WO2019215895A1 - User terminal - Google Patents

User terminal Download PDF

Info

Publication number
WO2019215895A1
WO2019215895A1 PCT/JP2018/018222 JP2018018222W WO2019215895A1 WO 2019215895 A1 WO2019215895 A1 WO 2019215895A1 JP 2018018222 W JP2018018222 W JP 2018018222W WO 2019215895 A1 WO2019215895 A1 WO 2019215895A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
dci
reception
signal
user terminal
Prior art date
Application number
PCT/JP2018/018222
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/018222 priority Critical patent/WO2019215895A1/en
Publication of WO2019215895A1 publication Critical patent/WO2019215895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present disclosure relates to a user terminal in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NR future wireless communication systems
  • BF beam forming
  • NR future wireless communication systems
  • BF beam forming
  • at least one of signal transmission and reception is controlled in consideration of a pseudo-co-location (QCL) relationship (QCL relationship) between a plurality of signals. It is being considered.
  • QCL pseudo-co-location
  • the user terminal (UE: User Equipment) has a QCL indicated by a value of a predetermined field in the DCI (for example, a field for transmission configuration indication (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) (TCI field)). Based on the relationship (which may be called a TCI state or the like), it is considered to control reception of a downlink shared channel (for example, PDSCH) scheduled by the DCI.
  • a predetermined field in the DCI for example, a field for transmission configuration indication (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) (TCI field)
  • TCI field Transmission Configuration Indication or Transmission Configuration Indicator
  • CORESET Control Resource Set
  • an object of the present disclosure is to provide a user terminal that can receive PDSCH based on appropriate QCL.
  • a user terminal includes a reception unit that receives downlink control information (DCI: Downlink Control Information) for a downlink shared channel schedule, and a time offset between reception of the DCI and the downlink shared channel Is smaller than a predetermined threshold, based on the transmission configuration indication (TCI) state corresponding to the identifier (CORESET-ID) of the smallest control resource set (CORESET: Control REsource SET) in the latest slot, And a control unit that determines pseudo-collocation for the downlink shared channel.
  • DCI Downlink Control Information
  • TCI transmission configuration indication
  • CORESET-ID the identifier
  • CORESET Control REsource SET
  • PDSCH can be received based on appropriate QCL.
  • FIG. 1A and 1B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” according to Embodiment 2.1.
  • 2A and 2B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” in the embodiment 2.2.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 4 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment.
  • FIG. 6 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • CORESET In NR, in order to transmit a physical layer control signal (for example, downlink control information (DCI)) from the base station to the UE, a control resource set (CORESET: CONtrol REsource SET) is used. .
  • DCI downlink control information
  • the CORESET is an allocation candidate area of a control channel (for example, PDCCH (Physical Downlink Control Channel)).
  • the CORESET may include a predetermined frequency domain resource and a time domain resource (for example, 1 or 2 OFDM symbols).
  • the UE may receive CORESET setting information (which may be referred to as CORESET configuration or coreset-Config) from the base station.
  • CORESET configuration which may be referred to as CORESET configuration or coreset-Config
  • the UE can detect the physical layer control signal by monitoring the CORESET set in the terminal itself.
  • the CORESET setting may be notified by higher layer signaling, for example, or may be represented by a predetermined RRC information element (may be referred to as “ControlResourceSet”).
  • the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Control Element
  • MAC PDU Protocol Data Unit
  • the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), and minimum system information (RMSI: Remaining Minimum System Information).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • CORESET may be set to a predetermined number (for example, 3 or less) for each bandwidth part (BWP: Bandwidth Part) set in the UE in the serving cell.
  • BWP Bandwidth Part
  • the BWP is a partial band set in a carrier (also referred to as a cell, a serving cell, a component carrier (CC)), and is also referred to as a partial band.
  • the BWP may include a BWP for uplink (UL) (UL BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL BWP, downlink BWP).
  • UL BWP uplink
  • DL BWP downlink
  • Each BWP provided with the predetermined number of CORESETs may be a DL BWP.
  • the CORESET setting may mainly include information on PDCCH resource-related settings and RS-related settings.
  • the following parameters may be given to the UE by upper layer signaling (CORESET setting) for CORESET # p (for example, 0 ⁇ p ⁇ 3) set in each DL BWP.
  • CORESET-ID (Identifier)
  • DMRS demodulation reference signal
  • CORESET time length indicated by the number of consecutive symbols (eg, time duration, CORESET-time-duration)
  • Frequency-domain resource allocation for example, information (CORESET-freq-dom) indicating a predetermined number of resource blocks constituting the CORESET
  • Mapping type information indicating interleaving or non-interleaving from a control channel element (CCE) to a resource element group (REG) in CORESET (for example, CORESET-CCE-to-REG-mapping) -type
  • DCI format 1_0 or DCI format 1_1 For example, DCI format 1_0 or DCI format 1_1
  • CORESET # p for example, TCI-PresentInDCI
  • search space A search area and a search method of PDCCH candidates are defined as a search space (SS).
  • the UE may receive search space configuration information (which may be referred to as search space configuration) from the base station.
  • search space configuration information (which may be referred to as search space configuration) from the base station.
  • the search space setting may be notified by higher layer signaling (RRC signaling or the like), for example.
  • the search space setting may be notified to the UE by higher layer signaling (RRC signaling or the like), for example, and may be represented by a predetermined RRC information element (may be referred to as “SearchSpace”).
  • RRC signaling or the like
  • SearchSpace a predetermined RRC information element
  • the search space setting mainly includes information on monitoring related settings and decoding related settings of PDCCH, and may include information on at least one of the following, for example: ⁇ Search space identifier (search space ID), CORESET identifier (CORESET-ID) associated with the search space setting, Information indicating whether a common search space (C-SS: Common SS) or UE-specific search space (UE-SS: UE-specific SS), ⁇ The number of PDCCH candidates for each aggregation level, Monitoring cycle, ⁇ Monitoring offset, A monitoring pattern in the slot (eg a 14 bit bitmap).
  • the UE monitors CORESET based on search space setting.
  • the UE can determine the correspondence between the CORESET and the search space based on the CORESET-ID included in the search space setting.
  • One CORESET may be associated with one or more search spaces.
  • monitoring of CORESET “monitoring of search space (PDCCH candidate) associated with CORESET”, “monitoring of downlink control channel (eg, PDCCH)”, and “monitoring of downlink control information (DCI)” "May be interchanged with each other.
  • Monitoring may be read as “at least one of blind decoding and blind detection”.
  • the UE performs reception processing (for example, demapping, demodulation, decoding) on a channel (for example, PDCCH, PDSCH) based on information (QCL information) on pseudo-colocation (QCL: Quasi-Co-Location).
  • reception processing for example, demapping, demodulation, decoding
  • a channel for example, PDCCH, PDSCH
  • QL information information
  • pseudo-colocation QL: Quasi-Co-Location
  • QCL is an index indicating the statistical properties of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift, a Doppler spread, an average delay, and a delay spread (delay) are set between these different signals. It may mean that at least one of (spread) and a spatial parameter (for example, a spatial reception parameter (Spatial Rx Parameter)) is the same (QCL is related to at least one of them).
  • spatial parameter for example, a spatial reception parameter (Spatial Rx Parameter)
  • the spatial reception parameter may correspond to a reception beam (for example, reception analog beam) of the UE, or the beam may be specified based on the spatial QCL.
  • the QCL and at least one element of the QCL in the present disclosure may be replaced with sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) of the QCL may be defined.
  • QCL types AD QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, which are shown below: QCL type A: Doppler shift, Doppler spread, average delay and delay spread, ⁇ QCL type B: Doppler shift and Doppler spread, QCL type C: average delay and Doppler shift, QCL type D: Spatial reception parameter.
  • TCI Transmission Configuration Indication or Transmission Configuration Indicator
  • TCI state TCI-state
  • the TCI state is roughly classified into a TCI state for PDCCH and a TCI state for PDSCH.
  • the TCI state includes, for example, a target channel (or a reference signal (RS: Reference Signal) for the channel) and another signal (for example, another downlink reference signal (DL-RS: For example, at least one of information related to QCL (DL-RS related information) and information indicating the above QCL type (QCL type information). May be included.
  • RS Reference Signal
  • DL-RS downlink reference signal
  • QCL type information information indicating the above QCL type
  • the DL-RS related information may include at least one of information indicating a DL-RS having a QCL relationship and information indicating a resource of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the UE, the DL-RS related information indicates a QCL relationship with a channel (or a port for the channel) among RSs included in the RS set. At least one of a DL-RS having the DL-RS and a resource for the DL-RS may be indicated.
  • RS sets reference signal sets
  • At least one of the channel RS and the DL-RS is a synchronization signal (SS: Synchronization Signal), a broadcast channel (PBCH: Physical Broadcast Channel), a synchronization signal block (SSB: Synchronization Signal Block), a mobility reference signal ( At least one of MRS (Mobility RS), channel state information reference signal (CSI-RS: Channel Sate Information-Reference Signal), demodulation reference signal (DMRS: DeModulation Reference Signal), beam specific signal, etc., or an extension thereof , A signal configured by changing, etc. (for example, a signal configured by changing at least one of density and period).
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • SSB Synchronization Signal Block
  • MRS Mobility Reference Signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • beam specific signal etc.
  • a signal configured by changing, etc. for example, a signal configured by changing at least one of density and period).
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the SSB may be a signal block including a synchronization signal and a broadcast channel, and may be referred to as an SS / PBCH block.
  • the UE may assume the same sQCL as the PBCH for the type 0 and type 1-PDCCH common search spaces. Also, the UE may determine sQCL for the type 3-PDCCH common search space and UE-specific search space based on higher layer signaling.
  • one or more (K) TCL states may be set by higher layer signaling.
  • the UE may activate one or a plurality of TCI states for each CORESET using MAC CE.
  • the UE may be notified (configured) by higher layer signaling of M (M ⁇ 1) TCI states for PDSCH (QCL information for M PDSCHs). Note that the number M of TCI states set in the UE may be limited by at least one of UE capability and QCL type.
  • the DCI used for PDSCH scheduling may include a predetermined field (for example, a TCI field, a TCI field, a TCI state field, etc.) indicating a TCI state (PDCL QCL information).
  • the DCI may be used for scheduling of the PDSCH of one cell, and may be called, for example, DL DCI, DL assignment, DCI format 1_0, DCI format 1_1, or the like.
  • the TCI field may be configured with a predetermined number of bits (for example, 3 bits). Whether or not the TCI field is included in the DCI may be controlled by information notified from the base station to the UE.
  • the information may be information (TCI-PresentInDCI) indicating whether or not a TCI field exists in DCI (present or absent).
  • TCI-PresentInDCI may be set in the UE by, for example, higher layer signaling (RRC information element (IE: Information Element)).
  • TCI-PresentInDCI is enabled (TCI-PresentInDCI) in predetermined upper layer control information (eg, “ControlResourceSet” IE for setting at least one of CORESET time resource and frequency resource). May be included.
  • TCI-PresentInDCI is disabled or not enabled may mean that the TCI-PresentInDCI is not included in the higher layer control information.
  • TCI-PresentInDCI When TCI-PresentInDCI is not enabled (not enabled), the TCI field in DCI is 0 bit, and when TCI-PresentInDCI is enabled, the TCI field in DCI may be 3 bits. .
  • the UE may be configured in advance.
  • the value of the TCI field (TCI field value) in the DCI may indicate one of the TCI states set in advance by higher layer signaling.
  • TCI states When more than 8 TCI states are set in the UE, 8 or less TCI states may be activated (designated) using MAC CE.
  • the value of the TCI field in DCI may indicate one of the TCI states activated by the MAC CE.
  • the UE may determine QCL of PDSCH (or DMSCH port of PDSCH) based on TCI state indicated by TCI field value in DCI. For example, the UE assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell is the DL-RS and QCL corresponding to the TCI state notified by DCI, and performs PDSCH reception processing (for example, decoding) , Demodulation, etc.) may be controlled. Thereby, the reception precision of PDSCH can be improved.
  • the UE may assume that the TCI field is present (included) in the DL DCI of the PDCCH transmitted in the CORESET.
  • the TCI state for the PDSCH is It may be assumed that it is identical to the TCI state applied to CORESET used for PDCCH transmission.
  • the antenna port (port) in the present disclosure may be read as an antenna port group (port group).
  • the UE when the time offset between the reception of DL DCI and the reception of PDSCH corresponding to the DCI is equal to or greater than a predetermined threshold (may be called Threshold-Sched-Offset, etc.), the UE It may be assumed that the RS in the RS set for the QCL type parameter given by the indicated TCI state and the antenna port of one or more DMRS port groups of the PDSCH of the serving cell are QCL.
  • the predetermined threshold may be based on UE capability, for example, based on a delay for PDCCH decoding and beam switching.
  • the information on the predetermined threshold may be set from the base station using higher layer signaling, or may be transmitted from the UE to the base station.
  • TCI-PresentInDCI is both valid and invalid
  • the UE Based on the TCI state used for PDCCH QCL notification corresponding to the minimum CORESET-ID (ID for CORESET identification) in the latest (latest) slot where one or more CORESET is set,
  • the antenna port of one or more DMRS port groups of the serving cell PDSCH is QCL (eg, the DL-RS and QCL based on the TCI state activated for the CORESET corresponding to the minimum CORESET-ID. ) May be assumed It is being considered.
  • the present inventors appropriately grasp the “minimum CORESET-ID in the latest slot” and determine the PDSCH even if the time offset between the DL DCI and the PDSCH scheduled by the DCI is smaller than a predetermined threshold.
  • the idea was to decrypt (receive).
  • minimum CORESET-ID in the present disclosure may be read as “minimum CORESET-ID corresponding to CORESET”.
  • the UE uses the “minimum CORESET-ID in the latest slot” to be used when the above time offset is less than the predetermined threshold, the monitoring period set by the search space setting, and Regardless of one or both of the monitoring offsets, it may be assumed (or interpreted) that the CORESET-ID is the minimum CORESET-ID set by higher layer signaling.
  • “Set by search space” may be read as “set by search space”, “set by search space”, or the like.
  • minimum CORESET-ID in the latest slot may be replaced with “minimum CORESET-ID set in the latest slot”.
  • the UE may assume that the minimum CORESET-ID among all the set CORESETs is the “minimum CORESET-ID” regardless of whether DCI is detected in the CORESET (implementation) Form 1.1). Alternatively, the UE may assume the minimum CORESET-ID of the CORESETs from which DCI is detected as the “minimum CORESET-ID” (Embodiment 1.2). Note that “detection” may be read as “reception”.
  • the “minimum CORESET-ID” is CORESET-ID # 0 in Embodiment 1.1.
  • the “minimum CORESET-ID” is CORESET-ID # 0 if the UE has detected DCI even once in the CORESET with CORESET-ID # 0 in the embodiment 1.2. Otherwise, if the DCI has been detected even once in the CORESET with the CORESET-ID # 1, it is the CORESET-ID # 1. Otherwise, the CORESET-ID # 0 or the CORESET-ID. It may be # 1, or it may be assumed that “does not exist”.
  • CORESET-ID # 0 may indicate CORESET (may be called initial CORESET, default CORESET, etc.) set using MIB.
  • the “minimum CORESET-ID” in the first embodiment may be an ID corresponding to a CORESET that is not associated with a search space (just set) or excludes such an ID. ID may be sufficient.
  • the UE can appropriately determine the “minimum CORESET-ID in the latest slot”.
  • the UE uses the minimum CORESET of the CORESETs to monitor the “minimum CORESET-ID in the latest slot” to be used when the above-described time offset is less than the predetermined threshold.
  • -It may be assumed (or interpreted) as an ID.
  • the “latest slot” may be determined based on one or both of the monitoring period and the monitoring offset set by the search space setting.
  • minimum CORESET-ID in the latest slot is “minimum CORESET-ID to be monitored in the latest slot” and “CORESET-ID set in the latest slot. , “Minimum CORESET-ID to be monitored”.
  • the UE may assume that a monitoring period is set for each search space.
  • the monitoring period may be set using an arbitrary time unit (for example, slot, subframe, symbol, millisecond, etc.).
  • the UE may assume the minimum CORESET-ID among all the set CORESETs as the “minimum CORESET-ID” regardless of whether or not DCI is detected in the CORESET (implementation) Form 2.1). Alternatively, the UE may assume the minimum CORESET-ID of the CORESETs from which DCI is detected as the “minimum CORESET-ID” (embodiment 2.2).
  • the “latest slot” may be the “latest slot in which DCI is detected”.
  • “minimum CORESET-ID in the latest slot” is “minimum CORESET-ID in which the DCI is detected in the latest slot in which DCI is detected” and “latest CORESET-ID in which DCI is detected.
  • FIGS. 1A and 1B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” according to Embodiment 2.1.
  • the UE monitors CORESET # 1 in slots # 0 and # 5.
  • the UE monitors CORESET # 2 in slots # 0 to # 9.
  • FIG. 1A corresponds to a case scheduled to receive PDSCH in slot # 8.
  • CORESET # 1 and # 2 in slot # 8 correspond to the latest monitored CORESET.
  • the UE may determine that the “minimum CORESET-ID in the latest slot” in the determination of the QCL (or TCI) regarding the PDSCH is CORESET-ID # 2.
  • the UE may make the above determination regardless of whether or not DCI is detected in CORESET # 2 in slot # 8.
  • the DCI that schedules the PDSCH in slot # 8 may be detected in slot # 8 or may be detected in an earlier slot.
  • FIG. 1B corresponds to a case scheduled to receive PDSCH in slot # 5.
  • CORESET # 1 in slot # 5 corresponds to the latest monitored CORESET.
  • the UE may determine that the “minimum CORESET-ID in the latest slot” in the QCL (or TCI) determination regarding the PDSCH is CORESET-ID # 1.
  • the UE may make the above determination regardless of whether or not DCI is detected in CORESET # 1 in slot # 5.
  • the DCI that schedules the PDSCH in slot # 5 may be detected in slot # 5 or may be detected in an earlier slot.
  • FIGS. 1A and 1B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” in the embodiment 2.2.
  • the same CORESET and search space configuration as in FIGS. 1A and 1B is assumed.
  • the UE detects DCI in CORESET # 1 in slot # 5 and detects DCI in CORESET # 2 in slots # 2, # 5, and # 6.
  • the UE detects DCI in CORESET # 1 in slot # 5 and detects DCI in CORESET # 2 in slots # 2 and # 5.
  • FIG. 2A corresponds to a case scheduled to receive PDSCH in slot # 8.
  • CORESET # 2 in slot # 6 corresponds to the latest CORESET in which DCI is detected.
  • the UE may determine that the “minimum CORESET-ID in the latest slot” in the determination of the QCL (or TCI) regarding the PDSCH is CORESET-ID # 2.
  • FIG. 2B also corresponds to a case scheduled to receive PDSCH in slot # 8.
  • CORESET # 1 and # 2 in slot # 5 correspond to the latest CORESET in which DCI is detected.
  • the UE may determine that the “minimum CORESET-ID in the latest slot” in the QCL (or TCI) determination regarding the PDSCH is CORESET-ID # 1.
  • the UE can appropriately determine the “minimum CORESET-ID in the latest slot”.
  • the “latest slot” in the above-described embodiments has been described assuming that it is the same slot (or includes the same slot) as the PDSCH, the present invention is not limited to this.
  • the “latest slot” is not the same slot as PDSCH (or does not include the same slot).
  • the latest slot that is not the same slot as the PDSCH may be assumed to be a slot that is at least a predetermined number of slots (for example, one slot) before the slot that receives the PDSCH.
  • the DCI used for the determination of the CORESET-ID in the embodiments 1.2 and 2.2 may be a DCI that satisfies at least one of the following: (1) Arbitrary DCI, (2) DCI transmitted in a specific search space (eg C-SS or UE-SS), (3) DCI according to a specific DCI format (eg, DCI format 1_0 or 1_1).
  • the PDSCH QCL is judged based on the CORESET to determine the PDSCH decoding (reception) performance to some extent. It is expected to be secured. Further, according to (1), the QCL can be determined based on the latest channel environment as much as possible.
  • CORESET in which DCI transmitted by C-SS is detected can assume QCL with a typical signal and channel (for example, SS / PBCH block) in a certain serving cell, It is expected that the PDSCH decoding (reception) performance can be secured to some extent by determining the PDSCH QCL based on the PDSCH QCL.
  • the CORESET in which DCI transmitted by the UE-SS is detected is transmitted to the PDCCH transmitted to the UE (for example, transmitted using a beam optimal for the UE). Therefore, it is expected that the decoding (reception) performance of the PDSCH can be secured to some extent by determining the QCL of the PDSCH based on the CORESET.
  • CORESET in which DCI (DL assignment) for scheduling PDSCH is detected corresponds to PDCCH transmitted in the same manner as the PDSCH (for example, transmitted using the same beam). Since it is assumed, it is expected that the decoding (reception) performance of the PDSCH can be secured to some extent by determining the QCL of the PDSCH based on the CORESET.
  • the “minimum CORESET-ID” in the above embodiment may be determined from an ID excluding a specific CORESET-ID (eg, CORESET-ID # 0).
  • minimum CORESET-ID in the above embodiment may be read as “maximum CORESET-ID”, “CORESET-ID that satisfies a specific condition”, or the like.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
  • CC a plurality of cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering process performed by the transceiver in the frequency domain, specific windowing process performed by the transceiver in the time domain, and the like.
  • subcarrier interval bandwidth, symbol length, cyclic prefix length, subframe length.
  • TTI length number of symbols per TTI
  • radio frame configuration specific filtering process performed by the transceiver in the frequency domain
  • specific windowing process performed by the transceiver in the time domain and the like.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 4 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmission / reception antenna 101 may be constituted by, for example, an array antenna.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present disclosure.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • downlink data signals for example, signals transmitted by PDSCH
  • downlink control signals for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.
  • resource Control for example, resource Control
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • downlink reference signals for example, CRS, CSI-RS, DMRS
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted by PUSCH), an uplink control signal (for example, a signal transmitted by PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, by PRACH). (Sending signal), scheduling of uplink reference signals and the like are controlled.
  • an uplink data signal for example, a signal transmitted by PUSCH
  • an uplink control signal for example, a signal transmitted by PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, by PRACH.
  • the control unit 301 uses the digital BF (for example, precoding) in the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) in the transmission / reception unit 103 to form a transmission beam and / or a reception beam. May be performed.
  • the control unit 301 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. Such propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • the transmission / reception unit 103 may transmit downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH).
  • DCI downlink control information
  • FIG. 6 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmission / reception antenna 201 may be constituted by, for example, an array antenna.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 uses the digital BF (for example, precoding) in the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) in the transmission / reception unit 203 to form a transmission beam and / or a reception beam. May be performed.
  • the control unit 401 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like.
  • the propagation path information may be acquired from the reception signal processing unit 404 and / or the measurement unit 405.
  • control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal. For example, the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement for one or both of the first carrier and the second carrier. The measurement unit 405 may perform different frequency measurement on the second carrier based on the measurement instruction acquired from the reception signal processing unit 404 when the first carrier includes a serving cell.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • the transmission / reception unit 203 may receive downlink control information (DCI) (DL assignment or the like) for a downlink shared channel (for example, PDSCH) schedule.
  • DCI downlink control information
  • the control unit 401 sets the minimum CORESET-ID in the latest slot. Based on the corresponding TCI state, the QCL related to the PDSCH (for example, the QCL of the DMRS for PDSCH) may be determined.
  • the control unit 401 sets the minimum CORESET-ID in the latest slot to higher layer signaling (for example, one or more “ControlResourceSet”, regardless of the monitoring period set by the search space setting (for example, one or more “SearchSpace” IE)). It may be determined that the CORESET-ID is the smallest of the CORESETs set by “IE).
  • the control unit 401 may determine that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID monitored in the latest slot.
  • the control unit 401 may determine that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID in which the arbitrary DCI is detected in the latest slot in which the arbitrary DCI is detected.
  • the control unit 401 sets the minimum CORESET-ID in the latest slot to the minimum CORESET in which the DCI transmitted in the specific search space is detected in the latest slot in which the DCI transmitted in the specific search space is detected.
  • -It may be determined to be an ID.
  • the control unit 401 determines that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID in which the DCI conforming to the specific DCI format is detected in the latest slot where the DCI conforming to the specific DCI format is detected. May be.
  • each functional block is realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
  • a wireless base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the neurology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • SCS SubCarrier Spacing
  • bandwidth For example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver in frequency domain
  • TTI Transmission Time Interval
  • number of symbols per TTI radio frame configuration
  • transceiver in frequency domain It may indicate at least one of a specific filtering process to be performed and a specific windowing process to be performed by the transceiver in the time domain.
  • a slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots.
  • PDSCH (or PUSCH) transmitted in units of time larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each other, or may be read as one another.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be.
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, a code word, and the like may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, a small indoor base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • Mobile station subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • the radio base station in the present disclosure may be replaced with a user terminal.
  • communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called))
  • a plurality of user terminals for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, etc. may be read as a side channel.
  • the user terminal in the present disclosure may be replaced with a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.
  • the present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise.
  • the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination (decision)” includes judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
  • determination (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”.
  • determination is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a user terminal of one embodiment of the present disclosure that is characterized in including: a receiving unit that receives downlink control information (DCI) for scheduling a downlink shared channel; and a control unit that determines pseudo-collocation for the downlink shared channel on the basis of the transmission configuration indication (TCI) state corresponding to the identifier (CORESET-ID) of the smallest control resource set (CORESET) in the latest slot if the time offset between reception of the DCI and the downlink shared channel is smaller than a prescribed threshold. According to one embodiment of the present disclosure, it is possible to receive a PDSCH on the basis of an appropriate QCL.

Description

ユーザ端末User terminal
 本開示は、次世代移動通信システムにおけるユーザ端末に関する。 The present disclosure relates to a user terminal in a next generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-patent Document 1). In addition, LTE-A (LTE Advanced, LTE Rel. 10, 11, 12, 13) was specified for the purpose of further increasing the capacity and sophistication of LTE (LTE Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 LTE successor systems (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
 将来の無線通信システム(以下、単にNRとも表記する)では、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。BFを利用した通信品質を向上するために、複数の信号間の疑似コロケーション(QCL:Quasi-Co-Location)の関係(QCL関係)を考慮して信号の送信及び受信の少なくとも一つを制御することが検討されている。 In future wireless communication systems (hereinafter also simply referred to as NR), it is considered to perform communication using beam forming (BF). In order to improve communication quality using BF, at least one of signal transmission and reception is controlled in consideration of a pseudo-co-location (QCL) relationship (QCL relationship) between a plurality of signals. It is being considered.
 具体的には、ユーザ端末(UE:User Equipment)は、DCI内の所定フィールド(例えば、送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)用のフィールド(TCIフィールド))の値が示すQCL関係(TCI状態などと呼ばれてもよい)に基づいて、当該DCIによりスケジューリングされる下り共有チャネル(例えば、PDSCH)の受信を制御することが検討されている。 Specifically, the user terminal (UE: User Equipment) has a QCL indicated by a value of a predetermined field in the DCI (for example, a field for transmission configuration indication (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) (TCI field)). Based on the relationship (which may be called a TCI state or the like), it is considered to control reception of a downlink shared channel (for example, PDSCH) scheduled by the DCI.
 特定の場合において、制御リソースセット(CORESET:Control Resource Set)に基づいてPDSCHのTCI状態を決定することが検討されている。しかしながら、当該CORESETとしてどのようなCORESETを用いるかが明確でないケースがある。これを明確に規定しなければ、UEが適切なQCLに基づくPDSCH受信処理を行うことができず、スループットが低下するという課題がある。 In a specific case, it is considered to determine the TCI state of the PDSCH based on a control resource set (CORESET: Control Resource Set). However, there are cases where it is not clear what CORESET is used as the CORESET. If this is not clearly defined, there is a problem that the UE cannot perform PDSCH reception processing based on appropriate QCL and throughput is reduced.
 そこで、本開示は、適切なQCLに基づいてPDSCHを受信できるユーザ端末を提供することを目的の1つとする。 Therefore, an object of the present disclosure is to provide a user terminal that can receive PDSCH based on appropriate QCL.
 本開示の一態様に係るユーザ端末は、下り共有チャネルのスケジュールのための下り制御情報(DCI:Downlink Control Information)を受信する受信部と、前記DCI及び前記下り共有チャネルの受信の間の時間オフセットが所定の閾値より小さい場合、最新のスロットにおける最小の制御リソースセット(CORESET:COntrol REsource SET)の識別子(CORESET-ID)に対応する送信構成指示(TCI:Transmission Configuration Indication)状態に基づいて、前記下り共有チャネルに関する疑似コロケーションを決定する制御部と、を有することを特徴とする。 A user terminal according to an aspect of the present disclosure includes a reception unit that receives downlink control information (DCI: Downlink Control Information) for a downlink shared channel schedule, and a time offset between reception of the DCI and the downlink shared channel Is smaller than a predetermined threshold, based on the transmission configuration indication (TCI) state corresponding to the identifier (CORESET-ID) of the smallest control resource set (CORESET: Control REsource SET) in the latest slot, And a control unit that determines pseudo-collocation for the downlink shared channel.
 本開示の一態様によれば、適切なQCLに基づいてPDSCHを受信できる。 According to one aspect of the present disclosure, PDSCH can be received based on appropriate QCL.
図1A及び1Bは、実施形態2.1の「最新のスロットにおける最小のCORESET-ID」の一例を示す図である。1A and 1B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” according to Embodiment 2.1. 図2A及び2Bは、実施形態2.2の「最新のスロットにおける最小のCORESET-ID」の一例を示す図である。2A and 2B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” in the embodiment 2.2. 図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図4は、一実施形態に係る無線基地局の全体構成の一例を示す図である。FIG. 4 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment. 図5は、一実施形態に係る無線基地局の機能構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment. 図6は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment. 図7は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. 図8は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
(CORESET)
 NRにおいては、物理レイヤ制御信号(例えば、下り制御情報(DCI:Downlink Control Information))を、基地局からUEに対して送信するために、制御リソースセット(CORESET:COntrol REsource SET)が利用される。
(CORESET)
In NR, in order to transmit a physical layer control signal (for example, downlink control information (DCI)) from the base station to the UE, a control resource set (CORESET: CONtrol REsource SET) is used. .
 CORESETは、制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))の割当て候補領域である。CORESETは、所定の周波数領域リソースと時間領域リソース(例えば1又は2OFDMシンボルなど)を含んで構成されてもよい。 CORESET is an allocation candidate area of a control channel (for example, PDCCH (Physical Downlink Control Channel)). The CORESET may include a predetermined frequency domain resource and a time domain resource (for example, 1 or 2 OFDM symbols).
 UEは、CORESETの設定情報(CORESET設定(CORESET configuration)、coreset-Configと呼ばれてもよい)を、基地局から受信してもよい。UEは、自端末に設定されたCORESETをモニタすれば、物理レイヤ制御信号を検出できる。 The UE may receive CORESET setting information (which may be referred to as CORESET configuration or coreset-Config) from the base station. The UE can detect the physical layer control signal by monitoring the CORESET set in the terminal itself.
 CORESET設定は、例えば、上位レイヤシグナリングによって通知されてもよく、所定のRRC情報要素(「ControlResourceSet」と呼ばれてもよい)で表されてもよい。 The CORESET setting may be notified by higher layer signaling, for example, or may be represented by a predetermined RRC information element (may be referred to as “ControlResourceSet”).
 ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 Here, the upper layer signaling may be, for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。 For MAC signaling, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like may be used. The broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), and minimum system information (RMSI: Remaining Minimum System Information).
 CORESETは、サービングセルにおいてUEに設定される帯域幅部分(BWP:Bandwidth Part)ごとに、所定数(例えば、3個以下)設定されてもよい。 CORESET may be set to a predetermined number (for example, 3 or less) for each bandwidth part (BWP: Bandwidth Part) set in the UE in the serving cell.
 ここで、BWPとは、キャリア(セル、サービングセル、コンポーネントキャリア(CC:Component Carrier)などともいう)内に設定される部分的な帯域であり、部分帯域などとも呼ばれる。BWPは、上り(UL:Uplink)用のBWP(UL BWP、上りBWP)及び下り(DL:Downlink)用のBWP(DL BWP、下りBWP)を有してもよい。上記所定数のCORESETが与えられる各BWPは、DL BWPであってもよい。 Here, the BWP is a partial band set in a carrier (also referred to as a cell, a serving cell, a component carrier (CC)), and is also referred to as a partial band. The BWP may include a BWP for uplink (UL) (UL BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL BWP, downlink BWP). Each BWP provided with the predetermined number of CORESETs may be a DL BWP.
 CORESET設定は、主にPDCCHのリソース関連設定及びRS関連設定の情報を含んでもよい。UEには、各DL BWPに設定されるCORESET#p(例えば、0≦p<3)について、以下のパラメータが上位レイヤシグナリング(CORESET設定)によって与えられてもよい。すなわち、以下のパラメータは、CORESET毎にUEに通知(設定)されてもよい:
・CORESETの識別子(CORESET-ID(Identifier))、
・PDCCH用の復調用参照信号(DMRS:DeModulation Reference Signal)のスクランブルID、
・連続する(consecutive)シンボル数で示されるCORESETの時間長(例えば、time duration、CORESET-time-duration)、
・周波数領域のリソース割り当て(Frequency-domain Resource Allocation)(例えば、CORESETを構成する所定数のリソースブロックを示す情報(CORESET-freq-dom))、
・CORESET内の制御チャネル要素(CCE:Control Channel Element)からリソース要素グループ(REG:Resource Element Group)へのマッピングタイプ(インターリーブ又は非インターリーブを示す情報)(例えば、CORESET-CCE-to-REG-mapping-type)、
・所定数のREGを含むグループ(REGバンドル)のサイズ(REGバンドル内のREG数)を示す情報(例えば、CORESET-REG-bundle-size)、
・REGバンドルのインターリーバ用の巡回シフト(CS:Cyclic Shift、CS量又はCSインデックス)を示す情報(例えば、CORESET-shift-index)、
・PDCCH用の送信設定通知(TCI:Transmission Configuration Indication)状態(PDCCH受信用のDMRSのアンテナポートのQCL情報(アンテナポートQCL)などともいう)、
・CORESET#p内でPDCCHによって送信されるDCI(例えば、DCIフォーマット1_0又はDCIフォーマット1_1)内のTCIフィールドの有無の指示(例えば、TCI-PresentInDCI)。
The CORESET setting may mainly include information on PDCCH resource-related settings and RS-related settings. The following parameters may be given to the UE by upper layer signaling (CORESET setting) for CORESET # p (for example, 0 ≦ p <3) set in each DL BWP. That is, the following parameters may be notified (set) to the UE for each CORESET:
CORESET identifier (CORESET-ID (Identifier)),
A scramble ID of a demodulation reference signal (DMRS) for PDCCH,
CORESET time length indicated by the number of consecutive symbols (eg, time duration, CORESET-time-duration),
Frequency-domain resource allocation (for example, information (CORESET-freq-dom) indicating a predetermined number of resource blocks constituting the CORESET),
Mapping type (information indicating interleaving or non-interleaving) from a control channel element (CCE) to a resource element group (REG) in CORESET (for example, CORESET-CCE-to-REG-mapping) -type),
Information indicating the size of the group (REG bundle) including the predetermined number of REGs (number of REGs in the REG bundle) (for example, CORESET-REG-bundle-size),
Information indicating a cyclic shift (CS: Cyclic Shift, CS amount or CS index) for the interleaver of the REG bundle (for example, CORESET-shift-index),
-PDCCH transmission configuration notification (TCI: Transmission Configuration Indication) state (also referred to as QCL information (antenna port QCL) etc. of DMRS antenna port for PDCCH reception),
Indication of presence / absence of a TCI field in DCI (for example, DCI format 1_0 or DCI format 1_1) transmitted by PDCCH in CORESET # p (for example, TCI-PresentInDCI).
(サーチスペース)
 PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法は、サーチスペース(SS:Search Space)として定義される。UEは、サーチスペースの設定情報(サーチスペース設定(search space configuration)と呼ばれてもよい)を、基地局から受信してもよい。サーチスペース設定は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。
(Search space)
A search area and a search method of PDCCH candidates are defined as a search space (SS). The UE may receive search space configuration information (which may be referred to as search space configuration) from the base station. The search space setting may be notified by higher layer signaling (RRC signaling or the like), for example.
 サーチスペース設定は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によってUEに通知されてもよく、所定のRRC情報要素(「SearchSpace」と呼ばれてもよい)で表されてもよい。 The search space setting may be notified to the UE by higher layer signaling (RRC signaling or the like), for example, and may be represented by a predetermined RRC information element (may be referred to as “SearchSpace”).
 サーチスペース設定は、主にPDCCHのモニタリング関連設定及び復号関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい:
・サーチスペースの識別子(サーチスペースID)、
・当該サーチスペース設定が関連するCORESETの識別子(CORESET-ID)、
・共通サーチスペース(C-SS:Common SS)かUE固有サーチスペース(UE-SS:UE-specific SS)かを示す情報、
・アグリゲーションレベルごとのPDCCH候補数、
・モニタリング周期、
・モニタリングオフセット、
・スロット内のモニタリングパターン(例えば14ビットのビットマップ)。
The search space setting mainly includes information on monitoring related settings and decoding related settings of PDCCH, and may include information on at least one of the following, for example:
・ Search space identifier (search space ID),
CORESET identifier (CORESET-ID) associated with the search space setting,
Information indicating whether a common search space (C-SS: Common SS) or UE-specific search space (UE-SS: UE-specific SS),
・ The number of PDCCH candidates for each aggregation level,
Monitoring cycle,
・ Monitoring offset,
A monitoring pattern in the slot (eg a 14 bit bitmap).
 UEは、サーチスペース設定に基づいて、CORESETをモニタする。UEは、上記サーチスペース設定に含まれるCORESET-IDに基づいて、CORESETとサーチスペースとの対応関係を判断できる。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。 UE monitors CORESET based on search space setting. The UE can determine the correspondence between the CORESET and the search space based on the CORESET-ID included in the search space setting. One CORESET may be associated with one or more search spaces.
 なお、本開示において、「CORESETのモニタ」、「CORESETに対応付けられたサーチスペース(PDCCH候補)のモニタ」、「下り制御チャネル(例えばPDCCH)のモニタ」及び「下り制御情報(DCI)のモニタ」は、互いに読み替えられてもよい。また、「モニタ」は、「ブラインド復号及びブラインド検出の少なくとも一方」で読み替えられてもよい。 In the present disclosure, “monitoring of CORESET”, “monitoring of search space (PDCCH candidate) associated with CORESET”, “monitoring of downlink control channel (eg, PDCCH)”, and “monitoring of downlink control information (DCI)” "May be interchanged with each other. “Monitor” may be read as “at least one of blind decoding and blind detection”.
(QCL)
 NRでは、UEは、チャネル(例えば、PDCCH、PDSCH)の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報(QCL情報)に基づいて、当該チャネルの受信処理(例えば、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。
(QCL)
In NR, the UE performs reception processing (for example, demapping, demodulation, decoding) on a channel (for example, PDCCH, PDSCH) based on information (QCL information) on pseudo-colocation (QCL: Quasi-Co-Location). Of at least one of the above is under consideration.
 ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号と他の信号がQCLの関係である場合、これらの異なる複数の信号間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 Here, QCL is an index indicating the statistical properties of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift, a Doppler spread, an average delay, and a delay spread (delay) are set between these different signals. It may mean that at least one of (spread) and a spatial parameter (for example, a spatial reception parameter (Spatial Rx Parameter)) is the same (QCL is related to at least one of them).
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL、及びQCLの少なくとも1つの要素は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameter may correspond to a reception beam (for example, reception analog beam) of the UE, or the beam may be specified based on the spatial QCL. The QCL and at least one element of the QCL in the present disclosure may be replaced with sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
 ・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB:ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC:平均遅延及びドップラーシフト、
 ・QCLタイプD:空間受信パラメータ。
A plurality of types (QCL types) of the QCL may be defined. For example, four QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, which are shown below:
QCL type A: Doppler shift, Doppler spread, average delay and delay spread,
・ QCL type B: Doppler shift and Doppler spread,
QCL type C: average delay and Doppler shift,
QCL type D: Spatial reception parameter.
 送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))は、QCL情報を示してもよい(含んでもよい)。TCI状態は、PDCCHのためのTCI状態と、PDSCHのためのTCI状態と、に大別される。 The state of the transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) (TCI state (TCI-state)) may indicate (may include) QCL information. The TCI state is roughly classified into a TCI state for PDCCH and a TCI state for PDSCH.
 TCI状態(及び/又はQCL情報)は、例えば、対象となるチャネル(又は当該チャネル用の参照信号(RS:Reference Signal))と、別の信号(例えば、別の下り参照信号(DL-RS:Downlink Reference Signal))とのQCLに関する情報であってもよく、例えば、QCL関係となるDL-RSに関する情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。 The TCI state (and / or QCL information) includes, for example, a target channel (or a reference signal (RS: Reference Signal) for the channel) and another signal (for example, another downlink reference signal (DL-RS: For example, at least one of information related to QCL (DL-RS related information) and information indicating the above QCL type (QCL type information). May be included.
 DL-RS関連情報は、QCL関係となるDL-RSを示す情報及び当該DL-RSのリソースを示す情報の少なくとも一つを含んでもよい。例えば、UEに複数の参照信号セット(RSセット)が設定される場合、当該DL-RS関連情報は、当該RSセットに含まれるRSのうち、チャネル(又は当該チャネル用のポート)とQCL関係を有するDL-RS、当該DL-RS用のリソースなどの少なくとも1つを示してもよい。 The DL-RS related information may include at least one of information indicating a DL-RS having a QCL relationship and information indicating a resource of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the UE, the DL-RS related information indicates a QCL relationship with a channel (or a port for the channel) among RSs included in the RS set. At least one of a DL-RS having the DL-RS and a resource for the DL-RS may be indicated.
 ここで、チャネル用のRS及びDL-RSの少なくとも一方は、同期信号(SS:Synchronaization Signal)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、同期信号ブロック(SSB:Synchronization Signal Block)、モビリティ参照信号(MRS:Mobility RS)、チャネル状態情報参照信号(CSI-RS:Channel Satate Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、ビーム固有の信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号(例えば、密度及び周期の少なくとも一方を変更して構成される信号)であってもよい。 Here, at least one of the channel RS and the DL-RS is a synchronization signal (SS: Synchronization Signal), a broadcast channel (PBCH: Physical Broadcast Channel), a synchronization signal block (SSB: Synchronization Signal Block), a mobility reference signal ( At least one of MRS (Mobility RS), channel state information reference signal (CSI-RS: Channel Sate Information-Reference Signal), demodulation reference signal (DMRS: DeModulation Reference Signal), beam specific signal, etc., or an extension thereof , A signal configured by changing, etc. (for example, a signal configured by changing at least one of density and period).
 同期信号は、例えば、プライマリ同期信号(PSS:Primary Synchronaization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronaization Signal)の少なくとも1つであってもよい。SSBは、同期信号及びブロードキャストチャネルを含む信号ブロックであってもよく、SS/PBCHブロックなどと呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal). The SSB may be a signal block including a synchronization signal and a broadcast channel, and may be referred to as an SS / PBCH block.
 UEは、タイプ0及びタイプ1-PDCCH共通サーチスペースについては、PBCHと同じsQCLを想定してもよい。また、UEは、タイプ3-PDCCH共通サーチスペース及びUE固有サーチスペースについては、上位レイヤシグナリングに基づいてsQCLを判断してもよい。 The UE may assume the same sQCL as the PBCH for the type 0 and type 1-PDCCH common search spaces. Also, the UE may determine sQCL for the type 3-PDCCH common search space and UE-specific search space based on higher layer signaling.
 例えば、CORESETごとに、1つ又は複数(K個)のTCL状態が上位レイヤシグナリングによって設定されてもよい。また、UEは、各CORESETについて、それぞれ1つ又は複数のTCI状態を、MAC CEを用いてアクティベートしてもよい。 For example, for each CORESET, one or more (K) TCL states may be set by higher layer signaling. In addition, the UE may activate one or a plurality of TCI states for each CORESET using MAC CE.
 UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定(configure))されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。 The UE may be notified (configured) by higher layer signaling of M (M ≧ 1) TCI states for PDSCH (QCL information for M PDSCHs). Note that the number M of TCI states set in the UE may be limited by at least one of UE capability and QCL type.
 PDSCHのスケジューリングに用いられるDCIは、TCI状態(PDSCH用のQCL情報)を示す所定のフィールド(例えば、TCI用のフィールド、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。 The DCI used for PDSCH scheduling may include a predetermined field (for example, a TCI field, a TCI field, a TCI state field, etc.) indicating a TCI state (PDCL QCL information). The DCI may be used for scheduling of the PDSCH of one cell, and may be called, for example, DL DCI, DL assignment, DCI format 1_0, DCI format 1_1, or the like.
 TCIフィールドは、所定ビット数(例えば、3ビット)で構成されてもよい。当該TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(TCI-PresentInDCI)であってもよい。TCI-PresentInDCIは、例えば、上位レイヤシグナリング(RRCの情報要素(IE:Information Element))によってUEに設定されてもよい。 The TCI field may be configured with a predetermined number of bits (for example, 3 bits). Whether or not the TCI field is included in the DCI may be controlled by information notified from the base station to the UE. The information may be information (TCI-PresentInDCI) indicating whether or not a TCI field exists in DCI (present or absent). The TCI-PresentInDCI may be set in the UE by, for example, higher layer signaling (RRC information element (IE: Information Element)).
 例えば、TCI-PresentInDCIが有効化される(enabled)とは、所定の上位レイヤ制御情報(例えば、CORESETの時間リソース及び周波数リソースの少なくとも一つを設定するための”ControlResourceSet” IE)にTCI-PresentInDCIが含まれることであってもよい。一方、当該TCI-PresentInDCIが無効化される(disabled)又は有効化されないとは、当該上位レイヤ制御情報にTCI-PresentInDCIが含まれないことであってもよい。 For example, TCI-PresentInDCI is enabled (TCI-PresentInDCI) in predetermined upper layer control information (eg, “ControlResourceSet” IE for setting at least one of CORESET time resource and frequency resource). May be included. On the other hand, the fact that the TCI-PresentInDCI is disabled or not enabled may mean that the TCI-PresentInDCI is not included in the higher layer control information.
 また、TCI-PresentInDCIが有効化されない(not enabled)場合、DCI内のTCIフィールドは0ビットであり、当該TCI-PresentInDCIが有効化される場合、DCI内のTCIフィールドは3ビットであってもよい。 When TCI-PresentInDCI is not enabled (not enabled), the TCI field in DCI is 0 bit, and when TCI-PresentInDCI is enabled, the TCI field in DCI may be 3 bits. .
 また、DCIがxビット(例えば、x=3)のTCIフィールドを含む場合、基地局は、最大2(例えば、x=3の場合、8)種類のTCI状態を、上位レイヤシグナリングを用いてUEに予め設定(configure)してもよい。DCI内のTCIフィールドの値(TCIフィールド値)は、上位レイヤシグナリングにより予め設定されたTCI状態の1つを示してもよい。 In addition, when the DCI includes a TCI field of x bits (for example, x = 3), the base station can use a maximum of 2 x (for example, 8 for x = 3) types of TCI states using higher layer signaling. The UE may be configured in advance. The value of the TCI field (TCI field value) in the DCI may indicate one of the TCI states set in advance by higher layer signaling.
 8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティブ化(指定)されてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティブ化されたTCI状態の一つを示してもよい。 When more than 8 TCI states are set in the UE, 8 or less TCI states may be activated (designated) using MAC CE. The value of the TCI field in DCI may indicate one of the TCI states activated by the MAC CE.
 UEは、DCI内のTCIフィールド値が示すTCI状態に基づいて、PDSCH(又はPDSCHのDMRSポート)のQCLを決定してもよい。例えば、UEは、サービングセルのPDSCHのDMRSポート(又は、DMRSポートグループ)が、DCIで通知されたTCI状態に対応するDL-RSとQCLであると想定して、PDSCHの受信処理(例えば、復号、復調など)を制御してもよい。これにより、PDSCHの受信精度を向上できる。 UE may determine QCL of PDSCH (or DMSCH port of PDSCH) based on TCI state indicated by TCI field value in DCI. For example, the UE assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell is the DL-RS and QCL corresponding to the TCI state notified by DCI, and performs PDSCH reception processing (for example, decoding) , Demodulation, etc.) may be controlled. Thereby, the reception precision of PDSCH can be improved.
 UEは、PDSCHをスケジューリングするCORESETのためのTCI-PresentInDCIが有効である場合、当該CORESETにおいて送信されるPDCCHのDL DCIにTCIフィールドが存在する(含まれる)と想定してもよい。 When the TCI-PresentInDCI for CORESET for scheduling the PDSCH is valid, the UE may assume that the TCI field is present (included) in the DL DCI of the PDCCH transmitted in the CORESET.
 UEは、PDSCHをスケジューリングするCORESETのためのTCI-PresentInDCIが無効である又はPDSCHがDCIフォーマット1_0によってスケジュールされる場合、当該PDSCHのアンテナポートQCLの決定において、当該PDSCHのためのTCI状態が、当該PDCCH送信に用いられるCORESETに適用されるTCI状態と同一である(identical)と想定してもよい。なお、本開示におけるアンテナポート(ポート)は、アンテナポートグループ(ポートグループ)で読み替えられてもよい。 When the TCI-PresentInDCI for CORESET for scheduling the PDSCH is invalid or when the PDSCH is scheduled according to the DCI format 1_0, in determining the antenna port QCL of the PDSCH, the TCI state for the PDSCH is It may be assumed that it is identical to the TCI state applied to CORESET used for PDCCH transmission. The antenna port (port) in the present disclosure may be read as an antenna port group (port group).
 ところで、DL DCIの受信と当該DCIに対応するPDSCHの受信との間の時間オフセットが所定の閾値(Threshold-Sched-Offsetなどと呼ばれてもよい)以上である場合、UEは、当該DCIによって指示されるTCI状態によって与えられるQCLタイプパラメータに関するRSセット内のRSと、サービングセルのPDSCHの1つ以上のDMRSポートグループのアンテナポートがQCLであると想定してもよい。当該所定の閾値は、UE能力に基づいてもよく、例えばPDCCHの復号及びビーム切り替えにかかる遅延に基づいてもよい。当該所定の閾値の情報は、基地局から上位レイヤシグナリングを用いて設定されてもよいし、UEから基地局に送信されてもよい。 By the way, when the time offset between the reception of DL DCI and the reception of PDSCH corresponding to the DCI is equal to or greater than a predetermined threshold (may be called Threshold-Sched-Offset, etc.), the UE It may be assumed that the RS in the RS set for the QCL type parameter given by the indicated TCI state and the antenna port of one or more DMRS port groups of the PDSCH of the serving cell are QCL. The predetermined threshold may be based on UE capability, for example, based on a delay for PDCCH decoding and beam switching. The information on the predetermined threshold may be set from the base station using higher layer signaling, or may be transmitted from the UE to the base station.
 また、TCI-PresentInDCIが有効な場合及び無効な場合の両方において、DL DCIの受信と当該DCIに対応するPDSCHとの間の時間オフセットが上記所定の閾値未満である場合、UEは、当該UEに1つ以上のCORESETが設定される最新(直近(latest))のスロットにおける最小のCORESET-ID(CORESETの識別のためのID)に対応するPDCCH QCL通知のために用いられるTCI状態に基づいて、サービングセルのPDSCHの1つ以上のDMRSポートグループのアンテナポートがQCLである(例えば、当該アンテナポートが当該最小のCORESET-IDに対応するCORESETについてアクティベートされたTCI状態に基づくDL-RSとQCLである)と想定してもよい、とすることが検討されている。 In addition, when TCI-PresentInDCI is both valid and invalid, if the time offset between the reception of DL DCI and the PDSCH corresponding to the DCI is less than the predetermined threshold, the UE Based on the TCI state used for PDCCH QCL notification corresponding to the minimum CORESET-ID (ID for CORESET identification) in the latest (latest) slot where one or more CORESET is set, The antenna port of one or more DMRS port groups of the serving cell PDSCH is QCL (eg, the DL-RS and QCL based on the TCI state activated for the CORESET corresponding to the minimum CORESET-ID. ) May be assumed It is being considered.
 しかしながら、上述のように、CORESETの時間的な位置はサーチスペースによって指定されることから、当該検討における「最新のスロットにおける最小のCORESET-ID」がどのようなCORESETに対応するのかが明確でない。これを明確に規定しなければ、UEが適切なQCLに基づくPDSCH受信処理を行うことができず、スループットが低下するおそれがある。 However, as described above, since the time position of CORESET is specified by the search space, it is not clear what CORESET corresponds to the “minimum CORESET-ID in the latest slot” in the examination. If this is not clearly defined, the UE cannot perform PDSCH reception processing based on appropriate QCL, which may reduce throughput.
 そこで、本発明者らは、DL DCIと当該DCIによってスケジュールされるPDSCHとの時間オフセットが所定の閾値より小さくても、「最新のスロットにおける最小のCORESET-ID」を適切に把握して当該PDSCHを復号(受信)することを着想した。 Therefore, the present inventors appropriately grasp the “minimum CORESET-ID in the latest slot” and determine the PDSCH even if the time offset between the DL DCI and the PDSCH scheduled by the DCI is smaller than a predetermined threshold. The idea was to decrypt (receive).
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently or in combination.
 なお、本開示における「最小のCORESET-ID」は、「CORESETに対応する最小のCORESET-ID」で読み替えられてもよい。 Note that “minimum CORESET-ID” in the present disclosure may be read as “minimum CORESET-ID corresponding to CORESET”.
(無線通信方法)
<第1の実施形態>
 第1の実施形態においては、UEは、上述の時間オフセットが上記所定の閾値未満である場合に利用する「最新のスロットにおける最小のCORESET-ID」を、サーチスペース設定によって設定されるモニタリング周期及びモニタリングオフセットのいずれか又は両方に関わらず、上位レイヤシグナリングによって設定されたCORESETのうちの、最小のCORESET-IDであると想定(又は解釈)してもよい。なお、「サーチスペース設定によって設定される」は「サーチスペースによって設定される」、「サーチスペースが設定する」などで読み替えられてもよい。
(Wireless communication method)
<First Embodiment>
In the first embodiment, the UE uses the “minimum CORESET-ID in the latest slot” to be used when the above time offset is less than the predetermined threshold, the monitoring period set by the search space setting, and Regardless of one or both of the monitoring offsets, it may be assumed (or interpreted) that the CORESET-ID is the minimum CORESET-ID set by higher layer signaling. “Set by search space” may be read as “set by search space”, “set by search space”, or the like.
 つまり、第1の実施形態では、「最新のスロットにおける最小のCORESET-ID」は、「最新のスロットにおいて設定されている最小のCORESET-ID」で読み替えられてもよい。 That is, in the first embodiment, “minimum CORESET-ID in the latest slot” may be replaced with “minimum CORESET-ID set in the latest slot”.
 UEは、CORESETにおいてDCIが検出されるか否かに関わらず、設定されている全てのCORESETのうちの最小のCORESET-IDを、上記「最小のCORESET-ID」と想定してもよい(実施形態1.1)。若しくは、UEは、DCIが検出されたCORESETのうちの最小のCORESET-IDを、上記「最小のCORESET-ID」と想定してもよい(実施形態1.2)。なお、「検出」は「受信」で読み替えられてもよい。 The UE may assume that the minimum CORESET-ID among all the set CORESETs is the “minimum CORESET-ID” regardless of whether DCI is detected in the CORESET (implementation) Form 1.1). Alternatively, the UE may assume the minimum CORESET-ID of the CORESETs from which DCI is detected as the “minimum CORESET-ID” (Embodiment 1.2). Note that “detection” may be read as “reception”.
 例えば、UEがCORESET-ID#0及び#1の2つのCORESETを設定されている場合、上記「最小のCORESET-ID」は、実施形態1.1であればCORESET-ID#0である。 For example, when the UE is set with two CORESETs, CORESET-ID # 0 and # 1, the “minimum CORESET-ID” is CORESET-ID # 0 in Embodiment 1.1.
 一方、上記「最小のCORESET-ID」は、実施形態1.2であれば、UEがCORESET-ID#0のCORESETにおいて一度でもDCIを検出したことがある場合にはCORESET-ID#0であり、そうでない場合であってCORESET-ID#1のCORESETにおいて一度でもDCIを検出したことがある場合にはCORESET-ID#1であり、いずれでもない場合にはCORESET-ID#0又はCORESET-ID#1であってもよいし、「存在しない」と想定されてもよい。 On the other hand, the “minimum CORESET-ID” is CORESET-ID # 0 if the UE has detected DCI even once in the CORESET with CORESET-ID # 0 in the embodiment 1.2. Otherwise, if the DCI has been detected even once in the CORESET with the CORESET-ID # 1, it is the CORESET-ID # 1. Otherwise, the CORESET-ID # 0 or the CORESET-ID. It may be # 1, or it may be assumed that “does not exist”.
 なお、「CORESET-ID#0」は、MIBを用いて設定されるCORESET(イニシャルCORESET、デフォルトCORESETなどと呼ばれてもよい)を示してもよい。 It should be noted that “CORESET-ID # 0” may indicate CORESET (may be called initial CORESET, default CORESET, etc.) set using MIB.
 なお、第1の実施形態における上記「最小のCORESET-ID」は、サーチスペースと関連付けられていない(設定されただけの)CORESETに対応するIDであってもよいし、そのようなIDを除外したIDであってもよい。 The “minimum CORESET-ID” in the first embodiment may be an ID corresponding to a CORESET that is not associated with a search space (just set) or excludes such an ID. ID may be sufficient.
 以上説明した第1の実施形態によれば、UEが「最新のスロットにおける最小のCORESET-ID」を適切に決定できる。 According to the first embodiment described above, the UE can appropriately determine the “minimum CORESET-ID in the latest slot”.
<第2の実施形態>
 第2の実施形態においては、UEは、上述の時間オフセットが上記所定の閾値未満である場合に利用する「最新のスロットにおける最小のCORESET-ID」を、モニタリングするCORESETのうちの、最小のCORESET-IDであると想定(又は解釈)してもよい。第2の実施形態では、サーチスペース設定によって設定されるモニタリング周期及びモニタリングオフセットいずれか又は両方に基づいて上記「最新のスロット」が判断されてもよい。
<Second Embodiment>
In the second embodiment, the UE uses the minimum CORESET of the CORESETs to monitor the “minimum CORESET-ID in the latest slot” to be used when the above-described time offset is less than the predetermined threshold. -It may be assumed (or interpreted) as an ID. In the second embodiment, the “latest slot” may be determined based on one or both of the monitoring period and the monitoring offset set by the search space setting.
 つまり、第2の実施形態では、「最新のスロットにおける最小のCORESET-ID」は、「最新のスロットにおいてモニタする最小のCORESET-ID」、「最新のスロットにおいて設定されているCORESET-IDのうち、モニタする最小のCORESET-ID」で読み替えられてもよい。 That is, in the second embodiment, “minimum CORESET-ID in the latest slot” is “minimum CORESET-ID to be monitored in the latest slot” and “CORESET-ID set in the latest slot. , “Minimum CORESET-ID to be monitored”.
 UEは、サーチスペースごとにモニタリング周期が設定されると想定してもよい。なお、モニタリング周期は、任意の時間単位(例えば、スロット、サブフレーム、シンボル、ミリ秒など)を用いて設定されてもよい。 The UE may assume that a monitoring period is set for each search space. The monitoring period may be set using an arbitrary time unit (for example, slot, subframe, symbol, millisecond, etc.).
 UEは、CORESETにおいてDCIが検出されるか否かに関わらず、設定されている全てのCORESETのうちの最小のCORESET-IDを、上記「最小のCORESET-ID」と想定してもよい(実施形態2.1)。若しくは、UEは、DCIが検出されたCORESETのうちの最小のCORESET-IDを、上記「最小のCORESET-ID」と想定してもよい(実施形態2.2)。 The UE may assume the minimum CORESET-ID among all the set CORESETs as the “minimum CORESET-ID” regardless of whether or not DCI is detected in the CORESET (implementation) Form 2.1). Alternatively, the UE may assume the minimum CORESET-ID of the CORESETs from which DCI is detected as the “minimum CORESET-ID” (embodiment 2.2).
 実施形態2.2では、「最新のスロット」は「DCIが検出された最新のスロット」であってもよい。実施形態2.2では、「最新のスロットにおける最小のCORESET-ID」は、「DCIが検出された最新のスロットにおいて当該DCIが検出された最小のCORESET-ID」、「DCIが検出された最新のスロットにおいて設定されているCORESET-IDのうち、当該DCIが検出された最小のCORESET-ID」などで読み替えられてもよい。 In Embodiment 2.2, the “latest slot” may be the “latest slot in which DCI is detected”. In the embodiment 2.2, “minimum CORESET-ID in the latest slot” is “minimum CORESET-ID in which the DCI is detected in the latest slot in which DCI is detected” and “latest CORESET-ID in which DCI is detected. Of the CORESET-ID set in the slot of “the minimum CORESET-ID in which the DCI is detected” or the like.
 図1A及び1Bは、実施形態2.1の「最新のスロットにおける最小のCORESET-ID」の一例を示す図である。本例では、1サブフレーム(=1ms)に1スロットが含まれており、CORESET-ID#1に対応するCORESET(CORESET#1)はモニタリング周期=5スロットのサーチスペースに関連付けて設定され、CORESET-ID#2に対応するCORESET(CORESET#2)はモニタリング周期=1スロットのサーチスペースに関連付けて設定されている。 1A and 1B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” according to Embodiment 2.1. In this example, one slot is included in one subframe (= 1 ms), and CORESET (CORESET # 1) corresponding to CORESET-ID # 1 is set in association with the search space of monitoring period = 5 slots. -CORESET (CORESET # 2) corresponding to ID # 2 is set in association with a search space of monitoring cycle = 1 slot.
 UEは、CORESET#1をスロット#0及び#5においてモニタする。UEは、CORESET#2をスロット#0から#9においてモニタする。 UE monitors CORESET # 1 in slots # 0 and # 5. The UE monitors CORESET # 2 in slots # 0 to # 9.
 図1Aは、スロット#8においてPDSCHを受信するようにスケジュールされたケースに該当する。当該PDSCHのスロットから見ると、スロット#8におけるCORESET#1及び#2が最新のモニタしたCORESETに該当する。この場合、UEは、当該PDSCHに関するQCL(又はTCI)の判断における上記「最新のスロットにおける最小のCORESET-ID」を、CORESET-ID#2であると判断してもよい。 FIG. 1A corresponds to a case scheduled to receive PDSCH in slot # 8. When viewed from the slot of the PDSCH, CORESET # 1 and # 2 in slot # 8 correspond to the latest monitored CORESET. In this case, the UE may determine that the “minimum CORESET-ID in the latest slot” in the determination of the QCL (or TCI) regarding the PDSCH is CORESET-ID # 2.
 UEは、スロット#8のCORESET#2においてDCIを検出しない及び検出する場合のいずれでも、上記判断を行ってもよい。また、スロット#8のPDSCHをスケジュールするDCIは、スロット#8で検出されてもよいし、それ以前のスロットで検出されてもよい。 The UE may make the above determination regardless of whether or not DCI is detected in CORESET # 2 in slot # 8. The DCI that schedules the PDSCH in slot # 8 may be detected in slot # 8 or may be detected in an earlier slot.
 図1Bは、スロット#5においてPDSCHを受信するようにスケジュールされたケースに該当する。当該PDSCHのスロットから見ると、スロット#5におけるCORESET#1が最新のモニタしたCORESETに該当する。この場合、UEは、当該PDSCHに関するQCL(又はTCI)の判断における上記「最新のスロットにおける最小のCORESET-ID」を、CORESET-ID#1であると判断してもよい。 FIG. 1B corresponds to a case scheduled to receive PDSCH in slot # 5. When viewed from the slot of the PDSCH, CORESET # 1 in slot # 5 corresponds to the latest monitored CORESET. In this case, the UE may determine that the “minimum CORESET-ID in the latest slot” in the QCL (or TCI) determination regarding the PDSCH is CORESET-ID # 1.
 UEは、スロット#5のCORESET#1においてDCIを検出しない及び検出する場合のいずれでも、上記判断を行ってもよい。また、スロット#5のPDSCHをスケジュールするDCIは、スロット#5で検出されてもよいし、それ以前のスロットで検出されてもよい。 The UE may make the above determination regardless of whether or not DCI is detected in CORESET # 1 in slot # 5. The DCI that schedules the PDSCH in slot # 5 may be detected in slot # 5 or may be detected in an earlier slot.
 図2A及び2Bは、実施形態2.2の「最新のスロットにおける最小のCORESET-ID」の一例を示す図である。本例では、図1A及び1Bと同様のCORESET及びサーチスペース構成を想定している。 2A and 2B are diagrams illustrating an example of “minimum CORESET-ID in the latest slot” in the embodiment 2.2. In this example, the same CORESET and search space configuration as in FIGS. 1A and 1B is assumed.
 図2Aでは、UEは、スロット#5のCORESET#1においてDCIを検出し、スロット#2、#5及び#6のCORESET#2においてDCIを検出した。図2Bでは、UEは、スロット#5のCORESET#1においてDCIを検出し、スロット#2及び#5のCORESET#2においてDCIを検出した。 In FIG. 2A, the UE detects DCI in CORESET # 1 in slot # 5 and detects DCI in CORESET # 2 in slots # 2, # 5, and # 6. In FIG. 2B, the UE detects DCI in CORESET # 1 in slot # 5 and detects DCI in CORESET # 2 in slots # 2 and # 5.
 図2Aは、スロット#8においてPDSCHを受信するようにスケジュールされたケースに該当する。当該PDSCHのスロットから見ると、スロット#6におけるCORESET#2がDCIを検出した最新のCORESETに該当する。この場合、UEは、当該PDSCHに関するQCL(又はTCI)の判断における上記「最新のスロットにおける最小のCORESET-ID」を、CORESET-ID#2であると判断してもよい。 FIG. 2A corresponds to a case scheduled to receive PDSCH in slot # 8. When viewed from the slot of the PDSCH, CORESET # 2 in slot # 6 corresponds to the latest CORESET in which DCI is detected. In this case, the UE may determine that the “minimum CORESET-ID in the latest slot” in the determination of the QCL (or TCI) regarding the PDSCH is CORESET-ID # 2.
 図2Bも、スロット#8においてPDSCHを受信するようにスケジュールされたケースに該当する。当該PDSCHのスロットから見ると、スロット#5におけるCORESET#1及び#2がDCIを検出した最新のCORESETに該当する。この場合、UEは、当該PDSCHに関するQCL(又はTCI)の判断における上記「最新のスロットにおける最小のCORESET-ID」を、CORESET-ID#1であると判断してもよい。 FIG. 2B also corresponds to a case scheduled to receive PDSCH in slot # 8. When viewed from the slot of the PDSCH, CORESET # 1 and # 2 in slot # 5 correspond to the latest CORESET in which DCI is detected. In this case, the UE may determine that the “minimum CORESET-ID in the latest slot” in the QCL (or TCI) determination regarding the PDSCH is CORESET-ID # 1.
 なお、図2Bの例で、スロット#5においてCORESET#2のみでDCIを検出したとすると、上記「最新のスロットにおける最小のCORESET-ID」は、CORESET-ID#2であると判断されてもよい。 In the example of FIG. 2B, if DCI is detected only in CORESET # 2 in slot # 5, the above “minimum CORESET-ID in the latest slot” is determined to be CORESET-ID # 2. Good.
 以上説明した第2の実施形態によれば、UEが「最新のスロットにおける最小のCORESET-ID」を適切に決定できる。 According to the second embodiment described above, the UE can appropriately determine the “minimum CORESET-ID in the latest slot”.
<変形例>
 上記の実施形態(第1、第2の実施形態)における上記「最新のスロット」は、PDSCHと同じスロットである(又は同じスロットを含む)と想定して説明したが、これに限られない。例えば、上記「最新のスロット」は、PDSCHと同じスロットでない(又は同じスロットを含まない)と想定してもよい。PDSCHと同じスロットでない最新のスロットは、PDSCHを受信するスロットから少なくとも所定数のスロット(例えば、1スロット)前のスロットであると想定してもよい。
<Modification>
Although the “latest slot” in the above-described embodiments (first and second embodiments) has been described assuming that it is the same slot (or includes the same slot) as the PDSCH, the present invention is not limited to this. For example, it may be assumed that the “latest slot” is not the same slot as PDSCH (or does not include the same slot). The latest slot that is not the same slot as the PDSCH may be assumed to be a slot that is at least a predetermined number of slots (for example, one slot) before the slot that receives the PDSCH.
 実施形態1.2及び2.2におけるCORESET-IDの判断に利用されるDCIは、以下の少なくとも1つを満たすDCIであってもよい:
 (1)任意のDCI、
 (2)特定のサーチスペース(例えば、C-SS又はUE-SS)で送信されるDCI、
 (3)特定のDCIフォーマット(例えば、DCIフォーマット1_0又は1_1)に従うDCI。
The DCI used for the determination of the CORESET-ID in the embodiments 1.2 and 2.2 may be a DCI that satisfies at least one of the following:
(1) Arbitrary DCI,
(2) DCI transmitted in a specific search space (eg C-SS or UE-SS),
(3) DCI according to a specific DCI format (eg, DCI format 1_0 or 1_1).
 (1)によれば、DCIが検出されたCORESETは、少なくとも一定以上の受信品質を有することから、当該CORESETに基づいてPDSCHのQCLを判断することによって、当該PDSCHの復号(受信)性能をある程度確保できると期待される。また、(1)によれば、できるだけ最新のチャネル環境に基づいてQCLを判断できる。 According to (1), since the CORESET in which DCI is detected has at least a certain reception quality, the PDSCH QCL is judged based on the CORESET to determine the PDSCH decoding (reception) performance to some extent. It is expected to be secured. Further, according to (1), the QCL can be determined based on the latest channel environment as much as possible.
 (2)によれば、C-SSで送信されるDCIが検出されたCORESETは、あるサービングセルにおける代表的な信号及びチャネル(例えば、SS/PBCHブロック)とのQCLを想定できることから、当該CORESETに基づいてPDSCHのQCLを判断することによって、当該PDSCHの復号(受信)性能をある程度確保できると期待される。 According to (2), since CORESET in which DCI transmitted by C-SS is detected can assume QCL with a typical signal and channel (for example, SS / PBCH block) in a certain serving cell, It is expected that the PDSCH decoding (reception) performance can be secured to some extent by determining the PDSCH QCL based on the PDSCH QCL.
 また、(2)によれば、UE-SSで送信されるDCIが検出されたCORESETは、当該UEに向けて送信される(例えば、当該UEにとって最適なビームを用いて送信される)PDCCHに対応することから、当該CORESETに基づいてPDSCHのQCLを判断することによって、当該PDSCHの復号(受信)性能をある程度確保できると期待される。 Further, according to (2), the CORESET in which DCI transmitted by the UE-SS is detected is transmitted to the PDCCH transmitted to the UE (for example, transmitted using a beam optimal for the UE). Therefore, it is expected that the decoding (reception) performance of the PDSCH can be secured to some extent by determining the QCL of the PDSCH based on the CORESET.
 (3)によれば、例えばPDSCHをスケジューリングするDCI(DLアサインメント)が検出されたCORESETは、当該PDSCHと同じように送信される(例えば、同じビームを用いて送信される)PDCCHに対応すると想定されることから、当該CORESETに基づいてPDSCHのQCLを判断することによって、当該PDSCHの復号(受信)性能をある程度確保できると期待される。 According to (3), for example, CORESET in which DCI (DL assignment) for scheduling PDSCH is detected corresponds to PDCCH transmitted in the same manner as the PDSCH (for example, transmitted using the same beam). Since it is assumed, it is expected that the decoding (reception) performance of the PDSCH can be secured to some extent by determining the QCL of the PDSCH based on the CORESET.
 上記の実施形態における上記「最小のCORESET-ID」は、特定のCORESET-ID(例えば、CORESET-ID#0)を除外したIDから決定されてもよい。 The “minimum CORESET-ID” in the above embodiment may be determined from an ID excluding a specific CORESET-ID (eg, CORESET-ID # 0).
 また、上記の実施形態における上記「最小のCORESET-ID」は、「最大のCORESET-ID」、「特定の条件を満たすCORESET-ID」などで読み替えられてもよい。 Also, the “minimum CORESET-ID” in the above embodiment may be read as “maximum CORESET-ID”, “CORESET-ID that satisfies a specific condition”, or the like.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
 図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 3 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. In the radio communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange | positioned at the macrocell C1 and each small cell C2. The arrangement, the number, and the like of each cell and user terminal 20 are not limited to the mode shown in the figure.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, etc.) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or The same carrier may be used. The configuration of the frequency band used by each radio base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 Further, the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell. In each cell (carrier), a single neurology may be applied, or a plurality of different neurology may be applied.
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。 Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering process performed by the transceiver in the frequency domain, specific windowing process performed by the transceiver in the time domain, and the like. For example, for a certain physical channel, when the subcarrier intervals of the constituting OFDM symbols are different and / or when the number of OFDM symbols is different, it may be referred to as having different neumerities.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The wireless base station 11 and the wireless base station 12 (or between the two wireless base stations 12) are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the radio communication system 1, as a radio access method, orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
 なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 Note that DCI for scheduling DL data reception may be referred to as DL assignment, and DCI for scheduling UL data transmission may be referred to as UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH. EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) is used. User data, higher layer control information, etc. are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR), etc. are transmitted by PUCCH. A random access preamble for establishing connection with the cell is transmitted by the PRACH.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal), Positioning Reference Signal (PRS), etc. are transmitted. In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
(無線基地局)
 図4は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
(Radio base station)
FIG. 4 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment. The radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing are performed and the transmission / reception unit 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal. The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the upstream signal, the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。 The transmission / reception unit 103 may further include an analog beam forming unit that performs analog beam forming. The analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be. Further, the transmission / reception antenna 101 may be constituted by, for example, an array antenna.
 図5は、本開示の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 5 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present disclosure. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire radio base station 10. The control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like. The control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 The control unit 301 includes an uplink data signal (for example, a signal transmitted by PUSCH), an uplink control signal (for example, a signal transmitted by PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, by PRACH). (Sending signal), scheduling of uplink reference signals and the like are controlled.
 制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。 The control unit 301 uses the digital BF (for example, precoding) in the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) in the transmission / reception unit 103 to form a transmission beam and / or a reception beam. May be performed. The control unit 301 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. Such propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301. The DL assignment and UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301. The reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal. The measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
 なお、送受信部103は、下り共有チャネル(例えば、PDSCH)のスケジュールのための下り制御情報(DCI)(DLアサインメントなど)を送信してもよい。 In addition, the transmission / reception unit 103 may transmit downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH).
(ユーザ端末)
 図6は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
(User terminal)
FIG. 6 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。 Note that the transmission / reception unit 203 may further include an analog beam forming unit that performs analog beam forming. The analog beam forming unit includes an analog beam forming circuit (for example, phase shifter, phase shift circuit) or an analog beam forming apparatus (for example, phase shifter) described based on common recognition in the technical field according to the present invention. May be. Further, the transmission / reception antenna 201 may be constituted by, for example, an array antenna.
 図7は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 7 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment. In addition, in this example, the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like. The control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404. The control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
 制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。 The control unit 401 uses the digital BF (for example, precoding) in the baseband signal processing unit 204 and / or the analog BF (for example, phase rotation) in the transmission / reception unit 203 to form a transmission beam and / or a reception beam. May be performed. The control unit 401 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. The propagation path information may be acquired from the reception signal processing unit 404 and / or the measurement unit 405.
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 In addition, when the control unit 401 obtains various types of information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. In addition, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、第1のキャリア及び第2のキャリアの一方又は両方について、同周波測定及び/又は異周波測定を行ってもよい。測定部405は、第1のキャリアにサービングセルが含まれる場合に、受信信号処理部404から取得した測定指示に基づいて第2のキャリアにおける異周波測定を行ってもよい。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. For example, the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement for one or both of the first carrier and the second carrier. The measurement unit 405 may perform different frequency measurement on the second carrier based on the measurement instruction acquired from the reception signal processing unit 404 when the first carrier includes a serving cell. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 401.
 なお、送受信部203は、下り共有チャネル(例えば、PDSCH)のスケジュールのための下り制御情報(DCI)(DLアサインメントなど)を受信してもよい。 Note that the transmission / reception unit 203 may receive downlink control information (DCI) (DL assignment or the like) for a downlink shared channel (for example, PDSCH) schedule.
 制御部401は、DLアサインメント及び当該DLアサインメントによってスケジュールされるPDSCHの受信の間の時間オフセットが所定の閾値(Threshold-Sched-Offset)より小さい場合、最新のスロットにおける最小のCORESET-IDに対応するTCI状態に基づいて、当該PDSCHに関するQCL(例えばPDSCH用のDMRSのQCL)を決定してもよい。 When the time offset between the DL assignment and the PDSCH reception scheduled by the DL assignment is smaller than a predetermined threshold (Threshold-Sched-Offset), the control unit 401 sets the minimum CORESET-ID in the latest slot. Based on the corresponding TCI state, the QCL related to the PDSCH (for example, the QCL of the DMRS for PDSCH) may be determined.
 制御部401は、前記最新のスロットにおける最小のCORESET-IDを、サーチスペース設定(例えば1以上の「SearchSpace」IE)によって設定されるモニタリング周期に関わらず、上位レイヤシグナリング(例えば1以上の「ControlResourceSet」IE)によって設定されたCORESETのうちの、最小のCORESET-IDであると決定してもよい。 The control unit 401 sets the minimum CORESET-ID in the latest slot to higher layer signaling (for example, one or more “ControlResourceSet”, regardless of the monitoring period set by the search space setting (for example, one or more “SearchSpace” IE)). It may be determined that the CORESET-ID is the smallest of the CORESETs set by “IE).
 制御部401は、前記最新のスロットにおける最小のCORESET-IDを、前記最新のスロットにおいてモニタする最小のCORESET-IDであると決定してもよい。 The control unit 401 may determine that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID monitored in the latest slot.
 制御部401は、前記最新のスロットにおける最小のCORESET-IDを、任意のDCIを検出した最新のスロットにおいて、当該任意のDCIを検出した最小のCORESET-IDであると決定してもよい。 The control unit 401 may determine that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID in which the arbitrary DCI is detected in the latest slot in which the arbitrary DCI is detected.
 制御部401は、前記最新のスロットにおける最小のCORESET-IDを、特定のサーチスペースで送信されるDCIを検出した最新のスロットにおいて、当該特定のサーチスペースで送信されるDCIを検出した最小のCORESET-IDであると決定してもよい。 The control unit 401 sets the minimum CORESET-ID in the latest slot to the minimum CORESET in which the DCI transmitted in the specific search space is detected in the latest slot in which the DCI transmitted in the specific search space is detected. -It may be determined to be an ID.
 制御部401は、前記最新のスロットにおける最小のCORESET-IDを、特定のDCIフォーマットに従うDCIを検出した最新のスロットにおいて、当該特定のDCIフォーマットに従うDCIを検出した最小のCORESET-IDであると決定してもよい。 The control unit 401 determines that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID in which the DCI conforming to the specific DCI format is detected in the latest slot where the DCI conforming to the specific DCI format is detected. May be.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
(Hardware configuration)
In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or two or more devices physically or logically separated may be directly or indirectly (for example, (Using wired, wireless, etc.) and may be implemented using these multiple devices.
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a wireless base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 8 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment. The wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or using other methods. Note that the processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 In addition, the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be constituted by. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, at least one of the channel and the symbol may be a signal (signaling). The signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard. Moreover, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, etc.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The radio frame may be configured by one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーとは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the neurology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. For example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver in frequency domain It may indicate at least one of a specific filtering process to be performed and a specific windowing process to be performed by the transceiver in the time domain.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on the numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot. A mini-slot may be composed of fewer symbols than slots. PDSCH (or PUSCH) transmitted in units of time larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよいし、互いに読み替えられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each other, or may be read as one another.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. May be. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. It may be. Note that a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit for scheduling in wireless communication. For example, in the LTE system, a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, a time interval (for example, the number of symbols) in which a transport block, a code block, a code word, and the like are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is referred to as a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be configured by one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 Note that the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, information, parameters, and the like described in the present disclosure may be expressed using absolute values, may be expressed using relative values from predetermined values, or may be expressed using other corresponding information. May be represented. For example, the radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limited names in any way. Further, mathematical formulas and the like that use these parameters may differ from those explicitly disclosed in this disclosure. Various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so various names assigned to these various channels and information elements. Is not a restrictive name in any respect.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, and the like may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using other methods. For example, information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 The physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. The MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. The comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether it is called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, code, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be interpreted broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted / received via a transmission medium. For example, the software uses websites using at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 The terms “system” and “network” as used in this disclosure may be used interchangeably.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「帯域幅部分(BWP:Bandwidth Part)」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", Terms such as “carrier”, “component carrier”, “BWP (Bandwidth Part)” may be used interchangeably. A base station may also be called terms such as a macro cell, a small cell, a femto cell, and a pico cell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Remote Radio Head)) can also provide communication services. The terms “cell” or “sector” refer to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment (UE)”, and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。 At least one of the base station and the mobile station may be referred to as a transmission device, a reception device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unattended moving body (for example, a drone, an autonomous driving vehicle, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
 また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the radio base station in the present disclosure may be replaced with a user terminal. For example, communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc. may be called)) For each configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have a function that the wireless base station 10 has. In addition, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, etc. may be read as a side channel.
 同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a radio base station. In this case, the wireless base station 10 may have a function that the user terminal 20 has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by the upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using an exemplary order and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) The present invention may be applied to a system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. A plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 «As used in this disclosure, the phrase“ based on ”does not mean“ based only on, ”unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations can be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term “determining” as used in this disclosure may encompass a wide variety of actions. For example, “determination (decision)” includes judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table, (Searching in a database or another data structure), ascertaining, etc. may be considered to be “determining”.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be "determining".
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms “connected”, “coupled”, or any variation thereof, is any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., as well as some non-limiting and non-inclusive examples, radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) region, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. Terms such as “leave” and “coupled” may be interpreted in a similar manner.
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 In this disclosure, where “include”, “including” and variations thereof are used, these terms are inclusive, as are the terms “comprising”. Is intended. Further, the term “or” as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, for example, when articles are added by translation such as a, an, and the in English, the present disclosure may include plural nouns that follow these articles.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not give any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  下り共有チャネルのスケジュールのための下り制御情報(DCI:Downlink Control Information)を受信する受信部と、
     前記DCI及び前記下り共有チャネルの受信の間の時間オフセットが所定の閾値より小さい場合、最新のスロットにおける最小の制御リソースセット(CORESET:COntrol REsource SET)の識別子(CORESET-ID)に対応する送信構成指示(TCI:Transmission Configuration Indication)状態に基づいて、前記下り共有チャネルに関する疑似コロケーションを決定する制御部と、を有することを特徴とするユーザ端末。
    A receiving unit that receives downlink control information (DCI) for scheduling of the downlink shared channel;
    When the time offset between reception of the DCI and the downlink shared channel is smaller than a predetermined threshold, the transmission configuration corresponding to the identifier (CORESET-ID) of the minimum control resource set (CORESET: Control REsource SET) in the latest slot And a control unit that determines pseudo-collocation related to the downlink shared channel based on an instruction (TCI: Transmission Configuration Indication) state.
  2.  前記制御部は、前記最新のスロットにおける最小のCORESET-IDを、サーチスペース設定によって設定されるモニタリング周期に関わらず、上位レイヤシグナリングによって設定されたCORESETのうちの、最小のCORESET-IDであると決定することを特徴とする請求項1に記載のユーザ端末。 The control unit determines that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID among the CORESETs set by higher layer signaling regardless of the monitoring period set by the search space setting. The user terminal according to claim 1, wherein the user terminal is determined.
  3.  前記制御部は、前記最新のスロットにおける最小のCORESET-IDを、前記最新のスロットにおいてモニタする最小のCORESET-IDであると決定することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit determines that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID monitored in the latest slot.
  4.  前記制御部は、前記最新のスロットにおける最小のCORESET-IDを、任意のDCIを検出した最新のスロットにおいて、当該任意のDCIを検出した最小のCORESET-IDであると決定することを特徴とする請求項1に記載のユーザ端末。 The control unit determines that the smallest CORESET-ID in the latest slot is the smallest CORESET-ID in which the arbitrary DCI is detected in the latest slot in which the arbitrary DCI is detected. The user terminal according to claim 1.
  5.  前記制御部は、前記最新のスロットにおける最小のCORESET-IDを、特定のサーチスペースで送信されるDCIを検出した最新のスロットにおいて、当該特定のサーチスペースで送信されるDCIを検出した最小のCORESET-IDであると決定することを特徴とする請求項1に記載のユーザ端末。 The control unit sets the minimum CORESET-ID in the latest slot to the minimum CORESET in which the DCI transmitted in the specific search space is detected in the latest slot in which the DCI transmitted in the specific search space is detected. The user terminal according to claim 1, wherein the user terminal is determined to be an ID.
  6.  前記制御部は、前記最新のスロットにおける最小のCORESET-IDを、特定のDCIフォーマットに従うDCIを検出した最新のスロットにおいて、当該特定のDCIフォーマットに従うDCIを検出した最小のCORESET-IDであると決定することを特徴とする請求項1に記載のユーザ端末。
     
    The control unit determines that the minimum CORESET-ID in the latest slot is the minimum CORESET-ID in which the DCI conforming to the specific DCI format is detected in the latest slot where the DCI conforming to the specific DCI format is detected. The user terminal according to claim 1, wherein:
PCT/JP2018/018222 2018-05-10 2018-05-10 User terminal WO2019215895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018222 WO2019215895A1 (en) 2018-05-10 2018-05-10 User terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018222 WO2019215895A1 (en) 2018-05-10 2018-05-10 User terminal

Publications (1)

Publication Number Publication Date
WO2019215895A1 true WO2019215895A1 (en) 2019-11-14

Family

ID=68467389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018222 WO2019215895A1 (en) 2018-05-10 2018-05-10 User terminal

Country Status (1)

Country Link
WO (1) WO2019215895A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556820A (en) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN115039470A (en) * 2019-11-28 2022-09-09 株式会社Ntt都科摩 Terminal and wireless communication method
CN115136662A (en) * 2020-02-13 2022-09-30 株式会社Ntt都科摩 Terminal, wireless communication method, and base station
CN115299088A (en) * 2020-03-19 2022-11-04 株式会社Ntt都科摩 Terminal, wireless communication method, and base station
CN115668850A (en) * 2020-04-10 2023-01-31 瑞典爱立信有限公司 System and method for determining TCI status for multiple transmission opportunities
CN116114316A (en) * 2020-08-14 2023-05-12 株式会社Ntt都科摩 Terminal, base station, and monitoring method
CN116210257A (en) * 2020-07-31 2023-06-02 株式会社Ntt都科摩 Terminal, wireless communication method and base station

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP TS 38. 214 V.15.1.0, 9 April 2018 (2018-04-09), pages 19 - 20, XP055651910, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/2018-03/Rel-15/38_series/38214-f10.zip> *
INTEL CORPORATION: "Remaining Issues on Beam Management", 3GPP TSG-RAN WG1#92B R1-1804714, 7 April 2018 (2018-04-07), XP051414078, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1804714.zip> *
SONY: "Remaining issues on downlink beam management", 3GPP TSG-RAN WG1#92B R1-1804593, 6 April 2018 (2018-04-06), XP051413537, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RLl/TSGR1_92b/Docs/R1-1804593.zip> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115039470A (en) * 2019-11-28 2022-09-09 株式会社Ntt都科摩 Terminal and wireless communication method
CN115136662A (en) * 2020-02-13 2022-09-30 株式会社Ntt都科摩 Terminal, wireless communication method, and base station
CN115299088A (en) * 2020-03-19 2022-11-04 株式会社Ntt都科摩 Terminal, wireless communication method, and base station
CN115668850A (en) * 2020-04-10 2023-01-31 瑞典爱立信有限公司 System and method for determining TCI status for multiple transmission opportunities
CN113556820A (en) * 2020-04-23 2021-10-26 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN113556820B (en) * 2020-04-23 2022-07-05 上海朗帛通信技术有限公司 Method and device used in node of wireless communication
CN116210257A (en) * 2020-07-31 2023-06-02 株式会社Ntt都科摩 Terminal, wireless communication method and base station
CN116114316A (en) * 2020-08-14 2023-05-12 株式会社Ntt都科摩 Terminal, base station, and monitoring method

Similar Documents

Publication Publication Date Title
CN112586051B (en) User terminal
WO2019244222A1 (en) User terminal and wireless communication method
WO2019239583A1 (en) User terminal and wireless communication method
WO2019224871A1 (en) User terminal and wireless communication method
WO2019193700A1 (en) User terminal and wireless base station
WO2019171518A1 (en) User terminal and wireless communication method
WO2019244223A1 (en) User terminal and wireless communication method
JP7237976B2 (en) Terminal, wireless communication method, base station and system
WO2020012661A1 (en) User equipment and base station
WO2019215895A1 (en) User terminal
WO2020016934A1 (en) User equipment
WO2019171519A1 (en) User terminal and wireless communication method
WO2019215794A1 (en) User terminal and wireless communication method
WO2019203324A1 (en) User terminal and radio communication method
WO2020054074A1 (en) User terminal and wireless communication method
WO2020012662A1 (en) User equipment and base station
WO2019234929A1 (en) User terminal and wireless communication method
JPWO2018167959A1 (en) User terminal and wireless communication method
WO2019193735A1 (en) User terminal and wireless base station
WO2020039483A1 (en) User terminal
WO2019193666A1 (en) User terminal and wireless base station
WO2019225689A1 (en) User terminal and wireless communication method
WO2018207370A1 (en) User terminal and wireless communication method
CN112640547B (en) Terminal, wireless communication method, base station and system
WO2020035949A1 (en) User equipment and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP