WO2020031275A1 - User equipment - Google Patents

User equipment Download PDF

Info

Publication number
WO2020031275A1
WO2020031275A1 PCT/JP2018/029681 JP2018029681W WO2020031275A1 WO 2020031275 A1 WO2020031275 A1 WO 2020031275A1 JP 2018029681 W JP2018029681 W JP 2018029681W WO 2020031275 A1 WO2020031275 A1 WO 2020031275A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
information
bwp
user terminal
control
Prior art date
Application number
PCT/JP2018/029681
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀明
一樹 武田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/029681 priority Critical patent/WO2020031275A1/en
Publication of WO2020031275A1 publication Critical patent/WO2020031275A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a user terminal in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • a user terminal transmits downlink control information (DCI: Downlink @ Control @ Information) (downlink) from a base station (for example, eNB: eNodeB). It controls reception of a downlink shared channel (for example, PDSCH: Physical ⁇ Downlink ⁇ Shared ⁇ Channel) based on a link (DL: Downlink) assignment or the like.
  • DCI Downlink @ Control @ Information
  • the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as uplink (UL) grant) from the base station.
  • DCI is one of the control signals of the physical layer, and is transmitted to the user terminal using a downlink control channel (for example, PDCCH (Physical Downlink Control Channel)).
  • PDCCH Physical Downlink Control Channel
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a carrier for example, 100 to 400 MHz
  • the carrier for example, up to 20 MHz
  • a partial band in the carrier is called, for example, a bandwidth portion (BWP: Bandwidth @ part) or the like.
  • the user terminal determines at least one of the reception of the downlink shared channel (eg, PDSCH: Physical Downlink Shared Channel) and the transmission of the uplink shared channel (eg, PUSCH: Physical Uplink Shared Channel) allocated in the initial BWP.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the present invention has been made in view of the above, and has as its object to provide a user terminal capable of appropriately controlling at least one of reception of a downlink shared channel and transmission of an uplink shared channel allocated in an initial BWP.
  • a user terminal capable of appropriately controlling at least one of reception of a downlink shared channel and transmission of an uplink shared channel allocated in an initial BWP.
  • a user terminal is configured to determine based on a receiving unit that receives downlink control information including a predetermined field indicating a frequency domain resource allocated to a downlink shared channel or an uplink shared channel, and an index given by a broadcast channel.
  • a control unit that determines the bandwidth of the initial access band based on whether the control resource set to be overlapped with the band determined based on the information on the initial access band given by the upper layer, Is provided.
  • FIG. 1 is a diagram illustrating an example of determination of a bandwidth of an initial BWP based on MIB.
  • FIG. 2 is a diagram illustrating an example of determining an initial BWP bandwidth based on SIB1.
  • FIG. 3 is a diagram illustrating an example of determining the number of bits of the frequency domain resource allocation field in the DL assignment according to the first example.
  • FIG. 4 is a diagram illustrating an example of determining the number of bits of the frequency domain resource allocation field in the UL grant according to the first example.
  • FIG. 5 is a diagram illustrating an example of control of bit selection in rate matching according to the second example.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • FIG. 1 is a diagram illustrating an example of determination of a bandwidth of an initial BWP based on MIB.
  • FIG. 2 is a diagram illustrating an example of determining an initial BWP bandwidth based on SIB1.
  • FIG. 3 is
  • FIG. 7 is a diagram showing an example of the overall configuration of the base station according to the present embodiment.
  • FIG. 8 is a diagram showing an example of a functional configuration of the base station according to the present embodiment.
  • FIG. 9 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment.
  • carriers eg, 20 MHz
  • carriers eg, 20 MHz
  • existing LTE systems eg, Rel. 8-13
  • the carrier is also called a component carrier (CC: Component @ Carrier), a cell, a serving cell, a system bandwidth, or the like.
  • a partial band in the carrier is called, for example, a bandwidth portion (BWP: Bandwidth @ part).
  • the BWP may include a BWP for uplink (uplink BWP) and a BWP for downlink (downlink BWP).
  • one or more BWPs (at least one of one or more uplink BWPs and one or more downlink BWPs) may be set, and at least one of the set BWPs may be activated.
  • the activated BWP is also called an active BWP or the like.
  • a BWP for initial access may be set for the user terminal.
  • the initial BWP may include at least one of an initial BWP for downlink (initial downlink BWP (initial @ downlink @ BWP)) and an initial BWP for uplink (initial uplink BWP (initial @ uplink @ BWP)).
  • the initial access for example, at least one of detection of a synchronization signal, acquisition of broadcast information (for example, a master information block (MIB: Master Information Block)), and establishment of a connection by random access may be performed.
  • a master information block MIB: Master Information Block
  • the bandwidth of the initial BWP is set to an index (also referred to as pdcch-ConfigSIB1, RMSI-PDCCH-Config, ControlResourceSetZero, etc.) in the MIB transmitted via a broadcast channel (PBCH: Physical Broadcast Channel, also referred to as P-BCH, etc.). It may be set based on this.
  • PBCH Physical Broadcast Channel, also referred to as P-BCH, etc.
  • FIG. 1 is a diagram illustrating an example of determining a bandwidth of an initial BWP based on an index in the MIB.
  • the MIB includes configuration information (also referred to as pdcch-ConfigSIB1, RMSI-PDCCH-Config, etc.) on the PDCCH for system information (for example, SIB1: System Information Block 1, RMSI: Remaining Minimum System Information). May be included.
  • SIB1 System Information Block 1
  • RMSI Remaining Minimum System Information
  • $ Pdcch-ConfigSIB1 may include at least one of information (ControlResourceSetZero) related to a predetermined control resource set (CORESET: Control @ Resource @ Set) and information (SearchSpaceZero) related to a predetermined search space.
  • CORESET is a candidate area for assignment of a downlink control channel (for example, PDCCH (Physical Downlink Control Channel)).
  • ControlResourceSetZero is, for example, a predetermined number of bits (for example, 4 bits) associated with at least one of information (for example, a bandwidth (number of resource blocks) of CORESET # 0, a number of symbols, an offset, etc.) used for determining CORESET # 0. Index).
  • the coreset # 0 is, for example, a coreset for SIB1 (or RMSI), and is used for scheduling of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel) for transmitting SIB1, but a PDCCH (or DCI) is arranged. May be a reset.
  • Coreset # 0 is a coreset for SIB1, a controlResourceSetZero, a common coreset (common @ coreset), a common coreset # 0, a cell-specific coreset, and a type-0 PDCCH common search space (Type0-PDCCH @ common @ search @ space). Also referred to as CORESET.
  • SearchSpaceZero includes, for example, information used for determining search space # 0 (for example, predetermined parameters M and O used for determining a slot in which search space # 0 is arranged, the number of search space sets per slot,
  • the index may be a predetermined number of bits (for example, an index of 4 bits) associated with at least one of a symbol index and the like.
  • the search space # 0 is, for example, a search space for SIB1 (or RMSI), and may include a PDCCH candidate used for scheduling the PDSCH for transmitting SIB1.
  • the search space # 0 is also called a common search space, a type 0 PDCCH common search space, a PDCCH monitoring opportunity (monitoring @ occasions), a search space for SIB1, a search space for RMSI, and the like.
  • the user terminal is associated with an index indicated by a predetermined bit (for example, the most significant 4 bits (MSB: Most Significant bit) or the least significant 4 bits (LSB: Least Significant bit)) of ControlResourceSetZero or pdcch-ConfigSIB1.
  • the number of resource blocks (RBs) (N CORESET RB ) to be allocated may be determined as the bandwidth of the initial BWP.
  • the bandwidth (the number of RBs) of the initial BWP is determined to be 24, 48, or 96.
  • each value may be changed based on at least one of a minimum channel bandwidth (minimum channel bandwidth) and a subcarrier interval (subcarrier spacing).
  • a minimum channel bandwidth minimum channel bandwidth
  • subcarrier interval subcarrier spacing
  • the bandwidth of the initial BWP may be rephrased as the number of RBs (bandwidth) constituting a predetermined CORESET (for example, the above-mentioned CORESET # 0).
  • a predetermined CORESET for example, the above-mentioned CORESET # 0.
  • One or more search spaces for example, the search space # 0, type 0 PDCCH common search space
  • the bandwidth of the initial BWP determined based on the index (predetermined bit (for example, 4 MSB or 4 LSB) of ControlResourceSetZero or pdcch-ConfigSIB1) in the MIB is three bandwidths of 24, 48, and 90. May be limited.
  • the user terminal is also assumed to support only 1 BWP, so it is not desirable that the bandwidth of the initial BWP is limited to the three bandwidths.
  • the user terminal monitors (blind) a predetermined CORESET (for example, RESET # 0) determined based on an index (a predetermined bit (for example, 4MSB or 4LSB) of the ControlResourceSetZero or pdcch-ConfigSIB1) in the MIB. Decoding) to detect DCI, and receive SIB1 using the PDSCH scheduled by the DCI.
  • a predetermined CORESET for example, RESET # 0
  • an index a predetermined bit (for example, 4MSB or 4LSB) of the ControlResourceSetZero or pdcch-ConfigSIB1) in the MIB. Decoding
  • the user terminal monitors (blind decodes) a search space (for example, search space # 0) determined based on an index (SearchSpaceZero or a predetermined bit (for example, 4MSB or 4LSB) of pdcch-ConfigSIB1) in the MIB.
  • the DCI may be detected in this way.
  • FIG. 2 is a diagram illustrating an example of determination of an initial BWP bandwidth based on SIB1.
  • the SIB1 includes information (position / bandwidth information, identification) used for determining at least one of the frequency domain position (frequency @ domain @ location) and the bandwidth (position / bandwidth) of the initial BWP.
  • locationAndBandwidth may be included.
  • locationAndBandwidth may be composed of a predetermined number of bits (for example, 15 bits).
  • the user terminal may determine the bandwidth (the number of RBs) of the initial BWP based on at least one bit of locationAndBandwidth. For example, the user terminal may determine the number of RBs associated with the index indicated by at least one bit of locationAndBandwidth as a bandwidth of the initial BWP in a table that associates at least a predetermined index with the number of RBs.
  • the user terminal may determine the position of the initial BWP frequency domain based on at least one bit of locationAndBandwidth.
  • the position of the frequency domain is determined by the distance (the number of RBs) from the lowest subcarrier (point A) of the reference resource block (reference resource block (reference resource block), common RB0, etc.) in the carrier. ).
  • the user terminal may determine the position of the frequency domain of the initial BWP based on the distance specified by at least one bit of locationAndBandwidth.
  • SIB1 may include cell-specific parameter setting information (for example, ServingCellConfigCommon).
  • ServingCellConfigCommon may include information on the initial downlink BWP (for example, initialDownlinkBWP).
  • initialDownlinkBWP For initialDownlinkBWP, a cell-specific common parameter (BWP-DownlinkCommon) may be provided.
  • the BWP-DownlinkCommon may include the above-mentioned locationAndBandwidth and the like.
  • the user terminal may determine the position / bandwidth of the initial downlink BWP based on the locationAndBandwidth in the BWP-DownlinkCommon provided for the initialDownlinkBWP.
  • the ServingCellConfigCommon may include common configuration information of the uplink (for example, UplinkConfigCommon).
  • UplinkConfigCommon may include information on the initial uplink BWP (for example, initialUplinkBWP).
  • initialUplinkBWP For initialUplinkBWP, a cell-specific common parameter (eg, BWP-UplinkCommon) may be provided.
  • the BWP-UplinkCommon may include the above-mentioned locationAndBandwidth and the like.
  • the user terminal may determine the position / bandwidth of the initial uplink BWP based on the locationAndBandwidth in the BWP-UplinkCommon provided for the initialUplinkBWP.
  • the hierarchical structure of the parameters shown in FIG. 2 is merely an example, and is not limited to the illustrated one.
  • information about the initial downlink BWP for example, BWP-DownlinkCommon given for initialDownlinkBWP
  • ServingCellConfigCommon what information item (IE: Information @ Element) of what hierarchy in SIB1 May be included.
  • IE Information @ Element
  • the position / bandwidth information (for example, locationAndBandwidth) of the initial downlink BWP is included in the BWP-DownlinkCommon provided for the initialDownlinkBWP, but may be included in any IE of any hierarchy.
  • information on the initial uplink BWP (for example, BWP-UplinkCommon given for initialUplinkBWP) is included in UplinkConfigCommon in ServingCellConfigCommon, but may be included in any IE of any hierarchy in SIB1.
  • the position / bandwidth information (for example, locationAndBandwidth) of the initial uplink BWP is included in the BWP-UplinkCommon provided for the initialUplinkBWP, but may be included in any IE of any hierarchy.
  • the BWP for which the position / bandwidth is determined based on the locationAndBandwidth may be called BWP # 0, initial BWP, or the like.
  • the information on the initial BWP is included in the SIB1 (for example, at least one of the BWP-DownlinkCommon for the initialDownlinkBWP and the BWP-UplinkCommon for the initialUplinkBWP), as the initial BWP, based on the pdcch-ConfigSIB1 in the MIB.
  • the user terminal receives the PDSCH in the initial downlink BWP / initial uplink BWP and performs PUSCH based on which of the RESET # 0 based on the pdcch-ConfigSIB1 in the MIB and the BWP # 0 based on the locationAndBandwidth in the SIB1.
  • the problem is how to control at least one of the transmissions.
  • RRC Radio @ Resource @ Control
  • RRC reconfiguration reconfiguration
  • the user terminal when information on the initial BWP (for example, at least one of BWP-DownlinkCommon for initialDownlinkBWP and BWP-UplinkCommon for initialUplinkBWP) is provided by the upper layer, the user terminal performs position / bandwidth information (for example, locationAndBandwidth).
  • position / bandwidth information for example, locationAndBandwidth.
  • the bandwidth of the BWP # 0 is wider than the bandwidth (for example, 24, 48, 96 RB) determined based on pdcch-ConfigSIB1 in the MIB. Therefore, when the information on the initial BWP is given by the upper layer, if the position / bandwidth of BWP # 0 is determined uniformly, a bandwidth wider than necessary for the initial BWP is determined, and as a result, the entire carrier is used. Efficiency may be reduced.
  • the present inventor determines whether CORESET # 0 determined based on pdcch-ConfigSIB1 in the MIB overlaps BWP # 0 determined based on information on the initial BWP given by the upper layer. The idea was to determine the bandwidth of the initial BWP based on whether or not.
  • the position / bandwidth of the BWP # 0 may be determined as the position / bandwidth of the initial BWP.
  • the position of the initial BWP As the / bandwidth, the position / bandwidth of the CORRESET # 0 may be determined.
  • CORRESET # 0 may overlap with the position / bandwidth of BWP # 0. Further, when the position of CORRESET # 0 and the position of BWP # 0 overlap, the positions of both do not need to completely match, and it is sufficient that at least a part of them overlaps. Further, the bandwidth of CORESET # 0 and the bandwidth of BWP # 0 may be the same or different.
  • the RRC message includes a handover procedure, a procedure for adding a primary secondary cell (PSCell: Primary Secondary Cell) in dual connectivity (DC: Dual Connectivity), and a secondary cell (SCell: Secondary) in DC or carrier aggregation (CA: Carrier Aggregation). Cell) may be transmitted in at least one of the additional procedures.
  • PSCell Primary Secondary Cell
  • DC Dual Connectivity
  • SCell Secondary
  • CA carrier Aggregation
  • the information on the initial BWP may be information on the initial BWP in the cell (target cell) of the handover destination. Further, when the RRC message is transmitted in a PSCell or SCell adding procedure, the information on the initial BWP may be information on the initial BWP in the added PSCell or SCell.
  • the “information on the initial BWP” is at least one of BWP-DownlinkCommon for initialDownlinkBWP and BWP-UplinkCommon for initialUplinkBWP, but is not limited to this.
  • the “information on the initial BWP” may be any information as long as the information includes at least one of the position / bandwidth information of the initial downstream BWP and the position / bandwidth information of the initial upstream BWP.
  • a predetermined field (eg, Frequency @ domain @ resource @ assignment) in DCI (DL assignment, DCI format 1_0 or 1_1) may specify a frequency domain resource (Frequency @ domain @ resource) to be assigned to the PDSCH in the initial downlink BWP. is assumed. It is assumed that the number of bits of the predetermined field is determined based on the bandwidth of the initial downlink BWP.
  • a predetermined field for example, Frequency domain resource allocation
  • DCI UL grant, DCI format 0_0 or 0_1
  • the number of bits of the predetermined field is determined based on the bandwidth of the initial uplink BWP.
  • the user terminal determines whether the position / bandwidth of CORRESET # 0 determined based on the index (for example, pdcch-ConfigSIB1) in the MIB is information on the initial BWP (band for initial access) (for example, A predetermined field indicating a frequency domain resource allocated to the PDSCH or PUSCH in DCI based on whether or not it overlaps with a position / bandwidth determined based on BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP May be determined.
  • the index for example, pdcch-ConfigSIB1
  • the predetermined field is referred to as a frequency domain resource assignment field (Frequency domain resource allocation), but the name of the predetermined field is not limited to this.
  • the first embodiment may be used alone or in combination with another embodiment. Further, the control of the first aspect may be performed not only by the user terminal (eg, UE) but also by a base station (eg, eNB, gNB: gNodeB, TRP: Transmission ⁇ Reception ⁇ Point).
  • the user terminal is provided with information on the initial BWP by the upper layer, and the position / bandwidth of the RESET # 0 determined based on an index in the MIB is information on the initial BWP. Based on the bandwidth provided by the location / bandwidth information (eg, locationAndBandwidth) in the information on the initial BWP, if it does not overlap with the location / bandwidth determined based on The number of bits may be determined.
  • location / bandwidth information eg, locationAndBandwidth
  • the user terminal determines the number of bits of the frequency domain resource allocation field in DCI based on the bandwidth given by the index (predetermined bits of controlResourceSetZero or pdcch-ConfigSIB1) via the PBCH. You may.
  • the case other than the above may be any of the following cases: If no information about the initial BWP is given by the upper layer, Information on the initial BWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 determined based on the index in the MIB is determined based on the information on the initial BWP / When overlapping with bandwidth.
  • the DCI including the frequency domain resource allocation field may be a DCI (DL assignment) used for PDSCH scheduling or a DCI (UL grant) used for PUSCH scheduling. .
  • FIG. 3 is a diagram illustrating an example of determining the number of bits of the frequency domain resource assignment field in the DL assignment according to the first example.
  • the DL assignment may include at least one of DCI format 1_0 and DCI format 1_1.
  • DCI format 1_0 is shown as an example of the DL assignment, but any DCI used for PDSCH scheduling may be used.
  • the DCI format 1_0 in FIG. 3 may include (include) a cyclic redundancy check (CRC) bit scrambled by a predetermined identifier (CRC may be scrambled).
  • the predetermined identifier is, for example, C-RNTI (Cell-Radio Network Temporary Identifier), P-RNTI (paging-RNTI), SI-RNTI (System Information-RNTI), RA-RNTI (Random Access-RNTI), and TC -At least one of RNTI (Temporary @ Cell-RNTI).
  • the frequency resources allocated to the PDSCH in the bandwidth NDL and BWP RB of the initial downlink BWP are specified by the frequency domain resource allocation field of DCI format 1_0.
  • the frequency resource allocation unit may be an RB or a resource block group (RB) including one or more RBs.
  • the number of bits of the frequency domain resource allocation field may be determined based on the bandwidth NDL and BWP RB of the initial downlink BWP. For example, in FIG. 3, the number of bits is determined based on the following equation (1).
  • the BWP-DownlinkCommon (information on the initial access band) for the initialDownlinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth (position / bandwidth information) of the BWP-DownlinkCommon. If it does not overlap with the given location / bandwidth , NDL, BWP RB in equation (1) may be the bandwidth given by the locationAndBandwidth of the BWP-DownlinkCommon. Note that the determination of the bandwidth based on at least one bit configuring locationAndBandwidth is as described above.
  • BWP-DownlinkCommon for initialDownlinkBWP is not provided by the upper layer, or BWP-DownlinkCommon for initialDownlinkBWP is provided by the upper layer
  • the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-DownlinkCommon. If it overlaps with the given position / bandwidth, NDL , BWP RB in equation (1) is the bandwidth given by the index (such as controlResourceSetZero or a predetermined bit of pdcch-ConfigSIB1) transmitted via PBCH, Is also good.
  • the determination of the bandwidth based on at least one bit constituting the index in the MIB is as described above.
  • the user terminal performs DL assignment based on whether the position / bandwidth of CORRESET # 0 overlaps the position / bandwidth given by locationAndBandwidth of BWP-DownlinkCommon for initialDownlinkBWP given by the upper layer.
  • the number of bits of the frequency domain resource allocation field in the comment may be determined.
  • the BWP-DownlinkCommon for the initialDownlinkBWP is given by the upper layer
  • the RRC message includes the BWP-DownlinkCommon for the initialDownlinkBWP.
  • the hierarchical structure of BWP-DownlinkCommon in SIB1 is exemplified in FIG. 2, for example, but is not limited to this.
  • the RRC message may be an RRC message (for example, an RRC reconfiguration message (RRCReconfiguration @ message)) transmitted in at least one of the handover procedure, the PSCell addition procedure, and the SCell addition procedure.
  • the above equation (1) is merely an example, and the number of bits in the frequency domain resource allocation field may be determined using a method other than the above equation (1).
  • the number of bits in the frequency domain resource allocation field may be determined based on the following equation (2).
  • FIG. 4 is a diagram illustrating an example of determining the number of bits of the frequency domain resource allocation field in the UL grant according to the first example.
  • the UL grant may include at least one of DCI format 0_0 and DCI format 0_1.
  • DCI format 0_0 is shown as an example of the UL grant, but any DCI used for PUSCH scheduling may be used.
  • the DCI format 0_0 in FIG. 4 may be CRC-scrambled by a predetermined identifier.
  • the predetermined identifier may be, for example, at least one of C-RNTI and TC-RNTI.
  • the frequency resources allocated to the PUSCH in the bandwidth N UL, BWP RB of the initial uplink BWP are specified by a frequency domain resource allocation field of DCI format 0_0.
  • the frequency resource allocation unit may be an RB or a resource block group (RB) including one or more RBs.
  • the number of bits of the frequency domain resource allocation field may be determined based on the initial uplink BWP bandwidth N UL, BWP RB .
  • the number of bits is determined based on the following equation (3).
  • BWP-UplinkCommon (information on the initial access band) for initialUplinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth (position / bandwidth information) of the BWP-UplinkCommon. If it does not overlap with the given location / bandwidth, NUL , BWP RB in equation (3) may be the bandwidth given by the locationAndBandwidth of the BWP-UplinkCommon. Note that the determination of the bandwidth based on at least one bit configuring locationAndBandwidth is as described above.
  • the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-UplinkCommon. If it overlaps with the given position / bandwidth, NUL , BWP RB in equation (3) is the bandwidth given by the index (such as a predetermined bit of controlResourceSetZero or pdcch-ConfigSIB1) transmitted via PBCH, Is also good.
  • the index such as a predetermined bit of controlResourceSetZero or pdcch-ConfigSIB1
  • the user terminal can determine whether the location / bandwidth of CORRESET # 0 overlaps with the location / bandwidth given by locationAndBandwidth of BWP-UplinkCommon for initialUplinkBWP given by the upper layer, May be determined in the frequency domain resource allocation field.
  • the upper layer gives BWP-UplinkCommon for initialUplinkBWP may be paraphrased as a case where at least one of the SIB1 and the RRC message includes BWP-UplinkCommon for initialUplinkBWP.
  • the hierarchical structure of BWP-UplinkCommon in SIB1 is exemplified in FIG. 2, for example, but is not limited to this.
  • the RRC message may be an RRC message (for example, an RRC reconfiguration message) transmitted in at least one of the handover procedure, the PSCell addition procedure, and the SCell addition procedure.
  • the above equation (3) is merely an example, and the number of bits in the frequency domain resource allocation field may be determined using a formula other than the above equation (3).
  • the position / bandwidth of CORRESET # 0 is based on information on the initial BWP (initial access band) (for example, BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP).
  • the number of bits in the frequency domain resource allocation field in DCI is determined based on whether or not the position / bandwidth of BWP # 0 is determined by the above method. Therefore, reception of PDSCH allocated by initial BWP or PUSCH Transmission can be properly controlled.
  • bit selection in rate matching (e.g., rate matching for low-density parity-check code (LDCP)) is also required. It is assumed that the bandwidth of the initial downlink BWP / initial uplink BWP is used.
  • LDCP low-density parity-check code
  • the user terminal determines whether the position / bandwidth of CORRESET # 0 determined based on the index (for example, pdcch-ConfigSIB1) in the MIB is information on the initial BWP (initial access band) (for example, Bit selection in PDSCH or PUSCH rate matching may be controlled based on whether or not the position / bandwidth is determined based on BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP.
  • the index for example, pdcch-ConfigSIB1
  • the initial BWP initial access band
  • the description will focus on the differences from the first embodiment.
  • the second aspect may be used alone or in combination with another aspect.
  • the control of the second aspect may be performed by a base station.
  • the user terminal is provided with information on the initial BWP by the upper layer, and the position / bandwidth of the RESET # 0 determined based on an index in the MIB is information on the initial BWP.
  • the user terminal may control bit selection in PDSCH or PUSCH rate matching based on the bandwidth provided by an index (predetermined bits of controlResourceSetZero or pdcch-ConfigSIB1) via the PBCH. Good.
  • the case other than the above may be any of the following cases: If no information about the initial BWP is given by the upper layer, Information on the initial BWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 determined based on the index in the MIB is determined based on the information on the initial BWP / When overlapping with bandwidth.
  • the bit selection in the rate matching means that a predetermined length of a circular buffer (circular buffer) in which an encoded bit sequence is stored is allocated to a resource allocated for transmission (for example, one or more allocated to a PDSCH or a PUSCH). May be a method of selecting a predetermined number of bits (for example, consecutive bits) matching the number of available resource elements (RE: Resource @ Element) in the RBs.
  • a predetermined length of a circular buffer (circular buffer) in which an encoded bit sequence is stored is allocated to a resource allocated for transmission (for example, one or more allocated to a PDSCH or a PUSCH).
  • a resource allocated for transmission for example, one or more allocated to a PDSCH or a PUSCH.
  • rate matching may be, for example, rate matching for LDCP.
  • FIG. 5 is a diagram illustrating an example of control of bit selection in rate matching according to the second example. Note that the bit selection in the rate matching illustrated in FIG. 5 may be applied to rate matching of data (also referred to as a transport block or a code block) transmitted on any of the PDSCH and the PUSCH allocated to the initial BWP. Good.
  • data also referred to as a transport block or a code block
  • a bit sequence of bits N (for example, output bits from an LDCP encoder) d 0 , d 1 ,..., D N ⁇ 1 after encoding is written into a circular buffer having a predetermined length. It is.
  • the number of bits E retrieved from the circular buffer may be determined based on the initial BWP bandwidth.
  • Bit selection in rate matching of DL-SCH (Downlink shared channel), which is a transport channel mapped to PDSCH, will be described in detail.
  • BWP-DownlinkCommon (information on the initial access band) for initialDownlinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is the locationAndBandwidth of the BWP-DownlinkCommon. If the position / bandwidth does not overlap with the position / bandwidth given by (position / bandwidth information), the number of bits E taken out of the circular buffer in FIG. 5 may be determined based on the bandwidth given by locationAndBandwidth of the BWP-DownlinkCommon. Good.
  • the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-DownlinkCommon.
  • the number of bits E extracted from the circular buffer in FIG. 5 is determined by the bandwidth given by an index (such as controlResourceSetZero or a predetermined bit of pdcch-ConfigSIB1) in the MIB transmitted via the PBCH. It may be determined based on the width.
  • BWP-UplinkCommon (information on the initial access band) for the initialUplinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is the locationAndBandwidth of the BWP-UplinkCommon. If it does not overlap with the position / bandwidth given by (specific information), the number of bits E taken out from the circular buffer of FIG. 5 may be determined based on the bandwidth given by the locationAndBandwidth of the BWP-UplinkCommon.
  • the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-UplinkCommon. If it overlaps with the given position / bandwidth, the number of bits E retrieved from the circular buffer in FIG. 5 is based on the bandwidth given by the index (such as controlResourceSetZero or predetermined bits of pdcch-ConfigSIB1) transmitted over the PBCH. May be determined.
  • the position / bandwidth of CORRESET # 0 is based on information on the initial BWP (initial access band) (for example, BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP). Since the bit selection is controlled based on whether or not the position / bandwidth overlaps with the determined position / bandwidth, the user terminal can appropriately control the rate matching of the PDSCH or PUSCH allocated to the initial BWP.
  • initial BWP initial access band
  • the position / bandwidth of CORRESET # 0 is information on the initial BWP (initial access band) (for example, BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP)"
  • the bandwidth for the initial BWP based on whether it overlaps with the location / bandwidth determined based on the DCI is CRC scrambled by a specific RNTI (eg, P-RNTI or SI-RNTI) It may be applied in cases.
  • the determination of the bandwidth for the initial BWP may be determined based on other conditions.
  • the other condition may be, for example, at least one of the following: For example, whether information on the initial BWP is given by the upper layer, -Whether the user terminal is in the RRC connected state.
  • condition used for determining the initial BWP may be changed based on the type of the RNTI in which the DCI is CRC-scrambled.
  • the user terminal sets “the position / bandwidth of CORESET # 0 for the initialDownlinkBWP given by the upper layer. Whether it overlaps with the position / bandwidth given by locationAndBandwidth of BWP-DownlinkCommon ", the number of bits of the frequency domain resource allocation field in the DL assignment may be determined.
  • the DL assignment (for example, DCI format 1_0) CRC-scrambled by P-RNTI or SI-RNTI is used for scheduling downlink information (for example, paging or SIB) having a relatively small data amount. For this reason, when the DL assignment is CRC-scrambled by the P-RNTI or the SI-RNTI, as described above, “the position / bandwidth of CORRESET # 0 is determined by the position / bandwidth determined based on the information on the initial BWP. By determining the size (bandwidth) of the initial BWP based on whether or not the bandwidth overlaps with the bandwidth, it is possible to prevent a reduction in the utilization efficiency of the entire carrier.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 6 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a unit of a system bandwidth (for example, 20 MHz) of an LTE system are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • a base station 11 forming a macro cell C1 having relatively wide coverage
  • a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • user terminals 20 are arranged in the macro cell C1 and each small cell C2.
  • the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
  • CC a plurality of cells
  • Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, or the like
  • a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
  • the same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the base station 11 and the base station 12 may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
  • wire for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)
  • CPRI Common Public Radio Interface
  • the base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
  • the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called.
  • a base station 10 when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier
  • Frequency Division Multiple Access Frequency Division Multiple Access
  • / or OFDMA is applied.
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication.
  • the SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master ⁇ Information ⁇ Block) is transmitted by PBCH.
  • SIB System @ Information @ Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
  • the scheduling information may be notified by DCI.
  • a DCI that schedules DL data reception may be called a DL assignment
  • a DCI that schedules UL data transmission may be called an UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
  • HARQ Hybrid Automatic Repeat Repeat request
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • user data higher layer control information, etc. are transmitted.
  • downlink radio quality information CQI: Channel Quality Indicator
  • acknowledgment information acknowledgment information
  • scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a reference signal for measurement SRS: Sounding Reference Signal
  • DMRS reference signal for demodulation
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 7 is a diagram showing an example of the overall configuration of the base station according to the present embodiment.
  • the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
  • RLC Radio Link Control
  • MAC Medium Access
  • Transmission / reception control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
  • Transceiver 103 transmits a DL signal (for example, at least one of PDCCH (DCI), PDSCH (DL data, upper layer control information), and DL reference signal).
  • a DL signal for example, at least one of PDCCH (DCI), PDSCH (DL data, upper layer control information), and DL reference signal.
  • the transmitting / receiving section 103 receives a UL signal (for example, at least one of PUCCH (UCI), PUSCH (UL data, upper layer control information, UCI), and UL reference signal).
  • a DL signal for example, at least one of PDCCH (DCI), PDSCH (DL data, upper layer control information), and DL reference signal.
  • UL signal for example, at least one of PUCCH (UCI), PUSCH (UL data, upper layer control information, UCI), and UL reference signal.
  • the transmission / reception unit 103 transmits downlink control information including a predetermined field indicating a frequency domain resource allocated to the downlink shared channel (for example, PDSCH) or the uplink shared channel (for example, PUSCH). Further, transmitting / receiving section 103 may transmit MIB via PBCH. Further, the transmitting / receiving section 103 may transmit at least one of the SIB1 and the RRC message.
  • FIG. 8 is a diagram showing an example of a functional configuration of the base station according to the present embodiment.
  • functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
  • the control unit (scheduler) 301 controls the entire base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 controls scheduling (for example, resource allocation) of system information (for example, SIB1), a downlink shared channel (for example, PDSCH), a downlink control channel (for example, PDCCH), and an uplink shared channel (for example, PUSCH). I do.
  • SIB1 system information
  • PDSCH downlink shared channel
  • PDCCH downlink control channel
  • PUSCH uplink shared channel
  • the control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
  • a synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • a downlink reference signal for example, CRS, CSI-RS, and DMRS.
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
  • an uplink data signal for example, a signal transmitted on the PUSCH
  • an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.
  • a random access preamble for example, a PRACH.
  • Transmission signal scheduling of uplink reference signals and the like.
  • control unit 301 may determine the bandwidth of the initial access band (initial BWP) based on whether the state of the user terminal is in the connected state. Further, control section 301 may determine the bandwidth of the initial access band based on whether or not information on the initial access band in the carrier is provided by an upper layer.
  • the control unit 301 determines whether the control resource set determined based on the index provided by the broadcast channel overlaps with the band determined based on the information on the initial access band provided by the higher layer, The bandwidth of the initial access band may be determined.
  • the control unit 301 performs the initial access for the initial access based on the information on the initial access band.
  • the bandwidth of the band may be determined.
  • the control unit 301 determines a bandwidth of the initial access band based on an index given by a broadcast channel. May be determined.
  • the control unit 301 may control the transmission of the downlink shared channel or the reception of the uplink shared channel in the initial access band.
  • control unit 301 determines a bit of a predetermined field (for example, a frequency domain resource allocation field) in downlink control information for scheduling the downlink shared channel or the uplink shared channel based on the determined bandwidth.
  • the number may be determined (first mode).
  • the control unit 301 may control bit selection in rate matching of the downlink shared channel or the uplink shared channel based on the determined bandwidth (second mode).
  • the control unit 301 may control at least one of generation and transmission of the downlink control information. Specifically, the control unit 301 performs a cyclic redundancy check (P-RNTI (paging-Radio Network Network Temporary Identifier)) or SI-RNTI (System Information Information-Radio Network Network Temporary Identifier) on the downlink control information. A CRC (Cyclic ⁇ Redundancy ⁇ Check) bit may be added.
  • P-RNTI paging-Radio Network Network Temporary Identifier
  • SI-RNTI System Information Information-Radio Network Network Temporary Identifier
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates downlink control information (at least one of a DL assignment and a UL grant) based on, for example, an instruction from the control unit 301.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Power for example, RSRP (Reference Signal Received Power)
  • reception quality for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 9 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 receives a DL signal (for example, at least one of a PDCCH (DCI), a PDSCH (DL data, higher layer control information), and a DL reference signal). In addition, the transmission / reception unit 203 transmits a UL signal (for example, at least one of a PUCCH (UCI), a PUSCH (UL data, upper layer control information, UCI), and a UL reference signal).
  • a DL signal for example, at least one of a PDCCH (DCI), a PDSCH (DL data, higher layer control information), and a DL reference signal.
  • a UL signal for example, at least one of a PUCCH (UCI), a PUSCH (UL data, upper layer control information, UCI), and a UL reference signal.
  • the transmission / reception unit 203 receives downlink control information including a predetermined field indicating a frequency domain resource allocated to the downlink shared channel (for example, PDSCH) or the uplink shared channel (for example, PUSCH). Further, transmitting / receiving section 103 may transmit MIB via PBCH. Further, the transmitting / receiving section 203 may receive at least one of the SIB1 and the RRC message.
  • FIG. 10 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • control unit 401 monitors the CORRESET (or the search space) (blind decoding) and detects downlink control information (DCI). Specifically, control section 401 may control detection of DCI including a predetermined field (for example, a frequency domain allocation field) indicating a frequency domain resource allocated to the downlink shared channel or the uplink shared channel.
  • a predetermined field for example, a frequency domain allocation field
  • the control unit 401 may determine the bandwidth of the initial access band (initial BWP) based on whether or not the state of the user terminal is in the connected state. Further, control section 401 may determine the bandwidth of the initial access band based on whether or not information on the initial access band in the carrier is provided by an upper layer.
  • the control unit 401 determines whether the control resource set determined based on the index provided by the broadcast channel overlaps with the band determined based on the information on the initial access band provided by the upper layer, The bandwidth of the initial access band may be determined.
  • control unit 401 when the control resource set does not overlap with the band determined based on the information on the initial access band, the control unit 401 performs the initial access for the initial access based on the information on the initial access band.
  • the bandwidth of the band may be determined.
  • the control unit 401 determines a bandwidth of the initial access band based on an index given by a broadcast channel. May be determined.
  • the control unit 401 may control reception of the downlink shared channel or transmission of the uplink shared channel in the initial access band.
  • the control unit 401 determines a bit of a predetermined field (for example, a frequency domain resource allocation field) in downlink control information for scheduling the downlink shared channel or the uplink shared channel.
  • the number may be determined (first mode).
  • the control unit 401 may control bit selection in rate matching of the downlink shared channel or the uplink shared channel based on the determined bandwidth (second mode).
  • the downlink control information is added with a cyclic redundancy check (CRC: Cyclic Redundancy Check) bit scrambled by P-RNTI (paging-Radio Network Temporary Identifier) or SI-RNTI (System Information-Radio Network Network Temporary Identifier). May be.
  • CRC Cyclic Redundancy Check
  • control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measuring unit 405 measures the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI).
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated from each other. Alternatively, they may be connected indirectly (for example, using wired and / or wireless communication) and implemented using these multiple devices.
  • the base station, the user terminal, and the like according to the present embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. , And controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting / receiving device) for performing communication between computers via a wired and / or wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize, for example, Frequency Division Duplex (FDD) and / or Time Division Duplex (TDD). It may be configured.
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • channels and / or symbols may be signals.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured by one or a plurality of periods (frames) in a time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • the subframe and / or TTI may be a subframe (1 ms) in the existing LTE, may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time interval (for example, the number of symbols) to which a transport block, a code block, and / or a codeword are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms
  • the TTI having the above-described TTI length may be replaced with the TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in a time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI and one subframe may each be configured by one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
  • the information, parameters, and the like described in this specification may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may use another corresponding information. May be expressed as For example, a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in this specification are not restrictive in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so that various channels assigned to these various channels and information elements can be identified.
  • the nomenclature is not a limiting name in any respect.
  • information, signals, and the like can be output from an upper layer to a lower layer and / or from a lower layer to an upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in this specification, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.), the website, server, etc. , Or when transmitted from another remote source, these wired and / or wireless technologies are included within the definition of the transmission medium.
  • system and “network” are used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier”, and “component”
  • carrier may be used interchangeably.
  • a base station may also be called a fixed station (fixed @ station), NodeB, eNodeB (eNB), access point (access @ point), transmission point, reception point, femtocell, small cell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
  • RRH small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station can be a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, by one of ordinary skill in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the base station in this specification may be replaced with a user terminal.
  • each aspect / embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as “side”.
  • an uplink channel may be read as a side channel.
  • the user terminal in this specification may be replaced by the base station.
  • the base station 10 has the function of the user terminal 20 described above may be adopted.
  • the operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification may be used alone, may be used in combination, or may be used by switching with execution.
  • the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in this specification may be interchanged as long as there is no inconsistency.
  • the methods described herein present elements of various steps in a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation
  • 5G 5th generation mobile communication system
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand), Bluetooth (registered trademark)
  • any reference to elements using designations such as "first,” “second,” etc., as used herein, does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “determining” means calculating, computing, processing, deriving, investigating, looking up (eg, a table, database, or other data). It may be regarded as “determining” such as searching in a structure), ascertaining, and the like. Also, “determining” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like. Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • connection means any direct or indirect connection or indirect connection between two or more elements. Coupling is meant and may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain can be considered “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

User equipment pertaining to an embodiment of the present disclosure is equipped with: a reception unit for receiving downlink control information including a predetermined field indicating a frequency domain resource to be allocated to a downlink shared channel or to an uplink shared channel; and a control unit for, on the basis of whether or not a control resource set determined on the basis of an index provided by a broadcast channel overlaps with a band determined on the basis of initial access band information provided by a higher layer, determining a bandwidth for the initial access band.

Description

ユーザ端末User terminal
 本開示は、次世代移動通信システムにおけるユーザ端末に関する。 The present disclosure relates to a user terminal in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。 In a UMTS (Universal Mobile Telecommunications System) network, long term evolution (LTE: Long Term Evolution) has been specified for the purpose of higher data rates and lower delays (Non-Patent Document 1). Also, LTE-A (LTE Advanced, LTE @ Rel. 10, 11, 12, 13) has been specified for the purpose of further increasing the capacity and sophistication of LTE (LTE @ Rel. 8, 9).
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。 Succession system of LTE (for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel. 14 or 15 or later) are also being studied.
 既存のLTEシステム(例えば、LTE Rel.8-14)では、ユーザ端末(UE:User Equipment)は、基地局(例えば、eNB:eNodeB)からの下りリンク制御情報(DCI:Downlink Control Information)(下りリンク(DL:Downlink)アサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。 In an existing LTE system (for example, LTE@Rel.8-14), a user terminal (UE: User @ Equipment) transmits downlink control information (DCI: Downlink @ Control @ Information) (downlink) from a base station (for example, eNB: eNodeB). It controls reception of a downlink shared channel (for example, PDSCH: Physical {Downlink} Shared} Channel) based on a link (DL: Downlink) assignment or the like.
 また、ユーザ端末は、基地局からのDCI(上りリンク(UL:Uplink)グラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。なお、DCIは、物理レイヤの制御信号の一つであり、下り制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))を用いてユーザ端末に送信される。 ユ ー ザ Also, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as uplink (UL) grant) from the base station. Note that DCI is one of the control signals of the physical layer, and is transmitted to the user terminal using a downlink control channel (for example, PDCCH (Physical Downlink Control Channel)).
 将来の無線通信システム(例えば、NR、5G、5G+、Rel.15以降)では、上記既存のLTEシステムのキャリア(例えば、最大20MHz)よりも広い帯域幅のキャリア(例えば、100~400MHz)を用いることが想定される。このため、ユーザ端末に対して、当該キャリア内の部分的な一以上の帯域を設定し、当該一以上の帯域の少なくとも一つを用いて通信を行うことが検討されている。当該キャリア内の部分的な帯域は、例えば、帯域幅部分(BWP:Bandwidth part)等と呼ばれる。 In a future wireless communication system (for example, NR, 5G, 5G +, Rel. 15 or later), a carrier (for example, 100 to 400 MHz) having a wider bandwidth than the carrier (for example, up to 20 MHz) of the existing LTE system is used. It is assumed that For this reason, it has been studied to set one or more bands in the carrier for the user terminal and perform communication using at least one of the one or more bands. A partial band in the carrier is called, for example, a bandwidth portion (BWP: Bandwidth @ part) or the like.
 また、当該将来の無線通信システムでは、キャリア内に初期アクセス用のBWP(初期BWP等ともいう)を設けることも検討されている。この場合、ユーザ端末は、初期BWP内に割り当てられる下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信及び上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信の少なくとも一つをどのように制御するかが問題となる。 In addition, in the future wireless communication system, provision of a BWP for initial access (also referred to as an initial BWP or the like) in a carrier is being studied. In this case, the user terminal determines at least one of the reception of the downlink shared channel (eg, PDSCH: Physical Downlink Shared Channel) and the transmission of the uplink shared channel (eg, PUSCH: Physical Uplink Shared Channel) allocated in the initial BWP. The problem is how to control it.
 本発明はかかる点に鑑みてなされたものであり、初期BWP内に割り当てられる下り共有チャネルの受信及び上り共有チャネルの送信の少なくとも一つを適切に制御可能なユーザ端末を提供することを目的の一つとする。 The present invention has been made in view of the above, and has as its object to provide a user terminal capable of appropriately controlling at least one of reception of a downlink shared channel and transmission of an uplink shared channel allocated in an initial BWP. One.
 本開示の一態様に係るユーザ端末は、下り共有チャネル又は上り共有チャネルに割り当てられる周波数領域リソースを示す所定フィールドを含む下り制御情報を受信する受信部と、ブロードキャストチャネルにより与えられるインデックスに基づいて決定される制御リソースセットが、上位レイヤによって与えられる初期アクセス用帯域に関する情報に基づいて決定される帯域と重複するか否かに基づいて、前記初期アクセス用帯域の帯域幅の決定する制御部と、を具備する。 A user terminal according to an aspect of the present disclosure is configured to determine based on a receiving unit that receives downlink control information including a predetermined field indicating a frequency domain resource allocated to a downlink shared channel or an uplink shared channel, and an index given by a broadcast channel. A control unit that determines the bandwidth of the initial access band based on whether the control resource set to be overlapped with the band determined based on the information on the initial access band given by the upper layer, Is provided.
 本開示の一態様によれば、初期BWP内に割り当てられる下り共有チャネルの受信及び上り共有チャネルの送信の少なくとも一つを適切に制御できる。 According to an aspect of the present disclosure, it is possible to appropriately control at least one of reception of a downlink shared channel and transmission of an uplink shared channel allocated in the initial BWP.
図1は、MIBに基づく初期BWPの帯域幅の決定の一例を示す図である。FIG. 1 is a diagram illustrating an example of determination of a bandwidth of an initial BWP based on MIB. 図2は、SIB1に基づく初期BWPの帯域幅の決定の一例を示す図である。FIG. 2 is a diagram illustrating an example of determining an initial BWP bandwidth based on SIB1. 図3は、第1の態様に係るDLアサインメント内の周波数領域リソース割り当てフィールドのビット数の決定の一例を示す図である。FIG. 3 is a diagram illustrating an example of determining the number of bits of the frequency domain resource allocation field in the DL assignment according to the first example. 図4は、第1の態様に係るULグラント内の周波数領域リソース割り当てフィールドのビット数の決定の一例を示す図である。FIG. 4 is a diagram illustrating an example of determining the number of bits of the frequency domain resource allocation field in the UL grant according to the first example. 図5は、第2の態様に係るレートマッチングにおけるビット選択の制御の一例を示す図である。FIG. 5 is a diagram illustrating an example of control of bit selection in rate matching according to the second example. 図6は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment. 図7は、本実施の形態に係る基地局の全体構成の一例を示す図である。FIG. 7 is a diagram showing an example of the overall configuration of the base station according to the present embodiment. 図8は、本実施の形態に係る基地局の機能構成の一例を示す図である。FIG. 8 is a diagram showing an example of a functional configuration of the base station according to the present embodiment. 図9は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。FIG. 9 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. 図10は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. 図11は、本実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment.
 将来の無線通信システム(例えば、NR、5G、5G+、Rel.15以降)では、既存のLTEシステム(例えば、Rel.8-13)のキャリア(例えば、20MHz)よりも広い帯域幅のキャリア(例えば、100~400MHz)を用いることが想定される。このため、ユーザ端末に対して、当該キャリア内の部分的な一以上の帯域を設定し、当該一以上の帯域の少なくとも一つを用いて通信を行うことが検討されている。 In future wireless communication systems (eg, NR, 5G, 5G +, Rel. 15 or later), carriers (eg, 20 MHz) with a wider bandwidth than carriers (eg, 20 MHz) of existing LTE systems (eg, Rel. 8-13) , 100 to 400 MHz). For this reason, it has been studied to set one or more bands in the carrier for the user terminal and perform communication using at least one of the one or more bands.
 当該キャリアは、コンポーネントキャリア(CC:Component Carrier)、セル、サービングセル、システム帯域幅等とも呼ばれる。また、当該キャリア内の部分的な帯域は、例えば、帯域幅部分(BWP:Bandwidth part)等と呼ばれる。BWPには、上り用のBWP(上りBWP)と、下り用のBWP(下りBWP)とが含まれてもよい。 The carrier is also called a component carrier (CC: Component @ Carrier), a cell, a serving cell, a system bandwidth, or the like. A partial band in the carrier is called, for example, a bandwidth portion (BWP: Bandwidth @ part). The BWP may include a BWP for uplink (uplink BWP) and a BWP for downlink (downlink BWP).
 例えば、ユーザ端末に対しては、一以上のBWP(一以上の上りBWP及び一以上の下りBWPの少なくとも一つ)が設定され、設定されたBWPの少なくとも一つがアクティブ化されてもよい。アクティブ化されているBWPは、アクティブBWP等とも呼ばれる。 For example, for a user terminal, one or more BWPs (at least one of one or more uplink BWPs and one or more downlink BWPs) may be set, and at least one of the set BWPs may be activated. The activated BWP is also called an active BWP or the like.
 また、ユーザ端末に対しては、初期アクセス用のBWP(初期BWP(initial BWP))が設定されてもよい。初期BWPは、下り用の初期BWP(初期下りBWP(initial downlink BWP))及び上り用の初期BWP(初期上りBWP(initial uplink BWP))の少なくとも一つが含まれてもよい。 B Also, a BWP for initial access (initial BWP (initial @ BWP)) may be set for the user terminal. The initial BWP may include at least one of an initial BWP for downlink (initial downlink BWP (initial @ downlink @ BWP)) and an initial BWP for uplink (initial uplink BWP (initial @ uplink @ BWP)).
 初期アクセスでは、例えば、同期信号の検出、ブロードキャスト情報(例えば、マスター情報ブロック(MIB:Master Information Block))の取得、ランダムアクセスによる接続の確立の少なくとも一つが行われてもよい。 In the initial access, for example, at least one of detection of a synchronization signal, acquisition of broadcast information (for example, a master information block (MIB: Master Information Block)), and establishment of a connection by random access may be performed.
 初期BWPの帯域幅は、ブロードキャストチャネル(PBCH:Physical Broadcast Channel、P-BCH等ともいう)を介して送信されるMIB内のインデックス(pdcch-ConfigSIB1、RMSI-PDCCH-Config、ControlResourceSetZero等ともいう)に基づいて設定されてもよい。 The bandwidth of the initial BWP is set to an index (also referred to as pdcch-ConfigSIB1, RMSI-PDCCH-Config, ControlResourceSetZero, etc.) in the MIB transmitted via a broadcast channel (PBCH: Physical Broadcast Channel, also referred to as P-BCH, etc.). It may be set based on this.
 図1は、MIB内のインデックスに基づく初期BWPの帯域幅の決定の一例を示す図である。図1に示すように、MIBには、システム情報(例えば、SIB1:System Information Block 1、RMSI:Remaining Minimum System Information)用のPDCCHに関する設定情報(pdcch-ConfigSIB1、RMSI-PDCCH-Config等ともいう)が含まれてもよい。 FIG. 1 is a diagram illustrating an example of determining a bandwidth of an initial BWP based on an index in the MIB. As shown in FIG. 1, the MIB includes configuration information (also referred to as pdcch-ConfigSIB1, RMSI-PDCCH-Config, etc.) on the PDCCH for system information (for example, SIB1: System Information Block 1, RMSI: Remaining Minimum System Information). May be included.
 pdcch-ConfigSIB1は、所定の制御リソースセット(CORESET:Control Resource Set)に関する情報(ControlResourceSetZero)及び所定のサーチスペースに関する情報(SearchSpaceZero)の少なくとも一つを含んでもよい。ここで、CORESETとは、下り制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))の割当て候補領域である。 $ Pdcch-ConfigSIB1 may include at least one of information (ControlResourceSetZero) related to a predetermined control resource set (CORESET: Control @ Resource @ Set) and information (SearchSpaceZero) related to a predetermined search space. Here, CORESET is a candidate area for assignment of a downlink control channel (for example, PDCCH (Physical Downlink Control Channel)).
 ControlResourceSetZeroは、例えば、CORESET#0の決定に用いられる情報(例えば、CORESET#0の帯域幅(リソースブロック数)、シンボル数、オフセット等の少なくとも一つに関連付けられる所定ビット数(例えば、4ビット)のインデックス)であってもよい。 ControlResourceSetZero is, for example, a predetermined number of bits (for example, 4 bits) associated with at least one of information (for example, a bandwidth (number of resource blocks) of CORESET # 0, a number of symbols, an offset, etc.) used for determining CORESET # 0. Index).
 CORESET#0とは、例えば、SIB1(又はRMSI)用のCORESETであり、SIB1を伝送する下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)のスケジューリングに用いられるがPDCCH(又はDCI)が配置されるCORESETであってもよい。CORESET#0は、SIB1用のCORESET、controlResourceSetZero、共通CORESET(common CORESET)、共通CORESET#0、セル固有(cell specific)のCORESET、タイプ0のPDCCH共通サーチスペース(Type0-PDCCH common search space)用のCORESET等とも呼ばれる。 The coreset # 0 is, for example, a coreset for SIB1 (or RMSI), and is used for scheduling of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel) for transmitting SIB1, but a PDCCH (or DCI) is arranged. May be a reset. Coreset # 0 is a coreset for SIB1, a controlResourceSetZero, a common coreset (common @ coreset), a common coreset # 0, a cell-specific coreset, and a type-0 PDCCH common search space (Type0-PDCCH @ common @ search @ space). Also referred to as CORESET.
 SearchSpaceZeroは、例えば、サーチスペース#0の決定に用いられる情報(例えば、サーチスペース#0の配置されるスロットの決定に用いられる所定のパラメータM及びO、スロットあたりのサーチスペースセットの数、第1シンボルのインデックス等の少なくとも一つに関連付けられる所定ビット数(例えば、4ビット)のインデックス)であってもよい。 SearchSpaceZero includes, for example, information used for determining search space # 0 (for example, predetermined parameters M and O used for determining a slot in which search space # 0 is arranged, the number of search space sets per slot, The index may be a predetermined number of bits (for example, an index of 4 bits) associated with at least one of a symbol index and the like.
 サーチスペース#0は、例えば、SIB1(又はRMSI)用のサーチスペースであり、SIB1を伝送するPDSCHのスケジューリングに用いられるPDCCHの候補を含んでもよい。サーチスペース#0は、共通サーチスペース、タイプ0のPDCCH共通サーチスペース、PDCCHモニタリング機会(monitoring occasions)、SIB1用のサーチスペース又はRMSI用のサーチスペース等とも呼ばれる。 The search space # 0 is, for example, a search space for SIB1 (or RMSI), and may include a PDCCH candidate used for scheduling the PDSCH for transmitting SIB1. The search space # 0 is also called a common search space, a type 0 PDCCH common search space, a PDCCH monitoring opportunity (monitoring @ occasions), a search space for SIB1, a search space for RMSI, and the like.
 例えば、図1では、ユーザ端末は、ControlResourceSetZero又はpdcch-ConfigSIB1の所定ビット(例えば、最上位4ビット(MSB:Most Significant bit)又は最下位4ビット(LSB:Least Significant bit))が示すインデックスに関連付けられるリソースブロック(RB:Resource Block)の数(NCORESET RB)を、初期BWPの帯域幅として決定してもよい。図1では、初期BWPの帯域幅(RB数)は、24、48又は96のいずれかに決定される。 For example, in FIG. 1, the user terminal is associated with an index indicated by a predetermined bit (for example, the most significant 4 bits (MSB: Most Significant bit) or the least significant 4 bits (LSB: Least Significant bit)) of ControlResourceSetZero or pdcch-ConfigSIB1. The number of resource blocks (RBs) (N CORESET RB ) to be allocated may be determined as the bandwidth of the initial BWP. In FIG. 1, the bandwidth (the number of RBs) of the initial BWP is determined to be 24, 48, or 96.
 なお、図1においてインデックスに関連付けられる値は一例にすぎず、図示するものに限られない。例えば、各値は、最小チャネル帯域幅(minimum channel bandwidth)、サブキャリア間隔(subcarrier spacing)の少なくとも一つに基づいて変更されてもよい。また、図1に示すMIB内のパラメータの階層構造は一例にすぎず、図示するものに限られない。 In addition, the value associated with the index in FIG. 1 is only an example, and is not limited to the illustrated value. For example, each value may be changed based on at least one of a minimum channel bandwidth (minimum channel bandwidth) and a subcarrier interval (subcarrier spacing). Further, the hierarchical structure of the parameters in the MIB shown in FIG. 1 is merely an example, and is not limited to the illustrated one.
 また、当該初期BWPの帯域幅は、所定のCORESET(例えば、上記CORESET#0)を構成するRB数(帯域幅)と言い換えられてもよい。当該所定のCORESETには、一以上のサーチスペース(例えば、上記サーチスペース#0、タイプ0のPDCCH共通サーチスペース)が関連付けられてもよい。 {In addition, the bandwidth of the initial BWP may be rephrased as the number of RBs (bandwidth) constituting a predetermined CORESET (for example, the above-mentioned CORESET # 0). One or more search spaces (for example, the search space # 0, type 0 PDCCH common search space) may be associated with the predetermined CORESET.
 以上のように、MIB内のインデックス(ControlResourceSetZero又はpdcch-ConfigSIB1の所定ビット(例えば、4MSB又は4LSB))に基づいて決定される初期BWPの帯域幅は、24、48、90の3つの帯域幅に限定される恐れがある。ユーザ端末の能力(UE capability)によっては、ユーザ端末は、1BWPのみをサポートすることも想定されることから、初期BWPの帯域幅が当該3つの帯域幅に限定されることは望ましくない。 As described above, the bandwidth of the initial BWP determined based on the index (predetermined bit (for example, 4 MSB or 4 LSB) of ControlResourceSetZero or pdcch-ConfigSIB1) in the MIB is three bandwidths of 24, 48, and 90. May be limited. Depending on the capability of the user terminal (UE @ capability), the user terminal is also assumed to support only 1 BWP, so it is not desirable that the bandwidth of the initial BWP is limited to the three bandwidths.
 そこで、SIB1に基づいて、初期BWPの帯域幅を指定することも検討されている。なお、ユーザ端末は、MIB内のインデックス(ControlResourceSetZero又はpdcch-ConfigSIB1の所定ビット(例えば、4MSB又は4LSB))に基づいて決定される所定のCORESET(例えば、CORESET#0)を監視(monitor)(ブラインド復号)してDCIを検出し、当該DCIによりスケジューリングされるPDSCHを用いて、SIB1を受信する。また、ユーザ端末は、MIB内のインデックス(SearchSpaceZero又はpdcch-ConfigSIB1の所定ビット(例えば、4MSB又は4LSB))に基づいて決定されるサーチスペース(例えば、サーチスペース#0)を監視(ブラインド復号)して当該DCIを検出してもよい。 Therefore, designating the bandwidth of the initial BWP based on SIB1 is also being studied. The user terminal monitors (blind) a predetermined CORESET (for example, RESET # 0) determined based on an index (a predetermined bit (for example, 4MSB or 4LSB) of the ControlResourceSetZero or pdcch-ConfigSIB1) in the MIB. Decoding) to detect DCI, and receive SIB1 using the PDSCH scheduled by the DCI. Also, the user terminal monitors (blind decodes) a search space (for example, search space # 0) determined based on an index (SearchSpaceZero or a predetermined bit (for example, 4MSB or 4LSB) of pdcch-ConfigSIB1) in the MIB. The DCI may be detected in this way.
 図2は、SIB1に基づく初期BWPの帯域幅の決定の一例を示す図である。図2に示すように、SIB1には、初期BWPの周波数領域の位置(frequency domain location)及び帯域幅の少なくとも一つ(位置/帯域幅)の決定に用いられる情報(位置/帯域幅情報、特定の情報等ともいう、例えば、locationAndBandwidth)が含まれてもよい。locationAndBandwidthは、所定ビット数(例えば、15ビット)で構成されてもよい。 FIG. 2 is a diagram illustrating an example of determination of an initial BWP bandwidth based on SIB1. As shown in FIG. 2, the SIB1 includes information (position / bandwidth information, identification) used for determining at least one of the frequency domain position (frequency @ domain @ location) and the bandwidth (position / bandwidth) of the initial BWP. For example, locationAndBandwidth) may be included. locationAndBandwidth may be composed of a predetermined number of bits (for example, 15 bits).
 ユーザ端末は、locationAndBandwidthの少なくとも一つのビットに基づいて、初期BWPの帯域幅(RB数)を決定してもよい。例えば、ユーザ端末は、所定のインデックスとRB数とを少なくとも関連付けるテーブルにおいて、locationAndBandwidthの少なくとも一つのビットが示すインデックスに関連付けられるRB数を、初期BWPの帯域幅として決定してもよい。 The user terminal may determine the bandwidth (the number of RBs) of the initial BWP based on at least one bit of locationAndBandwidth. For example, the user terminal may determine the number of RBs associated with the index indicated by at least one bit of locationAndBandwidth as a bandwidth of the initial BWP in a table that associates at least a predetermined index with the number of RBs.
