WO2019233373A1 - 电子设备和通信方法 - Google Patents

电子设备和通信方法 Download PDF

Info

Publication number
WO2019233373A1
WO2019233373A1 PCT/CN2019/089801 CN2019089801W WO2019233373A1 WO 2019233373 A1 WO2019233373 A1 WO 2019233373A1 CN 2019089801 W CN2019089801 W CN 2019089801W WO 2019233373 A1 WO2019233373 A1 WO 2019233373A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation symbol
dimensional modulation
dimensional
symbol sequence
symbol block
Prior art date
Application number
PCT/CN2019/089801
Other languages
English (en)
French (fr)
Inventor
周郑颐
王昭诚
葛宁
曹建飞
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to CN201980036241.2A priority Critical patent/CN112236984B/zh
Priority to US17/054,513 priority patent/US11190384B2/en
Priority to EP19815856.0A priority patent/EP3793155A4/en
Publication of WO2019233373A1 publication Critical patent/WO2019233373A1/zh
Priority to US17/472,731 priority patent/US11956112B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26532Demodulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms

Definitions

  • the present disclosure relates to an electronic device and a communication method, and in particular, to an electronic device and a communication method having improved performance in a high-speed moving scene.
  • Wireless communication has increasingly expanded application scenarios, and is increasingly used in high-speed mobile scenarios such as aircraft, high-speed rail, and satellite communications.
  • the physical channel has the characteristics of fast time-varying, and the Doppler effect brought by the fast time-varying physical channel has a non-negligible effect on the performance of the wireless communication system.
  • Orthogonal Frequency Division Multiplexing (OFDM) modulation is the main modulation scheme used for downlink transmission. It uses multiple frequency domains that are allocated in advance. Subcarriers to transmit a set of complex modulation symbols. However, the use of multiple frequency domain subcarriers makes the OFDM system very sensitive to Doppler frequency offsets. Therefore, the strong Doppler effect brought by the fast time-varying physical channel will severely degrade the performance of the OFDM system and increase the bit error rate significantly. This limits the application of OFDM systems in high-speed mobile scenarios.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OTFS modulation obtains diversity gain against Doppler frequency offset by processing multiple sets of complex modulation symbols in multiple OFDM symbol intervals.
  • OTFS modulation requires joint processing of all complex modulation symbols in multiple OFDM symbol intervals, which not only brings high computational overhead, but also inevitably causes endogenous system delay.
  • the high complexity of OTFS modulation / demodulation and the endogenous system delay make it unsuitable for implementation on practical systems such as handheld mobile devices.
  • the present disclosure provides an improved communication method and electronic device suitable for high-speed moving scenes, which can effectively cope with the time-varying Doppler effect in high-speed moving scenes, while having lower implementation complexity and system delay, Easy to implement in real systems.
  • An aspect of the present disclosure relates to an electronic device including a processing circuit configured to perform a pre-processing operation on a first one-dimensional modulation symbol sequence.
  • the preprocessing operation includes: performing a dimension-up conversion on the first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block; and using a first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other, The multi-dimensional modulation symbol block is transformed into a second multi-dimensional modulation symbol block; and the second multi-dimensional modulation symbol block is subjected to dimensionality reduction conversion to a second one-dimensional modulation symbol sequence, wherein the dimensionality reduction conversion is an inverse process of the up-dimensional conversion.
  • the processing circuit is also configured to transmit a second one-dimensional modulation symbol sequence.
  • Another aspect of the present disclosure relates to an electronic device including a processing circuit configured to: obtain a first one-dimensional modulation symbol sequence; and perform a post-processing operation on the first one-dimensional modulation symbol sequence.
  • the post-processing operation includes: performing up-dimensional conversion on the first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block; and using a first transformation that couples each symbol in the first multi-dimensional modulation symbol block to each other, The multi-dimensional modulation symbol block is transformed into a second multi-dimensional modulation symbol block; and the second multi-dimensional modulation symbol block is subjected to dimensionality reduction conversion to a second one-dimensional modulation symbol sequence, wherein the dimensionality reduction conversion is an inverse process of the up-dimensional conversion.
  • Another aspect of the present disclosure relates to a communication method including a pre-processing operation on a first one-dimensional modulation symbol sequence, wherein the pre-processing operation includes: performing an up-dimensional conversion on the first one-dimensional modulation symbol sequence to become a first A multi-dimensional modulation symbol block; transforming the first multi-dimensional modulation symbol block into a second multi-dimensional modulation symbol block using a first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other; and The dimensional modulation symbol block undergoes dimensionality reduction conversion into a second one-dimensional modulation symbol sequence, wherein the dimensionality reduction conversion is the inverse process of the dimensionality conversion conversion.
  • the communication method further includes transmitting a second one-dimensional modulation symbol sequence.
  • Yet another aspect of the present disclosure relates to a communication method including: acquiring a first one-dimensional modulation symbol sequence; and performing a post-processing operation on the first one-dimensional modulation symbol sequence.
  • the post-processing operation includes: performing up-dimensional conversion on the first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block; and using a first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other, Transforming a first multi-dimensional modulation symbol block into a second multi-dimensional modulation symbol block; and performing a dimensionality reduction conversion on the second multi-dimensional modulation symbol block into a second one-dimensional modulation symbol sequence, wherein the dimensionality reduction conversion is an inverse process of the up-dimensional conversion .
  • Yet another aspect of the present disclosure relates to a communication method, which includes performing a pre-processing operation on a first one-dimensional modulation symbol sequence.
  • the pre-processing operation includes: performing a first dimension-up conversion on the first one-dimensional modulation symbol sequence into A first multi-dimensional modulation symbol block; transforming the first multi-dimensional modulation symbol block into a second multi-dimensional modulation symbol block using a first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other; and
  • the multi-dimensional modulation symbol block undergoes a first dimensionality reduction conversion into a second one-dimensional modulation symbol sequence, wherein the first dimensionality reduction conversion is an inverse process of the first dimensionality improvement conversion.
  • the communication method further includes transmitting a second one-dimensional modulation symbol sequence, obtaining a second one-dimensional modulation symbol sequence, and performing a post-processing operation on the second one-dimensional modulation symbol sequence.
  • the post-processing operation includes: performing a second dimension-up conversion on the second one-dimensional modulation symbol sequence into a third multi-dimensional modulation symbol block; and using a second transformation that couples each symbol in the third multi-dimensional modulation symbol block to each other, transforming Transforming the third multi-dimensional modulation symbol block into a fourth multi-dimensional modulation symbol block; and performing a second dimensionality reduction conversion on the fourth multi-dimensional modulation symbol block into a third one-dimensional modulation symbol sequence, wherein the second dimensionality reduction conversion is the second Inverse process of dimensionality conversion.
  • Yet another aspect of the present disclosure relates to a computer-readable storage medium on which a computer program is stored, characterized in that the computer program is used to implement the communication method as described above when loaded and executed by a processor.
  • FIG. 1A-1C schematically illustrate an OFDM system.
  • FIG. 1D schematically illustrates a plurality of complex modulation symbol sequences for a transmitting side of an OFDM system.
  • FIG. 2 illustrates a block diagram of an electronic device for a transmitting side according to an embodiment of the present disclosure.
  • FIG. 3 illustrates a flowchart of a communication method for an electronic device on a transmitting side according to an embodiment of the present disclosure.
  • FIG. 4A shows a constellation diagram of QPSK modulation.
  • FIG. 4B illustrates a flowchart of a first dimension upgrading conversion according to an embodiment of the present disclosure.
  • FIG. 4C shows a flowchart of a first coupling transformation according to an embodiment of the present disclosure.
  • FIG. 4D illustrates a flowchart of a first dimensionality reduction conversion according to an embodiment of the present disclosure.
  • 4E-4G illustrate schematic diagrams of a first dimensionality conversion, a first coupling transformation, and a first dimensionality reduction conversion according to an embodiment of the present disclosure, respectively.
  • FIG. 5 illustrates a block diagram of an electronic device for a receiving side according to an embodiment of the present disclosure.
  • FIG. 6 illustrates a flowchart of a communication method for a receiving-side electronic device according to an embodiment of the present disclosure.
  • FIG. 7A illustrates a flowchart of a general communication method according to an embodiment of the present disclosure.
  • FIG. 7B illustrates a block diagram of a communication system according to an embodiment of the present disclosure.
  • FIG. 7C is a schematic diagram of a digital signal model of a transmitting and receiving end under a time-varying multipath physical channel according to an embodiment of the present disclosure.
  • 8A and 8B are schematic diagrams illustrating whether to enable a pre-processing operation and / or a post-processing operation according to an embodiment of the present disclosure.
  • FIG. 9 and FIG. 10 respectively show simulation results of bit error rate performance of each system in a case where constellation point mapping is performed using a QPSK constellation diagram and a 16QAM constellation diagram.
  • FIG. 13 is a block diagram of a first example of a schematic configuration of a control device-side electronic device according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram of a second example of a schematic configuration of a control device-side electronic device according to an embodiment of the present disclosure.
  • FIG. 15 is a block diagram of an example of a schematic configuration of a smartphone according to an embodiment of the present disclosure.
  • FIG. 16 is a block diagram of an example of a schematic configuration of a car navigation device according to an embodiment of the present disclosure.
  • OFDM modulation is a major modulation scheme. Therefore, a brief introduction to the traditional OFDM system is firstly referred to FIG. 1A to FIG. 1C in order to understand the subsequent description based on OFDM. However, it should be understood that the OFDM system is only an example, and the present disclosure can also be applied to other similar systems, as described in Section 9 later.
  • the OFDM system is, for example, a multi-carrier modulation system used in the LTE system, and is characterized in that multiple subcarriers can be used in one symbol interval to respectively send corresponding complex modulation symbols in a group of complex modulation symbols.
  • These subcarriers are orthogonal to each other and can overlap, and the number of subcarriers used is equal to the number of symbols in a set of complex modulation symbols transmitted in one symbol interval. Therefore, it is avoided to use the protection bandwidth to separate the carriers, so that the OFDM system has a higher spectrum utilization rate.
  • FIG. 1A provides a schematic description of an OFDM modulator 100A, in which N complex modulators are shown, each complex modulator corresponding to one OFDM subcarrier.
  • OFDM modulator 100A for a single OFDM symbol interval to obtain substantially the OFDM signal s m (t) from the sequence of complex modulation symbols A m inputs.
  • the complex modulation symbol sequence A m represents a set of complex modulation symbols a 0 m , a 1 m , ... to be transmitted in one OFDM symbol interval (for example, the m-th OFDM symbol interval). a N-1 m .
  • These complex modulation symbols are, for example, QPSK symbols or QAM symbols, depending on the modulation method.
  • These complex modulation symbols can be obtained by mapping a bit stream to be transmitted to a constellation point using a technique such as QPSK, 16QAM or 64QAM.
  • the number of complex modulation symbols in the complex modulation symbol sequence A m is equal to the number of subcarriers used by the system, which is N in the example of FIG. 1A.
  • a plurality of complex modulation symbol sequences to be respectively modulated and transmitted in a plurality of OFDM symbol intervals may be represented as a complex modulation symbol block 100D to be transmitted in FIG. 1D.
  • the complex modulation symbol block 100D in FIG. 1D is presented as an N ⁇ M two-dimensional block, where each row corresponds to a subcarrier and each column corresponds to an OFDM symbol interval.
  • the two-dimensional block includes M complex modulation symbol sequences A 0 , A 1 ..., A m ,..., A M-1 which are sequentially modulated and transmitted within an OFDM symbol interval, each complex modulation symbol sequence includes N complex modulation symbols.
  • the complex modulation symbol sequence Am will be modulated and transmitted in the m-th OFDM symbol interval.
  • the N complex modulation symbols in each complex modulation symbol sequence will be transmitted by the N subcarriers of the OFDM system in the same OFDM symbol interval.
  • the input complex modulation symbol sequence A m of the OFDM modulator 100A shown in FIG. 1A may correspond to the sequence A m in FIG. 1D. That is, the complex modulation symbols a 0 m , a 1 m ,..., A N-1 m respectively correspond to the complex modulation symbols x [0, m], x [1, m], ..., x [N in FIG. 1D. -1, m], these complex modulation symbols will be modulated and transmitted by the OFDM modulator 100A as follows during the m-th OFDM symbol interval.
  • the complex modulation symbols A m complex modulation symbol sequence may be multiplied with the corresponding sub-carriers after undergoing serial to parallel conversion.
  • f (k) k ⁇ f represents a frequency sub-carrier complex modulation symbols corresponding to a k m
  • ⁇ f represent adjacent subcarriers spaced in frequency between the sub-carriers.
  • s m (t) can be expressed as:
  • the OFDM modulator 100A may be used to obtain a basic OFDM signal s m + 1 (t). In this way, the OFDM system modulates each group of complex modulation symbols in different symbol intervals on the corresponding subcarriers, thereby achieving a specific time-frequency resource allocation.
  • the number of OFDM subcarriers can be determined as needed.
  • the number can vary from less than 100 to several thousand.
  • the subcarrier interval between the subcarriers can be selected as needed, for example, in the range from several hundred kHz to several kHz.
  • the subcarrier spacing used may depend on various aspects of the environment in which the system is running, such as the maximum radio channel frequency selectivity expected in the environment and the expected maximum channel change rate (ie, the maximum expected Doppler frequency offset). Once the subcarrier interval has been selected, the number of subcarriers can be determined based on the overall transmission bandwidth.
  • FIG. 1B shows the basic principle of OFDM demodulation, which shows an OFDM demodulator 100B.
  • the OFDM demodulator 100B includes N correlators, and each correlator is used for one subcarrier.
  • the basic OFDM signal s m (t) output from the OFDM modulator of FIG. 1A reception apparatus receiving side via the physical channel after the transmission.
  • Let r m (t) denote the received signal in a symbol interval.
  • correlate r m (t) with the corresponding subcarrier thereby obtaining the restored modulation symbols á 0 m , á 1 m , ..., á N-1 m respectively .
  • the two OFDM subcarriers will not interfere with each other after demodulation.
  • FIG. 1C illustrates a system block diagram of the OFDM system 100C.
  • the OFDM system 100C includes at least an OFDM transmitter and an OFDM receiver.
  • the complex modulation symbol sequence to be transmitted is sent to an OFDM transmitter.
  • an OFDM modulator such as 100A described in FIG. 1A
  • it further undergoes operations such as IFFT transformation, adding a cyclic prefix, shaping, and up-conversion.
  • the transmitted radio signal is transmitted to the OFDM receiver through a physical channel.
  • a OFDM demodulator such as 100B described with reference to FIG. 1B
  • OTFS system is a new modulation and multiple access technology. Unlike the OFDM system, which uses a set of complex modulation symbols in a single modulation symbol interval as a unit for modulation, the OTFS system performs joint processing on multiple sets of complex modulation symbols in multiple modulation symbol intervals to obtain a Doppler frequency offset resistance. Diversity gain.
  • the disadvantages of OTFS systems are also very obvious. For example, the OTFS system requires that multiple sets of complex modulation symbols across multiple modulation symbol intervals are processed collectively on both the transmitting side and the receiving side, so the complexity of the processing is high. On the receiving side, it is necessary to wait for all symbols with multiple modulation symbol intervals to be received before performing overall processing, which causes an endogenous system delay.
  • the complexity of the channel equalization of the OTFS system is much higher than that of the OFDM system, making it difficult to implement on an actual system, especially for a handheld device.
  • the OFDM system lacks a design to counter the Doppler frequency offset, and OTFS processes the multiple sets of complex modulation symbols across multiple symbol intervals as a whole. Although it has obtained the ability to counter the Doppler frequency offset, it also It also introduces unacceptable system delays and huge receiver-side equalization complexity.
  • the present disclosure provides an improved electronic device and communication method in a high-speed moving scene, which can effectively cope with the time-varying Doppler effect in a high-speed moving scene, while having low implementation complexity and system delay.
  • Time The following description is based on an OFDM system.
  • FIG. 2 illustrates a block diagram of an electronic device 200 for a transmitting side according to an embodiment of the present disclosure.
  • the electronic device 200 may be located in various control devices or transmitting devices.
  • the control equipment mentioned here is, for example, a base station such as eNB or 3GPP's 5G communication standard gNB, a remote radio head, a wireless access point, etc.
  • the transmitting device includes, for example, a large-sized vehicle-mounted transmitting device or a fixed transmitting device (for example , UAV management tower) and transmitters in satellite communication systems.
  • the electronic device 200 may also be located in a communication device (such as a smart phone) for a user side.
  • the electronic device 200 for a transmitting side may include, for example, a communication unit 201, a memory 202, and a processing circuit 203.
  • the processing circuit 203 may provide various functions of the electronic device 200. According to an embodiment of the present disclosure, the processing circuit 203 may be configured to perform a pre-processing operation on the first one-dimensional modulation symbol sequence, and the pre-processing operation couples each modulation symbol in the first one-dimensional modulation symbol sequence to each other to obtain a part Diversity gain against Doppler frequency offset. The first one-dimensional modulation symbol sequence is converted into a second one-dimensional modulation symbol sequence by the preprocessing operation. The processing circuit 203 further configures the transmission of the second one-dimensional modulation symbol sequence for transmission by the communication unit 201.
  • the processing circuit 203 may include various units for implementing the functions described above. According to an embodiment of the present disclosure, the processing circuit 203 may include a pre-processing unit 204 and a transmission configuration unit 205, and may optionally include a pre-processing enabling unit 206.
  • the pre-processing unit 204 may be configured to perform a pre-processing operation on the first one-dimensional modulation symbol sequence.
  • the first one-dimensional modulation symbol sequence may be a set of complex modulation symbols to be transmitted obtained from another modulation unit (not shown), such as a QPSK modulation unit, a QAM modulation unit Or another unit for mapping a bit stream to be transmitted into a modulation symbol.
  • the first one-dimensional modulation symbol sequence may be a set of complex modulation symbols A m to be transmitted in one modulation symbol interval as described with reference to FIG. 1A.
  • the pre-processing operation for the first one-dimensional modulation symbol sequence may include a first dimensionality conversion, a first coupling transformation, and a first dimensionality reduction conversion. These operations may be performed by the first dimensionality conversion unit 204A, the first coupling conversion unit 204B, and the first dimensionality reduction conversion unit 204C included in the pre-processing unit 204, respectively.
  • the first dimensionality conversion unit 204A may be configured to perform a first dimensionality conversion on a first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block.
  • the first multi-dimensional modulation symbol block may be a two-dimensional modulation symbol block, or have a higher dimension.
  • the first dimensionality conversion may map each modulation symbol in the first one-dimensional modulation symbol sequence to a corresponding position in the first multi-dimensional modulation symbol block.
  • the obtained first multi-dimensional modulation symbol block may be transmitted to the first coupling transformation unit 204B. More details on the first dimensionality transformation will be described in section 4.2 below.
  • the first coupling transformation unit 204B may transform the first multi-dimensional modulation symbol block into the second multi-dimensional modulation symbol block by using a first coupling transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other.
  • Each modulation symbol in the second multi-dimensional modulation symbol block obtained through the first coupling transformation has a coupling correlation with each other, thereby obtaining a diversity gain against Doppler frequency offset, and therefore, fast time in a high-speed moving scene Variable physical channels have improved transmission performance, such as lower bit error rates.
  • the first coupling transformation unit 204B may transmit the second multi-dimensional modulation symbol block to the first dimension reduction transformation unit 204C. More details on the first coupling transformation will be described in Section 4.3 below.
  • the first dimensionality reduction conversion unit 204C may be configured to perform a first dimensionality reduction conversion on the second multi-dimensional modulation symbol block into a second one-dimensional modulation symbol sequence.
  • the first dimensionality reduction conversion performed by the first dimensionality reduction conversion unit 204C may be an inverse process of the first dimensionality reduction conversion performed by the first dimensionality reduction conversion unit 204A. More details on the first dimensionality reduction transformation will be described in Section 4.4 below. Therefore, the second one-dimensional modulation symbol sequence will have the same size as the first one-dimensional modulation symbol sequence. This allows the second one-dimensional modulation symbol sequence to be directly applied to a conventional system (such as an OFDM system or other multi-carrier system) that was originally used to transmit the first one-dimensional modulation symbol sequence.
  • a conventional system such as an OFDM system or other multi-carrier system
  • the first one-dimensional modulation symbol sequence is a group of complex modulation symbols A m described in FIG. 1A
  • the second one-dimensional modulation symbol sequence obtained by performing a pre-processing operation on A m can be directly applied to FIG. 1A Subsequent processing for Am , starting from serial-to-parallel conversion.
  • the pre-processing unit 204 may transmit the second one-dimensional modulation symbol sequence to the transmission configuration unit 205, and the transmission configuration unit 205 configures the transmission of the second one-dimensional modulation symbol sequence so that it is suitable for using a single carrier system or a multi-carrier system. transmission.
  • Operations performed by the transmission configuration unit 205 may include, but are not limited to, inverse Fourier transform, adding a cyclic prefix (CP), carrier / subcarrier modulation, digital-to-analog conversion, and the like.
  • the transmission configuration unit 205 may transmit a signal to be transmitted to the communication unit 201 of the electronic device 200.
  • the communication unit 201 can be used to transmit a radio signal to a relay device or an electronic device on the receiving side under the control of the processing circuit 203.
  • the communication unit 201 may be implemented as a communication interface component such as an antenna device, a radio frequency circuit, and a part of a baseband processing circuit.
  • the communication unit 201 is drawn with a dashed line because it can also be located inside the processing circuit 203 or outside the electronic device 200.
  • the processing circuit 203 may optionally further include a pre-processing enabling unit 206.
  • the pre-processing enabling unit 206 may be used to determine whether to enable the pre-processing unit 204 to perform a pre-processing operation on the first one-dimensional modulation symbol sequence. When it is determined that the pre-processing operation is not enabled, the first one-dimensional modulation symbol sequence may be directly transmitted to the transmission configuration unit 205 without undergoing the pre-processing operation.
  • the pre-processing enabling unit 206 is drawn with a dashed line because it can also be located outside the processing circuit 203 or outside the electronic device 200.
  • the memory 202 of the electronic device 200 may store information generated by the processing circuit 203 (such as the aforementioned modulation symbol sequences and multi-dimensional modulation symbol blocks), information received from other devices through the communication unit 201, a program for operating the electronic device 200, Machine code and data.
  • the memory 202 is drawn with a dashed line because it can also be located inside the processing circuit 203 or outside the electronic device 200.
  • the memory 202 may be a volatile memory and / or a non-volatile memory.
  • the memory 202 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read-only memory (ROM), and flash memory.
  • modules described above are exemplary and / or preferred modules for implementing the processes described in this disclosure. These modules may be hardware units (such as a central processing unit, a field programmable gate array, a digital signal processor or an application specific integrated circuit, etc.) and / or software modules (such as a computer-readable program).
  • the modules used to implement the various steps described below have not been described in detail above. However, as long as there are steps to perform a certain process, there can be corresponding modules or units (implemented by hardware and / or software) for implementing the same process.
  • the technical solutions defined by the steps described below and all combinations of the units corresponding to these steps are included in the disclosure of the present disclosure as long as the technical solutions that they constitute are complete and applicable.
  • a device composed of various units may be incorporated as a functional module into a hardware device such as a computer.
  • the computer may of course have other hardware or software components.
  • FIG. 3 illustrates a flowchart of a communication method 300 for an electronic device on a transmitting side according to an embodiment of the present disclosure.
  • the communication method 300 can be used, for example, in the electronic device 200 as described in FIG. 2.
  • step S301 a preprocessing operation is performed on a first one-dimensional modulation symbol sequence to obtain a second one-dimensional modulation symbol sequence.
  • the first one-dimensional modulation symbol sequence may be obtained from, for example, a QPSK modulation unit, a QAM modulation unit, or another unit for mapping a bit stream to be transmitted as a modulation symbol.
  • Step S301 may be performed by the processing circuit 203 of the electronic device 200, and more specifically, by the pre-processing unit 204.
  • step S301 is further shown as including sub-steps S303, S304, S305.
  • sub-step S303 the first one-dimensional modulation symbol sequence is subjected to a first dimension-up conversion into a first multi-dimensional modulation symbol block.
  • sub-step S304 the first multi-dimensional modulation symbol block is transformed into a second multi-dimensional modulation symbol block by using a first coupling transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other.
  • a first dimensionality reduction conversion is performed on the second multi-dimensional modulation symbol block into a second one-dimensional modulation symbol sequence, where the first dimensionality reduction conversion is an inverse process of the first dimensionality improvement conversion in S303.
  • Steps S303, S304, and S305 may be executed by the processing circuit 203 of the electronic device 200. More specifically, the first dimension-increasing conversion unit 204A, the first coupling transformation unit 204B, and the first dimension-reduction conversion unit included in the preprocessing unit 204 204C is executed separately.
  • the second one-dimensional modulation symbol sequence obtains a diversity gain against Doppler frequency offset, which makes it have improved performance in fast time-varying physical channels. Transmission performance.
  • step S302 the transmission of the second one-dimensional modulation symbol sequence is configured so that it is suitable for transmission using a single-carrier system or a multi-carrier system.
  • the configuration operation in step S302 may include any operation suitable for the selected system, such as one or more of operations such as inverse Fourier transform, adding cyclic prefix (CP), carrier / subcarrier modulation, digital-to-analog conversion, etc. .
  • Step S302 may be performed by the processing circuit 203 of the electronic device 200, and more specifically, by the transmission configuration unit 205.
  • a corresponding communication unit for example, the communication unit 201 of the electronic device 200
  • the communication method 300 may further include a step of determining whether to enable a pre-processing operation. This step may be performed before step S301, for example. This step may be performed by the processing circuit 203 of the electronic device 200, and more specifically, by the pre-processing enabling unit 206. When it is determined that the pre-processing operation is not enabled, the method 300 may skip step S301. In this case, the transmission of the first one-dimensional modulation symbol sequence is directly configured in step S302.
  • the pre-processing operation may include a first dimensionality transformation, a first coupling transformation, and a first dimensionality reduction transformation.
  • the preprocessing operation may convert the input first one-dimensional modulation symbol sequence into a second one-dimensional modulation symbol sequence for transmission.
  • the first one-dimensional modulation symbol sequence may include a plurality of complex modulation symbols, and these complex modulation symbols may be one of complex modulation symbols such as a QPSK symbol and a QAM symbol.
  • these complex modulation symbols can come from QPSK modulators, QAM modulators, etc. These modulators obtain each bit in the bit stream to be transmitted on a constellation map (also known as constellation point mapping) to obtain Corresponding complex modulation symbol.
  • FIG. 4A shows a constellation diagram of QPSK modulation.
  • There are 4 constellation points to choose from on the constellation diagram of QPSK shown in FIG. 4A, that is, the modulation order is 4. Therefore, each QPSK symbol corresponds to log 2 4 2 bits.
  • each constellation point map is in units of two bits. The mapping relationship between QPSK symbol x and bits is as follows:
  • QPSK modulation is described herein with respect to FIG. 4A, other modulation methods (such as QAM) can also be used to map the bits in the bit stream to be transmitted into corresponding types of complex modulation symbols.
  • each complex modulation symbol After obtaining a series of complex modulation symbols (such as QPSK symbols, QAM symbols), these complex modulation symbols can be arranged in columns into the form of a symbol sequence.
  • Each column of modulation symbols of a multi-carrier system may include multiple modulation symbols to be transmitted by multiple carriers.
  • the OFDM system is an example of a multi-carrier system.
  • each modulation symbol will be further modulated on multiple orthogonal subcarriers in the frequency domain. Therefore, according to the number of subcarriers (assuming 32) used by the OFDM system, each complex modulation symbol is naturally arranged in a sequence of 32 into a plurality of complex modulation symbol sequences x as shown below.
  • the multiple complex modulation symbol sequences are subjected to inverse discrete Fourier transform (IDFT) and subsequent operations. Then, the OFDM system transmits all 32 complex modulation symbols in one complex modulation symbol sequence in one symbol interval (also referred to as the OFDM symbol interval), and transmits all of the other complex modulation symbol sequences in the next symbol interval. 32 complex modulation symbols.
  • IDFT inverse discrete Fourier transform
  • the pre-processing operation may be performed before the aforementioned IDFT inverse transformation in the OFDM system.
  • the input to the pre-processing operation ie, the first one-dimensional modulation symbol sequence
  • the input to the pre-processing operation may include a sequence of complex modulation symbols to be transmitted on multiple subcarriers within one or more symbol intervals.
  • the number of complex modulation symbols included in the first one-dimensional modulation symbol sequence may be determined according to processing capabilities.
  • the first one-dimensional modulation symbol sequence may include complex modulation symbols to be transmitted on multiple subcarriers within one symbol interval.
  • the first one-dimensional modulation symbol sequence may correspond to a group of complex modulation symbols scheduled to be transmitted on multiple subcarriers within an OFDM symbol interval.
  • the first one-dimensional modulation symbol sequence includes N complex modulation symbols that are planned to be transmitted using the multiple subcarriers in one OFDM symbol interval.
  • OFDM modulation is performed on the second one-dimensional modulation symbol sequence obtained from the first one-dimensional modulation symbol sequence through a preprocessing operation, so as to complete radio transmission of the group of complex modulation symbols within one OFDM symbol interval.
  • This can advantageously reduce the processing complexity of the transmitting and receiving sides, making the system more suitable for implementation on a handheld device, such as a smart phone.
  • the receiving side does not need to wait for all complex modulation symbols in multiple symbol intervals to be received for overall processing, thereby avoiding the introduction of endogenous system delay.
  • the single-carrier system itself does not require the modulation symbols (such as QPSK symbols, QAM symbols) to be aligned. This is because the symbols of the single carrier system are modulated in the time domain, so it does not need to perform IDFT conversion on the transmitting side.
  • the modulation symbol stream is obtained through bit stream mapping, these modulation symbols are directly transmitted in sequence.
  • CP cyclic prefix
  • these single carrier systems also actually involve grouping the modulation symbol stream into multiple modulation symbol sequences.
  • Such a sequence of modulation symbols of a single carrier system can be used as an input to a pre-processing operation, that is, as a first one-dimensional modulation symbol sequence.
  • the symbols of the single carrier system are modulated in the time domain. Therefore, unlike the first one-dimensional modulation symbol sequence in a multi-carrier system, which may include frequency-domain modulation symbols, the first one-dimensional modulation symbol sequence in a single-carrier system may include time-domain modulation symbols.
  • the modulation symbol stream can also be divided into multiple modulation symbol sequences as in a multi-carrier system, and one or more of the modulation symbol sequences are selected as the input of the preprocessing operation. (Ie, the first one-dimensional modulation symbol sequence). After the first one-dimensional modulation symbol sequence is input, a first up-dimensional conversion may be performed.
  • the first dimensionality conversion may be used to convert a first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block.
  • the first multi-dimensional modulation symbol block may be a two-dimensional modulation symbol block, or may have a higher dimension.
  • the first two-dimensional transformation is described below with respect to the conversion of the first one-dimensional modulation symbol sequence to the first multi-dimensional modulation symbol block in two dimensions.
  • those skilled in the art can think of applying the principle to the conversion of a one-dimensional modulation symbol sequence to a higher-dimensional modulation symbol block.
  • a size of the first two-dimensional modulation symbol block X may be determined first.
  • the values of K and L can be appropriately determined according to the processing capability of the electronic device, for example.
  • each modulation symbol in the first one-dimensional modulation symbol sequence x may be mapped one by one to a corresponding position in the first two-dimensional modulation symbol block X.
  • the mapping process may be implemented through the following two steps, as shown in FIG. 4B.
  • Step S401 Reorder each modulation symbol in the first one-dimensional modulation symbol sequence x to obtain an intermediate sequence x ', as shown below.
  • the column vector x represents the first one-dimensional modulation symbol sequence
  • the column vector x ′ represents the one-dimensional intermediate sequence after reordering
  • p [i] is a reordering mapping on the original sequence number i, and its value is a series Different non-negative integers and satisfy p [i] ⁇ ⁇ 0,1,2, ..., N-1 ⁇ .
  • the design of the reordering map p [i] can be arbitrary as long as the values of p [i] are in the set ⁇ 0,1,2, ..., N-1 ⁇ and are different. This is equivalent to an ordered arrangement of N distinguishable modulation symbols, so p [i] can have N! (Factorial of N) different designs.
  • each element in the column vector x is rotated forward by one.
  • the reordering map p [i] takes different values in the given set of non-negative integers, and also ensures that the map p [i] is reversible. That is, there is a corresponding inverse map p -1 [j], such that:
  • Step S402 Each modulation symbol in the reordered intermediate sequence x 'is filled in the first two-dimensional modulation symbol block X of K ⁇ L in a predetermined filling order.
  • each modulation symbol in the first one-dimensional modulation symbol sequence x can be mapped one by one to a corresponding position in the first two-dimensional modulation symbol block X, so that the first one-dimensional modulation symbol sequence can be mapped.
  • x performs a first dimension-up conversion into a first two-dimensional modulation symbol block X. It should be noted that, although the first dimensionalization conversion process is described herein as having two steps, these two steps can be subdivided into more sub-steps or combined into one step.
  • the first one-dimensional modulation symbol sequence x may be sequentially filled in the corresponding columns in the first two-dimensional modulation symbol block X in sequence, or the first one The dimensional modulation symbol sequence x is filled line by line into a corresponding line in the first two-dimensional modulation symbol block X.
  • the first dimension upgrading conversion process may be performed, for example, by the first dimension upgrading conversion unit 204A in the electronic device 200 in step S303 of the method 300.
  • a first coupling transformation may be performed on the first multi-dimensional modulation symbol block.
  • the first coupling transform may be used to convert a first multi-dimensional modulation symbol block into a second multi-dimensional modulation symbol block.
  • the first multi-dimensional modulation symbol block and the second multi-dimensional modulation symbol block may have the same dimension.
  • the first multi-dimensional modulation symbol block and the second multi-dimensional modulation symbol block may be two-dimensional modulation symbol blocks, or may have higher dimensions.
  • the first coupling transformation is described below with respect to the transformation of the first two-dimensional modulation symbol block to the second two-dimensional modulation symbol block.
  • those skilled in the art will be able to understand the application of the principle to the transformation between the first multidimensional modulation symbol block and the second multidimensional modulation symbol block of higher dimensions.
  • the first multi-dimensional modulation symbol block is a first two-dimensional modulation symbol block
  • the first coupling transformation may be used to couple the symbols of the first two-dimensional modulation symbol block, so as to obtain each symbol therein.
  • the first coupling transformation may be a reversible transformation, which enables the received symbols to be correctly demodulated on the receiving side.
  • the first coupling transformation can be represented mathematically as a reversible map f ( ⁇ ):
  • X is the first two-dimensional modulation symbol block to be transformed
  • Y is the second two-dimensional modulation symbol block obtained by the transformation.
  • mapping f ( ⁇ ) can couple each modulation symbol in X, it is required that for any element y k, l in Y, there are two elements x i, j and x m, n in X, so that the corresponding The second-order mixed partial derivative is not 0, that is, the following expression is satisfied:
  • An arbitrary mapping f ( ⁇ ) that satisfies the above expression may be used to transform the first two-dimensional modulation symbol block into the second two-dimensional modulation symbol block.
  • the first coupling transformation used may be a linear transformation. Using linear transformation can reduce the complexity of the system implementation.
  • the first coupling transform used may further be an orthogonal transform.
  • Orthogonal transformation is a specific embodiment of linear transformation, which can ensure that the power before and after transformation is constant. Therefore, the gain in power processing can be obtained by using orthogonal transformation.
  • the first coupling transformation may be a multidimensional discrete dual Fourier transform (DSFT), a discrete multidimensional transform (DSFT), a multidimensional discrete cosine transform (DCT), or a corresponding multidimensional discrete cosine transform (DCT).
  • DSFT discrete dual Fourier transform
  • DCT discrete cosine transform
  • DCT multidimensional discrete cosine transform
  • DCT corresponding multidimensional discrete cosine transform
  • IDCT Transform
  • IDWT multidimensional discrete wavelet transform
  • IDWT multidimensional discrete wavelet transform
  • the first coupling transform may be a multi-dimensional DSFT transform.
  • the first coupling transform may be a two-dimensional DSFT transform.
  • the two-dimensional DSFT transform of the first two-dimensional modulation symbol block may include the following two-step one-dimensional Fourier transform / inverse transform: (1) in step S403 , Applying a one-dimensional Fourier transform to each row of the first two-dimensional modulation symbol block to obtain an intermediate two-dimensional modulation symbol block; (2) in step S404, applying one to each column of the intermediate two-dimensional modulation symbol block Inverse Fourier transform to obtain a second two-dimensional modulation symbol block.
  • the two-dimensional DSFT transform of the first two-dimensional modulation symbol block may include the following two-step one-dimensional Fourier transform / inverse transform: ( 1) Apply inverse one-dimensional Fourier transform to each column of the first two-dimensional modulation symbol block to obtain an intermediate two-dimensional modulation symbol block; (2) Apply one-dimensional Fourier to each row of the intermediate two-dimensional modulation symbol block The leaves are transformed to obtain a second two-dimensional modulation symbol block.
  • the first coupling transformation process may be performed, for example, by the first coupling transformation unit 204B in the electronic device 200 in step S304 of the method 300. After the first coupling transformation, a first dimensionality reduction transformation may be performed on the second multi-dimensional modulation symbol block.
  • the first dimensionality reduction conversion may be used to convert a second multi-dimensional modulation symbol block obtained by the first coupling transformation into a second one-dimensional modulation symbol sequence.
  • the first dimensionality reduction conversion is the inverse process of the aforementioned first dimensionality conversion.
  • the second multi-dimensional modulation symbol block may be a two-dimensional modulation symbol block or may have a higher dimension.
  • the first dimensionality reduction conversion process is described below with respect to the conversion of the second two-dimensional modulation symbol block to the second one-dimensional modulation symbol sequence.
  • those skilled in the art can think of applying the principle to the conversion of higher-dimensional modulation symbol blocks to one-dimensional modulation symbol sequences.
  • the first dimensionality reduction conversion process can be implemented by the following two steps, as shown in FIG. 4D.
  • Step S405 The second two-dimensional modulation symbol block of size K ⁇ L is restored to an N ⁇ 1 intermediate sequence in the reverse order of the filling order of the first dimensional conversion.
  • step S402 of the first dimension upgrading conversion uses the filling order of the following table to obtain the first two-dimensional symbol block X (that is, column-by-column filling)
  • step S405 of the first dimension reduction conversion directly modifies the second two-dimensional modulation
  • the columns of the symbol block Y are spliced in order to obtain the recovered intermediate sequence y '.
  • the second two-dimensional modulation symbol block Y is obtained by performing a first coupling transformation on the first two-dimensional modulation symbol block X.
  • Step S406 Restoratively reordering each element in the recovered intermediate sequence
  • a second one-dimensional modulation symbol sequence y can be obtained. As mentioned earlier, since the reordering map p [i] used by the first dimensionality transformation has a corresponding inverse map p -1 [j], by applying the inverse map p -1 [j] to the intermediate sequence y ', A second one-dimensional modulation symbol sequence y can be obtained. As follows.
  • each modulation symbol in the second two-dimensional modulation symbol block can be mapped back to the corresponding position in the second one-dimensional modulation symbol sequence, thereby reducing the second two-dimensional modulation symbol block first.
  • Dimensional conversion into a second one-dimensional modulation symbol sequence It should be noted that although the first dimensionality reduction conversion process is described here as a two-step process, these two steps can be subdivided into more sub-steps or combined into one step.
  • the second two-dimensional modulation symbol block can be spliced in sequence into a second one-dimensional modulation symbol sequence in sequence, or the second two-dimensional modulation symbol block can be spliced in sequence in order. Is a second one-dimensional modulation symbol sequence.
  • the first dimensionality reduction conversion process may be performed, for example, by the first dimensionality reduction conversion unit 204C in the electronic device 200 in step S305 of the method 300.
  • FIG. 4E to FIG. 4G further illustrate specific examples of the first dimensionality increasing transformation, the first coupling transformation, and the first dimensionality reducing transformation.
  • the first one-dimensional modulation symbol sequence 407 is transformed into a first two-dimensional modulation symbol block 408 through a first up-dimensional transformation.
  • the first one-dimensional modulation symbol sequence 407 may include N complex modulation symbols to be transmitted within an OFDM symbol interval.
  • the first one-dimensional modulation symbol sequence 407 is the complex modulation symbol sequence A m mentioned in Section 1.
  • the first two-dimensional modulation symbol block 408 is transformed into the second two-dimensional modulation symbol block 409 through a first coupling transformation, where the first coupling transformation may be a DSFT transformation at a point of K ⁇ L.
  • the obtained second two-dimensional modulation symbol block 409 is also a symbol block having a size of K ⁇ L.
  • the second two-dimensional modulation symbol block 409 undergoes a first dimensionality reduction conversion into a second one-dimensional modulation symbol sequence 410. Similar to the first one-dimensional modulation symbol sequence 407, the second one-dimensional modulation symbol sequence 410 also includes N complex modulation symbols.
  • the second one-dimensional modulation symbol sequence 410 may be further subjected to IDFT transformation into a sequence 411, as shown in FIG. 4G.
  • the first one-dimensional modulation symbol sequence is converted into a second one-dimensional modulation symbol sequence.
  • the second one-dimensional modulation symbol sequence may be transmitted using a single carrier system or a multi-carrier system.
  • each modulation symbol is independent, and there is a coupling relationship between the two modulation symbols in the second one-dimensional modulation symbol sequence, which makes the second one-dimensional modulation symbol sequence relative to the first
  • the one-dimensional modulation symbol sequence has a diversity gain against Doppler effects in fast time-varying physical channels, so that its transmission has improved performance in high-speed mobile scenarios, such as lower bit error rates.
  • the existing system for configuring and transmitting the first one-dimensional modulation symbol sequence can be directly applied to the second one-dimensional modulation symbol sequence. That is, a system including a pre-processing operation of the present disclosure can be implemented by adding a pre-processing module to an existing system.
  • the pre-processing module may be, for example, the pre-processing unit 204 in the processing circuit 203 described with reference to FIG. 2. Since there is no need to make more adjustments to the existing system, and since there is no need to make more adjustments to the existing system, the embodiments of the present disclosure also have acceptable additional complexity and cost.
  • the electronic device and the communication method according to the embodiments of the present disclosure can effectively cope with time-varying conditions in high-speed moving scenes by introducing a pre-processing operation including a first-dimensional transformation, a first coupling transformation, and a first-dimensional transformation.
  • the Doppler effect has both the complexity and system delay that are suitable for implementation in real systems.
  • FIG. 5 illustrates a block diagram of an electronic device 500 for a receiving side according to an embodiment of the present disclosure.
  • the electronic device 500 may be located in a communication device such as a smart phone for a user side.
  • the electronic device 500 may be located in various control devices or transmitting devices.
  • the control equipment mentioned here is, for example, a base station such as eNB or 3GPP's 5G communication standard gNB, a remote radio head, a wireless access point, etc.
  • the transmitting device includes, for example, a large-sized vehicle-mounted transmitting device or a fixed transmitting device (for example , UAV management tower) and transmitters in satellite communication systems.
  • the electronic device 500 for a receiving side may include, for example, a communication unit 501, a memory 502, and a processing circuit 503.
  • the communication unit 501 may be configured to receive or acquire a radio signal transmitted by the electronic device 200 on the transmitting side.
  • the radio signal may include one or more modulation symbol sequences transmitted through a single carrier system or a multi-carrier system, such as the aforementioned second one-dimensional modulation symbol sequence.
  • the communication unit 501 may perform functions such as down conversion, analog-digital conversion, and the like on the received radio signal.
  • the communication unit 501 may also perform a part of a demodulation function of a multi-carrier system or a single-carrier system, thereby providing the processing circuit 503 with a second one-dimensional modulation symbol sequence.
  • the communication unit 501 may be implemented as a communication interface component such as an antenna device, a radio frequency circuit, and a part of a baseband processing circuit.
  • the communication unit 501 is drawn with a dashed line because it can also be located inside the processing circuit 503 or outside the electronic device 500.
  • the memory 502 of the electronic device 500 may store information generated by the processing circuit 503, information received from other devices through the communication unit 501, programs, machine codes, data, and the like used for the operation of the electronic device 500.
  • the memory 502 is drawn with a dashed line because it can also be located inside the processing circuit 503 or outside the electronic device 500.
  • the memory 502 may be a volatile memory and / or a non-volatile memory.
  • the memory 502 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read-only memory (ROM), and flash memory.
  • the processing circuit 503 may provide various functions of the electronic device 500. According to an embodiment of the present disclosure, the processing circuit 503 may be configured to demodulate the second one-dimensional modulation symbol sequence to obtain the original modulation symbol sequence (for example, the first one-dimensional modulation symbol) transmitted by the electronic device 200 on the transmitting side. sequence).
  • the demodulation process performed by the processing circuit 503 may include a post-processing operation. Similar to the pre-processing operation performed on the transmitting side, the post-processing operation on the receiving side can couple the modulation symbols in the second one-dimensional modulation symbol sequence to each other to better obtain the processing gain that partially counteracts the Doppler frequency offset.
  • the second one-dimensional modulation symbol sequence can be converted into a third one-dimensional modulation symbol sequence by a post-processing operation on the receiving side.
  • the processing circuit 503 may further perform further processing on the third one-dimensional modulation symbol sequence, for example, perform a channel equalization operation and subsequent demodulation operations (such as QPSK demodulation and QAM demodulation), thereby restoring the transmission by the transmitting-side device Bitstream.
  • the processing circuit 503 may include various units for implementing the functions described above. According to an embodiment of the present disclosure, the processing circuit 503 may include a post-processing unit 504 and an equalization unit 505, and may optionally include a post-processing enable unit 506.
  • the post-processing unit 504 may be configured to perform a post-processing operation on the second one-dimensional modulation symbol sequence.
  • the second one-dimensional modulation symbol sequence may be a set of complex modulation symbols provided by the communication unit 501.
  • the second one-dimensional modulation symbol sequence may physically correspond to the second one-dimensional modulation symbol sequence on the transmitting side.
  • the post-processing operation on the second one-dimensional modulation symbol sequence may include a second dimensionality conversion, a second coupling conversion, and a second dimensionality reduction conversion. These operations may be performed by the second dimensionality-increasing conversion unit 504A, the second coupling conversion unit 504B, and the second dimensionality-reduction conversion unit 504C included in the post-processing unit 504, respectively.
  • the second dimensionality conversion unit 504A may be configured to perform a second dimensionality conversion on the second one-dimensional modulation symbol sequence to obtain a third multi-dimensional modulation symbol block.
  • the third multi-dimensional modulation symbol block may be a two-dimensional modulation symbol block, or have a higher dimension.
  • the second dimensionality conversion may map each modulation symbol in the second one-dimensional modulation symbol sequence to a corresponding position in the third multi-dimensional modulation symbol block one by one.
  • the obtained third multi-dimensional modulation symbol block may be transmitted to the second coupling transformation unit 504B.
  • the second coupling transform unit 504B may transform the third multi-dimensional modulation symbol block into a fourth multi-dimensional modulation symbol block by using a second coupling transform that couples the symbols in the third multi-dimensional modulation symbol block to each other.
  • performing the second coupling transformation corresponding to the first coupling transformation on the transmitting side can better combat the Doppler frequency offset.
  • the second coupling transformation unit 504B may transmit the fourth multi-dimensional modulation symbol block to the second dimensionality reduction transformation unit 504C.
  • the second dimensionality reduction conversion unit 504C may be configured to perform a second dimensionality reduction conversion on the fourth multi-dimensional modulation symbol block, thereby obtaining a third one-dimensional modulation symbol sequence.
  • the second dimensionality reduction conversion performed by the second dimensionality reduction conversion unit 504C may be an inverse process of the second dimensionality reduction conversion performed by the second dimensionality reduction conversion unit 504A. Therefore, the third one-dimensional modulation symbol sequence may have the same size as the second one-dimensional modulation symbol sequence.
  • the post-processing unit 504 may transmit the third one-dimensional modulation symbol sequence to the equalization unit 505 to perform a channel equalization operation, thereby directly recovering the original modulation symbol sequence under a certain signal-to-noise ratio condition, such as the aforementioned The first one-dimensional symbol sequence.
  • the channel equalization operation performed by the equalization unit 505 is performed for an equivalent channel.
  • the equivalent channel may describe a transmission relationship between a complex modulation symbol sequence (for example, a first one-dimensional modulation symbol sequence) on the transmitting side and a third one-dimensional modulation symbol sequence on the receiving side.
  • the processing circuit 503 may further include a post-processing enabling unit 506.
  • the post-processing enabling unit 506 is drawn with a dashed line because it can also be located outside the processing circuit 503 or outside the electronic device 500.
  • the post-processing enabling unit 506 may be used to determine whether the post-processing unit 504 is enabled to perform a post-processing operation on the second one-dimensional modulation symbol sequence. When it is determined that the post-processing operation is not enabled, this generally corresponds to a case where no pre-processing operation is performed at the transmitting end, and the second one-dimensional modulation symbol sequence can be directly transmitted to the equalization unit 505 without undergoing the post-processing operation.
  • the equalization unit 505 may perform a channel equalization operation for an equivalent channel that does not include a pre-processing operation and a post-processing operation.
  • modules described above are exemplary and / or preferred modules for implementing the processes described in the present disclosure.
  • These modules may be hardware units (such as a central processing unit, a field programmable gate array, a digital signal processor or an application specific integrated circuit, etc.) and / or software modules (such as a computer-readable program).
  • the modules used to implement the various steps described below have not been described in detail above. However, as long as there are steps to perform a certain process, there can be corresponding modules or units (implemented by hardware and / or software) for implementing the same process.
  • the technical solutions defined by the steps described below and all combinations of the units corresponding to these steps are included in the disclosure of the present disclosure as long as the technical solutions that they constitute are complete and applicable.
  • a device composed of various units may be incorporated as a functional module into a hardware device such as a computer.
  • the computer may of course have other hardware or software components.
  • FIG. 6 shows a flowchart of a communication method 600 for a receiving-side electronic device according to an embodiment of the present disclosure.
  • the communication method 600 may be performed by the electronic device 500 as described in FIG. 5, for example.
  • step S601 a second one-dimensional modulation symbol sequence is acquired.
  • the second one-dimensional modulation symbol sequence may be acquired via the communication unit 501 of the electronic device 500.
  • Step S601 may be executed by the processing circuit 503 of the electronic device 500, for example.
  • the second one-dimensional modulation symbol sequence may include a complex modulation symbol sequence received within one or more symbol intervals. Since the complexity of the reception processing increases as the number of complex modulation symbols included in the second one-dimensional modulation symbol sequence increases, the number of complex modulation symbols included in the second one-dimensional modulation symbol sequence can be determined, for example, according to processing capacity .
  • the second one-dimensional modulation symbol sequence may include complex modulation symbols only in one symbol interval.
  • the second one-dimensional modulation symbol sequence may correspond to a group of complex modulation symbols transmitted on multiple subcarriers within one OFDM symbol interval. More specifically, if the number of subcarriers used by the OFDM system is N, the second one-dimensional modulation symbol sequence includes N complex modulation symbols transmitted using the multiple subcarriers in one OFDM symbol interval.
  • the receiving process can be completed within one OFDM symbol interval, without the need to wait for the reception of all complex modulation symbols in multiple symbol intervals for the overall processing, which extends the inherent processing format of the OFDM system. Avoid introducing endogenous system delays.
  • Step S602 may be performed by the processing circuit 503 of the electronic device 500, and more specifically, by the post-processing unit 504.
  • step S602 may further include sub-steps S604, S605, and S606.
  • the second one-dimensional modulation symbol sequence is subjected to a second dimension-up conversion to obtain a third multi-dimensional modulation symbol block.
  • the third multi-dimensional modulation symbol block is transformed into a fourth multi-dimensional modulation symbol block by using a second coupling transformation that couples the respective modulation symbols in the third multi-dimensional modulation symbol block to each other.
  • a second dimensionality reduction conversion is performed on the fourth multi-dimensional modulation symbol block to obtain a third one-dimensional modulation symbol sequence, where the second dimensionality reduction conversion is an inverse process of the second dimensionality improvement conversion in S604.
  • Steps S604, S605, and S606 may be executed by the processing circuit 503 of the electronic device 500. More specifically, the second dimension increasing conversion unit 504A, the second coupling transformation unit 504B, and the second dimension reducing transformation unit included in the preprocessing unit 504 504C is implemented separately. Each symbol in the third one-dimensional modulation symbol sequence obtained through step S602 has a coupling relationship with each other. Therefore, the processing on the receiving side further obtains a diversity gain against Doppler frequency offset, which makes it have improved performance in fast time-varying channels.
  • the second dimensionality conversion may be an arbitrary conversion capable of mapping each modulation symbol in the second one-dimensional modulation symbol sequence to a corresponding position in the third multi-dimensional modulation symbol block.
  • the second dimensionality transformation can be any of the various dimensionality transformations described in Section 4.2 about the first dimensionality transformation, so it can be understood with reference to Section 4.2 and the same parts as Section 4.2 are no longer Repeat the description.
  • the receiving side may be unaware of which dimensionality conversion is adopted on the transmitting side.
  • a second ascending dimension transformation which is the same as the first ascending dimension transformation used on the transmitting side may be adopted on the receiving side.
  • the second dimensionality conversion may also be different from the first dimensionality conversion performed on the transmitting side.
  • the second coupling transformation may be any transformation capable of coupling each modulation symbol in the third multi-dimensional modulation symbol block to each other.
  • the second coupling transformation may be any one of the various coupling transformations described in Section 4.3, so it can be understood with reference to Section 4.3 and the description of the part overlapping with Section 4.3 is not repeated.
  • the second coupling transformation may belong to the same type or a different type from the first coupling transformation performed on the transmitting side.
  • the first coupling transform is a DSFT transform
  • the second coupling transform may be an IDSFT transform or a wavelet transform.
  • the sizes of the multi-dimensional modulation symbol blocks targeted by the second coupling transformation and the first coupling transformation may also be different.
  • the first multi-dimensional symbol block targeted by the first coupling transformation may be K 1 ⁇ L 1
  • the first multi-dimensional symbol block targeted by the second coupling transformation may be K 2 ⁇ L 2 , where K 1 and K 2 is different, and L 1 is different from L 2 .
  • the second coupling transformation performed on the receiving side may be an inverse transformation of the first coupling transformation performed on the transmitting side, which makes it possible to compare the So as to recover the modulation symbols transmitted on the transmitting side.
  • the discrete dual Fourier transform (DSFT) transform is used as the first coupling transform in the preprocessing operation on the transmitting side
  • the inverse discrete dual Fourier transform (IDSFT) may be used as the first transform in the postprocessing operation on the receiving side.
  • IDSFT discrete dual Fourier transform
  • a two-coupling transform in which IDSFT is used to apply an inverse multidimensional Fourier transform to each row in the third multidimensional modulation symbol block and an multidimensional Fourier transform is applied to each column.
  • the second coupling transform is not the inverse transform of the first coupling transform, the performance may be slightly different depending on the channel.
  • the second dimensionality reduction conversion is the inverse process of the second dimensionality conversion, which maps each modulation symbol in the fourth multi-dimensional modulation symbol block to the corresponding position in the third one-dimensional modulation symbol sequence one by one.
  • the second dimensionality reduction transformation can be any of the various dimensionality reduction transformations described in Section 4.4 about the first dimensionality reduction transformation, so it can be understood with reference to Section 4.4 and the same parts as Section 4.4 are no longer Repeat the description.
  • a second dimensionality reduction transformation that is the same as the first dimensionality reduction transformation used on the transmitting side may be employed on the receiving side.
  • the second dimensionality reduction transformation may be different from the first dimensionality reduction transformation performed on the transmitting side.
  • the second dimensional transformation, the second coupling transformation, and the second dimensionality reduction transformation in the post-processing operation on the receiving side may be respectively different from the first transformation processing in the pre-processing operation on the transmitting side.
  • the one-dimensional transformation, the first coupling transformation, and the first reduced-dimensional transformation are the same or different. They may not have a reciprocal relationship or some other specific relationship.
  • the overall equivalent transformation experienced by the signal is g * h * f.
  • the receiving side can invert the overall equivalent transformation g * h * f during channel equalization. Therefore, in principle, it is not required that the post-processing operation g on the receiving side and the pre-processing operation f on the transmitting side are reciprocal or have some other specific association.
  • g and f can be inversely transformed to each other, which can make g * h * f obtain a symmetrical structure, thereby facilitating signal processing.
  • a channel equalization operation may be performed in step S603.
  • the channel equalization operation can improve the transmission performance in fading channels, such as eliminating or reducing the inter-symbol interference (ISI) problem caused by multipath delay in broadband communication.
  • ISI inter-symbol interference
  • the channel equalization operation is performed for an equivalent channel.
  • the equivalent channel describes a transmission relationship between a complex modulation symbol sequence (for example, a first one-dimensional modulation symbol sequence) on the transmitting side and a third one-dimensional modulation symbol sequence on the receiving side.
  • Step S603 is optional and is therefore shown as a dashed box.
  • the communication method 600 may further include a step of determining whether to enable a post-processing operation. This step may be performed before step S602, for example. This step may be performed by the processing circuit 503 of the electronic device 500, and more specifically, by the post-processing enabling unit 506. When it is determined that the post-processing operation is not enabled, this generally corresponds to a case where no pre-processing operation is performed on the sending end, and the method 600 may skip step S602. In this case, a channel equalization operation may be directly performed on the second one-dimensional modulation symbol sequence in step S603.
  • the communication method 600 may further include a demodulation step (not shown) of the third one-dimensional modulation symbol sequence, so as to recover the bit stream transmitted on the transmitting side.
  • further demodulation operations performed on the receiving side may include corresponding demodulation operations such as QPSK demodulation or QAM demodulation.
  • the corresponding QPSK demodulation operation may be performed on the receiving side to recover the transmitted bit stream.
  • the electronic device and the communication method according to the embodiments of the present disclosure can counter fast time-varying by performing post-processing operations including a second dimensional transformation, a second coupling transformation, and a second dimensionality reduction transformation on the receiving side.
  • the Doppler effect in the physical channel, at the same time, has the complexity and system delay suitable for implementation in an actual system.
  • FIG. 7A further illustrates a flowchart of a general communication method 700 according to an embodiment of the present disclosure.
  • the communication method 700 may be performed, for example, by the electronic device 200 described with reference to FIG. 2 and the electronic device 500 described with reference to FIG. 5.
  • a preprocessing operation is performed on a first one-dimensional modulation symbol sequence to obtain a second one-dimensional modulation symbol sequence.
  • the first one-dimensional modulation symbol sequence may come from a QPSK modulator, a QAM modulator, or another modulator.
  • the preprocessing operations described in section 4 can be used.
  • the pre-processing operation may include: performing a first dimension-up conversion on the first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block; and using a first coupling transformation that couples each symbol in the first multi-dimensional modulation symbol block to each other.
  • a second one-dimensional modulation symbol sequence is transmitted.
  • the second one-dimensional modulation symbol sequence may be transmitted using a single carrier system or a multi-carrier system.
  • step S702 may include further operations on the second one-dimensional modulation symbol sequence.
  • step S702 may include at least a part of a conventional OFDM modulation process.
  • step S703 the transmitted second one-dimensional modulation symbol sequence is acquired.
  • a post-processing operation is performed on the obtained second one-dimensional modulation symbol sequence to obtain a third one-dimensional modulation symbol sequence.
  • the post-processing operation may include: performing a second dimension-up conversion on the second one-dimensional modulation symbol sequence into a third multi-dimensional modulation symbol block; and using a second coupling transform that couples each symbol in the third multi-dimensional modulation symbol block to each other Transforming the third multi-dimensional modulation symbol block into a fourth multi-dimensional modulation symbol block; and performing a second dimension reduction conversion on the fourth multi-dimensional modulation symbol block into a third one-dimensional modulation symbol sequence, wherein the second dimension reduction Conversion is the inverse process of the second dimensionality conversion.
  • the method 700 may further include a step S705 of channel equalization.
  • the channel equalization operation may be directed to an equivalent channel between a first one-dimensional modulation symbol sequence and a third one-dimensional modulation symbol sequence.
  • the equivalent channel may include, for example, an equivalent transmission relationship formed by the pre-processing operation in step S701, the actual physical transmission channel, and the post-processing operation in step S705.
  • Step S705 is optional and is therefore shown as a dashed box.
  • the method 700 may further include a step S706 of determining whether to enable a pre-processing operation or a step S707 of determining whether to enable a post-processing operation.
  • Steps S706 and S707 are optional and are therefore shown as dashed boxes.
  • step S701 may be omitted.
  • Information on whether to enable the pre-processing operation may be included in the indication information and sent to the receiving side to indicate whether the receiving side should enable the post-processing operation accordingly.
  • step S705 may be omitted.
  • the channel equalization step may similarly determine an equivalent channel accordingly according to whether a pre-processing operation and / or a post-processing operation is enabled.
  • FIG. 7B illustrates a block diagram of a communication system 700B according to an embodiment of the present disclosure. Exemplary embodiments according to the present disclosure will be further described below with reference to FIG. 7B for a multi-carrier system. It should be noted that although the description is only made here for a multi-carrier system, as explained in the previous section 4, the principles and methods of the present disclosure are also applicable to a single-carrier system. Those skilled in the art can extend this embodiment to apply to a single carrier system.
  • the modulation symbol sequence x can be used to represent the sequence of Nx1 modulation symbols to be transmitted.
  • the modulation symbol sequence x may correspond to a plurality of modulation symbols (such as QPSK symbols or QAM symbols) to be transmitted in one symbol interval.
  • processing with modulation symbols within a symbol interval as a unit can reduce system complexity and avoid causing endogenous system delays.
  • each modulation symbol in the modulation symbol sequence x may be mapped into a K ⁇ L two-dimensional modulation symbol block X according to a certain mapping relationship.
  • the pre-processing operation may perform a first coupling transformation on the two-dimensional modulation symbol block X in a corresponding dimension, such as a DSFT transformation.
  • the DSFT transform of the two-dimensional modulation symbol block X can be expressed as:
  • the preprocessing operation can Perform a first dimensionality reduction transformation to rearrange it into a sequence of N ⁇ 1 modulation symbols
  • the first dimensionality reduction conversion may be an inverse process of the first dimensionality conversion of the modulation symbol sequence x.
  • Obtained from preprocessing operation Can be transmitted to a transmitter of a multi-carrier system for transmission.
  • an OFDM transmitter for an OFDM system as described with respect to FIG. 1C may be used to transmit When using this OFDM transmitter to transmit Time, you can further Perform IFFT transform, CP addition, and subsequent processing (such as digital-analog conversion, up-conversion) as described in FIG. 1C.
  • FIG. 7C is a schematic diagram of a digital signal model of a transmitting and receiving end under a time-varying multipath physical channel. As shown in FIG. 7C, the signals s transmitted by the transmitting side are superimposed on each other after different delays of the three paths in the physical channel, thereby obtaining the signal r received by the receiving side.
  • the time variability of the physical channel is reflected in that the path gain (represented by ⁇ 1 , ⁇ 2 , and ⁇ 3 ) of each path is time varying.
  • each path has a different Doppler frequency offset, which is represented by ⁇ 1 , ⁇ 2 , and ⁇ 3 respectively . It should be noted that although three signal transmission paths are shown in FIG. 7C, there may be more or fewer transmission paths.
  • the transmitted radio signal is transmitted to a receiver of a multi-carrier system through a physical channel.
  • the receiver may be an OFDM receiver as described with respect to FIG. 1C.
  • the OFDM receiver can perform down conversion, sampling and CP removal on the received radio signal to obtain a received signal r.
  • r is the linearly weighted sum of the transmitted signal after each path delay with the time-varying path gain and Doppler factor as weight coefficients.
  • H is a physical channel including CP-related operations
  • r is a digital reception signal after receiving end is subjected to digital processing such as down conversion, sampling
  • z is noise at the receiving end.
  • the digital signal r may also be subjected to processing such as FFT transformation. Therefore, with the transmitted modulation symbol sequence Corresponding digitized received signal Can be expressed as:
  • F N represents an FFT matrix of order N
  • I represents the digital received signal after FFT processing
  • I an N ⁇ 1 modulation symbol sequence.
  • Modulation symbol sequence Post-processing operations can be performed on the receiving side. During a post-processing operation, first, a sequence of modulation symbols can be Perform a second dimensionality conversion to arrange it into a K ⁇ L two-dimensional modulation symbol block Which satisfies The second dimensionality conversion performed on the receiving side may be the same as or different from the first dimensionality conversion on the transmitting side.
  • the second coupling transform may be an IDSFT transform, that is, may be an inverse transform of a DSFT transform on the transmitting side, which may enable the receiving side to correctly recover the transmitted modulation symbols to the greatest extent.
  • Correct Performing the IDSFT transformation can be expressed as:
  • F K represents a K-order FFT transform
  • Post-processing operations can then Perform a second dimension reduction transformation.
  • the second dimensionality reduction transformation can be The inverse process of the second ascending dimension conversion is performed, so that the two-dimensional modulation symbol block is converted according to the inverse order of the second ascending dimension conversion order. Rearranged into a modulation sequence y of dimension N ⁇ 1. According to the mathematical properties of the Kronecker product, we can get:
  • the The modulation symbol sequence y is equalized, so that the original modulation symbol sequence x is directly restored under a certain signal-to-noise ratio.
  • practical systems can use easy-to-implement linear equalization criteria.
  • an equalization operation based on the zero-forcing (ZF) criterion may be adopted, and the equalization matrix may be expressed as Q ZF accordingly :
  • an equalization operation based on the minimum mean square error (MMSE) criterion may be adopted, and the equalization matrix may be expressed as Q MMSE accordingly.
  • MMSE minimum mean square error
  • is the normalization factor defined according to the MMSE criterion
  • I N is the identity matrix of order N.
  • each element especially each element transmitted within a symbol interval, is coupled to each other, which can obtain a diversity gain that partially resists Doppler frequency offset, thereby achieving a performance improvement.
  • the input of the preprocessing operation i.e., the modulation symbol sequence x
  • the modulation symbol sequence x includes only the modulation symbol sequence to be transmitted in one symbol interval
  • multiple modulation symbol sequences across the symbol interval are not jointly processed, they are not Causes endogenous system delays. That is, the receiving side can immediately perform demodulation when receiving the modulation symbol sequence in the current symbol interval, without waiting for the modulation symbol sequence in the subsequent symbol interval.
  • Is an N ⁇ N matrix Is an N ⁇ N matrix. This makes the complexity of channel equalization only slightly higher than OFDM systems that do not use pre- and post-processing operations. Therefore, the present disclosure can be easily implemented on an actual system, which is particularly important for a handheld device.
  • the CDMA system uses different orthogonal codes as carriers, thereby using the same time-frequency resources to serve multiple users.
  • data of different users may be modulated separately.
  • the processing method is basically the same as the aforementioned OFDM-based system, that is, the user data is spread (spread spectrum is the operation of the CDMA system itself) to obtain the bit stream to be transmitted, and then Then, a serial modulation symbol stream is obtained through constellation point mapping.
  • the serial modulation symbol stream can be divided into a plurality of modulation symbol sequences as described previously.
  • each modulation symbol sequence except that it is not necessary to perform an IFFT operation before transmission (a CDMA system does not need this operation), other processing is consistent with the OFDM-based system.
  • This processing is performed on the data of each user, that is, the data of each user is represented as such a two-dimensional modulation symbol block, and then the pre-processing operation is performed on each two-dimensional modulation symbol block, and then the pre-processing of each user is performed.
  • the modulation symbols to be transmitted can be superimposed and transmitted through a radio signal. After receiving the superimposed radio signal, the receiving side first uses the principle of the CDMA system's orthogonal code to separate the data of each user, and then can use the method described in the OFDM-based system implementation to perform demodulation (no FFT operation required).
  • the method and device according to the present disclosure can be applied to, for example, a multi-carrier system using frequency division multiplexing technology or code division multiple access technology, such as orthogonal frequency division multiplexing (OFDM) technology, frequency domain extended multi-carrier code division Multiple access technology, single carrier frequency division multiple access technology, orthogonal multi-carrier direct sequence code division multiple access technology, multi-frequency direct sequence code division multiple access technology, generalized multi-carrier direct sequence code division multiple access technology, time-hopping multi-carrier code Multi-carrier system of any one of the technology of multiple division access, time-frequency domain extended multi-carrier direct sequence code division multiple access.
  • OFDM orthogonal frequency division multiplexing
  • OFDM orthogonal frequency division multiplexing
  • frequency domain extended multi-carrier code division Multiple access technology single carrier frequency division multiple access technology
  • orthogonal multi-carrier direct sequence code division multiple access technology multi-frequency direct sequence code division multiple access technology
  • generalized multi-carrier direct sequence code division multiple access technology time-hopping multi-carrier code Multi-carrier
  • the electronic device and the communication method according to the embodiments of the present disclosure can also be applied to a communication scenario of a low-orbit satellite constellation. Satellites in low-orbit constellations have fast orbiting speeds. Relatively high-speed relative motion will produce a strong Doppler frequency offset. At the same time, due to the low-orbit altitude, multipath effects exist. Electronic devices and communication methods can be adapted to this communication scenario. In addition, the communication distance in the satellite communication scenario is much longer than the ground communication, and the communication delay problem becomes more significant.
  • the OTFS system itself has a fixed system delay, which is not conducive to use in satellite communication scenarios with large delays.
  • the electronic device and communication method of the embodiments of the present disclosure have no system delay, which is more advantageous in this regard.
  • whether to enable the aforementioned pre-processing operation and / or post-processing operation may be determined according to various factors. This makes it possible to flexibly choose whether to use a conventional communication method or an improved communication method with a pre-processing operation and a post-processing operation according to the needs, so that it can better adapt to the actual application scenario.
  • This determination can be performed by the processing circuits 203, 503. For example, since one of the purposes of the pre-processing operation and / or post-processing operation is to better combat Doppler frequency offset, in scenarios where the Doppler frequency offset is not significant, the pre-processing operation and / or Post-processing operations.
  • the pre-processing operation may be determined whether the pre-processing operation is enabled before the pre-processing operation is performed on the transmitting side. This determination can be based on a number of factors. According to one embodiment, whether to enable the pre-processing operation may be determined based on the channel conditions.
  • the channel condition may include the intensity of the Doppler effect of the channel, and the intensity of the Doppler effect may be measured, for example, by extending and offsetting the reference signal in the frequency domain. When the Doppler effect is strong enough (for example, the Doppler frequency offset exceeds a threshold), a pre-processing operation can be enabled. According to another embodiment, whether to enable the pre-processing operation may be determined based on the application scenario.
  • the pre-processing operation may be enabled when it is determined that the application scenario is any one of high-speed train communication, aircraft communication or satellite communication, or other high-speed mobile scenarios.
  • the mobility (such as speed) of the communication device when it is determined that the application scenario is any one of high-speed train communication, aircraft communication or satellite communication, or other high-speed mobile scenarios, the pre-processing operation may be enabled.
  • a pre-processing operation when the mobility (such as speed) of the communication device is higher than a predetermined threshold, a pre-processing operation may be enabled.
  • whether to enable the pre-processing operation on the transmitting side may be determined based on a specific request sent by the receiving side. For example, in response to receiving a request for enabling preprocessing sent by the receiving side, the preprocessing operation may be enabled on the transmitting side.
  • the electronic device on the transmitting side may transmit instruction information, which may indicate whether a pre-processing operation is enabled on the transmitting side, thereby indicating whether the electronic device on the receiving side enables a post-processing operation accordingly and accordingly Configure the channel equalization operation.
  • the indication information may further include parameters and / or types of the preprocessing operation, such as a dimension parameter (two-dimensional or higher dimension) of the first multi-dimensional modulation symbol block, a first multi-dimensional modulation symbol The size of each dimension of the block, and the type of coupling transformation (such as DSFT transformation).
  • the parameters of these pre-processing operations are static parameters agreed in advance, and thus may not be included in the indication information.
  • the indication information can be transmitted in various ways.
  • the indication information is included in, for example, downlink control information DCI specified by the 3GPP standard.
  • DCI downlink control information
  • a waveform selection variable can be added to the DCI.
  • the base station can use the value of the waveform selection variable to notify the user that pre-processing and post-processing operations will be enabled, such as waveform selection.
  • a variable of 0 indicates that the OFDM waveform is used, and a waveform selection variable of 1 indicates that the pre-processing and post-processing operations need to be enabled using the new waveforms of the present disclosure; and when the Doppler effect in the environment is not obvious, the base station can notify the user to use the ordinary Waveform without pre- and post-processing operations enabled.
  • the indication information may also be included in high-level signaling, such as a radio resource control RRC message specified by the 3GPP standard, thereby saving physical layer signaling and supporting semi-static waveform switching.
  • the post-processing operation may be determined whether the post-processing operation is enabled before the receiving side performs the post-processing operation. This determination can be based on a number of factors. According to an embodiment, whether to enable a post-processing operation on the receiving side may be determined based on the received indication information, the indication information including at least information related to whether the post-processing operation should be enabled.
  • the instruction information may be the instruction information transmitted by the transmitting side as described above.
  • the post-processing operation may be enabled on the receiving side accordingly. Otherwise, the post-processing operation may not be enabled on the receiving side.
  • the receiving side may obtain the indication information from the downlink control information DCI or the radio resource control RRC message.
  • the processing circuit 503 of the electronic device on the receiving side may further determine whether to send a request to enable the post-processing operation or to enable a new waveform to the electronic device 200 on the transmitting side. This determination can be based on channel conditions.
  • the channel condition may include the intensity of the Doppler effect of the channel, and the intensity of the Doppler effect may be measured, for example, by extending and offsetting the reference signal in the frequency domain.
  • the Doppler effect is strong enough (for example, the Doppler frequency offset exceeds a threshold)
  • a request to enable a post-processing operation may be sent.
  • whether to send a request to enable a post-processing operation may be determined based on an application scenario.
  • a request to enable a post-processing operation may be sent. It can be determined whether the post-processing operation is enabled on the receiving side according to the response of the transmitting side to the request. For example, if the electronic device on the transmitting side enables the pre-processing operation on the transmitting side in response to the request, the electronic device on the receiving side may be instructed to enable the post-processing operation accordingly. Otherwise, the electronic device on the receiving side may not enable the post-processing operation.
  • the transmitting-side device 801 may be the electronic device 200 for the transmitting side described with reference to FIG. 2, and the receiving-side device 802 may be the electronic device 500 for the receiving side described with reference to FIG. 5.
  • the receiving-side device 802 may send a request to the transmitting-side device 801 to request the transmitting-side device to enable a preprocessing operation. As described previously, the receiving-side device 802 may send the request based on at least one of a channel condition or an application scenario.
  • the transmitting-side device 801 may determine whether a pre-processing operation is enabled on the transmitting side. According to an embodiment of the present disclosure, whether to enable a pre-processing operation on the transmitting side may be determined in combination with a channel condition or an application scenario.
  • the pre-processing operation is enabled in S805.
  • the parameters of the preprocessing operation may be further determined, such as a dimension parameter of the first multi-dimensional modulation symbol block, a size of each dimension of the first multi-dimensional modulation symbol block, a type of the coupling transformation, and the like. These parameters can be static parameters agreed in advance, or can be determined dynamically as needed.
  • the transmitting-side electronic device 801 may send instruction information to the receiving-side electronic device 802.
  • the indication information may indicate whether the transmitting-side device 801 has enabled a preprocessing operation.
  • the indication information may further include parameters of the preprocessing operation.
  • the receiving-side device 802 may enable and / or disable the post-processing operation accordingly.
  • the receiving-side device 802 may configure the post-processing operation and enable the post-processing operation according to the parameters regarding the pre-processing operation included in the instruction information in step S807.
  • the post-processing operation and the pre-processing operation can be made symmetrical (though not required), such as making the third multidimensional modulation symbol block have the same dimensions and / or size as the first multidimensional modulation symbol block, using A second coupling transformation and the like corresponding to the first coupling transformation on the transmitting side.
  • the receiving-side device 802 may send a confirmation of enabling the post-processing operation to the transmitting-side device 801 in step S808.
  • the transmitting-side device does not determine whether to enable the pre-processing operation in response to a request from the receiving-side device, but makes such a determination independently. As described previously, this determination made by the transmitting-side device may be based on at least one of an application scenario or a channel condition. The other steps in FIG. 8B may be similar to those in FIG. 8A and will not be described in detail here.
  • FIGS. 8A and 8B enable the transmitting-side device and the receiving-side device to determine whether to enable the pre-processing operation and the post-processing operation. This allows these devices to flexibly choose whether to use a conventional communication method or an improved communication method with pre-processing operations and post-processing operations as needed, so that they can better adapt to actual application scenarios.
  • the inventors performed performance simulations on an exemplary system and a conventional OFDM system and an existing OTFS system according to an embodiment of the present disclosure.
  • the following table shows the specific simulation parameters.
  • FIG. 9 shows simulation results of bit error rate performance of each system in a case where constellation point mapping is performed using a QPSK constellation diagram.
  • the x-axis represents the signal-to-noise ratio (SNR) conditions during the simulation, and the y-axis represents the bit error rate (BER) performance obtained from the simulation.
  • Curves 9001, 9002, and 9003 represent error rate performance curves of an OFDM system, an OTFS system, and an exemplary system according to an embodiment of the present disclosure, respectively.
  • FIG. 10 shows a comparison of bit error rate performance of each system in the case of constellation point mapping using a 16QAM constellation map.
  • the x-axis represents the signal-to-noise ratio (SNR) conditions during the simulation, and the y-axis represents the bit error rate (BER) performance obtained from the simulation.
  • Curves 1001, 1002, and 1003 represent error rate performance curves of an OFDM system, an OTFS system, and an exemplary system according to an embodiment of the present disclosure, respectively. As can be seen from FIGS. 9 and 10, an exemplary system according to an embodiment of the present disclosure has a lower bit error rate than a conventional OFDM system.
  • the symbol T (n) is used to indicate the number of calculations required to solve a problem of size n;
  • the symbol O ( ⁇ ) is called the Big O symbol (Notation), which is used to indicate the asymptotic order of a function.
  • the upper bound is the predominant part of computing operations when the scale of the problem increases indefinitely.
  • the scale of the equalization complexity is T (N) as in the OFDM system.
  • the OTFS system needs to perform equalization on all M modulation symbol sequences, so the scale of the equalization complexity is T (MN).
  • the extra computational complexity introduced by the pre-processing and post-processing operations of the system according to the embodiments of the present disclosure is O (MN log N), which is lower than that of the OTFS Introduced additional computational complexity O (MN, log, M).
  • the horizontal axis represents the number of transmitted modulation symbol sequences
  • the vertical axis represents the relative running time of the program running module that simulates three systems.
  • the running time reflects the implementation complexity of the above three systems. It can be seen that although the bit error rate of the exemplary system according to the embodiment of the present disclosure is slightly higher than the OTFS system, the implementation complexity of the system (represented by curves 1103, 1203) is only slightly higher than that of the OFDM system (represented by curve 1101). , 1201), and much lower than the OTFS system (represented by curves 1102, 1202).
  • the technology of the present disclosure can be applied to various scenarios and various products.
  • the electronic device 200 for the transmitting side or the electronic device 500 for the receiving side may be a user-side electronic device.
  • the user-side electronic device can be implemented as a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device) ).
  • the user-side electronic device may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • the user-side electronic device may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the terminals described above.
  • the electronic device 200 for the transmitting side or the electronic device 500 for the receiving side can also be implemented as a control-side electronic device, such as any type of base station, preferably, a 5G communication standard new radio (New Radio, NR) such as 3GPP Macro gNB and small gNB in access technology.
  • a small gNB may be a gNB covering a cell smaller than a macro cell, such as a pico gNB, a pico gNB, and a home (femto) gNB.
  • the control device may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the control device may include a main body (also referred to as a base station device) configured to control wireless communication and one or more remote wireless headends (RRHs) disposed at a place different from the main body.
  • RRHs remote wireless headends
  • base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station that is used to facilitate communication as part of a wireless communication system or radio system.
  • base stations may be, for example, but not limited to, the following: a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, and may be a radio network controller in a WCDMA system (RNC) and NodeB, or both, may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (such as gNB that may appear in 5G communication systems, etc.) ).
  • BTS base transceiver station
  • BSC base station controller
  • RNC WCDMA system
  • NodeB NodeB
  • a logical entity that has control functions for communication may also be referred to as a base station.
  • the logical entity that plays the role of spectrum coordination can also be called a base station.
  • FIG. 13 is a block diagram showing a first example of a schematic configuration of a control device-side electronic device to which the technology of the present disclosure can be applied.
  • the control-side electronic device may be the electronic device 200 for the transmitting side according to the embodiment of the present disclosure, or may be the electronic device 500 for the receiving side according to the embodiment of the present disclosure.
  • the electronic device 200 or the electronic device 500 is shown as gNB 800.
  • gNB 800 includes multiple antennas 810 and base station equipment 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a plurality of antenna elements such as a plurality of antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station apparatus 820 to transmit and receive wireless signals.
  • the gNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by gNB 800.
  • FIG. 13 shows an example in which the gNB 800 includes a plurality of antennas 810, and these antennas 810 may be used to implement a multi-carrier system according to an embodiment of the present disclosure.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820.
  • the controller 821 may include the processing circuit 203 or 503 described above, perform a pre-processing operation according to the method described above, or control various components of the electronic device 200 or 500.
  • the controller 821 generates a data packet according to data in a signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823.
  • the controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and pass the generated bundled packet.
  • the controller 821 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with a core network node or another gNB via the network interface 823.
  • the gNB 800 and the core network node or other gNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, compared to the frequency band used by the wireless communication interface 825, the network interface 823 can use a higher frequency band for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of a gNB 800 via an antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)).
  • L1 Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 826 may have a part or all of the above-mentioned logic functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program. Updating the program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into a slot of the base station device 820. Alternatively, the module may be a chip mounted on a card or a blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by gNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may include a single BB processor 826 or a single RF circuit 827.
  • gNB 800 In the gNB 800 shown in FIG. 13, one or more components included in the processing circuit 203 described with reference to FIG. 2 or the processing circuit 503 described with reference to FIG. 5 may be implemented in the wireless communication interface 825. Alternatively, at least a part of these components may be implemented in the controller 821.
  • gNB 800 includes a portion (eg, BB processor 826) or the entirety of wireless communication interface 825, and / or a module including controller 821, and one or more components may be implemented in the module.
  • the module may store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform operations of the one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components may be installed in gNB 800, and a wireless communication interface 825 (e.g., BB processor 826) and / or a controller 821 may execute the program.
  • a wireless communication interface 825 e.g., BB processor 826
  • a controller 821 may execute the program.
  • a device including one or more components a gNB 800, a base station device 820, or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 201 described with reference to FIG. 2 or the communication unit 501 described with reference to FIG. 5 may be implemented in a wireless communication interface 825 (for example, an RF circuit 827).
  • the communication unit 201 or the communication unit 501 may be implemented in the controller 821 and / or the network interface 823.
  • FIG. 14 is a block diagram showing a second example of a schematic configuration of a control device-side electronic device to which the technology of the present disclosure can be applied.
  • the control-side electronic device may be the electronic device 200 for the transmitting side according to the embodiment of the present disclosure, or may be the electronic device 500 for the receiving side according to the embodiment of the present disclosure.
  • the control device may include, for example, the electronic device 200 or the electronic device 500 for downlink transmission.
  • the electronic device 200 or 500 is shown as gNB830.
  • the gNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station equipment 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH860 to transmit and receive wireless signals.
  • the gNB 830 may include a plurality of antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 14 shows an example in which the gNB 830 includes a plurality of antennas 840, and these antennas 840 may be used to implement a multi-carrier system according to an embodiment of the present disclosure.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to terminals located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 13 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 14 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station equipment 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station equipment 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • gNB 830 In the gNB 830 shown in FIG. 14, one or more components included in the processing circuit 203 described with reference to FIG. 2 or the processing circuit 503 described with reference to FIG. 5 may be implemented in the wireless communication interface 855. Alternatively, at least a part of these components may be implemented in the controller 851.
  • gNB 830 includes a portion (eg, BB processor 856) or the entirety of wireless communication interface 855, and / or a module including controller 851, and one or more components may be implemented in the module.
  • the module may store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform operations of the one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components may be installed in gNB 830, and the wireless communication interface 855 (e.g., BB processor 856) and / or the controller 851 may execute the program.
  • the wireless communication interface 855 e.g., BB processor 856
  • the controller 851 may execute the program.
  • a gNB 830, a base station device 850, or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 201 described with reference to FIG. 2 or the communication unit 501 described with reference to FIG. 5 may be implemented in a wireless communication interface 855 (eg, BB circuit 856).
  • the communication unit 201 or the communication unit 501 may be implemented in the controller 851 and / or the network interface 853.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 may be the electronic device 200 for the transmitting side according to the embodiment of the present disclosure, or may be the electronic device 500 for the receiving side according to the embodiment of the present disclosure.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • the imaging device 906 includes an image sensor such as a charge-coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a set of sensors such as a measurement sensor, an f-gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts a sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into a sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 1512 may include multiple BB processors 1513 and multiple RF circuits 1514.
  • FIG. 15 shows an example in which the wireless communication interface 1512 includes a plurality of BB processors 1513 and a plurality of RF circuits 1514, the wireless communication interface 1512 may also include a single BB processor 1513 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches a connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smartphone 900 may include a plurality of antennas 916.
  • FIG. 15 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 15 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 919 operates, for example, a minimum necessary function of the smartphone 900 in the sleep mode.
  • one or more components included in the processing circuits 203, 503 described with reference to FIG. 2 or FIG. 5 may be implemented in the wireless communication interface 912. Alternatively, at least a part of these components may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a portion (eg, BB processor 913) or the whole of the wireless communication interface 912, and / or a module including the processor 901 and / or the auxiliary controller 919, and one or more components may be Implemented in this module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components may be installed in the smartphone 900, and the wireless communication interface 912 (e.g., BB processor 913), the processor 901, and / or auxiliary The controller 919 can execute the program.
  • a smartphone 900 or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 201 or 501 described with reference to FIG. 2 or FIG. 5 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 may be an electronic device 200 for a transmitting side according to an embodiment of the present disclosure, or may be an electronic device 500 for a receiving side according to an embodiment of the present disclosure.
  • Car navigation device 920 includes processor 921, memory 922, global positioning system (GPS) module 924, sensor 925, data interface 926, content player 927, storage medium interface 928, input device 929, display device 930, speaker 931, wireless The communication interface 933, one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls navigation functions and other functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses a GPS signal received from a GPS satellite to measure the position (such as latitude, longitude, and altitude) of the car navigation device 920.
  • the sensor 925 may include a set of sensors such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs a sound of a navigation function or a reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 16 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 16 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 16 via a feeder, which is partially shown as a dotted line in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • one or more components included in the processing circuit 203 or 503 described with reference to FIG. 2 or FIG. 5 may be implemented in the wireless communication interface 933.
  • at least a part of these components may be implemented in the processor 921.
  • the car navigation device 920 includes a part (eg, the BB processor 934) or the whole of the wireless communication interface 933, and / or a module including the processor 921, and one or more components may be implemented in the module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 may Perform the procedure.
  • the wireless communication interface 933 for example, the BB processor 934
  • the processor 921 may Perform the procedure.
  • a device including one or more components a car navigation device 920 or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 201 or 501 described with reference to FIG. 2 or FIG. 5 may be implemented in a wireless communication interface 933 (for example, an RF circuit 935).
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more of a car navigation device 920, an in-vehicle network 941, and a vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the on-vehicle network 941.
  • a readable medium in which the program is recorded may be provided. Therefore, the present disclosure also relates to a computer-readable storage medium having stored thereon a program including instructions for implementing the aforementioned communication method when loaded and executed by a processor such as a processing circuit or a controller.
  • An electronic device comprising:
  • the processing circuit is configured to perform a pre-processing operation on the first one-dimensional modulation symbol sequence, where the pre-processing operation includes: performing an up-dimensional conversion on the first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block; Transforming the first multi-dimensional modulation symbol block into a second multi-dimensional modulation symbol block using a first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other; and The block performs dimensionality reduction conversion into a second one-dimensional modulation symbol sequence, wherein the dimensionality reduction conversion is an inverse process of the dimensionality conversion conversion; and transmitting the second one-dimensional modulation symbol sequence.
  • performing the dimension-up conversion of the first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block includes: sequentially ordering the first one-dimensional modulation symbol sequence. Fill the corresponding columns in the first multi-dimensional modulation symbol block column by column; or fill the corresponding rows in the first multi-dimensional modulation symbol block line by line in sequence .
  • Item 3 The electronic device according to any one of items 1-2, wherein the first transform is a reversible transform.
  • Item 4 The electronic device according to item 3, wherein the first transformation is a linear transformation.
  • Item 5 The electronic device according to item 4, wherein the first transform is one of a multidimensional discrete dual Fourier transform, a multidimensional discrete cosine transform, or a multidimensional wavelet transform.
  • Item 6 The electronic device according to item 5, wherein the first multi-dimensional modulation symbol block and the second multi-dimensional modulation symbol block are a first two-dimensional modulation symbol block and a second two-dimensional modulation symbol block,
  • the first transformation includes one of the following two ways: applying a one-dimensional Fourier transform to each row of the first two-dimensional modulation symbol block to obtain an intermediate two-dimensional modulation symbol block, and then applying an intermediate two-dimensional modulation symbol block to the first two-dimensional modulation symbol block.
  • Item 7 The electronic device according to any one of items 1-2, wherein the second one-dimensional modulation symbol sequence is transmitted using a multi-carrier system.
  • Item 8 The electronic device according to item 7, wherein the multi-carrier system is an OFDM system, and the first one-dimensional modulation symbol sequence corresponds to a group of a plurality of subcarriers scheduled to be transmitted within an OFDM symbol interval.
  • Complex modulation symbols the processing circuit is configured to perform OFDM modulation on the second one-dimensional modulation symbol sequence to complete radio transmission of the set of complex modulation symbols within an OFDM symbol interval.
  • Item 9 The electronic device according to any one of items 1-2, wherein the processing circuit is further configured to determine whether to enable the preprocessing operation before performing the preprocessing operation.
  • Item 10 The electronic device according to item 9, wherein the processing circuit is further configured to determine whether to enable the preprocessing operation based at least on a channel condition or an application scenario.
  • Embodiment 11 The electronic device according to embodiment 10, wherein the channel condition includes at least a strength of a Doppler effect of a channel.
  • Item 12 The electronic device according to item 11, wherein the application scenario includes at least one of high-speed train communication, aircraft communication, or satellite communication.
  • Item 13 The electronic device according to item 9, wherein the processing circuit is further configured to transmit instruction information that indicates at least whether the preprocessing operation is enabled.
  • Item 14 The electronic device according to item 13, wherein the indication information further includes at least one of: a dimension parameter of the first multi-dimensional modulation symbol block; and the first multi-dimensional modulation symbol The size of each dimension of the block; and the type of the first transformation.
  • Embodiment 15 The electronic device according to embodiment 13, wherein the indication information is included in a downlink control information DCI or a radio resource control RRC message.
  • An electronic device comprising: a processing circuit configured to obtain a first one-dimensional modulation symbol sequence; and performing a post-processing operation on the first one-dimensional modulation symbol sequence.
  • the post-processing operation includes: Performing upscaling conversion on the first one-dimensional modulation symbol sequence into a first multi-dimensional modulation symbol block; using the first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other, Transforming a modulation symbol block into a second multidimensional modulation symbol block; and performing dimensionality reduction conversion on the second multidimensional modulation symbol block into a second one-dimensional modulation symbol sequence, wherein the dimensionality reduction conversion is performed by the dimensionality conversion conversion Reverse process.
  • Item 17 The electronic device according to item 16, wherein the first one-dimensional modulation symbol sequence is transmitted using a multi-carrier system.
  • Item 18 The electronic device according to item 17, wherein the multi-carrier system is an OFDM system, and the first one-dimensional modulation symbol sequence corresponds to a group received on a plurality of subcarriers within an OFDM symbol interval. Complex modulation symbols, the processing circuit is configured to OFDM demodulate a received radio signal to obtain the first one-dimensional modulation symbol sequence.
  • the multi-carrier system is an OFDM system
  • the first one-dimensional modulation symbol sequence corresponds to a group received on a plurality of subcarriers within an OFDM symbol interval.
  • Complex modulation symbols the processing circuit is configured to OFDM demodulate a received radio signal to obtain the first one-dimensional modulation symbol sequence.
  • Item 19 The electronic device according to any one of items 16 to 17, wherein the processing circuit is further configured to determine whether to enable the post-processing operation before performing the post-processing operation.
  • Item 20 The electronic device according to item 19, wherein the processing circuit is further configured to determine whether to enable the post-processing operation based on the received instruction information, the instruction information including at least whether or not the post processing operation should be enabled. Describes information about post-processing operations.
  • Embodiment 21 The electronic device according to embodiment 20, wherein the processing circuit is further configured to obtain the indication information from a downlink control information DCI or a radio resource control RRC message.
  • Item 22 The electronic device according to item 19, wherein the processing circuit is further configured to send a request to enable the post-processing operation based on at least a channel condition or an application scenario.
  • Item 23 The electronic device according to any one of items 16-17, wherein the processing circuit is further configured to: perform a pre-processing operation and a post-processing Equivalent transmission channels are processed for equalization.
  • Solution 24 A communication method, comprising: performing a pre-processing operation on a first one-dimensional modulation symbol sequence, wherein the pre-processing operation includes: performing a dimension-up conversion on the first one-dimensional modulation symbol sequence to become a first A multi-dimensional modulation symbol block; transforming the first multi-dimensional modulation symbol block into a second multi-dimensional modulation symbol block using a first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other; and The second multi-dimensional modulation symbol block is subjected to dimensionality reduction conversion to a second one-dimensional modulation symbol sequence, wherein the dimensionality reduction conversion is an inverse process of the dimensionality conversion conversion; and the second one-dimensional modulation symbol sequence is transmitted.
  • Embodiment 25 The communication method according to embodiment 24, wherein the second one-dimensional modulation symbol sequence is transmitted using a multi-carrier system.
  • Embodiment 26 The communication method according to embodiment 25, wherein the multi-carrier system is an OFDM system, and the first one-dimensional modulation symbol sequence corresponds to a group of a plurality of subcarriers scheduled to be transmitted in an OFDM symbol interval.
  • Complex modulation symbols, transmitting the second one-dimensional modulation symbol sequence includes performing OFDM modulation on the second one-dimensional modulation symbol sequence to complete radio transmission of the group of complex modulation symbols within an OFDM symbol interval.
  • a communication method comprising: acquiring a first one-dimensional modulation symbol sequence; and performing a post-processing operation on the first one-dimensional modulation symbol sequence.
  • the post-processing operation includes: performing the first one-dimensional modulation symbol sequence.
  • the modulation symbol sequence is up-converted into a first multi-dimensional modulation symbol block; the first multi-dimensional modulation symbol block is transformed into a second multi-dimensional modulation symbol block by using a first transformation that couples each symbol in the first multi-dimensional modulation symbol block to each other.
  • Embodiment 28 The communication method according to embodiment 27, wherein the first one-dimensional modulation symbol sequence is transmitted using a multi-carrier system.
  • Embodiment 29 The communication method according to embodiment 28, wherein the multi-carrier system is an OFDM system, and obtaining the first one-dimensional modulation symbol sequence includes performing OFDM demodulation on a received radio signal to obtain the first A one-dimensional modulation symbol sequence, wherein the first one-dimensional modulation symbol sequence corresponds to a group of complex modulation symbols received on a plurality of subcarriers within an OFDM symbol interval.
  • a communication method comprising: performing a pre-processing operation on a first one-dimensional modulation symbol sequence, wherein the pre-processing operation includes: performing a first dimension-up conversion on the first one-dimensional modulation symbol sequence into A first multi-dimensional modulation symbol block; transforming the first multi-dimensional modulation symbol block into a second multi-dimensional modulation symbol block using a first transformation that couples the symbols in the first multi-dimensional modulation symbol block to each other; and Performing a first dimensionality reduction conversion on the second multi-dimensional modulation symbol block into a second one-dimensional modulation symbol sequence, wherein the first dimensionality reduction conversion is an inverse process of the first dimensionality conversion conversion; and transmitting the second A one-dimensional modulation symbol sequence; obtaining the second one-dimensional modulation symbol sequence; and performing a post-processing operation on the second one-dimensional modulation symbol sequence, the post-processing operation includes: the second one-dimensional modulation symbol sequence Performing a second dimension-up conversion into a third multi-dimensional modulation symbol block; and
  • Item 31 A computer-readable storage medium having stored thereon a computer program, wherein the computer program is used to implement the method according to any one of items 24-30 when loaded and executed by a processor. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

公开了一种电子设备和通信方法。该电子设备包括处理电路,处理电路被配置为:对第一一维调制符号序列进行预处理操作,该预处理操作包括:对第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将第一多维调制符号块变换为第二多维调制符号块;以及对第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中降维转换是升维转换的逆过程。该处理电路还被配置为传输第二一维调制符号序列。

Description

电子设备和通信方法
相关申请的交叉引用
本申请要求于2018年6月4日递交的中国专利申请第201810563647.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种电子设备和通信方法,并且具体而言,涉及在高速移动场景中具有改进的性能的电子设备和通信方法。
背景技术
无线通信具有日益拓展的应用场景,并且被越来越多地应用于诸如飞机、高铁和卫星通信等高速移动场景。在这种高速移动场景中,物理信道具有快速时变的特性,快速时变的物理信道所带来的多普勒效应对无线通信系统的性能具有不可忽略的影响。
在现有的大部分宽带无线通信系统中,例如,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制是针对下行传输所采用的主要调制方案,其采用事先分配好的多个频域子载波来传送一组复调制符号(complex modulation symbol)。然而,多个频域子载波的使用使得OFDM系统对于多普勒频偏十分敏感。因此,快速时变的物理信道所带来的强多普勒效应将使得OFDM系统的性能严重恶化,误码率大幅升高。这限制了OFDM系统在高速移动场景中的应用。
为了对抗快速时变的物理信道的强多普勒效应,已经提出了一些新的调制和多址接入技术,例如正交时间频率空间调制(Orthogonal Time Frequency Spacemodulation,OTFS)。OTFS调制通过对多个OFDM符号间隔内的多组复调制符号进行处理来获得对抗多普勒频偏的分集增益。然而,OTFS调制要求对多个OFDM符号间隔内的全部复调制符号进行联合处理,这不仅带来了高额的计算开销,还不可避免地造成了内生性系统延时。OTFS调制/解调的高复杂度以及内生性系统延时使得它不适于在实际系统例如手持移动设备上实现。
发明内容
本公开提供了一种适用于高速移动场景的改进的通信方法和电子设备,其能够有效地应对高速移动场景中的时变多普勒效应,同时具有较低的实现复杂度和系统延时,便于在实际系统中实现。
本公开的一方面涉及一种电子设备,该电子设备包括处理电路,处理电路被配置为对第一一维调制符号序列进行预处理操作。该预处理操作包括:对第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将第一多维调制符号块变换为第二多维调制符号块;以及对第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中降维转换是升维转换的逆过程。处理电路还被配置为传输第二一维调制符号序列。
本公开的又一方面涉及一种电子设备,该电子设备包括处理电路,处理电路被配置为:获取第一一维调制符号序列;以及对第一一维调制符号序列进行后处理操作。该后处理操作包括:对第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将第一多维调制符号块变换为第二多维调制符号块;以及对第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中降维转换是升维转换的逆过程。
本公开的另一方面涉及一种通信方法,该通信方法包括对第一一维调制符号序列进行预处理操作,其中该预处理操作包括:对第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将第一多维调制符号块变换为第二多维调制符号块;以及对第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中降维转换是升维转换的逆过程。该通信方法还包括传输第二一维调制符号序列。
本公开的再一方面涉及一种通信方法,该通信方法包括:获取第一一维调制符号序列;以及对第一一维调制符号序列进行后处理操作。其中,该后处理操作包括:对第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将第一多维调制符号块变换为第二多维调制符号块;以及对第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中降维转换是升维转换的逆过程。
本公开的又一方面涉及一种通信方法,该通信方法包括对第一一维调制符号序列进行预处理操作,该预处理操作包括:对第一一维调制符号序列进行第一升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一 变换,将第一多维调制符号块变换为第二多维调制符号块;以及对第二多维调制符号块进行第一降维转换成为第二一维调制符号序列,其中第一降维转换是第一升维转换的逆过程。该通信方法还包括传输第二一维调制符号序列、获取第二一维调制符号序列、以及对第二一维调制符号序列进行后处理操作。该后处理操作包括:对第二一维调制符号序列进行第二升维转换成为第三多维调制符号块;利用使得第三多维调制符号块中的各个符号彼此耦合的第二变换,将第三多维调制符号块变换为第四多维调制符号块;以及对第四多维调制符号块进行第二降维转换成为第三一维调制符号序列,其中第二降维转换是第二升维转换的逆过程。
本公开的再一方面涉及一种计算机可读存储介质,上面存储有计算机程序,其特征在于,所述计算机程序在由处理器载入并执行时用于实施如前所述的通信方法。
根据本公开的各个方面,通过在发射侧和接收侧分别引入预处理和后处理操作,能够有效地应对高速移动场景中的时变多普勒效应,同时具有较低的实现复杂度和系统延时,从而获得改进的通信方法和电子设备以及提供一种新波形。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。
图1A-图1C示意性地描述了OFDM系统。
图1D示意性地描述了用于OFDM系统的发射侧的多个复调制符号序列。
图2示出了根据本公开的实施例的用于发射侧的电子设备的框图。
图3示出了根据本公开的实施例的用于发射侧的电子设备的通信方法的流程图。
图4A示出了QPSK调制的星座图。
图4B示出了根据本公开的实施例的第一升维转换的流程图。
图4C示出了根据本公开的实施例的第一耦合变换的流程图。
图4D示出了根据本公开的实施例的第一降维转换的流程图。
图4E-图4G分别示出了根据本公开的实施例的第一升维转换、第一耦合变换以及第一降维转换的示意图。
图5示出了根据本公开的实施例的用于接收侧的电子设备的框图。
图6示出了根据本公开的实施例的用于接收侧的电子设备的通信方法的流程图。
图7A示出了根据本公开的实施例的一般通信方法的流程图。
图7B示出了根据本公开的实施例的通信系统的框图。
图7C示出了根据本公开的实施例的时变多径物理信道下收发端数字化信号模型的示意图。
图8A和图8B是示出根据本公开的实施例的用于确定是否启用预处理操作和/或后处理操作的示意图。
图9和图10分别示出了在使用QPSK星座图和16QAM星座图进行星座点映射的情况下的各个系统的误码率性能的仿真结果。
图11和图12分别示出了在使用N=128个子载波和N=256个子载波的情况下用于对各个系统进行仿真的程序模块运行的平均时间。
图13是根据本公开的实施例的控制设备侧电子设备的示意性配置的第一示例的框图。
图14是根据本公开的实施例的控制设备侧电子设备的示意性配置的第二示例的框图。
图15是根据本公开的实施例的智能电话的示意性配置的示例的框图。
图16是根据本公开的实施例的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还应当注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。
接下来,按照以下顺序进行描述。
1.传统OFDM系统
如前所述,OFDM调制是一种主要调制方案。因此首先参考图1A-图1C对传统OFDM系统进行简单的介绍,以便于理解基于OFDM进行的后续描述。但是应当理解OFDM系统仅为示例,本公开也可以应用于其它类似的系统,如后面第9节所述。OFDM系统是例如LTE系统所采用的多载波调制系统,其特点是可以在一个符号间隔内使用多个子载波来分别发送一组复调制符号中的对应复调制符号。这些子载波是彼此正交的并且可以重叠,并且所使用的子载波的数量与在一个符号间隔内所发送的一组复调制符号中的符号的数量相等。因此,避免了利用保护带宽来分隔载波,使得OFDM系统具有较高的频谱利用率。
图1A提供了对OFDM调制器100A的示意性描述,其中示出了N个复调制器,每个复调制器对应于一个OFDM子载波。
在复基带表示下,OFDM调制器100A针对单个OFDM符号间隔从输入的复调制符号序列A m得到基本OFDM信号s m(t)。
作为OFDM调制器100A的输入,复调制符号序列A m表示要在一个OFDM符号间隔(作为示例,第m个OFDM符号间隔)内传输的一组复调制符号a 0 m,a 1 m,……,a N-1 m。这些复调制符号例如是QPSK符号或QAM符号,这取决于调制方式。可以通过利用诸如QPSK、16QAM或64QAM之类的技术将待发送的比特流映射到星座点,从而得到这些复调制符号。对于OFDM系统,复调制符号序列A m中的复调制符号的数量与系统所使用的子载波的数量相等,在图1A的示例中该数量为N。
要分别在多个OFDM符号间隔内调制和发射的多个复调制符号序列可以被表示为图1D中的待发射的复调制符号块100D。作为示例,图1D中的复调制符号块100D被呈现为一个N×M的二维块,其中每一行对应于一个子载波并且每一列对应于一个OFDM符号间隔,该二维块包括要在M个OFDM符号间隔内依次被调制和发射的M个复调制符号序列A 0,A 1…,A m,…,A M-1,每个复调制符号序列包括N个复调制符号。例如,复调制符号序列A m将在第m个OFDM符号间隔内被调制和发射。每个复调制符号序列中的N个复调制符号将在同一OFDM符号间隔内由OFDM系统的N个子载波分别发射。图1A所示出的OFDM调制器100A的输入复调制符号序列A m可以对应于图1D中的序列A m。即,复调制符号a 0 m,a 1 m,……,a N-1 m分别对应于图1D中的复调制符号x[0,m],x[1,m],…,x[N-1,m],这些复调制符号将在第m个OFDM符号间隔内由OFDM调制器100A如下地调制并且被发射。
现在返回图1A进行描述。如图1A中所示,复调制符号序列A m中的这些复调制 符号可以在经历串并转换之后并行地与对应的子载波相乘。输入的复调制符号序列A m中的每个复调制符号a k m(k=0,1,…,N-1)分别与对应的子载波e j2πf(k)t相乘,从而得到对应的调制子载波信号s k m(t)。其中,f(k)=kΔf表示复调制符号a k m所对应的子载波的频率,Δf表示相邻子载波之间的在频率上的子载波间隔。
随后,可以将所得到N个调制子载波信号s k m(t)叠加,从而得到基本OFDM信号s m(t)。s m(t)可以被表示为:
Figure PCTCN2019089801-appb-000001
类似地,对于要在第m+1个OFDM符号间隔内发送的后续的复调制符号序列A m+1,可以使用OFDM调制器100A以获得基本OFDM信号s m+1(t)。以这种方式,OFDM系统将不同符号间隔内的每组复调制符号调制在对应的子载波上,从而实现了特定的时频资源分配。
OFDM子载波的数量可以根据需要而确定。该数量可以在少于100至几千的范围内变化。子载波之间的子载波间隔可以根据需要来进行选择,例如在从几百kHz到几kHz的范围内。所使用的子载波间隔可以取决于系统运行的环境的多个方面,诸如环境中所预期的最大无线电信道频率选择性以及预期的最大信道变化率(即最大预期多普勒频偏)。一旦已经选定了子载波间隔,就可以基于整体的传输带宽来决定子载波的数量。
图1B示出了OFDM解调的基本原理,其中示出了OFDM解调器100B。OFDM解调器100B包括N个相关器,每个相关器用于一个子载波。由图1A的OFDM调制器输出的基本OFDM信号s m(t)在经过物理信道传输后被接收侧的设备接收。用r m(t)表示一个符号间隔内的接收信号。利用所示出的相关器中的每一个,将r m(t)与对应的子载波相关,从而分别得到恢复出的调制符号á 0 m1 m,……,á N-1 m。考虑到各个子载波之间的正交性,在理想情况下,两个OFDM子载波在解调之后将不会互相干扰。
图1C绘出了OFDM系统100C的系统框图。如图1C所示,OFDM系统100C至少包括OFDM发射机与OFDM接收机。待传输的复调制符号序列被送入OFDM发射机,在经过OFDM调制器(例如关于图1A描述的100A)执行的OFDM调制之后,进一步经历IFFT变换、添加循环前缀、成形、上变频等操作,直到向外发射。所发射的无线电信号通过物理信道传输到OFDM接收机,在经历下变频、采样、移除循 环前缀等操作之后,经一步经由OFDM解调器(例如关于图1B描述的100B)解调,从而恢复出复调制符号á 0 m1 m,……,á N-1 m
然而,采用事先分配好的多个正交子载波来对复调制符号进行调制,使得OFDM系统对频偏十分敏感。在高速移动场景下,快速时变的物理信道的多普勒频偏将严重影响OFDM系统的误码性能,从而限制其在高速移动场景下的应用。
OTFS系统是一种新的调制和多址接入技术。与OFDM系统以单个调制符号间隔内的一组复调制符号为单位来进行调制不同,OTFS系统对多个调制符号间隔内的多组复调制符号进行联合处理,从而获得对抗多普勒频偏的分集增益。然而,OTFS系统的缺点也十分明显。例如,OTFS系统要求在发射侧和接收侧都对跨多个调制符号间隔的多组复调制符号进行整体地处理,所以处理的复杂度较高。在接收侧,需要等待多个调制符号间隔的所有符号接收完毕之后才能进行整体处理,这造成了内生性系统延时。而且,OTFS系统的信道均衡的复杂度远远高于OFDM系统,使得其难以在实际系统上实现,尤其是对于手持式设备。
由上面的描述可见,OFDM系统缺少对抗多普勒频偏的设计,而OTFS对跨多个符号间隔的多组复调制符号进行整体处理,尽管获得了对抗多普勒频偏的能力,但同时也引入了难以接受的系统延时和巨大的接收侧均衡复杂度。
为此,本公开提供了一种在高速移动场景中改进的电子设备和通信方法,其能够有效地应对高速移动场景中的时变多普勒效应,同时具有较低的实现复杂度和系统延时。下文以OFDM系统为例进行说明。
2、根据本公开的实施例的用于发射侧的电子设备
图2示出了根据本公开的实施例的用于发射侧的电子设备200的框图。根据本公开的一个实施例,电子设备200可以位于各种控制设备或发射装置中。这里所言的控制设备例如是诸如eNB或3GPP的5G通信标准的gNB之类的基站、远程无线电头端、无线接入点等,发射装置例如包括大尺寸的车载发射装置或固定发射装置(例如,无人机管理塔台)以及卫星通信系统中的发射器。根据本公开的另一个实施例,电子设备200也可以位于用于用户侧的通信设备(诸如智能电话)中。
根据本公开的一个实施例的用于发射侧的电子设备200可以包括例如通信单元201、存储器202和处理电路203。
处理电路203可以提供电子设备200的各种功能。根据本公开的一个实施例,处 理电路203可以被配置为对第一一维调制符号序列进行预处理操作,该预处理操作将第一一维调制符号序列内的各个调制符号彼此耦合以获得部分对抗多普勒频偏的分集增益。第一一维调制符号序列通过该预处理操作被转换为第二一维调制符号序列。处理电路203进一步对第二一维调制符号序列的传输进行配置,以用于由通信单元201进行传输。
处理电路203可以包括用于实现上述功能的各种单元。根据本公开的一个实施例,处理电路203可以包括预处理单元204和传输配置单元205,并且可以可选地包括预处理启用单元206。
预处理单元204可以用于对第一一维调制符号序列执行预处理操作。在一个实施例中,第一一维调制符号序列可以是从另外的调制单元(未示出)获得的一组待传输的复调制符号,这些另外的调制单元例如是QPSK调制单元、QAM调制单元或者用于将待传输的比特流映射为调制符号的其他单元。例如,第一一维调制符号序列可以是关于图1A描述的要在一个调制符号间隔内传输的一组复调制符号A m
根据本公开的一个实施例,对第一一维调制符号序列的预处理操作可以包括第一升维转换、第一耦合变换、以及第一降维转换。这些操作可以分别由包括在预处理单元204中的第一升维转换单元204A、第一耦合变换单元204B、第一降维转换单元204C来执行。
第一升维转换单元204A可以用于对第一一维调制符号序列执行第一升维转换成为第一多维调制符号块。第一多维调制符号块可以是二维调制符号块,或者具有更高的维度。第一升维转换可以将第一一维调制符号序列中的每个调制符号一一映射到第一多维调制符号块中的对应位置。所得到的第一多维调制符号块可以被传送给第一耦合变换单元204B。关于第一升维转换的更多细节将在下文第4.2节中描述。
第一耦合变换单元204B可以利用使得第一多维调制符号块中的各个符号彼此耦合的第一耦合变换,将第一多维调制符号块变换为第二多维调制符号块。通过该第一耦合变换得到的第二多维调制符号块中的每个调制符号彼此具有耦合性的关联,从而获得了对抗多普勒频偏的分集增益,因此在高速移动场景下的快速时变的物理信道中具有改进的传输性能,例如较低的误码率。第一耦合变换单元204B可以将第二多维调制符号块传送给第一降维转换单元204C。关于第一耦合变换的更多细节将在下文第4.3节中描述。
第一降维转换单元204C可以用于对第二多维调制符号块执行第一降维转换成为 第二一维调制符号序列。由第一降维转换单元204C执行的第一降维转换可以是由第一升维转换单元204A执行的第一升维转换的逆过程。关于第一降维转换的更多细节将在下文第4.4节中描述。因此,第二一维调制符号序列将具有与第一一维调制符号序列相同的尺寸。这使得第二一维调制符号序列可以被直接应用到原本用于传输第一一维调制符号序列的传统系统(例如OFDM系统或其他多载波系统)。例如,当第一一维调制符号序列是关于图1A所描述的一组复调制符号A m时,通过对A m进行预处理操作而得到的第二一维调制符号序列可以直接应用于图1A中所描述的针对A m的从串并转换开始的后续处理过程。
预处理单元204可以将第二一维调制符号序列传送给传输配置单元205,传输配置单元205对第二一维调制符号序列的传输进行配置,使得其适于使用单载波系统或多载波系统来传输。由传输配置单元205执行的操作可以包括但不限于逆傅里叶变换、添加循环前缀(CP)、载波/子载波调制、数字-模拟转换等。
传输配置单元205可以将待传输的信号传送给电子设备200的通信单元201。通信单元201可以在处理电路203的控制下用于向中继设备或接收侧的电子设备发射无线电信号。在本公开的实施例中,通信单元201例如可以实现为天线器件、射频电路和部分基带处理电路等通信接口部件。通信单元201用虚线绘出,因为它还可以位于处理电路203内或者位于电子设备200之外。
根据本公开的一个实施例,处理电路203还可以可选地包括预处理启用单元206。预处理启用单元206可以被用于确定是否启用预处理单元204以执行对第一一维调制符号序列的预处理操作。当确定不启用预处理操作时,第一一维调制符号序列可以被直接传送给传输配置单元205而不经历预处理操作。预处理启用单元206用虚线绘出,因为它还可以位于处理电路203外或者位于电子设备200之外。
电子设备200的存储器202可以存储由处理电路203产生的信息(例如前述的各个调制符号序列和多维调制符号块),通过通信单元201从其他设备接收的信息,用于电子设备200操作的程序、机器代码和数据等。存储器202用虚线绘出,因为它还可以位于处理电路203内或者位于电子设备200之外。存储器202可以是易失性存储器和/或非易失性存储器。例如,存储器202可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
应当注意的是,以上描述的各个单元是用于实施本公开中描述的处理的示例性和 /或优选的模块。这些模块可以是硬件单元(诸如中央处理器、场可编程门阵列、数字信号处理器或专用集成电路等)和/或软件模块(诸如计算机可读程序)。以上并未详尽地描述用于实施下文描述各个步骤的模块。然而,只要有执行某个处理的步骤,就可以有用于实施同一处理的对应的模块或单元(由硬件和/或软件实施)。通过下文所描述的步骤以及与这些步骤对应的单元的所有组合限定的技术方案都被包括在本公开的公开内容中,只要它们构成的这些技术方案是完整并且可应用的。
此外,由各种单元构成的设备可以作为功能模块被并入到诸如计算机之类的硬件设备中。除了这些功能模块之外,计算机当然可以具有其他硬件或者软件部件。
3、根据本公开的实施例的通信方法
图3示出了根据本公开的实施例的用于发射侧的电子设备的通信方法300的流程图。通信方法300例如可以用于如图2所描述的电子设备200。
如图3所示,在步骤S301中,对第一一维调制符号序列进行预处理操作以得到第二一维调制符号序列。第一一维调制符号序列可以是从诸如QPSK调制单元、QAM调制单元或者用于将待传输的比特流映射为调制符号的其他单元获取的。步骤S301可以由电子设备200的处理电路203执行,更具体地,由预处理单元204执行。
在图3中,步骤S301被进一步示为包括子步骤S303、S304、S305。在子步骤S303中,对第一一维调制符号序列进行第一升维转换成为第一多维调制符号块。在子步骤S304中,利用使得第一多维调制符号块中的各个符号彼此耦合的第一耦合变换,将第一多维调制符号块变换为第二多维调制符号块。在子步骤S305中,对第二多维调制符号块进行第一降维转换成为第二一维调制符号序列,其中该第一降维转换是S303中的第一升维转换的逆过程。步骤S303、S304、S305可以由电子设备200的处理电路203执行,更具体地,由预处理单元204中包括的第一升维转换单元204A、第一耦合变换单元204B、第一降维转换单元204C分别执行。
通过步骤S301得到的第二一维调制符号序列中的各个符号之间存在耦合性的关联。因此,相对于未经预处理的第一一维调制符号序列,第二一维调制符号序列获得了对抗多普勒频偏的分集增益,这使得它在快速时变的物理信道中具有改进的传输性能。
接下来,在步骤S302中对第二一维调制符号序列的传输进行配置,使得其适于使用单载波系统或多载波系统来传输。步骤S302中的配置操作可以包括适用于所选 择的系统的任何操作,例如逆傅里叶变换、添加循环前缀(CP)、载波/子载波调制、数字-模拟转换等操作中的一个或多个。步骤S302可以由电子设备200的处理电路203执行,更具体地,由传输配置单元205执行。
在对第二一维调制符号序列的传输进行配置之后,可以利用相应的通信单元(例如,电子设备200的通信单元201)来发射无线电信号,从而传输第二一维调制符号序列。
附加地或可选地,通信方法300还可以包括确定是否启用预处理操作的步骤。该步骤例如可以在步骤S301之前执行。该步骤可以由电子设备200的处理电路203执行,更具体地,由预处理启用单元206执行。当确定不启用预处理操作时,方法300可以跳过步骤S301。在这种情况下,在步骤S302中直接对第一一维调制符号序列的传输进行配置。
4、根据本公开的实施例的预处理操作
下面描述预处理操作的实施例。根据本公开的实施例,预处理操作可以包括第一升维转换、第一耦合变换和第一降维转换。以下将分别对这些操作进行描述。应当注意的是,以下描述仅仅是为了示意或说明的目的而提供的,并不旨在对本公开的范围进行限制。
4.1预处理操作的输入
预处理操作可以将输入的第一一维调制符号序列转换为第二一维调制符号序列以用于传输。根据本公开的一个实施例,第一一维调制符号序列可以包括多个复调制符号,这些复调制符号可以是诸如QPSK符号、QAM符号之类的复调制符号当中的一种。相应地,这些复调制符号可以来自于QPSK调制器、QAM调制器等,这些调制器通过将待传输的比特流中的每个比特映射到星座图上(也称为星座点映射),从而得到相应的复调制符号。
图4A示出了QPSK调制的星座图。图4A所示的QPSK的星座图上有4个可供选择的星座点,即调制阶数为4。因此,每一个QPSK符号对应log 24=2个比特。如该星座图所示,每次星座点映射以两个比特为单位。QPSK符号x与比特之间的映射关系如下:
Figure PCTCN2019089801-appb-000002
举例而言,如果待传输的比特流为1110100100,则根据图4A所示的QPSK调制将得到一系列的QPSK符号,依次为:x 1=1+i,x 2=1-i,x 3=1-i,x 4=-1+i,x 5=-1-i。需要注意的是,尽管这里关于图4A描述了QPSK调制的过程,但是也可以使用其他的调制方式(诸如QAM)来将待传输的比特流中的比特映射为相应类型的复调制符号。
在得到一系列复调制符号(诸如QPSK符号、QAM符号)之后,可以将这些复调制符号按列排布为符号序列的形式。多载波系统的调制符号的每一列可以包括要由多个载波传输的多个调制符号。OFDM系统是多载波系统的一个示例。根据本公开的一个实施例,在OFDM系统中,各个调制符号将被进一步调制在频域的多个正交子载波上。因此,根据OFDM系统所使用的子载波的数量(假设为32),各个复调制符号自然地以32个为一组顺次排列成如下所示的多个复调制符号序列x。
Figure PCTCN2019089801-appb-000003
在OFDM系统中,这多个复调制符号序列被逐列地进行离散傅里叶逆变换(IDFT)以及后续操作。然后,OFDM系统在一个符号间隔(也称为OFDM符号间隔)内发射一个复调制符号序列中的所有32个复调制符号,并且在接下来的符号间隔内发射另一个复调制符号序列中的所有32个复调制符号。
根据本公开的一个实施例,预处理操作可以在OFDM系统中的上述IDFT逆变换之前进行。预处理操作的输入(即,第一一维调制符号序列)可以包括要在一个或多个符号间隔内在多个子载波上发送的复调制符号序列。例如,第一一维调制符号序列所包括的复调制符号的数量可以根据处理能力来确定。
由于预处理操作的复杂度(以及后面将要介绍的接收侧的处理复杂度)随着第一一维调制符号序列所包含的复调制符号的数量的增加而显著增加,并且跨多个符号间 隔内的复调制符号进行处理可能会引入系统延时,因此,根据本公开的优选实施例,第一一维调制符号序列可以包括要在一个符号间隔内的多个子载波上发送的复调制符号。例如,对于OFDM系统,第一一维调制符号序列可以对应于计划在一个OFDM符号间隔内的多个子载波上传送的一组复调制符号。更具体而言,若OFDM系统所使用的子载波的数量为N,则第一一维调制符号序列包括计划在一个OFDM符号间隔内使用这多个子载波传送的N个复调制符号。对从第一一维调制符号序列经预处理操作得到的第二一维调制符号序列进行OFDM调制,以在一个OFDM符号间隔内完成该组复调制符号的无线电传输。这可以有利地减小发射侧和接收侧的处理复杂度,使得系统更适于在手持式设备(诸如智能电话)上实现。此外,在接收侧也不需要等待接收到多个符号间隔内的全部复调制符号才进行整体处理,从而避免了引入内生性的系统延时。
尽管上面以多载波系统进行了说明,但是这些说明也可以适用于单载波系统,例如SC-FDMA系统。与多载波系统不同,单载波系统本身并不要求调制符号(例如QPSK符号、QAM符号)成列。这是由于单载波系统的符号被调制在时域上,所以它不需要在发射侧进行IDFT变换。在单载波系统中,在经过比特流映射得到调制符号流后,这些调制符号被直接顺次发射。
然而,现有的许多单载波系统使用了循环前缀(CP)。由于循环前缀的添加要求调制符号成列(因为这样才能将列尾的一部分符号复制到列首形成循环前缀),所以这些单载波系统实际上也涉及将调制符号流分组成为多个调制符号序列。可以使用单载波系统的这种调制符号序列作为预处理操作的输入,即,作为第一一维调制符号序列。如前面所解释的,单载波系统的符号被调制在时域上。因此,与多载波系统中的第一一维调制符号序列可以包括频域调制符号不同,单载波系统中的第一一维调制符号序列可以包括时域调制符号。
此外,对于不使用循环前缀的单载波系统,也可以将调制符号流按照多载波系统中那样划分为多个调制符号序列,并将其中的一个或多个调制符号序列选择为预处理操作的输入(即,第一一维调制符号序列)。在输入第一一维调制符号序列之后,可以进行第一升维转换。
4.2第一升维转换
根据本公开的实施例,第一升维转换可以用于将第一一维调制符号序列转换为第 一多维调制符号块。第一多维调制符号块可以是二维调制符号块,也可以具有更高的维度。
为了便于描述,以下以二维为例针对第一一维调制符号序列向第一多维调制符号块的转换来描述第一升维转换。在此基础上,本领域技术人员能够想到将所述原理应用到一维调制符号序列向更高维度的调制符号块的转换。
根据本公开的一个实施例,为了将N×1的第一一维调制符号序列x转换为第一二维调制符号块X,可以首先确定第一二维调制符号块X的尺寸。第一二维调制符号块X可以是K×L的二维块,其中K、L可以是任意的大于1的正整数,并且可以满足K×L=N。K、L的值例如可以根据电子设备的处理能力来适当地确定。
在确定第一二维调制符号块X的尺寸之后,可以将第一一维调制符号序列x中的每个调制符号一一映射到第一二维调制符号块X中的对应位置。根据本公开的一个实施例,该映射过程可以通过以下两个步骤来实现,如图4B所示。
步骤S401:对第一一维调制符号序列x中的各个调制符号进行重新排序得到中间序列x’,如下所示。
Figure PCTCN2019089801-appb-000004
其中,列向量x表示第一一维调制符号序列;列向量x’来表示重新排序之后的一维中间序列;p[i]是关于原始序号i的重新排序映射,其取值为一系列各不相同的非负整数,并满足p[i]∈{0,1,2,…,N-1}。
应当注意的是,只要满足p[i]的取值在集合{0,1,2,…,N-1}内且各不相同,重新排序映射p[i]的设计可以是任意的。这相当于是对N个可区分的调制符号进行有序排列,因此p[i]可以有N!(N的阶乘)种不同的设计方案。
在一个示例中,p[i]可以被取为p[i]=(i+1)mod N。即,对于每一个原始序号i,用i+1对N进行取余作为新的排序序号,则重新排序可以被表示为:
Figure PCTCN2019089801-appb-000005
即将列向量x中的各个元素向前进行了一次循环移位。
在又一个示例中,可以采用单位变换(p[i]=i),即,不进行重新排序。
重新排序映射p[i]在该给定的非负整数集合内取值各异,也保证了映射p[i]是可逆的。即,存在对应的一个逆映射p -1[j],使得:
Figure PCTCN2019089801-appb-000006
这使得可以在后面将要描述的第一降维转换中执行映射p[i]的逆过程。
步骤S402:将经过重新排序后的中间序列x’中的各个调制符号以事先约定好的填充顺序填充在K×L的第一二维调制符号块X中。
如下所示,使用由K个行、L个列组成的表格来表示第一二维调制符号块X,其中每一个方格中的非负整数代表填入的调制符号的序号。例如,如果方格中的整数为i,则在第一二维调制符号块的对应位置处填入中间序列x’的元素x′ i=x p[i]
0 K (L-1)K
1 K+1 (L-1)K+1
2 K+2 (L-1)K+2
K-1 2K-1 LK-1
通过以上描述的两步映射过程可以将第一一维调制符号序列x中的每个调制符号一一映射到第一二维调制符号块X中的对应位置,从而对第一一维调制符号序列x进行第一升维转换成为第一二维调制符号块X。应当注意的是,尽管这里将第一升维转换过程描述为具有两个步骤,但是这两个步骤可以细分为更多的子步骤或者合并为一个步骤。
例如,作为上述两步映射过程的简化,可以按顺序将第一一维调制符号序列x逐列地填充到第一二维调制符号块X中的对应列中,也可以按顺序将第一一维调制符号 序列x逐行地填充到第一二维调制符号块X中的对应行中。
第一升维转换过程可以例如由电子设备200中的第一升维转换单元204A在方法300的步骤S303中执行。在第一升维转换之后,可以对第一多维调制符号块进行第一耦合变换。
4.3第一耦合变换
根据本公开的实施例,第一耦合变换可以用于将第一多维调制符号块转换为第二多维调制符号块。第一多维调制符号块和第二多维调制符号块可以具有相同的维度。第一多维调制符号块和第二多维调制符号块可以是二维调制符号块,也可以具有更高的维度。
为了便于描述,以下针对第一二维调制符号块向第二二维调制符号块的变换来描述第一耦合变换。在此基础上,本领域技术人员能够理解将所述原理应用到更高维度的第一多维调制符号块和第二多维调制符号块之间的变换。
根据本公开的一个实施例,第一多维调制符号块是第一二维调制符号块,第一耦合变换可以用于将第一二维调制符号块的各符号耦合,从而得到其中各个符号彼此耦合的第二二维调制符号块。使各调制符号之间彼此耦合可以获得对抗快速时变的物理信道下的多普勒频偏的增益,提高在高速移动场景下的传输性能。优选地,第一耦合变换可以是可逆变换,这使得能够在接收侧正确解调出接收到的符号。
不失一般性,第一耦合变换在数学上可以被表示为可逆的映射f(·):
f(X)=Y
其中X是待变换的第一二维调制符号块,Y是经变换得到的第二二维调制符号块。为了保证映射f(·)能够耦合X中的各个调制符号,要求对Y中的任意一个元素y k,l,都存在两个X中的元素x i,j、x m,n,使得对应的二阶混合偏导数不为0,即,满足以下表达式:
Figure PCTCN2019089801-appb-000007
可以使用满足上述表达式的任意映射f(·)来将第一二维调制符号块变换为第二二维调制符号块。
根据本公开的进一步的实施例,所使用的第一耦合变换可以是线性变换。使用线 性变换可以降低系统实现的复杂度。
根据本公开的更具体的实施例,所使用的第一耦合变换可以进一步是正交变换。正交变换是线性变换的一种特定实施例,其能够保证变换前后的功率恒定,因此,使用正交变换可以获得功率处理上的增益。
根据本公开的更具体的实施例,第一耦合变换可以是多维离散对偶傅里叶变换(Discrete Symplectic Fourier transform,DSFT),多维离散余弦变换(Discrete Cosine Transform,DCT)或对应的多维离散余弦逆变换(IDCT),或者多维离散小波变换(Discrete Wavelet Transform,DWT)或对应的多维离散小波逆变换(Inverse Discrete Wavelet Transform,IDWT)中的任何一种。
根据本公开的一个实施例,第一耦合变换可以是多维DSFT变换。当第一多维调制符号块为二维调制符号块时,第一耦合变换可以是二维DSFT变换。
如图4C所示,根据本公开的一个实施例,对第一二维调制符号块的二维DSFT变换可以包括如下的两步一维傅里叶变换/逆变换:(1)在步骤S403中,对第一二维调制符号块的每个行应用一维傅里叶变换以得到中间二维调制符号块;(2)在步骤S404中,对中间二维调制符号块的每个列应用一维傅里叶逆变换以得到第二二维调制符号块。
此外,与图4C的实施例类似,根据本公开的另一个实施例,对第一二维调制符号块的二维DSFT变换可以包括如下的两步的一维傅里叶变换/逆变换:(1)对第一二维调制符号块的每个列应用一维傅里叶逆变换以得到中间二维调制符号块;(2)对中间二维调制符号块的每个行应用一维傅里叶变换以得到第二二维调制符号块。
第一耦合变换过程可以例如由电子设备200中的第一耦合变换单元204B在方法300的步骤S304中执行。在第一耦合变换之后,可以对第二多维调制符号块进行第一降维转换。
4.4第一降维转换
根据本公开的实施例,第一降维转换可以用于将第一耦合变换所得到的第二多维调制符号块转换为第二一维调制符号序列。第一降维转换是前述第一升维转换的逆过程。取决于先前所使用的第一升维转换,第二多维调制符号块可以是二维调制符号块,也可以具有更高的维度。
为了便于描述,以下针对第二二维调制符号块向第二一维调制符号序列的转换来 描述第一降维转换过程。在此基础上,本领域技术人员能够想到将所述原理应用到更高维度的调制符号块向一维调制符号序列的转换。
对应于前面第4.2节描述的第一升维转换过程,第一降维转换过程可以通过以下两个步骤来实现,如图4D所示。
步骤S405:将尺寸K×L的第二二维调制符号块按照第一升维转换的填充顺序的逆顺序恢复成N×1的中间序列。
例如,如果第一升维转换的步骤S402使用如下表的填充顺序得到第一二维符号块X(即,逐列填充)时,那么第一降维转换的步骤S405直接将第二二维调制符号块Y的各列依次拼接即可得到恢复的中间序列y’。其中,第二二维调制符号块Y是通过对第一二维调制符号块X进行第一耦合变换所得到的。
0 K (L-1)K
1 K+1 (L-1)K+1
2 K+2 (L-1)K+2
K-1 2K-1 LK-1
步骤S406:对恢复的中间序列中的各个元素进行恢复性的重新排序
如前所述,由于第一升维转换所使用的重新排序映射p[i]具有对应的逆映射p -1[j],所以通过对中间序列y’应用逆映射p -1[j],可以得到第二一维调制符号序列y。如下所示。
Figure PCTCN2019089801-appb-000008
应当注意的是,由于第一升维转换中所采用的重新排序映射p[i]可以具有N!种不同的设计,所以第一降维转换中所采用的恢复性的重新排序映射p -1[j]相应地也具有N!种不同的设计。
通过以上描述的两步过程可以将第二二维调制符号块中的每个调制符号一一映 射回第二一维调制符号序列中的对应位置,从而将第二二维调制符号块第一降维转换成为第二一维调制符号序列。应当注意的是,尽管这里将第一降维转换过程描述为两步过程,但是这两个步骤可以细分为更多的子步骤或者合并为一个步骤。
例如,作为上述两步过程的简化,可以按顺序将第二二维调制符号块逐列地拼接为第二一维调制符号序列,也可以按顺序将第二二维调制符号块逐行地拼接为第二一维调制符号序列。
第一降维转换过程可以例如由电子设备200中的第一降维转换单元204C在方法300的步骤S305中执行。
图4E至图4G进一步地示出了第一升维转换、第一耦合变换以及第一降维转换的具体示例的示意图。在图4E中,第一一维调制符号序列407经过第一升维转换成为第一二维调制符号块408。其中,第一一维调制符号序列407可以包括在一个OFDM符号间隔内待发送的N个复调制符号。例如,第一一维调制符号序列407是第1节中提到的复调制符号序列A m。第一二维调制符号块408是K×L的符号块,其中L=N/K。随后,如图4F所示,第一二维调制符号块408经过第一耦合变换成为第二二维调制符号块409,其中第一耦合变换可以是K×L点的DSFT变换。所得到的第二二维调制符号块409也是大小为K×L的符号块。接下来,如图4G所示,第二二维调制符号块409经过第一降维转换成为第二一维调制符号序列410。与第一一维调制符号序列407类似,第二一维调制符号序列410也包括N个复调制符号。可选地,对于OFDM系统,第二一维调制符号序列410可以进一步经过IDFT变换成为序列411,如图4G中所示。
经过上述示例性的第一升维转换、第一耦合变换和第一降维转换,第一一维调制符号序列被转换成为第二一维调制符号序列。可以使用单载波系统或多载波系统来传输第二一维调制符号序列。不同于第一一维调制符号序列中各个调制符号是独立的,第二一维调制符号序列中的各个调制符号之间存在耦合性的关联,这使得第二一维调制符号序列相对于第一一维调制符号序列具有对抗快速时变的物理信道中的多普勒效应的分集增益,从而其传输在高速移动场景下具有改进的性能例如,更低的误码率。
此外,由于所使用的第一降维转换是第一升维转换的逆过程,所以第二一维调制符号序列具有与第一一维调制符号序列具有相同的大小。因此,用于对第一一维调制符号序列进行配置和传输的现有系统可以直接应用于第二一维调制符号序列。也就是说,包含本公开的预处理操作的系统可以通过向现有系统添加预处理模块来实现。预 处理模块例如可以是关于图2所描述的处理电路203中的预处理单元204。由于不需要对现有系统进行更多的调整,由于不需要对现有系统进行更多的调整,所以本公开的实施例还具有可以接受的附加复杂度和成本。
由此可见,根据本公开的实施例的电子设备和通信方法可以通过引入包含第一升维转换、第一耦合变换以及第一降维转换的预处理操作,有效应对高速移动场景下的时变多普勒效应,同时具有适于在实际系统中实现的复杂度和系统延时。
5、根据本公开的实施例的用于接收侧的电子设备
图5示出了根据本公开的实施例的用于接收侧的电子设备500的框图。根据本公开的一个实施例,电子设备500可以位于用于用户侧的通信设备诸如智能电话中。根据本公开的另一个实施例,电子设备500可以位于各种控制设备或发射装置中。这里所言的控制设备例如是诸如eNB或3GPP的5G通信标准的gNB之类的基站、远程无线电头端、无线接入点等,发射装置例如包括大尺寸的车载发射装置或固定发射装置(例如,无人机管理塔台)以及卫星通信系统中的发射器。
根据本公开的一个实施例的用于接收侧的电子设备500可以包括例如通信单元501、存储器502和处理电路503。
通信单元501可以用于接收或获取由发射侧的电子设备200所发射的无线电信号。该无线电信号可以包括通过单载波系统或多载波系统传输的一个或多个调制符号序列,例如前述的第二一维调制符号序列。通信单元501可以对所接收的无线电信号执行诸如下变频、模拟-数字变换之类的功能。例如,通信单元501还可以执行多载波系统或单载波系统的解调功能的一部分,从而向处理电路503提供第二一维调制符号序列。在本公开的实施例中,通信单元501例如可以实现为天线器件、射频电路和部分基带处理电路等通信接口部件。通信单元501用虚线绘出,因为它还可以位于处理电路503内或者位于电子设备500之外。
电子设备500的存储器502可以存储由处理电路503产生的信息,通过通信单元501从其他设备接收的信息,用于电子设备500操作的程序、机器代码和数据等。存储器502用虚线绘出,因为它还可以位于处理电路503内或者位于电子设备500之外。存储器502可以是易失性存储器和/或非易失性存储器。例如,存储器502可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
处理电路503可以提供电子设备500的各种功能。根据本公开的一个实施例,处理电路503可以被配置为对第二一维调制符号序列进行解调以获得由发射侧的电子设备200传输的原始调制符号序列(例如,第一一维调制符号序列)。由处理电路503执行的解调过程可以包括后处理操作。与在发射侧执行的预处理操作类似,接收侧的后处理操作能够将第二一维调制符号序列内的各个调制符号彼此耦合,以更好地获得部分对抗多普勒频偏的处理增益。第二一维调制符号序列通过接收侧的后处理操作可以被转换为第三一维调制符号序列。处理电路503还可以执行对第三一维调制符号序列的进一步处理,例如进行信道均衡操作以及后续的解调操作(例如QPSK解调、QAM解调),从而恢复由发射侧的设备所传输的比特流。
处理电路503可以包括用于实现上述功能的各种单元。根据本公开的一个实施例,处理电路503可以包括后处理单元504以及均衡单元505,并且可以可选地包括后处理启用单元506。
后处理单元504可以用于对第二一维调制符号序列执行后处理操作。在一个实施例中,第二一维调制符号序列可以是由通信单元501提供的一组复调制符号。第二一维调制符号序列可以在物理上与发射侧的第二一维调制符号序列对应。
根据本公开的一个实施例,对第二一维调制符号序列的后处理操作可以包括第二升维转换、第二耦合变换、以及第二降维转换。这些操作可以分别由包括在后处理单元504中的第二升维转换单元504A、第二耦合变换单元504B、第二降维转换单元504C来执行。
第二升维转换单元504A可以用于对第二一维调制符号序列进行第二升维转换,从而得到第三多维调制符号块。第三多维调制符号块可以是二维调制符号块,或者具有更高的维度。第二升维转换可以将第二一维调制符号序列中的每个调制符号一一映射到第三多维调制符号块中的对应位置。所得到的第三多维调制符号块可以被传送给第二耦合变换单元504B。
第二耦合变换单元504B可以利用使得第三多维调制符号块中的各个符号彼此耦合的第二耦合变换,将第三多维调制符号块变换为第四多维调制符号块。优选地,在接收侧的电子设备500中与发射侧的第一耦合变换对应地进行第二耦合变换,可以更好地对抗多普勒频偏,更多细节如后面第8节所述。第二耦合变换单元504B可以将第四多维调制符号块传送给第二降维转换单元504C。
第二降维转换单元504C可以用于对第四多维调制符号块进行第二降维转换,从 而得到第三一维调制符号序列。由第二降维转换单元504C执行的第二降维转换可以是由第二升维转换单元504A执行的第二升维转换的逆过程。因此,第三一维调制符号序列可以具有与第二一维调制符号序列相同的尺寸。
附加地或可选地,后处理单元504可以将第三一维调制符号序列传送给均衡单元505以执行信道均衡操作,从而在一定的信噪比条件下直接恢复出原始调制符号序列,例如前述的第一一维符号序列。由均衡单元505执行的信道均衡操作是针对等效信道来执行的。该等效信道可以描述发射侧的复调制符号序列(例如,第一一维调制符号序列)与接收侧的第三一维调制符号序列之间的传输关系。在执行信道均衡操作时,可以考虑至少包括发射侧的预处理操作、实际物理信道以及接收侧的后处理操作形成的等效信道,关于信道均衡的更多细节如后面第8节所述。
根据本公开的一个实施例,处理电路503还可以包括后处理启用单元506。后处理启用单元506用虚线绘出,因为它还可以位于处理电路503外或者位于电子设备500之外。后处理启用单元506可以被用于确定是否启用后处理单元504以执行对第二一维调制符号序列的后处理操作。当确定不启用后处理操作时,这一般对应于在发送端没有进行预处理操作的情况,第二一维调制符号序列可以被直接传送给均衡单元505而不经历后处理操作。在这种情况下,均衡单元505可以针对不包含预处理操作和后处理操作的等效信道来执行信道均衡操作。
应当注意的是,以上描述的各个单元是用于实施本公开中描述的处理的示例性和/或优选的模块。这些模块可以是硬件单元(诸如中央处理器、场可编程门阵列、数字信号处理器或专用集成电路等)和/或软件模块(诸如计算机可读程序)。以上并未详尽地描述用于实施下文描述各个步骤的模块。然而,只要有执行某个处理的步骤,就可以有用于实施同一处理的对应的模块或单元(由硬件和/或软件实施)。通过下文所描述的步骤以及与这些步骤对应的单元的所有组合限定的技术方案都被包括在本公开的公开内容中,只要它们构成的这些技术方案是完整并且可应用的。
此外,由各种单元构成的设备可以作为功能模块被并入到诸如计算机之类的硬件设备中。除了这些功能模块之外,计算机当然可以具有其他硬件或者软件部件。
6、根据本公开的实施例的用于接收侧的通信方法
图6示出了根据本公开的实施例的用于接收侧的电子设备的通信方法600的流程图。通信方法600例如可以由如图5所描述的电子设备500来执行。
如图6所示,在步骤S601中,获取第二一维调制符号序列。根据本公开的一个实施例,可以经由电子设备500的通信单元501获取第二一维调制符号序列。步骤S601例如可以由电子设备500的处理电路503执行。
第二一维调制符号序列可以包括在一个或多个符号间隔内接收到的复调制符号序列。由于接收处理的复杂度随着第二一维调制符号序列所包括的复调制符号数量的增加而增加,所以第二一维调制符号序列所包括的复调制符号的数量可以例如根据处理能力来确定。
根据本公开的一个实施例,第二一维调制符号序列可以仅包括在一个符号间隔内的复调制符号。例如,为了兼容OFDM系统,第二一维调制符号序列可以对应于一个OFDM符号间隔内在多个子载波上传送的一组复调制符号。更具体而言,若OFDM系统所使用的子载波的数量为N,则第二一维调制符号序列包括在一个OFDM符号间隔内使用这多个子载波传送的N个复调制符号。这可以使本公开的新波形与现有OFDM波形共用部分收发器件,有利地减小处理复杂度、简化系统结构以及降低应用成本,以便在手持式设备(诸如智能电话)上实现。此外,在接收侧,可以在一个OFDM符号间隔内就完成接收处理,而不需要等待接收到多个符号间隔内的全部复调制符号才进行整体处理,延用了OFDM系统固有的处理格式,这避免了引入内生性的系统延时。
在获取了第二一维调制符号序列之后,在步骤S602中对第二一维调制符号序列进行后处理操作以得到第三一维调制符号序列。步骤S602可以由电子设备500的处理电路503执行,更具体地,由后处理单元504执行。
如图6所示,步骤S602可以进一步包括子步骤S604、S605、S606。在子步骤S604中,对第二一维调制符号序列进行第二升维转换,以得到第三多维调制符号块。在子步骤605中,利用使得第三多维调制符号块中的各个调制符号彼此耦合的第二耦合变换,将第三多维调制符号块变换为第四多维调制符号块。在子步骤606中,对第四多维调制符号块进行第二降维转换以得到第三一维调制符号序列,其中第二降维转换是S604中的第二升维转换的逆过程。步骤S604、S605、S606可以由电子设备500的处理电路503执行,更具体地,由预处理单元504中包括的第二升维转换单元504A、第二耦合变换单元504B、第二降维转换单元504C分别执行。通过步骤S602得到的第三一维调制符号序列中的各个符号彼此存在耦合性的关联。因此,接收侧的处理进一步获得了对抗多普勒频偏的分集增益,这使得它在快速时变信道中具有改进的性能。
第二升维转换可以是能够将第二一维调制符号序列中的每个调制符号一一映射到第三多维调制符号块中的对应位置的任意转换。例如,第二升维转换可以是第4.2节关于第一升维转换所描述的各种升维转换中的任意一种,因此可以参照第4.2节进行理解并且与第4.2节重复的部分不再重复描述。事实上,接收侧在后处理操作时可以不知晓在发射侧采用了哪种升维转换。在一个优选的实施例中,考虑到系统的发射侧和接收侧的对称性,可以在接收侧采用与在发射侧所使用的第一升维转换相同的第二升维转换。在另一个实施例中,第二升维转换也可以与在发射侧执行的第一升维转换不同。
第二耦合变换可以是能够将第三多维调制符号块中的每个调制符号彼此耦合的任意变换。例如,第二耦合变换可以是第4.3节中描述的各种耦合变换中的任意一种,因此可以参照第4.3节进行理解并且与第4.3节重复的部分不再重复描述。第二耦合变换可以与在发射侧执行的第一耦合变换属于相同的类型或者不同的类型。例如,当第一耦合变换是DSFT变换时,第二耦合变换可以是IDSFT变换,也可以是小波变换。此外,第二耦合变换与第一耦合变换所针对的多维调制符号块的尺寸也可以是不同的。例如,第一耦合变换所针对的第一多维符号块可以是K 1×L 1,而第二耦合变换所针对的第一多维符号块可以是K 2×L 2,其中K 1与K 2不同,并且L 1与L 2不同。
在一个实施例中,考虑到系统的发射侧和接收侧的对称性,在接收侧执行的第二耦合变换可以是在发射侧执行的第一耦合变换的逆变换,这使得可以在接收侧较好恢复出发射侧所传输的调制符号。例如,如果在发射侧采用离散对偶傅里叶(DSFT)变换作为预处理操作中的第一耦合变换,那么在接收侧的后处理操作中可以采用离散对偶傅里叶逆变换(IDSFT)作为第二耦合变换,其中,利用IDSFT对第三多维调制符号块中的每个行应用多维傅里叶逆变换,对每个列应用多维傅里叶变换。当第二耦合变换不是第一耦合变换的逆变换时,取决于信道,性能可能会略有差异。
第二降维转换是第二升维转换的逆过程,其将第四多维调制符号块中的每个调制符号一一映射回第三一维调制符号序列中的对应位置。例如,第二降维转换可以是第4.4节关于第一降维转换所描述的各种降维转换中的任意一种,因此可以参照第4.4节进行理解并且与第4.4节重复的部分不再重复描述。在一个实施例中,可以在接收侧采用与在发射侧所使用的第一降维转换相同的第二降维转换。在另一个实施例中,第二降维转换可以与在发射侧执行的第一降维转换不同。
如上面所提到的,根据本公开的实施例,接收侧的后处理操作中的第二升维转换、 第二耦合变换以及第二降维转换可以分别与发射侧的预处理操作中的第一升维转换、第一耦合变换以及第一降维转换相同,也可以不同。它们之间可以不具有互逆关系或者其他某种特定的关联。原理上,如果用f表示发射侧的预处理操作所进行的变换(包括升维、耦合、降维),用h表示物理信道所进行的变换,并且用g表示后处理操作所进行的变换(包括升维、耦合、降维),那么信号所经历的整体的等效变换是g*h*f。接收侧可以在信道均衡时对这个整体的等效变换g*h*f求逆。因此,在原理上并不要求接收侧的后处理操作g和发射侧的预处理操作f是互逆的或者具有其他某种特定的关联。也就是说,接收侧的后处理操作和发射侧的预处理操作彼此不需要在所使用的变换种类上进行协同。在优选的实施例中,可以让g和f互为逆变换,这可以使得g*h*f获得对称的结构,从而方便信号处理。
附加地或可选地,在步骤S602中的后处理操作将第二一维调制符号序列转换为第三一维调制符号序列之后,可以在步骤S603中执行信道均衡操作。信道均衡操作可以提高衰落信道中的传输性能,例如消除或者减弱宽带通信时的多径延时带来的码间串扰(ISI)问题。根据本公开的一个实施例,信道均衡操作是针对等效信道来执行的。该等效信道描述发射侧的复调制符号序列(例如,第一一维调制符号序列)与接收侧的第三一维调制符号序列之间的传输关系。即,在执行信道均衡操作时,至少可以根据发射侧的预处理操作、实际物理信道以及接收侧的后处理操作来确定等效信道。步骤S603是可选的,因此被示出为虚线框。
附加地或可选地,通信方法600还可以包括确定是否启用后处理操作的步骤。该步骤例如可以在步骤S602之前执行。该步骤可以由电子设备500的处理电路503执行,更具体地,由后处理启用单元506执行。当确定不启用后处理操作时,这一般对应于在发送端没有进行预处理操作的情况,方法600可以跳过步骤S602。在这种情况下,可以在步骤S603中直接对第二一维调制符号序列进行信道均衡操作。
附加地或可选地,通信方法600还可以包括对第三一维调制符号序列的解调步骤(未示出),从而恢复出在发射侧传输的比特流。取决于在发射侧将待传输的比特流映射为复调制符号的具体方式,在接收侧执行的进一步解调操作可以包括对应的解调操作诸如QPSK解调或者QAM解调等。例如,当在发射侧使用关于图4A所描述的QPSK调制时,在接收侧可以相应地执行对应的QPSK解调操作以恢复出所传输的比特流。
由此可见,根据本公开的实施例的电子设备和通信方法可以通过在接收侧执行包 含第二升维转换、第二耦合变换以及第二降维转换的后处理操作,来对抗快速时变的物理信道中的多普勒效应,同时具有适于在实际系统中实现的复杂度和系统延时。
7、根据本公开的实施例的一般通信方法
上面已经分别描述了接收侧和发射侧的通信方法300和600。图7A进一步示出了根据本公开的实施例的一般通信方法700的流程图。通信方法700例如可以由关于图2描述的电子设备200与关于图5描述的电子设备500配合执行。
如图7A所示,在步骤S701中,对第一一维调制符号序列进行预处理操作以得到第二一维调制符号序列。如前面描述的,第一一维调制符号序列可以来自QPSK调制器、QAM调制器或其他调制器。可以使用第4节所描述的预处理操作。该预处理操作可以包括:对第一一维调制符号序列进行第一升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一耦合变换,将第一多维调制符号块变换为第二多维调制符号块;以及对第二多维调制符号块进行第一降维转换成为第二一维调制符号序列,其中第一降维转换是第一升维转换的逆过程。
在步骤S702中,传输第二一维调制符号序列。可以使用单载波系统或多载波系统来传输第二一维调制符号序列。为了使得第二一维调制符号序列适于使用单载波系统或多载波系统来进行无线电传输,步骤S702可以包括对第二一维调制符号序列的进一步操作。例如,当使用OFDM系统来传输第二一维调制符号序列时,步骤S702可以至少包括传统OFDM调制过程的一部分。
在步骤S703中,获取所传输的第二一维调制符号序列。
在步骤S704中,对所获取的第二一维调制符号序列进行后处理操作以得到第三一维调制符号序列。该后处理操作可以包括:对第二一维调制符号序列进行第二升维转换成为第三多维调制符号块;利用使得第三多维调制符号块中的各个符号彼此耦合的第二耦合变换,将所述第三多维调制符号块变换为第四多维调制符号块;以及对第四多维调制符号块进行第二降维转换成为第三一维调制符号序列,其中第二降维转换是第二升维转换的逆过程。
附加地或可选地,方法700还可以包括信道均衡的步骤S705。根据本公开的一个实施例,该信道均衡操作可以针对第一一维调制符号序列与第三一维调制符号序列之间的等效信道。该等效信道例如可以包括步骤S701中的预处理操作、实际物理传输信道以及步骤S705中的后处理操作共同形成的等效传输关系。步骤S705是可选的, 因此被示出为虚线方框。
附加的或可选地,方法700还可以包括确定是否要启用预处理操作的步骤S706或确定是否要启用后处理操作的步骤S707。步骤S706和步骤S707是可选的,因此被示出为虚线方框。关于启用预处理操作的步骤或启用后处理操作的详细描述可以参见第10节。当确定不启用预处理操作时,步骤S701可以被省略。可以将是否启用预处理操作的信息包括在指示信息中发送到接收侧,以指示接收侧是否应当相应地启用后处理操作。当确定不启用后处理操作时,步骤S705可以被省略。信道均衡的步骤可以类似地根据预处理操作和/或后处理操作是否被启用而相应地确定等效信道。
8.使用多载波系统的实施例
图7B示出了根据本公开的实施例的通信系统700B的框图。下面将结合图7B针对多载波系统来进一步描述根据本公开的示例性实施例。应当注意的是,尽管这里仅针对多载波系统进行了描述,但是如前面第4节所解释的,本公开的原理和方法也适用于单载波系统。本领域普通技术人员能够对本实施例进行拓展以应用于单载波系统。
可以用x表示待传输的N×1的调制符号序列。根据本公开的一个实施例,调制符号序列x可以对应于要在一个符号间隔内传输的多个调制符号(例如QPSK符号或QAM符号)。如前面已经解释的那样,以一个符号间隔内的调制符号为单元进行处理可以降低系统复杂度,并且避免造成内生性系统延时。
x可以在发射侧经历预处理操作。如图7B所示,在预处理操作期间,首先可以对调制符号序列x进行第一升维转换。例如,可以按照一定的映射关系将调制符号序列x中的各个调制符号映射成K×L的二维调制符号块X。其中,K和L的取值可以根据具体需要和处理能力进行选择,只需要满足K×L=N即可。
然后,预处理操作可以对二维调制符号块X进行相应维度的第一耦合变换,例如DSFT变换。对二维调制符号块X的DSFT变换可以表示为:
Figure PCTCN2019089801-appb-000009
其中,
Figure PCTCN2019089801-appb-000010
表示K阶的逆傅里叶变换(IFFT)矩阵,F L表示L阶的傅里叶变换(FFT)矩阵,
Figure PCTCN2019089801-appb-000011
表示经过DSFT变换后得到的K×L的二维符号块,
Figure PCTCN2019089801-appb-000012
Figure PCTCN2019089801-appb-000013
的第i列。
接下来,预处理操作可以对二维调制符号块
Figure PCTCN2019089801-appb-000014
进行第一降维转换,以将其重新排 列成一个N×1的调制符号序列
Figure PCTCN2019089801-appb-000015
这里的第一降维转换可以是对调制符号序列x的第一升维转换的逆过程。
Figure PCTCN2019089801-appb-000016
可以被表示为:
Figure PCTCN2019089801-appb-000017
其中运算符
Figure PCTCN2019089801-appb-000018
表示Kronecker(克罗内克)积运算。
从预处理操作得到的
Figure PCTCN2019089801-appb-000019
可以被传送给多载波系统的发射机来发射。例如,可以使用关于图1C所描述OFDM系统的OFDM发射机来发射
Figure PCTCN2019089801-appb-000020
当使用该OFDM发射机来发射
Figure PCTCN2019089801-appb-000021
时,可以进一步对
Figure PCTCN2019089801-appb-000022
执行如图1C所描述的IFFT变换、CP添加以及后续的处理(例如数字-模拟转换、上变频)等。
所发射的无线电信号传输通过物理信道。图7C是时变多径物理信道下收发端数字化信号模型的示意图。如图7C所示,发射侧所发射的信号s经过物理信道中的三条路径的不同延时之后互相叠加,从而得到接收侧所接收到的信号r。物理信道的时变性体现在每条路径的路径增益(用α 1、α 2、α 3表示)都是时变的。此外,每条路径带有不同的多普勒频偏,分别用ν 1、ν 2、ν 3表示。需要注意的是,尽管图7C中信号传输路径被表示为三条,但是可以存在更多或更少的传输路径。
所发射的无线电信号通过物理信道传输到多载波系统的接收机。例如,该接收机可以是关于图1C所描述的OFDM接收机。该OFDM接收机可以对接收到的无线电信号进行下变频、采样、CP去除,以得到接收信号r。如前面解释的,r是经过各路径延时后的发射信号以时变的路径增益和多普勒因子为权系数的线性加权和。当发射侧发射调制符号序列
Figure PCTCN2019089801-appb-000023
时,接收侧接收的数字信号r可以被表示为:
Figure PCTCN2019089801-appb-000024
其中H是包含了CP相关操作的物理信道,r是接收端经过下变频、采样等数字化处理后的数字接收信号,z是接收端的噪声。可选地,还可以对数字信号r进行FFT变换等处理。因此,与所发射的调制符号序列
Figure PCTCN2019089801-appb-000025
对应的数字化的接收信号
Figure PCTCN2019089801-appb-000026
可以被表示为:
Figure PCTCN2019089801-appb-000027
其中,F N表示N阶的FFT矩阵,
Figure PCTCN2019089801-appb-000028
表示经过FFT处理后的数字接收信号,
Figure PCTCN2019089801-appb-000029
是一个N×1的调制符号序列。当
Figure PCTCN2019089801-appb-000030
对应于在一个调制符号间隔内由多载波系统发射的多个调制符号时,
Figure PCTCN2019089801-appb-000031
可以对应于由在一个调制符号间隔内接收到的多个调制符号组成的调制符号序列。
调制符号序列
Figure PCTCN2019089801-appb-000032
可以在接收侧经历后处理操作。在后处理操作期间,首先,可以对调制符号序列
Figure PCTCN2019089801-appb-000033
执行第二升维转换,从而将其排列为一个K×L的二维调制符号块
Figure PCTCN2019089801-appb-000034
其中满足
Figure PCTCN2019089801-appb-000035
在接收侧执行的第二升维转换可以与发射侧的第一升维转换相同或者不同。
然后,后处理操作可以对
Figure PCTCN2019089801-appb-000036
进行第二耦合变换。根据本公开的一个实施例,该第二耦合变换可以是IDSFT变换,即,可以是发射侧的DSFT变换的逆变换,这可以使得接收侧能够最大程度地正确恢复出所发射的调制符号。对
Figure PCTCN2019089801-appb-000037
进行IDSFT变换可以被表示为:
Figure PCTCN2019089801-appb-000038
其中,F K表示K阶FFT变换,
Figure PCTCN2019089801-appb-000039
表示L阶的IFFT变换,
Figure PCTCN2019089801-appb-000040
表示所得到的二维调制符号块。
随后,后处理操作可以对二维调制符号块
Figure PCTCN2019089801-appb-000041
进行第二降维转换。该第二降维转换可以是对
Figure PCTCN2019089801-appb-000042
执行的第二升维转换的逆过程,从而根据该第二升维转换的顺序的逆顺序将二维调制符号块
Figure PCTCN2019089801-appb-000043
重新排列为一个N×1维度的调制符号序列y。根据Kronecker积的数学性质,可以得到:
Figure PCTCN2019089801-appb-000044
其中
Figure PCTCN2019089801-appb-000045
为表示处理后的噪声的N×1向量。
Figure PCTCN2019089801-appb-000046
可以被表示为:
Figure PCTCN2019089801-appb-000047
Figure PCTCN2019089801-appb-000048
为N×N矩阵,代表发射侧所传输的原始调制符号序列x和经过接收侧后处理操作 之后的调制符号序列y之间的等效信道。
Figure PCTCN2019089801-appb-000049
可以被表示为:
Figure PCTCN2019089801-appb-000050
这里
Figure PCTCN2019089801-appb-000051
表示Kronecker积运算,H表示实际的物理信道。
可选地,在接收侧的后处理操作执行完毕后,可以根据等效传输矩阵
Figure PCTCN2019089801-appb-000052
对调制符号序列y进行均衡,从而在一定的信噪比条件下直接恢复出原始调制符号序列x。考虑到均衡的复杂度,实际系统可以使用易于实现的线性均衡准则。根据一个实施例,可以采用基于迫零(ZF)准则的均衡操作,均衡矩阵可以相应地表示为Q ZF
Figure PCTCN2019089801-appb-000053
根据另一个实施例,可以采用基于最小均方误差(MMSE)准则的均衡操作,均衡矩阵可以相应地表示为Q MMSE
Figure PCTCN2019089801-appb-000054
其中γ是根据MMSE准则所定义的归一化因子,I N是N阶单位矩阵。
从上述描述可以看到,由于预处理操作的处理矩阵
Figure PCTCN2019089801-appb-000055
和后处理操作的处理矩阵
Figure PCTCN2019089801-appb-000056
的存在,所以在等效信道(用
Figure PCTCN2019089801-appb-000057
表示)中,各个元素特别是一个符号间隔内传输的各个元素是彼此耦合的,这可以获得部分对抗多普勒频偏的分集增益,从而获得性能上的提升。
此外,当预处理操作的输入(即,调制符号序列x)仅包括要在一个符号间隔内传输的调制符号序列时,由于没有对跨符号间隔的多个调制符号序列进行联合处理,因此不会造成内生性系统延时。也就是说,接收侧在收到当前一个符号间隔内的调制符号序列时可以立即进行解调,无须等待后续符号间隔的调制符号序列。另外,从等效信道的维度可以看出,
Figure PCTCN2019089801-appb-000058
是一个N×N的矩阵。这使得信道均衡的复杂度仅仅略高于不使用预处理操作和后处理操作的OFDM系统。因此,本公开能够容易地在实际系统上实现,这对于手持式设备是尤为重要的。
9.用于其他系统的实施例
尽管本公开主要针对OFDM系统描述了根据本公开的示例实施例,但是将清楚的是,本公开的原理和方法也可以应用于其他多载波系统,例如码分多址(CDMA)系统。
CDMA系统利用不同的正交码作为载波,从而利用相同的时频资源来服务多个用户。基于CDMA系统来实现根据本公开的方法时,可以将不同用户的数据分别进行调制。对于每一个确定的用户而言,处理的方法和前述基于OFDM的系统基本是一致的,即,对用户数据进行扩频(扩频是CDMA系统自身的操作)之后得到待传输的比特流,然后再经过星座点映射得到串行的调制符号流。可以如前面所述地那样,可以将串行调制符号流分成多个调制符号序列。对于每个调制符号序列,除了不需要在发送之前执行IFFT操作之外(CDMA系统不需要这一操作),其他的处理与基于OFDM的系统是一致的。对每一个用户的数据都进行这样的处理,即将每一个用户的数据都表示成这样的二维调制符号块,然后对各个二维调制符号块进行预处理操作,然后将各个用户的经过预处理操作的待传输的调制符号叠加在一起通过无线电信号发射即可。接收侧在收到叠加的无线电信号之后,首先利用CDMA系统正交码的原理将各个用户的数据分开,然后可以利用基于OFDM的系统实现中所描述的方法进行解调(不需要FFT操作)。
因此,根据本公开的方法和设备可以例如应用于使用频分复用技术或码分多址技术的多载波系统,例如使用正交频分复用(OFDM)技术、频域扩展多载波码分多址技术、单载波频分多址技术、正交多载波直接序列码分多址技术、多频直接序列码分多址技术、广义多载波直接序列码分多址技术、跳时多载波码分多址技术、时频域扩展多载波直接序列码分多址技术当中的任何一种技术的多载波系统。
此外,除了用于地面通信的通信系统外,根据本公开的实施例的电子设备和通信方法也可以适用于低轨卫星星座的通信场景。低轨星座中的卫星绕行速度很快,与地球相比高速的相对运动将产生很强的多普勒频偏,同时由于轨道高度低,存在多径效应,因此根据本公开的实施例的电子设备和通信方法可以适用于这种通信场景。另外,卫星通信场景下的通信距离远大于地面通信,通信延时问题变得更加显著,OTFS系统本身就存在固定的系统延时,不利于在延时较大的卫星通信场景下使用,而根据本公开的实施例的电子设备和通信方法没有系统延时,在这方面更有优势。
10.根据本公开的实施例的启用预处理操作和后处理操作
根据本公开的实施例,可以根据多种因素来确定是否启用前述预处理操作和/或后处理操作。这使得可以根据需要来灵活地选择是使用常规的通信方法,还是使用带有预处理操作和后处理操作的改进的通信方法,从而能够更好地适应实际的应用场景。这种确定可以由处理电路203、503来执行。例如,由于预处理操作和/或后处理操作的目的之一是更好地对抗多普勒频偏,所以,在多普勒频偏不显著的场景中,可以不启用预处理操作和/或后处理操作。
根据本公开的一个实施例,可以在发射侧执行预处理操作之前,确定是否启用该预处理操作。该确定可以基于多种因素。根据一个实施例,可以基于信道状况来确定是否启用预处理操作。信道状况可以包括信道的多普勒效应的强度,多普勒效应的强度例如可以通过参考信号在频域的扩展和偏移来测量。当多普勒效应足够强(例如,多普勒频偏超过阈值)时,可以启用预处理操作。根据另一个实施例,可以基于应用场景来确定是否启用预处理操作。例如,当确定应用场景为高速列车通信、飞行器通信或卫星通信或其他高速移动场景中的任何一种时,可以启用预处理操作。又例如当通信设备的移动性(如速度)高于预定阈值时,可以启用预处理操作。根据还有的一个实施例,可以基于接收侧所发送的特定请求来确定是否在发射侧启用预处理操作。例如,响应于接收到接收侧所发送的要求启用预处理的请求,可以在发射侧启用该预处理操作。
根据本公开的一个实施例,发射侧的电子设备可以传输指示信息,该指示信息可以指示在发射侧是否启用了预处理操作,从而指示接收侧的电子设备是否相应地启用后处理操作以及相应地配置信道均衡操作。根据本公开的进一步的实施例,指示信息还可以包括预处理操作的参数和/或类型,例如第一多维调制符号块的维度参数(二维或者更高维度)、第一多维调制符号块各维度的大小、以及耦合变换的类型(例如DSFT变换)。根据本公开的其他实施例,这些预处理操作的参数是事先约定的静态参数,因此可以不被包括在指示信息中。
可以使用各种方式来传输指示信息。根据一个实施例,指示信息被包括在例如3GPP标准规定的下行链路控制信息DCI中。例如,可以在DCI中加入一个波形选择的变量,当用户高速移动造成信道时变显著时,基站端可以通过该波形选择变量的取值通知用户将启用预处理操作和后处理操作,例如波形选择变量为0表示使用OFDM波形,波形选择变量为1表示使用本公开的新波形而需要启用预处理和后处理操作; 而当环境中的多普勒效应不明显时,则基站可以通知用户采用普通波形而不启用预处理操作和后处理操作。通过这种方式,可以支持多种波形动态按需切换的通信场景,从而在运算开销和传输性能上灵活取舍。根据另一个实施例,该指示信息也可以被包括在高层信令,例如3GPP标准规定的无线资源控制RRC消息中,从而节省物理层信令并支持半静态的波形切换。
根据本公开的一个实施例,可以在接收侧执行后处理操作之前,确定是否启用该后处理操作。该确定可以基于多种因素。根据一个实施例,可以基于所接收到的指示信息来确定是否在接收侧启用后处理操作,该指示信息至少包括与是否应当启用后处理操作有关的信息。例如,该指示信息可以是上面所描述的由发射侧传输的指示信息。当指示信息指示在发射侧启用了预处理操作时,在接收侧可以相应地启用后处理操作。否则,在接收侧可以不启用后处理操作。在接收侧可以从下行链路控制信息DCI或无线电资源控制RRC消息中获取指示信息。
根据本公开的另一个实施例,接收侧的电子设备的处理电路503还可以确定是否向发射侧的电子设备200发送启用后处理操作或者说启用新波形的请求。这种确定可以基于信道状况。信道状况可以包括信道的多普勒效应的强度,多普勒效应的强度例如可以通过参考信号在频域的扩展和偏移来测量。当多普勒效应足够强(例如,多普勒频偏超过阈值)时,可以发送启用后处理操作的请求。根据另一个实施例,可以基于应用场景来确定是否发送启用后处理操作的请求。例如,当确定应用场景为高速列车通信、飞行器通信或卫星通信或其他高速移动场景中的任何一种时,可以发送启用后处理操作的请求。可以根据发射侧对请求的响应来确定是否在接收侧启用后处理操作。例如,如果发射侧的电子设备响应于请求而在发射侧启用了预处理操作时,那么可以通过指示信息指示接收侧的电子设备相应地启用后处理操作。否则,接收侧的电子设备可以不启用后处理操作。
图8A和图8B是示出根据本公开的实施例的用于确定是否启用预处理操作和/或后处理操作的示意图。其中,发射侧设备801可以是关于图2描述的用于发射侧的电子设备200,并且接收侧设备802可以是关于图5描述的用于接收侧的电子设备500。
在图8A中,在步骤S803中,接收侧设备802可以向发射侧设备801发送请求,以请求发射侧设备启用预处理操作。如前面所描述的,接收侧设备802可以至少基于信道状况或应用场景中的一者来发送该请求。
在步骤S804中,响应于接收到该请求,发射侧设备801可以确定是否在发射侧 启用预处理操作。根据本公开的一个实施例,可以与信道状况或应用场景结合地来确定是否在发射侧启用预处理操作。
当发射侧设备801确定启用预处理操作时,在S805中启用预处理操作。可以进一步确定预处理操作的参数,诸如第一多维调制符号块的维度参数、第一多维调制符号块各维度的大小、以及耦合变换的类型等。这些参数可以是事先约定的静态参数,也可以根据需要动态地确定。
在步骤S806中,发射侧电子设备801可以向接收侧电子设备802发送指示信息。该指示信息可以指示发射侧设备801是否启用了预处理操作。该指示信息还可以包括预处理操作的参数。
响应于接收到来自发射侧设备801的指示信息,接收侧设备802可以相应地启用和/或不启用后处理操作。当确定要启用后处理操作时,接收侧设备802可以在步骤S807中根据指示信息中所包含的关于预处理操作的参数来对后处理操作进行配置并且启用后处理操作。例如,可以使后处理操作与预处理操作具有对称性(尽管不是必需的),这例如使第三多维调制符号块的维度和/或大小与第一多维调制符号块的维度相同、使用与发射侧的第一耦合变换对应的第二耦合变换等。
可选地或附加地,接收侧设备802可以在步骤S808中向发射侧设备801发送启用后处理操作的确认。
与图8A不同,在图8B中,发射侧设备不是响应于接收侧设备的请求来确定是否启用预处理操作,而是独立地进行这种确定。如前面所描述的,由发射侧设备做出的这种确定可以基于应用场景或信道状况中的至少一者。图8B中的其他步骤与图8A可以是类似的,在此不再详细描述。
图8A与图8B所示的实施例使得发射侧设备和接收侧设备可以确定是否启用预处理操作和后处理操作。这使得这些设备可以根据需要来灵活地选择是使用常规的通信方法,还是使用带有预处理操作和后处理操作的改进的通信方法,从而能够更好地适应实际的应用场景。
11.性能比较
为了说明根据本公开的通信方法与电子设备的性能,发明人对根据本公开的一个实施例的示例性系统与常规OFDM系统以及现有的OTFS系统进行了性能仿真。下表示出了具体的仿真参数。
参数
载波频率 2GHz
子载波频率间隔 15kHz
CP长度 7%
子载波个数 256
FFT点数 256
待传输二维符号块尺寸 32×8
最大多普勒频偏 1kHz
通过对误码率的仿真来比较各个系统对抗时变信道下多普勒频偏的性能。图9示出了在使用QPSK星座图进行星座点映射的情况下的各个系统的误码率性能的仿真结果。其中,x轴表示仿真时的信噪比(SNR)条件,y轴表示仿真所得的误码率(BER)性能。曲线9001、9002、9003分别表示OFDM系统、OTFS系统以及根据本公开的实施例的示例性系统的误码率性能曲线。图10示出了在使用16QAM星座图进行星座点映射的情况下各个系统的误码率性能比较。其中,x轴表示仿真时的信噪比(SNR)条件,y轴表示仿真所得的误码率(BER)性能。曲线1001、1002、1003分别表示OFDM系统、OTFS系统以及根据本公开的实施例的示例性系统的误码率性能曲线。从图9和图10可以看到,根据本公开的实施例的示例性系统具有比常规OFDM系统更低的误码率。
进一步地,下表给出了以上三种系统在系统延时和复杂度方面的量化比较。考虑对M个连续的符号间隔内的M个调制符号序列进行传输,每个调制符号序列具有N个调制符号。那么,三种系统的系统延时、均衡复杂度以及额外计算复杂度可以表示为:
Figure PCTCN2019089801-appb-000059
其中,记号T(n)用来表示解决一个规模为n的问题所需要的计算的次数;记号O(·)被称为大O符号(Big O Notation),用来表示一个函数数量级的渐近上界,也就是当问题规模无限扩大时,计算操作当中占主导地位的部分。
由上述比较可见,在系统延时方面,由于根据本公开的实施例的系统可以只对当前符号间隔内的调制符号列进行处理,因此与OFDM系统一样没有系统延时,而OTFS系统需要接收端在接收到M个连续符号间隔内的全部调制符号序列才能进行后续的解调工作,因此存在M个符号间隔的系统延时。
在均衡复杂度方面,由于根据本公开的实施例的系统只需要对当前符号间隔内的调制符号序列进行均衡,因此均衡复杂度的规模与OFDM系统一样是T(N)。OTFS系统需要对全部M个调制符号序列进行均衡,因此均衡复杂度的规模是T(MN)。
在额外计算复杂度方面,以OFDM系统为参考标准,根据本公开的实施例的系统的预处理操作和后处理操作所引入的额外计算复杂度为O(MN log N),低于OTFS系统所引入的额外计算复杂度O(MN log M N)。
发明人进一步对三种系统的实现复杂度进行了仿真。图11和图12分别示出了在使用N=128个子载波和N=256个子载波的情况下用于仿真各个系统的程序模块运行的平均时间。在图11和图12中,横轴表示所传输的调制符号序列的个数,纵轴表示仿真三种系统的程序运行模块的相对运行时间。该运行时间反映了上述三种系统的实现复杂度。可以看到,虽然根据本公开的实施例的示例性系统的误码率要略高于OTFS系统,但是该系统的实现复杂度(由曲线1103、1203表示)仅略高于OFDM系统(由曲线1101、1201表示),并且远低于OTFS系统(由曲线1102、1202表示)。
12.本公开的应用示例
本公开内容的技术能够应用于各种场景和各种产品。
例如,用于发射侧的电子设备200或用于接收侧的电子设备500可以是用户侧电子设备。用户侧电子设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户侧电子设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户侧电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
用于发射侧的电子设备200或用于接收侧的电子设备500还可以被实现为控制侧电子设备,例如任何类型的基站,优选地,诸如3GPP的5G通信标准新无线电(New Radio,NR)接入技术中的宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,控制设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。控制设备可以包括:被配置为控制无线通信的主体(也称为基站设备)以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
12-1.关于控制设备侧电子设备的应用示例
(第一应用示例)
应理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和NodeB中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,等等)。在D2D、M2M以及V2V通信场景下,也可以将对通信具有控制功能的逻辑实体称为基站。在认知无线电通信场景下,还可以将起频谱协调作用的逻辑实体称为基站。
图13是示出可以应用本公开的技术的控制设备侧电子设备的示意性配置的第一示例的框图。该控制侧电子设备可以是根据本公开的实施例的用于发射侧的电子设备200,也可以是根据本公开的实施例的用于接收侧的电子设备500。其中,电子设备200或电子设备500被示出为gNB 800。其中,gNB 800包括多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线阵元),并且用于基站设备820发送和接收无线信号。如图13所示,gNB 800可以包括多个天线810。例如,多个天线810可以与gNB 800使用的多个频带兼容。图13示出其中gNB 800包括多个天线810的示例,这些天线810可以被用来实现本公开的实施例所述的多载波系统。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功 能。例如,控制器821可以包括上面所述的处理电路203或503,按照上面描述的方法来进行预处理操作,或者控制电子设备200或500的各个部件。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的gNB进行通信。在此情况下,gNB 800与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于gNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图13所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与gNB 800使用的多个频带兼容。如图13所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图13示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示 例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图13中示出的gNB 800中,参考图2描述的处理电路203或参考图5描述的处理电路503中包括的一个或多个组件可被实现在无线通信接口825中。可替代地,这些组件中的至少一部分可被实现在控制器821中。例如,gNB 800包含无线通信接口825的一部分(例如,BB处理器826)或者整体,和/或包括控制器821的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 800中,并且无线通信接口825(例如,BB处理器826)和/或控制器821可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 800、基站装置820或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图13中示出的gNB 800中,参考图2描述的通信单元201或参考图5描述的通信单元501可被实现在无线通信接口825(例如,RF电路827)中。另外,通信单元201或通信单元501可被实现在控制器821和/或网络接口823中。
(第二应用示例)
图14是示出可以应用本公开的技术的控制设备侧电子设备的示意性配置的第二示例的框图。该控制侧电子设备可以是根据本公开的实施例的用于发射侧的电子设备200,也可以是根据本公开的实施例的用于接收侧的电子设备500。控制设备可以包括例如电子设备200或电子设备500以用于下行传输。其中,电子设备200或500被示出为gNB 830。gNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图14所示,gNB 830可以包括多个天线840。例如,多个天线840可以与gNB 830使用的多个频带兼容。图14示出其中gNB 830包括多个天线840的示例,这些天线840可以被用来实现本公开的实施例所述的多载波系统。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855 以及连接接口857。控制器851、存储器852和网络接口853与参照图13描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图13描述的BB处理器826相同。如图14所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与gNB 830使用的多个频带兼容。虽然图14示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图14所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图14示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图14中示出的gNB 830中,参考图2描述的处理电路203或参考图5描述的处理电路503中包括的一个或多个组件可被实现在无线通信接口855中。可替代地,这些组件中的至少一部分可被实现在控制器851中。例如,gNB 830包含无线通信接口855的一部分(例如,BB处理器856)或者整体,和/或包括控制器851的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 830中,并且无线通信接口855(例如,BB处 理器856)和/或控制器851可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 830、基站装置850或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图14中示出的gNB 830中,参考图2描述的通信单元201或者参考图5描述的通信单元501可被实现在无线通信接口855(例如,BB电路856)中。另外,通信单元201或通信单元501可被实现在控制器851和/或网络接口853中。
12-2.关于用户侧电子设备的应用示例
(第一应用示例)
图15是示出可以应用本公开的技术的智能电话900的示意性配置的示例的框图。智能电话900可以是根据本公开的实施例的用于发射侧的电子设备200,也可以是根据本公开的实施例的用于接收侧的电子设备500。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、f陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入设备909包括例如被配置为检测显示设备910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示设备910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。 BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图15所示,无线通信接口1512可以包括多个BB处理器1513和多个RF电路1514。虽然图15示出其中无线通信接口1512包括多个BB处理器1513和多个RF电路1514的示例,但是无线通信接口1512也可以包括单个BB处理器1513或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线阵元),并且用于无线通信接口912传送和接收无线信号。如图15所示,智能电话900可以包括多个天线916。虽然图15示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图15所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图15中示出的智能电话900中,参考图2或图5描述的处理电路203、503中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分可被实现在处理器901或者辅助控制器919中。作为一个示例,智能电话900包含无线通信接口912的一部分(例如,BB处理器913)或者整体,和/或包括处理器901和/或辅助控制器919的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之, 用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话900中,并且无线通信接口912(例如,BB处理器913)、处理器901和/或辅助控制器919可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话900或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图15中示出的智能电话900中,例如,参考图2或图5描述的通信单元201或501可被实现在无线通信接口912(例如,RF电路914)中。
(第二应用示例)
图16是示出可以应用本公开的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920可以是根据本公开的实施例的用于发射侧的电子设备200,也可以是根据本公开的实施例的用于接收侧的电子设备500。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入设备929、显示设备930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入设备929包括例如被配置为检测显示设备930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示设备930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。 BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图16所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图16示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图16所示,汽车导航设备920可以包括多个天线937。虽然图16示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图16所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图16中示出的汽车导航装置920中,参考图2或图5描述的处理电路203或503中包括的一个或多个组件可被实现在无线通信接口933中。可替代地,这些组件中的至少一部分可被实现在处理器921中。作为一个示例,汽车导航装置920包含无线通信接口933的一部分(例如,BB处理器934)或者整体,和/或包括处理器921的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置920中,并且无线通信接口933(例如,BB处理器934)和/或处理器921可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置920或者模块可被提供,并且用于允许处理器起 一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图16中示出的汽车导航装置920中,例如,参考图2或图5描述的通信单元201或501可被实现在无线通信接口933(例如,RF电路935)中。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
另外,将程序记录在其中的可读介质可被提供。因此,本公开还涉及一种计算机可读存储介质,上面存储有包括指令的程序,所述指令在由处理器例如处理电路或控制器等载入并执行时用于实施前述的通信方法。
本公开还至少公开了以下方案:
方案1、一种电子设备,其特征在于包括:
处理电路,被配置为:对第一一维调制符号序列进行预处理操作,所述预处理操作包括:对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程;以及传输所述第二一维调制符号序列。
方案2、如方案1所述的电子设备,其中,对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块包括:按顺序将所述第一一维调制符号序列逐列地填充到所述第一多维调制符号块中的对应列;或者按顺序将所述第一一维调制符号序列逐行地填充到所述第一多维调制符号块中的对应行。
方案3、如方案1-2之一所述的电子设备,其中,所述第一变换是可逆变换。
方案4、如方案3所述的电子设备,其中,所述第一变换是线性变换。
方案5、如方案4所述的电子设备,其中,所述第一变换是多维离散对偶傅里叶变换、多维离散余弦变换、或者多维小波变换当中的一种。
方案6、如方案5所述的电子设备,其中,所述第一多维调制符号块与所述第二多维调制符号块是第一二维调制符号块和第二二维调制符号块,并且所述第一变换包括以下两种方式之一:对所述第一二维调制符号块的每个行应用一维傅里叶变换以得到中间二维调制符号块,然后对所述中间二维调制符号块的每个列应用一维傅里叶逆 变换以得到所述第二二维调制符号块;或者,对所述第一二维调制符号块的每个列应用一维傅里叶逆变换以得到中间二维调制符号块,然后对所述中间二维调制符号块的每个行应用一维傅里叶变换以得到所述第二二维调制符号块。
方案7、如方案1-2之一所述的电子设备,其中,利用多载波系统来传输所述第二一维调制符号序列。
方案8、如方案7所述的电子设备,其中,所述多载波系统为OFDM系统,所述第一一维调制符号序列对应于计划在一个OFDM符号间隔内的多个子载波上传送的一组复调制符号,所述处理电路被配置为对所述第二一维调制符号序列进行OFDM调制以在一个OFDM符号间隔内完成该组复调制符号的无线电传输。
方案9、如方案1-2之一所述的电子设备,其中,所述处理电路还被配置为:在执行所述预处理操作之前,确定是否启用所述预处理操作。
方案10、如方案9所述的电子设备,其中,所述处理电路还被配置为:至少基于信道状况或应用场景来确定是否启用所述预处理操作。
方案11、如方案10所述的电子设备,其中,所述信道状况至少包括信道的多普勒效应的强度。
方案12、如方案11所述的电子设备,其中,所述应用场景包括高速列车通信、飞行器通信或卫星通信中的至少一个。
方案13、如方案9所述的电子设备,其中,所述处理电路还被配置为:传输指示信息,所述指示信息至少指示所述预处理操作是否被启用。
方案14、如方案13所述的电子设备,其中,所述指示信息还包括以下各项中的至少一项:所述第一多维调制符号块的维度参数;所述第一多维调制符号块的各维度的大小;以及所述第一变换的类型。
方案15、如方案13所述的电子设备,其中,所述指示信息被包括在下行链路控制信息DCI或者无线资源控制RRC消息中。
方案16、一种电子设备,其特征在于包括:处理电路,被配置为:获取第一一维调制符号序列;以及对第一一维调制符号序列进行后处理操作,所述后处理操作包括:对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程。
方案17、如方案16所述的电子设备,其中,所述第一一维调制符号序列是利用多载波系统传输的。
方案18、如方案17所述的电子设备,其中,所述多载波系统为OFDM系统,所述第一一维调制符号序列对应于在一个OFDM符号间隔内的多个子载波上接收到的一组复调制符号,所述处理电路被配置为对接收到的无线电信号进行OFDM解调以获取所述第一一维调制符号序列。
方案19、如方案16-17之一所述的电子设备,其中,所述处理电路还被配置为:在执行所述后处理操作之前,确定是否启用所述后处理操作。
方案20、如方案19所述的电子设备,其中,所述处理电路还被配置为:基于接收到的指示信息来确定是否启用所述后处理操作,所述指示信息至少包括与是否应当启用所述后处理操作有关的信息。
方案21、如方案20所述的电子设备,其中,所述处理电路还被配置为:从下行链路控制信息DCI或无线电资源控制RRC消息中获取所述指示信息。
方案22、如方案19所述的电子设备,其中,所述处理电路还被配置为:至少基于信道状况或应用场景,发送启用所述后处理操作的请求。
方案23、如方案16-17之一所述的电子设备,其中,所述处理电路还被配置为:对包含用于获取接收到的第一一维调制符号序列的预处理操作和所述后处理操作的等效传输信道进行均衡。
方案24、一种通信方法,其特征在于包括:对第一一维调制符号序列进行预处理操作,所述预处理操作包括:对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程;以及传输所述第二一维调制符号序列。
方案25、如方案24所述的通信方法,其中,所述第二一维调制符号序列是利用多载波系统传输的。
方案26、如方案25所述的通信方法,其中,所述多载波系统为OFDM系统,所述第一一维调制符号序列对应于计划在一个OFDM符号间隔内的多个子载波上传送的一组复调制符号,传输所述第二一维调制符号序列包括对所述第二一维调制符号序列进行OFDM调制以在一个OFDM符号间隔内完成该组复调制符号的无线电传输。
方案27、一种通信方法,其特征在于包括:获取第一一维调制符号序列;以及对第一一维调制符号序列进行后处理操作,所述后处理操作包括:对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程。
方案28、如方案27所述的通信方法,其中,所述第一一维调制符号序列是利用多载波系统传输的。
方案29、如方案28所述的通信方法,其中,所述多载波系统为OFDM系统,获取所述第一一维调制符号序列包括对接收到的无线电信号进行OFDM解调以获取所述第一一维调制符号序列,其中所述第一一维调制符号序列对应于在一个OFDM符号间隔内的多个子载波上接收到的一组复调制符号。
方案30、一种通信方法,其特征在于包括:对第一一维调制符号序列进行预处理操作,所述预处理操作包括:对所述第一一维调制符号序列进行第一升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行第一降维转换成为第二一维调制符号序列,其中所述第一降维转换是所述第一升维转换的逆过程;以及传输所述第二一维调制符号序列;获取所述第二一维调制符号序列;以及对所述第二一维调制符号序列进行后处理操作,所述后处理操作包括:对所述第二一维调制符号序列进行第二升维转换成为第三多维调制符号块;利用使得第三多维调制符号块中的各个符号彼此耦合的第二变换,将所述第三多维调制符号块变换为第四多维调制符号块;以及对所述第四多维调制符号块进行第二降维转换成为第三一维调制符号序列,其中所述第二降维转换是所述第二升维转换的逆过程。
方案31、一种计算机可读存储介质,上面存储有计算机程序,其特征在于,所述计算机程序在由处理器载入并执行时用于实施如方案24-30中任一项所述的方法。
虽然已详细描述了本公开的一些具体实施例,但是本领域技术人员应当理解,上述实施例仅是说明性的而不限制本公开的范围。本领域技术人员应该理解,上述实施例可以被组合、修改或替换而不脱离本公开的范围和实质。本公开的范围是通过所附的权利要求限定的。

Claims (31)

  1. 一种电子设备,其特征在于包括:
    处理电路,被配置为:
    对第一一维调制符号序列进行预处理操作,所述预处理操作包括:
    对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;
    利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及
    对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程;以及
    传输所述第二一维调制符号序列。
  2. 如权利要求1所述的电子设备,其中,对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块包括:
    按顺序将所述第一一维调制符号序列逐列地填充到所述第一多维调制符号块中的对应列;或者
    按顺序将所述第一一维调制符号序列逐行地填充到所述第一多维调制符号块中的对应行。
  3. 如权利要求1-2之一所述的电子设备,其中,所述第一变换是可逆变换。
  4. 如权利要求3所述的电子设备,其中,所述第一变换是线性变换。
  5. 如权利要求4所述的电子设备,其中,所述第一变换是多维离散对偶傅里叶变换、多维离散余弦变换、或者多维小波变换当中的一种。
  6. 如权利要求5所述的电子设备,其中,
    所述第一多维调制符号块与所述第二多维调制符号块是第一二维调制符号块和第二二维调制符号块,并且
    所述第一变换包括以下两种方式之一:
    对所述第一二维调制符号块的每个行应用一维傅里叶变换以得到中间二维调制符号块,然后对所述中间二维调制符号块的每个列应用一维傅里叶逆变换以得到所述第二二维调制符号块;或者
    对所述第一二维调制符号块的每个列应用一维傅里叶逆变换以得到中间二维调制符号块,然后对所述中间二维调制符号块的每个行应用一维傅里叶变换以得到所述第 二二维调制符号块。
  7. 如权利要求1-2之一所述的电子设备,其中,
    利用多载波系统来传输所述第二一维调制符号序列。
  8. 如权利要求7所述的电子设备,其中,所述多载波系统为OFDM系统,所述第一一维调制符号序列对应于计划在一个OFDM符号间隔内的多个子载波上传送的一组复调制符号,
    所述处理电路被配置为对所述第二一维调制符号序列进行OFDM调制以在一个OFDM符号间隔内完成该组复调制符号的无线电传输。
  9. 如权利要求1-2之一所述的电子设备,其中,所述处理电路还被配置为:
    在执行所述预处理操作之前,确定是否启用所述预处理操作。
  10. 如权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    至少基于信道状况或应用场景来确定是否启用所述预处理操作。
  11. 如权利要求10所述的电子设备,其中,所述信道状况至少包括信道的多普勒效应的强度。
  12. 如权利要求11所述的电子设备,其中,所述应用场景包括高速列车通信、飞行器通信或卫星通信中的至少一个。
  13. 如权利要求9所述的电子设备,其中,所述处理电路还被配置为:传输指示信息,所述指示信息至少指示所述预处理操作是否被启用。
  14. 如权利要求13所述的电子设备,其中,所述指示信息还包括以下各项中的至少一项:所述第一多维调制符号块的维度参数;所述第一多维调制符号块的各维度的大小;以及所述第一变换的类型。
  15. 如权利要求13所述的电子设备,其中,所述指示信息被包括在下行链路控制信息DCI或者无线资源控制RRC消息中。
  16. 一种电子设备,其特征在于包括:处理电路,被配置为:获取第一一维调制符号序列;以及对第一一维调制符号序列进行后处理操作,所述后处理操作包括:对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程。
  17. 如权利要求16所述的电子设备,其中,所述第一一维调制符号序列是利用多 载波系统传输的。
  18. 如权利要求17所述的电子设备,其中,所述多载波系统为OFDM系统,所述第一一维调制符号序列对应于在一个OFDM符号间隔内的多个子载波上接收到的一组复调制符号,所述处理电路被配置为对接收到的无线电信号进行OFDM解调以获取所述第一一维调制符号序列。
  19. 如权利要求16-17之一所述的电子设备,其中,所述处理电路还被配置为:在执行所述后处理操作之前,确定是否启用所述后处理操作。
  20. 如权利要求19所述的电子设备,其中,所述处理电路还被配置为:基于接收到的指示信息来确定是否启用所述后处理操作,所述指示信息至少包括与是否应当启用所述后处理操作有关的信息。
  21. 如权利要求20所述的电子设备,其中,所述处理电路还被配置为:从下行链路控制信息DCI或无线电资源控制RRC消息中获取所述指示信息。
  22. 如权利要求19所述的电子设备,其中,所述处理电路还被配置为:至少基于信道状况或应用场景,发送启用所述后处理操作的请求。
  23. 如权利要求16-17之一所述的电子设备,其中,所述处理电路还被配置为:对包含用于获取接收到的第一一维调制符号序列的预处理操作和所述后处理操作的等效传输信道进行均衡。
  24. 一种通信方法,其特征在于包括:对第一一维调制符号序列进行预处理操作,所述预处理操作包括:对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程;以及传输所述第二一维调制符号序列。
  25. 如权利要求24所述的通信方法,其中,所述第二一维调制符号序列是利用多载波系统传输的。
  26. 如权利要求25所述的通信方法,其中,所述多载波系统为OFDM系统,所述第一一维调制符号序列对应于计划在一个OFDM符号间隔内的多个子载波上传送的一组复调制符号,传输所述第二一维调制符号序列包括对所述第二一维调制符号序列进行OFDM调制以在一个OFDM符号间隔内完成该组复调制符号的无线电传输。
  27. 一种通信方法,其特征在于包括:获取第一一维调制符号序列;以及对第一 一维调制符号序列进行后处理操作,所述后处理操作包括:对所述第一一维调制符号序列进行升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行降维转换成为第二一维调制符号序列,其中所述降维转换是所述升维转换的逆过程。
  28. 如权利要求27所述的通信方法,其中,所述第一一维调制符号序列是利用多载波系统传输的。
  29. 如权利要求28所述的通信方法,其中,所述多载波系统为OFDM系统,获取所述第一一维调制符号序列包括对接收到的无线电信号进行OFDM解调以获取所述第一一维调制符号序列,其中所述第一一维调制符号序列对应于在一个OFDM符号间隔内的多个子载波上接收到的一组复调制符号。
  30. 一种通信方法,其特征在于包括:对第一一维调制符号序列进行预处理操作,所述预处理操作包括:对所述第一一维调制符号序列进行第一升维转换成为第一多维调制符号块;利用使得第一多维调制符号块中的各个符号彼此耦合的第一变换,将所述第一多维调制符号块变换为第二多维调制符号块;以及对所述第二多维调制符号块进行第一降维转换成为第二一维调制符号序列,其中所述第一降维转换是所述第一升维转换的逆过程;以及传输所述第二一维调制符号序列;获取所述第二一维调制符号序列;以及对所述第二一维调制符号序列进行后处理操作,所述后处理操作包括:对所述第二一维调制符号序列进行第二升维转换成为第三多维调制符号块;利用使得第三多维调制符号块中的各个符号彼此耦合的第二变换,将所述第三多维调制符号块变换为第四多维调制符号块;以及对所述第四多维调制符号块进行第二降维转换成为第三一维调制符号序列,其中所述第二降维转换是所述第二升维转换的逆过程。
  31. 一种计算机可读存储介质,上面存储有计算机程序,其特征在于,所述计算机程序在由处理器载入并执行时用于实施如权利要求24-30中任一项所述的方法。
PCT/CN2019/089801 2018-06-04 2019-06-03 电子设备和通信方法 WO2019233373A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980036241.2A CN112236984B (zh) 2018-06-04 2019-06-03 电子设备和通信方法
US17/054,513 US11190384B2 (en) 2018-06-04 2019-06-03 Electronic device and communication method
EP19815856.0A EP3793155A4 (en) 2018-06-04 2019-06-03 ELECTRONIC DEVICE AND COMMUNICATION PROCEDURE
US17/472,731 US11956112B2 (en) 2018-06-04 2021-09-13 Electronic device and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810563647.3 2018-06-04
CN201810563647.3A CN110557350A (zh) 2018-06-04 2018-06-04 电子设备和通信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/054,513 A-371-Of-International US11190384B2 (en) 2018-06-04 2019-06-03 Electronic device and communication method
US17/472,731 Continuation US11956112B2 (en) 2018-06-04 2021-09-13 Electronic device and communication method

Publications (1)

Publication Number Publication Date
WO2019233373A1 true WO2019233373A1 (zh) 2019-12-12

Family

ID=68735951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089801 WO2019233373A1 (zh) 2018-06-04 2019-06-03 电子设备和通信方法

Country Status (4)

Country Link
US (2) US11190384B2 (zh)
EP (1) EP3793155A4 (zh)
CN (2) CN110557350A (zh)
WO (1) WO2019233373A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079121B (zh) * 2020-07-10 2022-12-27 中维建通信技术服务有限公司 一种在无线通信中载波调制优先级判定系统
US11863256B2 (en) * 2021-12-02 2024-01-02 Southeast University Channel equalization-free single-carrier broadband transmission method and system
WO2023137652A1 (en) * 2022-01-20 2023-07-27 Qualcomm Incorporated Orthogonal time frequency space modulation for physical downlink control channel
CN116192575B (zh) * 2022-12-28 2023-09-29 中山大学 一种用于otfs-mimo分集复用的时域稀疏块lmmse信道均衡方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150327085A1 (en) * 2010-05-28 2015-11-12 Cohere Technologies, Inc. Otfs methods of data channel characterization and uses thereof
CN106716825A (zh) * 2014-07-21 2017-05-24 科希尔技术股份有限公司 操作和实施无线otfs通信系统的方法
CN107819709A (zh) * 2017-10-26 2018-03-20 成都信息工程大学 一种移动目标检测的方法及装置
CN107925446A (zh) * 2015-05-11 2018-04-17 凝聚技术股份有限公司 正交时间频率空间调制系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291642A1 (en) * 2001-09-05 2003-03-12 Linde Medical Sensors AG Sensor system comprising an integrated optical waveguide for the detection of chemical substances
US8385439B2 (en) * 2008-05-27 2013-02-26 Nec Laboratories America, Inc. Polarization mode dispersion compensation in multilevel coded-modulation schemes using blast algorithm and iterative polarization cancellation
JP2011013732A (ja) * 2009-06-30 2011-01-20 Sony Corp 情報処理装置、情報処理方法、およびプログラム
KR101829740B1 (ko) * 2010-01-18 2018-02-19 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 무선 기지국, 사용자 장비 및 그 방법들
CN102982805B (zh) * 2012-12-27 2014-11-19 北京理工大学 一种基于张量分解的多声道音频信号压缩方法
TWI538431B (zh) * 2014-09-02 2016-06-11 宏正自動科技股份有限公司 地面數位視訊廣播系統及其調變方法
KR20180030546A (ko) 2015-06-22 2018-03-23 코히어 테크널러지스, 아이엔씨. 심플렉틱 직교 시간 주파수 공간 변조 시스템
WO2017003952A1 (en) * 2015-06-27 2017-01-05 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with ofdm
CN109155772A (zh) * 2016-05-11 2019-01-04 Idac控股公司 码域非正交多址方案
US10736081B2 (en) * 2016-09-14 2020-08-04 Huawei Technologies Co., Ltd. Non-orthogonal multiple access transmission
CN106875326B (zh) * 2017-02-21 2020-02-07 湖南工业大学 一种在印刷图像中隐藏和提取音频防伪信号的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150327085A1 (en) * 2010-05-28 2015-11-12 Cohere Technologies, Inc. Otfs methods of data channel characterization and uses thereof
CN106716825A (zh) * 2014-07-21 2017-05-24 科希尔技术股份有限公司 操作和实施无线otfs通信系统的方法
CN107925446A (zh) * 2015-05-11 2018-04-17 凝聚技术股份有限公司 正交时间频率空间调制系统
CN107819709A (zh) * 2017-10-26 2018-03-20 成都信息工程大学 一种移动目标检测的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793155A4 *

Also Published As

Publication number Publication date
US11190384B2 (en) 2021-11-30
US20210194742A1 (en) 2021-06-24
US20210409252A1 (en) 2021-12-30
CN112236984A (zh) 2021-01-15
CN112236984B (zh) 2024-03-19
EP3793155A1 (en) 2021-03-17
US11956112B2 (en) 2024-04-09
CN110557350A (zh) 2019-12-10
EP3793155A4 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
US11012188B2 (en) Electronic device and communication method for non-orthogonal-resource based multiple access
WO2019233373A1 (zh) 电子设备和通信方法
CN106559162B (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
US11296909B2 (en) Apparatus and method for performing radio communication
WO2022228587A1 (zh) 用于无线通信的装置和方法
EP3429089A1 (en) Electronic device for communication device having multiple antennas and communication method
US20220109595A1 (en) Apparatus and method
CA3116927C (en) Control over multiple user multiple input multiple output (mu-mimo) by device type and location
US10505771B2 (en) Apparatus, method, and program
US11706072B2 (en) Apparatus and method for filtering a bit stream and providing guard bands
US10938608B2 (en) Apparatus and method
CN110537336B (zh) 无线通信方法和无线通信设备
WO2021196048A1 (zh) 一种数据传输方法及相关设备
EP4333529A1 (en) Multi-user communication method and related communication apparatus
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815856

Country of ref document: EP

Effective date: 20201210