WO2020039483A1 - User terminal - Google Patents

User terminal Download PDF

Info

Publication number
WO2020039483A1
WO2020039483A1 PCT/JP2018/030670 JP2018030670W WO2020039483A1 WO 2020039483 A1 WO2020039483 A1 WO 2020039483A1 JP 2018030670 W JP2018030670 W JP 2018030670W WO 2020039483 A1 WO2020039483 A1 WO 2020039483A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
search space
information
scheduling
signal
Prior art date
Application number
PCT/JP2018/030670
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
高橋 秀明
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/030670 priority Critical patent/WO2020039483A1/en
Publication of WO2020039483A1 publication Critical patent/WO2020039483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NR future wireless communication system
  • search space set a set of search spaces (search space set) for each aggregation level, and monitor (blind decode) the search space set to detect DCI.
  • the search space set corresponds to the number (the number of times of blind decoding) of one or more candidates (candidates) (PDCCH candidates) of downlink control channels (for example, PDCCH) for each aggregation level configured (configured) in the user terminal. It is also considered to be determined based on this.
  • a user terminal a receiving unit that receives setting information regarding cross carrier scheduling, and determines the number of downlink control channel candidates for each aggregation level based on an identifier of a search space in the setting information, A control unit that controls monitoring of downlink control information based on the number of the downlink control channel candidates.
  • search space In NR, a user terminal (UE: User Equipment) monitors (blind decodes) a set of one or more search spaces (SS) (search space set) to detect DCI.
  • the search space set is configured to include a set of one or more candidates (PDCCH candidates) of a downlink control channel (for example, PDCCH: Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the search space set includes a search space set (common search space set (CSS: Common ⁇ Search ⁇ Space) set) used for monitoring (cell-specific) DCI common to one or more user terminals and a DCI specific to the user terminal.
  • a search space set (user-specific search space (USS) set) used for monitoring may be included.
  • Each PDCCH candidate in the search space set is composed of a predetermined number of resource units according to the aggregation level.
  • the predetermined resource unit may be a control channel element (CCE: Control @ Channel @ Element), a CCE group including one or more CCEs, or the like.
  • CCE may include one or more resource elements (RE: Resource @ Element), one or more resource element groups (REG: Resource @ Element @ Group), one or more REG bundles (REG groups), and the like.
  • REG may include one or more REs
  • the REG bundle may include one or more REGs.
  • a control resource set (CORESET: Control ⁇ REsource ⁇ SET) may be associated with the search space (or search space set).
  • the coreset may be configured to include a predetermined frequency domain resource (for example, a predetermined number of resource blocks (physical resource blocks (PRB: Physical Resource Block))) and a time domain resource (for example, a predetermined number of symbols).
  • a predetermined frequency domain resource for example, a predetermined number of resource blocks (physical resource blocks (PRB: Physical Resource Block)
  • PRB Physical Resource Block
  • a search space set associated with CORESETp may be defined using CCEs corresponding to one or more PDCCH candidates in the search space set.
  • the search space set s may be configured by a CCE having an index (index number, index value) represented by Expression 1 below.
  • n CI is the value of the carrier identification (CI) field when configuration information (also referred to as cross carrier scheduling configuration information, CrossCarrierSchedulingConfig, etc.) related to cross carrier scheduling is configured (configured).
  • configuration information also referred to as cross carrier scheduling configuration information, CrossCarrierSchedulingConfig, etc.
  • cross carrier scheduling setting information is not set (in the case of scheduling within the same carrier) or in the case of a CSS set, the value is 0.
  • the cross-carrier scheduling setting information may be notified from the base station to the UE by, for example, higher layer signaling.
  • the upper layer signaling includes, for example, RRC (Radio Resource Control) signaling, broadcast information (Master Information Block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) ) Signaling (e.g., MAC Control Element (MAC ⁇ CE)), other signals, or a combination thereof.
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • MAC ⁇ CE MAC Control Element
  • nCI is 0,... , Mp, s, nCI (L) -1.
  • M p, s, NCI (L) is a serving cell corresponding to the n CI and the search space set s the aggregation level L (cell, carrier, component carrier (CC)) UE of PDCCH candidates to be set so as to monitor Is a number.
  • M p, s, max (L) is M p, s, 0 (L) for the CSS set, and for the USS set, all n CIs set for the aggregation level of the search space set s in CORESETp. May be the largest M p, s, nCI (L) .
  • the number of PDCCH candidates for each aggregation level of the cell (scheduling @ cell) performing the scheduling may be included in the setting information (search space setting information, SearchSpace) related to the search space set.
  • the search space configuration information may be included in configuration information on PDCCH (PDCCH configuration information, PDCCH-Config). At least one of the search space configuration information and the PDCCH configuration information may be notified to the UE by higher layer signaling.
  • FIG. 1 is a diagram showing an example of search space setting information in PDCCH setting information.
  • the PDCCH configuration information (PDCCH-Config) may include a list (search space list, SearchSpaceToAddModList) of a predetermined number (for example, up to 10) of search space configuration information (SearchSpace). Good.
  • Each search space setting information monitors an identifier (search space ID, SearchSpaceID) of a search space (or search space set), an identifier of a RESET associated with the search space (CORESET @ ID, controlResourceSetId), and the search space. It may include information indicating at least one of information indicating a cycle and an offset (monitoringSlotPeriodicityAndOffset), a period of the search space, the number of symbols in a slot (monitoringSymbolWithinSlot), and the number of PDCCH candidates (nofCandidates) for each aggregation level in the search space. .
  • the present inventors include the information (search space ID) indicating the number of PDCCH candidates for each aggregation level in the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) to appropriately monitor the DCI for cross carrier scheduling.
  • search space ID the information indicating the number of PDCCH candidates for each aggregation level in the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) to appropriately monitor the DCI for cross carrier scheduling.
  • the UE receives the cross-carrier scheduling setting information, determines PDCCH candidates (the number of downlink control channel candidates) for each aggregation level based on the search space ID in the cross-carrier scheduling information, and The monitoring of the downlink control information is controlled based on the number of candidates.
  • cross carrier scheduling setting information is assumed to be CrossCarrierSchedulingConfig in ServingCellConfig, but this is merely an example, and any information may be used as long as the setting information is related to cross carrier scheduling.
  • the UE determines a PDCCH candidate for each aggregation level based on the search space ID of the “scheduling cell” set in the cross carrier scheduling setting information, and performs downlink based on the number of the PDCCH candidates. Controls monitoring of control information.
  • the scheduling cell refers to a case where a shared channel (for example, PDSCH or PUSCH) of the second cell is scheduled (cross-carrier scheduling) by DCI transmitted in the first cell. This is the first cell that performs scheduling of the shared channel of the second cell.
  • a scheduled cell (scheduled @ cell) is a second cell in which the shared channel is scheduled in the above case.
  • FIG. 2 is a diagram showing an example of the setting of the search space ID in the cross carrier scheduling setting information according to the first example.
  • FIG. 2 it is assumed that cross-carrier scheduling from cell #A (first cell, scheduling cell) to cell #B or #C (second cell, scheduled cell) is performed.
  • the UE receives a search space list (SearchSpaceToAddModList) of one or more search space setting information (SearchSpace) set in each of cells #A to #C.
  • the search space list may be provided for each partial band (BWP: Bandwidth @ Part) in each cell.
  • the BWP is a partial band in a carrier (also referred to as a serving cell, a cell, a component carrier (CC: Component @ Carrier), etc.).
  • the BWP may include a BWP for DL (DL @ BWP) and a BWP for UL (UL @ BWP).
  • the search space list for cell #A includes search spaces # 1 and # 2 for own cell (own @ cell) and search spaces # 3 and # 4 for other cells (other @ cell). It may be.
  • the search space for the other cell may be a search space for each cell on which cross-carrier scheduling is performed from cell #A.
  • search spaces # 3 and # 4 may be search spaces for cells #B and #C for which cross carrier scheduling is performed from cell #A, respectively.
  • the search space lists for cells #B and #C may include search spaces # 1 and # 2 for the own cell (cells #B and #C), respectively.
  • the configuration information (ServingcellConfig) of cells #B and #C configured in the UE may include cross-carrier scheduling configuration information (CrossCarrierSchedulingConfig) of cells #B and #C, respectively.
  • a search space ID indicating a search space in the search space list for cell #A may be set in a predetermined information item (IE: Information @ Element) in the cross carrier scheduling setting information.
  • the predetermined information item may be called, for example, SchedulingCellSearchSpace, a search space ID of a scheduling cell, or the like.
  • the search space ID # 3 in the search space list of the cell #A is specified in the SchedulingCellSearchSpace in the cross carrier scheduling setting information of the cell #B.
  • the search space ID # 4 in the search space list of the cell #A is specified.
  • the UE acquires the number of PDCCH candidates (nrofCandidates in FIG. 1) for each aggregation level in the search space setting information indicated by the search space ID, and indicates the search space ID based on the number of PDCCH candidates.
  • CCEs constituting a search space (set) may be determined.
  • the CCE configuring the search space may be determined based on Equation 1 above, and the monitoring of DCI for performing cross-carrier scheduling from cell #A to cell #B or #C may be controlled.
  • FIGS. 3A and 3B are diagrams showing an example of the cross carrier scheduling setting information according to the first example.
  • the names of the IEs shown in FIGS. 3A and 3B are merely examples, and are not limited to those shown.
  • the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) includes either information relating to scheduling of the own cell (own) or information relating to scheduling by another cell (cross carrier scheduling) (other). You may.
  • the DCI may be, for example, DCI (DL assignment, DCI format 1_0 or 1_1) for scheduling PDSCH, DCI (UL grant, DCI format 0_0 or 0_1) for scheduling PUSCH, or the like.
  • the search space ID (schedulingCellSearchSpace) in the cross carrier scheduling setting information of the cell #B or #C is replaced with the search space ID (for example, the search space # 3) in the search space list of the cell #A.
  • # 4 may be set.
  • a search space ID list for each BWP is included in the cross carrier scheduling setting information. It may be.
  • the list may include identifiers of the BWP (BWP @ ID, bwp-Id) and search space IDs (schedulingCellSearchSpace) corresponding to the BWP for the number of BWPs installed in the other cells.
  • FIGS. 4A and 4B are diagrams showing other examples of the cross carrier scheduling setting information according to the first example. Note that the names of the IEs shown in FIGS. 4A and 4B are merely examples, and are not limited to those shown. 4A and 4B, the description will focus on differences from FIGS. 3A and 3B.
  • a list (schedulingCellSearchSpaceList) of search space IDs for each BWP of the other cell (scheduling cell) is included as information (other) regarding scheduling by another cell in the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig).
  • 3B differs from FIG. 3B.