 また、ユーザ端末は、locationAndBandwidthの少なくとも一つのビットに基づいて、初期BWPの周波数領域の位置を決定してもよい。当該周波数領域の位置は、キャリア内の基準となるリソースブロック(参照リソースブロック(reference resource block)、共通RB0等ともいう)の最低のサブキャリア(lowest subcarrier)(ポイントA)からの距離(RB数)で示されてもよい。ユーザ端末は、locationAndBandwidthの少なくとも一つのビットによって指定される上記距離に基づいて、上記初期BWPの周波数領域の位置を決定してもよい。 (4) The user terminal may determine the position of the initial BWP frequency domain based on at least one bit of locationAndBandwidth. The position of the frequency domain is determined by the distance (the number of RBs) from the lowest subcarrier (point A) of the reference resource block (reference resource block (reference resource block), common RB0, etc.) in the carrier. ). The user terminal may determine the position of the frequency domain of the initial BWP based on the distance specified by at least one bit of locationAndBandwidth.
 図2に示すように、SIB1には、セル固有のパラメータの設定情報(例えば、ServingCellConfigCommon)が含まれてもよい。ServingCellConfigCommonには、初期下りBWPに関する情報(例えば、initialDownlinkBWP)が含まれてもよい。initialDownlinkBWP用には、セル固有の共通パラメータ(BWP-DownlinkCommon)が提供(provide)されてもよい。BWP-DownlinkCommonには、上述のlocationAndBandwidth等が含まれてもよい。 SIAs shown in FIG. 2, SIB1 may include cell-specific parameter setting information (for example, ServingCellConfigCommon). ServingCellConfigCommon may include information on the initial downlink BWP (for example, initialDownlinkBWP). For initialDownlinkBWP, a cell-specific common parameter (BWP-DownlinkCommon) may be provided. The BWP-DownlinkCommon may include the above-mentioned locationAndBandwidth and the like.
 ユーザ端末は、initialDownlinkBWP用に提供されるBWP-DownlinkCommon内のlocationAndBandwidthに基づいて、初期下りBWPの位置/帯域幅を決定してもよい。 The user terminal may determine the position / bandwidth of the initial downlink BWP based on the locationAndBandwidth in the BWP-DownlinkCommon provided for the initialDownlinkBWP.
 また、ServingCellConfigCommonには、上りの共通の設定情報(例えば、UplinkConfigCommon)が含まれてもよい。UplinkConfigCommonには、初期上りBWPに関する情報(例えば、initialUplinkBWP)が含まれてもよい。initialUplinkBWP用には、セル固有の共通パラメータ(例えば、BWP-UplinkCommon)が提供(provide)されてもよい。BWP-UplinkCommonには、上述のlocationAndBandwidth等が含まれてもよい。 Serv Also, the ServingCellConfigCommon may include common configuration information of the uplink (for example, UplinkConfigCommon). UplinkConfigCommon may include information on the initial uplink BWP (for example, initialUplinkBWP). For initialUplinkBWP, a cell-specific common parameter (eg, BWP-UplinkCommon) may be provided. The BWP-UplinkCommon may include the above-mentioned locationAndBandwidth and the like.
 ユーザ端末は、initialUplinkBWP用に提供されるBWP-UplinkCommon内のlocationAndBandwidthに基づいて、初期上りBWPの位置/帯域幅を決定してもよい。 The user terminal may determine the position / bandwidth of the initial uplink BWP based on the locationAndBandwidth in the BWP-UplinkCommon provided for the initialUplinkBWP.
 なお、図2に示すパラメータの階層構造は一例にすぎず、図示するものに限られない。例えば、図2では、初期下りBWPに関する情報(例えば、initialDownlinkBWP用に与えられるBWP-DownlinkCommon)は、ServingCellConfigCommonに含まれるが、SIB1内のどのような階層のどのような情報項目(IE:Information Element)に含まれてもよい。また、初期下りBWPの位置/帯域幅情報(例えば、locationAndBandwidth)は、initialDownlinkBWP用に与えられるBWP-DownlinkCommonに含まれるが、どのような階層のどのようなIEに含まれてもよい。 The hierarchical structure of the parameters shown in FIG. 2 is merely an example, and is not limited to the illustrated one. For example, in FIG. 2, information about the initial downlink BWP (for example, BWP-DownlinkCommon given for initialDownlinkBWP) is included in ServingCellConfigCommon, but what information item (IE: Information @ Element) of what hierarchy in SIB1 May be included. Further, the position / bandwidth information (for example, locationAndBandwidth) of the initial downlink BWP is included in the BWP-DownlinkCommon provided for the initialDownlinkBWP, but may be included in any IE of any hierarchy.
 また、初期上りBWPに関する情報(例えば、initialUplinkBWP用に与えられるBWP-UplinkCommon)は、ServingCellConfigCommon内のUplinkConfigCommonに含まれるが、SIB1内のどのような階層のどのようなIEに含まれてもよい。また、初期上りBWPの位置/帯域幅情報(例えば、locationAndBandwidth)は、initialUplinkBWP用に与えられるBWP-UplinkCommonに含まれるが、どのような階層のどのようなIEに含まれてもよい。 情報 In addition, information on the initial uplink BWP (for example, BWP-UplinkCommon given for initialUplinkBWP) is included in UplinkConfigCommon in ServingCellConfigCommon, but may be included in any IE of any hierarchy in SIB1. Further, the position / bandwidth information (for example, locationAndBandwidth) of the initial uplink BWP is included in the BWP-UplinkCommon provided for the initialUplinkBWP, but may be included in any IE of any hierarchy.
 なお、上記locationAndBandwidthに基づいて位置/帯域幅が決定されるBWPは、BWP#0、初期BWP等と呼ばれてもよい。 The BWP for which the position / bandwidth is determined based on the locationAndBandwidth may be called BWP # 0, initial BWP, or the like.
 このように、SIB1内に初期BWPに関する情報(例えば、initialDownlinkBWP用のBWP-DownlinkCommon及びinitialUplinkBWP用のBWP-UplinkCommonの少なくとも一つ)が含まれる場合、初期BWPとして、MIB内のpdcch-ConfigSIB1に基づいて決定される帯域(CORESET#0)と、SIB1内のlocationAndBandwidthに基づいて決定される帯域(BWP#0)との双方が存在し得る。 As described above, when the information on the initial BWP is included in the SIB1 (for example, at least one of the BWP-DownlinkCommon for the initialDownlinkBWP and the BWP-UplinkCommon for the initialUplinkBWP), as the initial BWP, based on the pdcch-ConfigSIB1 in the MIB. There may be both a determined band (CORESET # 0) and a band (BWP # 0) determined based on locationAndBandwidth in SIB1.
 このため、ユーザ端末が、MIB内のpdcch-ConfigSIB1に基づくCORESET#0と、SIB1内のlocationAndBandwidthに基づくBWP#0とのどちらに基づいて、初期下りBWP/初期上りBWP内におけるPDSCHの受信及びPUSCHの送信の少なくとも一つを制御するかが問題となる。 For this reason, the user terminal receives the PDSCH in the initial downlink BWP / initial uplink BWP and performs PUSCH based on which of the RESET # 0 based on the pdcch-ConfigSIB1 in the MIB and the BWP # 0 based on the locationAndBandwidth in the SIB1. The problem is how to control at least one of the transmissions.
 同様の問題は、当該位置/帯域幅情報(例えば、locationAndBandwidth)が、上記SIB1内に含まれる場合だけでなく、無線リソース制御(RRC:Radio Resource Control)メッセージ(例えば、RRC再構成(reconfiguration)メッセージ)に含まれる場合等にも生じ得る。 A similar problem occurs not only when the location / bandwidth information (for example, locationAndBandwidth) is included in the SIB1 but also for a radio resource control (RRC: Radio @ Resource @ Control) message (for example, an RRC reconfiguration (reconfiguration) message). ) May occur.
 そこで、当該初期BWPに関する情報(例えば、initialDownlinkBWP用のBWP-DownlinkCommon及びinitialUplinkBWP用のBWP-UplinkCommonの少なくとも一つ)が上位レイヤによって与えられる場合、ユーザ端末は、位置/帯域幅情報(例えば、locationAndBandwidth)に基づいて決定されるBWP#0の位置/帯域幅に基づいて、初期下りBWP/初期上りBWP内におけるPDSCHの受信及びPUSCHの送信の少なくとも一つを制御することが検討されている。 Therefore, when information on the initial BWP (for example, at least one of BWP-DownlinkCommon for initialDownlinkBWP and BWP-UplinkCommon for initialUplinkBWP) is provided by the upper layer, the user terminal performs position / bandwidth information (for example, locationAndBandwidth). The control of at least one of PDSCH reception and PUSCH transmission in the initial downlink BWP / initial uplink BWP based on the position / bandwidth of BWP # 0 determined based on the above is considered.
 しかしながら、当該BWP#0の帯域幅は、MIB内のpdcch-ConfigSIB1に基づいて決定される帯域幅(例えば、24、48、96RB)よりも広い帯域幅であることが想定される。したがって、当該初期BWPに関する情報が上位レイヤによって与えられる場合に、一律にBWP#0の位置/帯域幅を決定すると、初期BWP用に必要以上に広い帯域幅が決定される結果、キャリア全体の利用効率が低下する恐れがある。 However, it is assumed that the bandwidth of the BWP # 0 is wider than the bandwidth (for example, 24, 48, 96 RB) determined based on pdcch-ConfigSIB1 in the MIB. Therefore, when the information on the initial BWP is given by the upper layer, if the position / bandwidth of BWP # 0 is determined uniformly, a bandwidth wider than necessary for the initial BWP is determined, and as a result, the entire carrier is used. Efficiency may be reduced.
 そこで、本発明者らは、MIB内のpdcch-ConfigSIB1に基づいて決定されるCORESET#0が、上位レイヤによって与えられる初期BWPに関する情報に基づいて決定されるBWP#0と重複(overlap)するか否かに基づいて、初期BWPの帯域幅を決定することを着想した。 Therefore, the present inventor determines whether CORESET # 0 determined based on pdcch-ConfigSIB1 in the MIB overlaps BWP # 0 determined based on information on the initial BWP given by the upper layer. The idea was to determine the bandwidth of the initial BWP based on whether or not.
 以下、本実施の形態について、図面を参照して詳細に説明する。 Hereinafter, the present embodiment will be described in detail with reference to the drawings.
 本実施の形態において、ユーザ端末は、MIB内のpdcch-ConfigSIB1に基づいて決定されるCORESET#0が、上位レイヤによって与えられる初期BWPに関する情報に基づいて決定されるBWP#0と重複しない場合、初期BWPの位置/帯域幅として、当該BWP#0の位置/帯域幅を決定してもよい。 In the present embodiment, when the user terminal determines that RESET # 0 determined based on pdcch-ConfigSIB1 in the MIB does not overlap with BWP # 0 determined based on information on the initial BWP provided by the upper layer, The position / bandwidth of the BWP # 0 may be determined as the position / bandwidth of the initial BWP.
 一方、ユーザ端末は、MIB内のpdcch-ConfigSIB1に基づいて決定されるCORESET#0が、上位レイヤによって与えられる初期BWPに関する情報に基づいて決定されるBWP#0と重複する場合、初期BWPの位置/帯域幅として、当該CORESET#0の位置/帯域幅を決定してもよい。 On the other hand, if the RESET # 0 determined based on the pdcch-ConfigSIB1 in the MIB overlaps the BWP # 0 determined based on the information on the initial BWP given by the upper layer, the position of the initial BWP As the / bandwidth, the position / bandwidth of the CORRESET # 0 may be determined.
 なお、本実施の形態において、「MIB内のpdcch-ConfigSIB1に基づいて決定されるCORESET#0が、上位レイヤによって与えられる初期BWPに関する情報に基づいて決定されるBWP#0と重複する」とは、CORESET#0の位置/帯域幅がBWP#0の位置/帯域幅と重複することと同義であってもよい。また、CORESET#0の位置及びBWP#0の位置が重複する場合、両者の位置は、完全に一致していなくともよく、少なくとも一部が重複すればよい。また、CORESET#0の帯域幅とBWP#0の帯域幅は同一であってもよいし、異なってもよい。 In the present embodiment, "CORESET # 0 determined based on pdcch-ConfigSIB1 in MIB overlaps with BWP # 0 determined based on information on initial BWP given by an upper layer" , CORRESET # 0 may overlap with the position / bandwidth of BWP # 0. Further, when the position of CORRESET # 0 and the position of BWP # 0 overlap, the positions of both do not need to completely match, and it is sufficient that at least a part of them overlaps. Further, the bandwidth of CORESET # 0 and the bandwidth of BWP # 0 may be the same or different.
 また、「初期BWPに関する情報が上位レイヤによって与えられるか否か」は、「初期BWPに関する情報がSIB1及びRRCメッセージの少なくとも一つに含まれるか否か」と言い換えられてもよい。当該RRCメッセージは、ハンドオーバ手順、デュアルコネクティビティ(DC:Dual Connectivity)におけるプライマリセカンダリセル(PSCell:Primary Secondary Cell)の追加手順、及び、DC又はキャリアアグリゲーション(CA:Carrier Aggregation)におけるセカンダリセル(SCell:Secondary Cell)の追加手順の少なくとも一つで送信されてもよい。 {Also, "whether or not information on the initial BWP is provided by the upper layer" may be paraphrased as "whether or not the information on the initial BWP is included in at least one of the SIB1 and the RRC message." The RRC message includes a handover procedure, a procedure for adding a primary secondary cell (PSCell: Primary Secondary Cell) in dual connectivity (DC: Dual Connectivity), and a secondary cell (SCell: Secondary) in DC or carrier aggregation (CA: Carrier Aggregation). Cell) may be transmitted in at least one of the additional procedures.
 当該RRCメッセージがハンドオーバ手順で送信される場合、当該初期BWPに関する情報は、ハンドオーバ先のセル(ターゲットセル)における初期BWPに関する情報であってもよい。また、当該RRCメッセージがPSCell又はSCellの追加手順で送信される場合、当該初期BWPに関する情報は、追加されるPSCell又はSCellにおける初期BWPに関する情報であってもよい。 When the RRC message is transmitted in the handover procedure, the information on the initial BWP may be information on the initial BWP in the cell (target cell) of the handover destination. Further, when the RRC message is transmitted in a PSCell or SCell adding procedure, the information on the initial BWP may be information on the initial BWP in the added PSCell or SCell.
 以下では、「初期BWPに関する情報」は、initialDownlinkBWP用のBWP-DownlinkCommon及びinitialUplinkBWP用のBWP-UplinkCommonの少なくとも一つであるものとするが、これに限られない。「初期BWPに関する情報」は、初期下りBWPの位置/帯域幅情報、及び、初期上りBWPの位置/帯域幅情報の少なくとも一つを含む情報であれば、どのような情報であってもよい。 In the following, the “information on the initial BWP” is at least one of BWP-DownlinkCommon for initialDownlinkBWP and BWP-UplinkCommon for initialUplinkBWP, but is not limited to this. The “information on the initial BWP” may be any information as long as the information includes at least one of the position / bandwidth information of the initial downstream BWP and the position / bandwidth information of the initial upstream BWP.
(第1の態様)
 第1の態様では、DCI内の所定フィールド(例えば、Frequency domain resource assignment)のビット数の決定について説明する。
(First aspect)
In the first aspect, determination of the number of bits of a predetermined field (for example, Frequency domain resource assignment) in DCI will be described.
 例えば、DCI(DLアサインメント、DCIフォーマット1_0又は1_1)内の所定フィールド(例えば、Frequency domain resource assignment)により、初期下りBWP内でPDSCHに割り当てられる周波数領域リソース(Frequency domain resource)を指定することが想定される。当該所定フィールドのビット数は、初期下りBWPの帯域幅に基づいて決定されることが想定される。 For example, a predetermined field (eg, Frequency @ domain @ resource @ assignment) in DCI (DL assignment, DCI format 1_0 or 1_1) may specify a frequency domain resource (Frequency @ domain @ resource) to be assigned to the PDSCH in the initial downlink BWP. is assumed. It is assumed that the number of bits of the predetermined field is determined based on the bandwidth of the initial downlink BWP.
 同様に、DCI(ULグラント、DCIフォーマット0_0又は0_1)内の所定フィールド(例えば、Frequency domain resource assignment)により、初期上りBWP内でPUSCHに割り当てられる周波数領域リソースを指定することが想定される。当該所定フィールドのビット数は、初期上りBWPの帯域幅に基づいて決定されることが想定される。 {Similarly, it is assumed that a predetermined field (for example, Frequency domain resource allocation) in DCI (UL grant, DCI format 0_0 or 0_1) specifies a frequency domain resource allocated to the PUSCH in the initial uplink BWP. It is assumed that the number of bits of the predetermined field is determined based on the bandwidth of the initial uplink BWP.
 第1の態様において、ユーザ端末は、MIB内のインデックス(例えば、pdcch-ConfigSIB1)に基づいて決定されるCORESET#0の位置/帯域幅が、初期BWP(初期アクセス用帯域)に関する情報(例えば、initialDownlinkBWP用のBWP-DownlinkCommon又はinitialUplinkBWP用のBWP-UplinkCommon)に基づいて決定される位置/帯域幅と重複するか否かに基づいて、DCI内のPDSCH又はPUSCHに割り当てられる周波数領域リソースを示す所定フィールドのビット数を決定してもよい。 In the first aspect, the user terminal determines whether the position / bandwidth of CORRESET # 0 determined based on the index (for example, pdcch-ConfigSIB1) in the MIB is information on the initial BWP (band for initial access) (for example, A predetermined field indicating a frequency domain resource allocated to the PDSCH or PUSCH in DCI based on whether or not it overlaps with a position / bandwidth determined based on BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP May be determined.
 以下では、当該所定フィールドについて、周波数領域リソース割り当てフィールド(Frequency domain resource assignment)と呼ぶが、当該所定フィールドの名称は、これに限られない。また、第1の態様は、単独で用いられてもよいし、他の態様と組み合わせられてもよい。また、第1の態様の制御は、ユーザ端末(例えば、UE)だけでなく、基地局(例えば、eNB、gNB:gNodeB、TRP:Transmission Reception Point等)で行われてもよい。 In the following, the predetermined field is referred to as a frequency domain resource assignment field (Frequency domain resource allocation), but the name of the predetermined field is not limited to this. Further, the first embodiment may be used alone or in combination with another embodiment. Further, the control of the first aspect may be performed not only by the user terminal (eg, UE) but also by a base station (eg, eNB, gNB: gNodeB, TRP: Transmission \ Reception \ Point).
 第1の態様において、ユーザ端末は、上記初期BWPに関する情報が前記上位レイヤによって与えられ、かつ、上記MIB内のインデックスに基づいて決定されるCORESET#0の位置/帯域幅が上記初期BWPに関する情報に基づいて決定される位置/帯域幅と重複しない場合、該初期BWPに関する情報内の位置/帯域幅情報(例えば、locationAndBandwidth)によって与えられる帯域幅に基づいて、DCI内の周波数領域リソース割り当てフィールドのビット数を決定してもよい。 In the first aspect, the user terminal is provided with information on the initial BWP by the upper layer, and the position / bandwidth of the RESET # 0 determined based on an index in the MIB is information on the initial BWP. Based on the bandwidth provided by the location / bandwidth information (eg, locationAndBandwidth) in the information on the initial BWP, if it does not overlap with the location / bandwidth determined based on The number of bits may be determined.
 一方、ユーザ端末は、上記以外の場合、PBCHを介したインデックス(controlResourceSetZero又はpdcch-ConfigSIB1の所定ビット等)によって与えられる帯域幅に基づいて、DCI内の周波数領域リソース割り当てフィールドのビット数を決定してもよい。 On the other hand, in cases other than the above, the user terminal determines the number of bits of the frequency domain resource allocation field in DCI based on the bandwidth given by the index (predetermined bits of controlResourceSetZero or pdcch-ConfigSIB1) via the PBCH. You may.
 なお、上記以外の場合とは、以下のいずれかの場合であってもよい:
・上記初期BWPに関する情報が前記上位レイヤによって与えられない場合、
・上記初期BWPに関する情報が前記上位レイヤによって与えられ、かつ、上記MIB内のインデックスに基づいて決定されるCORESET#0の位置/帯域幅が、上記初期BWPに関する情報に基づいて決定される位置/帯域幅と重複する場合。
The case other than the above may be any of the following cases:
If no information about the initial BWP is given by the upper layer,
Information on the initial BWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 determined based on the index in the MIB is determined based on the information on the initial BWP / When overlapping with bandwidth.
 ここで、周波数領域リソース割り当てフィールドを含むDCIは、PDSCHのスケジューリングに用いられるDCI(DLアサインメント)であってもよいし、又は、PUSCHのスケジューリングに用いられるDCI(ULグラント)であってもよい。 Here, the DCI including the frequency domain resource allocation field may be a DCI (DL assignment) used for PDSCH scheduling or a DCI (UL grant) used for PUSCH scheduling. .
<DLアサインメント内の周波数領域リソース割り当てフィールドのビット数の制御>
 図3は、第1の態様に係るDLアサインメント内の周波数領域リソース割り当てフィールドのビット数の決定の一例を示す図である。DLアサインメントは、DCIフォーマット1_0及びDCIフォーマット1_1の少なくとも一つを含んでもよい。図3では、DLアサインメントの一例として、DCIフォーマット1_0を示すが、PDSCHのスケジューリングに用いられるどのようなDCIであってもよい。
<Control of Number of Bits in Frequency Domain Resource Allocation Field in DL Assignment>
FIG. 3 is a diagram illustrating an example of determining the number of bits of the frequency domain resource assignment field in the DL assignment according to the first example. The DL assignment may include at least one of DCI format 1_0 and DCI format 1_1. In FIG. 3, DCI format 1_0 is shown as an example of the DL assignment, but any DCI used for PDSCH scheduling may be used.
 また、図3のDCIフォーマット1_0は、所定の識別子によりスクランブルされる巡回冗長検査(CRC:Cyclic Redundancy Check)ビットが付加さ(含ま)れてもよい(CRCスクランブルされてもよい)。当該所定の識別子は、例えば、C-RNTI(Cell―Radio Network Temporary Identifier)、P-RNTI(paging-RNTI)、SI-RNTI(System Information-RNTI)、RA-RNTI(Random Access-RNTI)及びTC-RNTI(Temporary Cell-RNTI)の少なくとも一つであればよい。 {The DCI format 1_0 in FIG. 3 may include (include) a cyclic redundancy check (CRC) bit scrambled by a predetermined identifier (CRC may be scrambled). The predetermined identifier is, for example, C-RNTI (Cell-Radio Network Temporary Identifier), P-RNTI (paging-RNTI), SI-RNTI (System Information-RNTI), RA-RNTI (Random Access-RNTI), and TC -At least one of RNTI (Temporary @ Cell-RNTI).
 図3に示すように、初期下りBWPの帯域幅NDL,BWP RB内でPDSCHに割り当てられる周波数リソースは、DCIフォーマット1_0の周波数領域リソース割り当てフィールドによって指定される。 As shown in FIG. 3, the frequency resources allocated to the PDSCH in the bandwidth NDL and BWP RB of the initial downlink BWP are specified by the frequency domain resource allocation field of DCI format 1_0.
 なお、図3におけるPDSCHに対する周波数リソースの割り当ては例示にすぎず、PDSCHには不連続の周波数リソースが割り当てられてもよい。また、当該周波数リソースの割り当て単位は、RBであってもよいし、一以上のRBを含むリソースブロックグループ(RB)であってもよい。 Note that the allocation of frequency resources to PDSCH in FIG. 3 is merely an example, and discontinuous frequency resources may be allocated to PDSCH. The frequency resource allocation unit may be an RB or a resource block group (RB) including one or more RBs.
 図3に示すように、当該周波数領域リソース割り当てフィールドのビット数は、初期下りBWPの帯域幅NDL,BWP RBに基づいて決定されてもよい。例えば、図3では、当該ビット数は、下記式(1)に基づいて決定される。
Figure JPOXMLDOC01-appb-M000001
As shown in FIG. 3, the number of bits of the frequency domain resource allocation field may be determined based on the bandwidth NDL and BWP RB of the initial downlink BWP. For example, in FIG. 3, the number of bits is determined based on the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 ここで、initialDownlinkBWP用のBWP-DownlinkCommon(初期アクセス用帯域に関する情報)が上位レイヤによって与えられ、かつ、CORESET#0の位置/帯域幅が、上記BWP-DownlinkCommonのlocationAndBandwidth(位置/帯域幅情報)によって与えられる位置/帯域幅と重複しない場合、式(1)におけるNDL,BWP RBは、上記BWP-DownlinkCommonのlocationAndBandwidthによって与えられる帯域幅であってもよい。なお、locationAndBandwidthを構成する少なくとも一つのビットに基づく帯域幅の決定は、上記の通りである。 Here, the BWP-DownlinkCommon (information on the initial access band) for the initialDownlinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth (position / bandwidth information) of the BWP-DownlinkCommon. If it does not overlap with the given location / bandwidth , NDL, BWP RB in equation (1) may be the bandwidth given by the locationAndBandwidth of the BWP-DownlinkCommon. Note that the determination of the bandwidth based on at least one bit configuring locationAndBandwidth is as described above.
 一方、initialDownlinkBWP用のBWP-DownlinkCommonが上位レイヤによって与えられない場合、又は、initialDownlinkBWP用のBWP-DownlinkCommonが上位レイヤによって与えられるが、CORESET#0の位置/帯域幅が、上記BWP-DownlinkCommonのlocationAndBandwidthによって与えられる位置/帯域幅と重複する場合、式(1)におけるNDL,BWP RBは、PBCHを介して伝送されるインデックス(controlResourceSetZero又はpdcch-ConfigSIB1の所定ビット等)によって与えられる帯域幅であってもよい。なお、当該MIB内のインデックスを構成する少なくとも一つのビットに基づく帯域幅の決定は、上記の通りである。 On the other hand, if BWP-DownlinkCommon for initialDownlinkBWP is not provided by the upper layer, or BWP-DownlinkCommon for initialDownlinkBWP is provided by the upper layer, the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-DownlinkCommon. If it overlaps with the given position / bandwidth, NDL , BWP RB in equation (1) is the bandwidth given by the index (such as controlResourceSetZero or a predetermined bit of pdcch-ConfigSIB1) transmitted via PBCH, Is also good. The determination of the bandwidth based on at least one bit constituting the index in the MIB is as described above.
 このように、ユーザ端末は、CORESET#0の位置/帯域幅が、上位レイヤによって与えられるinitialDownlinkBWP用のBWP-DownlinkCommonのlocationAndBandwidthによって与えられる位置/帯域幅と重複するか否かに基づいて、DLアサインメント内の周波数領域リソース割り当てフィールドのビット数を決定してもよい。 In this way, the user terminal performs DL assignment based on whether the position / bandwidth of CORRESET # 0 overlaps the position / bandwidth given by locationAndBandwidth of BWP-DownlinkCommon for initialDownlinkBWP given by the upper layer. The number of bits of the frequency domain resource allocation field in the comment may be determined.
 なお、「上位レイヤによってinitialDownlinkBWP用のBWP-DownlinkCommonが与えられる」とは、SIB1及びRRCメッセージの少なくとも一つがinitialDownlinkBWP用のBWP-DownlinkCommonを含む場合と言い換えられてもよい。SIB1内におけるBWP-DownlinkCommonの階層構造は、例えば、図2に例示されるが、これに限られない。また、RRCメッセージは、ハンドオーバ手順、PSCellの追加手順、及び、SCellの追加手順の少なくとも一つで送信されるRRCメッセージ(例えば、RRC再構成メッセージ(RRCReconfiguration message))であればよい。 Note that "the BWP-DownlinkCommon for the initialDownlinkBWP is given by the upper layer" may be paraphrased as a case where at least one of the SIB1 and the RRC message includes the BWP-DownlinkCommon for the initialDownlinkBWP. The hierarchical structure of BWP-DownlinkCommon in SIB1 is exemplified in FIG. 2, for example, but is not limited to this. Further, the RRC message may be an RRC message (for example, an RRC reconfiguration message (RRCReconfiguration @ message)) transmitted in at least one of the handover procedure, the PSCell addition procedure, and the SCell addition procedure.
 また、上記式(1)は例示にすぎず、周波数領域リソース割り当てフィールドのビット数は、上記式(1)以外を用いて決定されてもよい。例えば、P-RNTIでCRCスクランブルされるDCIフォーマット1_0がショートメッセージを伝送する場合、下記式(2)に基づいて、周波数領域リソース割り当てフィールドのビット数を決定してもよい。
Figure JPOXMLDOC01-appb-M000002
Also, the above equation (1) is merely an example, and the number of bits in the frequency domain resource allocation field may be determined using a method other than the above equation (1). For example, when the DCI format 1_0, which is CRC-scrambled by P-RNTI, transmits a short message, the number of bits in the frequency domain resource allocation field may be determined based on the following equation (2).
Figure JPOXMLDOC01-appb-M000002
<ULグラント内の周波数領域リソース割り当てフィールドのビット数の制御>
 図4は、第1の態様に係るULグラント内の周波数領域リソース割り当てフィールドのビット数の決定の一例を示す図である。ULグラントは、DCIフォーマット0_0及びDCIフォーマット0_1の少なくとも一つを含んでもよい。図4では、ULグラントの一例として、DCIフォーマット0_0を示すが、PUSCHのスケジューリングに用いられるどのようなDCIであってもよい。
<Control of Number of Bits in Frequency Domain Resource Allocation Field in UL Grant>
FIG. 4 is a diagram illustrating an example of determining the number of bits of the frequency domain resource allocation field in the UL grant according to the first example. The UL grant may include at least one of DCI format 0_0 and DCI format 0_1. In FIG. 4, DCI format 0_0 is shown as an example of the UL grant, but any DCI used for PUSCH scheduling may be used.
 また、図4のDCIフォーマット0_0は、所定の識別子によりCRCスクランブルされてもよい。当該所定の識別子は、例えば、C-RNTI及びTC-RNTIの少なくとも一つであってもよい。 DC Also, the DCI format 0_0 in FIG. 4 may be CRC-scrambled by a predetermined identifier. The predetermined identifier may be, for example, at least one of C-RNTI and TC-RNTI.
 図4に示すように、初期上りBWPの帯域幅NUL,BWP RB内でPUSCHに割り当てられる周波数リソースは、DCIフォーマット0_0の周波数領域リソース割り当てフィールドによって指定される。 As shown in FIG. 4, the frequency resources allocated to the PUSCH in the bandwidth N UL, BWP RB of the initial uplink BWP are specified by a frequency domain resource allocation field of DCI format 0_0.
 なお、図4におけるPUSCHに対する周波数リソースの割り当ては例示にすぎず、PUSCHには不連続の周波数リソースが割り当てられてもよい。また、当該周波数リソースの割り当て単位は、RBであってもよいし、一以上のRBを含むリソースブロックグループ(RB)であってもよい。 Note that the allocation of frequency resources to PUSCH in FIG. 4 is merely an example, and discontinuous frequency resources may be allocated to PUSCH. The frequency resource allocation unit may be an RB or a resource block group (RB) including one or more RBs.
 図4に示すように、当該周波数領域リソース割り当てフィールドのビット数は、初期上りBWPの帯域幅NUL,BWP RBに基づいて決定されてもよい。例えば、図4では、当該ビット数は、下記式(3)に基づいて決定される。
Figure JPOXMLDOC01-appb-M000003
As illustrated in FIG. 4, the number of bits of the frequency domain resource allocation field may be determined based on the initial uplink BWP bandwidth N UL, BWP RB . For example, in FIG. 4, the number of bits is determined based on the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 ここで、initialUplinkBWP用のBWP-UplinkCommon(初期アクセス用帯域に関する情報)が上位レイヤによって与えられ、かつ、CORESET#0の位置/帯域幅が、上記BWP-UplinkCommonのlocationAndBandwidth(位置/帯域幅情報)によって与えられる位置/帯域幅と重複しない場合、式(3)におけるNUL,BWP RBは、上記BWP-UplinkCommonのlocationAndBandwidthによって与えられる帯域幅であってもよい。なお、locationAndBandwidthを構成する少なくとも一つのビットに基づく帯域幅の決定は、上記の通りである。 Here, BWP-UplinkCommon (information on the initial access band) for initialUplinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth (position / bandwidth information) of the BWP-UplinkCommon. If it does not overlap with the given location / bandwidth, NUL , BWP RB in equation (3) may be the bandwidth given by the locationAndBandwidth of the BWP-UplinkCommon. Note that the determination of the bandwidth based on at least one bit configuring locationAndBandwidth is as described above.
 一方、initialUplinkBWP用のBWP-UplinkCommonが上位レイヤによって与えられない場合、又は、initialUplinkBWP用のBWP-UplinkCommonが上位レイヤによって与えられるが、CORESET#0の位置/帯域幅が、上記BWP-UplinkCommonのlocationAndBandwidthによって与えられる位置/帯域幅と重複する場合、式(3)におけるNUL,BWP RBは、PBCHを介して伝送されるインデックス(controlResourceSetZero又はpdcch-ConfigSIB1の所定ビット等)によって与えられる帯域幅であってもよい。なお、当該MIB内のインデックスを構成する少なくとも一つのビットに基づく帯域幅の決定は、上記の通りである。 On the other hand, when the BWP-UplinkCommon for initialUplinkBWP is not provided by the upper layer, or the BWP-UplinkCommon for initialUplinkBWP is provided by the upper layer, the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-UplinkCommon. If it overlaps with the given position / bandwidth, NUL , BWP RB in equation (3) is the bandwidth given by the index (such as a predetermined bit of controlResourceSetZero or pdcch-ConfigSIB1) transmitted via PBCH, Is also good. The determination of the bandwidth based on at least one bit constituting the index in the MIB is as described above.
 このように、ユーザ端末は、CORESET#0の位置/帯域幅が、上位レイヤによって与えられるinitialUplinkBWP用のBWP-UplinkCommonのlocationAndBandwidthによって与えられる位置/帯域幅と重複するか否かに基づいて、ULグラント内の周波数領域リソース割り当てフィールドのビット数を決定してもよい。 In this way, the user terminal can determine whether the location / bandwidth of CORRESET # 0 overlaps with the location / bandwidth given by locationAndBandwidth of BWP-UplinkCommon for initialUplinkBWP given by the upper layer, May be determined in the frequency domain resource allocation field.
 なお、「上位レイヤによってinitialUplinkBWP用のBWP-UplinkCommonが与えられる」とは、SIB1及びRRCメッセージの少なくとも一つがinitialUplinkBWP用のBWP-UplinkCommonを含む場合と言い換えられてもよい。SIB1内におけるBWP-UplinkCommonの階層構造は、例えば、図2に例示されるが、これに限られない。また、RRCメッセージは、ハンドオーバ手順、PSCellの追加手順、及び、SCellの追加手順の少なくとも一つで送信されるRRCメッセージ(例えば、RRC再構成メッセージ)であればよい。 Incidentally, “the upper layer gives BWP-UplinkCommon for initialUplinkBWP” may be paraphrased as a case where at least one of the SIB1 and the RRC message includes BWP-UplinkCommon for initialUplinkBWP. The hierarchical structure of BWP-UplinkCommon in SIB1 is exemplified in FIG. 2, for example, but is not limited to this. Further, the RRC message may be an RRC message (for example, an RRC reconfiguration message) transmitted in at least one of the handover procedure, the PSCell addition procedure, and the SCell addition procedure.
 また、上記式(3)は例示にすぎず、周波数領域リソース割り当てフィールドのビット数は、上記式(3)以外を用いて決定されてもよい。 式 Also, the above equation (3) is merely an example, and the number of bits in the frequency domain resource allocation field may be determined using a formula other than the above equation (3).
 以上のように、第1の態様では、CORESET#0の位置/帯域幅が、初期BWP(初期アクセス用帯域)に関する情報(例えば、initialDownlinkBWP用のBWP-DownlinkCommon又はinitialUplinkBWP用のBWP-UplinkCommon)に基づいて決定されるBWP#0の位置/帯域幅と重複するか否かに基づいて、DCI内の周波数領域リソース割り当てフィールドのビット数が決定されるので、初期BWPにより割り当てられるPDSCHの受信又はPUSCHの送信を適切に制御できる。 As described above, in the first embodiment, the position / bandwidth of CORRESET # 0 is based on information on the initial BWP (initial access band) (for example, BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP). The number of bits in the frequency domain resource allocation field in DCI is determined based on whether or not the position / bandwidth of BWP # 0 is determined by the above method. Therefore, reception of PDSCH allocated by initial BWP or PUSCH Transmission can be properly controlled.
(第2の態様)
 第2の態様では、レートマッチングにおけるビット選択を制御について説明する。
(Second aspect)
In the second mode, control of bit selection in rate matching will be described.
 例えば、上記将来の無線通信システムでは、レートマッチング(rate matching)(例えば、低密度パリティ検査符号(LDCP:low-density parity-check code)用のレートマッチング)におけるビット選択(bit selection)にも、初期下りBWP/初期上りBWPの帯域幅を用いることが想定される。 For example, in the future wireless communication system described above, bit selection (bit selection) in rate matching (e.g., rate matching for low-density parity-check code (LDCP)) is also required. It is assumed that the bandwidth of the initial downlink BWP / initial uplink BWP is used.
 第2の態様では、ユーザ端末は、MIB内のインデックス(例えば、pdcch-ConfigSIB1)に基づいて決定されるCORESET#0の位置/帯域幅が、初期BWP(初期アクセス用帯域)に関する情報(例えば、initialDownlinkBWP用のBWP-DownlinkCommon又はinitialUplinkBWP用のBWP-UplinkCommon)に基づいて決定される位置/帯域幅と重複するか否かに基づいて、PDSCH又はPUSCHのレートマッチングにおけるビット選択を制御してもよい。 In the second example, the user terminal determines whether the position / bandwidth of CORRESET # 0 determined based on the index (for example, pdcch-ConfigSIB1) in the MIB is information on the initial BWP (initial access band) (for example, Bit selection in PDSCH or PUSCH rate matching may be controlled based on whether or not the position / bandwidth is determined based on BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP.
 第2の態様では、第1の態様との相違点を中心に説明する。また、第2の態様は、単独で用いられてもよいし、他の態様と組み合わせられてもよい。また、第2の態様の制御は、基地局で行われてもよい。 2 In the second embodiment, the description will focus on the differences from the first embodiment. Further, the second aspect may be used alone or in combination with another aspect. Further, the control of the second aspect may be performed by a base station.
 第2の態様において、ユーザ端末は、上記初期BWPに関する情報が前記上位レイヤによって与えられ、かつ、上記MIB内のインデックスに基づいて決定されるCORESET#0の位置/帯域幅が上記初期BWPに関する情報に基づいて決定される位置/帯域幅と重複しない場合、該初期BWPに関する情報内の位置/帯域幅情報(例えば、locationAndBandwidth)によって与えられる帯域幅に基づいて、PDSCH又はPUSCHのレートマッチングにおけるビット選択を制御してもよい。 In the second aspect, the user terminal is provided with information on the initial BWP by the upper layer, and the position / bandwidth of the RESET # 0 determined based on an index in the MIB is information on the initial BWP. Based on the bandwidth provided by the location / bandwidth information (eg, locationAndBandwidth) in the information on the initial BWP, the bit selection in the PDSCH or PUSCH rate matching if not overlapping with the location / bandwidth determined based on May be controlled.
 一方、ユーザ端末は、上記以外の場合、PBCHを介したインデックス(controlResourceSetZero又はpdcch-ConfigSIB1の所定ビット等)によって与えられる帯域幅に基づいて、PDSCH又はPUSCHのレートマッチングにおけるビット選択を制御してもよい。 On the other hand, in cases other than the above, the user terminal may control bit selection in PDSCH or PUSCH rate matching based on the bandwidth provided by an index (predetermined bits of controlResourceSetZero or pdcch-ConfigSIB1) via the PBCH. Good.
 なお、上記以外の場合とは、以下のいずれかの場合であってもよい:
・上記初期BWPに関する情報が前記上位レイヤによって与えられない場合、
・上記初期BWPに関する情報が前記上位レイヤによって与えられ、かつ、上記MIB内のインデックスに基づいて決定されるCORESET#0の位置/帯域幅が、上記初期BWPに関する情報に基づいて決定される位置/帯域幅と重複する場合。
The case other than the above may be any of the following cases:
If no information about the initial BWP is given by the upper layer,
Information on the initial BWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 determined based on the index in the MIB is determined based on the information on the initial BWP / When overlapping with bandwidth.
 ここで、レートマッチングにおけるビット選択とは、符号化後のビット系列が格納される所定長のサーキュラバッファ(circular buffer)から、送信用に割り当てられたリソース(例えば、PDSCH又はPUSCHに割り当てられる一以上のRBの中で利用可能なリソースエレメント(RE:Resource Element)の数)に合致した所定数のビット(例えば、連続するビット)を選択することであってもよい。 Here, the bit selection in the rate matching means that a predetermined length of a circular buffer (circular buffer) in which an encoded bit sequence is stored is allocated to a resource allocated for transmission (for example, one or more allocated to a PDSCH or a PUSCH). May be a method of selecting a predetermined number of bits (for example, consecutive bits) matching the number of available resource elements (RE: Resource @ Element) in the RBs.
 なお、上記レートマッチングは、例えば、LDCP用のレートマッチングであってもよい。 Note that the rate matching may be, for example, rate matching for LDCP.
 図5は、第2の態様に係るレートマッチングにおけるビット選択の制御の一例を示す図である。なお、図5に例示されるレートマッチングにおけるビット選択は、初期BWPに割り当てられるPDSCH及びPUSCHのいずれで送信されるデータ(トランスポートブロック、符号ブロック等ともいう)のレートマッチングにも適用されてもよい。 FIG. 5 is a diagram illustrating an example of control of bit selection in rate matching according to the second example. Note that the bit selection in the rate matching illustrated in FIG. 5 may be applied to rate matching of data (also referred to as a transport block or a code block) transmitted on any of the PDSCH and the PUSCH allocated to the initial BWP. Good.
 図5に示すように、符号化後のビット数Nのビット系列(例えば、LDCPの符号器からの出力ビット)d,d,…,dN-1は、所定長のサーキュラバッファに書き込まれる。サーキュラバッファから取り出されるビット数Eは、初期BWPの帯域幅に基づいて決定されてもよい。 As shown in FIG. 5, a bit sequence of bits N (for example, output bits from an LDCP encoder) d 0 , d 1 ,..., D N−1 after encoding is written into a circular buffer having a predetermined length. It is. The number of bits E retrieved from the circular buffer may be determined based on the initial BWP bandwidth.
<DL-SCHのレートマッチングのビット選択>
 PDSCHにマッピングされるトランスポートチャネルであるDL-SCH(Downlink shared channel)のレートマッチングにおけるビット選択について詳細に説明する。
<Bit selection for DL-SCH rate matching>
Bit selection in rate matching of DL-SCH (Downlink shared channel), which is a transport channel mapped to PDSCH, will be described in detail.
 DL-SCHのレートマッチングにおけるビット選択では、initialDownlinkBWP用のBWP-DownlinkCommon(初期アクセス用帯域に関する情報)が上位レイヤによって与えられ、かつ、CORESET#0の位置/帯域幅が、上記BWP-DownlinkCommonのlocationAndBandwidth(位置/帯域幅情報)によって与えられる位置/帯域幅と重複しない場合、図5のサーキュラバッファから取り出されるビット数Eは、上記BWP-DownlinkCommonのlocationAndBandwidthによって与えられる帯域幅に基づいて決定されてもよい。 In the bit selection in the DL-SCH rate matching, BWP-DownlinkCommon (information on the initial access band) for initialDownlinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is the locationAndBandwidth of the BWP-DownlinkCommon. If the position / bandwidth does not overlap with the position / bandwidth given by (position / bandwidth information), the number of bits E taken out of the circular buffer in FIG. 5 may be determined based on the bandwidth given by locationAndBandwidth of the BWP-DownlinkCommon. Good.
 一方、initialDownlinkBWP用のBWP-DownlinkCommonが上位レイヤによって与えられない場合、又は、initialDownlinkBWP用のBWP-DownlinkCommonが上位レイヤによって与えられるが、CORESET#0の位置/帯域幅が、上記BWP-DownlinkCommonのlocationAndBandwidthによって与えられる位置/帯域幅と重複する場合、図5のサーキュラバッファから取り出されるビット数Eは、PBCHを介して伝送されるMIB内のインデックス(controlResourceSetZero又はpdcch-ConfigSIB1の所定ビット等)によって与えられる帯域幅に基づいて決定されてもよい。 On the other hand, when the BWP-DownlinkCommon for initialDownlinkBWP is not provided by the upper layer, or the BWP-DownlinkCommon for initialDownlinkBWP is provided by the upper layer, the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-DownlinkCommon. When overlapping with the given position / bandwidth, the number of bits E extracted from the circular buffer in FIG. 5 is determined by the bandwidth given by an index (such as controlResourceSetZero or a predetermined bit of pdcch-ConfigSIB1) in the MIB transmitted via the PBCH. It may be determined based on the width.
<UL-SCHのレートマッチングのビット選択>
 PUSCHにマッピングされるトランスポートチャネルであるUL-SCH(Uplink shared channel)のレートマッチングにおけるビット選択について詳細に説明する。
<UL-SCH rate matching bit selection>
Bit selection in rate matching of a UL-SCH (Uplink shared channel), which is a transport channel mapped to the PUSCH, will be described in detail.
 UL-SCHのレートマッチングにおけるビット選択では、initialUplinkBWP用のBWP-UplinkCommon(初期アクセス用帯域に関する情報)が上位レイヤによって与えられ、かつ、CORESET#0の位置/帯域幅が、上記BWP-UplinkCommonのlocationAndBandwidth(特定の情報)によって与えられる位置/帯域幅と重複しない場合、図5のサーキュラバッファから取り出されるビット数Eは、上記BWP-UplinkCommonのlocationAndBandwidthによって与えられる帯域幅に基づいて決定されてもよい。 In the bit selection in the rate matching of the UL-SCH, BWP-UplinkCommon (information on the initial access band) for the initialUplinkBWP is given by the upper layer, and the position / bandwidth of CORRESET # 0 is the locationAndBandwidth of the BWP-UplinkCommon. If it does not overlap with the position / bandwidth given by (specific information), the number of bits E taken out from the circular buffer of FIG. 5 may be determined based on the bandwidth given by the locationAndBandwidth of the BWP-UplinkCommon.
 一方、initialUplinkBWP用のBWP-UplinkCommonが上位レイヤによって与えられない場合、又は、initialUplinkBWP用のBWP-UplinkCommonが上位レイヤによって与えられるが、CORESET#0の位置/帯域幅が、上記BWP-UplinkCommonのlocationAndBandwidthによって与えられる位置/帯域幅と重複する場合、図5のサーキュラバッファから取り出されるビット数Eは、PBCHを介して伝送されるインデックス(controlResourceSetZero又はpdcch-ConfigSIB1の所定ビット等)によって与えられる帯域幅に基づいて決定されてもよい。 On the other hand, when BWP-UplinkCommon for initialUplinkBWP is not provided by the upper layer, or BWP-UplinkCommon for initialUplinkBWP is provided by the upper layer, the position / bandwidth of CORRESET # 0 is determined by the locationAndBandwidth of the BWP-UplinkCommon. If it overlaps with the given position / bandwidth, the number of bits E retrieved from the circular buffer in FIG. 5 is based on the bandwidth given by the index (such as controlResourceSetZero or predetermined bits of pdcch-ConfigSIB1) transmitted over the PBCH. May be determined.
 以上のように、第2の態様では、CORESET#0の位置/帯域幅が、初期BWP(初期アクセス用帯域)に関する情報(例えば、initialDownlinkBWP用のBWP-DownlinkCommon又はinitialUplinkBWP用のBWP-UplinkCommon)に基づいて決定される位置/帯域幅と重複するか否かに基づいて、ビット選択が制御されるので、ユーザ端末は、初期BWPに割り当てられるPDSCH又はPUSCHのレートマッチングを適切に制御できる。 As described above, in the second embodiment, the position / bandwidth of CORRESET # 0 is based on information on the initial BWP (initial access band) (for example, BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP). Since the bit selection is controlled based on whether or not the position / bandwidth overlaps with the determined position / bandwidth, the user terminal can appropriately control the rate matching of the PDSCH or PUSCH allocated to the initial BWP.
(その他の態様)
 なお、上記第1及び第2の態様における、「CORESET#0の位置/帯域幅が、初期BWP(初期アクセス用帯域)に関する情報(例えば、initialDownlinkBWP用のBWP-DownlinkCommon又はinitialUplinkBWP用のBWP-UplinkCommon)に基づいて決定される位置/帯域幅と重複するか否か」に基づく初期BWP用の帯域幅の決定は、DCIが特定のRNTI(例えば、P-RNTI又はSI-RNTI)によりCRCスクランブルされる場合に適用されてもよい。
(Other aspects)
Note that, in the first and second aspects, "the position / bandwidth of CORRESET # 0 is information on the initial BWP (initial access band) (for example, BWP-DownlinkCommon for initialDownlinkBWP or BWP-UplinkCommon for initialUplinkBWP)" The bandwidth for the initial BWP based on whether it overlaps with the location / bandwidth determined based on the DCI is CRC scrambled by a specific RNTI (eg, P-RNTI or SI-RNTI) It may be applied in cases.
 DCIが他のRNTI(例えば、C-RNTI、RA-RNTI又はTC-RNTI)によりCRCスクランブルされる場合、初期BWP用の帯域幅の決定は、他の条件に基づいて決定されてもよい。当該他の条件は、例えば、以下の少なくとも一つであってもよい:
・例えば、初期BWPに関する情報が上位レイヤによって与えられるか否か、
・ユーザ端末がRRCコネクティッド状態であるか否か。
If the DCI is CRC-scrambled by another RNTI (eg, C-RNTI, RA-RNTI or TC-RNTI), the determination of the bandwidth for the initial BWP may be determined based on other conditions. The other condition may be, for example, at least one of the following:
For example, whether information on the initial BWP is given by the upper layer,
-Whether the user terminal is in the RRC connected state.
 このように、DCIがCRCスクランブルされるRNTIの種類に基づいて、初期BWPの決定に用いられる条件が変更されてもよい。 As described above, the condition used for determining the initial BWP may be changed based on the type of the RNTI in which the DCI is CRC-scrambled.
 例えば、ユーザ端末は、DLアサインメント(例えば、DCIフォーマット1_0)がP-RNTI又はSI-RNTIによってCRCスクランブルされる場合に、「CORESET#0の位置/帯域幅が、上位レイヤによって与えられるinitialDownlinkBWP用のBWP-DownlinkCommonのlocationAndBandwidthによって与えられる位置/帯域幅と重複するか否か」に基づいて、当該DLアサインメント内の周波数領域リソース割り当てフィールドのビット数を決定してもよい。 For example, when the DL assignment (eg, DCI format 1_0) is CRC-scrambled by the P-RNTI or the SI-RNTI, the user terminal sets “the position / bandwidth of CORESET # 0 for the initialDownlinkBWP given by the upper layer. Whether it overlaps with the position / bandwidth given by locationAndBandwidth of BWP-DownlinkCommon ", the number of bits of the frequency domain resource allocation field in the DL assignment may be determined.
 P-RNTI又はSI-RNTIによりCRCスクランブルされるDLアサインメント(例えば、DCIフォーマット1_0)は、相対的にデータ量が少ない下り情報(例えば、ページング又はSIB等)のスケジューリングに用いられる。このため、DLアサインメントがP-RNTI又はSI-RNTIによってCRCスクランブルされる場合に、上述のように、「CORESET#0の位置/帯域幅が、初期BWPに関する情報に基づいて決定される位置/帯域幅と重複するか否か」に基づいて、初期BWPのサイズ(帯域幅)を決定することにより、キャリア全体の利用効率の低下を防止できる。 The DL assignment (for example, DCI format 1_0) CRC-scrambled by P-RNTI or SI-RNTI is used for scheduling downlink information (for example, paging or SIB) having a relatively small data amount. For this reason, when the DL assignment is CRC-scrambled by the P-RNTI or the SI-RNTI, as described above, “the position / bandwidth of CORRESET # 0 is determined by the position / bandwidth determined based on the information on the initial BWP. By determining the size (bandwidth) of the initial BWP based on whether or not the bandwidth overlaps with the bandwidth, it is possible to prevent a reduction in the utilization efficiency of the entire carrier.
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施の形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図6は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。 FIG. 6 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a unit of a system bandwidth (for example, 20 MHz) of an LTE system are applied. can do.
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。 The wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。 The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. Have. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。 The user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。 Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier). On the other hand, between the user terminal 20 and the base station 12, a carrier having a relatively high frequency band (for example, 3.5 GHz, 5 GHz, or the like) and a wide bandwidth may be used, or between the user terminal 20 and the base station 11. The same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。 The user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell. In each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。 Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like. For example, for a certain physical channel, if the subcarrier intervals of the constituent OFDM symbols are different and / or if the number of OFDM symbols is different, the numerology may be referred to as different.
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。 The base station 11 and the base station 12 (or between the two base stations 12) may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。 The base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30. Note that the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. The base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。 Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。 In the wireless communication system 1, orthogonal frequency division multiple access (OFDMA: Orthogonal Frequency Division Multiple Access) is applied to the downlink as a wireless access method, and single carrier-frequency division multiple access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。 OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication. The SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method. The uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as a downlink channel, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel and the like shared by each user terminal 20 are used. Used. The PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master \ Information \ Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。 ス ケ ジ ュ ー リ ン グ The scheduling information may be notified by DCI. For example, a DCI that schedules DL data reception may be called a DL assignment, and a DCI that schedules UL data transmission may be called an UL grant.
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 PCFICH transmits the number of OFDM symbols used for PDCCH. The PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH. The EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used. By PUSCH, user data, higher layer control information, etc. are transmitted. In addition, downlink radio quality information (CQI: Channel Quality Indicator), acknowledgment information, scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH. The PRACH transmits a random access preamble for establishing a connection with a cell.
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。 In the wireless communication system 1, as downlink reference signals, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), and the like are transmitted. In the wireless communication system 1, a reference signal for measurement (SRS: Sounding Reference Signal), a reference signal for demodulation (DMRS), and the like are transmitted as uplink reference signals. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
<基地局>
 図7は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
<Base station>
FIG. 7 is a diagram showing an example of the overall configuration of the base station according to the present embodiment. The base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 ユ ー ザ User data transmitted from the base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 In the baseband signal processing unit 104, regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed. 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, as for an uplink signal, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102. The transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102. Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。 (4) The transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface. The transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
 送受信部103は、DL信号(例えば、PDCCH(DCI)、PDSCH(DLデータ、上位レイヤ制御情報)、DL参照信号の少なくとも一つ)を送信する。また、送受信部103は、UL信号(例えば、PUCCH(UCI)、PUSCH(ULデータ、上位レイヤ制御情報、UCI)、UL参照信号の少なくとも一つ)を受信する。 Transceiver 103 transmits a DL signal (for example, at least one of PDCCH (DCI), PDSCH (DL data, upper layer control information), and DL reference signal). In addition, the transmitting / receiving section 103 receives a UL signal (for example, at least one of PUCCH (UCI), PUSCH (UL data, upper layer control information, UCI), and UL reference signal).
 送受信部103は、下り共有チャネル(例えば、PDSCH)又は上り共有チャネル(例えば、PUSCH)に割り当てられる周波数領域リソースを示す所定フィールドを含む下り制御情報を送信する。また、送受信部103は、PBCHを介してMIBを送信してもよい。また、送受信部103は、SIB1及びRRCメッセージの少なくとも一つを送信してもよい。 The transmission / reception unit 103 transmits downlink control information including a predetermined field indicating a frequency domain resource allocated to the downlink shared channel (for example, PDSCH) or the uplink shared channel (for example, PUSCH). Further, transmitting / receiving section 103 may transmit MIB via PBCH. Further, the transmitting / receiving section 103 may transmit at least one of the SIB1 and the RRC message.
 図8は、本実施の形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 8 is a diagram showing an example of a functional configuration of the base station according to the present embodiment. In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication.
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。 The baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire base station 10. The control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。 The control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
 制御部301は、システム情報(例えば、SIB1)、下り共有チャネル(例えば、PDSCH)、下り制御チャネル(例えば、PDCCHなど)、上り共有チャネル(例えば、PUSCH)のスケジューリング(例えば、リソース割り当て)を制御する。 The control unit 301 controls scheduling (for example, resource allocation) of system information (for example, SIB1), a downlink shared channel (for example, PDSCH), a downlink control channel (for example, PDCCH), and an uplink shared channel (for example, PUSCH). I do.
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。 The control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。 The control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
 また、制御部301は、ユーザ端末の状態がコネクティッド状態であるか否かに基づいて、初期アクセス用帯域(初期BWP)の帯域幅を決定してもよい。また、制御部301は、キャリア内の初期アクセス用帯域に関する情報が上位レイヤによって与えられるか否かに基づいて、初期アクセス用帯域の帯域幅を決定してもよい。 {Also, the control unit 301 may determine the bandwidth of the initial access band (initial BWP) based on whether the state of the user terminal is in the connected state. Further, control section 301 may determine the bandwidth of the initial access band based on whether or not information on the initial access band in the carrier is provided by an upper layer.
 制御部301は、ブロードキャストチャネルにより与えられるインデックスに基づいて決定される制御リソースセットが、上位レイヤによって与えられる初期アクセス用帯域に関する情報に基づいて決定される帯域と重複するか否かに基づいて、前記初期アクセス用帯域の帯域幅を決定してもよい。 The control unit 301 determines whether the control resource set determined based on the index provided by the broadcast channel overlaps with the band determined based on the information on the initial access band provided by the higher layer, The bandwidth of the initial access band may be determined.
 具体的には、制御部301は、前記制御リソースセットが前記初期アクセス用帯域に関する情報に基づいて決定される前記帯域と重複しない場合、前記初期アクセス用帯域に関する情報に基づいて、前記初期アクセス用帯域の帯域幅を決定してもよい。 Specifically, when the control resource set does not overlap with the band determined based on the information on the initial access band, the control unit 301 performs the initial access for the initial access based on the information on the initial access band. The bandwidth of the band may be determined.
 一方、制御部301は、前記制御リソースセットが前記初期アクセス用帯域に関する情報に基づいて決定される前記帯域と重複する場合、ブロードキャストチャネルにより与えられるインデックスに基づいて、前記初期アクセス用帯域の帯域幅を決定してもよい。 On the other hand, when the control resource set overlaps with the band determined based on the information on the initial access band, the control unit 301 determines a bandwidth of the initial access band based on an index given by a broadcast channel. May be determined.
 制御部301は、上記初期アセス用帯域における前記下り共有チャネルの送信又は前記上り共有チャネルの受信を制御してもよい。 The control unit 301 may control the transmission of the downlink shared channel or the reception of the uplink shared channel in the initial access band.
 具体的には、制御部301は、前記決定された帯域幅に基づいて、前記下り共有チャネル又は前記上り共有チャネルをスケジューリングする下り制御情報内の所定フィールド(例えば、周波数領域リソース割り当てフィールド)のビット数を決定してもよい(第1の態様)。 Specifically, the control unit 301 determines a bit of a predetermined field (for example, a frequency domain resource allocation field) in downlink control information for scheduling the downlink shared channel or the uplink shared channel based on the determined bandwidth. The number may be determined (first mode).
 また、制御部301は、前記決定された帯域幅に基づいて、前記下り共有チャネル又は前記上り共有チャネルのレートマッチングにおけるビット選択を制御してもよい(第2の態様)。 The control unit 301 may control bit selection in rate matching of the downlink shared channel or the uplink shared channel based on the determined bandwidth (second mode).
 また、制御部301は、下り制御情報の生成及び送信の少なくとも一つを制御してもよい。具体的には、制御部301は、上記下り制御情報に対して、P-RNTI(paging-Radio Network Temporary Identifier)又はSI-RNTI(System Information-Radio Network Temporary Identifier)によりスクランブルされる巡回冗長検査(CRC:Cyclic Redundancy Check)ビットを付加してもよい。 (4) The control unit 301 may control at least one of generation and transmission of the downlink control information. Specifically, the control unit 301 performs a cyclic redundancy check (P-RNTI (paging-Radio Network Network Temporary Identifier)) or SI-RNTI (System Information Information-Radio Network Network Temporary Identifier) on the downlink control information. A CRC (Cyclic {Redundancy} Check) bit may be added.
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303. The transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り制御情報(DLアサインメント及びULグラントの少なくとも一つ)を生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates downlink control information (at least one of a DL assignment and a UL grant) based on, for example, an instruction from the control unit 301. In addition, the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel \ State \ Information) from each user terminal 20 or the like.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 (4) The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。 (4) The reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 For example, the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 301.
<ユーザ端末>
 図9は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
<User terminal>
FIG. 9 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 (4) The radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. The transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204. The transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。 (4) The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band. The radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
 送受信部203は、DL信号(例えば、PDCCH(DCI)、PDSCH(DLデータ、上位レイヤ制御情報)、DL参照信号の少なくとも一つ)を受信する。また、送受信部203は、UL信号(例えば、PUCCH(UCI)、PUSCH(ULデータ、上位レイヤ制御情報、UCI)、UL参照信号の少なくとも一つ)を送信する。 (4) The transmission / reception unit 203 receives a DL signal (for example, at least one of a PDCCH (DCI), a PDSCH (DL data, higher layer control information), and a DL reference signal). In addition, the transmission / reception unit 203 transmits a UL signal (for example, at least one of a PUCCH (UCI), a PUSCH (UL data, upper layer control information, UCI), and a UL reference signal).
 送受信部203は、下り共有チャネル(例えば、PDSCH)又は上り共有チャネル(例えば、PUSCH)に割り当てられる周波数領域リソースを示す所定フィールドを含む下り制御情報を受信する。また、送受信部103は、PBCHを介してMIBを送信してもよい。また、送受信部203は、SIB1及びRRCメッセージの少なくとも一つを受信してもよい。 The transmission / reception unit 203 receives downlink control information including a predetermined field indicating a frequency domain resource allocated to the downlink shared channel (for example, PDSCH) or the uplink shared channel (for example, PUSCH). Further, transmitting / receiving section 103 may transmit MIB via PBCH. Further, the transmitting / receiving section 203 may receive at least one of the SIB1 and the RRC message.
 図10は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。 FIG. 10 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。 The baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。 The control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。 The control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404. The control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
 制御部401は、CORESET(又はサーチスペース)を監視(ブラインド復号)して、下り制御情報(DCI)を検出する。具体的には、制御部401は、下り共有チャネル又は上り共有チャネルに割り当てられる周波数領域リソースを示す所定フィールド(例えば、周波数領域割り当てフィールド)を含むDCIの検出を制御してもよい。 (4) The control unit 401 monitors the CORRESET (or the search space) (blind decoding) and detects downlink control information (DCI). Specifically, control section 401 may control detection of DCI including a predetermined field (for example, a frequency domain allocation field) indicating a frequency domain resource allocated to the downlink shared channel or the uplink shared channel.
 また、制御部401は、ユーザ端末の状態がコネクティッド状態であるか否かに基づいて、初期アクセス用帯域(初期BWP)の帯域幅を決定してもよい。また、制御部401は、キャリア内の初期アクセス用帯域に関する情報が上位レイヤによって与えられるか否かに基づいて、初期アクセス用帯域の帯域幅を決定してもよい。 The control unit 401 may determine the bandwidth of the initial access band (initial BWP) based on whether or not the state of the user terminal is in the connected state. Further, control section 401 may determine the bandwidth of the initial access band based on whether or not information on the initial access band in the carrier is provided by an upper layer.
 制御部401は、ブロードキャストチャネルにより与えられるインデックスに基づいて決定される制御リソースセットが、上位レイヤによって与えられる初期アクセス用帯域に関する情報に基づいて決定される帯域と重複するか否かに基づいて、前記初期アクセス用帯域の帯域幅を決定してもよい。 The control unit 401 determines whether the control resource set determined based on the index provided by the broadcast channel overlaps with the band determined based on the information on the initial access band provided by the upper layer, The bandwidth of the initial access band may be determined.
 具体的には、制御部401は、前記制御リソースセットが前記初期アクセス用帯域に関する情報に基づいて決定される前記帯域と重複しない場合、前記初期アクセス用帯域に関する情報に基づいて、前記初期アクセス用帯域の帯域幅を決定してもよい。 Specifically, when the control resource set does not overlap with the band determined based on the information on the initial access band, the control unit 401 performs the initial access for the initial access based on the information on the initial access band. The bandwidth of the band may be determined.
 一方、制御部401は、前記制御リソースセットが前記初期アクセス用帯域に関する情報に基づいて決定される前記帯域と重複する場合、ブロードキャストチャネルにより与えられるインデックスに基づいて、前記初期アクセス用帯域の帯域幅を決定してもよい。 On the other hand, when the control resource set overlaps with the band determined based on the information on the initial access band, the control unit 401 determines a bandwidth of the initial access band based on an index given by a broadcast channel. May be determined.
 制御部401は、上記初期アセス用帯域における前記下り共有チャネルの受信又は前記上り共有チャネルの送信を制御してもよい。 The control unit 401 may control reception of the downlink shared channel or transmission of the uplink shared channel in the initial access band.
 具体的には、制御部401は、前記決定された帯域幅に基づいて、前記下り共有チャネル又は前記上り共有チャネルをスケジューリングする下り制御情報内の所定フィールド(例えば、周波数領域リソース割り当てフィールド)のビット数を決定してもよい(第1の態様)。 Specifically, based on the determined bandwidth, the control unit 401 determines a bit of a predetermined field (for example, a frequency domain resource allocation field) in downlink control information for scheduling the downlink shared channel or the uplink shared channel. The number may be determined (first mode).
 また、制御部401は、前記決定された帯域幅に基づいて、前記下り共有チャネル又は前記上り共有チャネルのレートマッチングにおけるビット選択を制御してもよい(第2の態様)。 The control unit 401 may control bit selection in rate matching of the downlink shared channel or the uplink shared channel based on the determined bandwidth (second mode).
 また、上記下り制御情報は、P-RNTI(paging-Radio Network Temporary Identifier)又はSI-RNTI(System Information-Radio Network Temporary Identifier)によりスクランブルされる巡回冗長検査(CRC:Cyclic Redundancy Check)ビットを付加されていてもよい。 In addition, the downlink control information is added with a cyclic redundancy check (CRC: Cyclic Redundancy Check) bit scrambled by P-RNTI (paging-Radio Network Temporary Identifier) or SI-RNTI (System Information-Radio Network Network Temporary Identifier). May be.
 また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403. The transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 (4) The transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203. The mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。 (4) The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10. The reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. In addition, the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。 (4) The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measuring unit 405 measures the received signal. The measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 For example, the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI). The measurement result may be output to the control unit 401.
<ハードウェア構成>
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
<Hardware configuration>
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of hardware and / or software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated from each other. Alternatively, they may be connected indirectly (for example, using wired and / or wireless communication) and implemented using these multiple devices.
 例えば、本開示の本実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, the user terminal, and the like according to the present embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 11 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by one or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. , And controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。 The communication device 1004 is hardware (transmitting / receiving device) for performing communication between computers via a wired and / or wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize, for example, Frequency Division Duplex (FDD) and / or Time Division Duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning. For example, channels and / or symbols may be signals. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 The radio frame may be configured by one or a plurality of periods (frames) in a time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Further, a subframe may be configured by one or more slots in the time domain. The subframe may be a fixed time length (eg, 1 ms) that does not depend on numerology.
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。 {Furthermore, the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology. Further, the slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. For example, one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot is called a TTI. You may. That is, the subframe and / or TTI may be a subframe (1 ms) in the existing LTE, may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms. There may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, the TTI refers to, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time interval (for example, the number of symbols) to which a transport block, a code block, and / or a codeword are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms The TTI having the above-described TTI length may be replaced with the TTI.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in a time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI and one subframe may each be configured by one or a plurality of resource blocks. Note that one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 {Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, and the like described in this specification may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may use another corresponding information. May be expressed as For example, a radio resource may be indicated by a predetermined index.
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 名称 Names used for parameters and the like in this specification are not restrictive in any way. For example, various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so that various channels assigned to these various channels and information elements can be identified. The nomenclature is not a limiting name in any respect.
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 情報 In addition, information, signals, and the like can be output from an upper layer to a lower layer and / or from a lower layer to an upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 (4) Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
 情報の通知は、本明細書において説明した態様/実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスター情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspect / embodiment described in this specification, and may be performed using another method. For example, the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Further, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 ソ フ ト ウ ェ ア Also, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.), the website, server, etc. , Or when transmitted from another remote source, these wired and / or wireless technologies are included within the definition of the transmission medium.
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 用語 As used herein, the terms “system” and “network” are used interchangeably.
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 In this specification, “base station (BS: Base @ Station)”, “wireless base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier”, and “component” The term "carrier" may be used interchangeably. A base station may also be called a fixed station (fixed @ station), NodeB, eNodeB (eNB), access point (access @ point), transmission point, reception point, femtocell, small cell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。 In this specification, the terms “mobile station (MS)”, “user terminal”, “user equipment” (UE) and “terminal” may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station can be a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, by one of ordinary skill in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
 また、本明細書における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本開示の各態様/実施の形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。 基地 In addition, the base station in this specification may be replaced with a user terminal. For example, each aspect / embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as “side”. For example, an uplink channel may be read as a side channel.
 同様に、本明細書におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in this specification may be replaced by the base station. In this case, a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this specification, the operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
 本明細書において説明した各態様/実施の形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施の形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 各 Each aspect / embodiment described in the present specification may be used alone, may be used in combination, or may be used by switching with execution. In addition, the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in this specification may be interchanged as long as there is no inconsistency. For example, the methods described herein present elements of various steps in a sample order, and are not limited to the specific order presented.
 本明細書において説明した各態様/実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification is based on LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation). mobile communication system, 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future radio access) , GSM (registered trademark) (Global System for Mobile Communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system utilizing other appropriate wireless communication methods, and / or a next-generation system extended based on these.
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 記載 The term "based on" as used herein does not mean "based solely on" unless stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 い か な る Any reference to elements using designations such as "first," "second," etc., as used herein, does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 用語 As used herein, the term “determining” may encompass a wide variety of actions. For example, “determining” means calculating, computing, processing, deriving, investigating, looking up (eg, a table, database, or other data). It may be regarded as "determining" such as searching in a structure), ascertaining, and the like. Also, “determining” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like. Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。 As used herein, the terms “connected,” “coupled,” or any variation thereof, mean any direct or indirect connection or indirect connection between two or more elements. Coupling is meant and may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 As used herein, when two elements are connected, using one or more electrical wires, cables and / or printed electrical connections, and as some non-limiting and non-exhaustive examples, the radio frequency domain , Can be considered "connected" or "coupled" to each other, such as by using electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。 に お い て In this specification, the term “A and B are different” may mean that “A and B are different from each other”. Terms such as "away" and "coupled" may be interpreted similarly.
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “including”, “comprising”, and variations thereof, are used in the present description or claims, these terms are inclusive as well as the term “comprising” It is intended to be relevant. Further, the term "or" as used in the present specification or claims is not intended to be the exclusive OR.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本明細書中に説明した実施の形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in this specification. The invention according to the present disclosure can be embodied as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description in the present specification is for the purpose of illustrative explanation and does not bring any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  下り共有チャネル又は上り共有チャネルに割り当てられる周波数領域リソースを示す所定フィールドを含む下り制御情報を受信する受信部と、
     ブロードキャストチャネルにより与えられるインデックスに基づいて決定される制御リソースセットが、上位レイヤによって与えられる初期アクセス用帯域に関する情報に基づいて決定される帯域と重複するか否かに基づいて、前記初期アクセス用帯域の帯域幅を決定する制御部と、
    を具備することを特徴とするユーザ端末。
    A receiving unit that receives downlink control information including a predetermined field indicating a frequency domain resource allocated to the downlink shared channel or the uplink shared channel,
    The initial access bandwidth based on whether the control resource set determined based on the index provided by the broadcast channel overlaps with the bandwidth determined based on the information on the initial access bandwidth provided by the upper layer. A control unit for determining the bandwidth of
    A user terminal comprising:
  2.  前記制御部は、前記制御リソースセットが前記初期アクセス用帯域に関する情報に基づいて決定される前記帯域と重複しない場合、前記初期アクセス用帯域に関する情報に基づいて前記帯域幅を決定することを特徴とする請求項1に記載のユーザ端末。 When the control resource set does not overlap with the band determined based on the information on the initial access band, the control unit determines the bandwidth based on the information on the initial access band. The user terminal according to claim 1, wherein
  3.  前記制御部は、前記制御リソースセットが前記初期アクセス用帯域に関する情報に基づいて決定される前記帯域と重複する場合、前記インデックスに基づいて前記帯域幅を決定することを特徴とする請求項1に記載のユーザ端末。 The controller according to claim 1, wherein the control resource set determines the bandwidth based on the index when the control resource set overlaps with the bandwidth determined based on information on the initial access bandwidth. User terminal as described.
  4.  前記制御部は、前記決定された帯域幅に基づいて、前記所定フィールドのビット数を決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 4. The user terminal according to claim 1, wherein the control unit determines the number of bits of the predetermined field based on the determined bandwidth. 5.
  5.  前記制御部は、前記決定された帯域幅に基づいて、前記下り共有チャネル又は前記上り共有チャネルのレートマッチングにおけるビット選択を制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 The said control part controls the bit selection in the rate matching of the said downlink shared channel or the said uplink shared channel based on the said determined bandwidth, The Claims 1 to 4 characterized by the above-mentioned. User terminal.
  6.  前記下り制御情報は、P-RNTI(paging-Radio Network Temporary Identifier)又はSI-RNTI(System Information-Radio Network Temporary Identifier)によりスクランブルされる巡回冗長検査(CRC:Cyclic Redundancy Check)ビットが付加されることを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。 The downlink control information is added with a cyclic redundancy check (CRC: Cyclic Redundancy Check) bit scrambled by P-RNTI (Paging-Radio Network Temporary Identifier) or SI-RNTI (System Information-Radio Network Temporary Identifier). The user terminal according to any one of claims 1 to 5, characterized in that:
PCT/JP2018/029681 2018-08-07 2018-08-07 User equipment WO2020031275A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029681 WO2020031275A1 (en) 2018-08-07 2018-08-07 User equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029681 WO2020031275A1 (en) 2018-08-07 2018-08-07 User equipment

Publications (1)

Publication Number Publication Date
WO2020031275A1 true WO2020031275A1 (en) 2020-02-13

Family

ID=69414050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029681 WO2020031275A1 (en) 2018-08-07 2018-08-07 User equipment

Country Status (1)

Country Link
WO (1) WO2020031275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824665A (en) * 2020-06-19 2021-12-21 上海朗帛通信技术有限公司 Method and device used in wireless communication node

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180192383A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180192383A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Overview of bandwidth part", 3GPP TSG RAN WG1 #90 R1-1712153, 20 August 2017 (2017-08-20), XP051314972, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/> *
MEDIATEK INC: "Further Details on Wider Bandwidth Operations in NR", 3GPP TSG RAN WG1 ADHOC_NR_AH_1706 R1-1710796, 17 June 2017 (2017-06-17), XP051305224, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1706/Docs/> *
NTT DOCOMO, INC: "Remaining issues on bandwidth parts for NR", 3GPP TSG RAN WG1 #90 R1-1713964, 20 August 2017 (2017-08-20), XP051316756, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824665A (en) * 2020-06-19 2021-12-21 上海朗帛通信技术有限公司 Method and device used in wireless communication node
CN113824665B (en) * 2020-06-19 2024-03-26 上海朗帛通信技术有限公司 Method and apparatus in a node for wireless communication

Similar Documents

Publication Publication Date Title
KR102425140B1 (en) User terminal and wireless communication method
WO2020031386A1 (en) User terminal and wireless communication method
JP7348179B2 (en) Terminals, wireless communication methods, base stations and systems
JPWO2019021489A1 (en) User terminal and wireless communication method
JP6928007B2 (en) Terminals, wireless communication methods and base stations
WO2020016934A1 (en) User equipment
WO2020053942A1 (en) User terminal and wireless communication method
WO2019176032A1 (en) User equipment and wireless communication method
JPWO2018158923A1 (en) User terminal and wireless communication method
WO2018143388A1 (en) User terminal and wireless communication method
WO2019138516A1 (en) User terminal and wireless communication method
WO2019215921A1 (en) User terminal and wireless communication method
JP2023036826A (en) Terminal, wireless communication method, base station, and system
JP7308820B2 (en) Terminal, wireless communication method and system
JP7395468B2 (en) Terminals, wireless communication methods, base stations and systems
JP7163320B2 (en) Terminal, wireless communication method, base station and system
WO2020039483A1 (en) User terminal
WO2020053943A1 (en) User equipment and wireless communication method
WO2019193666A1 (en) User terminal and wireless base station
WO2019138517A1 (en) User terminal and wireless communication method
WO2020017058A1 (en) Base station and user equipment
WO2020016933A1 (en) Base station
WO2019175989A1 (en) User equipment and wireless communication method
WO2020031275A1 (en) User equipment
WO2020017057A1 (en) User equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP