WO2019234467A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
WO2019234467A1
WO2019234467A1 PCT/IB2018/000741 IB2018000741W WO2019234467A1 WO 2019234467 A1 WO2019234467 A1 WO 2019234467A1 IB 2018000741 W IB2018000741 W IB 2018000741W WO 2019234467 A1 WO2019234467 A1 WO 2019234467A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
branch portion
bus bar
branch
cooler
Prior art date
Application number
PCT/IB2018/000741
Other languages
French (fr)
Japanese (ja)
Inventor
伸也 駒﨑
Original Assignee
日産自動車株式会社
ルノー エス、ア、エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス、ア、エス filed Critical 日産自動車株式会社
Priority to PCT/IB2018/000741 priority Critical patent/WO2019234467A1/en
Publication of WO2019234467A1 publication Critical patent/WO2019234467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device.
  • Patent Document 1 a method of cooling a power converter is known (Patent Document 1).
  • a capacitor and a switching element are connected by a bus bar, and a cooler is connected to the bus bar.
  • a bus bar connecting a capacitor and a switching element is required to shorten the bus bar length in order to reduce its inductance component, but a cooler is connected to the bus bar as in the invention described in Patent Document 1. In order to do this, it is necessary to lengthen the bus bar. However, when the bus bar is lengthened, the inductance component increases, and thus the surge voltage may increase.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a power converter that has cooling performance and does not increase the length of the bus bar.
  • a power conversion device includes a switching element, a capacitor module that smoothes a voltage input to the switching element, a conductive portion that electrically connects the capacitor module and the switching element, and a branch from the conductive portion. And a cooler that is thermally connected to the branch portion.
  • a power converter that has cooling performance and does not increase the length of the bus bar is realized.
  • FIG. 1 is a schematic configuration diagram of a power conversion device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of the capacitor module according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a connection relationship between the capacitor module and the switching element according to the first embodiment of the present invention.
  • FIG. 4 is another diagram illustrating the connection relationship between the capacitor module and the switching element according to the first embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram of the cooler according to the first embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram of a power conversion device according to the second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of a power conversion device according to the third embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of a power conversion device according to the fourth embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram of a power conversion device according to the fifth embodiment of the present invention.
  • the power converter device 10 which concerns on 1st Embodiment is demonstrated.
  • the power conversion device 10 includes a DC power supply 20, a capacitor module 100, and a switching element 200.
  • the switching element 200 converts DC power input from the DC power supply 20 into AC power by on / off control, and supplies the AC power to the motor 21.
  • the capacitor module 100 is formed between the DC power supply 20 and the switching element 200. Capacitor module 100 smoothes the voltage between DC power supply 20 and switching element 200. Thereby, voltage and current pulsations of the power supply bus due to switching are suppressed.
  • the bus bar 103 (conductive portion) is formed between the capacitor module 100 and the switching element 200. In other words, the bus bar 103 connects the capacitor module 100 and the switching element 200.
  • the bus bar 103 is made of a conductive member (for example, copper).
  • the capacitor module 100 will be described with reference to FIG.
  • the capacitor module 100 is described as a film capacitor, but the present invention is not limited to this.
  • the capacitor module 100 includes a capacitor element 101, a first electrode 102a, a second electrode 102b, a resin member 105, and a case 104.
  • the first electrode 102a and the second electrode 102b are electrically connected to the capacitor element 101 and are formed to face each other.
  • the first electrode 102 a is connected to the upper surface of the capacitor element 101
  • the second electrode 102 b is connected to the lower surface of the capacitor element 101.
  • the capacitor element 101, the first electrode 102a, and the second electrode 102b will be described separately.
  • the capacitor including the capacitor element 101, the first electrode 102a, and the second electrode 102b will be described. It may be expressed as an element.
  • a first bus bar 103a (first conductive portion) is connected to the first electrode 102a.
  • the second bus bar 103b (second conductive portion) is connected to the second electrode 102b.
  • Part of the first bus bar 103 a and the second bus bar 103 b is drawn out of the case 104.
  • an insulating member 106 is formed between the first bus bar 103a and the second bus bar 103b in a region where the first bus bar 103a and the second bus bar 103b are close to each other.
  • the case 104 houses the capacitor element 101, the first electrode 102a, and the second electrode 102b.
  • the case 104 is made of aluminum, for example.
  • the case 104 is filled with a resin member 105. That is, in the case 104, the capacitor element 101, the first electrode 102a, the second electrode 102b, the first bus bar 103a, and the second bus bar 103b are fixed by the resin member 105.
  • the first bus bar 103 a pulled out from the case 104 is connected to the terminal block 202.
  • the terminal block 202 is connected to a case 201 that houses the switching element 200.
  • the second bus bar 103 b pulled out from the case 104 is also connected to the terminal block 203.
  • the first bus bar 103a and the second bus bar 103b drawn from the case 104 are configured to be short in order to reduce inductance.
  • the first bus bar 103 a and the second bus bar 103 b pulled out from the case 104 are arranged in the vicinity of the switching element 200 so as to face each other with the insulating member 106 interposed therebetween.
  • the first bus bar 103a includes a first branch part 107a (branch part) formed by branching from the first bus bar 103a. Therefore, the 1st branch part 107a is also comprised with the member (for example, copper) which has electroconductivity similarly to the 1st bus-bar 103a. Thus, in this embodiment, the 1st bus-bar 103a and the 1st branch part 107a are one conductive member.
  • the first bus bar 103a electrically connects the capacitor module 100 and the switching element 200.
  • the cooler 300 is connected to the first branch portion 107a.
  • the first branch portion 107a does not constitute an electrical connection, but constitutes a thermal connection.
  • the first branch portion 107 a is cooled by the cooler 300.
  • the first bus bar 103a is also cooled by cooling the first branch portion 107a. Thereby, the capacitor module 100 connected to the first bus bar 103a is also cooled.
  • the second bus bar 103b includes a second branch portion 107b formed by branching from the second bus bar 103b. Therefore, the 2nd branch part 107b is also comprised with the member (for example, copper) which has electroconductivity similarly to the 2nd bus-bar 103b.
  • the second bus bar 103b and the second branch portion 107b are also one conductive member.
  • the second bus bar 103b electrically connects the capacitor module 100 and the switching element 200.
  • the cooler 400 is connected to the second branch portion 107b.