  • the UE determines PDCCH candidates for each aggregation level based on the search space ID of “scheduled cells” set in the cross carrier scheduling setting information, and performs downlink based on the number of PDCCH candidates. Controls monitoring of control information.
  • the description will focus on the differences from the first embodiment.
  • FIG. 5 is a diagram showing an example of the setting of the search space ID in the cross carrier scheduling setting information according to the second example.
  • FIG. 5 it is assumed that cross carrier scheduling from cell #A (first cell, scheduling cell) to cell #B or #C (second cell, scheduled cell) is performed.
  • the UE receives one or more search space setting information (SearchSpace) search space list (SearchSpaceToAddModList) set in each of cells #A to #C.
  • the search space list may be provided for each BWP in each cell.
  • the search space list for cell #A may include search spaces # 1 and # 2 for own cell (own @ cell).
  • the search space list for cell #B may include search space # 1 for the own cell (cell #B) and search space # 2 for other cells.
  • the search space list for cell #C may include search spaces # 1 and # 2 for the own cell (cell #C) and search space # 3 for another cell.
  • the search space for the other cell may be a search space for each cell in which cross carrier scheduling is performed.
  • search space # 2 in the search space list of cell #B may be a search space for cell #A for performing cross-carrier scheduling on cell #B.
  • search space # 2 in the search space list of cell #C may be a search space for cell #A for performing cross-carrier scheduling on cell #C.
  • the setting information (ServingcellConfig) of the cells #B and #C set (configured) in the UE may include the cross-carrier scheduling setting information (CrossCarrierSchedulingConfig) of the cells #B and #C, respectively.
  • the search space ID indicating the search space in the search space list for the cell #B or #C may be set in the predetermined IE in the cross carrier scheduling setting information.
  • the predetermined IE may be called, for example, a ScheduledCellSearchSpace, a scheduled cell search space ID, or the like.
  • the search space ID # 2 in the search space list of the cell #B is specified in the ScheduledCellSearchSpace in the cross-carrier scheduling setting information of the cell #B.
  • the search space ID # 3 in the search space list of the cell #B is specified in the ScheduledCellSearchSpace in the cross carrier scheduling setting information of the cell #C.
  • the UE obtains the number of PDCCH candidates (nrofCandidates in FIG. 1) for each aggregation level in the search space setting information indicated by the search space ID, and performs the search indicated by the search space ID based on the number of PDCCH candidates.
  • CCEs constituting a space (set) may be determined. For example, CCEs constituting the search space may be determined based on Equation 1 above, and monitoring of DCI for performing cross-carrier scheduling from cell #A to cell #B may be controlled.
  • the number of search spaces that can be set in each cell is limited to a predetermined number (for example, 10). For this reason, as shown in FIG. 2, when the search space ID (for example, # 3, # 4 in FIG. 2) in the search space list of the scheduling cell (cell #A) is specified in the cross carrier scheduling setting information When the number of other cells scheduled by the scheduling cell (for example, cells #B and #C in FIG. 2) increases, the number of search spaces that can be set in the scheduling cell itself (cell #A) decreases. As a result, in FIG. 2, there is a possibility that the UE cannot properly monitor DCI in the scheduling cell (cell #A).
  • a predetermined number for example, 10
  • the search space IDs (here, # 2 and # 3) in the search space list of the scheduled cells (cells #B and #C) are specified in the cross carrier scheduling setting information
  • the search space for the scheduling cell (cell #A) is included in the search space list of each scheduled cell (for example, cells #B and #C). For this reason, even if the number of other cells scheduled by the scheduling cell increases, it is possible to prevent a decrease in search space that can be set in the scheduling cell itself.
  • FIGS. 6A and 6B are diagrams showing an example of the cross carrier scheduling setting information according to the second example.
  • the names of the IEs shown in FIGS. 6A and 6B are merely examples, and are not limited to those shown.
  • the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) includes either information relating to scheduling of the own cell (own) or information relating to scheduling by other cells (cross carrier scheduling) (other). You may.
  • the DCI may be, for example, DCI (DL assignment, DCI format 1_0 or 1_1) for scheduling PDSCH, DCI (UL grant, DCI format 0_0 or 0_1) for scheduling PUSCH, or the like.
  • the search space ID (scheduledCellSearchSpace) in the cross-carrier scheduling setting information of cell #B or #C is replaced with the search space ID (for example, search) in the search space list of cell #B or #C.
  • Space # 2 or # 3 may be set.
  • a list (scheduledCellSearchSpaceList) of search space IDs for each BWP of the own cell (scheduled cell) is included. It may be included in the cross carrier scheduling setting information.
  • the list may include as many BWP identifiers (BWP @ ID, bwp-Id) and search space IDs (scheduledCellSearchSpace) as the number of BWPs installed in the own cell.
  • FIGS. 7A and 7B are diagrams showing other examples of the cross carrier scheduling setting information according to the second example.
  • the names of the IEs shown in FIGS. 7A and 7B are merely examples, and are not limited to those shown. 7A and 7B will be described focusing on differences from FIGS. 6A and 6B.
  • a list (scheduledCellSearchSpaceList) of search space IDs for each BWP of the own cell (scheduled cell) is included as information (other) related to scheduling by another cell in cross carrier scheduling configuration information (CrossCarrierSchedulingConfig). 6B.
  • the UE since the search space ID of “scheduled cell” is included in the cross carrier scheduling configuration information, the UE determines the PDCCH candidate for each aggregation level based on the search space ID. The number can be determined, and the DCI monitoring can be appropriately controlled based on the number of the PDCCH candidates.
  • FIG. 8 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of component carriers (carriers or cells) are integrated can be applied.
  • the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)).
  • the MR-DC has dual connectivity (LTE and NR) in which an LTE (E-UTRA) base station (eNB) becomes a master node (MN) and an NR base station (gNB) becomes a secondary node (SN).
  • EN-DC E-UTRA-NR ⁇ Dual ⁇ Connectivity
  • NR base station (gNB) becomes MN
  • Dual connectivity (NR and LTE) NE-DC: NR-E-UTRA ⁇ Dual ⁇ Connectivity) may be included.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the base station 11 and the base station 12 may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
  • wire for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)
  • CPRI Common Public Radio Interface
  • the base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
  • the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), a transmission / reception point, and the like. May be called.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master ⁇ Information ⁇ Block) is transmitted by PBCH.
  • SIB System @ Information @ Block
  • MIB Master ⁇ Information ⁇ Block
  • the scheduling information may be notified by DCI.
  • a DCI that schedules DL data reception may be called a DL assignment
  • a DCI that schedules UL data transmission may be called an UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits acknowledgment information (eg, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat reQuest) to the PUSCH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH (Downlink Shared Data Channel), and is used for transmission of DCI and the like like the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • a cell-specific reference signal CRS: Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • a reference signal for measurement SRS: Sounding Reference Signal
  • DMRS reference signal for demodulation
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 9 is a diagram showing an example of the overall configuration of the base station according to the present embodiment.
  • the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
  • RLC Radio Link Control
  • MAC Medium Access
  • Transmission / reception control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
  • FIG. 10 is a diagram showing an example of a functional configuration of the base station according to the present embodiment.
  • functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Quota). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resource transmission
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Quota
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
  • a synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • a downlink reference signal for example, CRS, CSI-RS, and DMRS.
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
  • an uplink data signal for example, a signal transmitted on the PUSCH
  • an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.
  • a random access preamble for example, a PRACH.
  • Transmission signal scheduling of uplink reference signals and the like.
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Power for example, RSRP (Reference Signal Received Power)
  • reception quality for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 301.
  • the control unit 301 may control at least one setting of a cell group, a cell, BWP, CORESET, a search space, and cross carrier scheduling, and may control transmission of at least one of these setting information.
  • the control unit 301 determines the number of downlink control channel candidates for each aggregation level based on the search space identifier in the setting information regarding cross carrier scheduling, and performs mapping of downlink control information based on the number of downlink control channel candidates. It may be controlled.
  • the search space identifier may indicate a search space set for the first cell (first mode).
  • the identifier of the search space may be set for each bandwidth portion of the first cell or the second cell (for example, FIGS. 3B, 4B, 6B, and 7B).
  • the search space identifier may be included in parallel with the scheduling information by another cell when the setting information includes information on scheduling by another cell (for example, FIGS. 3A, 3B, 6A, and 6B).
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • FIG. 12 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • the control unit 401 transmits a predetermined identifier (for example, C-RNTI, CS-RNTI, SI-RNTI, P-RNTI, RA-RNTI, TC-RNTI, INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC -PUCCH-RNTI, TPC-SRS-RNTI, SP-CSI-RNTI).
  • a predetermined identifier for example, C-RNTI, CS-RNTI, SI-RNTI, P-RNTI, RA-RNTI, TC-RNTI, INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC -PUCCH-RNTI, TPC-SRS-RNTI, SP-CSI-RNTI.
  • control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measuring unit 405 measures the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 203 transmits setting information on at least one of a cell group, a cell, BWP, CORESET, a search space, and cross carrier scheduling. Further, the transmitting / receiving section 203 transmits DCI.
  • the control unit 401 may control at least one setting of cell group, cell, BWP, CORESET, search space, and cross carrier scheduling, and may control transmission of at least one of these setting information.
  • the control unit 401 determines the number of downlink control channel candidates for each aggregation level based on the search space identifier in the setting information related to cross carrier scheduling, and performs mapping of the downlink control information based on the number of downlink control channel candidates. It may be controlled.
  • the search space identifier may indicate a search space set for the first cell (first mode).
  • the identifier of the search space may indicate a search space set for the second cell (second aspect).
  • the identifier of the search space may be set for each bandwidth portion of the first cell or the second cell (for example, FIGS. 3B, 4B, 6B, and 7B).
  • the search space identifier may be included in parallel with the scheduling information by another cell when the setting information includes information on scheduling by another cell (for example, FIGS. 3A, 3B, 6A, and 6B).
  • the search space identifier may be included in information on scheduling by another cell in the configuration information (for example, FIGS. 4A, 4B, 7A, and 7B).
  • FIGS. 4A, 4B, 7A, and 7B ⁇ Hardware configuration>
  • the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software.
  • a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.), and may be implemented using these multiple devices.
  • the functional block may be realized by combining one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
  • the transmission / reception unit 103 (203) may be physically or logically separated from the transmission unit 103a (203a) and the reception unit 103b (203b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • the mini-slot may be called a sub-slot.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the above-described TTI length may be replaced with the TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined by a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • ⁇ Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • system and “network” as used in this disclosure may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, “ Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable Can be used for
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
  • a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
  • RRH small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect / embodiment of the present disclosure may be applied.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • a user terminal in the present disclosure may be replaced by a base station.
  • a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
  • the operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
  • the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile
  • 5G 5th generation mobile communication system
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture radio access
  • GSM registered trademark
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802 .20 UWB (Ultra-WideBand), Bluetooth (registered trademark)
  • a system using other appropriate wireless communication methods for example, a combination of LTE or LTE-A and 5G
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This user terminal according to one embodiment of the present disclosure is characterized by comprising: a reception unit that receives setting information about cross carrier scheduling; and a control unit that determines the number of downlink control channel candidates for each aggregation level, on the basis of an identifier of a search space in the setting information, and that controls monitoring of downlink control information, on the basis of the number of the downlink control channel candidates.

Description

ユーザ端末User terminal
 本開示は、次世代移動通信システムにおけるユーザ端末に関する。 The present disclosure relates to a user terminal in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In a UMTS (Universal Mobile Telecommunications System) network, long term evolution (LTE: Long Term Evolution) has been specified for the purpose of higher data rates and lower delays (Non-Patent Document 1). Also, LTE-A (LTE Advanced, LTE @ Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and sophistication of LTE (LTE @ Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 Succession system of LTE (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or 15 or later) are also being studied.
 既存のLTEシステム(例えば、LTE Rel.8-14)においては、無線基地局(例えば、eNB(eNode B))は、物理レイヤの制御信号(例えば、下り制御情報(DCI:Downlink Control Information))を、下り制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))を用いてユーザ端末(UE:User Equipment)に送信する。 In an existing LTE system (for example, LTE@Rel.8-14), a radio base station (for example, eNB (eNode @ B)) transmits a control signal of a physical layer (for example, downlink control information (DCI: Downlink @ Control @ Information)). Is transmitted to a user terminal (UE: User @ Equipment) using a downlink control channel (for example, PDCCH (Physical @ Downlink @ Control @ Channel)).
 将来の無線通信システム(以下、NRという)では、アグリゲーションレベル毎のサーチスペースのセット(サーチスペースセット)を決定し、当該サーチスペースセットをモニタリング(ブラインド復号)してDCIを検出することが検討されている。また、当該サーチスペースセットは、ユーザ端末に設定(configure)されるアグリゲーションレベル毎の下り制御チャネル(例えば、PDCCH)の一以上の候補(candidate)(PDCCH候補)の数(ブラインド復号の回数)に基づいて決定されることも検討されている。 In a future wireless communication system (hereinafter, referred to as NR), it is considered to determine a set of search spaces (search space set) for each aggregation level, and monitor (blind decode) the search space set to detect DCI. ing. In addition, the search space set corresponds to the number (the number of times of blind decoding) of one or more candidates (candidates) (PDCCH candidates) of downlink control channels (for example, PDCCH) for each aggregation level configured (configured) in the user terminal. It is also considered to be determined based on this.
 しかしながら、異なるキャリア間でのスケジューリング(クロスキャリアスケジューリング)の場合、クロスキャリアスケジューリングされるDCIが配置されるアグリゲーションレベル毎のPDCCH候補の数をどのようにユーザ端末に設定(configure)するかは十分に検討されていない。 However, in the case of scheduling between different carriers (cross carrier scheduling), how to configure (configure) the number of PDCCH candidates for each aggregation level in which DCI to be cross-carrier scheduled is arranged in the user terminal is sufficient. Not considered.
 クロスキャリアキャリアスケジューリングにおいてアグリゲーションレベル毎のPDCCH候補の数が適切に設定されない場合、当該PDCCH候補の数に基づいてサーチスペースセットを適切に決定できない結果、クロスキャリアスケジューリングされるDCIのモニタリングを適切に行うことができない恐れがある。 If the number of PDCCH candidates for each aggregation level is not appropriately set in cross carrier carrier scheduling, as a result of not being able to appropriately determine a search space set based on the number of PDCCH candidates, DCI for cross carrier scheduling is appropriately monitored. May not be able to do so.
 本発明はかかる点に鑑みてなされたものであり、クロスキャリアスケジューリングされるDCIのモニタリングを適切に制御可能なユーザ端末を提供することを目的の一つとする。 The present invention has been made in view of the above, and an object of the present invention is to provide a user terminal capable of appropriately controlling monitoring of DCI subjected to cross carrier scheduling.
 本開示の一態様に係るユーザ端末は、クロスキャリアスケジューリングに関する設定情報を受信する受信部と、前記設定情報内のサーチスペースの識別子に基づいてアグリゲーションレベル毎の下り制御チャネル候補の数を決定し、該下り制御チャネル候補の数に基づいて下り制御情報のモニタリングを制御する制御部と、を具備する。 A user terminal according to an aspect of the present disclosure, a receiving unit that receives setting information regarding cross carrier scheduling, and determines the number of downlink control channel candidates for each aggregation level based on an identifier of a search space in the setting information, A control unit that controls monitoring of downlink control information based on the number of the downlink control channel candidates.
 本開示の一態様によれば、クロスキャリアスケジューリングされるDCIのモニタリングを適切に制御できる。 According to an aspect of the present disclosure, it is possible to appropriately control monitoring of DCI subjected to cross carrier scheduling.
図1は、PDCCH設定情報内のサーチスペース設定情報の一例を示す図である。FIG. 1 is a diagram showing an example of search space setting information in PDCCH setting information. 図2は、第1の態様に係るクロスキャリアスケジューリング設定情報内のサーチスペースIDの設定の一例を示す図である。FIG. 2 is a diagram showing an example of the setting of the search space ID in the cross carrier scheduling setting information according to the first example. 図3A及び3Bは、第1の態様に係るクロスキャリアスケジューリング設定情報の一例を示す図である。3A and 3B are diagrams illustrating an example of the cross carrier scheduling setting information according to the first example. 図4A及び4Bは、第1の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。4A and 4B are diagrams illustrating another example of the cross carrier scheduling setting information according to the first example. 図5は、第2の態様に係るクロスキャリアスケジューリング設定情報内のサーチスペースIDの設定の一例を示す図である。FIG. 5 is a diagram showing an example of the setting of the search space ID in the cross carrier scheduling setting information according to the second example. 図6A及び6Bは、第2の態様に係るクロスキャリアスケジューリング設定情報の一例を示す図である。6A and 6B are diagrams illustrating examples of the cross carrier scheduling setting information according to the second example. 図7A及び7Bは、第2の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。7A and 7B are diagrams illustrating another example of the cross carrier scheduling setting information according to the second example. 図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment. 図9は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。FIG. 9 is a diagram showing an example of the overall configuration of the radio base station according to the present embodiment. 図10は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。FIG. 10 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. 図11は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment. 図12は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. 図13は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the present embodiment.
(サーチスペース)
 NRでは、ユーザ端末(UE:User Equipment)は、一以上のサーチスペース(SS)のセット(サーチスペースセット)をモニタリング(ブラインド復号)してDCIを検出する。サーチスペースセットは、下り制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)の一以上の候補(candidate)(PDCCH候補)のセットを含んで構成される。本明細書において、「サーチスペースセット」と「サーチスペース」とは互いに言い換えられてもよい。
(Search space)
In NR, a user terminal (UE: User Equipment) monitors (blind decodes) a set of one or more search spaces (SS) (search space set) to detect DCI. The search space set is configured to include a set of one or more candidates (PDCCH candidates) of a downlink control channel (for example, PDCCH: Physical Downlink Control Channel). In this specification, “search space set” and “search space” may be interchanged with each other.
 サーチスペースセットには、一以上のユーザ端末に共通の(セル固有の)DCIの監視に用いられるサーチスペースセット(共通サーチスペースセット(CSS:Common Search Space)セット)と、ユーザ端末固有のDCIの監視に用いられるサーチスペースセット(ユーザ固有サーチスペース(USS:User-specific Search Space)セット)とが含まれてもよい。 The search space set includes a search space set (common search space set (CSS: Common \ Search \ Space) set) used for monitoring (cell-specific) DCI common to one or more user terminals and a DCI specific to the user terminal. A search space set (user-specific search space (USS) set) used for monitoring may be included.
 サーチスペースセット内の各PDCCH候補は、アグリゲーションレベルに応じた数の所定のリソース単位で構成される。当該所定のリソース単位は、制御チャネル要素(CCE:Control Channel Element)、一以上のCCEを含むCCEグループ等であってもよい。各CCEは、一以上のリソース要素(RE:Resource Element)、一以上のリソース要素グループ(REG:Resource Element Group)又は一以上のREGバンドル(REGグループ)等で構成されてもよい。なお、REGは、一以上のREを含み、REGバンドルは、一以上のREGを含んでもよい。 各 Each PDCCH candidate in the search space set is composed of a predetermined number of resource units according to the aggregation level. The predetermined resource unit may be a control channel element (CCE: Control @ Channel @ Element), a CCE group including one or more CCEs, or the like. Each CCE may include one or more resource elements (RE: Resource @ Element), one or more resource element groups (REG: Resource @ Element @ Group), one or more REG bundles (REG groups), and the like. Note that the REG may include one or more REs, and the REG bundle may include one or more REGs.
 例えば、アグリゲーションレベルが1、2、4、8又は16の場合、各PDCCH候補は、それぞれ、1、2、4、8又は16個の連続するリソース単位(例えば、CCE)で構成されてもよい。 For example, when the aggregation level is 1, 2, 4, 8, or 16, each PDCCH candidate may be configured with 1, 2, 4, 8, or 16 consecutive resource units (for example, CCEs). .
 また、サーチスペース(又はサーチスペースセット)には、制御リソースセット(CORESET:COntrol REsource SET)が関連付けられてもよい。CORESETは、所定の周波数領域リソース(例えば、所定数のリソースブロック(物理リソースブロック(PRB:Physical Resource Block)))と時間領域リソース(例えば、所定数のシンボル)を含んで構成されてもよい。 {Also, a control resource set (CORESET: Control \ REsource \ SET) may be associated with the search space (or search space set). The coreset may be configured to include a predetermined frequency domain resource (for example, a predetermined number of resource blocks (physical resource blocks (PRB: Physical Resource Block))) and a time domain resource (for example, a predetermined number of symbols).
 CORESETpに関連付けられるサーチスペースセットは、当該サーチスペースセット内の一以上のPDCCH候補に対応するCCEを用いて規定されてもよい。例えば、例えば、サーチスペースセットsは、以下の式1で示されるインデックス(インデックス番号、インデックス値)のCCEで構成されてもよい。
Figure JPOXMLDOC01-appb-M000001
A search space set associated with CORESETp may be defined using CCEs corresponding to one or more PDCCH candidates in the search space set. For example, for example, the search space set s may be configured by a CCE having an index (index number, index value) represented by Expression 1 below.
Figure JPOXMLDOC01-appb-M000001
 式1において、Yp,nμ s,fは、所定のパラメータであり、例えば、CSSセットでは0であり、USSセットでは、無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier)に基づいて決定されてもよい。NCCE,pは、CORESETp内のCCEの数である。 In Formula 1, Yp, n μ s, f is a predetermined parameter, for example, in the CSS set 0, the USS sets, radio network temporary identifier (RNTI: Radio Network Temporary Identifier) to be determined on the basis of Is also good. N CCE, p is the number of CCEs in CORESETp.
 nCIは、クロスキャリアスケジューリングに関する設定情報(クロスキャリアスケジューリング設定情報、CrossCarrierSchedulingConfig等ともいう)が設定(configure)される場合、当該キャリア識別(CI:Carrier Indicator)フィールドの値である。一方、当該クロスキャリアスケジューリング設定情報が設定されない場合(同一キャリア内のスケジューリングの場合)又はCSSセットの場合、0である。 n CI is the value of the carrier identification (CI) field when configuration information (also referred to as cross carrier scheduling configuration information, CrossCarrierSchedulingConfig, etc.) related to cross carrier scheduling is configured (configured). On the other hand, when the cross carrier scheduling setting information is not set (in the case of scheduling within the same carrier) or in the case of a CSS set, the value is 0.
 なお、クロスキャリアスケジューリング設定情報は、例えば、上位レイヤシグナリングにより基地局からUEに通知されてもよい。ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング(例えば、MAC制御要素(MAC CE:MAC Control Element))、その他の信号又はこれらの組み合わせによって実施されてもよい。 Note that the cross-carrier scheduling setting information may be notified from the base station to the UE by, for example, higher layer signaling. Here, the upper layer signaling includes, for example, RRC (Radio Resource Control) signaling, broadcast information (Master Information Block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) ) Signaling (e.g., MAC Control Element (MAC \ CE)), other signals, or a combination thereof.
 ms,nCIは、0,…,Mp,s,nCI (L)-1である。Mp,s,nCI (L)は、nCI及びサーチスペースセットsに対応するサービングセル(セル、キャリア、コンポーネントキャリア(CC))のアグリゲーションレベルLについてUEがモニタリングするように設定されるPDCCH候補の数である。 ms, nCI is 0,... , Mp, s, nCI (L) -1. M p, s, NCI (L) is a serving cell corresponding to the n CI and the search space set s the aggregation level L (cell, carrier, component carrier (CC)) UE of PDCCH candidates to be set so as to monitor Is a number.
 Mp,s,max (L)は、CSSセットについてはMp,s,0 (L)であり、USSセットについては、CORESETp内のサーチスペースセットsのアグリゲーションレベルについて設定される全てのnCIの値の中で最大のMp,s,nCI (L)であってもよい。 M p, s, max (L) is M p, s, 0 (L) for the CSS set, and for the USS set, all n CIs set for the aggregation level of the search space set s in CORESETp. May be the largest M p, s, nCI (L) .
 このように、UEには、nCIに対応するサービングセルのアグリゲーションレベルL毎のPDCCH候補の数Mp,s,nCI (L)が設定される。UEは、当該PDCCH候補の数Mp,s,nCI (L)に基づいて決定されるサーチスペースセットについて、DCIをモニタリングする。 As described above, the number M p, s, nCI (L) of PDCCH candidates for each aggregation level L of the serving cell corresponding to n CI is set in the UE. The UE monitors the DCI for the search space set determined based on the number Mp, s, nCI (L) of the PDCCH candidates.
 同一キャリア内のスケジューリングの場合、当該スケジューリングを行うセル(scheduling cell)のアグリゲーションレベル毎のPDCCH候補の数は、サーチスペースセットに関する設定情報(サーチスペース設定情報、SearchSpace)内に含まれてもよい。当該サーチスペース設定情報は、PDCCHに関する設定情報(PDCCH設定情報、PDCCH-Config)内に含まれてもよい。サーチスペース設定情報及びPDCCH設定情報の少なくとも一つは、上位レイヤシグナリングによりUEに通知されてもよい。 In the case of scheduling within the same carrier, the number of PDCCH candidates for each aggregation level of the cell (scheduling @ cell) performing the scheduling may be included in the setting information (search space setting information, SearchSpace) related to the search space set. The search space configuration information may be included in configuration information on PDCCH (PDCCH configuration information, PDCCH-Config). At least one of the search space configuration information and the PDCCH configuration information may be notified to the UE by higher layer signaling.
 図1は、PDCCH設定情報内のサーチスペース設定情報の一例を示す図である。図1に示すように、PDCCH設定情報(PDCCH-Config)内には、所定数(例えば、最大10個)のサーチスペース設定情報(SearchSpace)のリスト(サーチスペースリスト、SearchSpaceToAddModList)が含まれてもよい。 FIG. 1 is a diagram showing an example of search space setting information in PDCCH setting information. As shown in FIG. 1, the PDCCH configuration information (PDCCH-Config) may include a list (search space list, SearchSpaceToAddModList) of a predetermined number (for example, up to 10) of search space configuration information (SearchSpace). Good.
 各サーチスペース設定情報(SearchSpace)は、サーチスペース(又はサーチスペースセット)の識別子(サーチスペースID、SearchSpaceID)、当該サーチスペースに関連付けられるCORESETの識別子(CORESET ID、controlResourceSetId)、当該サーチスペースをモニタリングする周期及びオフセットを示す情報(monitoringSlotPeriodicityAndOffset)、当該サーチスペースの期間、スロット内のシンボル数(monitoringSymbolWithinSlot)、当該サーチスペースにおけるアグリゲーションレベル毎のPDCCH候補数(nofCandidates)の少なくとも一つを示す情報を含んでもよい。 Each search space setting information (SearchSpace) monitors an identifier (search space ID, SearchSpaceID) of a search space (or search space set), an identifier of a RESET associated with the search space (CORESET @ ID, controlResourceSetId), and the search space. It may include information indicating at least one of information indicating a cycle and an offset (monitoringSlotPeriodicityAndOffset), a period of the search space, the number of symbols in a slot (monitoringSymbolWithinSlot), and the number of PDCCH candidates (nofCandidates) for each aggregation level in the search space. .
 しかしながら、クロスキャリアスケジューリングが設定される場合、クロスキャリアスケジューリングされるDCIが配置されるアグリゲーションレベル毎のPDCCH候補の数をどのようにユーザ端末に設定(configure)するかは十分に検討されていない。当該PDCCH候補の数が適切に設定されない場合、当該PDCCH候補の数に基づいてサーチスペースセットを適切に決定できない結果、クロスキャリアスケジューリングされるDCIのモニタリングを適切に行うことができない恐れがある。 However, when cross-carrier scheduling is set, how to configure (configure) the number of PDCCH candidates for each aggregation level in which DCI to be cross-carrier scheduled is arranged has not been sufficiently studied. If the number of the PDCCH candidates is not appropriately set, the search space set cannot be appropriately determined based on the number of the PDCCH candidates, and as a result, it may not be possible to properly monitor the DCI subjected to cross carrier scheduling.
 そこで、本発明者らは、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)内にアグリゲーションレベルごとのPDCCH候補の数を示す情報(サーチスペースID)を含めることで、クロスキャリアスケジューリングされるDCIのモニタリングを適切に制御可能とすることを着想し、本発明に至った。 Therefore, the present inventors include the information (search space ID) indicating the number of PDCCH candidates for each aggregation level in the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) to appropriately monitor the DCI for cross carrier scheduling. With the idea of controllability, the present invention has been achieved.
 具体的には、UEは、クロスキャリアスケジューリング設定情報を受信し、当該クロスキャリアスケジューリング情報内のサーチスペースIDに基づいてアグリゲーションレベル毎のPDCCH候補(下り制御チャネル候補の数)を決定し、該PDCCH候補の数に基づいて下り制御情報のモニタリングを制御する。 Specifically, the UE receives the cross-carrier scheduling setting information, determines PDCCH candidates (the number of downlink control channel candidates) for each aggregation level based on the search space ID in the cross-carrier scheduling information, and The monitoring of the downlink control information is controlled based on the number of candidates.
 以下、本実施の形態について、図面を参照して詳細に説明する。なお、以下において、クロスキャリアスケジューリング設定情報は、ServingCellConfig内のCrossCarrierSchedulingConfigであるものとするが、一例にすぎず、クロスキャリアスケジューリングに関する設定情報であれば、どのような情報であってもよい。 Hereinafter, the present embodiment will be described in detail with reference to the drawings. In the following, the cross carrier scheduling setting information is assumed to be CrossCarrierSchedulingConfig in ServingCellConfig, but this is merely an example, and any information may be used as long as the setting information is related to cross carrier scheduling.
(第1の態様)
 第1の態様では、UEは、クロスキャリアスケジューリング設定情報内に設定される「スケジューリングセル」のサーチスペースIDに基づいて、アグリゲーションレベル毎のPDCCH候補を決定し、該PDCCH候補の数に基づいて下り制御情報のモニタリングを制御する。
(First aspect)
In the first aspect, the UE determines a PDCCH candidate for each aggregation level based on the search space ID of the “scheduling cell” set in the cross carrier scheduling setting information, and performs downlink based on the number of the PDCCH candidates. Controls monitoring of control information.
 ここで、スケジューリングセル(scheduling cell)とは、第1のセルで送信されるDCIにより、第2のセルの共有チャネル(例えば、PDSCH又はPUSCH)がスケジューリング(クロスキャリアスケジューリング)される場合において、当該第2のセルの共有チャネルのスケジューリングを行う第1のセルである。また、スケジュールドセル(scheduled cell)とは、上記場合において、当該共有チャネルがスケジューリングされる第2のセルである。 Here, the scheduling cell (scheduling @ cell) refers to a case where a shared channel (for example, PDSCH or PUSCH) of the second cell is scheduled (cross-carrier scheduling) by DCI transmitted in the first cell. This is the first cell that performs scheduling of the shared channel of the second cell. In addition, a scheduled cell (scheduled @ cell) is a second cell in which the shared channel is scheduled in the above case.
 図2は、第1の態様に係るクロスキャリアスケジューリング設定情報内のサーチスペースIDの設定の一例を示す図である。図2では、セル#A(第1のセル、スケジューリングセル)からセル#B又は#C(第2のセル、スケジュールドセル)に対するクロスキャリアスケジューリングが行われるものとする。 FIG. 2 is a diagram showing an example of the setting of the search space ID in the cross carrier scheduling setting information according to the first example. In FIG. 2, it is assumed that cross-carrier scheduling from cell #A (first cell, scheduling cell) to cell #B or #C (second cell, scheduled cell) is performed.
 図2に示すように、UEは、セル#A~#Cにそれぞれ設定される一以上のサーチスペース設定情報(SearchSpace)のサーチスペースリスト(SearchSpaceToAddModList)を受信する。当該サーチスペースリストは、各セル内の部分的な帯域(帯域幅部分(BWP:Bandwidth Part))毎に設けられてもよい。 As shown in FIG. 2, the UE receives a search space list (SearchSpaceToAddModList) of one or more search space setting information (SearchSpace) set in each of cells #A to #C. The search space list may be provided for each partial band (BWP: Bandwidth @ Part) in each cell.
 ここで、BWPとは、キャリア(サービングセル、セル、コンポーネントキャリア(CC:Component Carrier)等ともいう)内の部分的な帯域である。BWPは、DL用のBWP(DL BWP)及びUL用のBWP(UL BWP)を含んでもよい。 Here, the BWP is a partial band in a carrier (also referred to as a serving cell, a cell, a component carrier (CC: Component @ Carrier), etc.). The BWP may include a BWP for DL (DL @ BWP) and a BWP for UL (UL @ BWP).
 例えば、図2では、セル#A用のサーチスペースリストには、自セル(own cell)用のサーチスペース#1及び#2、他セル(other cell)用のサーチスペース#3、#4が含まれてもよい。図2に示すように、当該他セル用のサーチスペースは、セル#Aからクロスキャリアスケジューリングされるセル毎のサーチスペースであってもよい。例えば、サーチスペース#3、#4は、それぞれ、セル#Aからクロスキャリアスケジューリングされるセル#B、#C用のサーチスペースであってもよい。 For example, in FIG. 2, the search space list for cell #A includes search spaces # 1 and # 2 for own cell (own @ cell) and search spaces # 3 and # 4 for other cells (other @ cell). It may be. As shown in FIG. 2, the search space for the other cell may be a search space for each cell on which cross-carrier scheduling is performed from cell #A. For example, search spaces # 3 and # 4 may be search spaces for cells #B and #C for which cross carrier scheduling is performed from cell #A, respectively.
 また、セル#B、#C用のサーチスペースリストには、それぞれ、自セル(セル#B、#C)用のサーチスペース#1及び#2を含んでもよい。また、UEに設定(configure)されるセル#B、#Cの設定情報(ServingcellConfig)内には、それぞれ、セル#B、#Cのクロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)が含まれてもよい。 The search space lists for cells #B and #C may include search spaces # 1 and # 2 for the own cell (cells #B and #C), respectively. The configuration information (ServingcellConfig) of cells #B and #C configured in the UE may include cross-carrier scheduling configuration information (CrossCarrierSchedulingConfig) of cells #B and #C, respectively.
 当該クロスキャリアスケジューリング設定情報内の所定の情報項目(IE:Information Element)には、セル#A用のサーチスペースリスト内のサーチスペースを示すサーチスペースIDが設定されてもよい。当該所定の情報項目は、例えば、SchedulingCellSearchSpace、スケジューリングセルのサーチスペースID等と呼ばれてもよい。 A search space ID indicating a search space in the search space list for cell #A may be set in a predetermined information item (IE: Information @ Element) in the cross carrier scheduling setting information. The predetermined information item may be called, for example, SchedulingCellSearchSpace, a search space ID of a scheduling cell, or the like.
 例えば、図2において、セル#Bのクロスキャリアスケジューリング設定情報内のSchedulingCellSearchSpaceには、セル#Aのサーチスペースリスト内のサーチスペースID#3が指定される。一方、セル#Cのクロスキャリアスケジューリング設定情報内のSchedulingCellSearchSpaceには、セル#Aのサーチスペースリスト内のサーチスペースID#4が指定される。 For example, in FIG. 2, the search space ID # 3 in the search space list of the cell #A is specified in the SchedulingCellSearchSpace in the cross carrier scheduling setting information of the cell #B. On the other hand, in the SchedulingCellSearchSpace in the cross carrier scheduling setting information of the cell #C, the search space ID # 4 in the search space list of the cell #A is specified.
 UEは、当該サーチスペースIDが示すサーチスペース設定情報内のアグリゲーションレベル毎のPDCCH候補の数(図1のnrofCandidates)を取得して、当該該PDCCH候補の数に基づいて、当該サーチスペースIDが示すサーチスペース(セット)を構成するCCEを決定してもよい。例えば、上記式1に基づいて当該サーチスペースを構成するCCEを決定して、セル#Aからセル#B又は#CにクロスキャリアスケジューリングされるDCIのモニタリングを制御してもよい。 The UE acquires the number of PDCCH candidates (nrofCandidates in FIG. 1) for each aggregation level in the search space setting information indicated by the search space ID, and indicates the search space ID based on the number of PDCCH candidates. CCEs constituting a search space (set) may be determined. For example, the CCE configuring the search space may be determined based on Equation 1 above, and the monitoring of DCI for performing cross-carrier scheduling from cell #A to cell #B or #C may be controlled.
 図3A及び3Bは、第1の態様に係るクロスキャリアスケジューリング設定情報の一例を示す図である。なお、図3A、3Bに示すIEの名称は例示にすぎず、図示するものに限られない。図3A及び3Bに示すように、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)には、自セルのスケジューリングに関する情報(own)又は他セルによるスケジューリング(クロスキャリアスケジューリング)に関する情報(other)のいずれかが含まれてもよい。 FIGS. 3A and 3B are diagrams showing an example of the cross carrier scheduling setting information according to the first example. The names of the IEs shown in FIGS. 3A and 3B are merely examples, and are not limited to those shown. As shown in FIGS. 3A and 3B, the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) includes either information relating to scheduling of the own cell (own) or information relating to scheduling by another cell (cross carrier scheduling) (other). You may.
 他セルによるスケジューリングに関する情報(other)としては、例えば、DCIをシグナリングするセルの識別子(セルインデックス、スケジューリングセルID、schedulingCellId)、当該セルを示すキャリア識別フィールドの値(cif-InSchedulingCell)の少なくとも一つが含まれてもよい。 As the information (other) related to scheduling by another cell, for example, at least one of a cell identifier (cell index, scheduling cell ID, schedulingCellId) for signaling DCI, and a carrier identification field value (cif-InSchedulingCell) indicating the cell is used. May be included.
 なお、当該DCIは、例えば、PDSCHをスケジューリングするDCI(DLアサインメント、DCIフォーマット1_0又は1_1)、PUSCHをスケジューリングするDCI(ULグラント、DCIフォーマット0_0又は0_1)等であってもよい。 Note that the DCI may be, for example, DCI (DL assignment, DCI format 1_0 or 1_1) for scheduling PDSCH, DCI (UL grant, DCI format 0_0 or 0_1) for scheduling PUSCH, or the like.
 図3Aに示すように、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)に、他セルによるスケジューリングに関する情報(other)が含まれる場合、当該他セル(スケジューリングセル)のサーチスペースID(schedulingCellSearchSpace)がクロスキャリアスケジューリング設定情報内に含まれてもよい。なお、クロスキャリアスケジューリング設定情報に、自セルのスケジューリングに関する情報(own)が含まれる場合、当該サーチスペースIDは含まれなくともよい。 As shown in FIG. 3A, when the information (other) related to scheduling by another cell is included in the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig), the search space ID (schedulingCellSearchSpace) of the other cell (scheduling cell) is set to the cross carrier scheduling configuration. It may be included in the information. When the cross carrier scheduling setting information includes information (own) related to the scheduling of the own cell, the search space ID need not be included.
 例えば、図2に示す場合、セル#B又は#Cのクロスキャリアスケジューリング設定情報内の当該サーチスペースID(schedulingCellSearchSpace)に、セル#Aのサーチスペースリスト内のサーチスペースID(例えば、サーチスペース#3又は#4)が設定されてもよい。 For example, in the case shown in FIG. 2, the search space ID (schedulingCellSearchSpace) in the cross carrier scheduling setting information of the cell #B or #C is replaced with the search space ID (for example, the search space # 3) in the search space list of the cell #A. Alternatively, # 4) may be set.
 或いは、図3Bに示すように、クロスキャリアスケジューリング設定情報に、他セルによるスケジューリングに関する情報(other)が含まれる場合、BWP毎のサーチスペースIDのリスト(schedulingCellSearchSpaceList)がクロスキャリアスケジューリング設定情報内に含まれてもよい。当該リストには、当該BWPの識別子(BWP ID、bwp-Id)及び当該BWPに対応するサーチスペースID(schedulingCellSearchSpace)が、当該他のセルに設置されるBWPの数分含まれてもよい。 Alternatively, as shown in FIG. 3B, when information (other) related to scheduling by another cell is included in the cross carrier scheduling setting information, a search space ID list (schedulingCellSearchSpaceList) for each BWP is included in the cross carrier scheduling setting information. It may be. The list may include identifiers of the BWP (BWP @ ID, bwp-Id) and search space IDs (schedulingCellSearchSpace) corresponding to the BWP for the number of BWPs installed in the other cells.
 図4A及び4Bは、第1の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。なお、図4A、4Bに示すIEの名称は例示にすぎず、図示するものに限られない。また、図4A及び4Bでは、図3A及び3Bとの相違点を中心に説明する。 4A and 4B are diagrams showing other examples of the cross carrier scheduling setting information according to the first example. Note that the names of the IEs shown in FIGS. 4A and 4B are merely examples, and are not limited to those shown. 4A and 4B, the description will focus on differences from FIGS. 3A and 3B.
 図4Aでは、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)内の他セルによるスケジューリングに関する情報(other)として、上記schedulingCellId、cif-InSchedulingCellの少なくとも一つとともに、他セル(スケジューリングセル)のサーチスペースID(schedulingCellSearchSpace)が含まれる点で、図3Aと異なる。 In FIG. 4A, the search space ID (schedulingCellSearchSpace) of another cell (scheduling cell) together with at least one of the above schedulingCellId and cif-InSchedulingCell as information (other) related to scheduling by another cell in cross carrier scheduling configuration information (CrossCarrierSchedulingConfig). 3A is included.
 同様に、図4Bでは、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)内の他セルによるスケジューリングに関する情報(other)として、当該他セル(スケジューリングセル)のBWP毎のサーチスペースIDのリスト(schedulingCellSearchSpaceList)が含まれる点で、図3Bと異なる。 Similarly, in FIG. 4B, a list (schedulingCellSearchSpaceList) of search space IDs for each BWP of the other cell (scheduling cell) is included as information (other) regarding scheduling by another cell in the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig). 3B differs from FIG. 3B.
 以上のように、第1の態様によれば、クロスキャリアスケジューリング設定情報内に「スケジューリングセル」のサーチスペースIDが含まれるので、UEは、当該サーチスペースIDに基づいてアグリゲーションレベル毎のPDCCH候補の数を決定でき、当該PDCCH候補の数に基づいて、クロスキャリアスケジューリングされるDCIのモニタリングを適切に制御できる。 As described above, according to the first aspect, since the search space ID of the “scheduling cell” is included in the cross carrier scheduling configuration information, the UE determines the PDCCH candidate for each aggregation level based on the search space ID. The number can be determined, and based on the number of the PDCCH candidates, monitoring of DCI to be cross-carrier scheduled can be appropriately controlled.
(第2の態様)
 第2の態様では、UEは、クロスキャリアスケジューリング設定情報内に設定される「スケジュールドセル」のサーチスペースIDに基づいて、アグリゲーションレベル毎のPDCCH候補を決定し、該PDCCH候補の数に基づいて下り制御情報のモニタリングを制御する。第2の態様では、第1の態様との相違点を中心に説明する。
(Second aspect)
In the second example, the UE determines PDCCH candidates for each aggregation level based on the search space ID of “scheduled cells” set in the cross carrier scheduling setting information, and performs downlink based on the number of PDCCH candidates. Controls monitoring of control information. In the second embodiment, the description will focus on the differences from the first embodiment.
 図5は、第2の態様に係るクロスキャリアスケジューリング設定情報内のサーチスペースIDの設定の一例を示す図である。図5では、セル#A(第1のセル、スケジューリングセル)からセル#B又は#C(第2のセル、スケジュールドセル)に対するクロスキャリアスケジューリングが行われるものとする。 FIG. 5 is a diagram showing an example of the setting of the search space ID in the cross carrier scheduling setting information according to the second example. In FIG. 5, it is assumed that cross carrier scheduling from cell #A (first cell, scheduling cell) to cell #B or #C (second cell, scheduled cell) is performed.
 図5に示すように、UEは、セル#A~#Cにそれぞれ設定される一以上のサーチスペース設定情報(SearchSpace)サーチスペースリスト(SearchSpaceToAddModList)を受信する。当該サーチスペースリストは、各セル内のBWP毎に設けられてもよい。 UEAs shown in FIG. 5, the UE receives one or more search space setting information (SearchSpace) search space list (SearchSpaceToAddModList) set in each of cells #A to #C. The search space list may be provided for each BWP in each cell.
 例えば、図5では、セル#A用のサーチスペースリストには、自セル(own cell)用のサーチスペース#1及び#2が含まれてもよい。一方、セル#B用のサーチスペースリストには、自セル(セル#B)用のサーチスペース#1と、他セル用のサーチスペース#2とが含まれてもよい。また、セル#C用のサーチスペースリストには、自セル(セル#C)用のサーチスペース#1及び#2と、他セル用のサーチスペース#3とが含まれてもよい。 For example, in FIG. 5, the search space list for cell #A may include search spaces # 1 and # 2 for own cell (own @ cell). On the other hand, the search space list for cell #B may include search space # 1 for the own cell (cell #B) and search space # 2 for other cells. The search space list for cell #C may include search spaces # 1 and # 2 for the own cell (cell #C) and search space # 3 for another cell.
 図5に示すように、当該他セル用のサーチスペースは、クロスキャリアスケジューリングを行うセル毎のサーチスペースであってもよい。例えば、セル#Bのサーチスペースリスト内のサーチスペース#2は、セル#Bに対してクロスキャリアスケジューリングするセル#A用のサーチスペースであってもよい。また、セル#Cのサーチスペースリスト内のサーチスペース#2は、セル#Cに対してクロスキャリアスケジューリングするセル#A用のサーチスペースであってもよい。 サ ー チ As shown in FIG. 5, the search space for the other cell may be a search space for each cell in which cross carrier scheduling is performed. For example, search space # 2 in the search space list of cell #B may be a search space for cell #A for performing cross-carrier scheduling on cell #B. Further, search space # 2 in the search space list of cell #C may be a search space for cell #A for performing cross-carrier scheduling on cell #C.
 また、UEに設定(configure)されるセル#B、#Cの設定情報(ServingcellConfig)内には、それぞれ、セル#B、#Cのクロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)が含まれてもよい。 Also, the setting information (ServingcellConfig) of the cells #B and #C set (configured) in the UE may include the cross-carrier scheduling setting information (CrossCarrierSchedulingConfig) of the cells #B and #C, respectively.
 当該クロスキャリアスケジューリング設定情報内の所定のIEには、セル#B又は#C用のサーチスペースリスト内のサーチスペースを示すサーチスペースIDが設定されてもよい。当該所定のIEは、例えば、ScheduledCellSearchSpace、スケジュールドセルのサーチスペースID等と呼ばれてもよい。 The search space ID indicating the search space in the search space list for the cell #B or #C may be set in the predetermined IE in the cross carrier scheduling setting information. The predetermined IE may be called, for example, a ScheduledCellSearchSpace, a scheduled cell search space ID, or the like.
 例えば、図5において、セル#Bのクロスキャリアスケジューリング設定情報内のScheduledCellSearchSpaceには、セル#Bのサーチスペースリスト内のサーチスペースID#2が指定される。一方、セル#Cのクロスキャリアスケジューリング設定情報内のScheduledCellSearchSpaceには、セル#Bのサーチスペースリスト内のサーチスペースID#3が指定される。 For example, in FIG. 5, the search space ID # 2 in the search space list of the cell #B is specified in the ScheduledCellSearchSpace in the cross-carrier scheduling setting information of the cell #B. On the other hand, the search space ID # 3 in the search space list of the cell #B is specified in the ScheduledCellSearchSpace in the cross carrier scheduling setting information of the cell #C.
 UEは、当該サーチスペースIDが示すサーチスペース設定情報内のアグリゲーションレベル毎のPDCCH候補の数(図1のnrofCandidates)を取得して、当該PDCCH候補の数に基づいて、当該サーチスペースIDが示すサーチスペース(セット)を構成するCCEを決定してもよい。例えば、上記式1に基づいて当該サーチスペースを構成するCCEを決定して、セル#Aからセル#BにクロスキャリアスケジューリングされるDCIのモニタリングを制御してもよい。 The UE obtains the number of PDCCH candidates (nrofCandidates in FIG. 1) for each aggregation level in the search space setting information indicated by the search space ID, and performs the search indicated by the search space ID based on the number of PDCCH candidates. CCEs constituting a space (set) may be determined. For example, CCEs constituting the search space may be determined based on Equation 1 above, and monitoring of DCI for performing cross-carrier scheduling from cell #A to cell #B may be controlled.
 なお、各セルにおいて設定可能なサーチスペースの数は所定数(例えば、10個)に制限される。このため、図2に示すように、スケジューリングセル(セル#A)のサーチスペースリスト内のサーチスペースID(例えば、図2では、#3、#4)をクロスキャリアスケジューリング設定情報内で指定する場合、スケジューリングセルがスケジューリングする他セルの数(例えば、図2では、セル#B、#C)が増加すると、スケジューリングセル自身(セル#A)に設定可能なサーチスペースの数が減少する。この結果、図2では、スケジューリングセル(セル#A)におけるDCIのモニタリングをUEが適切に行うことができない恐れがある。 The number of search spaces that can be set in each cell is limited to a predetermined number (for example, 10). For this reason, as shown in FIG. 2, when the search space ID (for example, # 3, # 4 in FIG. 2) in the search space list of the scheduling cell (cell #A) is specified in the cross carrier scheduling setting information When the number of other cells scheduled by the scheduling cell (for example, cells #B and #C in FIG. 2) increases, the number of search spaces that can be set in the scheduling cell itself (cell #A) decreases. As a result, in FIG. 2, there is a possibility that the UE cannot properly monitor DCI in the scheduling cell (cell #A).
 一方、図5に示すように、スケジュールドセル(セル#B、#C)のサーチスペースリスト内のサーチスペースID(ここでは、#2、#3)をクロスキャリアスケジューリング設定情報内で指定する場合、各スケジュールドセル(例えば、セル#B、#C)のサーチスペースリスト内にスケジューリングセル(セル#A)用のサーチスペースが含まれる。このため、スケジューリングセルがスケジューリングする他セルの数が増加しても、スケジューリングセル自身に設定可能なサーチスペースの減少を防止できる。 On the other hand, as shown in FIG. 5, when the search space IDs (here, # 2 and # 3) in the search space list of the scheduled cells (cells #B and #C) are specified in the cross carrier scheduling setting information, The search space for the scheduling cell (cell #A) is included in the search space list of each scheduled cell (for example, cells #B and #C). For this reason, even if the number of other cells scheduled by the scheduling cell increases, it is possible to prevent a decrease in search space that can be set in the scheduling cell itself.
 図6A及び6Bは、第2の態様に係るクロスキャリアスケジューリング設定情報の一例を示す図である。なお、図6A、6Bに示すIEの名称は例示にすぎず、図示するものに限られない。図6A及び6Bに示すように、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)には、自セルのスケジューリングに関する情報(own)又は他セルによるスケジューリング(クロスキャリアスケジューリング)に関する情報(other)のいずれかが含まれてもよい。 FIGS. 6A and 6B are diagrams showing an example of the cross carrier scheduling setting information according to the second example. The names of the IEs shown in FIGS. 6A and 6B are merely examples, and are not limited to those shown. As shown in FIGS. 6A and 6B, the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) includes either information relating to scheduling of the own cell (own) or information relating to scheduling by other cells (cross carrier scheduling) (other). You may.
 他セルによるスケジューリングに関する情報(other)としては、例えば、DCIをシグナリングするセルの識別子(セルインデックス、スケジューリングセルID、schedulingCellId)、当該セルを示すキャリア識別フィールドの値(cif-InSchedulingCell)の少なくとも一つが含まれてもよい。 As the information (other) related to scheduling by another cell, for example, at least one of a cell identifier (cell index, scheduling cell ID, schedulingCellId) for signaling DCI, and a carrier identification field value (cif-InSchedulingCell) indicating the cell is used. May be included.
 なお、当該DCIは、例えば、PDSCHをスケジューリングするDCI(DLアサインメント、DCIフォーマット1_0又は1_1)、PUSCHをスケジューリングするDCI(ULグラント、DCIフォーマット0_0又は0_1)等であってもよい。 Note that the DCI may be, for example, DCI (DL assignment, DCI format 1_0 or 1_1) for scheduling PDSCH, DCI (UL grant, DCI format 0_0 or 0_1) for scheduling PUSCH, or the like.
 図6Aに示すように、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)に、他セルによるスケジューリングに関する情報(other)が含まれる場合、当該自セル(スケジュールドセル)のサーチスペースID(scheduledCellSearchSpace)がクロスキャリアスケジューリング設定情報内に含まれてもよい。なお、クロスキャリアスケジューリング設定情報に、自セルのスケジューリングに関する情報(own)が含まれる場合、当該サーチスペースIDは含まれなくともよい。 As shown in FIG. 6A, when the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig) includes information (other) related to scheduling by another cell, the search space ID (scheduledCellSearchSpace) of the own cell (scheduled cell) is used as the cross carrier scheduling configuration. It may be included in the information. When the cross carrier scheduling setting information includes information (own) related to the scheduling of the own cell, the search space ID need not be included.
 例えば、図5に示す場合、セル#B又は#Cのクロスキャリアスケジューリング設定情報内の当該サーチスペースID(scheduledCellSearchSpace)に、セル#B又は#Cのサーチスペースリスト内のサーチスペースID(例えば、サーチスペース#2又は#3)が設定されてもよい。 For example, in the case shown in FIG. 5, the search space ID (scheduledCellSearchSpace) in the cross-carrier scheduling setting information of cell #B or #C is replaced with the search space ID (for example, search) in the search space list of cell #B or #C. Space # 2 or # 3) may be set.
 或いは、図6Bに示すように、クロスキャリアスケジューリング設定情報に、他セルからのスケジューリングに関する情報(other)が含まれる場合、自セル(スケジュールドセル)のBWP毎のサーチスペースIDのリスト(scheduledCellSearchSpaceList)がクロスキャリアスケジューリング設定情報内に含まれてもよい。当該リストには、当該BWPの識別子(BWP ID、bwp-Id)及び当該BWPに対応するサーチスペースID(scheduledCellSearchSpace)が、当該自セルに設置されるBWPの数分含まれてもよい。 Alternatively, as shown in FIG. 6B, when the cross-carrier scheduling setting information includes information (other) related to scheduling from another cell, a list (scheduledCellSearchSpaceList) of search space IDs for each BWP of the own cell (scheduled cell) is included. It may be included in the cross carrier scheduling setting information. The list may include as many BWP identifiers (BWP @ ID, bwp-Id) and search space IDs (scheduledCellSearchSpace) as the number of BWPs installed in the own cell.
 図7A及び7Bは、第2の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。なお、図7A、7Bに示すIEの名称は例示にすぎず、図示するものに限られない。また、図7A及び7Bでは、図6A及び6Bとの相違点を中心に説明する。 FIGS. 7A and 7B are diagrams showing other examples of the cross carrier scheduling setting information according to the second example. The names of the IEs shown in FIGS. 7A and 7B are merely examples, and are not limited to those shown. 7A and 7B will be described focusing on differences from FIGS. 6A and 6B.
 図7Aでは、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)内の他セルによるスケジューリングに関する情報(other)として、上記schedulingCellId、cif-InSchedulingCellの少なくとも一つとともに、自セル(スケジュールドセル)のサーチスペースID(scheduledCellSearchSpace)が含まれる点で、図6Aと異なる。 In FIG. 7A, the search space ID (scheduledCellSearchSpace) of the own cell (scheduled cell) together with at least one of the schedulingCellId and cif-InSchedulingCell as information (other) related to scheduling by another cell in the cross carrier scheduling configuration information (CrossCarrierSchedulingConfig). 6A is different from FIG.
 同様に、図7Bでは、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)内の他セルによるスケジューリングに関する情報(other)として、自セル(スケジュールドセル)のBWP毎のサーチスペースIDのリスト(scheduledCellSearchSpaceList)が含まれる点で、図6Bと異なる。 Similarly, in FIG. 7B, a list (scheduledCellSearchSpaceList) of search space IDs for each BWP of the own cell (scheduled cell) is included as information (other) related to scheduling by another cell in cross carrier scheduling configuration information (CrossCarrierSchedulingConfig). 6B.
 以上のように、第2の態様によれば、クロスキャリアスケジューリング設定情報内に「スケジュールドセル」のサーチスペースIDが含まれるので、UEは、当該サーチスペースIDに基づいてアグリゲーションレベル毎のPDCCH候補の数を決定でき、当該PDCCH候補の数に基づいてDCIのモニタリングを適切に制御できる。 As described above, according to the second aspect, since the search space ID of “scheduled cell” is included in the cross carrier scheduling configuration information, the UE determines the PDCCH candidate for each aggregation level based on the search space ID. The number can be determined, and the DCI monitoring can be appropriately controlled based on the number of the PDCCH candidates.
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施の形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、複数のコンポーネントキャリア(キャリア又はセル)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 8 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of component carriers (carriers or cells) are integrated can be applied.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. Have. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
 また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity))をサポートしてもよい。MR-DCは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN)となり、NRの基地局(gNB)がセカンダリーノード(SN)となるLTEとNRとのデュアルコネクティビィティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRの基地局(gNB)がMNとなり、LTE(E-UTRA)の基地局(eNB)がSNとなるNRとLTEとのデュアルコネクティビィティ(NE-DC:NR-E-UTRA Dual Connectivity)等を含んでもよい。 Also, the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)). The MR-DC has dual connectivity (LTE and NR) in which an LTE (E-UTRA) base station (eNB) becomes a master node (MN) and an NR base station (gNB) becomes a secondary node (SN). EN-DC: E-UTRA-NR {Dual} Connectivity, NR base station (gNB) becomes MN, and LTE (E-UTRA) base station (eNB) becomes SN. Dual connectivity (NR and LTE) NE-DC: NR-E-UTRA {Dual} Connectivity) may be included.
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, between the user terminal 20 and the base station 12, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, or the like) and a wide bandwidth may be used, or between the user terminal 20 and the base station 11. The same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 The user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell. In each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。 Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like. For example, for a certain physical channel, if the subcarrier intervals of the constituent OFDM symbols are different and / or if the number of OFDM symbols is different, the numerology may be referred to as different.
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The base station 11 and the base station 12 (or between the two base stations 12) may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。 The base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30. Note that the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 Note that the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), a transmission / reception point, and the like. May be called. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the wireless communication system 1, Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access method, and Single Carrier-Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication. The SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as the downlink channel, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used. The PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master \ Information \ Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 ス ケ ジ ュ ー リ ン グ The scheduling information may be notified by DCI. For example, a DCI that schedules DL data reception may be called a DL assignment, and a DCI that schedules UL data transmission may be called an UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 PCFICH transmits the number of OFDM symbols used for PDCCH. The PHICH transmits acknowledgment information (eg, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat reQuest) to the PUSCH. The EPDCCH is frequency-division multiplexed with the PDSCH (Downlink Shared Data Channel), and is used for transmission of DCI and the like like the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH: Physical Random Access Channel) or the like is used. By PUSCH, user data, higher layer control information, etc. are transmitted. In addition, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as a downlink reference signal, a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), and a demodulation reference signal (DMRS: DeModulation Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), and the like are transmitted. In the wireless communication system 1, a reference signal for measurement (SRS: Sounding Reference Signal), a reference signal for demodulation (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
<基地局>
 図9は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
<Base station>
FIG. 9 is a diagram showing an example of the overall configuration of the base station according to the present embodiment. The base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 ユ ー ザ User data transmitted from the base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed. 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, as for an uplink signal, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102. Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。 (4) The transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface. The transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
 図10は、本実施の形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 10 is a diagram showing an example of a functional configuration of the base station according to the present embodiment. In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire base station 10. The control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。 The control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Quota). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 The control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example. The DL assignment and the UL grant are both DCI and follow the DCI format. In addition, the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel \ State \ Information) from each user terminal 20 or the like.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 (4) The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 (4) The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
 なお、送受信部103は、セルグループ、セル、BWP、CORESET、サーチスペース、クロスキャリアスケジューリングの少なくとも一つに関する設定情報を送信する。また、送受信部103は、DCIを送信する。 The transmitting / receiving section 103 transmits setting information on at least one of the cell group, the cell, the BWP, the RESET, the search space, and the cross carrier scheduling. Further, the transmitting / receiving section 103 transmits DCI.
 制御部301は、セルグループ、セル、BWP、CORESET、サーチスペース、クロスキャリアスケジューリングの少なくとも一つの設定を制御し、これらの少なくとも一つの設定情報の送信を制御してもよい。 The control unit 301 may control at least one setting of a cell group, a cell, BWP, CORESET, a search space, and cross carrier scheduling, and may control transmission of at least one of these setting information.
 制御部301は、クロスキャリアスケジューリングに関する設定情報内のサーチスペースの識別子に基づいてアグリゲーションレベル毎の下り制御チャネル候補の数を決定し、該下り制御チャネル候補の数に基づいて下り制御情報のマッピングを制御してもよい。 The control unit 301 determines the number of downlink control channel candidates for each aggregation level based on the search space identifier in the setting information regarding cross carrier scheduling, and performs mapping of downlink control information based on the number of downlink control channel candidates. It may be controlled.
 ここで、第1のセルから第2のセルに対するクロスキャリアスケジューリングが行われる場合、前記サーチスペースの識別子は、前記第1のセル用に設定されるサーチスペースを示してもよい(第1の態様)。 Here, when cross carrier scheduling is performed from the first cell to the second cell, the search space identifier may indicate a search space set for the first cell (first mode). ).
 第1のセルから第2のセルに対するクロスキャリアスケジューリングが行われる場合、前記サーチスペースの識別子は、前記第2のセル用に設定されるサーチスペースを示してもよい(第2の態様)。 場合 When cross-carrier scheduling is performed from the first cell to the second cell, the identifier of the search space may indicate a search space set for the second cell (second aspect).
 前記サーチスペースの識別子は、前記第1のセル又は前記第2のセルの帯域幅部分毎に設定されてもよい(例えば、図3B、4B、6B、7B)。 The identifier of the search space may be set for each bandwidth portion of the first cell or the second cell (for example, FIGS. 3B, 4B, 6B, and 7B).
 前記サーチスペースの識別子は、前記設定情報内に他セルによるスケジューリングに関する情報が含まれる場合、前記他セルによるスケジューリング情報と並列に含まれてもよい(例えば、図3A、3B、6A、6B)。 The search space identifier may be included in parallel with the scheduling information by another cell when the setting information includes information on scheduling by another cell (for example, FIGS. 3A, 3B, 6A, and 6B).
 前記サーチスペースの識別子は、前記設定情報内の他セルによるスケジューリングに関する情報内に含まれてもよい(例えば、図4A、4B、7A、7B)。 The identifier of the search space may be included in information on scheduling by another cell in the configuration information (for example, FIGS. 4A, 4B, 7A, and 7B).
<ユーザ端末>
 図11は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
<User terminal>
FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205. The transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204. The transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 (4) The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
 図12は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 12 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404. The control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
 制御部401は、所定の識別子(例えば、C-RNTI、CS-RNTI、SI-RNTI、P-RNTI、RA-RNTI、TC-RNTI、INT-RNTI、SFI-RNTI、TPC-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI、SP-CSI-RNTIの少なくとも一つ)でCRCスクランブルされるDCIの監視を制御してもよい。 The control unit 401 transmits a predetermined identifier (for example, C-RNTI, CS-RNTI, SI-RNTI, P-RNTI, RA-RNTI, TC-RNTI, INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC -PUCCH-RNTI, TPC-SRS-RNTI, SP-CSI-RNTI).
 また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 (4) The transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 (4) The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10. The reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. In addition, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 (4) The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measuring unit 405 measures the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI). The measurement result may be output to the control unit 401.
 なお、送受信部203は、セルグループ、セル、BWP、CORESET、サーチスペース、クロスキャリアスケジューリングの少なくとも一つに関する設定情報を送信する。また、送受信部203は、DCIを送信する。 (4) The transmission / reception unit 203 transmits setting information on at least one of a cell group, a cell, BWP, CORESET, a search space, and cross carrier scheduling. Further, the transmitting / receiving section 203 transmits DCI.
 制御部401は、セルグループ、セル、BWP、CORESET、サーチスペース、クロスキャリアスケジューリングの少なくとも一つの設定を制御し、これらの少なくとも一つの設定情報の送信を制御してもよい。 The control unit 401 may control at least one setting of cell group, cell, BWP, CORESET, search space, and cross carrier scheduling, and may control transmission of at least one of these setting information.
 制御部401は、クロスキャリアスケジューリングに関する設定情報内のサーチスペースの識別子に基づいてアグリゲーションレベル毎の下り制御チャネル候補の数を決定し、該下り制御チャネル候補の数に基づいて下り制御情報のマッピングを制御してもよい。 The control unit 401 determines the number of downlink control channel candidates for each aggregation level based on the search space identifier in the setting information related to cross carrier scheduling, and performs mapping of the downlink control information based on the number of downlink control channel candidates. It may be controlled.
 ここで、第1のセルから第2のセルに対するクロスキャリアスケジューリングが行われる場合、前記サーチスペースの識別子は、前記第1のセル用に設定されるサーチスペースを示してもよい(第1の態様)。 Here, when cross carrier scheduling is performed from the first cell to the second cell, the search space identifier may indicate a search space set for the first cell (first mode). ).
 第1のセルから第2のセルに対するクロスキャリアスケジューリングが行われる場合、前記サーチスペースの識別子は、前記第2のセル用に設定されるサーチスペースを示してもよい(第2の態様)。 場合 When cross-carrier scheduling is performed from the first cell to the second cell, the identifier of the search space may indicate a search space set for the second cell (second aspect).
 前記サーチスペースの識別子は、前記第1のセル又は前記第2のセルの帯域幅部分毎に設定されてもよい(例えば、図3B、4B、6B、7B)。 The identifier of the search space may be set for each bandwidth portion of the first cell or the second cell (for example, FIGS. 3B, 4B, 6B, and 7B).
 前記サーチスペースの識別子は、前記設定情報内に他セルによるスケジューリングに関する情報が含まれる場合、前記他セルによるスケジューリング情報と並列に含まれてもよい(例えば、図3A、3B、6A、6B)。 The search space identifier may be included in parallel with the scheduling information by another cell when the setting information includes information on scheduling by another cell (for example, FIGS. 3A, 3B, 6A, and 6B).
 前記サーチスペースの識別子は、前記設定情報内の他セルによるスケジューリングに関する情報内に含まれてもよい(例えば、図4A、4B、7A、7B)。
<ハードウェア構成>
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
The search space identifier may be included in information on scheduling by another cell in the configuration information (for example, FIGS. 4A, 4B, 7A, and 7B).
<Hardware configuration>
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.), and may be implemented using these multiple devices. The functional block may be realized by combining one device or the plurality of devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In any case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 13 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to one embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms such as “apparatus”, “circuit”, “device”, “section”, and “unit” can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least part of the operation described in the above embodiment is used. For example, the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103(203)は、送信部103a(203a)と受信部103b(203b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004. The transmission / reception unit 103 (203) may be physically or logically separated from the transmission unit 103a (203a) and the reception unit 103b (203b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be configured by one or more periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Further, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, the TTI refers to, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms. The TTI having the above-described TTI length may be replaced with the TTI.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 {Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP: Bandwidth @ Part) (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined by a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 少 な く と も At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 名称 Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 情報 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 (4) Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 通知 Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 ソ フ ト ウ ェ ア Also, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。 用語 The terms “system” and “network” as used in this disclosure may be used interchangeably.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「TCI状態(Transmission Configuration Indication state)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", " Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable Can be used for
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" , "Sector", "cell group", "carrier", "component carrier" and the like may be used interchangeably. A base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施の形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 基地 Also, the base station in the present disclosure may be replaced with a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect / embodiment of the present disclosure may be applied. In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, a user terminal in the present disclosure may be replaced by a base station. In this case, a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
 本開示において説明した各態様/実施の形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施の形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution. In addition, the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, for the methods described in this disclosure, elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system, 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using other appropriate wireless communication methods, a next-generation system extended based on these, and the like. Further, a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 記載 The term “based on” as used in the present disclosure does not mean “based on” unless otherwise indicated. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 い か な る Any reference to elements using designations such as "first," "second," etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, “judgment (decision)” means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, “determining” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate", "coupled" and the like may be interpreted similarly to "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” Is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, where articles are added by translation, for example, a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施の形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be embodied as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is intended for illustrative purposes and does not bring any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  クロスキャリアスケジューリングに関する設定情報を受信する受信部と、
     前記設定情報内のサーチスペースの識別子に基づいてアグリゲーションレベル毎の下り制御チャネル候補の数を決定し、該下り制御チャネル候補の数に基づいて下り制御情報のモニタリングを制御する制御部と、
    を具備することを特徴とするユーザ端末。
    A receiving unit that receives setting information related to cross carrier scheduling,
    A control unit that determines the number of downlink control channel candidates for each aggregation level based on the identifier of the search space in the configuration information, and controls monitoring of downlink control information based on the number of the downlink control channel candidates.
    A user terminal comprising:
  2.  第1のセルから第2のセルに対するクロスキャリアスケジューリングが行われる場合、前記サーチスペースの識別子は、前記第1のセル用に設定されるサーチスペースを示すことを特徴とする請求項1に記載のユーザ端末。 The method according to claim 1, wherein when cross-carrier scheduling is performed from a first cell to a second cell, the search space identifier indicates a search space set for the first cell. User terminal.
  3.  第1のセルから第2のセルに対するクロスキャリアスケジューリングが行われる場合、前記サーチスペースの識別子は、前記第2のセル用に設定されるサーチスペースを示すことを特徴とする請求項1に記載のユーザ端末。 The method according to claim 1, wherein, when cross-carrier scheduling is performed from a first cell to a second cell, the search space identifier indicates a search space set for the second cell. User terminal.
  4.  前記サーチスペースの識別子は、前記第1のセル又は前記第2のセルの帯域幅部分毎に設定されることを特徴とする請求項2又は請求項3に記載のユーザ端末。 4. The user terminal according to claim 2, wherein the identifier of the search space is set for each bandwidth portion of the first cell or the second cell. 5.
  5.  前記サーチスペースの識別子は、前記設定情報内に他セルによるスケジューリングに関する情報が含まれる場合、前記他セルによるスケジューリング情報と並列に含まれることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 5. The search space identifier according to claim 1, wherein when the configuration information includes information on scheduling by another cell, the search space identifier is included in parallel with the scheduling information by another cell. 6. User terminal as described.
  6.  前記サーチスペースの識別子は、前記設定情報内の他セルによるスケジューリングに関する情報内に含まれることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 5. The user terminal according to claim 1, wherein the search space identifier is included in information related to scheduling by another cell in the configuration information. 6.
PCT/JP2018/030670 2018-08-20 2018-08-20 User terminal WO2020039483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030670 WO2020039483A1 (en) 2018-08-20 2018-08-20 User terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030670 WO2020039483A1 (en) 2018-08-20 2018-08-20 User terminal

Publications (1)

Publication Number Publication Date
WO2020039483A1 true WO2020039483A1 (en) 2020-02-27

Family

ID=69592038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030670 WO2020039483A1 (en) 2018-08-20 2018-08-20 User terminal

Country Status (1)

Country Link
WO (1) WO2020039483A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453349A (en) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN114640428A (en) * 2020-12-15 2022-06-17 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
WO2022137570A1 (en) * 2020-12-25 2022-06-30 株式会社Nttドコモ Terminal, base station, and wireless communication method
WO2022137569A1 (en) * 2020-12-25 2022-06-30 株式会社Nttドコモ Terminal, base station, and wireless communication method
CN116137966A (en) * 2020-08-06 2023-05-19 株式会社Ntt都科摩 Terminal, base station device, and reception method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Radio Resource Control (RRC) protocol specification (Release 15", 3GPP TS 38.331, June 2018 (2018-06-01), pages 198 - 201 *
VIVO: "Remaining issues on PDCCH", 3GPP TSG RAN WG1 MEETING #94 RL-1808224, 11 August 2018 (2018-08-11), XP051515609 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453349A (en) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN113453349B (en) * 2020-03-27 2022-06-21 上海朗帛通信技术有限公司 Method and device used in node of wireless communication
CN116137966A (en) * 2020-08-06 2023-05-19 株式会社Ntt都科摩 Terminal, base station device, and reception method
CN114640428A (en) * 2020-12-15 2022-06-17 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN114640428B (en) * 2020-12-15 2024-04-12 上海朗帛通信技术有限公司 Method and apparatus in a node for wireless communication
WO2022137570A1 (en) * 2020-12-25 2022-06-30 株式会社Nttドコモ Terminal, base station, and wireless communication method
WO2022137569A1 (en) * 2020-12-25 2022-06-30 株式会社Nttドコモ Terminal, base station, and wireless communication method

Similar Documents

Publication Publication Date Title
WO2020053978A1 (en) User equipment and wireless communication method
WO2019244218A1 (en) User terminal
JP7132345B2 (en) Terminal, wireless communication method, base station and system
WO2020026454A1 (en) User terminal and wireless communications method
WO2020031386A1 (en) User terminal and wireless communication method
WO2019193688A1 (en) User terminal and wireless communication method
WO2019171518A1 (en) User terminal and wireless communication method
JP7237976B2 (en) Terminal, wireless communication method, base station and system
WO2020016934A1 (en) User equipment
WO2020009144A1 (en) Terminal and wireless communication method
WO2019215794A1 (en) User terminal and wireless communication method
WO2019176032A1 (en) User equipment and wireless communication method
WO2019193731A1 (en) User terminal and wireless base station
WO2020039483A1 (en) User terminal
WO2019215876A1 (en) User terminal
WO2019215921A1 (en) User terminal and wireless communication method
WO2019215895A1 (en) User terminal
JPWO2018158923A1 (en) User terminal and wireless communication method
WO2018143389A1 (en) User terminal and wireless communication method
WO2019234929A1 (en) User terminal and wireless communication method
WO2019220624A1 (en) User terminal and wireless base station
WO2020031275A1 (en) User equipment
WO2019138510A1 (en) User terminal and wireless communication method
JP7100146B2 (en) Terminals, wireless communication methods and systems
WO2018207370A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP