶化後の各シートを精製水に浸漬し、含水状態とした。次に、各シートから、15mm×3mmの試験片を切り出した。また、試験片の膜厚を測定した。次に、ICROTEST200NTensileStage(DEBEN社製)の100Nのロードセルを使用して、水中引張試験を実施した。水中引張試験は、つかみ具間長を5mmとし、引張速度を0.5mm/minとし、37℃の水中で実施した。測定の試行回数は最低8回とした。水中引張試験により得られた試験力[N]、変位[mm]、膜厚[mm]、及び、サンプル長[mm]に基づいて、応力[Pa]、及び、ひずみ[%]を算出した。縦軸を応力、横軸をひずみとして、測定結果をプロットすることで、応力-ひずみ曲線(Stress-Straincurve)を作製した。1~4%のひずみに対する応力に基づいて、ヤング率を算出した。
 <分解性評価>
 参考例1~3のそれぞれにおいて得られたシートを用いて、疑似生体液に対する吸収性に関する試験(分解性試験と称される場合がある。)を実施した。具体的には、まず、各シートから、1cm×1cmの試験片を切り出した。切り出された各試験片に真空乾燥処理を施し、各試験片の水分を十分に除去した後、各試験片の質量を測定した。次に、各試験片を、1.2mLのリン酸緩衝生理食塩水(Calbiochem社)が入ったエッペンドルフチューブに入れ、7日間静置した。PBSの組成は、リン酸二水素カリウムが200mg/Lであり、塩化カリウムが200mg/Lであり、リン酸水素二ナトリウムが1150mg/Lであり、塩化ナトリウムが8000mg/Lである。PBSの温度は、37℃に維持された。また、2日おきに、PBSを交換した。
 PBSへの浸漬処理が終了した後、エッペンドルフチューブから各試験片を回収し、精製水を用いて各試験片を洗浄した。その後、各試験片に真空乾燥処理を施し、各試験片の水分を十分に除去した後、各試験片の質量を測定した。PBSへの浸漬処理の前後における質量測定結果に基づいて、質量損失率[%]を算出した。質量損失率[%]は、下記の数式3に基づいて算出した。
 [数式3]
 質量損失率[%]=100×(試験開始前の質量-試験終了時の質量)/試験開始前の質量
 また、分解性試験が終了した各試験片を金蒸着した後、走査型電子顕微鏡(JSM-6510、日本電子社製)を用いて、各試験片の表面を観察した。走査型電子顕微鏡の観察電圧は10kVとし、倍率は3000倍とした。
 [評価結果]
 <形態観察結果>
 図15~図20に、実施例1及び参考例1~4の外観のSEM画像を示す。図15は、参考例1の表面のSEM画像を示す。図16は、参考例2の表面のSEM画像を示す。図17は、参考例3の表面のSEM画像を示す。図18は、実施例1の裏面のSEM画像を示す。図19は、実施例1の表面のSEM画像を示す。図20は、参考例4の表面のSEM画像を示す。また、表2に、各サンプルの平均繊維径を示す。
Figure JPOXMLDOC01-appb-T000002
 図15~図20に示されるとおり、全てのサンプルにおいて、繊維構造の形成が確認された。なお、表2に示されるとおり、PVAの吐出速度の増加に伴い、平均繊維径が増加した。エレクトロスピニングにおいては、溶液の粘度が大きい程、繊維径が大きくなることが報告されている。PVA溶液の粘度がSF溶液の粘度よりも大きかったことから、PVAの吐出速度の増加に伴い、平均繊維径が増加したものと推測される。
 図18及び図19によれば、実施例1のシートの裏面の平均繊維径が、表面の平均繊維径よりも大きい。上記の推測に基づけば、実施例1においては、シートの裏面の繊維はPVAの含有量が比較的大きく、シートの表面の繊維はSFの含有量が比較的大きいものと推察される。
 図26に、実施例1のシート2600の厚さ方向の断面のSEM画像を示す。図26に示されるとおり、シート2600は、シート2600の裏面の側から順に、PVAリッチな繊維の層2620と、層2660を構成する繊維よりもシルクの含有量の大きな繊維の層2640と、シルクリッチな繊維の層2660とを有する。図26に示されるとおり、シート2600において、層2620における繊維の嵩密度は、層2660における繊維の嵩密度よりも大きい。
 なお、本実施形態においては、層2620の内部でも、裏面から表面に向かう方向に沿って、PVA及びシルクフィブロインの成分比率が段階的に変化している。同様に、層2640及び層2660の内部でも、裏面から表面に向かう方向に沿って、PVA及びシルクフィブロインの成分比率が段階的に変化している。
 <組成評価>
 図21は、実施例1及び参考例1~3のATR-FTIR測定結果を示す。図21において、曲線2110は、実施例1の測定結果を示す。曲線2112は、実施例1のシートの裏面の測定結果を示す。曲線2114は、実施例1のシートの表面の測定結果を示す。曲線2120は、参考例1の測定結果を示す。曲線2130は、参考例2の測定結果を示す。曲線2140は、参考例3の測定結果を示す。
 図21に示されるとおり、PVAの吐出速度の増加に伴い、PVA由来C-O伸縮振動のピーク強度が増大した。これにより、PVAの吐出速度が増加することで、繊維中のPVA含有量も増加することが確認できる。また、図21において、曲線2112と、曲線2120とが良く一致し、曲線2114と、曲線2140とがよく一致している。これにより、実施例1のシートは、その厚さ方向において、SF及びPVAの存在比率が段階的に変化しているものと推察される。
 また、参考例1~4のNMR測定の結果によれば、参考例1、参考例2及び参考例3のSF:PVAは、質量比で、それぞれ、8:23、15:13、及び、22:7であった。これにより、SF溶液及びPVA溶液の吐出速度の質量比を、シートにおけるSF及びPVAの質量比とみなせることが分かった。
 <物性評価結果>
 図22は、実施例1及び参考例1~4の引張試験結果を示す。図22において、菱形のマーカの曲線2210は、実施例1の測定結果を示す。丸型のマーカの曲線2220は、参考例1の測定結果を示す。横棒型のマーカの曲線2230は、参考例2の測定結果を示す。三角形のマーカの曲線2240は、参考例3の測定結果を示す。四角形のマーカの曲線2250は、参考例4の測定結果を示す。また、表3は、各サンプルのヤング率の測定結果を示す。図22及び表3に示されるとおり、PVAの吐出速度の増加に伴い、ヤング率が低下した。これにより、PVAの吐出速度が増加することで、繊維の柔軟性が向上することが確認できる。また、実施例1のシートは、参考例4のシートと比較して、ヤング率が有意に低下した。
Figure JPOXMLDOC01-appb-T000003
 血管のヤング率は部位によって多少異なるが、ヒトの動脈のヤング率は約0.4~1.8MPaである。一方、現在人工血管として一般的に使用されている延伸ポリテトラフルオロエチレン(ePTFE)の弾性率は20MPa程度と報告されている。従って、実施例1のシートは、既存の人工血管よりも低いヤング率を示し、ヒトの動脈のヤング率により近い物性を有することがわかる。
 <分解性評価>
 表4は、参考例1~3の分解性評価試験における質量損失率を示す。また、図23は、分解性試験終了後の参考例1の外観のSEM画像を示す。図24は、分解性試験終了後の参考例2の外観のSEM画像を示す。図25は、分解性試験終了後の参考例3の外観のSEM画像を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるとおり、PVAの吐出速度の減少に伴い、重量損失率が減少した。これにより、実施例1のシートのように、その厚さ方向にSF及びPVAの存在比率を変化させることで、シートの一方の側から生体内での分解又は吸収が進行するシートを作製できることがわかる。
 図23に示されるとおり、参考例1のシートのフィルム化が確認された。図24に示されるとおり、参考例2のシートの一部において、繊維の溶解が確認された。一方、図25に示されるとおり、参考例3のシートにおいては、フィルム化及び繊維の溶解は確認されなかった。繊維中のPVA量が増加することにより、シートのフィルム化又は繊維の溶解が進行したものと推察される。
 <コラーゲン及びシルクフィブロインを用いた具体例>
 [参考例5]
 下記の手順により、不織布状のシートを作製した。参考例5においては、第1高分子材料として、アテロコラーゲン(コラーゲンと省略する場合がある。)を用い、第2高分子材料として、シルクフィブロインを用いた。
 <シルクフィブロイン(SF)溶液の調整>
 実施例1と同様の手順により、1、1、1、3、3、3-ヘキサフルオロ-2-プロパノール(HFIP)(Sigma社製)6000μL中に、180gのSFスポンジを添加した後、室温、300rpmの条件下で、15時間攪拌した。これにより、3%(w/v)のSFのHFIP溶液が得られた。
 <アテロコラーゲン溶液の調整>
 同様にして、1、1、1、3、3、3-ヘキサフルオロ-2-プロパノール(HFIP)(Sigma社製)6000μL中に、240gのアテロコラーゲン(製造メーカ、品番など)を添加した後、室温℃、300rpmの条件下で、一晩攪拌した。これにより、4%(w/v)のアテロコラーゲンのHFIP溶液が得られた。
 <シート状の不織布の作成>
 エレクトロスピニング装置(ES2000A、Fuence社製)を用いて、繊維の内側がSFであり外側がアテロコラーゲンである、コア-シェル型の繊維構造を有する繊維を作製した。具体的には、エレクトロスピニング工程において、SFのHFIP溶液の吐出速度が15μl/minに固定され、コラーゲンのHFIP溶液の吐出速度が15μl/minに固定された点と、吐出時間が4分に設定され、印加電圧が22Vに設定された点とを除いて、実施例1と同様の手順により、不織布状のシートを作製した。参考例5におけるエレクトロスピニング工程の諸条件を、表5に示す。
Figure JPOXMLDOC01-appb-T000005
 [参考例6]
 エレクトロスピニング工程において、印加電圧が24Vに設定された点を除いて、参考例5と同様の手順により、不織布状のシートを作製した。参考例6におけるエレクトロスピニング工程の諸条件を、表5に示す。
 [参考例7]
 エレクトロスピニング工程において、SFのHFIP溶液の吐出速度が8μl/minに固定され、コラーゲンのHFIP溶液の吐出速度が22μl/minに固定された点を除いて、参考例6と同様の手順により、不織布状のシートを作製した。参考例7におけるエレクトロスピニング工程の諸条件を、表5に示す。
 <形態観察結果>
 走査型電子顕微鏡(JSM-6510、日本電子社製)を用いて、参考例5のシートの表面を観察した。走査型電子顕微鏡の観察電圧は10kVとした。図27、図28及び図29に、参考例5の外観のSEM画像を示す。図27は、観察倍率が100倍に設定されたときのSEM画像である。図28は、観察倍率が1000倍に設定されたときのSEM画像である。図29は、観察倍率が3000倍に設定されたときのSEM画像である。図27~図29に示されるとおり、コア-シェル型の構造を有する繊維が堆積して、不織布が作製された。
 同様にして、参考例6のシートの表面を観察した。図30、図31及び図32に、参考例6の外観のSEM画像を示す。図30は、観察倍率が100倍に設定されたときのSEM画像である。図31は、観察倍率が1000倍に設定されたときのSEM画像である。図32は、観察倍率が3000倍に設定されたときのSEM画像である。図30~図32に示されるとおり、コア-シェル型の構造を有する繊維が堆積して、不織布が作製された。
 同様にして、参考例7のシートの表面を観察した。図33、図34及び図35に、参考例7の外観のSEM画像を示す。図33は、観察倍率が100倍に設定されたときのSEM画像である。図34は、観察倍率が1000倍に設定されたときのSEM画像である。図35は、観察倍率が3000倍に設定されたときのSEM画像である。図33~図35に示されるとおり、コア-シェル型の構造を有する繊維が堆積して、不織布が作製された。
 参考例5~7の結果と、実施例1及び参考例1~4により得られた知見とを考慮すると、例えば、エレクトロスピニング工程中に、SFのHFIP溶液の吐出速度を徐々に増加させ、コラーゲンのHFIP溶液の吐出速度を徐々に減少させることで、第1高分子材料としてアテロコラーゲンを用い、第2高分子材料としてシルクフィブロインを用いた場合であっても、実施例1のシートのように、その厚さ方向にSF及びコラーゲンの存在比率が変化するシートを作製できることがわかる。
 また、上述されたとおり、コラーゲンは、フィブロインと比較して生分解性又は生体吸収性に優れる。したがって、第1高分子材料としてアテロコラーゲンを用い、第2高分子材料としてシルクフィブロインを用いた場合であっても、実施例1のシートのように、たとえば、シートの一方の側から生体内での分解又は吸収が進行するシートを作製できることがわかる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。また、技術的に矛盾しない範囲において、特定の実施形態について説明した事項を、他の実施形態に適用することができる。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した材料及びその製造方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の成果物を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作に関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 66 紡糸ジェット、68 ウェブ、100 軟組織修復用材料、102 表面、104 表面、110 断面、120 表層領域、140 支持層領域、160 繊維、162 シェル部、164 コア部、170 繊維、172 シェル部、174 コア部、400 軟組織修復用材料、420 表層領域、600 エレクトロスピニングシステム、610 コアシェルノズル、612 外筒、614 内筒、620 シリンジ、622 ポンプ、640 シリンジ、642 ポンプ、650 コレクタ板、652 位置調整部、660 電源、670 制御部、700 制御パターン、720 制御パターン、740 制御パターン、800 制御パターン、820 制御パターン、840 制御パターン、900 エレクトロスピニングシステム、912 シングルノズル、914 シングルノズル、1000 エレクトロスピニングシステム、1010 シングルノズル、1100 軟組織修復用材料、1102 表面、1104 表面、1112 表層領域、1114 支持層領域、1120 モノリス、1140 不織布、1142 粗部、1144 緻密部、1200 軟組織修復用材料、1202 内腔面、1204 外腔面、1300 シート状材料、1400 筒状織物、2110 曲線、2112 曲線、2114 曲線、2120 曲線、2130 曲線、2140 曲線、2210 曲線、2220 曲線、2230 曲線、2240 曲線、2250 曲線、2600 シート、2620 層、2640 層、2660 層

Claims (17)

  1.  互いに対向する第1面及び第2面を有し、第2高分子材料を含む多孔質体であって、
     37℃の精製水中における水中引張強度に基づいて決定された前記多孔質体のヤング率が、0.1MPa以上10MPa以下であり、
     (i)前記多孔質体の第1領域から採取され、大きさが10mm×10mmの第1サンプルを、35~39℃の疑似生体液に30日間浸漬させた場合における前記第1サンプルの質量損失率が、(ii)前記多孔質体の第2領域から採取され、大きさが10mm×10mmの第2サンプルを、35~39℃の疑似生体液に30日間浸漬させた場合における前記第2サンプルの質量損失率よりも大きく、
     前記第1領域及び前記第1面の距離は、前記第2領域及び前記第1面の距離よりも小さく、
     前記第2高分子材料は、第2生分解性プラスチック、第2生体高分子、及び、第2天然高分子からなる群から選択される少なくとも1種の物質を含み、
     前記第2生分解性プラスチックは、(i)ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であり、
     前記第2生体高分子は、(i)コラーゲン、フィブリン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であり、
     前記第2天然高分子は、(i)キチン、セリシン、フィブロイン、カルボキシメチルセルロース、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である、
     多孔質体。
  2.  前記多孔質体は、前記第2高分子材料よりも生分解性又は生体吸収性に優れた第1高分子材料をさらに含む、
     請求項1に記載の多孔質体。
  3.  互いに対向する第1面及び第2面を有し、第1高分子材料及び第2高分子材料を含む多孔質体であって、
     前記第1高分子材料のヤング率は、前記第2高分子材料のヤング率より小さく、
     前記第1高分子材料の生体内での消失速度は、前記第2高分子材料の生体内での消失速度より大きく、
     前記多孔質体の第1領域における組成と、前記多孔質体の第2領域における組成とが、互いに相違し、
     前記第1領域及び前記第1面の距離は、前記第2領域及び前記第1面の距離よりも小さい、
     多孔質体。
  4.  互いに対向する第1面及び第2面を有し、第1高分子材料及び第2高分子材料を含む多孔質体であって、
     前記第1高分子材料のヤング率は、前記第2高分子材料のヤング率より小さく、
     前記第1高分子材料のリン酸緩衝生理食塩水に対する吸収性は、前記第2高分子材料のリン酸緩衝生理食塩水に対する吸収性より大きく、
     前記多孔質体の第1領域における組成と、前記多孔質体の第2領域における組成とは、互いに相違し、
     前記第1領域及び前記第1面の距離は、前記第2領域及び前記第1面の距離よりも小さい、
     多孔質体。
  5.  (a)前記多孔質体の第1領域における、前記第1高分子材料の密度に対する前記第2高分子材料の密度の割合と、(b)前記多孔質体の第2領域における、前記第1高分子材料の密度に対する前記第2高分子材料の密度の割合とが、互いに相違する、
     請求項2から請求項4までの何れか一項に記載の多孔質体。
  6.  前記多孔質体は、
     前記多孔質体の前記第1面の側の表面に配される、多孔質な第1表層と、
     前記第1表層の前記第2面の側に配され、前記第1表層を支持する、多孔質な支持層と、
     を備え、
     前記第1領域は、前記第1表層の少なくとも一部に配され、
     前記第2領域は、前記支持層の少なくとも一部に配される、
     請求項2から請求項5までの何れか一項に記載の多孔質体。
  7.  前記第1表層及び前記支持層のそれぞれは、前記第1高分子材料及び前記第2高分子材料を含む複合繊維のウェブを有し、
     (i)前記第1領域の前記複合繊維における、前記第1高分子材料の質量に対する前記第2高分子材料の質量の割合は、(ii)前記第2領域の前記複合繊維における、前記第1高分子材料の質量に対する前記第2高分子材料の質量の割合より小さい、
     請求項6に記載の多孔質体。
  8.  前記第1表層及び前記支持層のそれぞれは、前記第1高分子材料及び前記第2高分子材料を含む複合繊維のウェブを有し、
     前記複合繊維は、前記第2高分子材料のコア及び前記第1高分子材料のシェルを含むコア-シェル構造を有し、
     (i)前記第1領域の前記複合繊維における、前記シェルの直径又は相当直径に対する前記コアの直径又は相当直径の割合は、(ii)前記第2領域の前記複合繊維における、前記シェルの直径又は相当直径に対する前記コアの直径又は相当直径の割合より小さい、
     請求項6に記載の多孔質体。
  9.  (c)前記多孔質体の第3領域における、前記第1高分子材料の密度に対する前記第2高分子材料の密度の割合と、(b)前記多孔質体の前記第2領域における、前記第1高分子材料の密度に対する前記第2高分子材料の密度の割合とは、互いに相違し、
     前記第3領域及び前記第1面の距離は、前記第2領域及び前記第1面の距離よりも小さく、
     前記第3領域は、前記支持層の少なくとも一部に配される、
     請求項6から請求項8までの何れか一項に記載の多孔質体。
  10.  前記多孔質体は、前記多孔質体の前記第2面の側の表面に配される、多孔質な第2表層をさらに備え、
     前記支持層は、前記第1表層及び前記第2表層の間に配される、
     請求項6から請求項9までの何れか一項に記載の多孔質体。
  11.  (d)前記多孔質体の第4領域における、前記第1高分子材料の密度に対する前記第2高分子材料の密度の割合と、(b)前記多孔質体の前記第2領域における、前記第1高分子材料の密度に対する前記第2高分子材料の密度の割合とは、互いに相違し、
     前記第4領域及び前記第1面の距離は、前記第2領域及び前記第1面の距離よりも大きく、
     前記第4領域は、前記第2表層の少なくとも一部に配される、
     請求項10に記載の多孔質体。
  12.  前記多孔質体は、(i)シート状若しくはフィルム状、(ii)チューブ状若しくはロール状、又は、(iii)ブロック状、柱状若しくはパッド状の形状を有する、
     請求項1から請求項11までの何れか一項に記載の多孔質体。
  13.  前記第1高分子材料は、(i)ポリアクリル酸メチル(PMA)、ポリメタクリル酸メチル(PMMA)、ポリビニルアルコール(PVA)、ヒアルロン酸、アルギン酸、ポリグリコール酸(PGA)、ポリエチレンカーボネート、コラーゲン、フィブリン、ポリグラクチン、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体から選択される少なくとも1種の物質を含む、
     請求項3又は請求項4に記載の多孔質体。
  14.  前記第2高分子材料は、(i)コラーゲン、フィブリン、ポリグラクチン、キトサン、キチン、フィブロイン、セリシン、ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)(PCL)、ポリエチレンカーボネート、ポリウレタン、カルボキシメチルセルロース、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体から選択される少なくとも1種の物質を含む、
     請求項3又は請求項4に記載の多孔質体。
  15.  前記第1高分子材料は、第1生分解性プラスチック、第1生体高分子、及び、第1天然高分子からなる群から選択される少なくとも1種の物質を含み、
     前記第1生分解性プラスチックは、(i)ポリグリコール酸、ポリビニルアルコール、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であり、
     前記第1生体高分子は、(i)コラーゲン、フィブリン、アルギン酸、ヒアルロン酸、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であり、
     前記第1天然高分子は、(i)キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である、
     請求項2から請求項4までの何れか一項に記載の多孔質体。
  16.  前記第2高分子材料は、第2生分解性プラスチック、第2生体高分子、及び、第2天然高分子からなる群から選択される少なくとも1種の物質を含み、
     前記第2生分解性プラスチックは、(i)ポリD乳酸(PDLA)、ポリL乳酸(PLLA)、ポリDL乳酸(PDLLA)、ポリ(ε-カプロラクトン)、ポリグラクチン、ポリエチレンカーボネート、分解性ポリウレタン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であり、
     前記第2生体高分子は、(i)コラーゲン、フィブリン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種であり、
     前記第2天然高分子は、(i)キチン、セリシン、フィブロイン、カルボキシメチルセルロース、キトサン、及び、(ii)これらを構成するモノマーの少なくとも2つの共重合体、又は、これらを構成するモノマーの少なくとも1つと他のモノマーとの共重合体、並びに、(iii)これらの塩及び誘導体からなる群から選択される少なくとも1種である、
     請求項3から請求項12及び請求項15の何れか一項に記載の多孔質体。
  17.  請求項1から請求項16までの何れか一項に記載の多孔質体を含む、
     医療用材料。
PCT/JP2019/022418 2018-06-05 2019-06-05 多孔質体、及び、医療用材料 WO2019235543A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/972,603 US20210299333A1 (en) 2018-06-05 2018-06-05 Porous body and material for medical use
JP2020523156A JP7392952B2 (ja) 2018-06-05 2019-06-05 多孔質体、中空材料、人工血管、及び、医療用材料
EP19815108.6A EP3804771B1 (en) 2018-06-05 2019-06-05 Porous body and material for medical use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018108148 2018-06-05
JP2018-108148 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019235543A1 true WO2019235543A1 (ja) 2019-12-12

Family

ID=68770413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022418 WO2019235543A1 (ja) 2018-06-05 2019-06-05 多孔質体、及び、医療用材料

Country Status (4)

Country Link
US (1) US20210299333A1 (ja)
EP (1) EP3804771B1 (ja)
JP (1) JP7392952B2 (ja)
WO (1) WO2019235543A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020173213A1 (en) * 2001-05-16 2002-11-21 Benjamin Chu Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications
WO2006049663A1 (en) * 2004-11-02 2006-05-11 Kimberly-Clark Worldwide, Inc. Gradient nanofiber materials and methods for making same
WO2009031620A1 (ja) * 2007-09-05 2009-03-12 Taiyokagaku Co., Ltd. 水溶性電界紡糸シート
WO2017022750A1 (ja) * 2015-08-06 2017-02-09 グンゼ株式会社 人工血管、人工血管の製造方法、及び、多孔質組織再生基材の製造方法
JP2017057248A (ja) * 2015-09-14 2017-03-23 国立大学法人東京農工大学 組成物、医療用組成物及び組成物の製造方法
JP2017080116A (ja) 2015-10-28 2017-05-18 日立化成株式会社 医療用部材
CN107596448A (zh) * 2017-11-14 2018-01-19 四川大学 可梯度降解的生物膜支架材料及其制备方法
WO2018021333A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 骨損傷部位の治療のためのインプラント及びキット、並びに骨損傷部位の治療方法
JP6294577B1 (ja) 2015-04-28 2018-03-14 マルティネックス インターナショナル リサーチ アンド ディベロップメント センター ヒアルロン酸入り多成分メソスレッドとその製造方法(実施形態)
WO2018056018A1 (ja) * 2016-09-21 2018-03-29 グンゼ株式会社 ヘパリンを含有する生体吸収性高分子からなる多孔質基材の製造方法、ヘパリンを含有する生体吸収性高分子からなる多孔質基材、及び、人工血管

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103266421B (zh) 2013-06-09 2014-07-02 东华大学 一种乳酸己内酯共聚物/胶原蛋白/壳聚糖小口径血管支架的制备方法
WO2016176559A1 (en) * 2015-04-29 2016-11-03 Nanofiber Solutions, Inc. Multi-component electrospun fiber scaffolds

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020173213A1 (en) * 2001-05-16 2002-11-21 Benjamin Chu Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications
WO2006049663A1 (en) * 2004-11-02 2006-05-11 Kimberly-Clark Worldwide, Inc. Gradient nanofiber materials and methods for making same
WO2009031620A1 (ja) * 2007-09-05 2009-03-12 Taiyokagaku Co., Ltd. 水溶性電界紡糸シート
JP6294577B1 (ja) 2015-04-28 2018-03-14 マルティネックス インターナショナル リサーチ アンド ディベロップメント センター ヒアルロン酸入り多成分メソスレッドとその製造方法(実施形態)
WO2017022750A1 (ja) * 2015-08-06 2017-02-09 グンゼ株式会社 人工血管、人工血管の製造方法、及び、多孔質組織再生基材の製造方法
JP2017057248A (ja) * 2015-09-14 2017-03-23 国立大学法人東京農工大学 組成物、医療用組成物及び組成物の製造方法
JP2017080116A (ja) 2015-10-28 2017-05-18 日立化成株式会社 医療用部材
WO2018021333A1 (ja) * 2016-07-25 2018-02-01 宇部興産株式会社 骨損傷部位の治療のためのインプラント及びキット、並びに骨損傷部位の治療方法
WO2018056018A1 (ja) * 2016-09-21 2018-03-29 グンゼ株式会社 ヘパリンを含有する生体吸収性高分子からなる多孔質基材の製造方法、ヘパリンを含有する生体吸収性高分子からなる多孔質基材、及び、人工血管
CN107596448A (zh) * 2017-11-14 2018-01-19 四川大学 可梯度降解的生物膜支架材料及其制备方法

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
B. M. LEAROYD: "Alterations with age in the viscoelastic properties of human arterial walls", CIRC. RES., vol. 18, 1966, pages 278 - 292
BONANI WALTER ET AL.: "Biomolecule Gradient in Micropatterned Nanofibrous Scaffold for Spatiotemporal Release", LANGMUIR, vol. 28, no. 38, 25 September 2012 (2012-09-25), pages 13675 - 13687, XP055193407, ISSN: 0743-7463, DOI: 10.1021/la302386u *
ELAHI FAZLEY ET AL.: "Core-shell Fibers for Biomedical Applications-A Review", JOURNAL OF BIOENGINEERING & BIOMEDICAL SCIENCE, vol. 3, no. 1, 1 January 2013 (2013-01-01), pages 1 - 14, XP055661874, DOI: 10.4172/2155-9538.1000121 *
ERIK J. SUURONEN: "An acellular matrix-bound ligand enhances the mobilization, recruitment and therapeutic effects of circulating progenitor cells in a hindlimb ischemia model", FASEB J, vol. 23, 2009, pages 1447 - 1458
J. THORAC. CARDIOVASC. SURG., vol. 139, 2010, pages 431 - 436
K.R.STEVENS: "Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue", PNAS, vol. 106, 2009, pages 16568 - 16573
M. KHERADMANDI: "Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold", J. BIOMED. MATER. RES. PART A, vol. 104, 2016, pages 1720 - 1727
N. ENGL. J. MED., vol. 344, 2001, pages 532 - 533
See also references of EP3804771A4
SUGIURA T ET AL.: "Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft", ANN THORAC SURG, vol. 102, 2016, pages 720 - 727, XP029695749, DOI: 10.1016/j.athoracsur.2016.01.110
TAL DVIR: "Prevascularization of cardiac patch on the omentum improves its therapeutic outcome", PNAS, vol. 106, 2009, pages 14990 - 14995, XP002590883, DOI: 10.1073/pnas.0812242106
TARA S ET AL.: "Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft", J. VASE. SURG., vol. 62, 2015, pages 734 - 743
WANG S: "International Journal of Nanomedicine", vol. 8, 7 June 2013, DOVE MEDICAL PRESS, DOVE MEDICAL PRESS, article "Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency", pages: 2131 - 2139
YOUNG MIN SHIN: "Mussel-Inspired Immobilization of Vascular Endothelial Growth Factor (VEGF) for Enhanced Endothelialization of Vascular Grafts", BIOMACROMOLECULES, vol. 13, 2012, pages 2020 - 2028
ZHANG Y. Z. ET AL.: "Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts", BIOMACROMOLECULES, vol. 6, no. 5, 1 September 2005 (2005-09-01), pages 2583 - 2589, XP055038547, ISSN: 1525-7797, DOI: 10.1021/bm050314k *

Also Published As

Publication number Publication date
EP3804771A1 (en) 2021-04-14
JPWO2019235543A1 (ja) 2021-07-29
EP3804771B1 (en) 2024-06-05
EP3804771A4 (en) 2021-08-04
JP7392952B2 (ja) 2023-12-06
US20210299333A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
Rickel et al. Electrospun nanofiber scaffold for vascular tissue engineering
KR100932688B1 (ko) 인공혈관용 이중막 구조의 튜브형 다공성 스캐폴드 및 그의제조방법
Jeffries et al. Highly elastic and suturable electrospun poly (glycerol sebacate) fibrous scaffolds
Ercolani et al. Vascular tissue engineering of small‐diameter blood vessels: reviewing the electrospinning approach
Teo et al. Electrospun scaffold tailored for tissue‐specific extracellular matrix
Rocco et al. In vivo applications of electrospun tissue-engineered vascular grafts: a review
Sell et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering
Tuzlakoglu et al. Biodegradable polymeric fiber structures in tissue engineering
JP6172471B2 (ja) 医療用途のためのセグメント化された、ε−カプロラクトンを多く含むポリ(ε−カプロラクトン−コ−p−ジオキサン)コポリマー及びそれから得られる用具
CN102277737A (zh) 聚己内酯/天然高分子复合多孔支架的制备方法及应用
JP5010854B2 (ja) 血管再生材料
JP5313142B2 (ja) 生体器官用補綴材
Abruzzo et al. Using polymeric scaffolds for vascular tissue engineering
CA2621206A1 (en) Fibrous 3-dimensional scaffold via electrospinning for tissue regeneration and method for preparing the same
CN104414773A (zh) 防粘连组织修复膜及其制备方法
Thomas et al. Electrospinning of Biosyn®-based tubular conduits: Structural, morphological, and mechanical characterizations
Wang et al. Aligned biomimetic scaffolds as a new tendency in tissue engineering
Chang et al. Medical fibers and biotextiles
Shahriari-Khalaji et al. Advancements in the fabrication technologies and biomaterials for small diameter vascular grafts: A fine-tuning of physicochemical and biological properties
Lam et al. Bioengineering silk into blood vessels
Sell et al. Creating small diameter bioresorbable vascular grafts through electrospinning
JP7392952B2 (ja) 多孔質体、中空材料、人工血管、及び、医療用材料
King et al. Synthetic materials: processing and surface modifications for vascular tissue engineering
Dorati et al. Electrospun tubular vascular grafts to replace damaged peripheral arteries: A preliminary formulation study
Ozdemir et al. Optimization of Electrospun Bilayer Vascular Grafts through Assessment of the Mechanical Properties of Monolayers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815108

Country of ref document: EP

Effective date: 20210105