  • the second branch 107b does not constitute an electrical connection, but constitutes a thermal connection.
  • the second branch portion 107b is cooled by the cooler 400.
  • the second bus bar 103b is also cooled by cooling the second branch part 107b. Thereby, the capacitor module 100 connected to the second bus bar 103b is also cooled.
  • the cooler 300 (cooler 400) is thermally connected to the first branch portion 107a (second branch portion 107b) formed by branching from the first bus bar 103a (second bus bar 103b).
  • the cooler 300 (cooler 400) is not connected to the first bus bar 103a (second bus bar 103b), but is connected to the first branch portion 107a (second branch portion 107b). Therefore, it is not necessary to increase the length of the bus bar as in the prior art. Thereby, the power converter device 10 having a cooling performance and a small inductance component of the bus bar is realized.
  • FIG. 3 there are two cooling points, but the present invention is not limited to this.
  • the number of cooling points may be one, or three or more.
  • only one cooler 300 may be connected to the first branch portion 107a.
  • the 1st branch part 107a is branched outside the case 104, it is not limited to this.
  • the first branch portion 107 a may be branched inside the case 104.
  • cooler 300 is not limited to that shown in FIG.
  • the cooler 300 includes a metal member 301, an insulating member 302, cooling water 303, and a water jacket 304.
  • the side surface and the bottom surface of the metal member 301 are covered with an insulating member 302.
  • the first branch portion 107a is made of a conductive member (for example, copper) like the first bus bar 103a, and thus has conductivity.
  • the cooler 300 is also composed of a conductive member (metal member 301). Since the first branch portion 107a is connected to the metal member 301, the current flowing through the first branch portion 107a may flow to the case ground through the metal member 301, the cooling water 303, and the water jacket 304. In order to prevent the current flowing through the first branch portion 107a from flowing into the case ground, it is necessary to insulate the first branch portion 107a from the cooling water 303.
  • insulation is realized by using an electrically insulating heat conductive material at the contact portion between the cooler and the bus bar.
  • the electrical insulating heat conductive material is generally weak in strength and may be destroyed when fixed with bolts. Further, if the cooler and the bus bar are merely brought into contact without using bolts, the contact thermal resistance is high and the cooling effect may not be obtained.
  • the first branch portion 107 a is thermally connected to the metal member 301.
  • a portion of the metal member 301 excluding the surface in contact with the first branch portion 107 a is covered with the insulating member 302. More specifically, the side surface and the bottom surface of the metal member 301 other than the top surface that is in contact with the first branch portion 107 a are covered with the insulating member 302.
  • the 1st branch part 107a and the cooler 300 have sufficient connection strength.
  • the 1st branch part 107a and the cooling water 303 are insulated. Thereby, the 1st branch part 107a is cooled efficiently.
  • the water jacket 304 may be used as an insulating member.
  • the second branch 107b is omitted.
  • the capacitor element 101 repeatedly expands and contracts in the horizontal direction perpendicular to the vertical direction by the Coulomb force generated by the switching current, and vibrates the capacitor module 100.
  • the first branch portion 107a is formed to branch from the first bus bar 103a between the first electrode 102a and the second electrode 102b in the vertical direction. Further, the first branch portion 107 a is pulled out of the case 104.
  • the second branch portion 107b is formed to branch from the second bus bar 103b between the first electrode 102a and the second electrode 102b in the vertical direction. Further, the second branch portion 107 b is pulled out of the case 104.
  • the first branch portion 107a and the second branch portion 107b are formed to be parallel to the first electrode 102a and the second electrode 102b in the horizontal direction. Thereby, the rigidity with respect to expansion and contraction is increased in the horizontal direction, and vibration of the capacitor module 100 is suppressed.
  • coolers 300 and 500 are connected to the upper surface and the lower surface of the first branch portion 107a, respectively. Thereby, the contact area of the 1st branch part 107a and a cooler increases, and cooling performance improves.
  • coolers 300 and 500 are connected to the upper surface and the lower surface of the first branch portion 107a, but the present invention is not limited to this.
  • a cooler may be connected to each of at least two surfaces of the first branch portion 107a.
  • the second branch 107b is omitted.
  • the capacitor element 101 has a larger equivalent series resistance than the bus bar 103 (the first bus bar 103a and the second bus bar 103b). For this reason, when the switching current is large, the heat generation of the capacitor element 101 increases. Further, when the direct current is large, the heat generation of the bus bar 103 (first bus bar 103a, second bus bar 103b) increases.
  • the maximum heat generating portion 600 of the capacitor element 101 is determined by the heat generated by the capacitor element 101 and the heat generated from the bus bar 103 (first bus bar 103a, second bus bar 103b).
  • the first branch portion 107 a is formed in the vicinity of the maximum heat generating portion 600 and is drawn out of the case 104 from the vicinity of the maximum heat generating portion 600.
  • the capacitor module 100 is efficiently cooled by cooling the first branch portion 107a drawn out of the case 104 from the position determined based on the maximum heat generating portion 600.
  • the maximum heat generating portion 600 refers to a portion that generates the most heat in the capacitor module 100.
  • the bus bar 103 (first bus bar 103a, second bus bar 103b) and the switching element 200 are fastened with bolts
  • the bus bar 103 (first bus bar 103a, second bus bar 103b) has contact electrical resistance at the connection point with the switching element 200. It generates the most heat. Therefore, it is conceivable to cool the vicinity of the connection point between the bus bar 103 (the first bus bar 103a and the second bus bar 103b) and the switching element 200.
  • the cooling performance may be reduced due to the dimensional tolerance between the switching element 200 and the cooler 300. More specifically, the contact property on the connection surface between the first bus bar 103a and the switching element 200 and the connection surface between the first branch portion 107a and the cooler 300 is deteriorated, and the cooling performance may be deteriorated.
  • a slit 108 a is formed between the first bus bar 103 a and the first branch portion 107 a in the vicinity of the cooler 300. Further, as shown in FIG. 9, the first branch portion 107 a is formed to branch from the first bus bar 103 a outside the case 104. Similarly, a slit 108b is formed between the second bus bar 103b and the second branch portion 107b in the vicinity of the cooler 400. Further, the second branch portion 107 b is formed to branch from the second bus bar 103 b outside the case 104.
  • the slits 108a and 108b are formed in a direction perpendicular to the horizontal direction, but the present invention is not limited to this.
  • the slits 108a and 108b may be formed in the horizontal direction (see FIG. 3).
  • the slits 108 a and 108 b are formed outside the case 104.
  • the slit 108a (108b) may be formed so as to have a region overlapping with the cooler 300 (cooler 400) when the power converter 10 is viewed from above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A power converter (10) is provided with: a switching element (200) for converting direct-current electric power to alternating-current electric power; a capacitor module (100) for smoothing the voltage to be input to the switching element (200); a conductor part (103a) for electrically connecting the capacitor module (100) and the switching element (200); a conductor member that includes a branching part (107b) formed by branching from the conductor part (103a); and a cooler (300) that is thermally connected to the branching part (107b).

Description

電力変換装置Power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
 従来より、電力変換装置を冷却する方法が知られている(特許文献1)。特許文献1に記載された発明は、コンデンサとスイッチング素子とをバスバーで接続し、このバスバーに冷却器を接続している。 Conventionally, a method of cooling a power converter is known (Patent Document 1). In the invention described in Patent Document 1, a capacitor and a switching element are connected by a bus bar, and a cooler is connected to the bus bar.
特開2017−93005号公報JP 2017-93005 A
 通常、コンデンサとスイッチング素子とを接続するバスバーは、そのインダクタンス成分を小さくするためにバスバー長を短くしたいという要求があるが、特許文献1に記載された発明のようにバスバーに冷却器を接続するためには、バスバーを長くする必要がある。しかしながら、バスバーを長くした場合、そのインダクタンス成分が大きくなるため、サージ電圧が大きくなるおそれがある。 Usually, a bus bar connecting a capacitor and a switching element is required to shorten the bus bar length in order to reduce its inductance component, but a cooler is connected to the bus bar as in the invention described in Patent Document 1. In order to do this, it is necessary to lengthen the bus bar. However, when the bus bar is lengthened, the inductance component increases, and thus the surge voltage may increase.
 本発明は、上記問題に鑑みて成されたものであり、その目的は、冷却性能を有し、かつバスバーの長さを増加させない電力変換装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a power converter that has cooling performance and does not increase the length of the bus bar.
 本発明の一態様に係る電力変換装置は、スイッチング素子と、スイッチング素子に入力される電圧を平滑するコンデンサモジュールと、コンデンサモジュールとスイッチング素子とを電気的に接続する導電部と、導電部から分岐して形成される分岐部とを含む導電部材と、分岐部に熱的に接続される冷却器と、を備える。 A power conversion device according to one embodiment of the present invention includes a switching element, a capacitor module that smoothes a voltage input to the switching element, a conductive portion that electrically connects the capacitor module and the switching element, and a branch from the conductive portion. And a cooler that is thermally connected to the branch portion.
 本発明によれば、冷却性能を有し、かつバスバーの長さを増加させない電力変換装置が実現する。 According to the present invention, a power converter that has cooling performance and does not increase the length of the bus bar is realized.
図1は、本発明の第1実施形態に係る電力変換装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a power conversion device according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係るコンデンサモジュールの概略構成図である。FIG. 2 is a schematic configuration diagram of the capacitor module according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係るコンデンサモジュールとスイッチング素子との接続関係を説明する図である。FIG. 3 is a diagram for explaining a connection relationship between the capacitor module and the switching element according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係るコンデンサモジュールとスイッチング素子との接続関係を説明する他の図である。FIG. 4 is another diagram illustrating the connection relationship between the capacitor module and the switching element according to the first embodiment of the present invention. 図5は、本発明の第1実施形態に係る冷却器の概略構成図である。FIG. 5 is a schematic configuration diagram of the cooler according to the first embodiment of the present invention. 図6は、本発明の第2実施形態に係る電力変換装置の概略構成図である。FIG. 6 is a schematic configuration diagram of a power conversion device according to the second embodiment of the present invention. 図7は、本発明の第3実施形態に係る電力変換装置の概略構成図である。FIG. 7 is a schematic configuration diagram of a power conversion device according to the third embodiment of the present invention. 図8は、本発明の第4実施形態に係る電力変換装置の概略構成図である。FIG. 8 is a schematic configuration diagram of a power conversion device according to the fourth embodiment of the present invention. 図9は、本発明の第5実施形態に係る電力変換装置の概略構成図である。FIG. 9 is a schematic configuration diagram of a power conversion device according to the fifth embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same portions are denoted by the same reference numerals, and description thereof is omitted.
(第1実施形態)
 図1を参照して、第1実施形態に係る電力変換装置10について説明する。図1に示すように、電力変換装置10は、直流電源20と、コンデンサモジュール100と、スイッチング素子200と、を備える。
(First embodiment)
With reference to FIG. 1, the power converter device 10 which concerns on 1st Embodiment is demonstrated. As shown in FIG. 1, the power conversion device 10 includes a DC power supply 20, a capacitor module 100, and a switching element 200.
 スイッチング素子200は、オンオフ制御によって直流電源20から入力される直流電力を交流電力に変換し、交流電力をモータ21に供給する。 The switching element 200 converts DC power input from the DC power supply 20 into AC power by on / off control, and supplies the AC power to the motor 21.
 コンデンサモジュール100は、直流電源20とスイッチング素子200との間に形成される。コンデンサモジュール100は、直流電源20とスイッチング素子200との間の電圧を平滑する。これにより、スイッチングによる給電母線の電圧、電流の脈動が抑制される。 The capacitor module 100 is formed between the DC power supply 20 and the switching element 200. Capacitor module 100 smoothes the voltage between DC power supply 20 and switching element 200. Thereby, voltage and current pulsations of the power supply bus due to switching are suppressed.
 バスバー103(導電部)は、コンデンサモジュール100とスイッチング素子200との間に形成される。換言すれば、バスバー103は、コンデンサモジュール100とスイッチング素子200とを接続する。バスバー103は、導電性を有する部材(例えば銅)によって構成される。 The bus bar 103 (conductive portion) is formed between the capacitor module 100 and the switching element 200. In other words, the bus bar 103 connects the capacitor module 100 and the switching element 200. The bus bar 103 is made of a conductive member (for example, copper).
 次に、図2を参照して、コンデンサモジュール100について説明する。本実施形態では、コンデンサモジュール100をフィルムコンデンサとして説明するが、これに限定されない。 Next, the capacitor module 100 will be described with reference to FIG. In the present embodiment, the capacitor module 100 is described as a film capacitor, but the present invention is not limited to this.
 図2に示すように、コンデンサモジュール100は、コンデンサ素子101と、第1電極102aと、第2電極102bと、樹脂部材105と、ケース104とを備える。 2, the capacitor module 100 includes a capacitor element 101, a first electrode 102a, a second electrode 102b, a resin member 105, and a case 104.
 第1電極102a及び第2電極102bは、コンデンサ素子101に電気的に接続され、かつ、互いに対向して形成される。第1電極102aはコンデンサ素子101の上面に接続され、第2電極102bはコンデンサ素子101の下面に接続される。なお、本実施形態では、説明の便宜上、コンデンサ素子101、第1電極102a、及び第2電極102bを分けて説明するが、コンデンサ素子101、第1電極102a、及び第2電極102bを含めてコンデンサ素子と表現されてもよい。第1電極102aには、第1バスバー103a(第1導電部)が接続される。同様に、第2電極102bには、第2バスバー103b(第2導電部)が接続される。 The first electrode 102a and the second electrode 102b are electrically connected to the capacitor element 101 and are formed to face each other. The first electrode 102 a is connected to the upper surface of the capacitor element 101, and the second electrode 102 b is connected to the lower surface of the capacitor element 101. In this embodiment, for convenience of explanation, the capacitor element 101, the first electrode 102a, and the second electrode 102b will be described separately. However, the capacitor including the capacitor element 101, the first electrode 102a, and the second electrode 102b will be described. It may be expressed as an element. A first bus bar 103a (first conductive portion) is connected to the first electrode 102a. Similarly, the second bus bar 103b (second conductive portion) is connected to the second electrode 102b.
 第1バスバー103a及び第2バスバー103bの一部は、ケース104の外部に引き出されている。また、第1バスバー103aと第2バスバー103bとが近接する領域において、第1バスバー103aと第2バスバー103bとの間に絶縁部材106が形成される。 Part of the first bus bar 103 a and the second bus bar 103 b is drawn out of the case 104. In addition, an insulating member 106 is formed between the first bus bar 103a and the second bus bar 103b in a region where the first bus bar 103a and the second bus bar 103b are close to each other.
 ケース104は、コンデンサ素子101、第1電極102a、及び第2電極102bを収容する。ケース104は、例えばアルミニウムからなる。ケース104の内部には、樹脂部材105が充填される。つまり、ケース104の内部において、コンデンサ素子101、第1電極102a、第2電極102b、第1バスバー103a、及び第2バスバー103bは、樹脂部材105によって固定される。 The case 104 houses the capacitor element 101, the first electrode 102a, and the second electrode 102b. The case 104 is made of aluminum, for example. The case 104 is filled with a resin member 105. That is, in the case 104, the capacitor element 101, the first electrode 102a, the second electrode 102b, the first bus bar 103a, and the second bus bar 103b are fixed by the resin member 105.
 次に、図3を参照して、コンデンサモジュール100とスイッチング素子200との接続関係について説明する。図3に示すように、ケース104から引き出された第1バスバー103aは、端子台202に接続される。端子台202は、スイッチング素子200を収容するケース201に接続される。同様に、ケース104から引き出された第2バスバー103bも、端子台203に接続される。なお、ケース104から引き出された第1バスバー103a及び第2バスバー103bは、インダクタンスを小さくするため、短く構成される。ケース104から引き出された第1バスバー103a及び第2バスバー103bは、スイッチング素子200の近傍において、絶縁部材106を介して対向するように配置される。 Next, the connection relationship between the capacitor module 100 and the switching element 200 will be described with reference to FIG. As shown in FIG. 3, the first bus bar 103 a pulled out from the case 104 is connected to the terminal block 202. The terminal block 202 is connected to a case 201 that houses the switching element 200. Similarly, the second bus bar 103 b pulled out from the case 104 is also connected to the terminal block 203. The first bus bar 103a and the second bus bar 103b drawn from the case 104 are configured to be short in order to reduce inductance. The first bus bar 103 a and the second bus bar 103 b pulled out from the case 104 are arranged in the vicinity of the switching element 200 so as to face each other with the insulating member 106 interposed therebetween.
 図3に示すように、第1バスバー103aは、第1バスバー103aから分岐して形成される第1分岐部107a(分岐部)を含む。したがって、第1分岐部107aも、第1バスバー103aと同じく導電性を有する部材(例えば銅)によって構成される。このように本実施形態において、第1バスバー103aと第1分岐部107aは、1つの導電部材である。第1バスバー103aは、コンデンサモジュール100とスイッチング素子200とを電気的に接続する。第1分岐部107aには、冷却器300が接続される。第1分岐部107aは、電気的な接続を構成しない一方で、熱的な接続を構成する。冷却器300によって第1分岐部107aは冷却される。第1分岐部107a及び第1バスバー103aは、熱伝導率が高い銅によって構成されるため、第1分岐部107aが冷却されることにより、第1バスバー103aも冷却される。これにより、第1バスバー103aに接続するコンデンサモジュール100も冷却される。 As shown in FIG. 3, the first bus bar 103a includes a first branch part 107a (branch part) formed by branching from the first bus bar 103a. Therefore, the 1st branch part 107a is also comprised with the member (for example, copper) which has electroconductivity similarly to the 1st bus-bar 103a. Thus, in this embodiment, the 1st bus-bar 103a and the 1st branch part 107a are one conductive member. The first bus bar 103a electrically connects the capacitor module 100 and the switching element 200. The cooler 300 is connected to the first branch portion 107a. The first branch portion 107a does not constitute an electrical connection, but constitutes a thermal connection. The first branch portion 107 a is cooled by the cooler 300. Since the first branch portion 107a and the first bus bar 103a are made of copper having high thermal conductivity, the first bus bar 103a is also cooled by cooling the first branch portion 107a. Thereby, the capacitor module 100 connected to the first bus bar 103a is also cooled.
 同様に、第2バスバー103bは、第2バスバー103bから分岐して形成される第2分岐部107bを含む。したがって、第2分岐部107bも、第2バスバー103bと同じく導電性を有する部材(例えば銅)によって構成される。第2バスバー103bと第2分岐部107bも、1つの導電部材である。第2バスバー103bは、コンデンサモジュール100とスイッチング素子200とを電気的に接続する。第2分岐部107bには、冷却器400が接続される。第2分岐部107bは、電気的な接続を構成しない一方で、熱的な接続を構成する。冷却器400によって第2分岐部107bが冷却される。第2分岐部107b及び第2バスバー103bは、熱伝導率が高い銅によって構成されるため、第2分岐部107bが冷却されることにより、第2バスバー103bも冷却される。これにより、第2バスバー103bに接続するコンデンサモジュール100も冷却される。 Similarly, the second bus bar 103b includes a second branch portion 107b formed by branching from the second bus bar 103b. Therefore, the 2nd branch part 107b is also comprised with the member (for example, copper) which has electroconductivity similarly to the 2nd bus-bar 103b. The second bus bar 103b and the second branch portion 107b are also one conductive member. The second bus bar 103b electrically connects the capacitor module 100 and the switching element 200. The cooler 400 is connected to the second branch portion 107b. The second branch 107b does not constitute an electrical connection, but constitutes a thermal connection. The second branch portion 107b is cooled by the cooler 400. Since the second branch part 107b and the second bus bar 103b are made of copper having high thermal conductivity, the second bus bar 103b is also cooled by cooling the second branch part 107b. Thereby, the capacitor module 100 connected to the second bus bar 103b is also cooled.
 以上説明したように、第1バスバー103a(第2バスバー103b)から分岐して形成される第1分岐部107a(第2分岐部107b)に冷却器300(冷却器400)が熱的に接続される。これにより、第1分岐部107a(第2分岐部107b)が冷却され、コンデンサモジュール100も冷却される。また、冷却器300(冷却器400)は、第1バスバー103a(第2バスバー103b)に接続されるのではなく、第1分岐部107a(第2分岐部107b)に接続される。したがって、従来技術のようにバスバーの長さを長くする必要がない。これにより、冷却性能を有し、かつバスバーのインダクタンス成分が小さい電力変換装置10が実現する。 As described above, the cooler 300 (cooler 400) is thermally connected to the first branch portion 107a (second branch portion 107b) formed by branching from the first bus bar 103a (second bus bar 103b). The Thereby, the 1st branch part 107a (2nd branch part 107b) is cooled, and the capacitor module 100 is also cooled. The cooler 300 (cooler 400) is not connected to the first bus bar 103a (second bus bar 103b), but is connected to the first branch portion 107a (second branch portion 107b). Therefore, it is not necessary to increase the length of the bus bar as in the prior art. Thereby, the power converter device 10 having a cooling performance and a small inductance component of the bus bar is realized.
 図3において、冷却箇所は2つあるが、これに限定されない。例えば、冷却箇所は1つでもよく、3つ以上でもよい。図4に示すように、1つの冷却器300のみ第1分岐部107aに接続されてもよい。また、図3において、第1分岐部107aは、ケース104の外部で分岐されているが、これに限定されない。例えば、図4に示すように、第1分岐部107aは、ケース104の内部で分岐されてもよい。 In FIG. 3, there are two cooling points, but the present invention is not limited to this. For example, the number of cooling points may be one, or three or more. As shown in FIG. 4, only one cooler 300 may be connected to the first branch portion 107a. Moreover, in FIG. 3, although the 1st branch part 107a is branched outside the case 104, it is not limited to this. For example, as shown in FIG. 4, the first branch portion 107 a may be branched inside the case 104.
 次に、図5を参照して冷却器300の一例について説明する。冷却器300は、図5に示すものに限定されない。 Next, an example of the cooler 300 will be described with reference to FIG. The cooler 300 is not limited to that shown in FIG.
 図5に示すように、冷却器300は、金属部材301と、絶縁部材302と、冷却水303と、ウォータージャケット304とを備える。金属部材301の側面及び底面は、絶縁部材302によって覆われる。 As shown in FIG. 5, the cooler 300 includes a metal member 301, an insulating member 302, cooling water 303, and a water jacket 304. The side surface and the bottom surface of the metal member 301 are covered with an insulating member 302.
 第1分岐部107aは、第1バスバー103aと同じく導電性を有する部材(例えば銅)によって構成されるため、導電性を有する。冷却器300も導電性を有する部材(金属部材301)によって構成される。第1分岐部107aは、金属部材301に接続されるため、第1分岐部107aに流れる電流が金属部材301、冷却水303、ウォータージャケット304を通って、ケースグラウンドに流れる可能性がある。第1分岐部107aに流れる電流がケースグラウンドに流れないようにするために、第1分岐部107aと冷却水303とを絶縁する必要がある。上述した特許文献1に記載された発明は、冷却器とバスバーとの接触部分に電気絶縁性熱伝導材を用いて絶縁を実現している。しかしながら、電気絶縁性熱伝導材は一般的に強度が弱く、ボルトを用いて固定する際に破壊されるおそれがある。また、ボルトを用いず冷却器とバスバーを接触させるだけでは、接触熱抵抗が高く、冷却効果が得られないおそれがある。 The first branch portion 107a is made of a conductive member (for example, copper) like the first bus bar 103a, and thus has conductivity. The cooler 300 is also composed of a conductive member (metal member 301). Since the first branch portion 107a is connected to the metal member 301, the current flowing through the first branch portion 107a may flow to the case ground through the metal member 301, the cooling water 303, and the water jacket 304. In order to prevent the current flowing through the first branch portion 107a from flowing into the case ground, it is necessary to insulate the first branch portion 107a from the cooling water 303. In the invention described in Patent Document 1 described above, insulation is realized by using an electrically insulating heat conductive material at the contact portion between the cooler and the bus bar. However, the electrical insulating heat conductive material is generally weak in strength and may be destroyed when fixed with bolts. Further, if the cooler and the bus bar are merely brought into contact without using bolts, the contact thermal resistance is high and the cooling effect may not be obtained.
 そこで本実施形態において、図5に示すように、第1分岐部107aは、金属部材301に熱的に接続される。金属部材301のうち、第1分岐部107aに接する面を除いた部分は、絶縁部材302によって覆われる。より詳しくは、金属部材301のうち、第1分岐部107aに接する上面以外の側面及び底面は絶縁部材302によって覆われる。これにより、第1分岐部107aと冷却器300とが十分な接続強度を有する。また、第1分岐部107aと冷却水303とが絶縁される。これにより、第1分岐部107aは、効率よく冷却される。なお、ウォータージャケット304を絶縁部材として用いてもよい。なお、図5において、第2分岐部107bは、省略する。 Therefore, in the present embodiment, as shown in FIG. 5, the first branch portion 107 a is thermally connected to the metal member 301. A portion of the metal member 301 excluding the surface in contact with the first branch portion 107 a is covered with the insulating member 302. More specifically, the side surface and the bottom surface of the metal member 301 other than the top surface that is in contact with the first branch portion 107 a are covered with the insulating member 302. Thereby, the 1st branch part 107a and the cooler 300 have sufficient connection strength. Moreover, the 1st branch part 107a and the cooling water 303 are insulated. Thereby, the 1st branch part 107a is cooled efficiently. Note that the water jacket 304 may be used as an insulating member. In FIG. 5, the second branch 107b is omitted.
(第2実施形態)
 次に、図6を参照して第2実施形態について説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG.
 コンデンサ素子101は、スイッチング電流によるクーロン力により、鉛直方向に対し垂直となる水平方向に膨張と収縮を繰り返し、コンデンサモジュール100を振動させることが知られている。 It is known that the capacitor element 101 repeatedly expands and contracts in the horizontal direction perpendicular to the vertical direction by the Coulomb force generated by the switching current, and vibrates the capacitor module 100.
 そこで図6に示すように、第1分岐部107aは、鉛直方向における第1電極102aと第2電極102bとの間において、第1バスバー103aから分岐して形成される。また、第1分岐部107aは、ケース104の外部に引き出される。同様に、第2分岐部107bは、鉛直方向における第1電極102aと第2電極102bとの間において、第2バスバー103bから分岐して形成される。また、第2分岐部107bは、ケース104の外部に引き出される。さらに、第1分岐部107a及び第2分岐部107bは、水平方向において第1電極102a及び第2電極102bと平行になるように形成される。これにより、水平方向において膨張及び収縮に対する剛性が高まり、コンデンサモジュール100の振動が抑制される。 Therefore, as shown in FIG. 6, the first branch portion 107a is formed to branch from the first bus bar 103a between the first electrode 102a and the second electrode 102b in the vertical direction. Further, the first branch portion 107 a is pulled out of the case 104. Similarly, the second branch portion 107b is formed to branch from the second bus bar 103b between the first electrode 102a and the second electrode 102b in the vertical direction. Further, the second branch portion 107 b is pulled out of the case 104. Further, the first branch portion 107a and the second branch portion 107b are formed to be parallel to the first electrode 102a and the second electrode 102b in the horizontal direction. Thereby, the rigidity with respect to expansion and contraction is increased in the horizontal direction, and vibration of the capacitor module 100 is suppressed.
(第3実施形態)
 次に、図7を参照して第3実施形態について説明する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG.
 図7に示すように、第1分岐部107aの上面及び下面のそれぞれに冷却器300、500が接続される。これにより、第1分岐部107aと冷却器との接触面積が増加し、冷却性能が向上する。 As shown in FIG. 7, coolers 300 and 500 are connected to the upper surface and the lower surface of the first branch portion 107a, respectively. Thereby, the contact area of the 1st branch part 107a and a cooler increases, and cooling performance improves.
 接触面積を増加させる方法として、一つの冷却器を用いる方法があるが、以下の課題がある。すなわち、一つの冷却器を用いて接触面積を増加させた場合、電力変換装置の投影面積が大きくなってしまう。これに対し、本実施形態では図7に示すように、2つの冷却器300、500を鉛直方向に対向させて第1分岐部107aに接続させることにより、投影面積を拡大させることなく接触面積を増加させることができる。また、上面及び下面から第1分岐部107aに冷却器300、500が押し付けられることにより、2つの冷却器300、500と第1分岐部107aとの接触性が向上し、接触熱抵抗が下がる。これにより、冷却性能が向上する。なお、図7に示す例では、第1分岐部107aの上面及び下面に冷却器300、500が接続されると説明したが、これに限定されない。第1分岐部107aの少なくとも2つの表面のそれぞれに冷却器が接続されればよい。なお、図7において、第2分岐部107bは、省略する。 There is a method of using one cooler as a method of increasing the contact area, but there are the following problems. That is, when the contact area is increased using one cooler, the projected area of the power conversion device is increased. On the other hand, in the present embodiment, as shown in FIG. 7, the contact area is increased without enlarging the projected area by connecting the two coolers 300 and 500 to the first branch portion 107a in the vertical direction. Can be increased. In addition, the coolers 300 and 500 are pressed against the first branch portion 107a from the upper surface and the lower surface, thereby improving the contact between the two coolers 300 and 500 and the first branch portion 107a and reducing the contact thermal resistance. Thereby, cooling performance improves. In the example illustrated in FIG. 7, it is described that the coolers 300 and 500 are connected to the upper surface and the lower surface of the first branch portion 107a, but the present invention is not limited to this. A cooler may be connected to each of at least two surfaces of the first branch portion 107a. In FIG. 7, the second branch 107b is omitted.
(第4実施形態)
 次に、図8を参照して第4実施形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG.
 一般的にコンデンサ素子101はバスバー103(第1バスバー103a、第2バスバー103b)に対し等価直列抵抗が大きい。このため、スイッチング電流が大きい場合はコンデンサ素子101の発熱が大きくなる。また、直流電流が大きい場合はバスバー103(第1バスバー103a、第2バスバー103b)の発熱が大きくなる。 Generally, the capacitor element 101 has a larger equivalent series resistance than the bus bar 103 (the first bus bar 103a and the second bus bar 103b). For this reason, when the switching current is large, the heat generation of the capacitor element 101 increases. Further, when the direct current is large, the heat generation of the bus bar 103 (first bus bar 103a, second bus bar 103b) increases.
 図8に示すように、コンデンサ素子101の最大発熱部600は、コンデンサ素子101の発熱とバスバー103(第1バスバー103a、第2バスバー103b)からの煽り熱によって決定される。第4実施形態において、第1分岐部107aは、最大発熱部600の近傍に形成され、最大発熱部600の近傍からケース104の外部に引き出される。このように、最大発熱部600に基づいて定まる位置からケース104の外部に引き出される第1分岐部107aが冷却されることにより、効率よくコンデンサモジュール100が冷却される。なお、最大発熱部600とは、コンデンサモジュール100における最も発熱する部位をいう。 As shown in FIG. 8, the maximum heat generating portion 600 of the capacitor element 101 is determined by the heat generated by the capacitor element 101 and the heat generated from the bus bar 103 (first bus bar 103a, second bus bar 103b). In the fourth embodiment, the first branch portion 107 a is formed in the vicinity of the maximum heat generating portion 600 and is drawn out of the case 104 from the vicinity of the maximum heat generating portion 600. Thus, the capacitor module 100 is efficiently cooled by cooling the first branch portion 107a drawn out of the case 104 from the position determined based on the maximum heat generating portion 600. The maximum heat generating portion 600 refers to a portion that generates the most heat in the capacitor module 100.
(第5実施形態)
 次に、図9を参照して第5実施形態について説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG.
 バスバー103(第1バスバー103a、第2バスバー103b)とスイッチング素子200とをボルトで締結する場合、バスバー103(第1バスバー103a、第2バスバー103b)はスイッチング素子200との接続点において接触電気抵抗により最も発熱する。したがって、バスバー103(第1バスバー103a、第2バスバー103b)とスイッチング素子200との接続点の近傍を冷却することが考えられる。しかしながら、第1バスバー103aと第1分岐部107aとが密着する場合、スイッチング素子200と冷却器300の寸法公差により、冷却性能が低下するおそれがある。より詳しくは、第1バスバー103aとスイッチング素子200との接続面、第1分岐部107aと冷却器300との接続面における接触性が悪化し、冷却性能が低下するおそれがある。 When the bus bar 103 (first bus bar 103a, second bus bar 103b) and the switching element 200 are fastened with bolts, the bus bar 103 (first bus bar 103a, second bus bar 103b) has contact electrical resistance at the connection point with the switching element 200. It generates the most heat. Therefore, it is conceivable to cool the vicinity of the connection point between the bus bar 103 (the first bus bar 103a and the second bus bar 103b) and the switching element 200. However, when the first bus bar 103a and the first branch portion 107a are in close contact with each other, the cooling performance may be reduced due to the dimensional tolerance between the switching element 200 and the cooler 300. More specifically, the contact property on the connection surface between the first bus bar 103a and the switching element 200 and the connection surface between the first branch portion 107a and the cooler 300 is deteriorated, and the cooling performance may be deteriorated.
 そこで、本実施形態では図9に示すように、冷却器300の近傍において第1バスバー103aと第1分岐部107aの間にスリット108aが形成される。また、図9に示すように、第1分岐部107aは、ケース104の外部において第1バスバー103aから分岐して形成される。同様に、冷却器400の近傍において第2バスバー103bと第2分岐部107bの間にスリット108bが形成される。また、第2分岐部107bは、ケース104の外部において第2バスバー103bから分岐して形成される。これにより、第1バスバー103aとスイッチング素子200との接続面、第1分岐部107aと冷却器300との接続面において、寸法公差による接触性の悪化は抑制される。なお、図9に示す例において、スリット108a、108bは、水平方向に対し直角となる方向に形成されるが、これに限定されない。スリット108a、108bは、水平方向に形成されてもよい(図3参照)。また、スリット108a、108bは、ケース104の外部に形成される。なお、スリット108a(108b)は、電力変換装置10の上面視において、冷却器300(冷却器400)と重なる領域を有するように形成されてもよい。 Therefore, in this embodiment, as shown in FIG. 9, a slit 108 a is formed between the first bus bar 103 a and the first branch portion 107 a in the vicinity of the cooler 300. Further, as shown in FIG. 9, the first branch portion 107 a is formed to branch from the first bus bar 103 a outside the case 104. Similarly, a slit 108b is formed between the second bus bar 103b and the second branch portion 107b in the vicinity of the cooler 400. Further, the second branch portion 107 b is formed to branch from the second bus bar 103 b outside the case 104. Thereby, in the connection surface of the 1st bus-bar 103a and the switching element 200, and the connection surface of the 1st branch part 107a and the cooler 300, the deterioration of the contact property by a dimensional tolerance is suppressed. In the example shown in FIG. 9, the slits 108a and 108b are formed in a direction perpendicular to the horizontal direction, but the present invention is not limited to this. The slits 108a and 108b may be formed in the horizontal direction (see FIG. 3). The slits 108 a and 108 b are formed outside the case 104. The slit 108a (108b) may be formed so as to have a region overlapping with the cooler 300 (cooler 400) when the power converter 10 is viewed from above.
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 As described above, the embodiments of the present invention have been described. However, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
10 電力変換装置
20 直流電源
21 モータ
100 コンデンサモジュール
101 コンデンサ素子
102a 第1電極
102b 第2電極
103 バスバー
103a 第1バスバー
103b 第2バスバー
104、201 ケース
105 樹脂部材
106 絶縁部材
107a 第1分岐部
107b 第2分岐部
108a、108b スリット
200 スイッチング素子
202、203 端子台
300、400、500 冷却器
301 金属部材
302 絶縁部材
303 冷却水
304 ウォータージャケット
DESCRIPTION OF SYMBOLS 10 Power converter 20 DC power supply 21 Motor 100 Capacitor module 101 Capacitor element 102a 1st electrode 102b 2nd electrode 103 Bus bar 103a 1st bus bar 103b 2nd bus bar 104, 201 Case 105 Resin member 106 Insulating member 107a 1st branch part 107b 1st Two branch portions 108a, 108b Slit 200 Switching elements 202, 203 Terminal blocks 300, 400, 500 Cooler 301 Metal member 302 Insulating member 303 Cooling water 304 Water jacket

Claims (6)

  1.  直流電力を交流電力に変換するスイッチング素子と、
     前記スイッチング素子に入力される電圧を平滑するコンデンサモジュールと、
     前記コンデンサモジュールと前記スイッチング素子とを電気的に接続する導電部と、前記導電部から分岐して形成される分岐部とを含む導電部材と、
     前記分岐部に熱的に接続される冷却器と、を備える
    ことを特徴とする電力変換装置。
    A switching element that converts DC power to AC power;
    A capacitor module for smoothing a voltage input to the switching element;
    A conductive member that includes a conductive portion that electrically connects the capacitor module and the switching element; and a branch portion that is formed by branching from the conductive portion;
    And a cooler thermally connected to the branch portion.
  2.  前記コンデンサモジュールは、
     コンデンサ素子と、
     前記コンデンサ素子に電気的に接続され、かつ、互いに対向して形成される第1電極及び第2電極と、
     前記コンデンサ素子、前記第1電極、及び前記第2電極を収容するケースと、を含み、
     前記導電部は、
     前記第1電極に接続される第1導電部と、前記第2電極に接続される第2導電部とを含み、
     前記分岐部は、
     地面に対する鉛直方向における前記第1電極と前記第2電極との間において、前記第1導電部から分岐して形成される第1分岐部と、
     前記鉛直方向における前記第1電極と前記第2電極との間において、前記第2導電部から分岐して形成される第2分岐部と、を含み、
     前記第1導電部、前記第2導電部、前記第1分岐部、及び前記第2分岐部は、前記ケースから引き出され、
     前記第1分岐部、前記第2分岐部、前記第1電極、及び前記第2電極は、前記鉛直方向に対し垂直となる水平方向において平行である
    ことを特徴とする請求項1に記載の電力変換装置。
    The capacitor module is
    A capacitor element;
    A first electrode and a second electrode which are electrically connected to the capacitor element and formed to face each other;
    A case for accommodating the capacitor element, the first electrode, and the second electrode;
    The conductive part is
    A first conductive part connected to the first electrode; and a second conductive part connected to the second electrode;
    The branch portion is
    A first branch portion formed by branching from the first conductive portion between the first electrode and the second electrode in a direction perpendicular to the ground;
    A second branch part formed by branching from the second conductive part between the first electrode and the second electrode in the vertical direction,
    The first conductive portion, the second conductive portion, the first branch portion, and the second branch portion are pulled out from the case,
    2. The electric power according to claim 1, wherein the first branch portion, the second branch portion, the first electrode, and the second electrode are parallel in a horizontal direction perpendicular to the vertical direction. Conversion device.
  3.  前記冷却器は、
     金属部材と、
     絶縁部材とを含み、
     前記分岐部は、前記金属部材に熱的に接続され、
     前記金属部材のうち、前記分岐部に接する面を除いた部分は、前記絶縁部材によって覆われる
    ことを特徴とする請求項1に記載の電力変換装置。
    The cooler is
    A metal member;
    Including an insulating member,
    The branch portion is thermally connected to the metal member,
    The power converter according to claim 1, wherein a portion of the metal member excluding a surface in contact with the branch portion is covered with the insulating member.
  4.  前記分岐部の少なくとも2つの表面のそれぞれに前記冷却器が接続される
    ことを特徴とする請求項1または3に記載の電力変換装置。
    The power converter according to claim 1 or 3, wherein the cooler is connected to each of at least two surfaces of the branch portion.
  5.  前記コンデンサモジュールは、
     コンデンサ素子と、
     前記コンデンサ素子に電気的に接続され、かつ、互いに対向して形成される第1電極及び第2電極と、
     前記コンデンサ素子、前記第1電極、及び前記第2電極を収容するケースと、を含み、
     前記分岐部は、前記コンデンサモジュールにおける最も発熱する部位に基づいて定まる位置から前記ケースの外部に引き出される
    ことを特徴とする請求項1、3、4のいずれ1項に記載の電力変換装置。
    The capacitor module is
    A capacitor element;
    A first electrode and a second electrode which are electrically connected to the capacitor element and formed to face each other;
    Containing the capacitor element, the first electrode, and the second electrode,
    5. The power conversion device according to claim 1, wherein the branch portion is drawn out of the case from a position determined based on a most heat-generating part in the capacitor module.
  6.  前記コンデンサモジュールは、
     コンデンサ素子と、
     前記コンデンサ素子に電気的に接続され、かつ、互いに対向して形成される第1電極及び第2電極と、
     前記コンデンサ素子、前記第1電極、及び前記第2電極を収容するケースと、を含み、
     前記分岐部は、前記ケースの外部において前記導電部から分岐して形成され、
     前記ケースの外部において、前記分岐部と前記導電部との間にスリットが形成される
    ことを特徴とする請求項1、3、4のいずれ1項に記載の電力変換装置。
    The capacitor module is
    A capacitor element;
    A first electrode and a second electrode which are electrically connected to the capacitor element and formed to face each other;
    Containing the capacitor element, the first electrode, and the second electrode,
    The branch portion is formed to branch from the conductive portion outside the case,
    5. The power conversion device according to claim 1, wherein a slit is formed between the branch portion and the conductive portion outside the case. 6.
PCT/IB2018/000741 2018-06-08 2018-06-08 Power converter WO2019234467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/000741 WO2019234467A1 (en) 2018-06-08 2018-06-08 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/000741 WO2019234467A1 (en) 2018-06-08 2018-06-08 Power converter

Publications (1)

Publication Number Publication Date
WO2019234467A1 true WO2019234467A1 (en) 2019-12-12

Family

ID=68769256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/000741 WO2019234467A1 (en) 2018-06-08 2018-06-08 Power converter

Country Status (1)

Country Link
WO (1) WO2019234467A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252461A (en) * 2009-04-14 2010-11-04 Denso Corp Electric power converter
JP2018067998A (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252461A (en) * 2009-04-14 2010-11-04 Denso Corp Electric power converter
JP2018067998A (en) * 2016-10-18 2018-04-26 三菱電機株式会社 Power converter

Similar Documents

Publication Publication Date Title
JP6214710B2 (en) Power converter
JP2018207718A (en) Electric power conversion system
EP3348117B1 (en) Induction heating power supply apparatus
JP6602260B2 (en) Power converter
JP7243582B2 (en) power converter
JP2020022357A (en) System including bus bar device and power converter housing, production method thereof, power converter for vehicle, and vehicle
JP6932225B1 (en) Power converter
JP6180489B2 (en) Power converter
JP2009027778A (en) Bus bar
JP6331294B2 (en) Semiconductor device
JP2015109748A (en) Power conversion device
JP2017017861A (en) Capacitor module
JP6749428B2 (en) Power converter
WO2016047174A1 (en) Power conversion device
JP6784197B2 (en) Power converter
US11088630B2 (en) Power converter
JP5581822B2 (en) Semiconductor device
JP2007037211A (en) Electric power distribution component and electric device
WO2019234467A1 (en) Power converter
JP5803684B2 (en) Power converter
JP6174824B2 (en) Power converter
JP4424918B2 (en) Power converter
JP7007131B2 (en) Heat dissipation structure in circuit board equipment
JP5869207B2 (en) Circuit component mounting structure and its mounting board
JP2001186776A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP