WO2019235475A1 - 有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2019235475A1
WO2019235475A1 PCT/JP2019/022164 JP2019022164W WO2019235475A1 WO 2019235475 A1 WO2019235475 A1 WO 2019235475A1 JP 2019022164 W JP2019022164 W JP 2019022164W WO 2019235475 A1 WO2019235475 A1 WO 2019235475A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
group
layer
ring
emitting layer
Prior art date
Application number
PCT/JP2019/022164
Other languages
English (en)
French (fr)
Inventor
中村 雅人
江美子 神戸
弘明 豊島
西村 和樹
均 熊
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020207037971A priority Critical patent/KR20210015958A/ko
Priority to CN201980037040.4A priority patent/CN112243599A/zh
Priority to US15/734,761 priority patent/US11856808B2/en
Publication of WO2019235475A1 publication Critical patent/WO2019235475A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device.
  • An organic electroluminescence device (hereinafter referred to as “a light emitting unit including a light emitting layer between an anode and a cathode) that emits light from exciton energy generated by recombination of holes and electrons injected into the light emitting layer” It may be referred to as an “organic EL element”).
  • organic EL element an element configuration in which a plurality of light emitting units are stacked via a charge generation layer and connected in series has been studied. Such an element configuration is sometimes called a tandem type.
  • a tandem organic EL element is said to emit light at a lower voltage than a non-tandem organic EL element. Therefore, tandem organic EL elements are attracting attention as a technology that can achieve a long lifetime of the elements.
  • Patent Document 1 a plurality of light emitting units including at least a first light emitting unit including a first light emitting layer, and a second light emitting unit including a second light emitting layer, and between the first light emitting unit and the second light emitting unit are disclosed. And a charge generation layer disposed on the organic light emitting device, wherein the film thickness of the hole transport layer in the second light emitting unit is 10% or more and 25% or less with respect to the total film thickness of the second light emitting unit. Is disclosed.
  • An object of the present invention is to provide an organic electroluminescent element capable of reducing a driving voltage and improving a lifetime, and an electronic device equipped with the organic electroluminescent element.
  • Two light emitting units, the second charge generating layer, and the third light emitting unit are included in this order.
  • the second charge generating layer includes an N layer on the anode side and a P layer on the cathode side.
  • the third light emitting layer includes a blue fluorescent compound, and at least one of the first light emitting layer and the second light emitting layer includes a blue fluorescent compound, and the third light emitting layer includes the third fluorescent layer.
  • the light emitting unit further includes a third light emitting layer between the second charge generating layer and the third light emitting layer. A hole transport zone of the unit, the hole transport zone of the third light emitting unit is in contact with the second charge generation layer, and the thickness of the hole transport zone of the third light emitting unit is 5 nm to 40 nm. Thus, an organic electroluminescence device thinner than the thickness of the N layer is provided.
  • an electronic device equipped with the organic electroluminescence element according to one aspect of the present invention.
  • an organic EL element that can reduce a driving voltage and improve a lifetime, and an electronic device including the organic EL element.
  • the organic EL element of the first embodiment is a tandem organic EL element including three light emitting units.
  • an organic EL element of this embodiment the following structure is mentioned, for example. "Anode / first light emitting unit / first charge generating layer / second light emitting unit / second charge generating layer / third light emitting unit / cathode"
  • Each light emitting unit and each charge generation layer includes an organic layer.
  • This organic layer is formed by laminating a plurality of layers composed of organic compounds.
  • the organic layer may further contain an inorganic compound.
  • the organic EL element 1 includes an anode 12, a first light emitting unit 13, a first charge generating layer 14, a second light emitting unit 15, a second charge generating layer 16, a third light emitting unit 17, and a cathode 18 on a substrate 11. They are stacked in this order.
  • each light emitting unit and each charge generation layer is as follows.
  • First light emitting unit 13 first hole transport zone 131 (thickness d 1 ) First light emitting layer 132 First electron transport zone 133
  • First charge generation layer 14 first N layer 141 First P layer 142
  • Second light emitting unit 15 second hole transport zone 151 (thickness d 2 ) Second light emitting layer 152 Second electron transport zone 153
  • Second charge generation layer 16 second N layer 161 (thickness d N ) Second P layer 162
  • Third light emitting unit 17 third hole transport zone 171 (thickness d 3 ) Third light emitting layer 172 Third electron transport zone 173
  • the third light emitting layer 172 includes a blue fluorescent compound. At least one of the first light-emitting layer 132 and the second light-emitting layer 152 also contains a blue fluorescent compound. That is, the third light emitting layer 172 is a blue fluorescent light emitting layer. At least one of the first light emitting layer 132 and the second light emitting layer 152 is a blue fluorescent light emitting layer.
  • the third hole transport zone 171 contacts the second charge generation layer 16.
  • the thickness d 3 of the third hole transport zone 171 is not less than 5 nm and not more than 40 nm, and is thinner than the thickness d N of the second N layer 161.
  • the organic EL element having the above-described configuration is an element that can reduce the driving voltage and improve the life. This is considered to be due to the following reason.
  • the third hole transport band is often provided with a relatively large thickness from the viewpoint of utilizing the light interference effect.
  • the interface between the third hole transport zone and the third light emitting layer is likely to deteriorate, and as a result, the driving voltage tends to increase and the element tends to have a reduced lifetime.
  • the third hole transport zone is provided in contact with the second charge generation layer, and the thickness of the third hole transport zone is relatively thin such as 5 nm or more and 40 nm or less.
  • the thickness of the N layer of the second charge generation layer is set larger than the thickness of the third hole transport zone.
  • the drive voltage can be reduced and the life can be improved (hereinafter also referred to as “effect of the present embodiment”).
  • the third light emitting unit satisfies the optical interference equation (specifically, the following equations (1-3) and (2-3)), thereby emitting blue fluorescent light emission. Efficiency can be improved. That is, according to one embodiment of the present embodiment, the driving voltage can be reduced, the life can be improved, and the light emission efficiency can be further improved.
  • the first light emitting unit 13, the second light emitting unit 15, and the third light emitting unit 17 have a first electron transport band 133, a second electron transport band 153, and a third electron transport band 173, respectively.
  • each light emitting unit does not have to have an electron transport zone.
  • the first light-emitting unit 13, the second light-emitting unit 15, and the third light-emitting unit 17 are, respectively, a first electron transport band 133, a second electron transport band 153, And a third electron transport zone 173.
  • the hole transport zone means a region where holes move.
  • the hole mobility ⁇ H in the hole transport band is preferably 10 ⁇ 6 cm 2 / [V ⁇ s] or more.
  • the hole transport zone may be a single layer or a plurality of layers. Examples of the layer constituting the hole transport zone include a hole injection layer and an electron barrier layer in addition to the hole transport layer.
  • the hole mobility ⁇ H [cm 2 / [V ⁇ s]] can be measured by impedance spectroscopy described in JP 2014-110348 A.
  • the electron transport band means a region where electrons move.
  • the electron mobility ⁇ E in the electron transport band is preferably 10 ⁇ 6 cm 2 / [V ⁇ s] or more.
  • the electron transport zone may be a single layer or a plurality of layers. Examples of the layer constituting the electron transport zone include an electron injection layer and a hole barrier layer in addition to the electron transport layer.
  • the electron mobility ⁇ E [cm 2 / [V ⁇ s]] can be measured by impedance spectroscopy described in Japanese Patent Application Laid-Open No. 2014-110348.
  • the charge generation layer is a layer that injects holes into the light emitting unit disposed on the cathode side of the charge generation layer when a voltage is applied (in this embodiment, the first P layer 142 and the second P layer 162), And a layer for injecting electrons into the light emitting unit disposed on the anode side of the charge generation layer (in this embodiment, the first N layer 141 and the second N layer 161).
  • the thickness d 3 of the hole transport zone (third hole transport zone 171) of the third light emitting unit 17 is 5 nm or more and 40 nm or less, but from the viewpoint of more manifesting the effect of this embodiment, the third hole
  • the thickness of the transport zone 171 is preferably 10 nm to 30 nm, more preferably 15 nm to 25 nm, and still more preferably 15 nm to 20 nm.
  • the thickness d 3 of the third hole transporting zone 171, if it is 5nm or more, quenching due to the acceptor material contained in the second charge generation layer 16 and the third light emitting layer 172 is too close can be suppressed.
  • the thickness d 3 of the third hole transport zone 171 is 40 nm or less, supply of holes from the second charge generation layer 16 to the third light emitting layer 172 is promoted, and recombination in the third light emitting layer 172 is achieved.
  • the region tends to expand toward the electron transport band.
  • the thickness d 3 of the third hole transporting zone 171, if the third hole transporting zone 171 is composed of a plurality of layers, means that the total thickness.
  • Measurement of the thickness d 3 of the third hole transporting zone 171 is performed as follows. Cutting the central portion of the organic EL element 1 (in FIG. 1, reference sign CL) in a direction perpendicular to the formation surface of the third hole transport zone 171 (that is, the thickness direction of the third hole transport zone 171), The cut surface at the center is observed and measured with a transmission electron microscope (TEM). The thicknesses of other bands (for example, the first hole transport band 131, the second hole transport band 151, etc.) and other layers (for example, the second N layer 161, etc.) are also measured by the same method.
  • the center part of the organic EL element 1 means the center part of the shape in which the organic EL element 1 is projected from the cathode side.
  • the second hole transport zone 151 is preferably in contact with the first charge generation layer 14 from the viewpoint of further manifesting the effects of the present embodiment.
  • the thickness d 2 of the second hole transporting zone 151 is preferably 5nm or more 40nm or less, more preferably 10nm or more 30nm or less, more preferably 15nm or more 25nm or less.
  • the first hole transport zone 131 is preferably in contact with the anode 12 from the viewpoint of more manifesting the effects of the present embodiment.
  • the thickness of the first hole transport zone 131 is preferably 5 nm to 40 nm, more preferably 10 nm to 30 nm, and still more preferably 15 nm to 25 nm.
  • the thickness of the N layer (second N layer 161) of the second charge generation layer 16 is preferably 40 nm or more, more preferably 45 nm or more, and even more preferably 50 nm or more. is there.
  • the upper limit value of the second N layer 161 is preferably 200 nm or less, more preferably 160 nm or less, and further preferably 120 nm or less. That is, the thickness of the N layer of the second charge generation layer 16 is preferably 40 nm to 200 nm, more preferably 45 nm to 160 nm, and still more preferably 50 nm to 120 nm.
  • the thickness d N of the N layer (second N layer 161) of the second charge generation layer 16 and the hole transport band (third hole) of the third light emitting unit 17 are described.
  • the ratio of the thickness d 3 of the transport band 171) (thickness d N / thickness d 3) is preferably 1 exceeds 40 or less, more preferably 2 to 10, more preferably at 2.5 to 6 is there.
  • one of the anode 11 and the cathode 18 is a reflective electrode. It is preferable that the organic EL element 1 of the present embodiment satisfies the following mathematical formulas (1-3) and (2-3) from the viewpoint of further extracting the light interference effect and further manifesting the effects of the present embodiment. Thereby, the luminous efficiency of blue fluorescent light emission can also be improved.
  • n 3 is an integer of 0 or more, and m 3 is the order of interference between the reflective electrode and the emission center of the third light emitting layer. n 3 is preferably an integer of 0 or more and 3 or less.
  • m 3 is synonymous with m 3 in Formula (1-3), and L 3 is an optical distance (nm) between the reflective electrode and the emission center of the third light-emitting layer.
  • ⁇ 3 is a main peak wavelength (nm) of light emission from the third light emitting layer, and ⁇ 3 is a phase change when light emitted from the third light emitting layer is reflected by the reflective electrode.
  • the organic EL element 1 of the present embodiment satisfies the following mathematical formula (1-2) and the following mathematical formula (2-2) from the viewpoint of further drawing out the light interference effect and further manifesting the effect of the present embodiment. preferable.
  • n 2 is an integer of 0 or more, and m 2 is the order of interference between the reflective electrode and the emission center of the second light emitting layer. n 2 is preferably an integer of 0 or more and 3 or less.
  • m 2 has the same meaning as m 2 in Formula (1-2), and L 2 is the optical distance (nm) between the reflective electrode and the emission center of the second light-emitting layer.
  • ⁇ 2 is a main peak wavelength (nm) of light emission from the second light emitting layer, and ⁇ 2 is a phase change when light emitted from the second light emitting layer is reflected by the reflective electrode.
  • the organic EL element 1 of the present embodiment satisfies the following mathematical formula (1-1) and the following mathematical formula (2-1) from the viewpoint of further drawing out the light interference effect and further manifesting the effect of the present embodiment. preferable.
  • n 1 is an integer of 0 or more
  • m 1 is the interference order between the reflective electrode and the light emission center of the first light emitting layer.
  • n 1 is preferably an integer of 0 or more and 3 or less.
  • Equation (2-1) m 1 has the same meaning as m 1 in formula (1-1), L 1 is an optical distance between the emission center of the reflective electrode and the first light-emitting layer (nm) , ⁇ 1 is a main peak wavelength (nm) of light emission from the first light emitting layer, and ⁇ 1 is a phase change when light emitted from the first light emitting layer is reflected by the reflective electrode.
  • the organic EL element 1 according to the present embodiment satisfies the above mathematical formulas (1-3) and (2-3) from the viewpoint of further extracting the optical interference effect and further manifesting the effects of the present embodiment. It is preferable to satisfy (1-2) and the equation (2-2), or satisfy the equation (1-3) and the equation (2-3). Thereby, in addition to the effect of this embodiment, the luminous efficiency of blue fluorescence light emission can be improved.
  • the organic EL element 1 of the present embodiment has the above-described mathematical formula (1-3) and the mathematical formula (2-3) in order to further bring out the optical interference effect and to further develop the effect of the present embodiment. Further, in addition to satisfying the mathematical expression (1-2) and the mathematical expression (2-2), or satisfying the mathematical expression (1-3) and the mathematical expression (2-3), the mathematical expression (1- It is more preferable to satisfy 1) and the mathematical formula (2-1). Thereby, in addition to the effect of this embodiment, the luminous efficiency of blue fluorescence light emission can be improved more.
  • the organic EL element 1 of the present embodiment further draws out the optical interference effect, and from the viewpoint of further developing the effect of the present embodiment, the formulas (1-1) to (1-3) and the formula (2-1) It is more preferable that all of (2-3) are satisfied. Thereby, in addition to the effect of this embodiment, the luminous efficiency of blue fluorescence light emission can further be improved.
  • FIG. 2 is a diagram for explaining the optical distance between the reflective electrode and the light emission center of each light emitting layer in the organic EL element according to the first embodiment.
  • the optical distance L 1 in the formula (2-1) (L in FIG. 2) 1B ) is the optical distance between the reflective interface 18A of the cathode 18 (the surface of the cathode 18 on the first light emitting layer side) and the light emission center of the first light emitting layer 132 (EC 1 in FIG. 2).
  • the light emission center of the first light emitting layer 132 means a surface on which the peak of the light emission intensity distribution in the thickness direction of the first light emitting layer 132 is located. In this specification, the light emission center (EC 1 in FIG.
  • the first light emitting layer 132 is a surface that bisects the thickness of the first light emitting layer 132.
  • the optical distance L 2 in the equation (2-2) corresponds to L 2B in FIG. 2
  • the optical distance L 3 in the equation (2-3) corresponds to L 3B in FIG.
  • the light emitting center of the second light-emitting layer 152 corresponds to EC 2 in FIG. 2
  • the light emission center of the third light emitting layer 172 corresponds to the EC 3 in FIG.
  • the optical distance L 1 in the formula (2-1) (L in FIG. 2) 1T ) means the optical distance between the reflective interface 12A of the anode 12 (the surface of the anode 12 on the first light emitting layer side) and the light emission center of the first light emitting layer 132 (EC 1 in FIG. 2).
  • the optical distance L 2 in Expression (2-2) corresponds to L 2T in FIG. 2
  • the optical distance L 3 in Expression (2-3) corresponds to L 3T in FIG.
  • Emission center of the first light emitting layer 132 corresponds to EC 1 in FIG. 2
  • the light emission center of the second light-emitting layer 152 corresponds to EC 2 in FIG.
  • the light emission center of the third light-emitting layer 172 in FIG. 2 corresponds to the EC 3.
  • blue light emission refers to light emission having a main peak wavelength of an emission spectrum in the range of 430 nm to 500 nm.
  • Yellow light emission refers to light emission having a main peak wavelength in an emission spectrum in the range of 530 nm to 600.
  • Red light emission refers to light emission whose main peak wavelength in the emission spectrum is in the range of 600 nm to 660 nm.
  • Green light emission refers to light emission whose main peak wavelength in the emission spectrum is in the range of 500 nm to 560 nm.
  • main peak wavelength in the case of “main peak wavelength of light emission from the third light emitting layer” means a value measured as follows. The same applies to the “main peak wavelength” in the case of “the main peak wavelength of light emission from the second light emitting layer” and the “main peak wavelength” in the case of “the main peak wavelength of light emission from the first light emitting layer”.
  • a film in which the host material and the dopant material are co-evaporated at the same ratio as the light emitting layer in the light emitting element is formed on the quartz substrate with a thickness of 50 nm, and the fluorescence spectrophotometer F ⁇
  • the emission spectrum by photoexcitation is measured at 7000 (manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the peak wavelength at which the emission intensity is maximum is measured, and this is defined as the main peak wavelength (unit: nm).
  • Each light emitting layer is formed on a quartz substrate with a thickness of 50 nm so that the main peak wavelength when a plurality of light emitting layers are stacked has the same configuration as the stacked light emitting layers, and the fluorescence spectrophotometer F Using -7000, measure the main peak wavelength by the same method as above.
  • the third light emitting layer 172 is a blue fluorescent light emitting layer containing a blue fluorescent light emitting compound.
  • the main peak wavelength of light emitted from the third light emitting layer is preferably 430 nm or more and 500 nm or less, and more preferably 440 nm or more and 470 nm or less.
  • the first light emitting layer 132 is preferably a blue fluorescent light emitting layer.
  • the main peak wavelength of light emitted from the first light emitting layer is preferably 430 nm or more and 500 nm or less, and more preferably 440 nm or more and 470 nm or less.
  • the first light-emitting layer 132 may be a fluorescent light-emitting layer other than blue (for example, a yellow fluorescent light-emitting layer, a red fluorescent light-emitting layer, and a green fluorescent light-emitting layer). Layer, yellow phosphorescent light emitting layer, red phosphorescent light emitting layer, and green phosphorescent light emitting layer).
  • the second light emitting layer 152 is preferably a blue fluorescent light emitting layer.
  • the main peak wavelength of light emitted from the second light emitting layer 152 is preferably 430 nm or more and 500 nm or less, and more preferably 440 nm or more and 470 nm or less.
  • the second light-emitting layer 152 may be a fluorescent light-emitting layer other than blue (for example, a yellow fluorescent light-emitting layer, a red fluorescent light-emitting layer, a green fluorescent light-emitting layer, and a fluorescent light-emitting layer composed of two or more of these layers).
  • These phosphorescent light emitting layers may be used. Whether the first light emitting layer 132 and the third light emitting layer 172 are blue fluorescent light emitting layers, or the second light emitting layer 152 and the third light emitting layer 172 are blue fluorescent light emitting layers, or the first light emitting layer 132 and the second light emitting layer.
  • each blue fluorescent light emitting layer may be the same or different from each other, or blue fluorescent light emitting 1 type or 2 types or more may be included.
  • each light emitting layer the following aspects are preferable.
  • Each light emitting unit includes a light emitting layer.
  • the first light emitting layer, the second light emitting layer, and the third light emitting layer are not distinguished from each other, they may be simply referred to as “light emitting layer”.
  • Each light emitting layer may be independently a single light emitting layer or may be formed by laminating a plurality of light emitting layers.
  • the light emitting layer preferably includes a host material (sometimes referred to as a matrix material) and a dopant material (sometimes referred to as a light emitting material, a guest material, or an emitter).
  • a host material sometimes referred to as a matrix material
  • a dopant material sometimes referred to as a light emitting material, a guest material, or an emitter.
  • a known host material is used as the host material, and examples thereof include amine derivatives, azine derivatives, and condensed polycyclic aromatic derivatives.
  • the amine derivative include a monoamine compound, a diamine compound, a triamine compound, a tetramine compound, and an amine compound substituted with a carbazole group.
  • azine derivatives include monoazine derivatives, diazine derivatives, and triazine derivatives.
  • condensed polycyclic aromatic derivative a condensed polycyclic aromatic hydrocarbon having no heterocyclic skeleton is preferable, for example, condensed polycyclic aromatic hydrocarbons such as naphthalene, anthracene, phenanthrene, chrysene, fluoranthene, and triphenylene, Or these derivatives are mentioned.
  • the host material is preferably a condensed polycyclic aromatic hydrocarbon derivative, more preferably an anthracene derivative, and even more preferably an anthracene derivative represented by the following general formula (11).
  • R 101 to R 110 are each independently a hydrogen atom or a substituent, and R 101 to R 110 as a substituent are each independently A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, A substituted or unsubstituted alkylthio group having 1 to 50 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, A substituted or unsubstituted aralky
  • the number of saturated or unsaturated rings formed is preferably 1 or more (preferably 1 or more and 3 or less).
  • the saturated or unsaturated ring is preferably a substituted or unsubstituted 5-membered ring or 6-membered ring, and more preferably a substituted or unsubstituted benzene ring.
  • R 121 to R 127 are each independently a hydrogen atom or a substituent, and R 121 to R 127 as a substituent are each independently A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • at least one of R 101 to R 110 is a group represented by —L 101 —Ar 101 .
  • L 101 is a single bond or a linking group, and L 101 as the linking group is a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 30 ring atoms.
  • Ar 101 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • the two or more L 101 are the same as or different from each other.
  • the two or more Ar 101 are present, the two or more Ar 101 are the same as or different from each other.
  • the two or more R 121 are present, the two or more R 121 are the same as or different from each other.
  • the two or more R 122 are present, the two or more R 122 are the same as or different from each other.
  • the two or more R 123 are present, the two or more R 123 are the same as or different from each other.
  • the two or more R 124 are present, the two or more R 124 are the same as or different from each other.
  • the two or more R 125 are present, the two or more R 125 are the same as or different from each other.
  • the two or more R 126 are present, the two or more R 126 are the same as or different from each other.
  • the two or more R 127 are present, the two or more R 127 are the same as or different from each other.
  • R 101 to R 110 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, or a group represented by -L 101 -Ar 101 preferably a hydrogen atom, substituted or unsubstituted ring-forming carbon number 6 It is more preferably an aryl group of ⁇ 30, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, or a group represented by —L 101 —Ar 101 .
  • R 101 ⁇ R 110, R 109 and R 110 each independently represents preferably a group represented by -L 101 -Ar 101, the R 109 and R 110 At least one is preferably a group represented by -L 101 -Ar 101 .
  • At least one of R 101 to R 110 is a group represented by —L 101 —Ar 101 , and —L 101 —Ar
  • Ar 101 in the group represented by 101 is an aryl group
  • Ar 101 is preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
  • At least one of R 101 to R 110 is a group represented by —L 101 —Ar 101 , and —L 101 —Ar
  • Ar 101 in the group represented by 101 is a heterocyclic group
  • Ar 101 is a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothienyl group, a substituted or unsubstituted naphthobenzofuranyl group, Alternatively, a substituted or unsubstituted naphthobenzothienyl group is preferable.
  • the host material contained in the phosphorescent light emitting layer include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazoles.
  • the light emitting layer may contain only 1 type of host materials, and may contain 2 or more types.
  • the content of the host material is not particularly limited.
  • the content of the host material is, for example, preferably 80% by mass or more and 99.9% by mass or less, more preferably 90% by mass or more and 99.9% by mass or less, and further preferably 95% by mass or more with respect to the entire light emitting layer. It is 99.9 mass% or less.
  • a light emitting layer contains dopant material.
  • the dopant material is preferably a substance having a high light-emitting property, and various materials can be used.
  • a fluorescent material that emits fluorescence or a phosphorescent material that emits phosphorescence can be used as the dopant material.
  • the fluorescent material is a compound that can emit light from a singlet excited state
  • the phosphorescent material is a compound that can emit light from a triplet excited state.
  • the blue fluorescent light-emitting layer (at least one of the third light-emitting layer and the first light-emitting layer and the second light-emitting layer) is a blue fluorescent compound (hereinafter referred to as a blue fluorescent material) as a dopant material. Also called).
  • the first light-emitting layer or the second light-emitting layer may be a light-emitting layer other than the blue fluorescent light-emitting layer.
  • the blue fluorescent material pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, monoamine derivatives, diamine derivatives, triarylamine derivatives, and the like can be used.
  • red fluorescent material for example, tetracene derivatives and diamine derivatives can be used.
  • green fluorescent material for example, an aromatic amine derivative or the like can be used.
  • yellow fluorescent material anthracene derivatives, fluoranthene derivatives, and the like can be used.
  • blue phosphorescent material for example, metal complexes such as iridium complexes, osmium complexes, and platinum complexes can be used.
  • an iridium complex can be used as the green phosphorescent material.
  • red phosphorescent material for example, metal complexes such as iridium complex, platinum complex, terbium complex, and europium complex can be used.
  • An iridium complex or the like can be used as the yellow phosphorescent material.
  • the blue fluorescent material used for the blue fluorescent light-emitting layer is preferably a monoamine derivative or a diamine derivative represented by the following general formula (1).
  • A is A substituted or unsubstituted aryl group having 10 to 40 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 10 to 40 ring carbon atoms.
  • L 1 and L 2 are each independently Single bond, It represents a substituted or unsubstituted aryl group having 6 to 12 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 12 ring carbon atoms.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group having 6 to 25 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 25 ring carbon atoms.
  • n is 1 or 2.
  • a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms A substituted or unsubstituted aryl group having 6 to 25 ring carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 25 ring carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 25 ring carbon atoms, A substituted or unsubstituted alkoxy group having 3 to 20 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 25 ring carbon atoms, A substituted or unsubstituted arylamino group having 6 to 20 ring carbon atoms, Fluorine atom, It represents a substituted or unsubstituted alkylamino group having 1 to 20 carbon atoms or a cyano group.
  • the dopant material (blue-based fluorescent material) used for the blue fluorescent layer is not limited to these specific examples.
  • the dopant material (blue fluorescent material) used in the blue fluorescent layer is preferably a compound represented by the following general formula (D2).
  • ring ⁇ , ring ⁇ , and ring ⁇ are each independently Selected from the group consisting of a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring carbon atoms and a substituted or unsubstituted aromatic heterocyclic ring having 5 to 30 ring atoms;
  • R a and R b are each independently A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, It is selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms and a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • R a may be bonded to one or both of ring ⁇ and ring ⁇ directly or via a linking group.
  • R b may be bonded to one or both of ring ⁇ and ring ⁇ directly or via a linking group.
  • the number of ring-forming carbon atoms of the aromatic hydrocarbon ring is preferably 6 to 24, more preferably 6 to 18.
  • the aromatic hydrocarbon ring include a benzene ring, biphenyl ring, naphthalene ring, terphenyl ring (m-terphenyl ring, o-terphenyl ring, p-terphenyl ring), anthracene ring, acenaphthylene ring, fluorene.
  • a ring a phenalene ring, a phenanthrene ring, a triphenylene ring, a fluoranthene ring, a pyrene ring, a naphthacene ring, a perylene ring, and a pentacene ring.
  • the number of ring-forming atoms of the aromatic heterocyclic ring is preferably 5 to 18, more preferably 5 to 13.
  • the aromatic heterocycle contains at least one (preferably 1 to 5) ring-forming heteroatom.
  • the ring-forming heteroatom is selected from, for example, a nitrogen atom, a sulfur atom, and an oxygen atom.
  • aromatic heterocycle examples include, for example, a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, a tetrazole ring, a pyrazole ring, Pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, ⁇ azine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzo ⁇ riazole ring, quinoline ring, Isoquinoline ring, cinnoline ring, quinazoline ring, quinoxaline ring,
  • the ring ⁇ , the ring ⁇ , and the ring ⁇ are each independently a 5-membered ring or a 6-membered ring.
  • the substituent D in the case of “substituted or unsubstituted” in the ring ⁇ , the ring ⁇ , and the ring ⁇ is independently A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms; Diarylamino substituted with at least one group selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms A group, a diheteroarylamino group, or an arylheteroarylamino group, A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, It is preferably at least one group selected from the group consisting of a substituted or unsubstituted alkoxy group having 1 to 20
  • the substituent D in the case of “substituted or unsubstituted” in the ring ⁇ , the ring ⁇ , and the ring ⁇ is independently A substituted or unsubstituted aryl group having 6 to 24 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms, Diarylamino substituted with at least one group selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 24 ring carbon atoms and a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms A group, a diheteroarylamino group, or an arylheteroarylamino group, A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, More preferably, it is at least one group selected from the group consisting of a substituted or unsubstituted alkoxy group having 1
  • the substituent D in the case of “substituted or unsubstituted” in the ring ⁇ , the ring ⁇ , and the ring ⁇ is independently A substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 13 ring atoms, Diarylamino substituted with at least one group selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms and a substituted or unsubstituted heteroaryl group having 5 to 13 ring atoms A group, a diheteroarylamino group, or an arylheteroarylamino group, A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, It is more preferably at least one group selected from the group consisting of a substituted or unsubstituted alkoxy group having 1 to
  • the substituent E is independently A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, It is preferably at least one group selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms and a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • the substituent E is independently A substituted or unsubstituted aryl group having 6 to 24 ring carbon atoms, It is more preferably at least one group selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms and a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms.
  • the substituent E is independently A substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, It is more preferably at least one group selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 13 ring atoms and a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • the ring is a substituted or unsubstituted ring-forming carbon number of 6 to It is preferably a 24 aromatic hydrocarbon ring or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 18 ring atoms.
  • the ring has a substituted or unsubstituted ring-forming carbon number of 6 It is more preferably an aromatic hydrocarbon ring having from 18 to 18 or a substituted or unsubstituted aromatic heterocyclic ring having 5 to 13 ring atoms.
  • R a and R b are each independently A substituted or unsubstituted aryl group having 6 to 24 ring carbon atoms, It is preferably at least one group selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms and a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms.
  • R a and R b are each independently A substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, It is more preferably at least one group selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 13 ring atoms and a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • the linking group is —O—, —S—, or —CR c R d —, R c and R d are each independently A hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • the number of carbon atoms in the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms is preferably 1 to 10, more preferably 1 to 6.
  • each substituent in the general formula (D2) include groups described in “Description of each substituent” described later.
  • the “substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring carbon atoms” includes the following “explanation of each substituent” in addition to the aromatic hydrocarbon rings listed above.
  • the aromatic hydrocarbon ring described in 1) may be used.
  • the “substituted or unsubstituted aromatic heterocycle having 5 to 30 ring atoms” is described in “Explanation of each substituent” below in addition to the aromatic heterocycles listed above. Aromatic heterocycles may be used.
  • the dopant material (blue fluorescent material) used for the blue fluorescent layer is preferably a compound represented by the following general formula (D3).
  • R 11 to R 20 and R a1 to R a10 are each independently a hydrogen atom or a substituent, provided that a group of R 11 and R 12, a group of R 12 and R 13, a group of R 13 and R 14 Set, R 14 and R 15 set, R 15 and R 16 set, R 17 and R 18 set, R 18 and R 19 set, R 19 and R 20 set, R a1 and R a2 set, R a2 and R a3 set, R a3 and R a4 set, R a4 and R a5 , R a6 and R a7 set, R a7 and R a8 set, R a8 and R a9 set, and R a9 and R any one or more groups of a10 are bonded to each other to form a saturated or unsaturated ring having 3 to 30 substituted or unsubstituted ring-forming atoms, R 11 to R 20 and R a1 to R a10 as substituents are each independently
  • a partial structure represented by the following general formula (D3-1) can be mentioned.
  • three of R 18 , R 19 and R 20 adjacent to each other are bonded to each other to form a ring.
  • the partial structure represented by the following general formula (D3-1) may have a substituent depending on the types of R 18 , R 19 , and R 20 . * Represents a bonding position.
  • a partial structure represented by the following general formula (D3-2) can be given.
  • two sets of R 12 and R 13 and R 14 and R 15 are bonded to each other to form two separate rings.
  • the partial structure represented by the following general formula (D3-2) may have a substituent depending on the types of R 12 , R 13 , R 14 , and R 15 . * Represents a bonding position.
  • the ring is formed as a saturated or unsaturated group having 3 to 30 substituted or unsubstituted ring-forming atoms in which R 12 and R 13 in the general formula (D3) are bonded to each other.
  • a mode of forming a ring (hereinafter also referred to as mode A) is also included.
  • the partial structure is not limited to the partial structures represented by the general formulas (D3-1) to (D3-2). Further, the mode for forming the ring is not limited to mode A.
  • a light emitting layer may contain only 1 type of dopant material, and may contain 2 or more types.
  • the content of the dopant material is not particularly limited.
  • the content of the dopant material is, for example, preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less, and further preferably 0.1% by mass with respect to the entire light emitting layer. % To 5% by mass.
  • the thickness of the first light emitting layer (the total thickness in the case where there are a plurality of layers) is preferably 5 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 15 nm to 60 nm.
  • the thickness of the second light-emitting layer (the total thickness in the case of having a plurality of layers) is preferably 5 nm to 100 nm, more preferably 10 nm to 80 nm, and further preferably 15 nm to 60 nm.
  • the thickness of the third light emitting layer (the total thickness in the case of having a plurality of layers) is preferably 5 nm to 100 nm, more preferably 10 nm to 80 nm, and further preferably 15 nm to 60 nm.
  • the thicknesses of the first light emitting layer, the second light emitting layer, and the third light emitting layer may be the same or different.
  • examples of the layer constituting the hole transport zone include a hole injection layer and an electron barrier layer in addition to the hole transport layer.
  • the hole transport layer is a layer containing a substance having a high hole transport property (preferably a hole mobility of 10 ⁇ 6 cm 2 / [V ⁇ s] or more).
  • An aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used for the hole transport layer.
  • the hole-transporting layer includes 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB), N, N′-bis (3-methylphenyl).
  • carbazole derivatives such as CBP, CzPA, and PCzPA
  • anthracene derivatives such as t-BuDNA, DNA, and DPAnth
  • High molecular compounds such as poly (N-vinylcarbazole) (abbreviation: PVK) and poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK N-vinylcarbazole
  • PVTPA poly (4-vinyltriphenylamine
  • the layer containing a substance having a high hole-transport property is not limited to a single layer, and two or more layers containing the above substances may be stacked.
  • the hole injection layer is a layer containing a substance having a high hole injection property.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxide, manganese oxide, or the like can be used.
  • Examples of the substance having a high hole-injecting property include 4,4 ′, 4 ′′ -tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4, which are low molecular organic compounds.
  • a high molecular compound (oligomer, dendrimer, polymer, or the like) can also be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK)
  • poly (4-vinyltriphenylamine) (abbreviation: PVTPA)
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide
  • PTPDMA poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine]
  • Poly-TPD Poly-TPD
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (PEDOT / PSS) and polyaniline / poly (styrenesulfonic acid) (PAni / PSS) is added can also be used.
  • examples of the layer constituting the electron transport zone include an electron injection layer and a hole barrier layer in addition to the electron transport layer.
  • the electron transport layer is a layer containing a substance having a high electron transport property (preferably an electron mobility of 10 ⁇ 6 cm 2 / [V ⁇ s] or more).
  • a substance having a high electron transport property preferably an electron mobility of 10 ⁇ 6 cm 2 / [V ⁇ s] or more.
  • metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes
  • heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, and phenanthroline derivatives
  • 3) high Molecular compounds can be used.
  • Alq tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), BAlq , Znq, ZnPBO, and metal complexes such as ZnBTZ can be used.
  • the electron-transport layer is not limited to a single layer, and two or more layers including the above substances may be stacked.
  • a high molecular compound can also be used for an electron carrying layer.
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly [(9,9-dioctylfluorene- 2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) or the like can be used.
  • An electron injection layer is a layer containing a substance with high electron injection property.
  • An alkali metal, an alkaline earth metal, or a compound thereof can be used.
  • other materials having an electron transporting property containing alkali metal, alkaline earth metal, or a compound thereof, specifically, Alq containing magnesium (Mg), etc. May be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, or the like) constituting the above-described electron transport layer is used. be able to.
  • the electron donor may be any substance that exhibits an electron donating property to the organic compound.
  • the electron donor is preferably an alkali metal, an alkaline earth metal, or a rare earth metal, and examples thereof include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • an alkali metal oxide and an alkaline-earth metal oxide are preferable, and lithium oxide, calcium oxide, barium oxide, etc. are mentioned.
  • a Lewis base such as magnesium oxide can also be used.
  • An organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the thickness of the first electron transport zone (the total thickness in the case of being composed of a plurality of layers) is preferably 0 nm or more and 200 nm or less, more preferably 0 nm or more and 150 nm or less. More preferably, it is 0 nm or more and 100 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the thickness of the second electron transport zone (the total thickness in the case of being composed of a plurality of layers) is preferably 0 nm to 200 nm, more preferably 0 nm to 150 nm.
  • the thickness of the third electron transport zone (the total thickness in the case of a plurality of layers) is preferably 0 nm to 200 nm, more preferably 0 nm to 150 nm. More preferably, it is 0 nm or more and 100 nm or less, and more preferably 5 nm or more and 100 nm or less.
  • the first charge generation layer includes a first N layer on the anode side and a first P layer on the cathode side.
  • the second charge generation layer includes a second N layer on the anode side and a second P layer on the cathode side.
  • the first charge generation layer may have another layer (for example, an organic layer, a metal layer, a metal oxide layer, or the like) between the first N layer and the first P layer.
  • the second charge generation layer may have the other layer between the second N layer and the second P layer.
  • the N layer preferably contains a ⁇ electron deficient compound and an electron donating material.
  • ⁇ -electron deficient compound examples include compounds capable of coordinating with metal atoms. Specific examples include phenanthroline compounds, benzimidazole compounds, and quinolinol.
  • phenanthroline-based compound compounds represented by the following formulas (I ′) to (III ′) are preferable. Among these, compounds represented by the following formula (I ′) or (II ′) are preferable.
  • R 1a to R 7a , R 1b to R 7b , and R 1c to R 6c are each independently Hydrogen atom, A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted pyridyl group, A substituted or unsubstituted quinolyl group, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted arylthio group having 6 to 30
  • R 1a to R 7a , R 1b to R 7b , or R 1c to R 6c adjacent ones may be bonded to each other to form a ring.
  • the ring include a benzene ring, a naphthalene ring, a pyrazine ring, a pyridine ring, and a furan ring.
  • L 1a and L 1b are each independently a single bond or a linking group.
  • L 1a and L 1b as a linking group are each independently a substituted or unsubstituted aromatic group having 6 to 20 ring carbon atoms, a substituted or unsubstituted alkylene chain having 1 to 8 carbon atoms, substituted or unsubstituted Of the heterocyclic ring.
  • a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted methylene chain, or a substituted or unsubstituted pyridine ring is preferable.
  • Ar 1a , Ar 1b , Ar 1c and Ar 2c are each independently a substituted or unsubstituted aromatic group having 6 to 30 ring carbon atoms.
  • n is 1 to 4, and when n is 2 or more, the groups having a phenanthroline skeleton in parentheses may be the same or different.
  • Specific examples of the compounds represented by formulas (I ′) to (III ′) are shown below.
  • an electron-donating material an electron-donating metal simple substance, a metal compound, and a metal complex are mentioned.
  • the electron donating material include alkali metals, alkali metal compounds, organometallic complexes containing alkali metals, alkaline earth metals, alkaline earth metal compounds, organometallic complexes containing alkaline earth metals, and rare earth metals.
  • a layer containing at least one of a rare earth metal compound and an organometallic complex containing a rare earth metal is preferable. Among them, it is preferable to contain at least one of alkali metal, alkaline earth metal, rare earth metal, rare earth metal compound, and rare earth metal complex.
  • -P layer P layer is a layer containing acceptor material.
  • the P layer may be a layer doped with an acceptor material (P-doped layer).
  • acceptor material is an organic material
  • examples of the acceptor material include a compound represented by the following general formula (I) (indenofluorangeone derivative) and the following general formula (III). The compound etc. which are represented by these are mentioned.
  • examples of the acceptor material include molybdenum oxide (MoO 3 ), vanadium oxide (V 2 O 5 ), and transparent oxides (for example, ITO and IZO).
  • an acceptor material can be appropriately selected and used from the “substances with a high hole injection property” exemplified in the section of the hole injection layer.
  • the first hole transport zone, the second hole transport zone, and the third hole transport zone refer to regions that do not contain an acceptor material.
  • acceptor material used for the P layer for example, a compound represented by the following general formula (I) (indenofluorangeone derivative) can be used.
  • Ar 1 is an aromatic ring having 6 to 24 nuclear carbon atoms or a heterocyclic ring having 5 to 24 nuclear atoms, preferably an aromatic ring having 6 to 14 nuclear carbon atoms or 5 to 14 nuclear atoms. Heterocycle.
  • the aromatic ring include benzene ring, naphthalene ring, fluorene ring, 9,9-dimethylfluorene ring, and 9,9-dioctylfluorene ring.
  • heterocyclic ring examples include a pyrazine ring, a pyridine ring, a quinoxaline ring, a thiophene ring, a benzothiophene ring, a dibenzothiophene ring, a furan ring, a benzofuran ring, a dibenzofuran ring, a phenanthroline ring, a naphthyridine ring, and a tetraazaanthracene ring.
  • the aromatic ring and heterocyclic ring may be substituted with R 1 to R 4 described below.
  • nuclear carbon means a carbon atom constituting an aromatic ring
  • nuclear atom means a carbon atom and a hetero atom constituting a heterocyclic ring (including a saturated ring, an unsaturated ring and an aromatic heterocyclic ring). Means an atom.
  • Rg 1 and Rg 2 may be the same or different from each other, and are represented by the following general formula (i) or general formula (ii).
  • X 1 and X 2 may be the same as or different from each other, and are any of divalent groups represented by the following general formulas (a) to (g). )
  • R 21 to R 24 may be the same as or different from each other, and each represents a hydrogen atom, a substituted or unsubstituted fluoroalkyl group, a substituted or unsubstituted alkyl group, a substituted Or it is an unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and R 22 and R 23 may be bonded to each other to form a ring.
  • R 1 to R 5 that are adjacent to each other may be bonded to each other to form a ring.
  • R 1 to R 4 may be the same or different from each other, and are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl.
  • R 1 and R 2 may combine with each other to form a ring.
  • R 3 and R 4 may combine with each other to form a ring.
  • acceptor material used for the P layer for example, a compound represented by the following general formula (III) can also be used.
  • R 1C to R 6C each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted group.
  • the substrate is used as a support for the light emitter.
  • glass, quartz, plastic, or the like can be used as the substrate.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), for example, a plastic substrate made of polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride. It is done.
  • an inorganic vapor deposition film can also be used.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function specifically, 4.0 eV or more.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more).
  • ITO indium tin oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide
  • tungsten oxide tungsten oxide
  • indium oxide containing zinc oxide tungsten oxide
  • graphene graphene.
  • Au gold
  • platinum (Pt) nickel
  • tungsten (W) chromium
  • Mo molybdenum
  • iron (Fe) iron
  • cobalt (Co) copper
  • Cu palladium
  • Pd titanium
  • titanium nitride titanium nitride
  • indium oxide-zinc oxide is a target in which 1 to 10 wt% of zinc oxide is added to indium oxide, tungsten oxide, and indium oxide containing zinc oxide is 0.5 to 0.5 in tungsten oxide relative to indium oxide.
  • the hole injection layer formed in contact with the anode is formed using a composite material that facilitates hole injection regardless of the work function of the anode.
  • a material that can be used as an electrode material for example, a metal, an alloy, an electrically conductive compound, and a mixture thereof, or an element belonging to Group 1 or Group 2 of the periodic table) can be used.
  • An element belonging to Group 1 or Group 2 of the periodic table of elements which is a material having a low work function, that is, an alkali metal such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca), and strontium ( Alkaline earth metals such as Sr) and alloys containing these (for example, MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • an alkali metal such as lithium (Li) and cesium (Cs)
  • a vacuum evaporation method or a sputtering method can be used.
  • the anode is preferably formed of a metal material having a light transmitting property or a semi-transmitting property that transmits light from the light emitting layer.
  • light-transmitting or semi-transmitting means a property of transmitting light emitted from the light emitting layer by 50% or more (preferably 80% or more).
  • the light-transmitting or semi-transmitting metal material can be appropriately selected from the materials listed in the section of the anode and used.
  • the organic EL element is a top emission type
  • the anode is a reflective electrode having a reflective layer.
  • the reflective layer is preferably formed of a metal material having light reflectivity.
  • the light reflectivity means a property of reflecting 50% or more (preferably 80% or more) of light emitted from the light emitting layer.
  • the metal material having light reflectivity can be appropriately selected from the materials listed in the section of the anode.
  • the anode may be composed of only a reflective layer, but may have a multilayer structure having a reflective layer and a conductive layer (preferably a transparent conductive layer). When the anode includes a reflective layer and a conductive layer, the conductive layer is preferably disposed between the reflective layer and the hole transport zone. The conductive layer can be used by appropriately selecting from the materials listed in the section of the anode.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less) for the cathode.
  • a cathode material include elements belonging to Group 1 or Group 2 of the periodic table of elements, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca). And alkaline earth metals such as strontium (Sr), and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these.
  • a vacuum evaporation method or a sputtering method can be used.
  • coating method, the inkjet method, etc. can be used.
  • a cathode is formed using various conductive materials such as indium oxide-tin oxide containing Al, Ag, ITO, graphene, silicon, or silicon oxide regardless of the work function. can do. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • the cathode is a reflective electrode.
  • the reflective electrode is preferably formed of a metal material having light reflectivity.
  • the metal material having light reflectivity can be appropriately selected from the materials listed in the section of the cathode.
  • the cathode is preferably formed of a light-transmitting or semi-transmitting metal material that transmits light from the light emitting layer.
  • the light-transmitting or semi-transmitting metal material can be appropriately selected from the materials listed in the section of the cathode.
  • the organic EL element When the organic EL element is a top emission type, the organic EL element usually includes a capping layer on the cathode.
  • a capping layer for example, a polymer compound, a metal oxide, a metal fluoride, a metal boride, silicon nitride, a silicon compound (such as silicon oxide), or the like can be used.
  • Aromatic amine derivatives, anthracene derivatives, pyrene derivatives, fluorene derivatives, or dibenzofuran derivatives can also be used for the capping layer.
  • a stacked body in which layers containing these substances are stacked can also be used as the capping layer.
  • the layer thickness of the light emitting layer provided between the anode and the cathode is not particularly limited except for those specifically defined in the above description. However, if the thickness is too thick, a high applied voltage is required and the efficiency is deteriorated. Therefore, the range of several nm to 1 ⁇ m is usually preferable.
  • each layer can be formed on a substrate by vacuum deposition, casting, coating, spin coating, or the like.
  • coating method spin coating method using a solution in which an organic material of each layer is dispersed in a transparent polymer such as polycarbonate, polyurethane, polystyrene, polyarylate, and polyester, the organic material and the transparent polymer It can also be formed by simultaneous vapor deposition.
  • the organic EL device of the second embodiment is an organic EL device in which the hole transport zone (third hole transport zone) of the third light emitting unit is composed of two or more hole transport layers among the respective light emitting units. . Since other points are the same as those of the organic EL element of the first embodiment, the description is omitted or simplified. It is considered that the organic EL device of the second embodiment can efficiently inject holes from the second charge generation layer when the third hole transport zone is composed of two or more hole transport layers. .
  • the hole transport layer may also have an electron blocking function, it may be referred to as an electron barrier layer.
  • the material contained in the hole transport layer usually has exciton resistance
  • the hole transport layer, the third light emitting layer Deterioration of the interface can be suppressed.
  • the lifetime of an organic EL element becomes easier to improve.
  • the material included in the hole transport layer generally has an energy gap larger than that of the host material included in the third light-emitting layer (for example, compound BH used in the examples)
  • the material in the third hole transport zone is 2
  • a drive voltage can be reduced and a lifetime can be improved.
  • an improvement in luminous efficiency (preferably the luminous efficiency of blue fluorescent light emission) is also expected.
  • the hole transport zone (third hole transport zone) of the third light emitting unit is preferably composed of two or more layers (preferably two layers or more and four layers or less), More preferably, it consists of two layers. Specifically, it is more preferably composed of two hole transport layers.
  • the hole transport zone (second hole transport zone) of the second light emitting unit is preferably composed of two or more layers (preferably two layers or more and four layers or less), More preferably, it consists of two layers. Specifically, it is more preferably composed of two hole transport layers.
  • the hole transport zone (first hole transport zone) of the first light emitting unit is preferably composed of 3 layers or more (preferably 3 layers or more and 5 layers or less), more preferably 3 layers. Specifically, it is preferably composed of one hole injection layer in contact with the anode side and two hole transport layers laminated on the hole injection layer.
  • FIG. 3 is a diagram illustrating a schematic configuration of an example of the organic EL element according to the second embodiment.
  • the organic EL element shown in FIG. 3 is composed of two hole transport layers in the third hole transport zone and the second hole transport zone, compared to the organic EL element 1 shown in FIG. Is different from the organic EL device of the first embodiment in that it consists of one hole injection layer and two hole transport layers.
  • the organic EL element 2 includes an anode 12, a first light emitting unit 13A, a first charge generating layer 14, a second light emitting unit 15A, a second charge generating layer 16, and a third light emitting unit 17A on the substrate 11.
  • the cathode 18 are laminated in this order.
  • the thickness d 3 (total of d 31 and d 32 ) of the third hole transport zone 171 is 10 nm or more and 30 nm or less, and is thinner than the thickness d N of the second N layer 161.
  • the third hole transport zone 171 is composed of a first hole transport layer 171A and a second hole transport layer 171B in order from the anode side, and the first hole transport layer 171A is a P of the second charge generation layer 16.
  • the second hole transport zone 151 includes, in order from the anode side, a first hole transport layer 151A and a second hole transport layer 151B, and the first hole transport layer 151A is a P of the first charge generation layer 14. In contact with the layer 142.
  • the first hole transport zone 131 includes, in order from the anode side, a hole injection layer 131C, a first hole transport layer 131A, and a second hole transport layer 131B, and the hole injection layer 131C serves as the anode 12. Touching.
  • the thickness of the first hole transport layer in each hole transport zone is preferably independently 2 nm or more and 38 nm or less, more preferably 5 nm or more and 25 nm or less. More preferably, it is 5 nm or more and 15 nm or less.
  • the thickness of the second hole transport layer in each hole transport zone is preferably independently 2 nm or more and 38 nm or less, more preferably 5 nm or more and 25 nm or less. More preferably, it is 5 nm or more and 15 nm or less.
  • the ratio of the thickness of the second hole transport layer to the thickness of the first hole transport layer in each hole transport zone (in FIG. 3, d 12 / d 11 , d 22 / d 21 , and d 32 / d 31 ) are each independently preferably 0.05 or more and 19 or less, more preferably 0.2 or more and 5 or less, and still more preferably 0.3 or more and 3 or less.
  • the electronic device of this embodiment is equipped with the organic EL element of the first embodiment or the second embodiment.
  • the electronic device include a display device and a light emitting device.
  • the display device include display components (for example, an organic EL panel module), a television, a mobile phone, a tablet, and a personal computer.
  • the light emitting device include lighting and vehicle lamps. According to the electronic apparatus of this embodiment, since the organic EL element of this embodiment is mounted, the drive voltage can be reduced and the life can be improved.
  • a numerical range expressed using “to” means a range including a numerical value described before “to” as a lower limit and a numerical value described after “to” as an upper limit. To do.
  • Rx and Ry are bonded to each other to form a ring.
  • Rx and Ry include a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, or a silicon atom, and an atom (carbon atom) contained in Rx.
  • a nitrogen atom, an oxygen atom, a sulfur atom or a silicon atom) and an atom (carbon atom, nitrogen atom, oxygen atom, sulfur atom or silicon atom) contained in Ry is a single bond, a double bond, a triple bond, or It means that they are bonded via a divalent linking group to form a ring having 5 or more ring carbon atoms (specifically, a heterocyclic ring or an aromatic hydrocarbon ring).
  • x is a number, a letter, or a combination of a number and a letter.
  • y is a number, a letter, or a combination of a number and a letter.
  • the divalent linking group e.g., -O -, - CO -, - CO 2 -, - S -, - SO -, - SO 2 -, - NH -, - NRa-, and their And a combination of two or more linking groups.
  • heterocyclic ring examples include a ring structure in which a bond is removed from the “heteroaryl group having 5 to 30 ring atoms” exemplified in “Description of each substituent in the general formula” described later. Is mentioned. These heterocycles may have a substituent.
  • aromatic hydrocarbon ring examples include a ring structure in which a bond is removed from the “aryl group having 6 to 30 ring carbon atoms” exemplified in “Description of each substituent in the general formula” described later. Group hydrocarbon ring). These aromatic hydrocarbon rings may have a substituent.
  • Ra examples include a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, and a substituted or unsubstituted hetero ring having 5 to 30 ring atoms.
  • An aryl group etc. are mentioned.
  • Rx and Ry are bonded to each other to form a ring.
  • an atom contained in Rx 1 and an atom contained in Ry 1 are represented by the general formula ( Forming a ring (ring structure) E represented by E2); in the molecular structure represented by the general formula (F1), an atom contained in Rx 1 and an atom contained in Ry 1 are represented by the general formula ( to form a ring F represented by F2); in the molecular structure represented by the general formula (G1), and atoms contained in Rx 1, and the atoms contained in Ry 1, Table general formula (G2) Forming a ring G; in the molecular structure represented by the general formula (H1), an atom contained in Rx 1 and an atom contained in Ry 1 are represented by the ring H represented by the general formula (H2) In the molecular structure represented by the general formula (I1), included in Rx 1 And the atom contained in Ry 1 form a ring I represented by the general formula (I2).
  • E to I each represent a ring structure (the ring having 5 or more ring-forming atoms).
  • * each independently represents a bonding position with another atom in one molecule.
  • Two * in the general formula (E2) correspond to two * in the general formula (E1), respectively.
  • the two * s in the general formulas (F2) to (I2) correspond to the two * s in the general formulas (F1) to (I1), respectively.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms means a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocyclic compound) having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly).
  • a compound for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocyclic compound having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly).
  • the ring compound represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring or atoms included in a substituent when the ring is substituted by a substituent are not included in the number of ring
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring atoms
  • the quinazoline ring has 10 ring atoms
  • the furan ring has 5 ring atoms.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms.
  • a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • Examples of the aryl group having 6 to 30 ring carbon atoms in this specification include, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
  • the aryl group preferably has a ring-forming carbon number of 6 to 20, more preferably 6 to 14, and further preferably 6 to 12.
  • a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a terphenyl group, and a fluorenyl group are even more preferable.
  • the substituted or unsubstituted alkyl group having 1 to 30 carbon atoms in the present specification, which will be described later, on the 9-position carbon atom it is preferable that the substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms is substituted.
  • a heteroaryl group having 5 to 30 ring-forming atoms (sometimes referred to as a heterocyclic group, a heteroaromatic cyclic group, or an aromatic heterocyclic group) includes nitrogen, sulfur, oxygen as a heteroatom.
  • it contains at least any atom selected from the group consisting of silicon, selenium atoms, and germanium atoms, and more preferably contains at least any atom selected from the group consisting of nitrogen, sulfur, and oxygen. preferable.
  • heterocyclic group having 5 to 30 ring atoms in the present specification examples include, for example, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinolyl group, isoquinolinyl group, naphthyridinyl group, phthalazinyl group, quinoxalinyl group, Quinazolinyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, tetrazolyl group, indolyl group, benzimidazolyl group, indazolyl group, imidazolpyridinyl group, benz Triazolyl, carbazolyl, furyl, thienyl, oxazolyl, thiazolyl, isoxazolyl, is
  • the number of ring-forming atoms of the heterocyclic group is preferably 5 to 20, and more preferably 5 to 14.
  • 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothienyl group, 2-dibenzothienyl group, 3-dibenzothienyl group Even more preferred are the group, 4-dibenzothienyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, and 9-carbazolyl group.
  • the 9-position nitrogen atom has a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms in the present specification, A substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms is preferably substituted.
  • the heterocyclic group may be a group derived from a partial structure represented by the following general formulas (XY-1) to (XY-18), for example.
  • X A and Y A are each independently a hetero atom, and an oxygen atom, a sulfur atom, a selenium atom, a silicon atom, or a germanium atom Is preferred.
  • the partial structures represented by the general formulas (XY-1) to (XY-18) have a bond at an arbitrary position to be a heterocyclic group, and this heterocyclic group has a substituent. Also good.
  • substituted or unsubstituted carbazolyl group for example, a ring further condensed with a carbazole ring as represented by the following general formulas (XY-19) to (XY-22) Groups can also be included. Such a group may also have a substituent. Also, the position of the joint can be changed as appropriate.
  • the alkyl group having 1 to 30 carbon atoms may be linear, branched or cyclic. Further, it may be a halogenated alkyl group.
  • linear or branched alkyl group examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, amyl group, isoamyl group, 1-methylpentyl group, 2-methylpentyl group, is
  • the linear or branched alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group Even more preferred are amyl groups, isoamyl groups, and neopentyl groups.
  • Examples of the cyclic alkyl group in the present specification include a cycloalkyl group having 3 to 30 ring carbon atoms.
  • examples of the cycloalkyl group having 3 to 30 ring carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, an adamantyl group, and a norbornyl group.
  • the ring-forming carbon number of the cycloalkyl group is preferably 3 to 10, and more preferably 5 to 8.
  • a cyclopentyl group and a cyclohexyl group are even more preferable.
  • halogenated alkyl group in which the alkyl group in the present specification is substituted with a halogen atom include a group in which the alkyl group having 1 to 30 carbon atoms is substituted with one or more halogen atoms, preferably a fluorine atom. .
  • halogenated alkyl group having 1 to 30 carbon atoms in the present specification examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, a trifluoroethyl group, and a pentafluoroethyl group.
  • Examples of the substituted silyl group in the present specification include an alkylsilyl group having 3 to 30 carbon atoms and an arylsilyl group having 6 to 30 ring carbon atoms.
  • alkylsilyl group having 3 to 30 carbon atoms in the present specification examples include a trialkylsilyl group having an alkyl group exemplified as the alkyl group having 1 to 30 carbon atoms, specifically, a trimethylsilyl group and a triethylsilyl group.
  • the three alkyl groups in the trialkylsilyl group may be the same as or different from each other.
  • Examples of the arylsilyl group having 6 to 30 ring carbon atoms in the present specification include a dialkylarylsilyl group, an alkyldiarylsilyl group, and a triarylsilyl group.
  • dialkylarylsilyl group examples include a dialkylarylsilyl group having two alkyl groups exemplified as the alkyl group having 1 to 30 carbon atoms and one aryl group having 6 to 30 ring carbon atoms. .
  • the carbon number of the dialkylarylsilyl group is preferably 8-30.
  • alkyldiarylsilyl group examples include an alkyldiarylsilyl group having one alkyl group exemplified for the alkyl group having 1 to 30 carbon atoms and two aryl groups having 6 to 30 ring carbon atoms. .
  • the alkyldiarylsilyl group preferably has 13 to 30 carbon atoms.
  • triarylsilyl group examples include a triarylsilyl group having three aryl groups having 6 to 30 ring carbon atoms.
  • the carbon number of the triarylsilyl group is preferably 18-30.
  • the alkylsulfonyl group is represented by —SO 2 R w .
  • R w in -SO 2 R w represents a substituted or unsubstituted alkyl group.
  • R w in the -SO 2 R w is is a substituted or unsubstituted alkyl groups of 1 to 30 carbon atoms group Can be mentioned.
  • the aryl group in the aralkyl group (sometimes referred to as an arylalkyl group) is an aromatic hydrocarbon group or a heterocyclic group.
  • the aralkyl group having 7 to 30 carbon atoms is preferably a group having an aryl group having 6 to 30 ring carbon atoms, and is represented by —Z 3 —Z 4 .
  • Z 3 include an alkylene group corresponding to the alkyl group having 1 to 30 carbon atoms.
  • this Z 4 include the above-mentioned aryl groups having 6 to 30 ring carbon atoms.
  • the aryl moiety has 6 to 30 carbon atoms (preferably 6 to 20, more preferably 6 to 12), and the alkyl moiety has 1 to 30 carbon atoms (preferably 1 to 20, more preferably 1 to 10 carbon atoms). More preferably, it is 1 to 6).
  • Examples of the aralkyl group include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-t-butyl.
  • ⁇ -naphthylmethyl group 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ - Examples include naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, and the like.
  • an alkoxy group having 1 to 30 carbon atoms is represented as —OZ 1 .
  • Z 1 include the above alkyl groups having 1 to 30 carbon atoms.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkoxy group preferably has 1 to 20 carbon atoms.
  • halogenated alkoxy group in which the alkoxy group is substituted with a halogen atom include a group in which the alkoxy group having 1 to 30 carbon atoms is substituted with one or more fluorine atoms.
  • the aryl group in the aryloxy group (sometimes referred to as an arylalkoxy group) includes a heteroaryl group.
  • an arylalkoxy group having 6 to 30 ring carbon atoms is represented by —OZ 2 .
  • Z 2 include, for example, the above aryl group having 6 to 30 ring carbon atoms.
  • the number of carbon atoms forming the arylalkoxy group is preferably 6-20.
  • the arylalkoxy group include a phenoxy group.
  • the substituted amino group in this specification is represented as —NHR V or —N (R V ) 2 .
  • RV include the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 30 ring carbon atoms.
  • the alkenyl group having 2 to 30 carbon atoms is either a straight chain or branched chain, and examples thereof include a vinyl group, a propenyl group, a butenyl group, an oleyl group, an eicosapentaenyl group, and a docosahexaenyl group.
  • the alkynyl group having 2 to 30 carbon atoms may be linear or branched, and examples thereof include ethynyl, propynyl, 2-phenylethynyl and the like.
  • an alkylthio group having 1 to 30 carbon atoms and an arylthio group having 6 to 30 ring carbon atoms are represented as —SR V.
  • Examples of RV include the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 30 ring carbon atoms.
  • the alkylthio group preferably has 1 to 20 carbon atoms.
  • the ring-forming carbon number of the arylthio group is preferably 6-20.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • Examples of the substituted phosphino group in the present specification include a phenyl phosphanyl group.
  • an arylcarbonyl group having 6 to 30 ring carbon atoms is represented as —COY ′.
  • Y ′ include the above-mentioned “aryl group having 6 to 30 ring carbon atoms”.
  • Examples of the arylcarbonyl group having 6 to 30 ring carbon atoms in the present specification include a phenylcarbonyl group, a diphenylcarbonyl group, a naphthylcarbonyl group, and a triphenylcarbonyl group.
  • an acyl group having 2 to 31 carbon atoms is represented as —COR ′.
  • R ′ include the above-described alkyl groups having 1 to 30 carbon atoms.
  • Examples of the acyl group having 2 to 31 carbon atoms in the present specification include an acetyl group and a propionyl group.
  • the substituted phosphoryl group in this specification is represented by the following general formula (P).
  • Ar P1 and Ar P2 are each an alkyl group having 1 to 30 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms), and 6 to 6 ring-forming carbon atoms. Examples thereof include any substituent selected from the group consisting of 30 (preferably 6 to 20 ring-forming carbon atoms, more preferably 6 to 14) aryl groups. Examples of the alkyl group having 1 to 30 carbon atoms include the aforementioned alkyl groups having 1 to 30 carbon atoms. Examples of the aryl group having 6 to 30 ring carbon atoms include the aryl groups having 6 to 30 ring carbon atoms described above.
  • alkylester group As an ester group in this specification, an alkylester group is mentioned, for example.
  • the alkyl ester group is represented by —C ( ⁇ O) OR E.
  • R E include the substituted or unsubstituted alkyl group.
  • the siloxanyl group in this specification is a silicon compound group via an ether bond, and examples thereof include a trimethylsiloxanyl group.
  • ring-forming carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (Protium), deuterium (Deuterium), and tritium (Tritium).
  • the substituent in the case of “substituted or unsubstituted” includes an aryl group having 6 to 30 ring carbon atoms, a heteroaryl group having 5 to 30 ring atoms, and a straight chain having 1 to 30 carbon atoms.
  • Chain alkyl group branched alkyl group having 3 to 30 carbon atoms, cycloalkyl group having 3 to 30 ring carbon atoms, halogenated alkyl group having 1 to 30 carbon atoms, substituted or unsubstituted silyl group (for example, carbon An alkylsilyl group having 3 to 30 carbon atoms, an arylsilyl group having 6 to 30 ring carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 ring carbon atoms, a substituted or unsubstituted group.
  • alkylthio group having 1 to 30 carbon atoms arylthio group having 6 to 30 ring carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkenyl group having 2 to 30 carbon atoms, halogen atom, carbon number Alkynyl group to 30, a cyano group, a hydroxy group, a nitro group, and at least one group selected from the group consisting of a carboxy group and a substituted phosphoryl group,.
  • substituent in the case of “substituted or unsubstituted” include a diarylboron group (Ar B1 Ar B2 B—).
  • Ar B1 and Ar B2 include the above-mentioned “aryl group having 6 to 30 ring carbon atoms”. Specific examples and preferred groups of the substituent in the case of “substituted or unsubstituted” include the same groups as the specific examples and preferred groups of the substituent in “Description of each substituent”.
  • the substituent in the case of “substituted or unsubstituted” includes an aryl group having 6 to 30 ring carbon atoms, a heteroaryl group having 5 to 30 ring atoms, a linear alkyl group having 1 to 30 carbon atoms, and a carbon number A branched alkyl group having 3 to 30 carbon atoms, a cycloalkyl group having 3 to 30 ring carbon atoms, a halogenated alkyl group having 1 to 30 carbon atoms, an alkylsilyl group having 3 to 30 carbon atoms, and 6 to 30 ring carbon atoms.
  • unsubstituted means that a hydrogen atom is bonded without being substituted with the above substituent.
  • carbon number XX to YY in the expression “substituted or unsubstituted ZZ group having XX to YY carbon atoms” represents the number of carbon atoms in the case where the ZZ group is unsubstituted and substituted. In this case, the number of carbon atoms in the substituent is not included.
  • atom number XX to YY in the expression “a ZZ group having a substituted or unsubstituted atom number XX to YY” represents the number of atoms when the ZZ group is unsubstituted and substituted. The number of atoms of the substituent in the case is not included.
  • the structure of the ring is a saturated ring, an unsaturated ring, an aromatic hydrocarbon ring, or a heterocyclic ring.
  • examples of the aromatic hydrocarbon group and the heterocyclic group in the linking group include divalent or higher groups obtained by removing one or more atoms from the above-described monovalent group.
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatek Co., Ltd.) was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol and then UV ozone cleaning for 1 minute.
  • the film thickness of ITO was 130 nm.
  • the glass substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the compound is first covered with the transparent electrode on the surface where the transparent electrode line is formed.
  • HT-1 and compound HI were co-evaporated to form a 10 nm-thick hole injection layer.
  • the concentration of Compound HT-1 in the hole injection layer was 97% by mass, and the concentration of Compound HI was 3% by mass.
  • Compound HT-1 was deposited on the hole injection layer to form a first hole transport layer having a thickness of 117 nm.
  • Compound HT-2 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 10 nm.
  • the compound PGH-1 and the compound PGD were co-evaporated to form a yellow phosphorescent light emitting layer as a first light emitting layer having a thickness of 40 nm.
  • the concentration of compound PGH-1 in the yellow phosphorescent light emitting layer was 80% by mass, and the concentration of compound PGD was 20% by mass.
  • Compound ET-1 was vapor-deposited on this yellow phosphorescent light emitting layer to form an electron transport layer having a thickness of 10 nm.
  • the compound ET-2 and lithium (Li) were co-evaporated to form a first N layer having a thickness of 10 nm.
  • the concentration of compound ET-2 in the first N layer was 96% by mass, and the concentration of Li was 4% by mass.
  • Compound HT-1 and Compound HI were co-evaporated on the first N layer to form a first P layer having a thickness of 10 nm.
  • the concentration of Compound HT-1 in the first P layer was 90% by mass, and the concentration of Compound HI was 10% by mass.
  • Second Light-Emitting Unit Compound HT-1 was vapor-deposited on the first P layer to form a first hole transport layer having a thickness of 10 nm.
  • Compound HT-2 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 10 nm.
  • Compound BH and Compound BD-1 were co-evaporated to form a blue fluorescent light emitting layer as a second light emitting layer having a film thickness of 25 nm.
  • the concentration of Compound BH in the blue fluorescent light emitting layer was 96% by mass, and the concentration of Compound BD-1 was 4% by mass.
  • a compound PGH-2 was vapor-deposited on the blue fluorescent light emitting layer to form an electron transport layer having a thickness of 10 nm.
  • Second charge generation layer Compound ET-2 and lithium (Li) were co-evaporated on this electron transport layer to form a second N layer having a thickness of 56 nm.
  • the concentration of compound ET-2 in the second N layer was 96% by mass, and the concentration of Li was 4% by mass.
  • Compound HT-1 and Compound HI were co-deposited on the second N layer to form a 10 nm thick second P layer.
  • the concentration of Compound HT-1 in the second P layer was 90% by mass, and the concentration of Compound HI was 10% by mass.
  • Compound HT-1 was vapor-deposited on the second P layer to form a first hole transport layer having a thickness of 10 nm.
  • Compound HT-2 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 10 nm.
  • compound BH and compound BD-1 were co-evaporated to form a blue fluorescent light emitting layer as a third light emitting layer having a film thickness of 25 nm.
  • the concentration of Compound BH in the blue fluorescent light emitting layer was 96% by mass, and the concentration of Compound BD-1 was 4% by mass.
  • a compound PGH-2 was vapor-deposited on the blue fluorescent light emitting layer to form a first electron transport layer having a thickness of 10 nm.
  • Compound ET-1 was vapor-deposited on the first electron transport layer to form a second electron transport layer having a thickness of 12 nm.
  • lithium fluoride (LiF) was vapor-deposited on the second electron transport layer to form an electron injection layer having a thickness of 1 nm.
  • a device arrangement of the organic EL device of Example 1 is schematically shown as follows.
  • the numbers in parentheses indicate the film thickness (unit: nm).
  • the number displayed as a percentage is, for example, HT-1: HI (10,97%: 3%)
  • Example 2 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Example 2 is schematically shown as follows. ITO (80) / HT-1: HI (10,97%: 3%) / HT-1 (10) / HT-2 (10) / BH: BD-1 (25,96%: 4%) / PGH-3 (10) / ET-2: Li (10,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / PGH-1: PGD (48,80%: 20%) / ET-1 (10) / ET-2: Li (95,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / BH: BD-1 (25,96%: 4%) / PGH-1 (10) / ET-1 (10)
  • Example 3 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Example 3 is schematically shown as follows. ITO (130) / HT-1: HI (10,97%: 3%) / HT-1 (70) / HT-2 (10) / BH: BD-1 (25,96%: 4%) / PGH-3 (10) / ET-2: Li (10,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / PGH-1: PGD (48,80%: 20%) / ET-1 (10) / ET-2: Li (95,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / BH: BD-1 (25,96%: 4%) / PGH-2 (10) / ET-1 (10)
  • Example 4 An APC (Ag—Pd—Cu) layer (reflective layer), which is a silver alloy layer having a thickness of 100 nm, is formed on a glass substrate (25 mm ⁇ 75 mm ⁇ 0.7 mm thickness) serving as an element manufacturing substrate, and a thickness of 10 nm.
  • An indium oxide-zinc oxide (IZO: registered trademark) film (transparent conductive layer) was sequentially formed by a sputtering method. As a result, a conductive material layer composed of an APC layer and an IZO film was obtained. Subsequently, this conductive material layer was patterned by etching using a resist pattern as a mask by using a normal lithography technique to form a lower electrode (anode).
  • IZO registered trademark
  • Compound HT-1 and Compound HI were co-evaporated on the lower electrode using a vacuum deposition method to form a 10 nm-thick hole injection layer.
  • the concentration of Compound HT-1 in the hole injection layer was 97% by mass, and the concentration of Compound HI was 3% by mass.
  • Compound HT-1 was vapor-deposited on the hole injection layer to form a first hole transport layer having a thickness of 10 nm on the hole injection layer.
  • Compound HT-3 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 5 nm.
  • Compound BH and Compound BD-2 were co-evaporated to form a blue fluorescent light emitting layer as a first light emitting layer having a thickness of 20 nm.
  • the concentration of compound BH in the blue fluorescent light emitting layer was 98% by mass, and the concentration of compound BD-2 was 2% by mass.
  • a compound PGH-2 was vapor-deposited on the blue fluorescent light emitting layer to form an electron transport layer having a thickness of 5 nm.
  • first charge generation layer the compound ET-3 and lithium (Li) were co-evaporated on the electron transport layer to form a first N layer having a thickness of 58 nm.
  • the concentration of compound ET-3 in the first N layer was 96% by mass, and the concentration of Li was 4% by mass.
  • Compound HT-1 and Compound HI were co-evaporated on the first N layer to form a first P layer having a thickness of 10 nm.
  • the concentration of Compound HT-1 in the first P layer was 90% by mass, and the concentration of Compound HI was 10% by mass.
  • Second Light-Emitting Unit Compound HT-1 was vapor-deposited on the first P layer to form a first hole transport layer having a thickness of 10 nm.
  • Compound HT-3 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 5 nm.
  • Compound BH and Compound BD-2 were co-evaporated to form a blue light emitting layer as a second light emitting layer having a thickness of 20 nm.
  • the concentration of Compound BH in the blue light emitting layer was 98% by mass, and the concentration of Compound BD-2 was 2% by mass.
  • a compound PGH-2 was vapor-deposited on the blue light emitting layer to form an electron transport layer having a thickness of 5 nm.
  • Second Charge Generation Layer Next, on this electron transport layer, the compound ET-3 and lithium (Li) were co-evaporated to form a second N layer having a thickness of 64 nm.
  • the concentration of compound ET-3 in the second N layer was 96% by mass, and the concentration of Li was 4% by mass.
  • Compound HT-1 and Compound HI were co-deposited on the second N layer to form a 10 nm thick second P layer.
  • the concentration of Compound HT-1 in the second P layer was 90% by mass, and the concentration of Compound HI was 10% by mass.
  • Compound HT-1 was vapor-deposited on the second P layer to form a first hole transport layer having a thickness of 10 nm on the second P layer.
  • Compound HT-3 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 5 nm.
  • Compound BH and Compound BD-2 were co-evaporated to form a blue fluorescent light emitting layer as a third light emitting layer having a thickness of 20 nm.
  • the concentration of compound BH in the blue fluorescent light emitting layer was 98% by mass, and the concentration of compound BD-2 was 2% by mass.
  • a compound PGH-2 was vapor-deposited on the blue fluorescent light emitting layer to form a first electron transport layer having a thickness of 5 nm.
  • the compound ET-1 was vapor-deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm.
  • lithium fluoride (LiF) was vapor-deposited on the second electron transport layer to form an electron injection layer having a thickness of 1 nm.
  • Mg and Ag are co-deposited so as to have a mixing ratio (mass% ratio) of 1: 9, and an upper electrode (cathode) made of a semi-permeable MgAg alloy with a total film thickness of 12 nm. Formed.
  • a compound Cap1 was formed on the entire surface of the upper electrode to form a capping layer having a thickness of 70 nm.
  • a top emission type organic EL element was produced.
  • a device arrangement of the organic EL device of Example 4 is schematically shown as follows.
  • APC 100) / IZO (10) / HT-1: HI (10,97%: 3%) / HT-1 (10) / HT-3 (5) / BH: BD-2 (20,98%: 2%) / PGH-2 (5) / ET-3: Li (58,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-3 (5) / BH: BD-2 (20,98%: 2%) / PGH-2 (5) / ET-3: Li (64,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-3 (5) / BH: BD-2 (20,98%, 2%) / PGH-2 (5) / ET-1 (15) / LiF (1) / Mg: Ag (12,10%: 90%) / Cap1 (70)
  • Example 5 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Example 5 is schematically shown as follows. ITO (130) / HT-1: HI (10,97%: 3%) / HT-1 (117) / HT-2 (10) / PGH-1: PGD (40,80%: 20%) / ET-1 (10) / ET-2: Li (10,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / BH: BD-1 (25,96%: 4%) / PGH-2 (10) / ET-2: Li (56,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / BH: BD-1 (25,96%: 4%) / PGH-2 (10) / ET-1 (10)
  • Example 6 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Example 6 is schematically shown as follows. ITO (130) / HT-1: HI (10,97%: 3%) / HT-1 (117) / HT-2 (10) / PGH-1: PRD (5,98%: 2%) / PGH-1: PGD (35,80%: 20%) / ET-1 (10) / ET-2: Li (10,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / BH: BD-3 (25,96%: 4%) / PGH-2 (10) / ET-2: Li (56,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / BH: BD-3 (25,96%:
  • Example 7 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Example 7 is schematically shown as follows. ITO (80) / HT-1: HI (10,97%: 3%) / HT-1 (10) / HT-2 (10) / BH-2: BD-4 (25,96%: 4%) / PGH-3 ( Ten)/ ET-2: Li (10,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / PGH-1: PRD (5,98%: 2%) / PGH-1: PGD-2 (43,80%: 20%) / ET-1 ( Ten)/ ET-2: Li (95,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-2 (10) / BH-2: BD-4 (25,
  • Example 8 A top emission type organic EL element was produced in the same manner as in Example 4 except that the film thickness of each layer was changed so as to have the following element configuration.
  • a device arrangement of the organic EL device of Example 8 is schematically shown as follows.
  • APC 100
  • IZO 10
  • HT-1 HI (10,97%: 3%)
  • HT-1 10
  • HT-3 (5)
  • BH BD-2
  • ET-3 Li (96,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-3 (5) / BH: BD-2 (20,98%: 2%) / PGH-2 (5) / ET-3: Li (64,96%: 4%) / HT-1: HI (10,90%: 10%) / HT-1 (10) / HT-3 (5) / BH: BD-2 (20,98%, 2%) / PGH-2 (5) / ET-3: Li (64,96%: 4%)
  • Comparative Example 1 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Comparative Example 1 is schematically shown as follows.
  • Comparative Example 2 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Comparative Example 2 is schematically shown as follows.
  • Comparative Example 3 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Comparative Example 3 is schematically shown as follows.
  • Comparative Example 4 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to obtain the following device configuration.
  • a device arrangement of the organic EL device of Comparative Example 4 is schematically shown as follows.
  • Comparative Example 5 A bottom emission type organic EL device was produced in the same manner as in Example 1 except that the thickness and material of each layer were changed so as to have the following device configuration, and the third light emitting unit was not formed. .
  • a device arrangement of the organic EL device of Comparative Example 5 is schematically shown as follows.
  • the red-yellow phosphorescent light emitting layer refers to the first light emitting layer of Example 6 (a phosphorescent light emitting layer comprising a red phosphorescent light emitting layer and a yellow phosphorescent light emitting layer).
  • the red-green phosphorescent light emitting layer refers to the second light emitting layer of Example 7 (a phosphorescent light emitting layer comprising a red phosphorescent light emitting layer and a green phosphorescent light emitting layer).
  • Organic layer (in the case of Example 1, the first hole transport zone (hole injection layer, first hole transport layer, and second hole transport layer), the first light emitting layer, and the first electron transport zone (electrons) It was calculated using the refractive index n 0 of the transport layer)).
  • Refraction of organic layer in the case of Example 1, second hole transport zone (first hole transport layer and second hole transport layer), second light emitting layer, and second electron transport zone (electron transport layer) Calculation was performed using the rate n 0 .
  • Organic layer in the case of Example 1, third hole transport zone (first hole transport layer and second hole transport layer), third light-emitting layer, and third electron transport zone (first electron transport layer, first The calculation was performed using the refractive index n 0 of the two-electron transport layer and the electron injection layer)).
  • the calculation of ⁇ 1 to ⁇ 3 can be performed with reference to, for example, Principles of Optics, Max Born and Emil Wolf, 1974 (PERGAMON PRESS).
  • ⁇ 1 to ⁇ 3 in Examples 2 to 8 and Comparative Examples 1 to 5 can be calculated in the same manner as described above.
  • the refractive index of the organic layer was measured using a spectroscopic ellipsometer.
  • the refractive index means a refractive index in a direction perpendicular to the layer forming surface.
  • the main peak wavelength of blue fluorescent light obtained from the organic EL element was measured by the following method. The strength was also measured. A spectral radiance spectrum when a voltage was applied to the organic EL element so that the current density was 10 mA / cm 2 was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta). In the obtained spectral radiance spectrum, the peak wavelength of the emission spectrum where the emission intensity becomes maximum and the intensity thereof were measured, and these were determined as “the main peak wavelength of blue fluorescent emission (unit: nm)” and “blue” in this evaluation. The main peak intensity of fluorescence emission was designated as
  • -Drive voltage The voltage (unit: V) when it supplied with electricity between an anode and a cathode so that a current density might be 10 mA / cm ⁇ 2 > was measured.
  • the drive voltage was determined based on the following evaluation criteria. -Evaluation criteria- A: Drive voltage is less than 12V B: Drive voltage is 12V or more
  • the 5% degradation life is a time when the emission peak intensity is reduced to 0.95X, where X is the initial emission peak intensity.
  • 5% deterioration lifetime ratio (%) (5% deterioration life in each example / 5% deterioration life in Example 1) ⁇ 100 -Evaluation criteria- A: 5% deterioration life ratio is 90% or more B: 5% deterioration life ratio is 80% or more and less than 90% C: 5% deterioration life ratio is less than 80%
  • the HT band represents the hole transport band.
  • the HI layer represents a hole injection layer.
  • HT layer 1 represents the first hole transport layer, and HT layer 2 represents the second hole transport layer.
  • -The ET band represents the electron transport band.
  • -ET layer represents an electron carrying layer.
  • -The thickness of an ET layer represents the total thickness, when an electron carrying layer consists of two or more layers. 5/35 indicates that a red phosphorescent layer 5 nm and a yellow phosphorescent layer 35 nm are laminated. 5/43 indicates that a red phosphorescent layer 5 nm and a green phosphorescent layer 43 nm are laminated.
  • the organic EL elements of Examples 1 to 8 have a lower drive voltage and a higher “5% deterioration life ratio” of blue fluorescent light emission than the organic EL elements of Comparative Examples 1 to 5. showed that. Therefore, according to the organic EL elements of Examples 1 to 8, the driving voltage can be lowered and the life can be improved.
  • the organic EL elements of Examples 1 to 4, 6, and 7 in which the third light emitting unit satisfies the optical interference equations (specifically, Equations (1-3) and (2-3)) are blue. The main peak intensity of fluorescence emission was large. Therefore, according to the organic EL elements of Examples 1 to 4, 6, and 7, it is possible to improve the light emission efficiency of blue fluorescent light emission.
  • first P layer 151 ... second hole transport band, 152 ... second light emitting layer, 153 ... second electron transport band, 161 ... second N layer, 162 ... second P layer, 171 ... third hole transport band, 172 ... third light emitting layer, 173 ... third electron Transport zone.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陽極及び陰極の間に、陽極の側から、第一発光ユニットと、第一電荷発生層と、第二発光ユニットと、第二電荷発生層と、第三発光ユニットとが、この順に含まれ、第二電荷発生層は、陽極の側にN層と、陰極の側にP層とを有し、第三発光層は、青色蛍光発光性の化合物を含み、第一発光層及び第二発光層の少なくとも一方は、青色蛍光発光性の化合物を含み、第三発光ユニットは、さらに第二電荷発生層及び第三発光層の間に、正孔輸送帯域を有し、当該正孔輸送帯域は、第二電荷発生層に接し、前記正孔輸送帯域の厚さは、5nm以上40nm以下であり、前記N層の厚さよりも薄い、有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子及び電子機器
 本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。
 陽極と陰極との間に発光層を含む発光ユニットを備え、発光層に注入された正孔と電子との再結合によって生じる励起子(エキシトン)エネルギーから発光を得る有機エレクトロルミネッセンス素子(以下、「有機EL素子」と称する場合がある。)が知られている。
 近年の有機EL素子では、電荷発生層を介して複数の発光ユニットを積層し、直列に接続した素子構成が検討されている。このような素子構成は、タンデム型と呼ばれることがある。
 タンデム型の有機EL素子は、非タンデム型の有機EL素子に比べ、低電圧で発光するといわれている。そのため、タンデム型の有機EL素子は、素子の長寿命化を達成し得る技術として注目されている。
 例えば、特許文献1には、第1発光層を含む第1発光ユニット、および第2発光層を含む第2発光ユニットを少なくとも含む複数の発光ユニットと、第1発光ユニットおよび第2発光ユニットの間に配置された電荷発生層と、を備え、第2発光ユニットにおける正孔輸送層の膜厚が、第2発光ユニットの総膜厚に対して、10%以上25%以下である有機電界発光素子が開示されている。
特開2015-153523号公報
 しかしながら、近年のタンデム型の有機EL素子においては、さらなる低電圧での駆動、及び寿命の向上が求められている。中でも、有機EL素子の分野においては、青色発光が難しいとされているため、特に青色発光層を有する有機EL素子において、低電圧で駆動させ、寿命を向上させることが求められている。
 特許文献1に記載の有機電界発光素子は、青色発光層を有する発光素子を開示するものの、駆動電圧及び寿命についての検討は十分に行われていない。
 本発明の目的は、駆動電圧を低下させ、寿命を向上させることのできる有機エレクトロルミネッセンス素子、及び当該有機エレクトロルミネッセンス素子を搭載した電子機器を提供することである。
 本発明の一態様によれば、陽極と、陰極と、第一発光層を有する第一発光ユニットと、第一電荷発生層と、第二発光層を有する第二発光ユニットと、第二電荷発生層と、第三発光層を有する第三発光ユニットと、を備え、前記陽極及び前記陰極の間に、前記陽極の側から、前記第一発光ユニットと、前記第一電荷発生層と、前記第二発光ユニットと、前記第二電荷発生層と、前記第三発光ユニットとが、この順に含まれ、前記第二電荷発生層は、前記陽極の側にN層と、前記陰極の側にP層と、を有し、前記第三発光層は、青色蛍光発光性の化合物を含み、前記第一発光層及び前記第二発光層の少なくとも一方は、青色蛍光発光性の化合物を含み、前記第三発光ユニットは、さらに、前記第二電荷発生層及び前記第三発光層の間に、第三発光ユニットの正孔輸送帯域を有し、前記第三発光ユニットの正孔輸送帯域は、前記第二電荷発生層に接し、前記第三発光ユニットの正孔輸送帯域の厚さが、5nm以上40nm以下であり、前記N層の厚さよりも薄い有機エレクトロルミネッセンス素子が提供される。
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。
 本発明の一態様によれば、駆動電圧を低下させ、寿命を向上させることのできる有機EL素子、及び当該有機EL素子を搭載した電子機器を提供することができる。
第一実施形態に係る有機EL素子の一例の概略構成を示す図である。 第一実施形態に係る有機EL素子について、反射性電極と各発光層の発光中心との間の光学距離を説明するための図である。 第二実施形態に係る有機EL素子の一例の概略構成を示す図である。
〔第一実施形態〕
 第一実施形態の有機EL素子は、3つの発光ユニットを備えるタンデム型の有機EL素子である。本実施形態の有機EL素子としては、例えば、次の構成が挙げられる。
 「陽極/第一発光ユニット/第一電荷発生層/第二発光ユニット/第二電荷発生層/第三発光ユニット/陰極」
 各発光ユニット及び各電荷発生層は、有機層を備える。この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。
 本実施形態においては、図1に示すような構成を備えるタンデム型の有機EL素子1を例に挙げて説明する。有機EL素子1は、基板11上に、陽極12、第一発光ユニット13、第一電荷発生層14、第二発光ユニット15、第二電荷発生層16、第三発光ユニット17、及び陰極18がこの順に積層されて構成される。
 各発光ユニット及び各電荷発生層の詳細な構成は以下の通りである。
 第一発光ユニット13:第一正孔輸送帯域131(厚さd
            第一発光層132
            第一電子輸送帯域133
 第一電荷発生層14 :第一N層141
            第一P層142
 第二発光ユニット15:第二正孔輸送帯域151(厚さd
            第二発光層152
            第二電子輸送帯域153
 第二電荷発生層16 :第二N層161(厚さd
            第二P層162
 第三発光ユニット17:第三正孔輸送帯域171(厚さd
            第三発光層172
            第三電子輸送帯域173
 本実施形態において、第三発光層172は青色の蛍光発光性の化合物を含む。第一発光層132及び第二発光層152の少なくとも一方も、青色の蛍光発光性の化合物を含む。
 すなわち、第三発光層172は、青色蛍光発光層である。第一発光層132及び第二発光層152の少なくとも一方は、青色蛍光発光層である。
 第三正孔輸送帯域171は、第二電荷発生層16に接する。
 第三正孔輸送帯域171の厚さdは、5nm以上40nm以下であり、第二N層161の厚さdよりも薄い。
 本発明者らは、上記構成の有機EL素子が、駆動電圧を低下させ、寿命を向上させることのできる素子であることを見出した。これは以下の理由によると考えられる。
 従来、3つの発光ユニットを備える有機EL素子においては、光干渉効果を利用する観点から、第三正孔輸送帯域を比較的厚く設けることが多かった。
 このような素子構成では、第三正孔輸送帯域及び第三発光層の界面が劣化しやすく、その結果、駆動電圧が上昇する傾向、及び素子が低寿命化する傾向が見られた。
 これは、第三正孔輸送帯域の厚さによって、第二電荷発生層から第三発光層への正孔の供給が不十分になり、その結果、第三発光層の再結合領域が正孔輸送帯域側に偏るためと推測された。
 そこで、本実施形態では、第三正孔輸送帯域を第二電荷発生層に接して設け、第三正孔輸送帯域の厚さを5nm以上40nm以下と比較的薄くし、代わりに、複数の有機層の中から、各層の抵抗を考慮し、第二電荷発生層のN層の厚さを、第三正孔輸送帯域の厚さよりも厚く設定する。
 これにより、第二の電荷発生層から第三発光層への正孔の供給が促進され、正孔輸送帯域側に偏っていた第三発光層の再結合領域を、電子輸送帯域側へ広げることができると考えられる。その結果、第三正孔輸送帯域及び第三発光層の界面の劣化が抑制されると考えられる。
 したがって、本実施形態の有機EL素子によれば、駆動電圧を低下させ、寿命を向上させることができる(以下、「本実施形態の効果」とも称する。)。
 さらに、本実施形態によれば、第三発光ユニットが光学干渉の式(具体的には、後述の数式(1-3)及び数式(2-3))を満たすことにより、青色蛍光発光の発光効率を向上させることができる。
 すなわち、本実施形態の一態様によれば、駆動電圧を低下させ、寿命を向上させ、さらに発光効率を向上させることができる。
 図1では、第一発光ユニット13、第二発光ユニット15、及び第三発光ユニット17が、それぞれ、第一電子輸送帯域133、第二電子輸送帯域153、及び第三電子輸送帯域173を有しているが、各発光ユニットは、それぞれ電子輸送帯域を有さなくてもよい。
 ただし、本実施形態の効果をより発現する観点から、第一発光ユニット13、第二発光ユニット15、及び第三発光ユニット17は、それぞれ、第一電子輸送帯域133、第二電子輸送帯域153、及び第三電子輸送帯域173を有することが好ましい。
 ここで、正孔輸送帯域とは、正孔が移動する領域を意味する。正孔輸送帯域における正孔移動度μは、10-6cm/[V・s]以上であることが好ましい。
 正孔輸送帯域は、単層であっても複数層であってもよい。
 正孔輸送帯域を構成する層としては、正孔輸送層の他に、例えば、正孔注入層、及び電子障壁層が挙げられる。
 正孔移動度μ[cm/[V・s]]は、特開2014-110348号公報に記載のインピーダンス分光法にて測定することができる。
 電子輸送帯域とは、電子が移動する領域を意味する。電子輸送帯域における電子移動度μは、10-6cm/[V・s]以上であることが好ましい。
 電子輸送帯域は、単層であっても複数層であってもよい。
 電子輸送帯域を構成する層としては、電子輸送層の他に、例えば、電子注入層、及び正孔障壁層が挙げられる。
 電子移動度μ[cm/[V・s]]は、特開2014-110348号公報に記載のインピーダンス分光法にて測定することができる。
 電荷発生層とは、電圧印加時において、電荷発生層の陰極側に配置された発光ユニットに対して正孔を注入する層(本実施形態では第一P層142及び第二P層162)、及び電荷発生層の陽極側に配置された発光ユニットに対して電子を注入する層(本実施形態では第一N層141及び第二N層161)を意味する。
 第三発光ユニット17の正孔輸送帯域(第三正孔輸送帯域171)の厚さdは、5nm以上40nm以下であるが、本実施形態の効果をより発現する観点から、第三正孔輸送帯域171の厚さは、好ましくは10nm以上30nm以下、より好ましくは15nm以上25nm以下、さらに好ましくは15nm以上20nm以下である。
 第三正孔輸送帯域171の厚さdが、5nm以上であると、第二電荷発生層16に含まれるアクセプタ材料と第三発光層172とが過度に近いことによる消光が抑制される。
 第三正孔輸送帯域171の厚さdが、40nm以下であると、第二電荷発生層16から第三発光層172への正孔の供給が促進され、第三発光層172における再結合領域が電子輸送帯域側へ広がりやすくなる。
 第三正孔輸送帯域171の厚さdとは、第三正孔輸送帯域171が複数層で構成される場合、その総厚を意味する。他の帯域(例えば第一正孔輸送帯域131等)及び他の層(例えば第三発光層等)の厚さも同様である。
 第三正孔輸送帯域171の厚さdの測定は以下のようにして行う。
 有機EL素子1の中心部(図1中、符号CL)を、第三正孔輸送帯域171の形成面に対して垂直方向(つまり第三正孔輸送帯域171の厚さ方向)に切断し、その中心部の切断面を透過型電子顕微鏡(TEM)で観察して測定する。
 他の帯域(例えば第一正孔輸送帯域131、第二正孔輸送帯域151等)及び他の層(例えば第二N層161等)の厚さも同様の方法で測定する。
 なお、有機EL素子1の中心部とは、有機EL素子1を陰極側から投影した形状の中心部を意味し、例えば投影形状が矩形状である場合には矩形の対角線の交点を意味する。
 本実施形態の効果をより発現する観点から、第二正孔輸送帯域151は、第一電荷発生層14に接することが好ましい。
 第二正孔輸送帯域151の厚さdは、好ましくは5nm以上40nm以下、より好ましくは10nm以上30nm以下、さらに好ましくは15nm以上25nm以下である。
 本実施形態の効果をより発現する観点から、第一正孔輸送帯域131は、陽極12に接することが好ましい。
 第一正孔輸送帯域131の厚さは、好ましくは5nm以上40nm以下、より好ましくは10nm以上30nm以下、さらに好ましくは15nm以上25nm以下である。
 本実施形態の効果をより発現する観点から、第二電荷発生層16のN層(第二N層161)の厚さは、好ましくは40nm以上、より好ましくは45nm以上、さらに好ましくは50nm以上である。
 第二N層161の上限値は、光干渉効果を得る観点から、好ましくは200nm以下、より好ましくは160nm以下、さらに好ましくは120nm以下である。
 すなわち、第二電荷発生層16のN層の厚さは、好ましくは40nm以上200nm以下、より好ましくは45nm以上160nm以下、さらに好ましくは50nm以上120nm以下である。
 本実施形態の効果をより発現する観点から、第二電荷発生層16のN層(第二N層161)の厚さdと、第三発光ユニット17の正孔輸送帯域(第三正孔輸送帯域171)の厚さdとの比(厚さd/厚さd)は、好ましくは1超え40以下、より好ましくは2以上10以下、さらに好ましくは2.5以上6以下である。
 本実施形態の有機EL素子1は、陽極11及び陰極18の一方が反射性電極である。
 本実施形態の有機EL素子1は、光干渉効果をより引き出し、本実施形態の効果をより発現する観点から、下記数式(1-3)及び下記数式(2-3)を満たすことが好ましい。これにより、青色蛍光発光の発光効率も向上させることができる。
   n-0.25<m<n+0.25   (1-3)
 数式(1-3)において、nは0以上の整数であり、mは反射性電極と第三発光層の発光中心との間の干渉次数である。nは0以上3以下の整数であることが好ましい。
Figure JPOXMLDOC01-appb-M000004
 数式(2-3)において、mは前記数式(1-3)におけるmと同義であり、Lは反射性電極と第三発光層の発光中心との間の光学距離(nm)であり、λは第三発光層からの発光の主ピーク波長(nm)であり、Φは前記第三発光層からの発光が前記反射性電極で反射される際の位相変化である。
 また、本実施形態の有機EL素子1は、光干渉効果をより引き出し、本実施形態の効果をより発現する観点から、下記数式(1-2)及び下記数式(2-2)を満たすことが好ましい。
   n-0.25<m<n+0.25   (1-2)
 数式(1-2)において、nは0以上の整数であり、mは反射性電極と第二発光層の発光中心との間の干渉次数である。nは0以上3以下の整数であることが好ましい。
Figure JPOXMLDOC01-appb-M000005
 数式(2-2)において、mは前記数式(1-2)におけるmと同義であり、Lは反射性電極と第二発光層の発光中心との間の光学距離(nm)であり、λは第二発光層からの発光の主ピーク波長(nm)であり、Φは前記第二発光層からの発光が前記反射性電極で反射される際の位相変化である。
 また、本実施形態の有機EL素子1は、光干渉効果をより引き出し、本実施形態の効果をより発現する観点から、下記数式(1-1)及び下記数式(2-1)を満たすことが好ましい。
   n-0.25<m<n+0.25   (1-1)
 数式(1-1)において、nは0以上の整数であり、mは反射性電極と第一発光層の発光中心との間の干渉次数である。nは0以上3以下の整数であることが好ましい。
Figure JPOXMLDOC01-appb-M000006
 数式(2-1)において、mは数式(1-1)におけるmと同義であり、Lは反射性電極と第一発光層の発光中心との間の光学距離(nm)であり、λは第一発光層からの発光の主ピーク波長(nm)であり、Φは前記第一発光層からの発光が反射性電極で反射される際の位相変化である。
 本実施形態の有機EL素子1は、光干渉効果をより引き出し、本実施形態の効果をより発現する観点から、前記数式(1-3)及び前記数式(2-3)を満たすか、前記数式(1-2)及び前記数式(2-2)を満たすか、または前記数式(1-3)及び前記数式(2-3)を満たすことが好ましい。これにより、本実施形態の効果に加えて、青色蛍光発光の発光効率を向上させることができる。
 本実施形態の有機EL素子1は、光干渉効果をさらに引き出し、本実施形態の効果をさらに発現する観点から、前記数式(1-3)及び前記数式(2-3)を満たすことに加えて、さらに前記数式(1-2)及び前記数式(2-2)を満たすか、または前記数式(1-3)及び前記数式(2-3)を満たすことに加えて、さらに前記数式(1-1)及び前記数式(2-1)を満たすことがより好ましい。これにより、本実施形態の効果に加えて、青色蛍光発光の発光効率をより向上させることができる。
 本実施形態の有機EL素子1は、光干渉効果をさらに引き出し、本実施形態の効果をさらに発現する観点から、前記数式(1-1)~(1-3)及び前記数式(2-1)~(2-3)の全てを満たすことがさらに好ましい。これにより、本実施形態の効果に加えて、青色蛍光発光の発光効率をさらに向上させることができる。
 ここで、数式(2-1)~(2-3)中のL~L(光学距離:nm)について図2を参照して説明する。図2中、「d10」は第一発光層132の厚さを表し、「d20」は第二発光層152の厚さを表し、「d30」は第三発光層172の厚さを表す。
 図2は、第一実施形態に係る有機EL素子について、反射性電極と各発光層の発光中心との間の光学距離を説明するための図である。
 例えば有機EL素子1が、陽極12の側から光を取り出すボトムエミッション型であり、かつ陰極18が反射性電極である場合、数式(2-1)中の光学距離L(図2中のL1Bに相当)とは、陰極18の反射界面18A(第一発光層側の陰極18の表面)と、第一発光層132の発光中心(図2中のEC)との間の光学距離を意味する。
 第一発光層132の発光中心とは、第一発光層132の厚さ方向の発光強度分布のピークが位置する面を意味する。
 本明細書において、第一発光層132の発光中心(図2中のEC)とは、第一発光層132の厚さを二等分する面とする。
 数式(2-2)中の光学距離Lは図2中のL2Bに相当し、数式(2-3)中の光学距離Lは図2中のL3Bに相当する。また、第二発光層152の発光中心は図2中のECに相当し、第三発光層172の発光中心は図2中のECに相当する。
 例えば有機EL素子1が、陰極18の側から光を取り出すトップエミッション型であり、かつ陽極12が反射性電極である場合、数式(2-1)中の光学距離L(図2中のL1Tに相当)は、陽極12の反射界面12A(第一発光層側の陽極12の表面)と、第一発光層132の発光中心(図2中のEC)との間の光学距離を意味する。
 数式(2-2)中の光学距離Lは、図2中のL2Tに相当し、数式(2-3)中の光学距離Lは、図2中のL3Tに相当する。
 第一発光層132の発光中心は図2中のECに相当し、第二発光層152の発光中心は図2中のECに相当し、第三発光層172の発光中心は図2中のECに相当する。
(発光色)
 本明細書において、青色の発光とは、発光スペクトルの主ピーク波長が430nm以上500nm以下の範囲内である発光をいう。
 黄色の発光とは、発光スペクトルの主ピーク波長が530nm以上600以下の範囲内である発光をいう。
 赤色の発光とは、発光スペクトルの主ピーク波長が600nm以上660nm以下の範囲内である発光をいう。
 緑色の発光とは、発光スペクトルの主ピーク波長が500nm以上560nm以下の範囲内である発光をいう。
 本明細書において、「第三発光層からの発光の主ピーク波長」という場合における「主ピーク波長」とは、以下のようにして測定した値をいう。
 「第二発光層からの発光の主ピーク波長」という場合における「主ピーク波長」、及び「第一発光層からの発光の主ピーク波長」という場合における「主ピーク波長」も同様である。
 発光層に含まれるホスト材料及びドーパント材料について、発光素子内の発光層と同じ比率でホスト材料とドーパント材料を共蒸着した膜を50nmの厚みで石英基板上に形成し、蛍光分光光度計F-7000(日立ハイテクサイエンス社製)で光励起による発光スペクトルを測定する。得られた発光スペクトルにおいて発光強度が最大となるピーク波長を測定し、これを主ピーク波長(単位:nm)とする。
 複数の発光層が積層された場合の主ピーク波長は、積層された発光層と同じ構成になるように、各々の発光層を50nmの厚みで石英基板上に形成し、上記蛍光分光光度計F-7000を用いて、上記と同様の方法で主ピーク波長を測定する。
 本実施形態の有機EL素子1において、第三発光層172は、青色蛍光発光性の化合物を含む青色蛍光発光層である。
 第三発光層からの発光の主ピーク波長は、430nm以上500nm以下であることが好ましく、440nm以上470nm以下であることがより好ましい。
 本実施形態の有機EL素子1において、第一発光層132は青色蛍光発光層であることが好ましい。
 第一発光層132が青色蛍光発光層である場合、第一発光層からの発光の主ピーク波長は、430nm以上500nm以下であることが好ましく、440nm以上470nm以下であることがより好ましい。
 第一発光層132は、青色以外の蛍光発光層(例えば、黄色蛍光発光層、赤色蛍光発光層、及び緑色蛍光発光層等)であってもよく、各色の燐光発光層(例えば、青色燐光発光層、黄色燐光発光層、赤色燐光発光層、及び緑色燐光発光層等)であってもよい。
 本実施形態の有機EL素子1において、第二発光層152は青色蛍光発光層であることが好ましい。
 第二発光層152が青色蛍光発光層である場合、第二発光層152からの発光の主ピーク波長は、430nm以上500nm以下であることが好ましく、440nm以上470nm以下であることがより好ましい。
 第二発光層152は、青色以外の蛍光発光層(例えば、黄色蛍光発光層、赤色蛍光発光層、緑色蛍光発光層、及びこれら2層以上からなる蛍光発光層等)であってもよく、各色の燐光発光層(例えば、青色燐光発光層、黄色燐光発光層、赤色燐光発光層、緑色燐光発光層、及びこれら2層以上からなる燐光発光層等)であってもよい。
 第一発光層132及び第三発光層172が青色蛍光発光層であるか、第二発光層152及び第三発光層172が青色蛍光発光層であるか、第一発光層132、第二発光層152、及び第三発光層172のいずれも青色蛍光発光層である場合、各青色蛍光発光層に含まれる青色蛍光発光性の化合物は互いに同一であっても異なっていてもよいし、青色蛍光発光性の化合物を1種含んでも2種以上含んでもよい。
 各発光層の態様としては、以下の態様であることが好ましい。
・第一発光層132が黄色燐光発光層、第二発光層152が青色蛍光発光層、及び第三発光層172が青色蛍光発光層である態様。
・第一発光層132が青色蛍光発光層、第二発光層152が黄色燐光発光層、及び第三発光層172が青色蛍光発光層である態様。
・第一発光層132が赤黄系燐光発光層、第二発光層152が青色蛍光発光層、及び第三発光層172が青色蛍光発光層である態様。
・第一発光層132が青色蛍光発光層、第二発光層152が赤緑系燐光発光層、及び第三発光層172が青色蛍光発光層である態様。
・第一発光層132、第二発光層152、及び第三発光層172のいずれも青色蛍光発光層である態様。
 各発光ユニット、及び各電荷発生層について詳細に説明する。以下、符号の記載を省略する。
<第一発光ユニット、第二発光ユニット、及び第三発光ユニット>
 各発光ユニットは、それぞれ発光層を含む。
 以下の説明では、第一発光層、第二発光層、及び第三発光層をそれぞれ区別しないときは、単に「発光層」と表記することがある。
 発光層は、それぞれ独立に、単一の発光層であってもよいし、複数の発光層を積層して構成されていてもよい。
(発光層)
 発光層は、ホスト材料(マトリクス材料と称する場合がある)と、ドーパント材料(発光材料、ゲスト材料、又はエミッタ―と称する場合がある。)とを含むことが好ましい。
 ホスト材料としては、公知のホスト材料が用いられ、例えば、アミン誘導体、アジン誘導体、及び縮合多環芳香族誘導体などが挙げられる。
 アミン誘導体としては、例えば、モノアミン化合物、ジアミン化合物、トリアミン化合物、テトラミン化合物、及びカルバゾール基で置換されたアミン化合物などが挙げられる。
 アジン誘導体としては、例えば、モノアジン誘導体、ジアジン誘導体、及びトリアジン誘導体などが挙げられる。
 縮合多環芳香族誘導体としては、へテロ環骨格を有しない縮合多環芳香族炭化水素が好ましく、例えば、ナフタレン、アントラセン、フェナントレン、クリセン、フルオランテン、及びトリフェニレン等の縮合多環芳香族炭化水素、もしくはこれらの誘導体が挙げられる。
 ホスト材料は、縮合多環芳香族炭化水素の誘導体であることが好ましく、アントラセン誘導体であることがより好ましく、下記一般式(11)で表されるアントラセン誘導体であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000007
 前記一般式(11)において、R101~R110は、それぞれ独立に、水素原子又は置換基であり、置換基としてのR101~R110は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数2~30のアルキニル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~50のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  -Si(R121)(R122)(R123)、
  -C(=O)R124、-COOR125
  -N(R126)(R127)、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30の複素環基、又は
  -L101-Ar101で表される基である。
 R101~R110の内、隣接する2以上の置換基(好ましくは2以上3以下の置換基)は、結合して飽和または不飽和の環を形成してもよい。形成される飽和または不飽和の環の数は、1以上(好ましくは1以上3以下)であることが好ましい。飽和または不飽和の環としては、置換もしくは無置換の5員環または6員環であることが好ましく、置換もしくは無置換のベンゼン環であることがより好ましい。
 前記一般式(11)において、R121~R127は、それぞれ独立に、水素原子、又は置換基であり、置換基としてのR121~R127は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、又は
  置換もしくは無置換の環形成原子数5~30の複素環基である。
 ただし、R101~R110の少なくとも1つは、-L101-Ar101で表される基である。L101は、単結合、または連結基であり、連結基としてのL101は、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基であり、Ar101は、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30の複素環基である。
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なる。R121が2以上存在する場合、2以上のR121は、互いに同一であるか、又は異なる。R122が2以上存在する場合、2以上のR122は、互いに同一であるか、又は異なる。R123が2以上存在する場合、2以上のR123は、互いに同一であるか、又は異なる。R124が2以上存在する場合、2以上のR124は、互いに同一であるか、又は異なる。R125が2以上存在する場合、2以上のR125は、互いに同一であるか、又は異なる。R126が2以上存在する場合、2以上のR126は、互いに同一であるか、又は異なる。R127が2以上存在する場合、2以上のR127は、互いに同一であるか、又は異なる。
 前記一般式(11)において、R101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30の複素環基、又は-L101-Ar101で表される基であることが好ましく、水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30の複素環基、又は-L101-Ar101で表される基であることがより好ましい。
 前記一般式(11)において、R101~R110のうち、R109及びR110は、それぞれ独立に、-L101-Ar101で表される基であることが好ましく、R109及びR110の少なくとも1つは、-L101-Ar101で表される基であることが好ましい。
 前記一般式(11)において、R101~R110の少なくとも1つ(好ましくはR109及びR110の少なくとも1つ)が-L101-Ar101で表される基であり、-L101-Ar101で表される基におけるAr101がアリール基の場合、Ar101は、置換もしくは無置換のフェニル基、または置換もしくは無置換のナフチル基であることが好ましい。
 前記一般式(11)において、R101~R110の少なくとも1つ(好ましくはR109及びR110の少なくとも1つ)が-L101-Ar101で表される基であり、-L101-Ar101で表される基におけるAr101が複素環基の場合、Ar101は、置換もしくは無置換のジベンゾフラニル基、置換もしくは無置換のジベンゾチエニル基、置換もしくは無置換のナフトベンゾフラニル基、または置換もしくは無置換のナフトベンゾチエニル基であることが好ましい。
 以下に前記一般式(11)で表される化合物の具体例を記す。本発明の発光層に含まれるホスト材料は、これら具体例に限定されない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本実施形態において、第一発光層又は第二発光層が燐光発光層である場合、燐光発光層に含まれるホスト材料としては、例えば、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、及びテトラカルボン酸無水物(例えば、ナフタレンペリレンのテトラカルボン酸無水物)、フタロシアニン誘導体、各種金属錯体(例えば、8-キノリノール誘導体の金属錯体、メタルフタロシアニン、及びベンゾオキサゾールもしくはベンゾチアゾールを配位子とする金属錯体)、ポリシラン系化合物、導電性高分子オリゴマー(例えば、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、及びポリチオフェン等)、高分子化合物(例えば、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、及びポリフルオレン誘導体等)等が挙げられる。
 ホスト材料は、単独で使用しても良いし、2種以上を併用しても良い。
 発光層は、ホスト材料を1種のみ含んでもよいし、2種以上含んでもよい。
 ホスト材料の含有量は、特に制限されない。ホスト材料の含有量は、例えば、発光層全体に対して、好ましくは80質量%以上99.9質量%以下、より好ましくは90質量%以上99.9質量%以下、さらに好ましくは95質量%以上99.9質量%以下である。
・ドーパント材料
 発光層は、ドーパント材料を含む。ドーパント材料は発光性の高い物質であることが好ましく、種々の材料を用いることができる。例えば、ドーパント材料としては、蛍光を発光する蛍光発光性材料や燐光を発光する燐光発光性材料を用いることができる。蛍光発光性材料は一重項励起状態から発光可能な化合物であり、燐光発光性材料は三重項励起状態から発光可能な化合物である。
 本実施形態において、青色蛍光発光層(第三発光層並びに第一発光層及び第二発光層の少なくとも一方)は、ドーパント材料として、青色蛍光発光性の化合物(以下、青色系の蛍光発光性材料とも称する。)を含む。
 なお、第一発光層又は第二発光層は青色蛍光発光層以外の発光層であってもよく、その場合、青色系以外の蛍光発光性材料を含んでもよく、各色の燐光発光材料を含んでもよい。
 青色系の蛍光発光性材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、モノアミン誘導体、ジアミン誘導体、及びトリアリールアミン誘導体等が使用できる。
 赤色系の蛍光発光性材料として、例えば、テトラセン誘導体、及びジアミン誘導体等が使用できる。緑色系の蛍光発光性材料として、例えば、芳香族アミン誘導体等が使用できる。黄色系の蛍光発光性材料として、アントラセン誘導体、及びフルオランテン誘導体等が使用できる。
 青色系の燐光発光材料として、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等の金属錯体が使用できる。緑色系の燐光発光材料として、例えば、イリジウム錯体等が使用できる。赤色系の燐光発光材料として、例えば、イリジウム錯体、白金錯体、テルビウム錯体、及びユーロピウム錯体等の金属錯体が使用できる。黄色系の燐光発光性材料として、イリジウム錯体等が使用できる。
 青色蛍光発光層に用いられる青色系の蛍光発光性材料は、下記一般式(1)で表されるモノアミン誘導体、及びジアミン誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(1)中、Aは、
  置換もしくは無置換の環形成炭素数10~40のアリール基、又は
  置換もしくは無置換の環形成炭素数10~40のヘテロアリール基を表す。
 L及びLは、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~12のアリール基、又は
  置換もしくは無置換の環形成炭素数5~12のヘテロアリール基を表す。
 Ar及びArは、それぞれ独立に
  置換もしくは無置換の環形成炭素数6~25のアリール基、又は
  置換もしくは無置換の環形成炭素数3~25のヘテロアリール基を表す。
 nは、1もしくは2である。
 置換基を有する場合の置換基の例としては、
  置換もしくは無置換の炭素数1~20のアルキル基、
  置換もしくは無置換の環形成炭素数6~25のアリール基、
  置換もしくは無置換の環形成炭素数7~25のアラルキル基、
  置換もしくは無置換の環形成炭素数3~25のシクロアルキル基、
  置換もしくは無置換の炭素数3~20のアルコキシル基、
  置換もしくは無置換の環形成炭素数6~25のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~20のアリールアミノ基、
  フッ素原子、
  置換もしくは無置換の炭素数1~20のアルキルアミノ基、又は
  シアノ基を表す。
 以下に前記一般式(1)で表されるモノアミン誘導体、及びジアミン誘導体の具体例を記す。青色蛍光発光層に用いられるドーパント材料(青色系の蛍光発光性材料)は、これら具体例に限定されない。
Figure JPOXMLDOC01-appb-C000011
 青色蛍光発光層に用いられるドーパント材料(青色系の蛍光発光性材料)としては、下記一般式(D2)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000012
 前記一般式(D2)において、環α、環β、及び環γは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、及び
  置換もしくは無置換の環形成原子数5~30の芳香族複素環からなる群から選択され、
 R及びRは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、及び
  置換もしくは無置換の炭素数1~20のアルキル基からなる群から選択される。
 Rは、環α及び環βの一方又は双方に、直接又は連結基を介して結合してもよい。
 Rは、環α及び環γの一方又は双方に、直接又は連結基を介して結合してもよい。
 前記一般式(D2)において、前記芳香族炭化水素環の環形成炭素数は、好ましくは6~24、より好ましくは6~18である。
 前記芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、ターフェニル環(m-ターフェニル環、o-ターフェニル環、p-ターフェニル環)、アントラセン環、アセナフチレン環、フルオレン環、フェナレン環、フェナン卜レン環、卜リフェニレン環、フルオランテン環、ピレン環、ナフタセン環、ペリレン環、及びペンタセン環などが挙げられる。
 前記一般式(D2)において、前記芳香族複素環の環形成原子数は、好ましくは5~18、より好ましくは5~13である。
 前記芳香族複素環は、少なくとも1個(好ましくは1~5個)の環形成ヘテロ原子を含む。当該環形成ヘテロ原子は、例えば、窒素原子、硫黄原子及び酸素原子から選ばれる。
 前記芳香族複素環としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、卜リアゾール環、テ卜ラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、卜リアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾ卜リアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、力ルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環、及びチアン卜レン環などが挙げられる。
 前記一般式(D2)において、環α、環β、及び環γは、それぞれ独立に、5員環又は6員環であることが好ましい。
 前記一般式(D2)において、環α、環β、及び環γの「置換もしくは無置換の」という場合における置換基Dは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  置換もしくは無置換の環形成炭素数6~30のアリール基及び置換もしくは無置換の環形成原子数5~30のヘテロアリール基からなる群から選択される少なくとも1種の基で置換されたジアリールアミノ基、ジヘテロアリールアミノ基、もしくはアリールヘテロアリールアミノ基、
  置換もしくは無置換の炭素数1~20のアルキル基、
  置換もしくは無置換の炭素数1~20のアルコキシ基、及び
  置換もしくは無置換の炭素数6~30のアリールオキシ基からなる群から選択される少なくとも1種の基であることが好ましい。
 前記一般式(D2)において、環α、環β、及び環γの「置換もしくは無置換の」という場合における置換基Dは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~24のアリール基、
  置換もしくは無置換の環形成原子数5~18のヘテロアリール基、
  置換もしくは無置換の環形成炭素数6~24のアリール基及び置換もしくは無置換の環形成原子数5~18のヘテロアリール基からなる群から選択される少なくとも1種の基で置換されたジアリールアミノ基、ジヘテロアリールアミノ基、もしくはアリールヘテロアリールアミノ基、
  置換もしくは無置換の炭素数1~10のアルキル基、
  置換もしくは無置換の炭素数1~10のアルコキシ基、及び
  置換もしくは無置換の炭素数6~24のアリールオキシ基からなる群から選択される少なくとも1種の基であることがより好ましい。
 前記一般式(D2)において、環α、環β、及び環γの「置換もしくは無置換の」という場合における置換基Dは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~18のアリール基、
  置換もしくは無置換の環形成原子数5~13のヘテロアリール基、
  置換もしくは無置換の環形成炭素数6~18のアリール基及び置換もしくは無置換の環形成原子数5~13のヘテロアリール基からなる群から選択される少なくとも1種の基で置換されたジアリールアミノ基、ジヘテロアリールアミノ基、もしくはアリールヘテロアリールアミノ基、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の炭素数1~6のアルコキシ基、及び
  置換もしくは無置換の炭素数6~18のアリールオキシ基からなる群から選択される少なくとも1種の基であることがさらに好ましい。
 前記置換基Dが、さらに置換基Eを有する場合、置換基Eは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、及び
  置換もしくは無置換の炭素数1~20のアルキル基からなる群から選択される少なくとも1種の基であることが好ましい。
 前記置換基Dが、さらに置換基Eを有する場合、置換基Eは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~24のアリール基、
  置換もしくは無置換の環形成原子数5~18のヘテロアリール基、及び
  置換もしくは無置換の炭素数1~10のアルキル基からなる群から選択される少なくとも1種の基であることがより好ましい。
 前記置換基Dが、さらに置換基Eを有する場合、置換基Eは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~18のアリール基、
  置換もしくは無置換の環形成原子数5~13のヘテロアリール基、及び
  置換もしくは無置換の炭素数1~6のアルキル基からなる群から選択される少なくとも1種の基であることがさらに好ましい。
 前記一般式(D2)において、環α、環β、及び環γ上の隣接する2つの置換基は互いに結合して、
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環、又は
 置換もしくは無置換の環形成原子数5~30の芳香族複素環を形成してもよい。
 前記一般式(D2)において、環α、環β、及び環γ上の隣接する2つの置換基が互いに結合して環を形成する場合、当該環は
 置換もしくは無置換の環形成炭素数6~24の芳香族炭化水素環、又は
 置換もしくは無置換の環形成原子数5~18の芳香族複素環であることが好ましい。
 前記一般式(D2)において、環α、環β、及び環γ上の隣接する2つの置換基Dが互いに結合して環を形成する場合、当該環は
 置換もしくは無置換の環形成炭素数6~18の芳香族炭化水素環、又は
 置換もしくは無置換の環形成原子数5~13の芳香族複素環であることがより好ましい。
 前記一般式(D2)において、環α、環β、及び環γ上の隣接する2つの置換基Dが互いに結合して環を形成する場合における当該環の置換基Fとしては、前記置換基Eと同様のものが挙げられ、好ましい範囲も同様である。
 前記一般式(D2)において、R及びRは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~24のアリール基、
  置換もしくは無置換の環形成原子数5~18のヘテロアリール基、及び
  置換もしくは無置換の炭素数1~10のアルキル基からなる群から選択される少なくとも1種の基であることが好ましい。
 前記一般式(D2)において、R及びRは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~18のアリール基、
  置換もしくは無置換の環形成原子数5~13のヘテロアリール基、及び
  置換もしくは無置換の炭素数1~6のアルキル基からなる群から選択される少なくとも1種の基であることがより好ましい。
 一般式(D2)において、前記連結基は、
 -O-、-S-、又は-CR-であり、
 R及びRは、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~20のアルキル基である。
 当該置換もしくは無置換の炭素数1~20のアルキル基における炭素数は、好ましくは1~10、より好ましくは1~6である。
 一般式(D2)における各置換基の具体例としては、後述の「各置換基の説明」に記載した基が挙げられる。
 一般式(D2)における「置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環」としては、上記で列挙した芳香族炭化水素環以外に、後述の「各置換基の説明」に記載した芳香族炭化水素環を用いてもよい。
 一般式(D2)における「置換もしくは無置換の環形成原子数5~30の芳香族複素環」としては、上記で列挙した芳香族複素環以外に、後述の「各置換基の説明」に記載した芳香族複素環を用いてもよい。
 青色蛍光発光層に用いられるドーパント材料(青色系の蛍光発光性材料)としては、下記一般式(D3)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(D3)において、
 R11~R20、及びRa1~Ra10は、それぞれ独立に、水素原子もしくは置換基であり、ただし、R11及びR12の組、R12及びR13の組、R13及びR14の組、R14及びR15の組、R15及びR16の組、R17及びR18組、R18及びR19の組、R19及びR20の組、Ra1及びRa2の組、Ra2及びRa3の組、Ra3及びRa4の組、Ra4及びRa5、Ra6及びRa7の組、Ra7及びRa8の組、Ra8及びRa9の組、並びにRa9及びRa10のいずれか1つ以上の組が互いに結合して、置換もしくは無置換の環形成原子数3~30の、飽和もしくは不飽和の環を形成し、
 置換基としてのR11~R20、及びRa1~Ra10は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換のアミノ基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30の複素環基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換のホスフィノ基、
  置換もしくは無置換のホスホリル基、
  置換もしくは無置換のシリル基、
  置換もしくは無置換の環形成炭素数6~30のアリールカルボニル基、
  シアノ基、
  ニトロ基、
  カルボキシ基、及び
  ハロゲン原子からなる群から選択される。
 一般式(D3)において、「R11及びR12の組、R12及びR13の組、R13及びR14の組、R14及びR15の組、R15及びR16の組、R17及びR18組、R18及びR19の組、R19及びR20の組、Ra1及びRa2の組、Ra2及びRa3の組、Ra3及びRa4の組、Ra4及びRa5、Ra6及びRa7の組、Ra7及びRa8の組、Ra8及びRa9の組、並びにRa9及びRa10のいずれか1つ以上の組」が互いに結合して前記飽和もしくは不飽和の環を形成する具体例について説明する。
 一般式(D3)において、R17~R20を例にとると、例えば、下記一般式(D3-1)で表される部分構造が挙げられる。下記部分構造では、互いに隣接するR18とR19とR20との3個が互いに結合して環を形成している。なお、R18、R19、及びR20の種類に応じ、下記一般式(D3-1)で表される部分構造は、置換基を有していてもよい。*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000014
 また、一般式(D3)において、R11~R16を例にとると、例えば、下記一般式(D3-2)で表される部分構造が挙げられる。下記部分構造では、R12とR13、及びR14とR15の2組が互いに結合して別個の2個の環を形成している。なお、R12、R13、R14、及びR15の種類に応じ、下記一般式(D3-2)で表される部分構造は、置換基を有していてもよい。*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000015
 一実施形態において、前記環を形成する態様としては、一般式(D3)におけるR12とR13とが互いに結合して置換もしくは無置換の環形成原子数3~30の、飽和もしくは不飽和の環を形成する態様(以下、態様Aとも称する)も挙げられる。
 ただし、部分構造は、一般式(D3-1)~(D3-2)で表される部分構造に限定されない。また、前記環を形成する態様も、態様Aに限定されない。
 発光層は、ドーパント材料を1種のみ含んでもよいし、2種以上含んでもよい。
 ドーパント材料の含有量は、特に制限されない。ドーパント材料の含有量は、例えば、発光層全体に対して、好ましくは0.1質量%以上20質量%以下、より好ましくは0.1質量%以上10質量%以下、さらに好ましくは0.1質量%以上5質量%以下である。
 第一発光層の厚さ(複数層有する場合はその総厚)は、好ましくは5nm以上100nm以下、より好ましくは10nm以上80nm以下、さらに好ましくは15nm以上60nm以下である。
 第二発光層の厚さ(複数層有する場合はその総厚)は、好ましくは5nm以上100nm以下、より好ましくは10nm以上80nm以下、さらに好ましくは15nm以上60nm以下である。
 第三発光層の厚さ(複数層有する場合はその総厚)は、好ましくは5nm以上100nm以下、より好ましくは10nm以上80nm以下、さらに好ましくは15nm以上60nm以下である。
 第1発光層、第二発光層、及び第三発光層の厚さは、それぞれ同一でも異なっていてもよい。
(正孔輸送帯域)
 各発光ユニットにおいて、正孔輸送帯域を構成する層としては、正孔輸送層の他に、例えば、正孔注入層、及び電子障壁層等が挙げられる。
・正孔輸送層
 正孔輸送層は、正孔輸送性の高い物質(好ましくは正孔移動度が10-6cm/[V・s]以上)を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、及びアントラセン誘導体等を使用する事ができる。正孔輸送層には、具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、及び4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。
 正孔輸送層には、CBP、CzPA、PCzPAのようなカルバゾール誘導体、及びt-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)及びポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
・正孔注入層
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、及びマンガン酸化物等を用いることができる。
 正孔注入性の高い物質としては、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、及び3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も挙げられる。
 正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、及びポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、及びポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(電子輸送帯域)
 各発光ユニットにおいて、電子輸送帯域を構成する層としては、電子輸送層の他に、例えば、電子注入層、及び正孔障壁層等が挙げられる。
・電子輸送層
 電子輸送層は、電子輸送性の高い物質(好ましくは電子移動度が10-6cm/[V・s]以上)を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、及び亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、及びフェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、BAlq、Znq、ZnPBO、及びZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、及び4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、及びポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
・電子注入層
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、及びリチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入層には、その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。電子供与体としては、具体的には、アルカリ金属やアルカリ土類金属及び希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、及びイッテルビウム等が挙げられる。また、電子供与体としては、アルカリ金属酸化物及びアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、及びバリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
 第一発光ユニットが、第一電子輸送帯域を有する場合、第一電子輸送帯域の厚さ(複数層からなる場合はその総厚)は、好ましくは0nm以上200nm以下、より好ましくは0nm以上150nm以下、さらに好ましくは0nm以上100nm以下であり、さらに好ましくは5nm以上100nm以下である。
 第二発光ユニットが、第二電子輸送帯域を有する場合、第二電子輸送帯域の厚さ(複数層からなる場合はその総厚)は、好ましくは0nm以上200nm以下、より好ましくは0nm以上150nm以下、さらに好ましくは0nm以上100nm以下であり、さらに好ましくは5nm以上100nm以下である。
 第三発光ユニットが、第三電子輸送帯域を有する場合、第三電子輸送帯域の厚さ(複数層からなる場合はその総厚)は、好ましくは0nm以上200nm以下、より好ましくは0nm以上150nm以下、さらに好ましくは0nm以上100nm以下であり、さらに好ましくは5nm以上100nm以下である。
(第一電荷発生層、及び第二電荷発生層)
 第一電荷発生層は、陽極側に、第一N層と、陰極側に、第一P層とを含む。
 第二電荷発生層は、陽極側に、第二N層と、陰極側に、第二P層とを含む。
 なお、第一電荷発生層は、第一N層及び第一P層の間に、他の層(例えば、有機層、金属層、及び金属酸化物層等)を有していてもよい。第二電荷発生層も同様に、第二N層及び第二P層の間に、前記他の層を有していてもよい。
・N層
 N層は、好ましくはπ電子欠乏性化合物と、電子供与性材料とを含む。
・π電子欠乏性化合物
 π電子欠乏性化合物としては、例えば、金属原子に配位可能な化合物等が挙げられる。具体的には、フェナントロリン系化合物、ベンゾイミダゾール系化合物、及びキノリノール等が挙げられる。
 フェナントロリン系化合物としては、下記式(I’)~(III’)で表される化合物が
好ましい。なかでも下記式(I’)又は(II’)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(I’)~(III’)中、R1a~R7a、R1b~R7b、及びR1c~R6cは、それぞれ独立に、
  水素原子、
  置換若しくは無置換の環形成炭素数6~30のアリール基、
  置換若しくは無置換のピリジル基、
  置換若しくは無置換のキノリル基、
  置換若しくは無置換の炭素数1~30のアルキル基、
  置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換若しくは無置換の炭素数7~30のアラルキル基、
  置換若しくは無置換の炭素数1~30のアルコキシ基、
  置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換若しくは無置換の環形成炭素数6~30のアリールチオ基、
  置換若しくは無置換の炭素数2~30のアルコキシカルボニル基、
  置換若しくは無置換の環形成炭素数6~30のアリール基で置換されたアミノ基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  ヒドロキシ基、又は
  カルボキシ基である。
 R1a~R7a、R1b~R7b、又はR1c~R6cのうち、隣接するものは互いに結合して環を形成してもよい。環の例としては、ベンゼン環、ナフタレン環、ピラジン環、ピリジン環、及びフラン環等が挙げられる。
 L1a及びL1bは、それぞれ独立に、単結合又は連結基である。連結基としてのL1a及びL1bは、それぞれ独立に、置換若しくは無置換の環形成炭素数6~20の芳香族基、置換若しくは無置換の炭素数1~8のアルキレン鎖、置換若しくは無置換の複素環が挙げられる。具体的としては、置換若しくは無置換のベンゼン環、置換若しくは無置換のナフタレン環、置換若しくは無置換のメチレン鎖、又は置換若しくは無置換のピリジン環が好ましい。
 Ar1a、Ar1b、Ar1c及びAr2cは、それぞれ独立に、置換若しくは無置換の環形成炭素数6~30の芳香族基である。
 nは、1~4であり、nが2以上の場合、括弧の内のフェナントロリン骨格を有する基は、同一でも異なっていてもよい。
 以下に式(I’)~(III’)で表される化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000017
・電子供与性材料
 電子供与性材料としては、電子供与性金属単体、及び金属化合物及び金属錯体が挙げられる。電子供与性材料としては、具体的には、アルカリ金属、アルカリ金属化合物、アルカリ金属を含む有機金属錯体、アルカリ土類金属、アルカリ土類金属化合物、アルカリ土類金属を含む有機金属錯体、希土類金属、希土類金属化合物及び希土類金属を含む有機金属錯体のうち、少なくとも1つを含有する層が好ましい。なかでも、アルカリ金属、アルカリ土類金属、希土類金属の単体、希土類金属の化合物及び希土類金属の錯体のうち、少なくとも1つを含有することが好ましい。
・P層
 P層は、アクセプタ材料を含む層である。P層は、アクセプタ材料がドープされた層(Pドープ層)であってもよい。
 アクセプタ材料が有機材料である場合、アクセプタ材料としては、例えば、下記一般式(I)で表される化合物(インデノフルオレンジオン誘導体)、及び下記一般式(III)
で表される化合物等が挙げられる。
 アクセプタ材料が無機材料である場合、アクセプタ材料としては、酸化モリブデン(MoO)、酸化バナジウム(V)、及び透明酸化物(例えばITO及びIZO等)等が挙げられる。
 また、前記正孔注入層の項で例示した「正孔注入性の高い物質」の中から、アクセプタ材料を適宜選択して用いることもできる。
 なお、第一正孔輸送帯域、第二正孔輸送帯域、及び第三正孔輸送帯域は、アクセプタ材料を含まない領域をいう。
 P層に用いられるアクセプタ材料として、例えば、下記一般式(I)で表される化合物(インデノフルオレンジオン誘導体)を用いることができる。
Figure JPOXMLDOC01-appb-C000018
 一般式(I)において、Arは、核炭素数6~24の芳香環又は核原子数5~24の複素環、好ましくは核炭素数6~14の芳香環又は核原子数5~14の複素環である。芳香環としては、ベンゼン環、ナフタレン環、フルオレン環、9,9-ジメチルフルオレン環、及び9,9-ジオクチルフルオレン環等が挙げられる。複素環としては、ピラジン環、ピリジン環、キノキサリン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラン環、ベンゾフラン環、ジベンゾフラン環、フェナントロリン環、ナフチリジン環、及びテトラアザアントラセン環等が挙げられる。
 前記芳香環及び複素環は、以下に記載するR~Rで置換されていてもよい。
 なお、「核炭素」とは、芳香環を構成する炭素原子を意味し、「核原子」とは複素環(飽和環、不飽和環及び芳香族複素環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 Rg及びRgは、それぞれ互いに同一でも異なっていてもよく、下記一般式(i)もしくは一般式(ii)である。
Figure JPOXMLDOC01-appb-C000019
 一般式(i)及び一般式(ii)において、X及びXは互いに同一でも異なっていてもよく、下記一般式(a)~(g)に示す二価の基のいずれかである。)
Figure JPOXMLDOC01-appb-C000020
 上記一般式(a)~(g)において、R21~R24は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換のフルオロアルキル基、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、又は置換もしくは無置換の複素環基であり、R22とR23は互いに結合して環を形成してもよい。
 Y~Yは互いに同一でも異なっていてもよく、-N=、-CH=、又はC(R)=であり、Rは、後述のR~Rと同義である。R~Rのうち互いに隣接するものは互いに結合して環を形成してもよい。
 一般式(I)において、R~Rは、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、ハロゲン原子、置換もしくは無置換のフルオロアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のフルオロアルコキシ基、置換もしくは無置換のアリーロキシ基、置換もしくは無置換のアラルキルオキシ基、置換もしくは無置換のアミノ基、置換もしくは無置換のシリル基、又はシアノ基である。RとRは互いに結合して環を形成してもよい。RとRは互いに結合して環を形成してもよい。
 P層に用いられるアクセプタ材料として、例えば、下記一般式(III)で表される化合
物を用いることもできる。
Figure JPOXMLDOC01-appb-C000021
 一般式(III)において、R1C~R6Cは、それぞれ独立に、水素原子、置換若しくは
無置換の環形成炭素数6~30のアリール基、置換若しくは無置換のピリジル基、置換若しくは無置換のキノリル基、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数7~50のアラルキル基、置換若しくは無置換の炭素数1~30のアルコキシ基、置換若しくは無置換の環形成炭素数6~30のアリールオキシ基、置換若しくは無置換の環形成炭素数6~30のアリールチオ基、置換若しくは無置換の炭素数2~30のアルコキシカルボニル基、置換若しくは無置換の環形成炭素数6~30のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基、又はカルボキシル基である。
<基板>
基板は、発光子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチックなどを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、及びポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
<陽極>
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~10wt%の酸化亜鉛を加えたターゲットを、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 有機EL素子がボトムエミッション型である場合、陽極は、発光層からの光を透過する光透過性もしくは半透過性を有する金属材料で形成されることが好ましい。本明細書において、光透過性もしくは半透過性とは、発光層から発光される光を50%以上(好ましくは80%以上)透過する性質を意味する。光透過性もしくは半透過性を有する金属材料は、前記陽極の項で列挙した材料から適宜選択して使用することができる。
 有機EL素子がトップエミッション型である場合、陽極は反射層を有する反射性電極である。反射層は、光反射性を有する金属材料で形成されることが好ましい。本明細書において、光反射性とは、発光層から発光される光を50%以上(好ましくは80%以上)反射する性質を意味する。光反射性を有する金属材料は、前記陽極の項で列挙した材料から適宜選択して使用することができる。
 陽極は反射層のみで構成されていてもよいが、反射層と、導電層(好ましくは透明導電層)とを有する多層構造であってもよい。陽極が反射層及び導電層を有する場合、反射層と正孔輸送帯域との間に当該導電層が配置されることが好ましい。導電層は、前記陽極の項で列挙した材料から適宜選択して使用することができる。
<陰極>
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
 有機EL素子がボトムエミッション型である場合、陰極は反射性電極である。反射性電極は、光反射性を有する金属材料で形成されることが好ましい。光反射性を有する金属材料は、前記陰極の項で列挙した材料から適宜選択して使用することができる。
 有機EL素子がトップエミッション型である場合、陰極は、発光層からの光を透過する光透過性もしくは半透過性を有する金属材料で形成されることが好ましい。光透過性もしくは半透過性を有する金属材料は、前記陰極の項で列挙した材料から適宜選択して使用することができる。
<キャッピング層>
 有機EL素子がトップエミッション型である場合、有機EL素子は、通常、陰極の上部にキャッピング層を備える。
 キャッピング層としては、例えば、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、及びシリコン化合物(酸化ケイ素等)などを用いることができる。
 また、芳香族アミン誘導体、アントラセン誘導体、ピレン誘導体、フルオレン誘導体、又はジベンゾフラン誘導体をキャッピング層に用いることもできる。
 また、これらの物質を含む層を積層させた積層体も、キャッピング層として用いることができる。
(層厚)
 有機EL素子において、陽極と陰極との間に設けられた発光層等の層厚は、前述した中で特に規定したものを除いて、特に制限されないが、一般に層厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
(有機EL素子の製造法)
 有機EL素子の製造法については、特に制限はなく、従来の有機EL素子に使用される製造方法を用いて製造することができる。具体的には、基板上に各層を真空蒸着法、キャスト法、塗布法、スピンコート法等により形成することができる。
 また、ポリカーボネート、ポリウレタン、ポリスチレン、ポリアリレート、及びポリエステル等の透明ポリマーに、各層の有機材料を分散させた溶液を用いたキャスト法、塗布法、スピンコート法の他、有機材料と透明ポリマーとの同時蒸着等によっても形成することができる。
〔第二実施形態〕
 第二実施形態の有機EL素子は、各発光ユニットのうち、第三の発光ユニットの正孔輸送帯域(第三正孔輸送帯域)が2層以上の正孔輸送層からなる有機EL素子である。その他の点においては、第一実施形態の有機EL素子と同様であるため、説明を省略又は簡略化する。
 第二実施形態の有機EL素子は、第三正孔輸送帯域が2層以上の正孔輸送層からなることで、第二電荷発生層からの正孔注入を効率的に行えるようになると考えられる。
 ここで、正孔輸送層は、電子ブロック機能も有することがあるため、電子障壁層と呼ばれることがある。
 正孔輸送層に含まれる材料は、通常、励起子耐性を有するため、第三正孔輸送帯域に2層以上の正孔輸送層を配置することによって、正孔輸送層と第三発光層との界面の劣化を抑制することができる。これにより、有機EL素子の寿命がより向上しやすくなる。
 さらに、正孔輸送層に含まれる材料は、通常、第三発光層に含まれるホスト材料(例えば、実施例で使用の化合物BH)よりもエネルギーギャップが大きいため、第三正孔輸送帯域に2層以上の正孔輸送層を配置することによって、第三発光層の発光エネルギーを有効に閉じ込めて発光エネルギーの失活を抑制することができる。これにより、発光効率も向上しやすくなる。
 したがって、第二実施形態の有機EL素子によれば、駆動電圧を低下させ、寿命を向上させることができる。さらに、発光効率(好ましくは青色蛍光発光の発光効率)の向上も期待される。
 本実施形態の効果をより発現する観点から、第三発光ユニットの正孔輸送帯域(第三正孔輸送帯域)は、2層以上(好ましくは2層以上4層以下)からなることが好ましく、2層からなることがより好ましい。具体的には、2層の正孔輸送層からなることがより好ましい。
 本実施形態の効果をより発現する観点から、第二発光ユニットの正孔輸送帯域(第二正孔輸送帯域)は、2層以上(好ましくは2層以上4層以下)からなることが好ましく、2層からなることがより好ましい。具体的には、2層の正孔輸送層からなることがより好ましい。
 第一発光ユニットの正孔輸送帯域(第一正孔輸送帯域)は、3層以上(好ましくは3層以上5層以下)からなることが好ましく、3層からなることがより好ましい。具体的には、陽極側に接する1層の正孔注入層と、正孔注入層上に積層された2層の正孔輸送層とからなることが好ましい。
 図3は、第二実施形態に係る有機EL素子の一例の概略構成を示す図である。
 図3に示す有機EL素子は、図1に示す有機EL素子1に対し、第三正孔輸送帯域及び第二正孔輸送帯域が2層の正孔輸送層からなり、第一正孔輸送帯域が1層の正孔注入層及び2層の正孔輸送層からなる点において、第一実施形態の有機EL素子と相違する。
 具体的には、有機EL素子2は、基板11上に、陽極12、第一発光ユニット13A、第一電荷発生層14、第二発光ユニット15A、第二電荷発生層16、第三発光ユニット17A、及び陰極18がこの順に積層されて構成される。
 第三正孔輸送帯域171の厚さd(d31及びd32の合計)は、10nm以上30nm以下であり、第二N層161の厚さdよりも薄い。
 第三正孔輸送帯域171は、陽極側から順に、第一正孔輸送層171Aと、第二正孔輸送層171Bとからなり、第一正孔輸送層171Aが第二電荷発生層16のP層162に接している。
 第二正孔輸送帯域151は、陽極側から順に、第一正孔輸送層151Aと、第二正孔輸送層151Bとからなり、第一正孔輸送層151Aが第一電荷発生層14のP層142に接している。
 第一正孔輸送帯域131は、陽極側から順に、正孔注入層131Cと、第一正孔輸送層131Aと、第二正孔輸送層131Bとからなり、正孔注入層131Cが陽極12に接している。
 各正孔輸送帯域における第一正孔輸送層の厚さ(図3では、d11、d21、及びd31)は、それぞれ独立に、好ましくは2nm以上38nm以下、より好ましくは5nm以上25nm以下、さらに好ましくは5nm以上15nm以下である。
 各正孔輸送帯域における第二正孔輸送層の厚さ(図3では、d12、d22、及びd32)は、それぞれ独立に、好ましくは2nm以上38nm以下、より好ましくは5nm以上25nm以下、さらに好ましくは5nm以上15nm以下である。
 各正孔輸送帯域における第一正孔輸送層の厚さに対する第二正孔輸送層の厚さの比(図3では、d12/d11、d22/d21、及びd32/d31)は、それぞれ独立に、好ましくは0.05以上19以下、より好ましくは0.2以上5以下、さらに好ましくは0.3以上3以下である。
〔第三実施形態〕
[電子機器]
 本実施形態の電子機器は、第一実施形態または第二実施形態の有機EL素子を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
 本実施形態の電子機器によれば、本実施形態の有機EL素子を搭載しているので、駆動電圧を低下させ、寿命を向上させることができる。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前に記載される数値を下限値とし、「~」の後に記載される数値を上限値として含む範囲を意味する。
 本明細書において、Rx及びRyが互いに結合して環を形成するとは、例えば、Rx及びRyが炭素原子、窒素原子、酸素原子、硫黄原子又はケイ素原子を含み、Rxに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子又はケイ素原子)と、Ryに含まれる原子(炭素原子、窒素原子、酸素原子、硫黄原子又はケイ素原子)とが、単結合、二重結合、三重結合、又は二価の連結基を介して結合し、環形成炭素数が5以上の環(具体的には、複素環又は芳香族炭化水素環)を形成することを意味する。xは、数字、文字、又は、数字と文字との組み合わせである。yは、数字、文字、又は、数字と文字との組み合わせである。
 二価の連結基としては特に制限されないが、例えば、-O-、-CO-、-CO-、-S-、-SO-、-SO-、-NH-、-NRa-、及びこれらの連結基を2以上組み合わせた基等が挙げられる。
 複素環の具体例としては、後述の「一般式中における各置換基についての説明」で例示した「環形成原子数5~30のヘテロアリール基」から結合手を除いた環構造(複素環)が挙げられる。これらの複素環は置換基を有していてもよい。
 芳香族炭化水素環の具体例としては、後述の「一般式中における各置換基についての説明」で例示した「環形成炭素数6~30のアリール基」から結合手を除いた環構造(芳香族炭化水素環)が挙げられる。これらの芳香族炭化水素環は置換基を有していてもよい。
 Raとしては、例えば、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成原子数5~30のヘテロアリール基等が挙げられる。
 例えば、Rx及びRyが互いに結合して環を形成するとは、下記一般式(E1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(E2)で表される環(環構造)Eを形成すること;一般式(F1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(F2)で表され
る環Fを形成すること;一般式(G1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(G2)で表される環Gを形成すること;一般式(H1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる
原子とが、一般式(H2)で表される環Hを形成すること;一般式(I1)で表される分子構造において、Rxに含まれる原子と、Ry1に含まれる原子とが、一般式(I2)で表される環Iを形成すること;を意味する。
 一般式(E1)~(I1)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E1)中の2つの*は一般式(E2)中の2つの*にそれぞれ対応し、一般式(F1)中の2つの*は一般式(F2)中の2つの*にそれぞれ対応し、一般式(G1)中の2つの*は一般式(G2)中の2つの*にそれぞれ対応し、一般式(H1)中の2つの*は一般式(H2)中の2つの*にそれぞれ対応し、一般式(I1)中の2つの*は一般式(I2)中の2つの*にそれぞれ対応する。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 一般式(E2)~(I2)で表される分子構造において、E~Iはそれぞれ環構造(前記環形成原子数が5以上の環)を表す。一般式(E2)~(I2)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。一般式(E2)中の2つの*は一般式(E1)中の2つの*にそれぞれ対応する。一般式(F2)~(I2)中の2つの*についても同様に、一般式(F1)~(I1)中の2つの*にそれぞれ対応する。
 例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のベンゼン環である場合、一般式(E1)で表される分子構造は、下記一般式(E3)で表される分子構造になる。ここで、一般式(E3)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。
 例えば、一般式(E1)において、Rx及びRyが互いに結合して一般式(E2)中の環Eを形成し、環Eが無置換のピロール環である場合、一般式(E1)で表される分子構造は、下記一般式(E4)で表される分子構造になる。ここで、一般式(E4)中の2つの*は、それぞれ独立に、一般式(E2)および一般式(E1)中の2つの*に対応する。一般式(E3)及び(E4)中、*は、それぞれ独立に、一分子中の他の原子との結合位置を表す。
Figure JPOXMLDOC01-appb-C000024
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記載される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数が5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
・本明細書における一般式中における各置換基についての説明(各置換基の説明)
 本明細書における環形成炭素数6~30のアリール基(芳香族炭化水素基と称する場合がある。)としては、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、及びペリレニル基等が挙げられる。
 本明細書におけるアリール基としては、環形成炭素数が、6~20であることが好ましく、6~14であることがより好ましく、6~12であることがさらに好ましい。上記アリール基の中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、フルオレニル基がさらにより好ましい。1-フルオレニル基、2-フルオレニル基、3-フルオレニル基及び4-フルオレニル基については、9位の炭素原子に、後述する本明細書における置換もしくは無置換の炭素数1~30のアルキル基や、置換もしくは無置換の環形成炭素数6~18のアリール基が置換されていることが好ましい。
 本明細書における環形成原子数5~30のヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、及びゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含むことが好ましく、窒素、硫黄、及び酸素からなる群から選択される少なくともいずれかの原子を含むことがより好ましい。
 本明細書における環形成原子数5~30の複素環基としては、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、及びフェノキサジニル基等が挙げられる。
 本明細書における複素環基の環形成原子数は、5~20であることが好ましく、5~14であることがより好ましい。上記複素環基の中でも1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチエニル基、2-ジベンゾチエニル基、3-ジベンゾチエニル基、4-ジベンゾチエニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、及び9-カルバゾリル基がさらにより好ましい。1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基及び4-カルバゾリル基については、9位の窒素原子に、本明細書における置換もしくは無置換の環形成炭素数6~30のアリール基や、置換もしくは無置換の環形成原子数5~30の複素環基が置換していることが好ましい。
 また、本明細書において、複素環基は、例えば、下記一般式(XY-1)~(XY-18)で表される部分構造から誘導される基であってもよい。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 前記一般式(XY-1)~(XY-18)において、X及びYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY-1)~(XY-18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
 また、本明細書において、置換もしくは無置換のカルバゾリル基としては、例えば、下記一般式(XY-19)~(XY-22)で表されるような、カルバゾール環に対してさらに環が縮合した基も含み得る。このような基も置換基を有していてもよい。また、結合手の位置も適宜変更され得る。
Figure JPOXMLDOC01-appb-C000028
 本明細書における炭素数1~30のアルキル基としては、直鎖、分岐鎖または環状のいずれであってもよい。また、ハロゲン化アルキル基であってもよい。
 直鎖または分岐鎖のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、及び3-メチルペンチル基等が挙げられる。
 本明細書における直鎖または分岐鎖のアルキル基の炭素数は、1~10であることが好ましく、1~6であることがさらに好ましい。上記直鎖または分岐鎖のアルキル基の中でもメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、アミル基、イソアミル基、及びネオペンチル基がさらにより好ましい。
 本明細書における環状のアルキル基としては、例えば、環形成炭素数3~30のシクロアルキル基が挙げられる。
 本明細書における環形成炭素数3~30のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、アダマンチル基、及びノルボルニル基等が挙げられる。シクロアルキル基の環形成炭素数は、3~10であることが好ましく、5~8であることがさらに好ましい。上記シクロアルキル基の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。
 本明細書におけるアルキル基がハロゲン原子で置換されたハロゲン化アルキル基としては、例えば、上記炭素数1~30のアルキル基が1以上のハロゲン原子、好ましくはフッ素原子で置換された基が挙げられる。
 本明細書における炭素数1~30のハロゲン化アルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、及びペンタフルオロエチル基等が挙げられる。
 本明細書における置換シリル基としては、例えば、炭素数3~30のアルキルシリル基、及び環形成炭素数6~30のアリールシリル基が挙げられる。
 本明細書における炭素数3~30のアルキルシリル基としては、上記炭素数1~30のアルキル基で例示したアルキル基を有するトリアルキルシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、及びトリイソプロピルシリル基等が挙げられる。トリアルキルシリル基における3つのアルキル基は、互いに同一でも異なっていてもよい。
 本明細書における環形成炭素数6~30のアリールシリル基としては、例えば、ジアルキルアリールシリル基、アルキルジアリールシリル基、及びトリアリールシリル基が挙げられる。
 ジアルキルアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を2つ有し、上記環形成炭素数6~30のアリール基を1つ有するジアルキルアリールシリル基が挙げられる。ジアルキルアリールシリル基の炭素数は、8~30であることが好ましい。
 アルキルジアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を1つ有し、上記環形成炭素数6~30のアリール基を2つ有するアルキルジアリールシリル基が挙げられる。アルキルジアリールシリル基の炭素数は、13~30であることが好ましい。
 トリアリールシリル基は、例えば、上記環形成炭素数6~30のアリール基を3つ有するトリアリールシリル基が挙げられる。トリアリールシリル基の炭素数は、18~30であることが好ましい。
 本明細書において、アルキルスルホニル基は、-SOで表される。-SOにおけるRは、置換もしくは無置換のアルキル基を表す。
 本明細書における置換もしくは無置換の炭素数1~30のアルキルスルホニル基としては、上記-SOにおけるRが、置換もしくは無置換の上記炭素数1~30のアルキル基である基が挙げられる。
 本明細書において、アラルキル基(アリールアルキル基と称する場合がある)におけるアリール基は、芳香族炭化水素基、または複素環基である。
 本明細書における炭素数7~30のアラルキル基としては、環形成炭素数6~30のアリール基を有する基であることが好ましく、-Z-Zと表される。このZの例として、上記炭素数1~30のアルキル基に対応するアルキレン基等が挙げられる。このZの例として、例えば、上記環形成炭素数6~30のアリール基の例が挙げられる。このアラルキル基は、アリール部分が炭素数6~30(好ましくは6~20、より好ましくは6~12)、アルキル部分が炭素数1~30(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)であることが好ましい。このアラルキル基としては、例えば、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書における炭素数1~30のアルコキシ基は、-OZと表される。このZの例として、上記炭素数1~30のアルキル基が挙げられる。アルコキシ基は、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、及びヘキシルオキシ基等が挙げられる。アルコキシ基の炭素数は、1~20であることが好ましい。
 アルコキシ基がハロゲン原子で置換されたハロゲン化アルコキシ基としては、例えば、上記炭素数1~30のアルコキシ基が1以上のフッ素原子で置換された基が挙げられる。
 本明細書において、アリールオキシ基(アリールアルコキシ基と称する場合がある)におけるアリール基は、ヘテロアリール基も含む。
 本明細書における環形成炭素数6~30のアリールアルコキシ基は、-OZと表される。このZの例として、例えば、上記環形成炭素数6~30のアリール基等が挙げられる。アリールアルコキシ基の環形成炭素数は、6~20であることが好ましい。このアリールアルコキシ基としては、例えば、フェノキシ基が挙げられる。
 本明細書における置換アミノ基は、-NHR、または-N(Rと表される。このRの例として、例えば、上記炭素数1~30のアルキル基、及び上記環形成炭素数6~30のアリール基等が挙げられる。
 本明細書における炭素数2~30のアルケニル基としては、直鎖または分岐鎖のいずれかであり、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2-ジフェニルビニル基、1,2,2-トリフェニルビニル基、及び2-フェニル-2-プロペニル基等が挙げられる。
 本明細書における炭素数2~30のアルキニル基としては、直鎖または分岐鎖のいずれであってもよく、例えば、エチニル、プロピニル、および2-フェニルエチニル等が挙げられる。
 本明細書における炭素数1~30のアルキルチオ基及び環形成炭素数6~30のアリールチオ基は、-SRと表される。このRの例として、上記炭素数1~30のアルキル基及び上記環形成炭素数6~30のアリール基が挙げられる。アルキルチオ基の炭素数は、1~20であることが好ましい。アリールチオ基の環形成炭素数は、6~20であることが好ましい。
 本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子が好ましい。
 本明細書における置換ホスフィノ基としては、例えば、フェニルホスファニル基等が挙げられる。
 本明細書における環形成炭素数6~30のアリールカルボニル基は、-COY’と表される。このY’の例として、上述の「環形成炭素数6~30のアリール基」が挙げられる。本明細書における環形成炭素数6~30のアリールカルボニル基としては、例えば、フェニルカルボニル基、ジフェニルカルボニル基、ナフチルカルボニル基、及びトリフェニルカルボニル基等が挙げられる。
 本明細書における炭素数2~31のアシル基は、-COR’と表される。このR’の例としては、上述の炭素数1~30のアルキル基が挙げられる。本明細書における炭素数2~31のアシル基としては、例えば、アセチル基、プロピオニル基等が挙げられる。
 本明細書における置換ホスホリル基は、下記一般式(P)で表される。
Figure JPOXMLDOC01-appb-C000029
 前記一般式(P)において、ArP1及びArP2としては、炭素数1~30(好ましくは炭素数1~10、より好ましくは炭素数1~6)のアルキル基、及び環形成炭素数6~30(好ましくは環形成炭素数6~20、より好ましくは6~14)のアリール基からなる群から選択されるいずれかの置換基等が挙げられる。炭素数1~30のアルキル基の例としては、上述の炭素数1~30のアルキル基が挙げられる。環形成炭素数6~30のアリール基の例としては、上述の環形成炭素数6~30のアリール基が挙げられる。
 本明細書におけるエステル基としては、例えば、アルキルエステル基が挙げられる。アルキルエステル基は、-C(=O)ORで表される。Rの例としては、置換もしくは無置換の上記アルキル基が挙げられる。
 本明細書におけるシロキサニル基は、エーテル結合を介したケイ素化合物基であり、例えば、トリメチルシロキサニル基などが挙げられる。
 本明細書において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
 本明細書において、「置換もしくは無置換の」という場合における置換基としては、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~30の直鎖アルキル基、炭素数3~30の分岐鎖のアルキル基、環形成炭素数3~30のシクロアルキル基、炭素数1~30のハロゲン化アルキル基、置換もしくは無置換のシリル基(例えば、炭素数3~30のアルキルシリル基、及び環形成炭素数6~30のアリールシリル基等)、炭素数1~30のアルコキシ基、環形成炭素数6~30のアリールオキシ基、置換もしくは無置換のアミノ基、炭素数1~30のアルキルチオ基、環形成炭素数6~30のアリールチオ基、炭素数7~30のアラルキル基、炭素数2~30のアルケニル基、ハロゲン原子、炭素数2~30のアルキニル基、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、及び置換ホスホリル基からなる群から選択される少なくとも一種の基が挙げられる。
 本明細書において、「置換もしくは無置換の」という場合における置換基としては、ジアリールホウ素基(ArB1ArB2B-)も挙げられる。このArB1及びArB2の例としては、上述の「環形成炭素数6~30のアリール基」が挙げられる。
 「置換もしくは無置換の」という場合における置換基の具体例及び好ましい基としては、「各置換基の説明」中の置換基の具体例及び好ましい基と同様の基が挙げられる。
 「置換もしくは無置換の」という場合における置換基は、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~30の直鎖アルキル基、炭素数3~30の分岐鎖のアルキル基、環形成炭素数3~30のシクロアルキル基、炭素数1~30のハロゲン化アルキル基、炭素数3~30のアルキルシリル基、環形成炭素数6~30のアリールシリル基、炭素数1~30のアルコキシ基、環形成炭素数6~30のアリールオキシ基、置換アミノ基、炭素数1~30のアルキルチオ基、環形成炭素数6~30のアリールチオ基、炭素数7~30のアラルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基によってさらに置換されてもよい。また、これらの置換基は複数が互いに結合して環を形成してもよい。
 「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 なお、本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数は含めない。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数は含めない。
 本明細書において説明する化合物、またはその部分構造において、「置換もしくは無置換の」という場合についても、前記と同様である。
 本明細書において、置換基同士が互いに結合して環が構築される場合、当該環の構造は、飽和環、不飽和環、芳香族炭化水素環、または複素環である。
 本明細書において、連結基における芳香族炭化水素基や複素環基等としては、上述した一価の基から、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
 以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。
<化合物>
 有機EL素子の製造に用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
<有機EL素子の作製>
 有機EL素子を以下のように作製した。
(実施例1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を1分間行った。ITOの膜厚は、130nmとした。
・第一発光ユニットの形成
 洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HT-1と、化合物HIとを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HT-1の濃度を97質量%とし、化合物HIの濃度を3質量%とした。
 次に、正孔注入層上に、化合物HT-1を蒸着し、膜厚117nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-2を蒸着し、膜厚10nmの第二正孔輸送層を形成した。
 次に、この第二正孔輸送層上に、化合物PGH-1と、化合物PGDとを共蒸着し、膜厚40nmの第一発光層としての黄色燐光発光層を形成した。黄色燐光発光層における化合物PGH-1の濃度を80質量%とし、化合物PGDの濃度を20質量%とした。
 次に、この黄色燐光発光層上に、化合物ET-1を蒸着し、膜厚10nmの電子輸送層を形成した。
・第一電荷発生層の形成
 次に、この電子輸送層上に、化合物ET-2と、リチウム(Li)とを共蒸着し、膜厚10nmの第一N層を形成した。第一N層における化合物ET-2の濃度を96質量%とし、Liの濃度を4質量%とした。
 次に、この第一N層上に、化合物HT-1と、化合物HIとを共蒸着し、膜厚10nmの第一P層を形成した。第一P層における化合物HT-1の濃度を90質量%とし、化合物HIの濃度を10質量%とした。
・第二発光ユニットの形成
 次に、この第一P層上に、化合物HT-1を蒸着し、膜厚10nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-2を蒸着し、膜厚10nmの第二正孔輸送層を形成した。
 次に、この第二正孔輸送層上に、化合物BHと、化合物BD-1とを共蒸着し、膜厚25nmの第二発光層としての青色蛍光発光層を形成した。青色蛍光発光層における化合物BHの濃度を96質量%とし、化合物BD-1の濃度を4質量%とした。
 次に、この青色蛍光発光層上に、化合物PGH-2を蒸着し、膜厚10nmの電子輸送層を形成した。
・第二電荷発生層の形成
 次に、この電子輸送層上に、化合物ET-2と、リチウム(Li)とを共蒸着し、膜厚56nmの第二N層を形成した。第二N層における化合物ET-2の濃度を96質量%とし、Liの濃度を4質量%とした。
 次に、この第二N層上に、化合物HT-1と、化合物HIとを共蒸着し、膜厚10nmの第二P層を形成した。第二P層における化合物HT-1の濃度を90質量%とし、化合物HIの濃度を10質量%とした。
・第三発光ユニットの形成
 次に、この第二P層上に、化合物HT-1を蒸着し、膜厚10nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-2を蒸着し、膜厚10nmの第二正孔輸送層を形成した。
 次に、この第二正孔輸送層上に、化合物BHと、化合物BD-1とを共蒸着し、膜厚25nmの第三発光層としての青色蛍光発光層を形成した。青色蛍光発光層における化合物BHの濃度を96質量%とし、化合物BD-1の濃度を4質量%とした。
 次に、この青色蛍光発光層上に、化合物PGH-2を蒸着し、膜厚10nmの第一電子輸送層を形成した。
 次に、この第一電子輸送層上に、化合物ET-1を蒸着し、膜厚12nmの第二電子輸送層を形成した。
 次に、この第二電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入層を形成した。
 そして、この電子注入層上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 以上のようにして、ボトムエミッション型の有機EL素子を作製した。
 実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/
 HT-1:HI(10,97%:3%)/HT-1(117)/HT-2(10)/PGH-1:PGD(40,80%:20%)/ET-1(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/
 ET-2:Li(56,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/ET-1(12)/LiF(1)/
 Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字は、例えば、HT-1:HI(10,97%:3%)
の場合、正孔注入層における化合物HT-1及び化合物HIの割合(質量%)が、HT-1:HI=97質量%:3質量%であることを示す。以下、同様の表記とする。
(実施例2)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 実施例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(80)/
 HT-1:HI(10,97%:3%)/HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-3(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/PGH-1:PGD(48,80%:20%)/ET-1(10)/
 ET-2:Li(95,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-1(10)/ET-1(10)/LiF(1)/
 Al(80)
(実施例3)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 実施例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/
 HT-1:HI(10,97%:3%)/HT-1(70)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-3(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/PGH-1:PGD(48,80%:20%)/ET-1(10)/
 ET-2:Li(95,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/ET-1(10)/LiF(1)/
 Al(80)
(実施例4)
 素子作製用基板となるガラス基板(25mm×75mm×0.7mm厚)の上に、膜厚100nmの銀合金層であるAPC(Ag-Pd-Cu)層(反射層)と、膜厚10nmの酸化インジウム-酸化亜鉛(IZO:登録商標)膜(透明導電層)とを順にスパッタリング法により成膜した。これにより、APC層とIZO膜とからなる導電材料層を得た。
 続いて通常のリソグラフィ技術を用いて、レジストパターンをマスクに用いたエッチングにより、この導電材料層をパターニングし、下部電極(陽極)を形成した。
・第一発光ユニットの形成
 次に、下部電極の上に、真空蒸着法を用いて、化合物HT-1と、化合物HIとを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HT-1の濃度を97質量%とし、化合物HIの濃度を3質量%とした。
 次に、正孔注入層上に、化合物HT-1を蒸着し、正孔注入層上に膜厚10nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-3を蒸着し、膜厚5nmの第二正孔輸送層を形成した。
 次に、この第二正孔輸送層上に、化合物BHと、化合物BD-2とを共蒸着し、膜厚20nmの第一発光層としての青色蛍光発光層を形成した。青色蛍光発光層における化合物BHの濃度を98質量%とし、化合物BD-2の濃度を2質量%とした。
 次に、この青色蛍光発光層上に、化合物PGH-2を蒸着し、膜厚5nmの電子輸送層を形成した。
・第一電荷発生層の形成
 次に、この電子輸送層上に、化合物ET-3と、リチウム(Li)とを共蒸着し、膜厚58nmの第一N層を形成した。第一N層における化合物ET-3の濃度を96質量%とし、Liの濃度を4質量%とした。
 次に、この第一N層上に、化合物HT-1と、化合物HIとを共蒸着し、膜厚10nmの第一P層を形成した。第一P層における化合物HT-1の濃度を90質量%とし、化合物HIの濃度を10質量%とした。
・第二発光ユニットの形成
 次に、この第一P層上に、化合物HT-1を蒸着し、膜厚10nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-3を蒸着し、膜厚5nmの第二正孔輸送層を形成した。
 次に、この第二正孔輸送層上に、化合物BHと、化合物BD-2とを共蒸着し、膜厚20nmの第二発光層としての青色発光層を形成した。青色発光層における化合物BHの濃度を98質量%とし、化合物BD-2の濃度を2質量%とした。
 次に、この青色発光層上に、化合物PGH-2を蒸着し、膜厚5nmの電子輸送層を形成した。
・第二電荷発生層の形成
 次に、この電子輸送層上に、化合物ET-3と、リチウム(Li)とを共蒸着し、膜厚64nmの第二N層を形成した。第二N層における化合物ET-3の濃度を96質量%とし、Liの濃度を4質量%とした。
 次に、この第二N層上に、化合物HT-1と、化合物HIとを共蒸着し、膜厚10nmの第二P層を形成した。第二P層における化合物HT-1の濃度を90質量%とし、化合物HIの濃度を10質量%とした。
・第三発光ユニットの形成
 次に、この第二P層上に、化合物HT-1を蒸着し、第二P層上に膜厚10nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層上に、化合物HT-3を蒸着し、膜厚5nmの第二正孔輸送層を形成した。
 次に、この第二正孔輸送層上に、化合物BHと、化合物BD-2とを共蒸着し、膜厚20nmの第三発光層としての青色蛍光発光層を形成した。青色蛍光発光層における化合物BHの濃度を98質量%とし、化合物BD-2の濃度を2質量%とした。
 次に、この青色蛍光発光層上に、化合物PGH-2を蒸着し、膜厚5nmの第一電子輸送層を形成した。
 次に、この第一電子輸送層上に、化合物ET-1を蒸着し、膜厚15nmの第二電子輸送層を形成した。
 次に、この第二電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入層を形成した。
 そして、この電子注入層上に、MgとAgとを混合比(質量%比)1:9となるように共蒸着し、合計膜厚12nmの半透過性のMgAg合金からなる上部電極(陰極)を形成した。
 次に、上部電極の上に、化合物Cap1を全面に成膜し、膜厚70nmのキャッピング層を形成した。
 以上のようにして、トップエミッション型の有機EL素子を作製した。
 実施例4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 APC(100)/IZO(10)/
 HT-1:HI(10,97%:3%)/HT-1(10)/HT-3(5)/BH:BD-2(20,98%:2%)/PGH-2(5)/
 ET-3:Li(58,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-3(5)/BH:BD-2(20,98%:2%)/PGH-2(5)/
 ET-3:Li(64,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-3(5)/BH:BD-2(20,98%,2%)/PGH-2(5)/ET-1(15)/LiF(1)/
 Mg:Ag(12,10%:90%)/Cap1(70)
(実施例5)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 実施例5の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/
 HT-1:HI(10,97%:3%)/HT-1(117)/HT-2(10)/PGH-1:PGD(40,80%:20%)/ET-1(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/
 ET-2:Li(56,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/ET-1(70)/LiF(1)/
 Al(80)
(実施例6)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 実施例6の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/
 HT-1:HI(10,97%:3%)/HT-1(117)/HT-2(10)/PGH-1:PRD(5,98%:2%)/
PGH-1:PGD(35,80%:20%)/ET-1(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-3(25,96%:4%)/PGH-2(10)/
 ET-2:Li(56,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-3(25,96%:4%)/PGH-2(10)/ET-1(12)/LiF(1)/
 Al(80)
(実施例7)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 実施例7の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(80)/
 HT-1:HI(10,97%:3%)/HT-1(10)/HT-2(10)/BH-2:BD-4(25,96%:4%)/PGH-3(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/PGH-1:PRD(5,98%:2%)/PGH-1:PGD-2(43,80%:20%)/ET-1(10)/
 ET-2:Li(95,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH-2:BD-4(25,96%:4%)/PGH-1(10)/ET-1(1)/LiF(1)/
 Al(80)
(実施例8)
 以下の素子構成となるように、各層の膜厚を変更したこと以外、実施例4と同様にしてトップエミッション型の有機EL素子を作製した。
 実施例8の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 APC(100)/IZO(10)/
 HT-1:HI(10,97%:3%)/HT-1(10)/HT-3(5)/BH:BD-2(20,98%:2%)/PGH-2(5)/
 ET-3:Li(96,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-3(5)/BH:BD-2(20,98%:2%)/PGH-2(5)/
 ET-3:Li(64,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-3(5)/BH:BD-2(20,98%,2%)/PGH-2(5)/ET-1(15)/LiF(1)/
 Mg:Ag(12,10%:90%)/Cap1(70)
(比較例1)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 比較例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/
 HT-1:HI(10,97%:3%)/HT-1(117)/HT-2(10)/PGH-1:PGD(40,80%:20%)/ET-1(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(56)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/ET-1(12)/LiF(1)/
 Al(80)
(比較例2)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 比較例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(80)/
 HT-1:HI(10,97%:3%)/HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-3(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/PGH-1:PGD(48,80%:20%)/ET-1(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(95)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/ET-1(10)/LiF(1)/
 Al(80)
(比較例3)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 比較例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(80)/
 HT-1:HI(10,97%:3%)/HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-3(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/ET-1(10)/
 ET-2:Li(95,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/PGH-1:PGD(48,80%:20%)/PGH-2(10)/ET-1(10)/LiF(1)/
 Al(80)
(比較例4)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 比較例4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/
 HT-1:HI(10,97%:3%)/HT-1(117)/HT-2(10)/PGH-1:PGD(40,80%:20%)/ET-1(10)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/ET-2(46)/
 ET-2:Li(10,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(10)/HT-2(10)/BH:BD-1(25,96%:4%)/PGH-2(10)/ET-1(12)/LiF(1)/
 Al(80)
(比較例5)
 以下の素子構成となるように、各層の膜厚及び材料を変更したこと、及び第三発光ユニットを形成しなかったこと以外、実施例1と同様にしてボトムエミッション型の有機EL素子を作製した。
 比較例5の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(120)/
 HT-1:HI(14,97%:3%)/HT-1(60)/BH:BD-1(22,96%:4%)/ET-1(20)/
 ET-2:Li(20,96%:4%)/HT-1:HI(10,90%:10%)/
 HT-1(30)/PGH-1:PGD(40,80%:20%)/ET-1(10)/
 ET-2:Li(15,96%:4%)/
 Al(80)
<m~m、L~L、及びΦ~Φ
 実施例1~8及び比較例1~5において作製した有機EL素子について、前記数式(1-1)~(1-3)及び前記数式(2-1)~(2-3)中の、m~m、L~L、及びΦ~Φを求めた。結果を表1に示す。
 青色発光層、黄色燐光発光層、赤黄系燐光発光層、及び赤緑系燐光発光層からの発光の主ピーク波長は、既述の方法で測定した。
 なお、赤黄系燐光発光層とは、実施例6の第一発光層(赤色燐光発光層及び黄色燐光発光層からなる燐光発光層)のことをいう。赤緑系燐光発光層とは、実施例7の第二発光層(赤色燐光発光層及び緑色燐光発光層からなる燐光発光層)のことをいう。
 Φは、反射性電極(実施例1の場合、陰極)の複素屈折率N=n-jk(n:屈折率、k:消衰係数)のn及びkと、第一発光ユニットを構成する有機層(実施例1の場合、第一正孔輸送帯域(正孔注入層、第一正孔輸送層、及び第二正孔輸送層)、第一発光層、並びに第一電子輸送帯域(電子輸送層))の屈折率nとを用いて計算した。
 Φは、反射性電極(実施例1の場合、陰極)の複素屈折率N=n-jk(n:屈折率、k:消衰係数)のn及びkと、第二発光ユニットを構成する有機層(実施例1の場合、第二正孔輸送帯域(第一正孔輸送層及び第二正孔輸送層)、第二発光層、並びに第二電子輸送帯域(電子輸送層))の屈折率nとを用いて計算した。
 Φは、反射性電極(実施例1の場合、陰極)の複素屈折率N=n-jk(n:屈折率、k:消衰係数)のn及びkと、第三発光ユニットを構成する有機層(実施例1の場合、第三正孔輸送帯域(第一正孔輸送層及び第二正孔輸送層)、第三発光層、並びに第三電子輸送帯域(第一電子輸送層、第二電子輸送層、及び電子注入層))の屈折率nとを用いて計算した。
 Φ~Φの計算は、例えば、Principles of Optics, Max Born and Emil Wolf,1974(PERGAMON PRESS)を参照して計算することができる。
 実施例2~8、及び比較例1~5におけるΦ~Φも、上記と同様にして計算することができる。
 前記有機層の屈折率は分光エリプソメトリー測定装置を用いて測定した。
 なお、屈折率とは、層の形成面に対して垂直方向の屈折率を意味する。
Figure JPOXMLDOC01-appb-T000043
〔評価〕
 実施例1~8及び比較例1~5において作製した有機EL素子について、以下の評価を行った。結果を表2に示す。
<青色蛍光発光の主ピーク波長及びピーク強度>
 以下の方法により、有機EL素子から得られた青色蛍光発光の主ピーク波長を測定した。また、その強度も測定した。
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測した。
 得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長及びその強度を測定し、これらを、本評価における「青色蛍光発光の主ピーク波長(単位:nm)」及び「青色蛍光発光の主ピーク強度」とした。
・駆動電圧
 電流密度が10mA/cmとなるように陽極と陰極との間に通電したときの電圧(単位:V)を計測した。以下の評価基準に基づき、駆動電圧を判定した。
-評価基準-
A:駆動電圧が12V未満
B:駆動電圧が12V以上
・青色蛍光発光の寿命
 電流密度が50mA/cmとなるように素子に電圧を印加し、分光放射輝度計CS-2000(コニカミノルタ株式会社製)を用いて通電時間毎に発光スペクトルを測定し、青色波長領域である460nmにおける発光ピーク強度を測定した。初期の発光ピーク強度に対する通電後の発光ピーク強度の比率を計算した。初期の発光ピーク強度に対してピーク強度が5%低下した時間を5%劣化寿命(単位:分)として、以下の算出式により5%劣化寿命比(%)を算出した。すなわち、5%劣化寿命は、初期の発光ピーク強度をXとしたときに、発光ピーク強度が0.95Xに低下した時間である。
 各例の素子について、実施例1に対する5%劣化寿命比(%)を比較した。
 また、以下の評価基準に基づき、有機EL素子から発光した青色蛍光発光の寿命を判定した。
算出式:5%劣化寿命比(%)=(各例の5%劣化寿命/実施例1の5%劣化寿命)×100
-評価基準-
A:5%劣化寿命比が90%以上
B:5%劣化寿命比が80%以上90%未満
C:5%劣化寿命比が80%未満
Figure JPOXMLDOC01-appb-T000044
(表2の説明)
・HT帯域は、正孔輸送帯域を表す。
・HI層は、正孔注入層を表す。
・HT層1は、第一正孔輸送層を表し、HT層2は、第二正孔輸送層を表す。
・ET帯域は、電子輸送帯域を表す。
・ET層は、電子輸送層を表す。
・ET層の厚さは、電子輸送層が複数層からなる場合、その総厚を表す。
・5/35は、赤色燐光発光層5nmと黄色燐光発光層35nmとが積層されていることを表す。
・5/43は、赤色燐光発光層5nmと緑色燐光発光層43nmとが積層されていることを表す。
 表2に示すように、実施例1~8の有機EL素子は、比較例1~5の有機EL素子に比べ、駆動電圧が低く、かつ青色蛍光発光の「5%劣化寿命比」が高い値を示した。
 したがって、実施例1~8の有機EL素子によれば、駆動電圧を低下させ、寿命を向上させることができる。
 また、第三発光ユニットが光学干渉の式(具体的には、数式(1-3)及び数式(2-3))を満たす実施例1~4、6、及び7の有機EL素子は、青色蛍光発光の主ピーク強度が大きかった。したがって、実施例1~4、6、及び7の有機EL素子によれば、青色蛍光発光の発光効率を向上させることができる。
 1,2…有機EL素子、11…基板、12…陽極、13,13A…第一発光ユニット、14…第一電荷発生層、15,15A…第二発光ユニット、16…第二電荷発生層、17,17A…第三発光ユニット、18…陰極、12A,18A…反射界面、131…第一正孔輸送帯域、131A,151A,171A…第一正孔輸送層、131B,151B,171B…第二正孔輸送層、131C…正孔注入層、132…第一発光層、133…第一電子輸送帯域、141…第一N層、142…第一P層、151…第二正孔輸送帯域、152…第二発光層、153…第二電子輸送帯域、161…第二N層、162…第二P層、171…第三正孔輸送帯域、172…第三発光層、173…第三電子輸送帯域。

Claims (21)

  1.  陽極と、
     陰極と、
     第一発光層を有する第一発光ユニットと、
     第一電荷発生層と、
     第二発光層を有する第二発光ユニットと、
     第二電荷発生層と、
     第三発光層を有する第三発光ユニットと、を備え、
     前記陽極及び前記陰極の間に、前記陽極の側から、前記第一発光ユニットと、前記第一電荷発生層と、前記第二発光ユニットと、前記第二電荷発生層と、前記第三発光ユニットとが、この順に含まれ、
     前記第二電荷発生層は、前記陽極の側にN層と、前記陰極の側にP層と、を有し、
     前記第三発光層は、青色蛍光発光性の化合物を含み、
     前記第一発光層及び前記第二発光層の少なくとも一方は、青色蛍光発光性の化合物を含み、
     前記第三発光ユニットは、さらに、前記第二電荷発生層及び前記第三発光層の間に、第三発光ユニットの正孔輸送帯域を有し、
     前記第三発光ユニットの正孔輸送帯域は、前記第二電荷発生層に接し、
     前記第三発光ユニットの正孔輸送帯域の厚さが、5nm以上40nm以下であり、前記N層の厚さよりも薄い、
     有機エレクトロルミネッセンス素子。
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     前記陽極及び前記陰極の一方が反射性電極であり、
     下記数式(1-3)及び下記数式(2-3)を満たす、
     有機エレクトロルミネッセンス素子。
       n-0.25<m<n+0.25   (1-3)
    (前記数式(1-3)において、nは0以上の整数であり、mは前記反射性電極と前記第三発光層の発光中心との間の干渉次数である。)
    Figure JPOXMLDOC01-appb-M000001

     
    (前記一般式(2-3)において、mは前記数式(1-3)におけるmと同義であり、Lは前記反射性電極と前記第三発光層の発光中心との間の光学距離(nm)であり、λは第三発光層からの発光の主ピーク波長(nm)であり、Φは前記第三発光層からの発光が前記反射性電極で反射される際の位相変化である。)
  3.  請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記一般式(1-3)において、nは0以上3以下の整数である、
     有機エレクトロルミネッセンス素子。
  4.  請求項2または請求項3に記載の有機エレクトロルミネッセンス素子において、
     さらに、下記数式(1-2)及び下記数式(2-2)を満たす、
     有機エレクトロルミネッセンス素子。
       n-0.25<m<n+0.25   (1-2)
    (前記数式(1-2)において、nは0以上の整数であり、mは前記反射性電極と前記第二発光層の発光中心との間の干渉次数である。)
    Figure JPOXMLDOC01-appb-M000002

     
    (前記数式(2-2)において、mは前記数式(1-2)におけるmと同義であり、Lは前記反射性電極と前記第二発光層の発光中心との間の光学距離(nm)であり、λは第二発光層からの発光の主ピーク波長(nm)であり、Φは前記第二発光層からの発光が前記反射性電極で反射される際の位相変化である。)
  5.  請求項4に記載の有機エレクトロルミネッセンス素子において、
     前記数式(1-2)において、nは0以上3以下の整数である、
     有機エレクトロルミネッセンス素子。
  6.  請求項2から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     さらに、下記数式(1-1)及び下記数式(2-1)を満たす、
     有機エレクトロルミネッセンス素子。
       n-0.25<m<n+0.25   (1-1)
    (前記数式(1-1)において、nは0以上の整数であり、mは前記反射性電極と前記第一発光層の発光中心との間の干渉次数である。)
    Figure JPOXMLDOC01-appb-M000003

     
    (前記数式(2-1)において、mは前記数式(1-1)におけるmと同義であり、Lは前記反射性電極と前記第一発光層の発光中心との間の光学距離(nm)であり、λは第一発光層からの発光の主ピーク波長(nm)であり、Φは前記第一発光層からの発光が前記反射性電極で反射される際の位相変化である。)
  7.  請求項6に記載の有機エレクトロルミネッセンス素子において、
     前記数式(1-1)において、nは0以上3以下の整数である、
     有機エレクトロルミネッセンス素子。
  8.  請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第三発光層からの発光の主ピーク波長は、430nm以上500nm以下である、
     有機エレクトロルミネッセンス素子。
  9.  請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記N層の厚さが、40nm以上である、
     有機エレクトロルミネッセンス素子。
  10.  請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第三発光ユニットの正孔輸送帯域は、2層以上からなる、
     有機エレクトロルミネッセンス素子。
  11.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第二発光ユニットは、前記第一電荷発生層及び前記第二発光層の間に、第二発光ユニットの正孔輸送帯域を有し、
     前記第二発光ユニットの正孔輸送帯域は、前記第一電荷発生層に接し、
     前記第二発光ユニットの正孔輸送帯域の厚さが、5nm以上40nm以下である、
     有機エレクトロルミネッセンス素子。
  12.  請求項11に記載の有機エレクトロルミネッセンス素子において、
     前記第二発光ユニットの正孔輸送帯域は、2層以上からなる、
     有機エレクトロルミネッセンス素子。
  13.  請求項1から請求項12のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第二発光層は、青色蛍光発光性の化合物を含む、
     有機エレクトロルミネッセンス素子。
  14.  請求項13に記載の有機エレクトロルミネッセンス素子において、
     前記第二発光層からの発光の主ピーク波長は、430nm以上500nm以下である、
     有機エレクトロルミネッセンス素子。
  15.  請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一発光ユニットは、前記陽極及び前記第一発光層の間に、第一発光ユニットの正孔輸送帯域を有し、
     前記第一発光ユニットの正孔輸送帯域は、前記陽極に接し、
     前記第一発光ユニットの正孔輸送帯域の厚さが、5nm以上40nm以下である、
     有機エレクトロルミネッセンス素子。
  16.  請求項15に記載の有機エレクトロルミネッセンス素子において、
     前記第一発光ユニットの正孔輸送帯域は、3層以上からなる、
     有機エレクトロルミネッセンス素子。
  17.  請求項1から請求項16のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一発光層は、青色蛍光発光性の化合物を含む、
     有機エレクトロルミネッセンス素子。
  18.  請求項17に記載の有機エレクトロルミネッセンス素子において、
     前記第一発光層からの発光の主ピーク波長は、430nm以上500nm以下である、
     有機エレクトロルミネッセンス素子。
  19.  請求項1から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記陽極が反射性電極であり、前記陰極の側から光を取り出す、
     有機エレクトロルミネッセンス素子。
  20.  請求項1から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記陰極が反射性電極であり、前記陽極の側から光を取り出す、
     有機エレクトロルミネッセンス素子。
  21.  請求項1から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した電子機器。
PCT/JP2019/022164 2018-06-04 2019-06-04 有機エレクトロルミネッセンス素子及び電子機器 WO2019235475A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207037971A KR20210015958A (ko) 2018-06-04 2019-06-04 유기 일렉트로루미네센스 소자 및 전자 기기
CN201980037040.4A CN112243599A (zh) 2018-06-04 2019-06-04 有机电致发光元件和电子设备
US15/734,761 US11856808B2 (en) 2018-06-04 2019-06-04 Organic electroluminescent element and electronic device drivable at low voltage with improved lifetime

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-107244 2018-06-04
JP2018107244A JP2021182459A (ja) 2018-06-04 2018-06-04 有機エレクトロルミネッセンス素子及び電子機器

Publications (1)

Publication Number Publication Date
WO2019235475A1 true WO2019235475A1 (ja) 2019-12-12

Family

ID=68769911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022164 WO2019235475A1 (ja) 2018-06-04 2019-06-04 有機エレクトロルミネッセンス素子及び電子機器

Country Status (5)

Country Link
US (1) US11856808B2 (ja)
JP (1) JP2021182459A (ja)
KR (1) KR20210015958A (ja)
CN (1) CN112243599A (ja)
WO (1) WO2019235475A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210336149A1 (en) * 2019-12-25 2021-10-28 Idemitsu Kosan Co.,Ltd. Organic electroluminescent element and electronic device
CN113620815A (zh) * 2020-05-08 2021-11-09 北京夏禾科技有限公司 芳香族胺衍生物有机电致发光材料及其器件
US20220165983A1 (en) * 2020-11-20 2022-05-26 Samsung Display Co., Ltd. Display device and method of manufacturing the same
WO2022118867A1 (ja) * 2020-12-02 2022-06-09 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2022138950A1 (ja) * 2020-12-25 2022-06-30 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2022154030A1 (ja) * 2021-01-13 2022-07-21 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
US11575087B1 (en) 2020-12-25 2023-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device, light emitting device, organic electroluminescence display device and electronic device
WO2023054678A1 (ja) * 2021-10-01 2023-04-06 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2024184999A1 (ja) * 2023-03-06 2024-09-12 シャープディスプレイテクノロジー株式会社 電界発光装置、その製造方法及び表示装置
WO2024184998A1 (ja) * 2023-03-06 2024-09-12 シャープディスプレイテクノロジー株式会社 電界発光装置、その製造方法及び表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123721A (ja) * 2019-01-29 2020-08-13 学校法人関西学院 有機電界発光素子、および表示装置
KR20230081928A (ko) * 2021-11-30 2023-06-08 삼성디스플레이 주식회사 발광 소자 및 이를 포함한 전자 장치
WO2024043018A1 (ja) * 2022-08-22 2024-02-29 東レ株式会社 有機el素子、表示装置および照明装置
JP2024101303A (ja) * 2023-01-17 2024-07-29 キヤノン株式会社 発光素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2012186092A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
JP2014212102A (ja) * 2013-04-05 2014-11-13 キヤノン株式会社 有機el素子、表示装置、画像処理装置、照明装置及び画像形成装置
JP2016149368A (ja) * 2013-12-03 2016-08-18 エルジー ディスプレイ カンパニー リミテッド 有機発光素子及び有機発光表示装置
JP6151847B1 (ja) * 2016-12-27 2017-06-21 Lumiotec株式会社 有機エレクトロルミネッセント素子および照明装置
US20170194387A1 (en) * 2015-12-31 2017-07-06 Samsung Display Co., Ltd. Blue organic light emitting device and display device including the same
KR20170143292A (ko) * 2016-06-21 2017-12-29 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이를 적용한 유기 발광 표시 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133583B2 (ja) 2012-12-03 2017-05-24 出光興産株式会社 有機エレクトロルミネッセンス素子
JP6379338B2 (ja) 2014-02-12 2018-08-29 株式会社Joled 有機電界発光素子、表示装置、および有機電界発光素子の製造方法
KR102291896B1 (ko) * 2014-10-13 2021-08-20 엘지디스플레이 주식회사 전하생성 화합물 및 이를 포함하는 유기전계발광소자
KR102611206B1 (ko) * 2016-07-13 2023-12-08 삼성디스플레이 주식회사 유기 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2012186092A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
JP2014212102A (ja) * 2013-04-05 2014-11-13 キヤノン株式会社 有機el素子、表示装置、画像処理装置、照明装置及び画像形成装置
JP2016149368A (ja) * 2013-12-03 2016-08-18 エルジー ディスプレイ カンパニー リミテッド 有機発光素子及び有機発光表示装置
US20170194387A1 (en) * 2015-12-31 2017-07-06 Samsung Display Co., Ltd. Blue organic light emitting device and display device including the same
KR20170143292A (ko) * 2016-06-21 2017-12-29 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이를 적용한 유기 발광 표시 장치
JP6151847B1 (ja) * 2016-12-27 2017-06-21 Lumiotec株式会社 有機エレクトロルミネッセント素子および照明装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210336149A1 (en) * 2019-12-25 2021-10-28 Idemitsu Kosan Co.,Ltd. Organic electroluminescent element and electronic device
US11997920B2 (en) * 2019-12-25 2024-05-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
CN113620815A (zh) * 2020-05-08 2021-11-09 北京夏禾科技有限公司 芳香族胺衍生物有机电致发光材料及其器件
US20220165983A1 (en) * 2020-11-20 2022-05-26 Samsung Display Co., Ltd. Display device and method of manufacturing the same
US12120904B2 (en) * 2020-11-20 2024-10-15 Samsung Display Co., Ltd. Display device and method of manufacturing the same
WO2022118867A1 (ja) * 2020-12-02 2022-06-09 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2022138950A1 (ja) * 2020-12-25 2022-06-30 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US11575087B1 (en) 2020-12-25 2023-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device, light emitting device, organic electroluminescence display device and electronic device
WO2022154030A1 (ja) * 2021-01-13 2022-07-21 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2023054678A1 (ja) * 2021-10-01 2023-04-06 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2024184999A1 (ja) * 2023-03-06 2024-09-12 シャープディスプレイテクノロジー株式会社 電界発光装置、その製造方法及び表示装置
WO2024184998A1 (ja) * 2023-03-06 2024-09-12 シャープディスプレイテクノロジー株式会社 電界発光装置、その製造方法及び表示装置

Also Published As

Publication number Publication date
KR20210015958A (ko) 2021-02-10
US20210242419A1 (en) 2021-08-05
CN112243599A (zh) 2021-01-19
US11856808B2 (en) 2023-12-26
JP2021182459A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2019235475A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2017010489A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2017010438A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2019230708A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び電子機器
US20190010390A1 (en) Organic electroluminescence element and electronic device
JP6348113B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
US11456425B2 (en) Organic electroluminescent element, and electronic apparatus
JP7569368B2 (ja) 有機エレクトロルミネッセンス素子及び電子機器
CN109694375B (zh) 多环化合物以及包括该多环化合物的有机电致发光装置
US20230006138A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic equipment
CN116761868A (zh) 有机电致发光元件、有机电致发光显示装置和电子设备
KR102650329B1 (ko) 피로메텐붕소 착체, 그것을 함유하는 발광 소자, 표시 장치 및 조명 장치
JP6305798B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2016129691A1 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器
WO2018180709A1 (ja) 化合物、それを含有する電子デバイス、有機薄膜発光素子、表示装置および照明装置
TWI797429B (zh) 吡咯亞甲基金屬錯合物、發光元件材料及發光元件
US11997920B2 (en) Organic electroluminescent element and electronic device
JP2016216411A (ja) 化合物、有機エレクトロルミネッセンス素子、及び電子機器
JP2024000077A (ja) 化合物、発光素子材料、それを用いた発光素子
JP2015007009A (ja) 芳香族アミン誘導体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP2023029747A (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2024075797A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2016129687A1 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207037971

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19814685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP