WO2019234928A1 - User terminal - Google Patents

User terminal Download PDF

Info

Publication number
WO2019234928A1
WO2019234928A1 PCT/JP2018/022088 JP2018022088W WO2019234928A1 WO 2019234928 A1 WO2019234928 A1 WO 2019234928A1 JP 2018022088 W JP2018022088 W JP 2018022088W WO 2019234928 A1 WO2019234928 A1 WO 2019234928A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
signal
transmission
unit
information
Prior art date
Application number
PCT/JP2018/022088
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/022088 priority Critical patent/WO2019234928A1/en
Publication of WO2019234928A1 publication Critical patent/WO2019234928A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to a user terminal in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
  • a user terminal In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) periodically and / or aperiodically performs channel state information (CSI: Channel State Information) with respect to a base station. ).
  • the UE transmits CSI using an uplink control channel (PUCCH: Physical Uplink Control Channel) and / or an uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • an SP-CSI (Semi-Persistent CSI) report in which the UE reports CSI using a resource designated as semi-persistent (semi-persistent, semi-persistent) is being studied. .
  • DCI downlink control information
  • the UE does not expect to send more than one PUSCH-based SP-CSI report per slot per component carrier (CC) or across all CCs. ing. For this reason, if more than one PUSCH-based SP-CSI report is generated in the same slot, it is not possible to report an appropriate CSI at an appropriate timing unless it is clarified which SP-CSI report is transmitted. There is a problem in that throughput decreases.
  • CC component carrier
  • an object of the present disclosure is to provide a user terminal that can appropriately perform SP-CSI reporting even when a plurality of SP-CSI trigger states are active at the same time.
  • a user terminal includes a reception unit that receives information on settings of a plurality of semi-persistent channel state information reports (SP-CSI (Semi-Persistent Channel State Information) reports), and a plurality of terminals in the same slot And a control unit that drops at least one of the plurality of SP-CSI reports based on a predetermined condition.
  • SP-CSI Semi-persistent channel state information reports
  • FIG. 1 is a diagram illustrating an example in which more than one PUSCH-based SP-CSI report occurs in the same slot.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment.
  • FIG. 4 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment.
  • FIG. 5 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment.
  • FIG. 6 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the UE measures the channel state using a predetermined reference signal (or a resource for the reference signal).
  • the reference signal for channel state measurement may be called CSI-RS (Channel State Information-Reference Signal).
  • CSI-RS Channel State Information-Reference Signal
  • the UE measures the channel state using signals other than CSI-RS (for example, synchronization signal / broadcast channel (SS / PBCH: Synchronization Signal / Physical Broadcast Channel) block, synchronization signal, demodulation reference signal, etc.). May be.
  • the CSI-RS resource may include at least one of non-zero power (NZP: Non Zero Power) CSI-RS and CSI-IM (Interference Management).
  • NZP Non Zero Power
  • CSI-RS Interference Management
  • the SS / PBCH block is a block including a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a PBCH, and may be referred to as an SS block or the like.
  • the UE sends channel state information (CSI) to a base station (for example, BS (Base Station), transmission / reception point (TRP), eNB (eNodeB) at a predetermined timing based on a measurement result such as a reference signal. ), And may be called gNB (NR NodeB).
  • BS Base Station
  • TRP transmission / reception point
  • eNB eNodeB
  • gNB NR NodeB
  • CSI includes channel quality identifier (CQI: Channel Quality Indicator), precoding matrix identifier (PMI), rank identifier (RI: Rank Indicator), layer identifier (LI: layer indication), CSI-RS resource. It may include at least one of an identifier (CRI: CSI-RS resource indicator), L1-RSRP (reference signal received power (RSRP) in the physical layer (layer 1)), and the like.
  • CQI Channel Quality Indicator
  • PMI precoding matrix identifier
  • RI rank identifier
  • LI layer indication
  • CSI-RS resource It may include at least one of an identifier (CRI: CSI-RS resource indicator), L1-RSRP (reference signal received power (RSRP) in the physical layer (layer 1)), and the like.
  • RSRP reference signal received power
  • CSI may have multiple parts.
  • the first part of CSI (CSI part 1) may include information (for example, RI) having a relatively small number of bits.
  • the second part of CSI (CSI part 2) may include information having a relatively large number of bits (for example, CQI) such as information determined based on CSI part 1.
  • CSI feedback methods include (1) periodic CSI (P-CSI: Periodic CSI) report, (2) aperiodic CSI (A-CSI) report, and (3) semi-permanent (semi-permanent). Persistent, semi-persistent (CSI) reports (SP-CSI: Semi-Persistent CSI) reports are being studied.
  • P-CSI Periodic CSI
  • A-CSI aperiodic CSI
  • SP-CSI Semi-Persistent CSI
  • the UE Resources based on can be used periodically.
  • the SP-CSI resource may be a resource set by higher layer signaling, or may be a resource specified by an SP-CSI report activation signal (may be referred to as a “trigger signal”). Good.
  • the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Control Element
  • MAC PDU Protocol Data Unit
  • the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), and minimum system information (RMSI: Remaining Minimum System Information).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • SP-CSI resource information (which may be referred to as SP-CSI configuration, SP-CSI report configuration (CSI-ReportConfig), etc.) includes upper layer signaling, physical layer signaling (eg, downlink control information (DCI: Downlink Control)). Information))) or a combination thereof may be notified to the UE.
  • DCI Downlink Control information
  • the SP-CSI setting includes, for example, a report period (which may be called RRC parameter “reportSlotConfig”, L1 parameter “ReportPeriodicity”, “ReportPeriodicity-spCSI”, etc.) and an offset (RRC parameter “reportSlotOffsetList”, L1 parameter “ReportSlotOffset”). Etc.), which may be expressed in predetermined time units (slot units, subframe units, symbol units, etc.).
  • the SP-CSI setting may include a setting ID (RRC parameter “CSI-ReportConfigId”, L1 parameter “reportConfigID”), the type of CSI reporting method (whether it is SP-CSI or the like), and the reporting cycle based on the setting ID. Parameters such as may be specified.
  • the SP-CSI resource information may include information (CSI-ResourceConfigId) indicating which reference signal (or resource for which reference signal) is used to report the measured SP-CSI.
  • the SP-CSI resource information may be referred to as SP-CSI resource setting, SP-CSI report setting, and the like.
  • the UE When the UE receives a predetermined activation signal, the UE performs CSI measurement using, for example, a predetermined reference signal (for example, may be referred to as SP-CSI-RS) and SP-CSI using SP-CSI resources. Reporting (SP-CSI reporting based on SP-CSI settings) may be performed periodically. The UE stops SP-CSI measurement and / or reporting when it receives a predetermined deactivation signal or when a predetermined timer expires.
  • a predetermined reference signal for example, may be referred to as SP-CSI-RS
  • SP-CSI reporting SP-CSI reporting based on SP-CSI settings
  • the SP-CSI report uses a primary cell (PCell: Primary Cell), a primary secondary cell (PSCell: Primary Secondary Cell), a PUCCH secondary cell (PUCCH SCell), other cells (for example, a secondary cell (Secondary Cell)), etc. May be transmitted.
  • PCell Primary Cell
  • PSCell Primary Secondary Cell
  • PUCCH SCell PUCCH secondary cell
  • other cells for example, a secondary cell (Secondary Cell)
  • the activation / deactivation signal of the SP-CSI report may be notified using, for example, MAC signaling (for example, MAC CE) or may be notified using physical layer signaling (for example, DCI). .
  • MAC signaling for example, MAC CE
  • physical layer signaling for example, DCI
  • the SP-CSI report may be transmitted using one or both of PUCCH and PUSCH. Which is used for transmission may be set from the gNB to the UE by RRC signaling, may be specified by MAC CE or the like, or may be notified by DCI.
  • the channel for performing the SP-CSI report may be determined based on the activation signal of the SP-CSI report. For example, an SP-CSI report using PUCCH (which may be referred to as “PUCCH-based SP-CSI report”) may be activated by MAC CE, or an SP-CSI report using PUSCH (“PUSCH-based SP- CSI report ”) may be activated (triggered) by DCI.
  • PUCCH which may be referred to as “PUCCH-based SP-CSI report”
  • PUSCH-based SP- CSI report an SP-CSI report using PUSCH
  • the PUCCH-based SP-CSI report activation MAC CE is also simply referred to as “activation MAC CE” hereinafter.
  • the deactivation MAC CE of the PUCCH-based SP-CSI report is also simply referred to as “deactivation MAC CE” hereinafter.
  • the DCI for activation of PUSCH-based SP-CSI report is also simply referred to as “DCI for activation” below.
  • the DCI for deactivation of the PUSCH-based SP-CSI report is hereinafter also simply referred to as “DCI for deactivation”.
  • the DCI for activation / deactivation is masked by the cyclic redundancy check (CRC: Cyclic Redundancy Check) bit by the Radio Network Temporary Identifier (RNTI) (SP-CSI-RNTI) for SP-CSI reporting ( It may be a scrambled DCI.
  • CRC Cyclic Redundancy Check
  • RNTI Radio Network Temporary Identifier
  • the UE When a specific field of a certain DCI (eg, DCI format 0_1) has a predetermined value, the UE is a DCI for PUSCH-based SP-CSI report, and the activation of the SP-CSI report Or it may be assumed to indicate deactivation.
  • DCI format and “DCI” may be interchanged.
  • the UE may assume that DCI format 0_1 that satisfies all of the following is DCI for activation: All HARQ (Hybrid Automatic Repeat reQuest) process number (HPN) fields are set to '0'. The redundancy version (RV) field is set to '00'.
  • All HARQ (Hybrid Automatic Repeat reQuest) process number (HPN) fields are set to '0'.
  • HPN Hybrid Automatic Repeat reQuest
  • RV redundancy version
  • the UE may assume that DCI format 0_1 that satisfies the following is a DCI for deactivation: • All HPN fields are set to '0'. -Modulation and Coding Scheme (MCS) fields are all set to '1'.
  • the resource block assignment (resource assignment (RA)) field is set to “0” when (1) the upper layer sets only RA type 0. (2) The upper layer is the RA type. When only 1 is set, all are set to '1'. (3) The upper layer sets the dynamic switch of RA type 0 and 1, and the most significant bit (MSB: Most Significant Bit) is '0'. Are all set to '0', otherwise all are set to '1'. -The RV field is set to '00'.
  • the DCI for activation may include a frequency domain resource assignment (Freq-RA) field.
  • the Freq-RA field may indicate a PUSCH frequency resource (for example, a resource block (PRB)) used for SP-CSI reporting.
  • PRB resource block
  • At least one of the activation MAC CE and the activation DCI may activate one or more trigger states.
  • the trigger state may mean a CSI setting to be activated, and may include a setting ID (CSI-ReportConfigId).
  • the UE may control the SP-CSI activation based on the correspondence between the value of the CSI request field included in the activation DCI and the trigger state.
  • the correspondence relationship may be determined according to the specification, or may be set by higher layer signaling (for example, RRC signaling).
  • Each code point (value indicated by a bit) of the CSI request field may be associated with one or a plurality of CSI settings (may be read by including CSI reporting (including CSI reporting)). Note that the code point may not include a code point indicating “no CSI request”.
  • the size (number of bits) of the CSI request field may be the same as the size of the CSI request field (which may be called “ReportTriggerSize” or the like) set by higher layer signaling (for example, RRC signaling).
  • the size of the CSI request field to be set may correspond to the size of the CSI request field for DCI format 0_1.
  • “ReportTriggerSize” may be an arbitrary number of bits (1, 2, 3, 4,...), For example.
  • the CSI request field for activation DCI and the CSI request field for A-CSI trigger may be the same size.
  • the number of SP-CSI trigger states and the number of A-CSI trigger states may be the same or different.
  • the PUSCH-based SP-CSI report it may be allowed that a plurality of SP-CSI trigger states are active at the same time. That is, when multiple SP-CSI trigger states are active, more than one PUSCH-based SP-CSI report may occur in the same slot depending on the setting of the period, offset, etc. of each SP-CSI report. .
  • more than one PUSCH-based SP-CSI report may occur in the same slot when both PUSCH-based SP-CSI report and PUCCH-based SP-CSI report are activated.
  • FIG. 1 is a diagram illustrating an example in which more than one PUSCH-based SP-CSI report occurs in the same slot.
  • D indicates a downlink slot
  • U indicates an uplink slot
  • S indicates a slot capable of uplink transmission at least partially.
  • the slot configuration is not limited to this.
  • the UE has activated two SP-CSI reports.
  • One is PUSCH-based SP-CSI report # 1 transmitted from slot # 2 with a period of 9 slots.
  • the other is PUSCH-based SP-CSI report # 2 (or PUCCH-based SP-CSI report) transmitted from slot # 3 with a period of 4 slots.
  • the UE only needs to transmit one SP-CSI report in slots # 2, # 3, etc., which have only one SP-CSI report (no SP-CSI report collision).
  • the UE has multiple SP-CSI reports in slot # 11 (there is an SP-CSI report collision). Note that the collision of a plurality of CSI reports may mean that time occupancy of physical channels scheduled to transmit these CSI reports overlaps in the same carrier.
  • the UE does not expect to send more than one PUSCH-based SP-CSI report per slot per component carrier (CC) or across all CCs. ing. It may also be assumed that the UE does not expect to send more than one SP-CSI report per slot regardless of PUCCH and PUSCH bases per CC or across all CCs.
  • CC component carrier
  • the UE cannot determine which SP-CSI report should be transmitted in slot # 11 of FIG. If more than one PUSCH-based SP-CSI report is generated in the same slot, if it is not clarified which SP-CSI report is transmitted, an appropriate CSI cannot be reported at an appropriate timing, resulting in a decrease in communication throughput. May occur.
  • the present inventors have conceived a method for appropriately performing SP-CSI reporting even when a plurality of SP-CSI trigger states are simultaneously active.
  • the UE drops at least one of the multiple SP-CSI reports based on a predetermined condition. In other words, at least one of the plurality of SP-CSI reports is not transmitted by the UE based on a predetermined condition.
  • the UE may determine an SP-CSI report to be transmitted among the plurality of SP-CSI reports based on the predetermined condition.
  • the predetermined condition may include any of the following (1) to (4) or a combination thereof: (1) Conditions regarding the payload size of SP-CSI for the plurality of SP-CSI reports, (2) SP-CSI priority conditions for the plurality of SP-CSI reports, (3) Conditions relating to the temporal position of the SP-CSI report resource in the slot for the plurality of SP-CSI reports, (4) Conditions related to the SP-CSI reporting period for the plurality of SP-CSI reports.
  • the UE may transmit an SP-CSI report having the largest or smallest payload size among a plurality of SP-CSI reports in the same slot, and drop the others.
  • This “payload size” may be read as “corresponding to SP-CSI reporting resource capable of transmitting payload size”, “corresponding to SP-CSI reporting resource corresponding to the number of resource elements”, or the like. Good.
  • the predetermined condition means that the SP-CSI report having the largest payload size is transmitted, it is possible to secure a transmission opportunity for information having a relatively large number of bits such as CQI (for example, CSI part 2).
  • the predetermined condition means that a CSI report having the smallest payload size is transmitted, it is possible to increase transmission opportunities for information such as RI having a relatively small number of bits (for example, CSI part 1).
  • the CSI report may be associated with a priority value.
  • the priority value may be defined using the function Pri iCSI (y, k, c, s).
  • c may be a serving cell index.
  • s may be a setting ID (reportConfigID).
  • N cells may be the value of the maximum number of serving cells to be set (upper layer parameter maxNrofServingCells)
  • M s may be the value of the maximum number of CSI report settings to be set (upper layer parameter maxNrofCSI-ReportConfigurations).
  • first CSI report No It may mean that the priority is higher than the CSI report 2.
  • the above predetermined condition means that an SP-CSI report having a higher priority (eg, Pri iCSI (y, k, c, s) is smaller) is transmitted, preferably a CSI report having a higher priority is transmitted. Can be sent.
  • the predetermined condition means that an SP-CSI report having a lower priority is transmitted, it is possible to increase the transmission opportunity of a low-priority CSI report that will have fewer transmission opportunities.
  • the UE transmits an SP-CSI report corresponding to the earliest or latest resource (symbol) among a plurality of SP-CSI reports in the same slot, and drops the others. Good.
  • the predetermined condition means that an SP-CSI report corresponding to the earliest resource is transmitted, the delay for CSI transmission can be reduced.
  • the predetermined condition means that an SP-CSI report corresponding to the slowest resource is transmitted, processing based on the latest CSI report can be secured.
  • the UE may transmit an SP-CSI report having the longest or shortest reporting period among a plurality of SP-CSI reports in the same slot, and drop others.
  • the predetermined condition means that an SP-CSI report having the longest reporting cycle is transmitted, it is possible to guarantee transmission of the SP-CSI report with few transmission opportunities.
  • the predetermined condition means that an SP-CSI report having the shortest reporting cycle is transmitted, it is possible to secure transmission of the SP-CSI report considered to be important because of many transmission opportunities.
  • the UE may drop all of the multiple SP-CSI reports based on the predetermined condition. Further, when the UE has a plurality of SP-CSI reports in the same slot, the UE may always perform control to drop all of the plurality of SP-CSI reports.
  • the UE may perform control to transmit the SP-CSI report having the smallest (or largest) setting ID among them.
  • the UE may not have multiple SP-CSI reports in the same slot (there is only one SP-CSI report per slot).
  • the base station may configure, trigger, activate, etc. the SP-CSI report for the UE so that it does not have multiple SP-CSI reports in the same slot. That is, it may be prohibited for one slot to contain more than one PUSCH-based SP-CSI report.
  • the drop determination process in the same slot as described above may not be implemented in the UE, and a case where a setting having a plurality of SP-CSI reports in the same slot has become effective is considered. May be implemented in the UE.
  • the UE transmits a PUCCH-based SP-CSI report on the PUSCH (piggyback), it may be prohibited that one slot includes more than one SP-CSI report. For example, if a UE transmits a PUCCH-based SP-CSI report on a PUSCH in a slot, more than one SP-CSI report may be active in the same slot regardless of the PUCCH base and the PUSCH base You do not have to expect.
  • the UE may assume that when multiple SP-CSI reports are active at the same time, one reporting period of these SP-CSI reports is an integral multiple of the other reporting period. For example, the UE may assume that the reporting periods of all configured SP-CSI reports are the same. Further, the UE may assume that an arbitrary report period of the SP-CSI report to be set is an integer multiple of the minimum report period.
  • the UE may assume that when multiple SP-CSI reports are active at the same time, all the offset values of these SP-CSI reports are different.
  • each of the above-described embodiments the case of having a plurality of SP-CSI reports in the same slot has been described. However, it may be replaced by any combination of CSI reports.
  • each of the above embodiments is applicable to a case where the UE has an arbitrary plurality of CSI reports among an A-CSI report, an SP-CSI report, and a P-CSI report in the same slot.
  • SP-CSI in the present disclosure may be read as “at least one of A-CSI, SP-CSI, and P-CSI”. Also, “SP-CSI” in the present disclosure may be read as “at least one of PUCCH-based SP-CSI and PUSCH-based SP-CSI”.
  • each of the above embodiments may be applied to a case where there are a plurality of SP-CSI reports in the same slot of one CC, or a plurality of SP-CSIs in the same slot of a plurality of CCs (eg, all CCs) It may be applied if you have a report.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 at least one of carrier aggregation (CA) and dual connectivity (DC) in which a plurality of fundamental frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit is integrated. Can be applied.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
  • CC a plurality of cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication in each cell using at least one of time division duplex (TDD) and frequency division duplex (FDD).
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • Numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length, At least one of a TTI length, the number of symbols per TTI, a radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • a communication parameter applied to at least one of transmission and reception of a certain signal or channel for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length, At least one of a TTI length, the number of symbols per TTI, a radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the subcarrier interval and the number of OFDM symbols of a configured OFDM symbol may be referred to as having a different neurology.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA are applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink control channel, and the like that are shared by the user terminals 20 are used as downlink channels.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including at least one of scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH may be transmitted by PCFICH.
  • Delivery confirmation information for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 3 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • FIG. 4 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted using a downlink shared channel), and downlink control signals (for example, signals transmitted using a downlink control channel) (for example, resource allocation). ) To control. In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS).
  • synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • downlink reference signals for example, CRS, CSI-RS, DMRS.
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted using an uplink shared channel), an uplink control signal (for example, a signal transmitted using an uplink control channel), a random access preamble, an uplink reference signal, and the like. Control scheduling.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates, for example, at least one of a DL assignment for notifying downlink data allocation information and a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • the transmission / reception unit 103 may transmit information related to the setting of a plurality of semi-persistent channel state information reports (SP-CSI reports) (for example, RRC CSI-ReportConfig information element (IE: Information Element)). .
  • SP-CSI reports for example, RRC CSI-ReportConfig information element (IE: Information Element)
  • IE Information Element
  • control unit 301 assumes that at least one of the plurality of SP-CSI reports is dropped based on a predetermined condition. (For example, decoding, demodulation, demapping, etc.) may be performed.
  • FIG. 5 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 6 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal, the downlink data signal, and the like transmitted from the radio base station 10 from the received signal processing unit 404. As a result of determining whether or not retransmission control is required for the downlink data signal, the control unit 401 controls generation of an uplink control signal, an uplink data signal, and the like based on the downlink control signal and the like.
  • control unit 401 When the control unit 401 acquires various types of information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • the transmission / reception unit 203 may receive information related to the setting of a plurality of semi-persistent channel state information reports (SP-CSI reports) (for example, an RRC CSI-ReportConfig information element (IE)). .
  • SP-CSI reports for example, an RRC CSI-ReportConfig information element (IE)
  • IE RRC CSI-ReportConfig information element
  • control unit 401 may drop at least one of the plurality of SP-CSI reports based on a predetermined condition.
  • the predetermined condition may include a condition related to a payload size of SP-CSI for the plurality of SP-CSI reports.
  • the predetermined condition may include a condition related to the priority of SP-CSI for the plurality of SP-CSI reports.
  • the predetermined condition may include a condition regarding a temporal position (for example, a symbol position) of an SP-CSI report resource in a slot for the plurality of SP-CSI reports.
  • the predetermined condition may include a condition related to an SP-CSI report period for the plurality of SP-CSI reports.
  • control unit 401 may assume that one reporting period of the plurality of SP-CSI reports is an integer multiple of the other reporting period.
  • each functional block is realized by using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
  • a wireless base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by.
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the neurology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transmission / reception It may indicate at least one of a specific filtering process performed by the machine in the frequency domain and a specific windowing process performed by the transceiver in the time domain.
  • a slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots.
  • PDSCH (or PUSCH) transmitted in units of time larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as a frame, a subframe, a slot, a minislot, and a symbol in the present disclosure may be interchanged.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be.
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, a code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neurology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on the neurology.
  • the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1 TTI, one subframe, and the like may be configured by one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth part (may be called partial bandwidth etc.) represents a subset of continuous common RB (common resource blocks) for a certain neurology in a certain carrier. Good.
  • the common RB may be specified by an RB index based on the common reference point of the carrier.
  • a PRB may be defined in a certain BWP and numbered in the BWP.
  • BWP may include UL BWP (UL BWP) and DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the set BWPs may be active, and the UE may not assume that a predetermined signal / channel is transmitted / received outside the active BWP.
  • BWP bitmap
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
  • the base station can accommodate one or a plurality of (for example, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, an indoor small base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • Mobile station subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • the radio base station in the present disclosure may be replaced with a user terminal.
  • the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called))
  • a plurality of user terminals for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, etc. may be read as a side channel.
  • the user terminal in the present disclosure may be replaced with a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.
  • the present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise.
  • the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
  • determination (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”.
  • determination is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean “A and B are different from C”.
  • Terms such as “leave”, “coupled” and the like may also be interpreted similarly to “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user terminal according to one embodiment of the present disclosure is characterized by having: a receiving unit for receiving information about the setting of a plurality of semi-persistent channel state information (SP-CSI) reports; and a control unit for dropping at least one of the plurality of SP-CSI reports on the basis of prescribed conditions when there are multiple SP-CSI reports in the same slot. This embodiment makes it possible to appropriately perform SP-CSI reporting even when multiple SP-CSI trigger states are simultaneously active.

Description

ユーザ端末User terminal
 本開示は、次世代移動通信システムにおけるユーザ端末に関する。 The present disclosure relates to a user terminal in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-patent Document 1). In addition, LTE-A (LTE Advanced, LTE Rel. 10, 11, 12, 13) was specified for the purpose of further increasing the capacity and sophistication of LTE (LTE Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 LTE successor systems (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
 既存のLTEシステム(例えば、LTE Rel.8-13)においては、ユーザ端末(UE:User Equipment)が基地局に対して、周期的及び/又は非周期的にチャネル状態情報(CSI:Channel State Information)を送信する。UEは、上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)及び/又は上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)を用いて、CSIを送信する。 In an existing LTE system (for example, LTE Rel. 8-13), a user terminal (UE: User Equipment) periodically and / or aperiodically performs channel state information (CSI: Channel State Information) with respect to a base station. ). The UE transmits CSI using an uplink control channel (PUCCH: Physical Uplink Control Channel) and / or an uplink shared channel (PUSCH: Physical Uplink Shared Channel).
 将来の無線通信システム(例えば、NR)においては、既存のLTEシステム(例えば、LTE Rel.13以前)とは異なる構成を用いたCSI報告が検討されている。 In future wireless communication systems (for example, NR), CSI reports using a different configuration from existing LTE systems (for example, LTE Rel. 13 or earlier) are being studied.
 例えば、UEが、半永続的(半持続的、セミパーシステント(Semi-Persistent))に指定されるリソースを用いてCSIを報告する、SP-CSI(Semi-Persistent CSI)報告が検討されている。 For example, an SP-CSI (Semi-Persistent CSI) report in which the UE reports CSI using a resource designated as semi-persistent (semi-persistent, semi-persistent) is being studied. .
 また、PUSCHベースのSP-CSI報告のアクティベーション及びディアクティベーションを、下り制御情報(DCI:Downlink Control Information)を用いて制御することが検討されている。PUSCHベースSP-CSI報告において、複数のSP-CSIトリガ状態がアクティブな場合、同じスロットにおいて1つより多いPUSCHベースSP-CSI報告が発生し得る。 Also, it is considered to control the activation and deactivation of PUSCH-based SP-CSI reports using downlink control information (DCI). In a PUSCH based SP-CSI report, if multiple SP-CSI trigger states are active, more than one PUSCH based SP-CSI report may occur in the same slot.
 しかしながら、NRにおいては、UEは、コンポーネントキャリア(CC:Component Carrier)ごとに、又は全てのCCにわたって、1スロットにつき1つより多いPUSCHベースSP-CSI報告を送信することを期待しないことが検討されている。このため、同じスロットにおいて1つより多いPUSCHベースSP-CSI報告が発生する場合に、どのSP-CSI報告を送信するかを明らかにしなければ、適切なCSIが適切なタイミングで報告できず、通信スループットの低下が生じるという課題がある。 However, in NR, it is considered that the UE does not expect to send more than one PUSCH-based SP-CSI report per slot per component carrier (CC) or across all CCs. ing. For this reason, if more than one PUSCH-based SP-CSI report is generated in the same slot, it is not possible to report an appropriate CSI at an appropriate timing unless it is clarified which SP-CSI report is transmitted. There is a problem in that throughput decreases.
 そこで、本開示は、複数のSP-CSIトリガ状態が同時にアクティブな場合であっても、SP-CSI報告を適切に行うことができるユーザ端末を提供することを目的の1つとする。 Therefore, an object of the present disclosure is to provide a user terminal that can appropriately perform SP-CSI reporting even when a plurality of SP-CSI trigger states are active at the same time.
 本開示の一態様に係るユーザ端末は、複数のセミパーシステントなチャネル状態情報報告(SP-CSI(Semi-Persistent Channel State Information)報告)の設定に関する情報を受信する受信部と、同じスロットにおいて複数のSP-CSI報告を有する場合には、所定の条件に基づいて、当該複数のSP-CSI報告の少なくとも1つをドロップする制御部と、を有することを特徴とする。 A user terminal according to an aspect of the present disclosure includes a reception unit that receives information on settings of a plurality of semi-persistent channel state information reports (SP-CSI (Semi-Persistent Channel State Information) reports), and a plurality of terminals in the same slot And a control unit that drops at least one of the plurality of SP-CSI reports based on a predetermined condition.
 本開示の一態様によれば、複数のSP-CSIトリガ状態が同時にアクティブな場合であっても、SP-CSI報告を適切に行うことができる。 According to one aspect of the present disclosure, it is possible to appropriately perform SP-CSI reporting even when a plurality of SP-CSI trigger states are active at the same time.
図1は、同じスロットにおいて1つより多いPUSCHベースSP-CSI報告が発生する一例を示す図である。FIG. 1 is a diagram illustrating an example in which more than one PUSCH-based SP-CSI report occurs in the same slot. 図2は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図3は、一実施形態に係る無線基地局の全体構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment. 図4は、一実施形態に係る無線基地局の機能構成の一例を示す図である。FIG. 4 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment. 図5は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment. 図6は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. 図7は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
 NRにおいては、UEは、所定の参照信号(又は、当該参照信号用のリソース)を用いてチャネル状態を測定する。チャネル状態測定用の参照信号は、CSI-RS(Channel State Information-Reference Signal)などとよばれてもよい。なお、UEは、CSI-RS以外の信号(例えば、同期信号/ブロードキャストチャネル(SS/PBCH:Synchronization Signal/Physical Broadcast Channel)ブロック、同期信号、復調用参照信号など)を用いてチャネル状態を測定してもよい。 In NR, the UE measures the channel state using a predetermined reference signal (or a resource for the reference signal). The reference signal for channel state measurement may be called CSI-RS (Channel State Information-Reference Signal). Note that the UE measures the channel state using signals other than CSI-RS (for example, synchronization signal / broadcast channel (SS / PBCH: Synchronization Signal / Physical Broadcast Channel) block, synchronization signal, demodulation reference signal, etc.). May be.
 CSI-RSリソースは、非ゼロパワー(NZP:Non Zero Power)CSI-RS及びCSI-IM(Interference Management)の少なくとも1つを含んでもよい。また、SS/PBCHブロックは、プライマリ同期信号(PSS:Primary Synchronization Signal)、セカンダリ同期信号(SSS:Secondary Synchronization Signal)及びPBCHを含むブロックであり、SSブロックなどと呼ばれてもよい。 The CSI-RS resource may include at least one of non-zero power (NZP: Non Zero Power) CSI-RS and CSI-IM (Interference Management). Further, the SS / PBCH block is a block including a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS: Secondary Synchronization Signal), and a PBCH, and may be referred to as an SS block or the like.
 UEは、参照信号などの測定結果に基づいて、所定のタイミングで、チャネル状態情報(CSI)を基地局(例えば、BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNodeB)、gNB(NR NodeB)などと呼ばれてもよい)にフィードバック(報告)する。 The UE sends channel state information (CSI) to a base station (for example, BS (Base Station), transmission / reception point (TRP), eNB (eNodeB) at a predetermined timing based on a measurement result such as a reference signal. ), And may be called gNB (NR NodeB).
 なお、CSIは、チャネル品質識別子(CQI:Channel Quality Indicator)、プリコーディング行列識別子(PMI:Precoding Matrix Indicator)、ランク識別子(RI:Rank Indicator)、レイヤ識別子(LI:layer indication)、CSI-RSリソース識別子(CRI:CSI-RS resource indicator)、L1-RSRP(物理レイヤ(レイヤ1)における参照信号受信電力(RSRP:Reference Signal Received Power))などの少なくとも1つを含んでもよい。 CSI includes channel quality identifier (CQI: Channel Quality Indicator), precoding matrix identifier (PMI), rank identifier (RI: Rank Indicator), layer identifier (LI: layer indication), CSI-RS resource. It may include at least one of an identifier (CRI: CSI-RS resource indicator), L1-RSRP (reference signal received power (RSRP) in the physical layer (layer 1)), and the like.
 CSIは、複数のパートを有してもよい。CSIの第1パート(CSIパート1)は、相対的にビット数の少ない情報(例えば、RI)を含んでもよい。CSIの第2パート(CSIパート2)は、CSIパート1に基づいて定まる情報などの、相対的にビット数の多い情報(例えば、CQI)を含んでもよい。 CSI may have multiple parts. The first part of CSI (CSI part 1) may include information (for example, RI) having a relatively small number of bits. The second part of CSI (CSI part 2) may include information having a relatively large number of bits (for example, CQI) such as information determined based on CSI part 1.
 CSIのフィードバック方法としては、(1)周期的なCSI(P-CSI:Periodic CSI)報告、(2)非周期的なCSI(A-CSI:Aperiodic CSI)報告、(3)半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(SP-CSI:Semi-Persistent CSI)報告などが検討されている。 CSI feedback methods include (1) periodic CSI (P-CSI: Periodic CSI) report, (2) aperiodic CSI (A-CSI) report, and (3) semi-permanent (semi-permanent). Persistent, semi-persistent (CSI) reports (SP-CSI: Semi-Persistent CSI) reports are being studied.
 UEは、一旦SP-CSI報告用リソース(SP-CSIリソースと呼ばれてもよい)を指定された場合は、別途SP-CSIリソースの解除(リリース又はディアクティベーション)を指定されない限り、当該指定に基づくリソースを周期的に利用できる。 Once the UE has specified the SP-CSI reporting resource (which may be referred to as SP-CSI resource), unless the SP-CSI resource release (release or deactivation) is specified separately, the UE Resources based on can be used periodically.
 SP-CSIリソースは、上位レイヤシグナリングによって設定されるリソースであってもよいし、SP-CSI報告のアクティベーション信号(「トリガ信号」と呼ばれてもよい)によって指定されるリソースであってもよい。 The SP-CSI resource may be a resource set by higher layer signaling, or may be a resource specified by an SP-CSI report activation signal (may be referred to as a “trigger signal”). Good.
 ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 Here, the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。 For MAC signaling, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like may be used. The broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), and minimum system information (RMSI: Remaining Minimum System Information).
 SP-CSIリソースの情報(SP-CSI設定、SP-CSI報告設定(CSI-ReportConfig)などとよばれてもよい)は、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information))又はこれらの組み合わせを用いてUEに通知されてもよい。 SP-CSI resource information (which may be referred to as SP-CSI configuration, SP-CSI report configuration (CSI-ReportConfig), etc.) includes upper layer signaling, physical layer signaling (eg, downlink control information (DCI: Downlink Control)). Information))) or a combination thereof may be notified to the UE.
 SP-CSI設定は、例えば、報告周期(RRCパラメータ「reportSlotConfig」、L1パラメータ「ReportPeriodicity」、「ReportPeriodicity-spCSI」などと呼ばれてもよい)及びオフセット(RRCパラメータ「reportSlotOffsetList」、L1パラメータ「ReportSlotOffset」などと呼ばれてもよい)に関する情報を含んでもよく、これらは所定の時間単位(スロット単位、サブフレーム単位、シンボル単位など)で表現されてもよい。 The SP-CSI setting includes, for example, a report period (which may be called RRC parameter “reportSlotConfig”, L1 parameter “ReportPeriodicity”, “ReportPeriodicity-spCSI”, etc.) and an offset (RRC parameter “reportSlotOffsetList”, L1 parameter “ReportSlotOffset”). Etc.), which may be expressed in predetermined time units (slot units, subframe units, symbol units, etc.).
 SP-CSI設定は、設定ID(RRCパラメータ「CSI-ReportConfigId」、L1パラメータ「reportConfigID」)を含んでもよく、当該設定IDによってCSI報告方法の種類(SP-CSIか否か、など)、報告周期などのパラメータが特定されてもよい。SP-CSIリソース情報は、どの参照信号(又は、どの参照信号用のリソース)を用いて測定されたSP-CSIを報告するかを示す情報(CSI-ResourceConfigId)を含んでもよい。SP-CSIリソースの情報は、SP-CSIリソース設定、SP-CSI報告設定などと呼ばれてもよい。 The SP-CSI setting may include a setting ID (RRC parameter “CSI-ReportConfigId”, L1 parameter “reportConfigID”), the type of CSI reporting method (whether it is SP-CSI or the like), and the reporting cycle based on the setting ID. Parameters such as may be specified. The SP-CSI resource information may include information (CSI-ResourceConfigId) indicating which reference signal (or resource for which reference signal) is used to report the measured SP-CSI. The SP-CSI resource information may be referred to as SP-CSI resource setting, SP-CSI report setting, and the like.
 UEは、所定のアクティベーション信号を受信した場合に、例えば所定の参照信号(例えば、SP-CSI-RSと呼ばれてもよい)を用いたCSI測定及びSP-CSIリソースを用いたSP-CSI報告(SP-CSI設定に基づくSP-CSI報告)を周期的に行ってもよい。UEは、所定のディアクティベーション信号を受信した場合又は所定のタイマーが満了した場合、SP-CSI測定及び/又は報告を停止する。 When the UE receives a predetermined activation signal, the UE performs CSI measurement using, for example, a predetermined reference signal (for example, may be referred to as SP-CSI-RS) and SP-CSI using SP-CSI resources. Reporting (SP-CSI reporting based on SP-CSI settings) may be performed periodically. The UE stops SP-CSI measurement and / or reporting when it receives a predetermined deactivation signal or when a predetermined timer expires.
 SP-CSI報告は、プライマリセル(PCell:Primary Cell)、プライマリセカンダリセル(PSCell:Primary Secondary Cell)、PUCCHセカンダリセル(PUCCH SCell)、その他のセル(例えば、セカンダリセル(Secondary Cell))などを用いて送信されてもよい。 The SP-CSI report uses a primary cell (PCell: Primary Cell), a primary secondary cell (PSCell: Primary Secondary Cell), a PUCCH secondary cell (PUCCH SCell), other cells (for example, a secondary cell (Secondary Cell)), etc. May be transmitted.
 SP-CSI報告のアクティベーション/ディアクティベーション信号は、例えば、MACシグナリング(例えば、MAC CE)を用いて通知されてもよいし、物理レイヤシグナリング(例えば、DCI)を用いて通知されてもよい。 The activation / deactivation signal of the SP-CSI report may be notified using, for example, MAC signaling (for example, MAC CE) or may be notified using physical layer signaling (for example, DCI). .
 なお、SP-CSI報告は、PUCCH及びPUSCHのいずれか一方又は両方を用いて送信されてもよい。いずれを用いて送信するかは、RRCシグナリングによってgNBからUEに設定されてもよいし、MAC CEなどで指定されてもよいし、DCIによって通知されてもよい。 Note that the SP-CSI report may be transmitted using one or both of PUCCH and PUSCH. Which is used for transmission may be set from the gNB to the UE by RRC signaling, may be specified by MAC CE or the like, or may be notified by DCI.
 SP-CSI報告を行うチャネルは、SP-CSI報告のアクティベーション信号に基づいて判断されてもよい。例えば、PUCCHを用いるSP-CSI報告(「PUCCHベースSP-CSI報告」と呼ばれてもよい)は、MAC CEによってアクティベートされてもよいし、PUSCHを用いるSP-CSI報告(「PUSCHベースSP-CSI報告」と呼ばれてもよい)は、DCIによってアクティベート(トリガ)されてもよい。 The channel for performing the SP-CSI report may be determined based on the activation signal of the SP-CSI report. For example, an SP-CSI report using PUCCH (which may be referred to as “PUCCH-based SP-CSI report”) may be activated by MAC CE, or an SP-CSI report using PUSCH (“PUSCH-based SP- CSI report ") may be activated (triggered) by DCI.
 PUCCHベースSP-CSI報告のアクティベーション用MAC CEは、以下単に「アクティベーション用MAC CE」とも呼ぶ。PUCCHベースSP-CSI報告のディアクティベーション用MAC CEは、以下単に「ディアクティベーション用MAC CE」とも呼ぶ。 The PUCCH-based SP-CSI report activation MAC CE is also simply referred to as “activation MAC CE” hereinafter. The deactivation MAC CE of the PUCCH-based SP-CSI report is also simply referred to as “deactivation MAC CE” hereinafter.
 PUSCHベースSP-CSI報告のアクティベーション用DCIは、以下単に「アクティベーション用DCI」とも呼ぶ。PUSCHベースSP-CSI報告のディアクティベーション用DCIは、以下単に「ディアクティベーション用DCI」とも呼ぶ。 The DCI for activation of PUSCH-based SP-CSI report is also simply referred to as “DCI for activation” below. The DCI for deactivation of the PUSCH-based SP-CSI report is hereinafter also simply referred to as “DCI for deactivation”.
 アクティベーション/ディアクティベーション用DCIは、SP-CSI報告用の無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier)(SP-CSI-RNTI)によって巡回冗長検査(CRC:Cyclic Redundancy Check)ビットがマスキング(スクランブル)されたDCIであってもよい。 The DCI for activation / deactivation is masked by the cyclic redundancy check (CRC: Cyclic Redundancy Check) bit by the Radio Network Temporary Identifier (RNTI) (SP-CSI-RNTI) for SP-CSI reporting ( It may be a scrambled DCI.
 UEは、あるDCI(例えば、DCIフォーマット0_1)の特定のフィールドが予め定められた値である場合に、当該DCIがPUSCHベースSP-CSI報告のためのDCIであり、SP-CSI報告のアクティベーション又はディアクティベ―ションを示すと想定してもよい。なお、「DCIフォーマット」及び「DCI」は相互に読み替えられてもよい。 When a specific field of a certain DCI (eg, DCI format 0_1) has a predetermined value, the UE is a DCI for PUSCH-based SP-CSI report, and the activation of the SP-CSI report Or it may be assumed to indicate deactivation. Note that “DCI format” and “DCI” may be interchanged.
 UEは、以下の全てを満たすDCIフォーマット0_1を、アクティベーション用DCIであると想定してもよい:
・HARQ(Hybrid Automatic Repeat reQuest)プロセス番号(HPN:HARQ Process Number)フィールドが全て‘0’に設定される。
・冗長バージョン(RV:Redundancy Version)フィールドが‘00’に設定される。
The UE may assume that DCI format 0_1 that satisfies all of the following is DCI for activation:
All HARQ (Hybrid Automatic Repeat reQuest) process number (HPN) fields are set to '0'.
The redundancy version (RV) field is set to '00'.
 UEは、以下を満たすDCIフォーマット0_1を、ディアクティベーション用DCIであると想定してもよい:
・HPNフィールドが全て‘0’に設定される。
・変調及び符号化方式(MCS:Modulation and Coding Scheme)フィールドが全て‘1’に設定される。
・リソースブロック割り当て(リソース割り当て(RA:Resource Assignment))フィールドが、(1)上位レイヤがRAタイプ0のみを設定する場合に、全て‘0’に設定される、(2)上位レイヤがRAタイプ1のみを設定する場合に、全て‘1’に設定される、(3)上位レイヤがRAタイプ0及び1の動的スイッチを設定しかつ最上位ビット(MSB:Most Significant Bit)が‘0’である場合に、全て‘0’に設定され、そうでない場合に、全て‘1’に設定される。
・RVフィールドが‘00’に設定される。
The UE may assume that DCI format 0_1 that satisfies the following is a DCI for deactivation:
• All HPN fields are set to '0'.
-Modulation and Coding Scheme (MCS) fields are all set to '1'.
The resource block assignment (resource assignment (RA)) field is set to “0” when (1) the upper layer sets only RA type 0. (2) The upper layer is the RA type. When only 1 is set, all are set to '1'. (3) The upper layer sets the dynamic switch of RA type 0 and 1, and the most significant bit (MSB: Most Significant Bit) is '0'. Are all set to '0', otherwise all are set to '1'.
-The RV field is set to '00'.
 アクティベーション用DCIは、周波数領域リソース割り当て(Freq-RA:Frequency domain Resource Assignment)フィールドを含んでもよい。Freq-RAフィールドは、SP-CSI報告に用いるPUSCHの周波数リソース(例えば、リソースブロック(PRB:Physical Resource Block)など)を示してもよい。 The DCI for activation may include a frequency domain resource assignment (Freq-RA) field. The Freq-RA field may indicate a PUSCH frequency resource (for example, a resource block (PRB)) used for SP-CSI reporting.
 アクティベーション用MAC CE及びアクティベーション用DCIの少なくとも一方は、1つ又は複数のトリガ状態(trigger state)をアクティベートしてもよい。ここで、トリガ状態は、アクティベート対象のCSI設定を意味してもよく、設定ID(CSI-ReportConfigId)を含んでもよい。 At least one of the activation MAC CE and the activation DCI may activate one or more trigger states. Here, the trigger state may mean a CSI setting to be activated, and may include a setting ID (CSI-ReportConfigId).
 例えば、UEは、アクティベーション用DCIに含まれるCSI要求フィールドの値とトリガ状態との対応関係に基づいて、SP-CSIのアクティベーションを制御してもよい。当該対応関係は、仕様によって定められてもよいし、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定されてもよい。 For example, the UE may control the SP-CSI activation based on the correspondence between the value of the CSI request field included in the activation DCI and the trigger state. The correspondence relationship may be determined according to the specification, or may be set by higher layer signaling (for example, RRC signaling).
 CSI要求フィールドのコードポイント(ビットによって示される値)は、それぞれ1又は複数のCSI設定(CSI報告を含めること(including CSI reporting)で読み替えられてもよい)に対応付けられてもよい。なお、当該コードポイントには、「CSI要求がない」ことを示すコードポイントが含まれない構成としてもよい。 Each code point (value indicated by a bit) of the CSI request field may be associated with one or a plurality of CSI settings (may be read by including CSI reporting (including CSI reporting)). Note that the code point may not include a code point indicating “no CSI request”.
 CSI要求フィールドのサイズ(ビット数)は、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定されるCSI要求フィールドのサイズ(「ReportTriggerSize」などと呼ばれてもよい)と同じであってもよい。当該設定されるCSI要求フィールドのサイズは、DCIフォーマット0_1のためのCSI要求フィールドのサイズに対応してもよい。「ReportTriggerSize」は、例えば、任意のビット数(1、2、3、4、…)であってもよい。 The size (number of bits) of the CSI request field may be the same as the size of the CSI request field (which may be called “ReportTriggerSize” or the like) set by higher layer signaling (for example, RRC signaling). The size of the CSI request field to be set may correspond to the size of the CSI request field for DCI format 0_1. “ReportTriggerSize” may be an arbitrary number of bits (1, 2, 3, 4,...), For example.
 なお、アクティベーション用DCIのCSI要求フィールドと、A-CSIトリガのためのCSI要求フィールドと、は同じサイズであってもよい。SP-CSIのトリガ状態の数と、A-CSIのトリガ状態の数と、は同じでもよいし、異なってもよい。 The CSI request field for activation DCI and the CSI request field for A-CSI trigger may be the same size. The number of SP-CSI trigger states and the number of A-CSI trigger states may be the same or different.
 ところで、PUSCHベースSP-CSI報告において、複数のSP-CSIトリガ状態が同時にアクティブであることが許容されてもよい。つまり、複数のSP-CSIトリガ状態がアクティブな場合、各SP-CSI報告の周期、オフセットなどの設定に依存して、同じ1つのスロットにおいて1つより多いPUSCHベースSP-CSI報告が発生し得る。 Incidentally, in the PUSCH-based SP-CSI report, it may be allowed that a plurality of SP-CSI trigger states are active at the same time. That is, when multiple SP-CSI trigger states are active, more than one PUSCH-based SP-CSI report may occur in the same slot depending on the setting of the period, offset, etc. of each SP-CSI report. .
 また、PUSCHベースSP-CSI報告及びPUCCHベースSP-CSI報告の両方がアクティベートされている場合に、同じ1つのスロットにおいて1つより多いPUSCHベースSP-CSI報告が発生し得る。 Also, more than one PUSCH-based SP-CSI report may occur in the same slot when both PUSCH-based SP-CSI report and PUCCH-based SP-CSI report are activated.
 図1は、同じスロットにおいて1つより多いPUSCHベースSP-CSI報告が発生する一例を示す図である。本例において、Dは下りリンクスロット、Uは上りリンクスロット、Sは少なくとも一部で上りリンク送信が可能なスロットを示す。なお、スロット構成はこれに限られない。 FIG. 1 is a diagram illustrating an example in which more than one PUSCH-based SP-CSI report occurs in the same slot. In this example, D indicates a downlink slot, U indicates an uplink slot, and S indicates a slot capable of uplink transmission at least partially. The slot configuration is not limited to this.
 UEは、2つのSP-CSI報告をアクティベートされている。1つは、スロット#2から周期9スロットで送信されるPUSCHベースSP-CSI報告#1である。もう1つは、スロット#3から周期4スロットで送信されるPUSCHベースSP-CSI報告#2(又はPUCCHベースSP-CSI報告)である。 The UE has activated two SP-CSI reports. One is PUSCH-based SP-CSI report # 1 transmitted from slot # 2 with a period of 9 slots. The other is PUSCH-based SP-CSI report # 2 (or PUCCH-based SP-CSI report) transmitted from slot # 3 with a period of 4 slots.
 UEは、1つのSP-CSI報告のみを有する(SP-CSI報告の衝突がない)スロット#2、#3などでは、1つのSP-CSI報告を送信すればよい。一方、UEは、スロット#11において複数のSP-CSI報告を有する(SP-CSI報告の衝突がある)。なお、複数のCSI報告が衝突するとは、同じキャリアにおいて、これらのCSI報告を伝送するようにスケジュールされた物理チャネルの時間的な占有が重複することを意味してもよい。 The UE only needs to transmit one SP-CSI report in slots # 2, # 3, etc., which have only one SP-CSI report (no SP-CSI report collision). On the other hand, the UE has multiple SP-CSI reports in slot # 11 (there is an SP-CSI report collision). Note that the collision of a plurality of CSI reports may mean that time occupancy of physical channels scheduled to transmit these CSI reports overlaps in the same carrier.
 しかしながら、NRにおいては、UEは、コンポーネントキャリア(CC:Component Carrier)ごとに、又は全てのCCにわたって、1スロットにつき1つより多いPUSCHベースSP-CSI報告を送信することを期待しないことが検討されている。また、UEは、CCごとに、又は全てのCCにわたって、PUCCHベース及びPUSCHベースに関わらず、1スロットにつき1つより多いSP-CSI報告を送信することを期待しないことも想定され得る。 However, in NR, it is considered that the UE does not expect to send more than one PUSCH-based SP-CSI report per slot per component carrier (CC) or across all CCs. ing. It may also be assumed that the UE does not expect to send more than one SP-CSI report per slot regardless of PUCCH and PUSCH bases per CC or across all CCs.
 したがって、図1のスロット#11ではどのSP-CSI報告を送信すべきか、これまでのNRの検討ではUEは決定できない。同じスロットにおいて1つより多いPUSCHベースSP-CSI報告が発生する場合に、どのSP-CSI報告を送信するかを明らかにしなければ、適切なCSIが適切なタイミングで報告できず、通信スループットの低下が生じるおそれがある。 Therefore, the UE cannot determine which SP-CSI report should be transmitted in slot # 11 of FIG. If more than one PUSCH-based SP-CSI report is generated in the same slot, if it is not clarified which SP-CSI report is transmitted, an appropriate CSI cannot be reported at an appropriate timing, resulting in a decrease in communication throughput. May occur.
 そこで、本発明者らは、複数のSP-CSIトリガ状態が同時にアクティブな場合であっても、SP-CSI報告を適切に行うための方法を着想した。 Therefore, the present inventors have conceived a method for appropriately performing SP-CSI reporting even when a plurality of SP-CSI trigger states are simultaneously active.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently or in combination.
(無線通信方法)
 一実施形態において、UEは、同じスロットにおいて複数のSP-CSI報告を有する場合には、所定の条件に基づいて、当該複数のSP-CSI報告の少なくとも1つをドロップする。言い換えると、所定の条件に基づいて、当該複数のSP-CSI報告の少なくとも1つがUEによって送信されない。UEは、当該所定の条件に基づいて、当該複数のSP-CSI報告のうち送信するSP-CSI報告を決定してもよい。
(Wireless communication method)
In one embodiment, if the UE has multiple SP-CSI reports in the same slot, the UE drops at least one of the multiple SP-CSI reports based on a predetermined condition. In other words, at least one of the plurality of SP-CSI reports is not transmitted by the UE based on a predetermined condition. The UE may determine an SP-CSI report to be transmitted among the plurality of SP-CSI reports based on the predetermined condition.
 ここで、上記所定の条件は、以下の(1)-(4)のいずれか又はこれらの組み合わせを含んでもよい:
  (1)上記複数のSP-CSI報告についてのSP-CSIのペイロードサイズに関する条件、
  (2)上記複数のSP-CSI報告についてのSP-CSIの優先度に関する条件、
  (3)上記複数のSP-CSI報告についてのスロット内におけるSP-CSI報告用リソースの時間的位置に関する条件、
  (4)上記複数のSP-CSI報告についてのSP-CSI報告周期に関する条件。
Here, the predetermined condition may include any of the following (1) to (4) or a combination thereof:
(1) Conditions regarding the payload size of SP-CSI for the plurality of SP-CSI reports,
(2) SP-CSI priority conditions for the plurality of SP-CSI reports,
(3) Conditions relating to the temporal position of the SP-CSI report resource in the slot for the plurality of SP-CSI reports,
(4) Conditions related to the SP-CSI reporting period for the plurality of SP-CSI reports.
 上記(1)について、例えば、UEは、同じスロットにおいて有する複数のSP-CSI報告のうち、最も大きい又は最も小さいペイロードサイズのSP-CSI報告を送信し、その他をドロップしてもよい。 Regarding (1) above, for example, the UE may transmit an SP-CSI report having the largest or smallest payload size among a plurality of SP-CSI reports in the same slot, and drop the others.
 なお、この「ペイロードサイズの」は、「ペイロードサイズを送信できるSP-CSI報告用リソースに対応する」、「リソースエレメント数に対応するSP-CSI報告用リソースに対応する」などで読み替えられてもよい。 This “payload size” may be read as “corresponding to SP-CSI reporting resource capable of transmitting payload size”, “corresponding to SP-CSI reporting resource corresponding to the number of resource elements”, or the like. Good.
 上記所定の条件が、最も大きいペイロードサイズのSP-CSI報告を送信することを意味する場合、CQIなどの比較的ビット数の多い情報(例えばCSIパート2)の送信機会を確保できる。上記所定の条件が、最も小さいペイロードサイズのCSI報告を送信することを意味する場合、RIなどの比較的ビット数の少ない情報(例えばCSIパート1)の送信機会を増加できる。 When the above-mentioned predetermined condition means that the SP-CSI report having the largest payload size is transmitted, it is possible to secure a transmission opportunity for information having a relatively large number of bits such as CQI (for example, CSI part 2). When the predetermined condition means that a CSI report having the smallest payload size is transmitted, it is possible to increase transmission opportunities for information such as RI having a relatively small number of bits (for example, CSI part 1).
 上記(2)について、CSI報告は、優先度の値(priority value)と関連してもよい。例えば、当該優先度の値は、関数PriiCSI(y,k,c,s)を用いて定義されてもよい。 For (2) above, the CSI report may be associated with a priority value. For example, the priority value may be defined using the function Pri iCSI (y, k, c, s).
 ここで、yは、CSI報告の種類(A-CSI報告かSP-CSI報告かP-CSI報告か)及びCSI報告を送信するチャネル(PUSCH又はPUCCH)に基づく値であってもよい。例えば、PUSCHベースA-CSI報告であればy=0、PUSCHベースSP-CSI報告であればy=1、PUCCHベースSP-CSI報告であればy=2、PUCCHベースP-CSI報告であればy=3であってもよい。 Here, y may be a value based on the type of CSI report (A-CSI report, SP-CSI report, or P-CSI report) and the channel (PUSCH or PUCCH) that transmits the CSI report. For example, y = 0 for PUSCH-based A-CSI report, y = 1 for PUSCH-based SP-CSI report, y = 2 for PUCCH-based SP-CSI report, and PUCCH-based P-CSI report y = 3 may be sufficient.
 kはCSI報告がL1-RSRPを含むか否かに基づく値であってもよい(例えば、CSI報告がL1-RSRPを含む場合、k=0)。cはサービングセルインデックスであってもよい。sは設定ID(reportConfigID)であってもよい。 K may be a value based on whether or not the CSI report includes L1-RSRP (for example, k = 0 when the CSI report includes L1-RSRP). c may be a serving cell index. s may be a setting ID (reportConfigID).
 例えば、PriiCSI(y,k,c,s)=2・Ncells・M・y+Ncells・M・k+M・c+sで求められてもよい。ここで、Ncellsは設定されるサービングセルの最大数の値(上位レイヤパラメータmaxNrofServingCells)、Mは設定されるCSI報告設定の最大数の値(上位レイヤパラメータmaxNrofCSI-ReportConfigurations)であってもよい。 For example, Pri iCSI (y, k, c, s) = 2 · N cells · M s · y + N cells · M s · k + M s · c + s Here, N cells may be the value of the maximum number of serving cells to be set (upper layer parameter maxNrofServingCells), and M s may be the value of the maximum number of CSI report settings to be set (upper layer parameter maxNrofCSI-ReportConfigurations).
 第1のCSI報告のPriiCSI(y,k,c,s)の値が第2のCSI報告のPriiCSI(y,k,c,s)の値より小さい場合、第1のCSI報告は第2のCSI報告に比べて優先度が高いことを意味してもよい。 If the value of the Pri ICSI the first CSI reporting (y, k, c, s ) is less than the value of Pri iCSI (y, k, c , s) of the second CSI report, first CSI report No. It may mean that the priority is higher than the CSI report 2.
 なお、上記(2)の優先度の値は、別の定義に基づいて求められてもよい。 Note that the priority value in (2) above may be obtained based on another definition.
 上記所定の条件が、より優先度が高い(例えばPriiCSI(y,k,c,s)がより小さい)SP-CSI報告を送信することを意味する場合、好適に優先度の高いCSI報告を送信できる。上記所定の条件が、より優先度が低いSP-CSI報告を送信することを意味する場合、送信機会が少ないであろう優先度の低いCSI報告の送信機会を増加できる。 If the above predetermined condition means that an SP-CSI report having a higher priority (eg, Pri iCSI (y, k, c, s) is smaller) is transmitted, preferably a CSI report having a higher priority is transmitted. Can be sent. When the predetermined condition means that an SP-CSI report having a lower priority is transmitted, it is possible to increase the transmission opportunity of a low-priority CSI report that will have fewer transmission opportunities.
 上記(3)について、例えば、UEは、同じスロットにおいて有する複数のSP-CSI報告のうち、最も早い又は最も遅いリソース(シンボル)に該当するSP-CSI報告を送信し、その他をドロップしてもよい。 Regarding (3) above, for example, the UE transmits an SP-CSI report corresponding to the earliest or latest resource (symbol) among a plurality of SP-CSI reports in the same slot, and drops the others. Good.
 上記所定の条件が、最も早いリソースに該当するSP-CSI報告を送信することを意味する場合、CSI送信にかかる遅延を低減できる。上記所定の条件が、最も遅いリソースに該当するSP-CSI報告を送信することを意味する場合、最新のCSI報告に基づく処理を担保できる。 When the predetermined condition means that an SP-CSI report corresponding to the earliest resource is transmitted, the delay for CSI transmission can be reduced. When the predetermined condition means that an SP-CSI report corresponding to the slowest resource is transmitted, processing based on the latest CSI report can be secured.
 上記(4)について、例えば、UEは、同じスロットにおいて有する複数のSP-CSI報告のうち、最も報告周期の長い又は短いSP-CSI報告を送信し、その他をドロップしてもよい。 Regarding (4) above, for example, the UE may transmit an SP-CSI report having the longest or shortest reporting period among a plurality of SP-CSI reports in the same slot, and drop others.
 上記所定の条件が、最も報告周期の長いSP-CSI報告を送信することを意味する場合、送信機会が少ない当該SP-CSI報告の送信を担保できる。上記所定の条件が、最も報告周期の短いSP-CSI報告を送信することを意味する場合、送信機会が多く重要と考えられる当該SP-CSI報告の送信を担保できる。 When the above-mentioned predetermined condition means that an SP-CSI report having the longest reporting cycle is transmitted, it is possible to guarantee transmission of the SP-CSI report with few transmission opportunities. When the predetermined condition means that an SP-CSI report having the shortest reporting cycle is transmitted, it is possible to secure transmission of the SP-CSI report considered to be important because of many transmission opportunities.
 以上説明した実施形態によれば、同じスロットにおいて複数のSP-CSI報告を有する場合であっても、送信するSP-CSI報告を適切に決定できる。 According to the embodiment described above, it is possible to appropriately determine the SP-CSI report to be transmitted even when there are a plurality of SP-CSI reports in the same slot.
<別の実施形態>
 別の一実施形態では、UEは、同じスロットにおいて複数のSP-CSI報告を有する場合には、上記所定の条件に基づいて、当該複数のSP-CSI報告の全てをドロップしてもよい。また、UEは、同じスロットにおいて複数のSP-CSI報告を有する場合には、常に、当該複数のSP-CSI報告の全てをドロップする制御を行ってもよい。
<Another embodiment>
In another embodiment, if the UE has multiple SP-CSI reports in the same slot, the UE may drop all of the multiple SP-CSI reports based on the predetermined condition. Further, when the UE has a plurality of SP-CSI reports in the same slot, the UE may always perform control to drop all of the plurality of SP-CSI reports.
 また、UEは、同じスロットにおいて複数のSP-CSI報告を有する場合には、これらのうち設定IDが最も小さい(又は大きい)SP-CSI報告を送信する制御を行ってもよい。 In addition, when the UE has a plurality of SP-CSI reports in the same slot, the UE may perform control to transmit the SP-CSI report having the smallest (or largest) setting ID among them.
 また、UEは、同じスロットにおいて複数のSP-CSI報告を有することはない(1スロットにつき1つのSP-CSI報告だけがある)と想定してもよい。基地局は、同じスロットにおいて複数のSP-CSI報告を有することはないように、UEに対してSP-CSI報告を設定、トリガ、アクティベートなどしてもよい。つまり、1つのスロットが1つより多いPUSCHベースSP-CSI報告を含むことは、禁止されてもよい。 Also, it may be assumed that the UE does not have multiple SP-CSI reports in the same slot (there is only one SP-CSI report per slot). The base station may configure, trigger, activate, etc. the SP-CSI report for the UE so that it does not have multiple SP-CSI reports in the same slot. That is, it may be prohibited for one slot to contain more than one PUSCH-based SP-CSI report.
 この場合、上述したような同じスロットにおけるドロップ判定の処理は、UEに実装されなくてもよいし、仮に同じスロットで複数のSP-CSI報告を有する設定が有効になってしまった場合を考慮してUEに実装されてもよい。 In this case, the drop determination process in the same slot as described above may not be implemented in the UE, and a case where a setting having a plurality of SP-CSI reports in the same slot has become effective is considered. May be implemented in the UE.
 なお、UEがPUCCHベースSP-CSI報告をPUSCHで伝送する(piggyback)場合であっても、1つのスロットが1つより多いSP-CSI報告を含むことが禁止されてもよい。例えば、UEは、あるスロットにおいてPUCCHベースSP-CSI報告をPUSCHで伝送する場合には、同じスロットにおいてPUCCHベース及びPUSCHベースに関わらず1つより多いSP-CSI報告がアクティブである可能性があるとは期待しなくてもよい。 Note that even if the UE transmits a PUCCH-based SP-CSI report on the PUSCH (piggyback), it may be prohibited that one slot includes more than one SP-CSI report. For example, if a UE transmits a PUCCH-based SP-CSI report on a PUSCH in a slot, more than one SP-CSI report may be active in the same slot regardless of the PUCCH base and the PUSCH base You do not have to expect.
 UEは、複数のSP-CSI報告が同時にアクティブな場合において、これらのSP-CSI報告の一方の報告周期が、他方の報告周期の整数倍であると想定してもよい。例えば、UEは、設定される全てのSP-CSI報告の報告周期が同じであると想定してもよい。また、UEは、設定されるSP-CSI報告の任意の報告周期は、最小の報告周期の整数倍であると想定してもよい。 The UE may assume that when multiple SP-CSI reports are active at the same time, one reporting period of these SP-CSI reports is an integral multiple of the other reporting period. For example, the UE may assume that the reporting periods of all configured SP-CSI reports are the same. Further, the UE may assume that an arbitrary report period of the SP-CSI report to be set is an integer multiple of the minimum report period.
 UEは、複数のSP-CSI報告が同時にアクティブな場合において、これらのSP-CSI報告の全てのオフセットの値が異なると想定してもよい。 The UE may assume that when multiple SP-CSI reports are active at the same time, all the offset values of these SP-CSI reports are different.
<変形例>
 なお、上述の各実施形態では、同じスロットにおいて複数のSP-CSI報告を有するケースについて説明したが、任意のCSI報告の組み合わせで読み替えられてもよい。例えば、上述の各実施形態は、UEが同じスロットにおいてA-CSI報告、SP-CSI報告及びP-CSI報告のうち任意の複数のCSI報告を有する場合について、適用可能である。
<Modification>
In each of the above-described embodiments, the case of having a plurality of SP-CSI reports in the same slot has been described. However, it may be replaced by any combination of CSI reports. For example, each of the above embodiments is applicable to a case where the UE has an arbitrary plurality of CSI reports among an A-CSI report, an SP-CSI report, and a P-CSI report in the same slot.
 つまり、本開示における「SP-CSI」は、「A-CSI、SP-CSI及びP-CSIの少なくとも1つ」で読み替えられてもよい。また、本開示における「SP-CSI」は、「PUCCHベースSP-CSI及びPUSCHベースSP-CSIの少なくとも一方」で読み替えられてもよい。 That is, “SP-CSI” in the present disclosure may be read as “at least one of A-CSI, SP-CSI, and P-CSI”. Also, “SP-CSI” in the present disclosure may be read as “at least one of PUCCH-based SP-CSI and PUSCH-based SP-CSI”.
 また、上述の各実施形態は、1つのCCの同じスロットにおいて複数のSP-CSI報告を有する場合に適用されてもよいし、複数のCC(例えば全CC)の同じスロットにおいて複数のSP-CSI報告を有する場合に適用されてもよい。 In addition, each of the above embodiments may be applied to a case where there are a plurality of SP-CSI reports in the same slot of one CC, or a plurality of SP-CSIs in the same slot of a plurality of CCs (eg, all CCs) It may be applied if you have a report.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
 図2は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及びデュアルコネクティビティ(DC)の少なくとも一方を適用することができる。 FIG. 2 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. In the wireless communication system 1, at least one of carrier aggregation (CA) and dual connectivity (DC) in which a plurality of fundamental frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit is integrated. Can be applied.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. The arrangement, the number, and the like of each cell and user terminal 20 are not limited to the mode shown in the figure.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び周波数分割複信(FDD:Frequency Division Duplex)の少なくとも1つを用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 Also, the user terminal 20 can perform communication in each cell using at least one of time division duplex (TDD) and frequency division duplex (FDD). In each cell (carrier), a single neurology may be applied, or a plurality of different neurology may be applied.
 ニューメロロジーとは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length, At least one of a TTI length, the number of symbols per TTI, a radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, and a specific windowing process performed by the transceiver in the time domain may be indicated.
 例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔及びOFDMシンボル数の少なくとも一方が異なる場合には、ニューメロロジーが異なると称されてもよい。 For example, when at least one of the subcarrier interval and the number of OFDM symbols of a configured OFDM symbol is different for a certain physical channel, it may be referred to as having a different neurology.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及びOFDMAの少なくとも一方が適用される。 In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Frequency Division Multiple Access) and / or OFDMA are applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下り制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink control channel, and the like that are shared by the user terminals 20 are used as downlink channels. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
 下り制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including at least one of scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
 なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 Note that DCI for scheduling DL data reception may be referred to as DL assignment, and DCI for scheduling UL data transmission may be referred to as UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送されてもよい。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送されてもよい。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 The number of OFDM symbols used for PDCCH may be transmitted by PCFICH. Delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat reQuest) for PUSCH may be transmitted by PHICH. EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. User data, higher layer control information, etc. are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR), etc. are transmitted by PUCCH. A random access preamble for establishing connection with the cell is transmitted by the PRACH.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
(無線基地局)
 図3は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(Radio base station)
FIG. 3 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment. The radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing are performed and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 図4は、一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 4 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire radio base station 10. The control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like. The control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、下り共有チャネルを用いて送信される信号)、下り制御信号(例えば、下り制御チャネルを用いて送信される信号)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 schedules system information, downlink data signals (for example, signals transmitted using a downlink shared channel), and downlink control signals (for example, signals transmitted using a downlink control channel) (for example, resource allocation). ) To control. In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS).
 制御部301は、上りデータ信号(例えば、上り共有チャネルを用いて送信される信号)、上り制御信号(例えば、上り制御チャネルを用いて送信される信号)、ランダムアクセスプリアンブル、上り参照信号などのスケジューリングを制御する。 The control unit 301 includes an uplink data signal (for example, a signal transmitted using an uplink shared channel), an uplink control signal (for example, a signal transmitted using an uplink control channel), a random access preamble, an uplink reference signal, and the like. Control scheduling.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び上りデータの割り当て情報を通知するULグラントの少なくとも一方を生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates, for example, at least one of a DL assignment for notifying downlink data allocation information and a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301. The DL assignment and UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び受信処理後の信号の少なくとも一方を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal. The measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
 なお、送受信部103は、複数のセミパーシステントなチャネル状態情報報告(SP-CSI報告)の設定に関する情報(例えば、RRCのCSI-ReportConfig情報要素(IE:Information Element))を送信してもよい。送受信部103は、ユーザ端末20から送信されたCSIを受信してもよい。 The transmission / reception unit 103 may transmit information related to the setting of a plurality of semi-persistent channel state information reports (SP-CSI reports) (for example, RRC CSI-ReportConfig information element (IE: Information Element)). . The transmission / reception unit 103 may receive the CSI transmitted from the user terminal 20.
 また、制御部301は、ユーザ端末20が同じスロットにおいて複数のSP-CSI報告を有する場合には、所定の条件に基づいて、当該複数のSP-CSI報告の少なくとも1つがドロップされると想定して処理(例えば、復号、復調、デマッピングなど)を行ってもよい。 In addition, when the user terminal 20 has a plurality of SP-CSI reports in the same slot, the control unit 301 assumes that at least one of the plurality of SP-CSI reports is dropped based on a predetermined condition. (For example, decoding, demodulation, demapping, etc.) may be performed.
(ユーザ端末)
 図5は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 5 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 図6は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 6 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like. The control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、無線基地局10から送信された下り制御信号、下りデータ信号などを、受信信号処理部404から取得する。制御部401は、下りデータ信号に対する再送制御の要否を判定した結果、下り制御信号などに基づいて、上り制御信号、上りデータ信号などの生成を制御する。 The control unit 401 acquires the downlink control signal, the downlink data signal, and the like transmitted from the radio base station 10 from the received signal processing unit 404. As a result of determining whether or not retransmission control is required for the downlink data signal, the control unit 401 controls generation of an uplink control signal, an uplink data signal, and the like based on the downlink control signal and the like.
 制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various types of information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び受信処理後の信号の少なくとも一方を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. The reception signal processing unit 404 outputs at least one of the reception signal and the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
 なお、送受信部203は、複数のセミパーシステントなチャネル状態情報報告(SP-CSI報告)の設定に関する情報(例えば、RRCのCSI-ReportConfig情報要素(IE:Information Element))を受信してもよい。送受信部203は、無線基地局10に対してCSIを送信してもよい。 The transmission / reception unit 203 may receive information related to the setting of a plurality of semi-persistent channel state information reports (SP-CSI reports) (for example, an RRC CSI-ReportConfig information element (IE)). . The transmission / reception unit 203 may transmit CSI to the radio base station 10.
 また、制御部401は、同じスロットにおいて複数のSP-CSI報告を有する場合には、所定の条件に基づいて、当該複数のSP-CSI報告の少なくとも1つをドロップしてもよい。 In addition, when the control unit 401 has a plurality of SP-CSI reports in the same slot, the control unit 401 may drop at least one of the plurality of SP-CSI reports based on a predetermined condition.
 ここで、当該所定の条件は、上記複数のSP-CSI報告についてのSP-CSIのペイロードサイズに関する条件を含んでもよい。当該所定の条件は、上記複数のSP-CSI報告についてのSP-CSIの優先度に関する条件を含んでもよい。当該所定の条件は、上記複数のSP-CSI報告についてのスロット内におけるSP-CSI報告用リソースの時間的位置(例えばシンボル位置)に関する条件を含んでもよい。上記所定の条件は、上記複数のSP-CSI報告についてのSP-CSI報告周期に関する条件を含んでもよい。 Here, the predetermined condition may include a condition related to a payload size of SP-CSI for the plurality of SP-CSI reports. The predetermined condition may include a condition related to the priority of SP-CSI for the plurality of SP-CSI reports. The predetermined condition may include a condition regarding a temporal position (for example, a symbol position) of an SP-CSI report resource in a slot for the plurality of SP-CSI reports. The predetermined condition may include a condition related to an SP-CSI report period for the plurality of SP-CSI reports.
 また、制御部401は、上記複数のSP-CSI報告の一方の報告周期が、他方の報告周期の整数倍であると想定してもよい。 Also, the control unit 401 may assume that one reporting period of the plurality of SP-CSI reports is an integer multiple of the other reporting period.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 7 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 In addition, the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the neurology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transmission / reception It may indicate at least one of a specific filtering process performed by the machine in the frequency domain and a specific windowing process performed by the transceiver in the time domain.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots. PDSCH (or PUSCH) transmitted in units of time larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as a frame, a subframe, a slot, a minislot, and a symbol in the present disclosure may be interchanged.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, a code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neurology, and may be 12, for example. The number of subcarriers included in the RB may be determined based on the neurology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 In addition, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1 TTI, one subframe, and the like may be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth part (BWP: Bandwidth Part) (may be called partial bandwidth etc.) represents a subset of continuous common RB (common resource blocks) for a certain neurology in a certain carrier. Good. Here, the common RB may be specified by an RB index based on the common reference point of the carrier. A PRB may be defined in a certain BWP and numbered in the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (UL BWP) and DL BWP (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the set BWPs may be active, and the UE may not assume that a predetermined signal / channel is transmitted / received outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be read as “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented. For example, the radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limited names in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed in this disclosure. Various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so various names assigned to these various channels and information elements. Is not a restrictive name in any respect.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, code, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 The terms “system” and “network” as used in this disclosure may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", Terms such as “carrier”, “component carrier” and the like may be used interchangeably. A base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or a plurality of (for example, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: Remote Radio Head)) can also provide communication services. The terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。 At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
 また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the radio base station in the present disclosure may be replaced with a user terminal. For example, the communication between the radio base station and the user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)) For each configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, etc. may be read as a side channel.
 同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using an exemplary order and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) The present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. A plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 «As used in this disclosure, the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term “determining” as used in this disclosure may encompass a wide variety of actions. For example, “determination (decision)” includes determination, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining".
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., as well as some non-limiting and non-inclusive examples, radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. The term may mean “A and B are different from C”. Terms such as “leave”, “coupled” and the like may also be interpreted similarly to “different”.
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 In this disclosure, where “include”, “including” and variations thereof are used, these terms are inclusive, as are the terms “comprising”. Is intended. Further, the term “or” as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, for example, when articles are added by translation such as a, an, and the in English, the present disclosure may include plural nouns that follow these articles.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not give any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  複数のセミパーシステントなチャネル状態情報報告(SP-CSI(Semi-Persistent Channel State Information)報告)の設定に関する情報を受信する受信部と、
     同じスロットにおいて複数のSP-CSI報告を有する場合には、所定の条件に基づいて、当該複数のSP-CSI報告の少なくとも1つをドロップする制御部と、を有することを特徴とするユーザ端末。
    A receiving unit for receiving information on setting of a plurality of semi-persistent channel state information reports (SP-CSI (Semi-Persistent Channel State Information) reports);
    And a control unit that drops at least one of the plurality of SP-CSI reports based on a predetermined condition when a plurality of SP-CSI reports are included in the same slot.
  2.  前記所定の条件は、前記複数のSP-CSI報告についてのSP-CSIのペイロードサイズに関する条件を含むことを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the predetermined condition includes a condition related to a payload size of SP-CSI for the plurality of SP-CSI reports.
  3.  前記所定の条件は、前記複数のSP-CSI報告についてのSP-CSIの優先度に関する条件を含むことを特徴とする請求項1又は請求項2に記載のユーザ端末。 3. The user terminal according to claim 1, wherein the predetermined condition includes a condition related to a priority of SP-CSI for the plurality of SP-CSI reports.
  4.  前記所定の条件は、前記複数のSP-CSI報告についてのスロット内におけるSP-CSI報告用リソースの時間的位置に関する条件を含むことを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 The predetermined condition includes a condition related to a temporal position of a resource for SP-CSI reporting in a slot for the plurality of SP-CSI reports. User terminal.
  5.  前記所定の条件は、前記複数のSP-CSI報告についてのSP-CSI報告周期に関する条件を含むことを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 The user terminal according to any one of claims 1 to 4, wherein the predetermined condition includes a condition related to an SP-CSI report period for the plurality of SP-CSI reports.
  6.  前記制御部は、前記複数のSP-CSI報告の一方の報告周期が、他方の報告周期の整数倍であると想定することを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。 6. The user according to claim 1, wherein the control unit assumes that one reporting period of the plurality of SP-CSI reports is an integer multiple of the other reporting period. Terminal.
PCT/JP2018/022088 2018-06-08 2018-06-08 User terminal WO2019234928A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022088 WO2019234928A1 (en) 2018-06-08 2018-06-08 User terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022088 WO2019234928A1 (en) 2018-06-08 2018-06-08 User terminal

Publications (1)

Publication Number Publication Date
WO2019234928A1 true WO2019234928A1 (en) 2019-12-12

Family

ID=68770893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022088 WO2019234928A1 (en) 2018-06-08 2018-06-08 User terminal

Country Status (1)

Country Link
WO (1) WO2019234928A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539312A (en) * 2010-09-29 2013-10-17 エルジー エレクトロニクス インコーポレイティド Efficient feedback method and apparatus in multi-antenna assisted wireless communication system
JP2017510218A (en) * 2014-01-07 2017-04-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated CSI feedback for multiple subframe sets
JP2017517949A (en) * 2014-05-08 2017-06-29 シャープ株式会社 System and method for dual connectivity operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539312A (en) * 2010-09-29 2013-10-17 エルジー エレクトロニクス インコーポレイティド Efficient feedback method and apparatus in multi-antenna assisted wireless communication system
JP2017510218A (en) * 2014-01-07 2017-04-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated CSI feedback for multiple subframe sets
JP2017517949A (en) * 2014-05-08 2017-06-29 シャープ株式会社 System and method for dual connectivity operation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Summary of CSI reporting v3", 3GPP TSG RAN WG1 MEETING AH 1801 RL-1801069, 22 January 2018 (2018-01-22), XP051385300 *
HUAWEI ET AL.: "Summary of remaining issues on CSI reporting", 3GPP TSG RAN WG1 MEETING #92BIS R1- 1803635, 6 April 2018 (2018-04-06), XP051412933 *

Similar Documents

Publication Publication Date Title
JP7132329B2 (en) Terminal, wireless communication method, base station and system
WO2019193700A1 (en) User terminal and wireless base station
WO2019087340A1 (en) User equipment and wireless communication method
JP7197581B2 (en) Terminal and base station
JP7210591B2 (en) Terminal, wireless communication method, base station and system
WO2019230002A1 (en) User terminal and wireless base station
WO2020021725A1 (en) User terminal and wireless communication method
WO2018203409A1 (en) User terminal, and wireless communication method
WO2019171518A1 (en) User terminal and wireless communication method
JP7082184B2 (en) Terminals, wireless communication methods, base stations and systems
WO2019230003A1 (en) Wireless base station and wireless communication method
WO2019225689A1 (en) User terminal and wireless communication method
WO2018207370A1 (en) User terminal and wireless communication method
JP2023029395A (en) Terminal, wireless communication method, and system
WO2019215895A1 (en) User terminal
WO2019159296A1 (en) User terminal and wireless communication method
WO2018124032A1 (en) User terminal and wireless communications method
WO2019159295A1 (en) User terminal and wireless communication method
WO2018207374A1 (en) User terminal and wireless communication method
WO2018203401A1 (en) User terminal, and wireless communication method
WO2019016950A1 (en) User terminal and wireless communication method
WO2019225655A1 (en) User terminal
JP7089027B2 (en) Terminals, wireless communication methods, base stations and systems
JP7116157B2 (en) Terminal, wireless communication method, base station and system
WO2018207371A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP