WO2021196048A1 - 一种数据传输方法及相关设备 - Google Patents

一种数据传输方法及相关设备 Download PDF

Info

Publication number
WO2021196048A1
WO2021196048A1 PCT/CN2020/082632 CN2020082632W WO2021196048A1 WO 2021196048 A1 WO2021196048 A1 WO 2021196048A1 CN 2020082632 W CN2020082632 W CN 2020082632W WO 2021196048 A1 WO2021196048 A1 WO 2021196048A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
resource
preset time
sent
consecutive
Prior art date
Application number
PCT/CN2020/082632
Other languages
English (en)
French (fr)
Inventor
刘永
韩玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/082632 priority Critical patent/WO2021196048A1/zh
Priority to CN202080098224.4A priority patent/CN115244904A/zh
Publication of WO2021196048A1 publication Critical patent/WO2021196048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of communication technology, in particular to a data transmission method and related equipment.
  • Multi-input Multi-output (MIMO) technology can use multiple antennas at the transmitter and receiver to support up to 8-layer or even 12-layer data stream transmission .
  • MIMO Multi-input Multi-output
  • the prerequisite for the advantages of the MIMO technology is to be able to obtain the Channel State Information (CSI) of the multi-antenna system, and the acquisition of the CSI depends on the transmission and reliable estimation of the reference signal (Reference Signal, RS).
  • RS Reference Signal
  • DMRS Demodulation Reference Signal
  • PDSCH Physical Downlink Share Channel
  • the New Radio can support up to 12 ports of DMRS, and the number of resource elements (RE) occupied by the DMRS is 24 in one RB. It can be seen that with the increase of antenna dimensions and the number of transmission streams, its overhead will also increase exponentially, thereby affecting the improvement of the spectral efficiency of data transmission.
  • the embodiments of the present application provide a data transmission method and related equipment, which can adopt differential coding for data transmission, and avoid the influence of DMRS overhead on the improvement of spectrum efficiency.
  • the present application provides a data transmission method.
  • the sending end can perform differential encoding on the original data on at least two consecutive resources to obtain the data to be sent; and then the sending end maps the data to be sent on the Sent on at least two consecutive resources.
  • the data demodulation in this data transmission method does not need to rely on DMRS channel estimation, but is based on the differential data to be sent sent on continuous resources for data demodulation, which is beneficial to avoid high-dimensional MIMO systems because of the surge in overhead. The resulting problem of limited spectrum efficiency improvement.
  • the at least two contiguous resources may be at least two contiguous symbols, or at least two contiguous subcarriers, or at least two contiguous resource elements (resource elements, RE).
  • “continuous” can also be referred to as adjacent.
  • Continuous or adjacent may include continuous or adjacent on physical resources, and continuous or adjacent on virtual resources.
  • continuous resources include resources that are absolutely continuous on physical resources and also include resources that are not absolutely continuous on physical resources.
  • the sub-carriers corresponding to antenna port (port) 0 include the 1, 3, 5, 7, 9, and 11 sub-carriers
  • the sub-carriers corresponding to antenna port (port) 1 include the second, fourth, sixth, eighth, tenth, 12 subcarriers
  • at least two consecutive resources include the 1, 3, 5, 7, 9, and 11 subcarriers
  • the transmitter can sequentially operate on the 1, 3, 5, 7, 9, and 11 subcarriers
  • the original data is differentially encoded to obtain the data to be sent; for antenna port 1, at least two consecutive resources include the second, fourth, sixth, eighth, tenth, and twelfth subcarriers.
  • 8, 10, 12 sub-carriers are differentially coded to obtain the data to be sent.
  • the at least two continuous resources include a first resource and a second resource
  • the second resource is a resource continuous with the first resource
  • the data to be sent on the second resource uses the first resource.
  • the data to be sent on the resource is obtained by differentially encoding the original data on the second resource.
  • the second resource is a symbol that is continuous with the first resource, and the data to be sent on the second resource is used to pair the data to be sent on the first resource.
  • the original data on the second resource is obtained by differential encoding in the time domain;
  • the second resource is a subcarrier that is continuous with the first resource, and the data to be sent on the second resource is to use the data to be sent on the first resource Obtained by performing differential encoding in the frequency domain on the original data on the second resource;
  • the second resource is a resource unit that is continuous with the first resource
  • the resource unit corresponding to the second resource and the first resource may be continuous in the time domain, or may Continuous in the frequency domain
  • the data to be sent on the second resource is obtained by using the data to be sent on the first resource to perform differential coding on the original data on the second resource in the combined domain.
  • the at least two consecutive resources include one or more preset time-frequency resource blocks, and the data to be sent on the starting resource in the preset time-frequency resource block is the first reference data,
  • the first reference data is used to calculate data to be sent on a resource that is continuous with the starting resource.
  • the first reference data on the starting resource in each preset time-frequency resource block is also used to estimate phase rotation information between adjacent subcarriers.
  • the data to be sent on one or more preset resources in the preset time-frequency resource block is second reference data; the second reference data is used for estimating neighboring elements in combination with the first reference data.
  • Phase rotation information between carriers It can be seen that this implementation manner is beneficial for the receiving end to use the phase change information to detect data on the resource unit.
  • the time domain dimension of the preset time-frequency resource block is less than or equal to the coherence time. In an optional implementation manner, the frequency domain dimension of the preset time-frequency resource block is less than or equal to the coherence bandwidth. In an optional implementation manner, the preset time-frequency resource block includes one or more resource blocks RB. It can be seen that this implementation manner is beneficial to ensure that the system responses on the at least two consecutive resource units are the same, flat or time-invariant.
  • the sending end is a terminal device, and the sending end performs differential encoding on the original data on at least two consecutive resource units, and before obtaining the data to be sent, the method further includes: the sending The terminal receives constellation modulation parameters, where the constellation modulation parameters include the number of transmitting terminals, the modulation order, and the index of the transmitting terminal; the transmitting terminal modulates the information bits to be sent according to the constellation modulation parameters to obtain the original to be transmitted data. It can be seen that this implementation manner can achieve modulation of information bits by differentiating constellation modulation modes of different terminal devices for a multi-user scenario, thereby helping to improve the reliability of information detected by network devices.
  • the sending end is a network device, and before the sending end maps the data to be sent on the at least two consecutive resource units respectively before sending, the method further includes: the sending end The joint constellation diagram is determined according to the number of receiving ends; the transmitting end modulates the information bits to be sent to each receiving end according to the joint constellation diagram to obtain the original data to be sent. It can be seen that this implementation manner can adopt joint constellation transmission for multi-user scenarios, which is beneficial to improve the reliability of detection information of each terminal device.
  • the location and density of the mapping of the first reference data on the at least two consecutive resources are predefined or configured by signaling; or, the location and density of the mapping of the first reference data on the at least two consecutive resources
  • the size and location of the preset time-frequency resource block are predefined or configured by signaling, that is, the size and location of the preset time-frequency resource block in at least two consecutive resources are configured to determine the mapping of the first reference data Location and density.
  • the location and density of the reference data are configured in units of preset time-frequency resource blocks.
  • the at least two consecutive resources may include one or more preset time-frequency resource blocks, and each preset time-frequency resource block The location and density of the reference data can be the same or different.
  • the number and location of the reference data in the at least two consecutive resources can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the number and positions of the preset time-frequency resource blocks in at least two consecutive resources can be configured through signaling, or standard agreement, or different types of signaling instructions; and each preset time-frequency resource block
  • the number and location of the reference data can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the "number and position" described herein can also be replaced with "density and position".
  • the location and density of the mapping of the second reference data on the at least two consecutive resources are predefined or configured by signaling; or, in the preset time-frequency resource block
  • the size and location of the preset resource are predefined or configured by signaling, or the number and location of the preset resource in the preset time-frequency resource block are predefined or configured by signaling.
  • this application also provides a data transmission method, which is explained from the perspective of a receiving end, and the receiving end may be a network device or a terminal device.
  • the receiving end receives data on at least two consecutive resources; the receiving end performs differential decoding on the data received on the at least two consecutive resources, respectively, to obtain the original data on the at least two consecutive resources.
  • the at least two consecutive resources may be two consecutive symbols, or two consecutive subcarriers, or two consecutive resource elements (RE).
  • continuous can also be referred to as adjacent.
  • Continuous or adjacent may include continuous or adjacent on physical resources, and continuous or adjacent on virtual resources.
  • continuous resources include resources that are absolutely continuous on physical resources and also include resources that are not absolutely continuous on physical resources.
  • the sub-carriers corresponding to antenna port (port) 0 include the 1, 3, 5, 7, 9, and 11 sub-carriers
  • the sub-carriers corresponding to antenna port (port) 1 include the second, fourth, sixth, eighth, tenth, 12 subcarriers
  • at least two consecutive resources include the 1, 3, 5, 7, 9, and 11 subcarriers
  • the receiving end can sequentially operate on the 1, 3, 5, 7, 9, and 11 subcarriers
  • the received data is differentially decoded to obtain the original data; for antenna port 1, at least two consecutive resources include the second, fourth, sixth, eighth, tenth, and twelfth subcarriers.
  • the data received on the 10, 12 sub-carriers are differentially decoded to obtain the original data.
  • the at least two continuous resources include a first resource and a second resource, and the second resource is a resource continuous with the first resource; the original data on the second resource Is obtained by using the data received on the first resource to perform differential decoding on the data received on the second resource.
  • the second resource is a symbol that is continuous with the first resource, and the original data on the second resource is used to compare the data received on the first resource to the first resource.
  • the data received on the resource is obtained by differential decoding in the time domain.
  • the second resource is a subcarrier that is continuous with the first resource, and the original data on the second resource is used to compare data received on the first resource.
  • the data received on the second resource is obtained by performing differential decoding in the frequency domain.
  • the second resource is a resource unit that is continuous with the first resource
  • the resource unit corresponding to the second resource and the first resource may be continuous in the time domain, or may Continuous in the frequency domain
  • the original data on the second resource is obtained by using the data received on the first resource to perform differential decoding on the data received by the second resource in the combined domain.
  • the at least two consecutive resources include one or more preset time-frequency resource blocks, and the data received on the starting resource in the preset time-frequency resource block is the first reference received data
  • the first reference received data is used to perform differential decoding on data received on a resource that is continuous with the initial resource.
  • the size and position of the preset time-frequency resource block in the at least two consecutive resources are configured to determine the position and density of the first reference data mapping.
  • the location and density of the reference data are explained in units of preset time-frequency resource blocks.
  • at least two consecutive resources may include one or more preset time-frequency resource blocks. The location and density of the inter-reference data may be the same or different.
  • the data received on one or more preset resources in the preset time-frequency resource block is second reference received data; the second reference data is used in combination with the first reference
  • the received data estimates the phase rotation information between two consecutive subcarriers.
  • the time domain dimension of the preset time-frequency resource block is less than or equal to the coherence time. In an optional implementation manner, the frequency domain dimension of the preset time-frequency resource block is less than or equal to the coherence bandwidth. In an optional implementation manner, the preset time-frequency resource block includes one or more resource blocks RB. It can be seen that this implementation manner is beneficial to ensure that the system responses on at least two consecutive resource units are the same and time-invariant.
  • the receiving end is a terminal device, and the method further includes: the receiving end receives constellation modulation parameters, where the constellation modulation parameters include the number of receiving ends, the modulation order, and the receiving end index Number; The receiving end demodulates the original data on the at least two consecutive resource units according to the constellation modulation parameters to obtain information bits. It can be seen that this implementation manner can achieve data demodulation by differentiating the constellation modulation modes of different terminal devices for a multi-user scenario, thereby helping to improve the reliability of the detection information of each terminal device.
  • the receiving end is a network device, and the method further includes: the receiving end determines a joint constellation diagram according to the number of transmitting ends; The original data on at least two consecutive resource units are demodulated to obtain information bits sent by each sending end. It can be seen that this implementation manner can achieve data demodulation by differentiating constellation modulation methods for different numbers of terminal devices in a multi-user scenario, thereby helping to improve the reliability of information detection.
  • the first reference received data received on the starting resource in each preset time-frequency resource block is also used to estimate phase rotation information between two consecutive subcarriers.
  • the position and density of the first reference received data in the at least two consecutive resources are predefined or configured by signaling; or, the location and density of the first reference received data in the at least two consecutive resources.
  • the size and location of the preset time-frequency resource block are predefined or configured by signaling, that is, the size and location of the preset time-frequency resource block in at least two consecutive resources are configured to determine the mapping of the first reference data Location and density.
  • the location and density of the reference data are explained in units of preset time-frequency resource blocks.
  • at least two consecutive resources may include one or more preset time-frequency resource blocks.
  • the location and density of the inter-reference data may be the same or different.
  • the position and density of the second reference data on the at least two consecutive resources are predefined or configured by signaling; or, in the preset time-frequency resource block
  • the size and location of the preset resource are predefined or configured by signaling.
  • this application also provides a data transmission method, using a terminal device as a transmitting end, and the terminal device can receive constellation modulation parameters, the constellation modulation parameters including the number of receiving ends, modulation order, and receiving end index number; terminal; The device modulates the information bits on the at least two consecutive resources according to the constellation modulation parameter to obtain the original data to be sent.
  • this application also provides a data transmission method, using a network device as a receiving end, and the network device determines a joint constellation diagram according to the number of terminal devices; The received data is demodulated to obtain the information bits sent by each terminal device.
  • each terminal device can implement constellation modulation with equal power or equal error assumptions according to the following formula:
  • the index u and the modulation order corresponding to the terminal device may be allocated by the network device or system, for example, the terminal device is notified by means of signaling instructions.
  • the network device can obtain the joint constellation diagram according to the constellation diagram determined by each terminal device according to the formula (46) to receive the data sent by each terminal device.
  • the data transmission methods described in the third and fourth aspects can be targeted at multi-user scenarios, taking into account the differential detection scheme of multi-user scenarios, and the combined constellation design scheme ensures that the receiving end can reliably perform data sent by each terminal device. Detection.
  • the constellation modulation method for multi-user scenarios can also be combined with the data transmission method based on differential encoding and differential decoding described in the above embodiments to perform data transmission.
  • this application also provides a data transmission device that has some or all of the functions of the sending end in the method example described in the first aspect or the third aspect.
  • the function of the data transmission device may have Some or all of the functions in the embodiments of the sending end in this application may also have the function of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the data transmission device may include a processing unit and a communication unit, and the processing unit is configured to support the data transmission device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the data transmission device and other devices.
  • the data transmission device may further include a storage unit, the storage unit is configured to be coupled with the processing unit and the sending unit, and stores the program instructions and data necessary for the data transmission device.
  • the data transmission device includes:
  • a processing unit configured to perform differential encoding on the original data on at least two consecutive resources to obtain the data to be sent;
  • the communication unit is configured to map the to-be-sent data on the at least two consecutive resources respectively for transmission.
  • the data transmission device includes:
  • the communication unit is configured to receive constellation modulation parameters, where the constellation modulation parameters include the number of receiving ends, modulation order, and receiving end index number;
  • the processing unit is configured to modulate the information bits on the at least two consecutive resources according to the constellation modulation parameter to obtain the original data to be sent.
  • this embodiment considers a differential detection method in a multi-user scenario, and its combined constellation design method is beneficial to ensure that the receiving end reliably detects the data sent by each terminal device.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the data transmission device includes:
  • a processor configured to perform differential encoding on the original data on at least two consecutive resources to obtain the data to be sent;
  • the transceiver is configured to map the to-be-sent data on the at least two consecutive resources for transmission respectively.
  • the data transmission device includes:
  • a transceiver configured to receive constellation modulation parameters, where the constellation modulation parameters include the number of receiving ends, the modulation order, and the receiving end index;
  • the processor is configured to modulate the information bits on the at least two consecutive resources according to the constellation modulation parameter to obtain original data to be sent.
  • this application also provides a data transmission device that has some or all of the functions of the receiving end in the method example described in the second aspect or the fourth aspect, for example, the function of the data transmission device may have Some or all of the functions in the embodiments of the receiving end in this application may also have the function of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the data transmission device may include a processing unit and a communication unit, and the processing unit is configured to support the data transmission device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the data transmission device and other devices.
  • the data transmission device may further include a storage unit, the storage unit is configured to be coupled with the processing unit and the sending unit, and stores the program instructions and data necessary for the data transmission device.
  • the data transmission device includes:
  • a processing unit for receiving data on at least two consecutive resources
  • the communication unit is configured to perform differential decoding on the data received on the at least two consecutive resources to obtain the original data on the at least two consecutive resources.
  • the data transmission device includes:
  • a processing unit configured to determine a joint constellation diagram according to the number of terminal devices
  • the processing unit is further configured to demodulate the data received on the at least two consecutive resources according to the joint constellation diagram to obtain information bits sent by each terminal device.
  • this embodiment considers a differential detection method in a multi-user scenario, and its combined constellation design method is beneficial to ensure that the receiving end reliably detects the data sent by each terminal device.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the data transmission device includes:
  • a transceiver for receiving data on at least two consecutive resources
  • the processor is configured to perform differential decoding on the data received on the at least two consecutive resources, respectively, to obtain the original data on the at least two consecutive resources.
  • the data transmission device includes:
  • the processor is used to determine the joint constellation diagram according to the number of terminal devices
  • the processor is further configured to demodulate the data received on the at least two consecutive resources according to the joint constellation diagram to obtain information bits sent by each terminal device.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or fully arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system on chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiment of the present invention does not limit the specific implementation form of the foregoing device.
  • the present application also provides a processor configured to execute various methods in one of the foregoing first to fourth aspects.
  • the processes of sending the above information and receiving the above information in the above methods can be understood as the process of outputting the above information by the processor and the process of receiving the input information of the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending, and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor dedicated to executing these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM read only memory
  • the present invention The embodiment does not limit the type of the memory and the setting mode of the memory and the processor.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the above-mentioned data transmission device, which includes instructions for executing the first or third aspects of the above-mentioned method. program.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the above-mentioned data transmission device. program.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or the third aspect.
  • this application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the second or fourth aspect above.
  • this application provides a chip system that includes a processor and an interface, and is used to support the data transmission device to implement the functions involved in the first or third aspect, for example, to determine or process At least one of the data and information involved.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data at the sending end.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support the data transmission device to implement the functions involved in the second or fourth aspect, for example, determining or processing in the above method At least one of the data and information involved.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data at the receiving end.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a communication system includes: the above-mentioned devices.
  • the communication system includes: two data transmission devices, one of the data transmission devices executes the method described in the first aspect or the optional implementation of the first aspect, and the other data transmission device executes the second aspect or the first aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of a comparison of performance loss in a high-mobility scenario provided by an embodiment of the present application
  • FIG. 2b is a schematic diagram of a performance loss comparison in a high-latency scenario provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a data processing process provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of differential encoding and differential decoding in the time domain in a time-frequency resource provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of differential encoding and differential decoding in the frequency domain in a time-frequency resource provided by an embodiment of the present application;
  • Fig. 7 is a schematic diagram of differential encoding and differential decoding in the frequency domain in multiple preset time-frequency resource blocks according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of differential encoding and differential decoding in the frequency domain in another multiple preset time-frequency resource block provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of differential encoding and differential decoding based on multiple reference data in a preset time-frequency resource block provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of differential encoding and differential decoding based on multiple reference data in another preset time-frequency resource block provided by an embodiment of the present application;
  • FIG. 11 is a schematic diagram of differential encoding and differential decoding based on multiple reference data in yet another preset time-frequency resource block provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of differential encoding and differential decoding based on multiple reference data in a multiple preset time-frequency resource block provided by an embodiment of the present application;
  • FIG. 13 is a schematic diagram of differential coding and differential decoding in a combined domain in a time-frequency resource provided by an embodiment of the present application;
  • FIG. 14 is a schematic diagram of differential encoding and differential decoding of a combined domain in multiple preset time-frequency resource blocks according to an embodiment of the present application
  • FIG. 15 is a schematic diagram of differential encoding and differential decoding of the combined domain in another multiple preset time-frequency resource block provided by an embodiment of the present application;
  • 16 is a schematic diagram of differential encoding and differential decoding in a combined domain based on multiple reference data in a multiple preset time-frequency resource block provided by an embodiment of the present application;
  • FIG. 17 is a schematic diagram of a constellation of the terminal device 102 provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a constellation of the terminal device 103 provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a joint constellation of network equipment provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a joint constellation of three terminal devices provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a joint constellation of four terminal devices provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a data transmission method in a multi-user scenario provided by an embodiment of the present application.
  • FIG. 23 is another schematic diagram of performance loss comparison provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the embodiments of the present application provide a data transmission method and related equipment, which can use differential coding for data transmission, and avoid excessive DMRS overhead that limits the improvement of spectrum efficiency.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a network device and at least one terminal device.
  • FIG. 1 takes the communication system including a network device 101, a terminal device 102, and a terminal device 103 as an example.
  • the embodiments of the present application can be applied to independent networking, that is, new base stations, backhaul links, and core networks deployed in future networks, and can also be applied to various communication systems such as non-independent networking.
  • the embodiments of this application can be used in the fifth generation (5th generation, 5G) system, and can also be referred to as the new radio (NR) system, or the sixth generation (6th generation, 6G) system or other future communication systems Or it can also be used in device-to-device (D2D) systems, machine-to-machine (M2M) systems, long term evolution (LTE) systems, and so on.
  • 5G fifth generation
  • 6G sixth generation
  • D2D device-to-device
  • M2M machine-to-machine
  • LTE long term evolution
  • the network device may be a device with a wireless transceiver function or a chip that can be installed in the device.
  • the network device includes but is not limited to: evolved node B (eNB), radio network controller ( radio network controller (RNC), node B (Node B, NB), network equipment controller (base station controller, BSC), network equipment transceiver station (BTS), home network equipment (for example, home evolved Node B) , Or home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, wireless fidelity (WIFI) system, Transmission and reception point (TRP or transmission point, TP), etc.; it can also be equipment used in 5G, 6G or even 7G systems, such as gNB in NR systems, or transmission points (TRP or TP), in 5G systems
  • terminal equipment may include but is not limited to: user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , User agent or user device, etc.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control Wireless terminals in (industrial control), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety
  • Multi-input and multi-output as a multi-antenna system with a larger dimension, utilizes space-dimensional resources without increasing system bandwidth.
  • the signal can obtain array gain, multiplexing and diversity gain, and interference cancellation gain in space, thereby multiplying the capacity and spectrum efficiency of the communication system.
  • LTE Long Term Evolution
  • the system can use multiple antennas at the sender and receiver to support up to 8 layers of data transmission.
  • the antenna dimension can be supported to 1024 or even higher, and the number of orthogonal data streams has also been increased from 8 to 12.
  • CSI Channel State Information
  • the accurate acquisition of CSI mainly depends on the transmission and reliable estimation of Reference Signal (RS).
  • RS Reference Signal
  • the reference signal is distributed on different resource elements (Resource Elements, RE) in a two-dimensional time-frequency space, and has a known amplitude and phase.
  • each transmission antenna virtual antenna or physical antenna
  • the receiver Based on a known reference signal, the receiver performs channel estimation for each transmission antenna, and restores the transmission data based on this.
  • Channel estimation is the process of reconstructing the received signal in order to compensate for channel fading and noise.
  • the system uses the reference signal known by the transmitter and receiver to track the time domain and frequency domain changes of the channel.
  • the system defines a demodulation reference signal (Demodulation Reference Signal, DMRS), where the DMRS is used for the demodulation of a physical downlink shared channel (Physical Downlink Share Channel, PDSCH).
  • DMRS Demodulation Reference Signal
  • PDSCH Physical Downlink Share Channel
  • the data transmission method is a non-coherent transmission method based on differential coding.
  • This data transmission method can be applied to both uplink transmission and downlink transmission. That is to say, the sending end described in this article can be a terminal device or a network device, and the receiving end can be a network device or a network device. Terminal Equipment.
  • the symbol error rate based on DMRS channel estimation is greater than that of non-DMRS based channels
  • the estimated symbol error rate that is, the data demodulation performance based on the DMRS channel estimation, has a greater loss than the data demodulation performance based on the non-DMRS channel estimation described in the embodiment of the present application.
  • Figure 3 is a schematic diagram of a data processing process provided by an embodiment of the present application.
  • the sender needs to perform serial-to-parallel conversion (S-to-parallel conversion) on the data to be sent.
  • -P N-Point Discrete Fourier Transform
  • N-Point Discrete Fourier Transform N-Point DFT
  • subcarrier mapping subcarrier mapping
  • M-Point Inverse Discrete Fourier Transform M-Point Inverse Discrete Fourier Transform
  • P-to-S parallel-to-serial conversion
  • adding cyclic prefix Cyclic Prefix, CP
  • digital-to-analog conversion digital to analog converter, DAC
  • the data after the discrete Fourier transform is called the original data on the resource unit, denoted as Among them, m represents the symbol corresponding to the resource unit, and k represents the subcarrier corresponding to the resource unit.
  • the sending end may perform subcarrier mapping processing on the original data Perform differential encoding, and obtain the data to be sent as The sender can use the data The mapping is sent on the corresponding symbols and sub-carriers.
  • the sender can Perform IDFT, P-to-S, add CP and DAC and other processing to obtain radio frequency signals for transmission.
  • the receiving end after the receiving end performs ADC and CP removal processing on the received data, the data received on the resource unit can be obtained as Furthermore, in the subcarrier demapping process, the receiving end performs data Perform differential decoding to obtain the original data
  • FIG. 4 is a schematic flowchart of a data transmission method provided by an embodiment of the present application. Based on the data processing process shown in FIG. 3, as shown in FIG. 4, the data transmission method may include the following steps:
  • the sending end performs differential encoding on the original data on at least two consecutive resources to obtain the data to be sent;
  • the sending end maps the to-be-sent data on the at least two consecutive resources respectively for sending.
  • the receiving end receives data on at least two consecutive resources.
  • the receiving end performs differential decoding on the data received on the at least two consecutive resources, respectively, to obtain original data on the at least two consecutive resources.
  • the embodiment of the present application uses differential encoding and differential decoding to obtain data on the at least two consecutive resources, thereby avoiding the problem of spectral efficiency improvement caused by relying on DMRS channel estimation for data demodulation, and is beneficial to further improving the system spectral efficiency. .
  • the reliability of data demodulation can also be guaranteed.
  • the at least two consecutive resources are at least two consecutive symbols, or at least two consecutive subcarriers, or at least two consecutive resource units. That is, the resource can be one symbol, or one subcarrier, or one resource unit RE.
  • the at least two continuous resources include a first resource and a second resource, the second resource is a resource continuous with the first resource; the data to be sent on the second resource, It is obtained by using the data to be sent on the first resource to perform differential encoding on the original data on the second resource.
  • the original data on the second resource is obtained by using the data received on the first resource to perform differential decoding on the data received on the second resource.
  • the at least two continuous resources include one or more preset time-frequency resource blocks, or the bandwidth in which the at least two continuous resources are located includes one or more preset time-frequency resource blocks.
  • the original data on each resource is sequentially differentially coded.
  • the first reference data needs to be used for the first differential encoding in the preset time-frequency resource block. That is to say, the data to be sent on the starting resource in the preset time-frequency resource block is the first reference data, and the first reference data is used to perform processing on the original data on the resource that is continuous with the starting resource. Differential coding.
  • the preset time-frequency resource block is a resource block (resource block, RB)
  • the first subcarrier in the RB can be mapped and sent first reference data
  • the to-be-sent data on the second subcarrier uses the second subcarrier.
  • a reference data is obtained by differentially encoding the original data on the second subcarrier; furthermore, using the data to be sent on the second subcarrier to calculate the data to be sent on the third subcarrier, ... until the 12th subcarrier is obtained The data to be sent on.
  • the first reference data does not carry information, but is used to participate in the first differential encoding to sequentially obtain the data to be sent on continuous resources.
  • the original data on the second resource is obtained by using the data received on the first resource to perform differential decoding on the data received on the second resource.
  • the data received on the initial resource in the preset time-frequency resource block is first reference received data, and the first reference received data is used to differentially decode data received on a resource that is continuous with the initial resource, and That is, the first reference received data is used for the first differential decoding at the receiving end.
  • the first reference data sent on the first sub-carrier in the RB is transmitted through the channel.
  • the receiving end it is the first reference received data, and the receiving end can receive the data according to the first reference.
  • the resource mapped by the first reference data may be a start symbol, a start subcarrier, or a start resource in a preset time-frequency resource block, so as to perform differential encoding and differential decoding in the time domain, or perform the frequency domain
  • differential encoding and differential decoding on the above, or for differential encoding and differential decoding on the combined domain please refer to the following detailed examples for details.
  • the time domain dimension of the preset time-frequency resource block is less than or equal to the coherence time.
  • the frequency domain dimension of the preset time-frequency resource block is less than or equal to the coherence bandwidth.
  • the preset time-frequency resource block includes one or more resource blocks RB. Since the system responses on the preset time-frequency resource blocks are similar or the same, this implementation manner helps ensure the reliability of data demodulation.
  • the resource mapped by the first reference data is a start symbol in a preset time-frequency resource block, and the location and density of the first reference data mapping are all resource units corresponding to the start symbol in the preset time-frequency resource block.
  • the resource mapped by the first reference data is the start subcarrier in the preset time-frequency resource block, that is, the location and density of the first reference data mapping are the start subcarrier in the preset time-frequency resource block The corresponding resource units.
  • the resource mapped by the first reference data is the start resource unit in the preset time-frequency resource block, that is, the location and density of the first reference data mapping are the start resource in the preset time-frequency resource block unit.
  • the location and density of the first reference data mapping are not limited to the above-mentioned conditions, and may be predefined or configured by signaling.
  • one or more preset resources in the preset time-frequency resource block are used to map second reference data, and the second reference data is used to estimate the distance between two consecutive subcarriers.
  • the phase rotation information is beneficial to adjust the phase of the data received on each resource.
  • the resources mapped by the second reference data may be preset symbols, preset subcarriers, and preset resources in a preset time-frequency resource block.
  • the resource mapped by the second reference data may be adjacent to the resource mapped by the first reference data or separated by a preset number of symbols or subcarriers or resource units.
  • the first resource and the second resource are two consecutive symbols in the time domain, and the aforementioned differential encoding and differential decoding may be differential encoding in the time domain and differential decoding in the time domain.
  • the first resource and the second resource are two consecutive subcarriers in the frequency domain, and the above-mentioned differential encoding and differential decoding may be differential encoding in the frequency domain or differential encoding in the frequency domain. decoding.
  • the first resource and the second resource may be two consecutive resource units in the time domain and two consecutive resource units in the frequency domain, and the differential encoding and differential decoding may be combined domains.
  • Differential encoding and differential decoding in the combined domain that is, the preset time-frequency resource block includes differential encoding and differential decoding in the time domain, as well as differential encoding and differential decoding in the frequency domain.
  • the following further describes the embodiments of the present application from the perspective of the three optional implementation manners.
  • the sending end may perform differential encoding on the original data on the at least two consecutive symbols to obtain the data to be sent; and then map the data to be sent on the at least two consecutive symbols for transmission.
  • the receiving end receives data on at least two consecutive symbols; performs differential decoding on the data on the at least two consecutive symbols to obtain the original data on the at least two consecutive symbols.
  • the minimum resource granularity in the time domain is one symbol
  • the minimum resource granularity in the frequency domain is one subcarrier.
  • the resource unit can be denoted as RE(m, k)
  • m means that the symbol corresponding to the resource unit is the mth symbol
  • k Indicates that the subcarrier corresponding to the resource unit is the kth subcarrier.
  • the first resource is the m-1th symbol
  • RE(m-1,k) represents the m-1th symbol
  • the resource unit corresponding to the kth subcarrier that is, RE(m-1,k) is the first An RE in the resource
  • the second resource is the m-th symbol
  • RE(m, k) is an RE in the second resource
  • the original data on RE(m, k) is The data to be sent on RE(m-1, k) is Then, the data to be sent on RE(m,k) for:
  • the data to be sent on the second resource is obtained by using the data to be sent on the first resource to perform differential encoding on the original data on the second resource, which may be:
  • K may be the order of a subcarrier with the largest frequency in the preset time-frequency resource block.
  • the first reference data is denoted as The first reference data can be mapped on the first symbol in the preset time-frequency resource block to participate in the first differential encoding to sequentially obtain the data to be sent on consecutive symbols. Then, the preset time-frequency resource block
  • formulas (1)(2) indicate that for any two consecutive REs corresponding to the symbols, the data to be sent on the RE that is later in the time domain is based on the data to be sent on the RE that is earlier in the time domain. Obtained by differential modulation.
  • the data received by the receiving end on at least two consecutive symbols may include: the data received on the resource unit (m-1, k) Received on resource unit (m, k) Furthermore, the receiving end uses right Perform differential decoding to obtain the original data on the resource unit (m, k). Specifically, the receiving end can use right Perform differential decoding to obtain the decision factor on the resource unit (m, k)
  • V is the number of antennas at the receiving end
  • t represents differential decoding in the time domain.
  • the formula (7) can express: for any consecutive or adjacent symbols corresponding to the RE, the data received on the RE that is later in the time domain and the data received on the RE that is earlier in the time domain are differentially decoded to obtain a decision factor.
  • the receiving end can be based on the decision factor Obtain the original data of the resource unit (m, k) It can be calculated using the following formula:
  • the original data on the second resource Is obtained by using the data received on the first resource to perform differential decoding on the data received on the second resource, which may be:
  • the first reference received data is denoted as The first reference received data is the data received on the first symbol in the preset time-frequency resource block, which is used to participate in the first differential decoding to sequentially obtain the original data on consecutive symbols, then the preset time-frequency resource
  • the original data on the RE that is later in the time domain is obtained by differential modulation based on the data received on the RE that is earlier in the time domain.
  • the position and density of the first reference data in the preset time-frequency resource block are as shown in FIG. 5, which may be the start symbol.
  • the first reference received data is received by the receiving end after the first reference data is transmitted through the channel, so the position and density of the first reference received data are also shown in FIG. 5.
  • the preset time-frequency resource block may be less than or equal to the time-frequency resource block corresponding to the coherence time or the time-frequency resource block corresponding to one RB. For example, if the preset time-frequency resource block is equal to one RB, then M is equal to 14 and K is equal to 12 in the above formula.
  • the preset time-frequency resource block may also be referred to as the time interval of the first reference data mapping, or the time interval range or time interval between two symbols mapped by the first reference data.
  • the time interval range may be 14 symbols occupied by one resource block RB.
  • the preset time-frequency resource block or the time interval of the first reference data mapping can be determined in an explicit or implicit manner. That is, the location and density of the first reference data mapped in the time domain may be explicitly or implicitly indicated, predefined, or configured by signaling.
  • the transmitting end may perform differential encoding on the original data on at least two consecutive subcarriers to obtain the data to be sent; and then map the data to be sent on the at least two consecutive subcarriers for transmission.
  • the receiving end receives data on at least two consecutive sub-carriers; differentially decodes the data on the at least two consecutive sub-carriers to obtain the original data on the at least two consecutive sub-carriers.
  • the first resource is the k-1th subcarrier
  • RE(m,k-1) represents the mth symbol
  • the resource unit corresponding to the k-1th subcarrier that is, RE(m,k-1) is the first An RE in the resource
  • the second resource is the k-th subcarrier
  • RE(m, k) is an RE in the second resource
  • the original data on RE(m, k) is The data to be sent on RE(m, k-1) is Then, the data to be sent on RE(m,k) for:
  • the data to be sent on the second resource is obtained by using the data to be sent on the first resource to perform differential encoding on the original data on the second resource, which may be:
  • M may be the sequence of the last symbol in the time domain in the preset time-frequency resource block.
  • formulas (16) and (17) indicate that for any two consecutive sub-carriers corresponding to the REs, the data to be sent on the RE with the higher frequency is based on the difference between the data to be sent on the RE with the lower frequency. Modulated.
  • the data received by the receiving end on at least two consecutive subcarriers may include: the data received on the resource unit (m, k-1) Received on resource unit (m, k) Furthermore, the receiving end uses right Perform differential decoding to obtain the original data on the resource unit (m, k).
  • the receiving end can use right Perform differential decoding to obtain the decision factor on the resource unit (m, k)
  • V is the number of antennas at the receiving end, and f represents differential detection in the frequency domain.
  • the formula (21) can indicate that, between the REs corresponding to any consecutive or adjacent subcarriers, the data received on the RE with a higher frequency and the data received on the RE with a lower frequency are differentially decoded to obtain a decision factor.
  • the receiving end can obtain the original data of the resource unit (m, k) based on the decision factor
  • the raw data of the resource unit (m, k) It can be calculated using the following formula:
  • ⁇ f represents the frequency domain correlation between two consecutive sub-carriers
  • exp(j ⁇ f ) represents the phase rotation information or phase change information between two consecutive sub-carriers, where phase estimation is not performed
  • RE real error
  • PE phase evaluation
  • the exp(j ⁇ f ) can be based on the first reference data or the second reference Data acquisition
  • d represents the transmit power of the transmitter.
  • the original data on the second resource Is obtained by using the data received on the first resource to perform differential decoding on the data received on the second resource, which may be:
  • the first reference received data is denoted as That is, the first reference received data is the data received on the first subcarrier in the preset time-frequency resource block, which is used to participate in the first differential decoding to sequentially obtain the original data on consecutive subcarriers.
  • the original data on the RE with a higher frequency is obtained by differential modulation based on the data received on the RE with a lower frequency.
  • the position and density of the first reference data in the preset time-frequency resource block are as shown in FIG. 6, and may be the starting subcarrier (that is, the first subcarrier).
  • the first reference received data is received by the receiving end after the first reference data is transmitted through the channel, so the position and density of the first reference received data are also shown in FIG. 6.
  • the frequency domain dimension of the preset time-frequency resource block may be less than or equal to the coherence bandwidth. For example, if it is assumed that the coherent bandwidth is 12 sub-carriers and the preset time-frequency resource block is equal to one RB, then M is equal to 14 and K is equal to 12 in the above formula.
  • the preset time-frequency resource block may also be referred to as the frequency interval of the first reference data mapping, or the frequency interval range or frequency interval between two subcarriers to which the first reference data is mapped.
  • the frequency interval range may be 12 subcarriers occupied by one resource block RB.
  • the preset time-frequency resource block or the frequency interval of the first reference data mapping can be determined in an explicit or implicit manner. In other words, the location and density of the first reference data mapped in the frequency domain may be explicitly or implicitly indicated, predefined, or configured by signaling.
  • the at least two consecutive resources include multiple preset time-frequency resource blocks, and for the differential modulation and differential decoding on each preset time-frequency resource block, reference may be made to the descriptions of the foregoing embodiments.
  • the mapping position of the first reference data on each preset time-frequency resource block may be the starting subcarrier.
  • the reference data mapped in different preset time-frequency resource blocks may be the same or different; the reference data mapped in different preset time-frequency resource blocks may also be used to estimate the phase rotation between two consecutive subcarriers information. It can be seen that, in this embodiment, when at least two consecutive resources include multiple preset time-frequency resource blocks, each preset time-frequency resource block can perform operations such as differential encoding and differential decoding in parallel.
  • each preset time-frequency resource block occupies 14 symbols and 6 subcarriers.
  • the starting subcarrier in one preset time-frequency resource block is the first subcarrier, and a reference data can be mapped on it; the starting subcarrier in another preset time-frequency resource block is the seventh subcarrier, and another subcarrier is mapped on it Reference data.
  • the two reference data can be the same or different.
  • different filling patterns are used for representation.
  • differential encoding and differential decoding can be performed starting from the corresponding reference data, respectively.
  • the receiving end can determine the phase rotation information between two consecutive subcarriers based on the reference received data on the first subcarrier and the reference received data on the seventh subcarrier.
  • each preset time-frequency resource block occupies 14 symbols and 4 subcarriers.
  • the start subcarrier of a preset time-frequency resource block is the first subcarrier, and a reference data is mapped on it;
  • the start subcarrier of another preset time-frequency resource block is the fifth subcarrier, on which Map another reference data;
  • the starting subcarrier of another preset time-frequency resource block is the 9th subcarrier, and another reference data is mapped on it.
  • the three reference data can be the same or different, as shown in Figure 8, using Different fill patterns are displayed.
  • differential encoding and differential decoding can be performed starting from the corresponding reference data, respectively.
  • the receiving end can determine the phase between the first subcarrier and the fifth subcarrier based on the reference received data on the first subcarrier and the reference received data on the fifth subcarrier.
  • the receiving end can determine the phase rotation information between the first subcarrier and the ninth subcarrier based on the reference received data on the first subcarrier and the reference received data on the ninth subcarrier; and then, use the first subcarrier
  • Fig. 8 can improve the robustness of phase rotation information estimation compared with Fig. 7.
  • the data to be sent mapped on one or more preset resources in the preset time-frequency resource block is the second reference data
  • the second reference data is used to estimate in combination with the first reference data Phase rotation information between two consecutive subcarriers.
  • the preset resource in the preset time-frequency resource block may be a resource that is continuous with the start resource, or a resource with a certain distance from the start resource.
  • the preset resource may be a preset symbol, a preset subcarrier, or a preset resource unit.
  • Figures 9 and 10 are illustrated by taking the preset resource as the preset subcarrier as an example.
  • Fig. 11 takes the preset resource unit as an example for illustration.
  • the receiving end can determine the phase between two consecutive subcarriers based on the first reference received data on the first subcarrier and the second reference received data on the second subcarrier. Rotate information.
  • the first reference data is mapped on the first subcarrier
  • the second reference data is mapped on the second subcarrier
  • the third reference data is mapped on the third subcarrier.
  • the three reference data can be the same or different, as shown in Figure 10.
  • different filling patterns are used for representation.
  • the direction of the solid arrow as shown in FIG. 10 starts with the first subcarrier where the first reference data is located, or starts with the second subcarrier where the second reference data is located, or starts with the third reference data.
  • the third subcarrier where the data is located is the start for differential encoding and differential decoding.
  • the receiving end can determine the first subcarrier and the second subcarrier based on the first reference received data on the first subcarrier and the second reference received data on the second subcarrier. Based on the first reference data on the first subcarrier and the third reference received data on the third subcarrier, determine the phase rotation information between the first subcarrier and the third subcarrier; further, The phase rotation information between two consecutive subcarriers is determined based on the phase rotation information between the first subcarrier and the second subcarrier, and the phase rotation information between the first subcarrier and the third subcarrier.
  • the first reference data is mapped on the first subcarrier, and RE(1, 2) and RE(8, 2) are mapped to the second reference data.
  • the two reference data may be the same or different, as shown in FIG. 11, Different fill patterns are used for representation.
  • Different fill patterns are used for representation.
  • differential encoding and differential decoding are performed starting from the first subcarrier where the first reference data is located; or, for each of the first symbol and the eighth symbol
  • the subcarriers can be differentially encoded and differentially decoded starting from the RE where the second reference data is located.
  • the receiving end can determine two reference data based on the first reference data on the first subcarrier and the second reference data on RE(1, 2) and RE(8, 2). Phase rotation information between successive sub-carriers.
  • the at least two consecutive resources include a plurality of preset time-frequency resource blocks, and for the differential modulation and differential decoding on each preset time-frequency resource block, please refer to the descriptions of the foregoing implementation manners.
  • the mapping position of the first reference data on each preset time-frequency resource block may be the starting subcarrier.
  • One or more preset resources in one or more preset time-frequency resource blocks of the plurality of preset time-frequency resource blocks may be mapped with second reference data, and the second reference data is used for estimation in combination with the first reference data Phase rotation information between two consecutive subcarriers.
  • the first reference data mapped in different preset time-frequency resource blocks may also be used to estimate phase rotation information between two consecutive subcarriers.
  • each preset time-frequency resource block can perform operations such as differential encoding and differential decoding in parallel.
  • the estimated phase rotation can also be improved. Robustness of information.
  • each time-frequency resource block occupies 14 symbols and 6 subcarriers.
  • the first reference data is mapped on the first subcarrier
  • the second reference data is mapped on the second subcarrier
  • the third reference data is mapped on the seventh subcarrier.
  • the three reference data can be the same or different, as shown in Figure 12
  • different filling patterns are used for representation.
  • differential encoding can be performed in parallel , Differential decoding; or, starting with the second subcarrier where the second reference data is located, and starting with the seventh subcarrier where the third reference data is located, perform differential encoding and differential decoding in parallel.
  • the receiving end can determine the first subcarrier and the second subcarrier based on the first reference received data on the first subcarrier and the second reference received data on the second subcarrier.
  • phase rotation information between the first subcarrier and the seventh subcarrier Based on the first reference data on the first subcarrier and the third reference received data on the seventh subcarrier, determine the phase rotation information between the first subcarrier and the seventh subcarrier; and further, The phase rotation information between two consecutive subcarriers is determined based on the phase rotation information between the first subcarrier and the second subcarrier, and the phase rotation information between the first subcarrier and the seventh subcarrier.
  • other reference data in addition to the first reference data, other reference data can be mapped in the preset time-frequency resource block, which is beneficial for phase-tracking all symbols in the preset time-frequency resource block (that is, phase-trackers at each). symbol).
  • differential decoding and differential encoding can also be performed in parallel starting with each reference data and the subcarrier where it is located, thereby helping to ensure the accuracy of data demodulation and speed up data processing.
  • the number and location of the reference data in the at least two consecutive resources can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the number and positions of the preset time-frequency resource blocks in the at least two consecutive resources can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the "number and position" described herein can also be replaced with "density and position”.
  • the frequency domain differential coding and frequency domain differential decoding described in the embodiments of the present application may not involve DMRS channel estimation, which is beneficial to provide more robust demodulation performance in various complex channel scenarios.
  • the embodiment of the present application also avoids the high DMRS overhead, and avoids the problem of limited spectrum efficiency improvement caused by the surge in overhead in a high-dimensional MIMO system.
  • operations such as differential decoding can be performed in parallel, which is favorable for transmission scenarios with low latency requirements. middle.
  • the sending end may perform differential encoding on the original data on at least two consecutive resource units to obtain the data to be sent; and then map the data to be sent on the at least two consecutive resource units for sending.
  • the receiving end receives data on at least two consecutive resource units; differentially decodes the data on the at least two consecutive subcarriers to obtain the original data on the at least two consecutive resource units.
  • the first resource is RE(m, k-1); the second resource is RE(m, k), and the original data on RE(m, k) is The data to be sent on RE(m, k-1) is Then, as described in the above formula (16), the data to be sent on RE(m, k) for:
  • the differential coding in the combined domain is carried out in units of resource units, which is different from the above-mentioned differential coding in the time domain of formula (2) which is carried out in units of symbols, and is also the same as the above-mentioned differential coding in the frequency domain as in formula (17).
  • the coding is different in units of subcarriers.
  • the preset time-frequency resource block includes M symbols and K subcarriers, then the data to be sent on RE(m, K) is time-domain differenced using the data to be sent on RE(m-1, K) Obtained by encoding, as shown in the following formula, the data to be sent on RE(m, K) for:
  • the original data on each RE between consecutive subcarriers of the same symbol is obtained by means of frequency domain differential coding; the original data on each RE between consecutive symbols of the same subcarrier
  • the data to be sent is obtained by means of time-domain differential coding.
  • the preset time-frequency resource block includes M symbols and K subcarriers
  • the starting resource unit in the preset time-frequency resource block is the first symbol
  • the first subcarrier is used for mapping.
  • the first benchmark data so the first benchmark data is recorded as Used to participate in the first differential coding to sequentially obtain the data to be sent on the continuous resource unit, as shown by the arrow in Figure 12, the resources that are continuous or adjacent to RE(1,1) in the preset time-frequency resource block Data to be sent on unit RE(1, 2) for:
  • the data to be sent on RE (1, 3) consecutive to RE (1, 2) in the preset time-frequency resource block for:
  • the data to be sent on RE(1, K) in the preset time-frequency resource block for:
  • the data to be sent on RE(2, K) in the preset time-frequency resource block for:
  • the data to be sent on RE(2, K-1) in the preset time-frequency resource block for:
  • this embodiment uses RE as a unit for differential encoding.
  • the data received by the receiving end on at least two consecutive resource units may include: the data received on the resource unit (m, k-1) Received on resource unit (m, k) Furthermore, the receiving end uses right Perform differential decoding to obtain the original data on the resource unit (m, k).
  • the receiving end can use right Perform differential decoding to obtain the decision factor on the resource unit (m, k)
  • V is the number of antennas at the receiving end
  • f represents differential decoding in the frequency domain.
  • the formula (7) can indicate that for any consecutive or adjacent REs, the data received on the RE with a higher frequency and the data received on the RE with a lower frequency are differentially decoded to obtain a decision factor.
  • the receiving end can be based on the decision factor Obtain the original data of the resource unit (m, k)
  • ⁇ f represents the frequency domain correlation between two consecutive sub-carriers
  • exp(j ⁇ f ) represents the phase rotation information or phase change information between two consecutive sub-carriers, without phase estimation , That is, under the real error (RE), the exp(j ⁇ f ) is equal to 1; under the phase evaluation (PE), the exp(j ⁇ f ) can be obtained based on the first reference data or the second reference data ; D represents the transmit power of the transmitter. It can be seen that the original data of resource unit (m, k) can be obtained based on formula (40)
  • the data received by the receiving end on at least two consecutive resource units may include: the data received on the resource unit (m-1, K) Received on resource unit (m, K) Furthermore, the receiving end uses right Perform differential decoding to obtain the original data on the resource unit (m, k). Specifically, the receiving end can use right Perform differential decoding to obtain the decision factor on the resource unit (m, k)
  • V is the number of antennas at the receiving end
  • t represents differential decoding in the time domain.
  • the formula (38) can indicate that for any consecutive or adjacent REs, the data received on the RE with a higher frequency and the data received on the RE with a lower frequency are differentially decoded to obtain a decision factor.
  • the receiving end can be based on the decision factor Obtain the original data of the resource unit (m, k)
  • the first reference received data received by the start resource unit "1st symbol, 1st subcarrier" in the preset time-frequency resource block is denoted as Used to participate in the first differential decoding to sequentially obtain the original data on the continuous resource units, as shown by the arrow in Figure 13, the resource units that are continuous or adjacent to RE(1,1) in the preset time-frequency resource block Raw data on RE(1, 2) for:
  • the original data on RE (1, 3) consecutive to RE (1, 2) in the preset time-frequency resource block for:
  • the original data on the resource unit RE(1, K) in the preset time-frequency resource block for:
  • the original data on RE(2, K) corresponding to the second symbol in the preset time-frequency resource block are:
  • the at least two consecutive resources include multiple preset time-frequency resource blocks, and for the differential modulation and differential decoding on each preset time-frequency resource block, reference may be made to the descriptions of the foregoing embodiments.
  • the mapping position of the first reference data on each preset time-frequency resource block may be the starting resource unit.
  • the reference data mapped in different preset time-frequency resource blocks may be the same or different; the reference data mapped in different preset time-frequency resource blocks may also be used to estimate the phase rotation between two consecutive subcarriers information. It can be seen that, in this embodiment, when at least two consecutive resources include multiple preset time-frequency resource blocks, each preset time-frequency resource block can perform operations such as differential encoding and differential decoding in parallel.
  • each preset time-frequency resource block occupies 14 symbols and 6 subcarriers.
  • the initial resource unit in one preset time-frequency resource block is RE(1, 1), on which a reference data can be mapped; the initial resource unit in another preset time-frequency resource block is RE(1, 7) , Another reference data is mapped on it, and the two reference data can be the same or different, as shown in FIG. 14, using different filling patterns for representation.
  • the two reference data can be the same or different, as shown in FIG. 14, using different filling patterns for representation.
  • time-domain and frequency-domain differential encoding and differential decoding can be performed in parallel starting from corresponding reference data, respectively.
  • the receiving end can determine the phase between two consecutive sub-carriers based on the reference received data on RE (1, 1) and the reference received data on RE (1, 7) Rotate information.
  • each preset time-frequency resource block occupies 14 symbols and 4 subcarriers.
  • the start resource unit of a preset time-frequency resource block is RE(1,1), on which a reference data is mapped;
  • the start resource unit of another preset time-frequency resource block is RE( 1, 5), another reference data is mapped on it;
  • the initial resource unit in another preset time-frequency resource block is RE(1, 9), and another reference data is mapped on it, the three reference data It can be the same or different.
  • different filling patterns are used for representation.
  • differential encoding and differential decoding can be performed starting from the corresponding reference data, respectively.
  • the receiving end can determine the first subcarrier and the fifth subcarrier based on the reference received data on RE(1,1) and the reference received data on RE(1,5) The phase rotation information between the two; the receiving end can determine the phase rotation between the first subcarrier and the ninth subcarrier based on the reference received data on RE(1,1) and the reference received data on RE(1,9) Information; further, using the phase rotation information between the first subcarrier and the fifth subcarrier, and the phase rotation information between the first subcarrier and the ninth subcarrier to calculate the phase rotation information between two consecutive subcarriers.
  • FIG. 15 can improve the robustness of phase rotation information estimation and improve the data demodulation efficiency.
  • the data to be sent mapped on one or more preset resource units in the preset time-frequency resource block is the second reference data
  • the second reference data is used in combination with the first reference data Estimate the phase rotation information between two consecutive subcarriers.
  • the preset resource unit in the preset time-frequency resource block may be a resource unit continuous with the start resource unit, or a resource unit with a certain distance from the start resource unit.
  • FIG. 16 illustrates an example in which the preset resource unit is a resource unit that is continuous with the start resource unit.
  • the receiving end can determine two consecutive subcarriers based on the first reference received data on RE(1,1) and the second reference received data on RE(1,2) The phase rotation information between.
  • the combined domain differential coding and differential decoding described in the embodiments of the present application may not involve DMRS channel estimation, which is beneficial to provide more robust demodulation performance in various complex channel scenarios.
  • the embodiment of the present application also avoids the high DMRS overhead, and avoids the problem of limited spectrum efficiency improvement caused by the surge in overhead in a high-dimensional MIMO system.
  • the number and position of the reference data in at least two consecutive resources or preset time-frequency resource blocks may be other patterns in addition to those shown in FIG. 5 to FIG. 16.
  • the number and location of the reference data in the at least two consecutive resources can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the number and positions of the preset time-frequency resource blocks in the at least two consecutive resources can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the number and location of the reference data in the preset time-frequency resource block may be configured through signaling, or standard agreement, or may be indicated by using different types of signaling.
  • the "number and position" described herein can also be replaced with "density and position".
  • the constellation diagram on the network device side is related to the number of paired terminals and the modulation order.
  • the transmitting end is a plurality of terminal devices
  • the receiving end is a network device
  • the constellation diagram of the transmitting end is different from the constellation diagram of the receiving end
  • the constellation diagram of the receiving end is related to the number of transmitting ends.
  • the information bits to be sent need to be constellation-modulated to obtain the original data, and then based on operations such as differential coding, to obtain the data to be sent corresponding to each resource unit.
  • the receiving end after obtaining the original data corresponding to each resource, the receiving end also needs to perform operations such as constellation demodulation to obtain information bits.
  • FIG. 22 is illustrated by taking the network device having V antennas as an example.
  • the terminal device can receive constellation modulation parameters, where the constellation modulation parameters include the number of receiving ends, the modulation order, and the receiving end index; the terminal equipment modulates according to the constellation The parameter modulates the information bits on the at least two consecutive resources to obtain the original data to be sent.
  • the network device determines a joint constellation diagram according to the number of terminal devices; and demodulates the data received on the at least two consecutive resources according to the joint constellation diagram to obtain information bits sent by each terminal device.
  • each terminal device can implement constellation modulation with equal power or equal error assumptions according to the following formula:
  • It represents the original data of the terminal device u on the resource unit (m, k); U represents the total number of all terminal devices; G represents the modulation order of the terminal device u.
  • the index u and the modulation order corresponding to the terminal device may be allocated by the network device or system, for example, the terminal device is notified by means of signaling instructions.
  • the network device can obtain the joint constellation diagram according to the constellation diagram determined by each terminal device according to formula (51), so as to receive the data sent by each terminal device.
  • the network device can determine the joint constellation diagram according to the number of receiving ends. Accordingly, the terminal device can determine the joint constellation diagram according to its own index u, The modulation order and the total number of receivers U, determine their respective constellation diagrams to demodulate the received data.
  • the index u corresponding to the terminal device 102 is equal to 1, and the corresponding modulation order is 2.
  • the original data obtained according to the above formula (51) is shown in the constellation diagram of FIG. 17;
  • the index u corresponding to the device 103 is equal to 2, and the corresponding modulation order is also 2.
  • the original data that can be obtained according to the above formula (51) is as shown in the constellation diagram in FIG. 18.
  • the network device can obtain a joint constellation diagram based on the constellation diagrams shown in FIG. 17 and FIG. 18, as shown in FIG. 19.
  • the joint constellation diagram of the network equipment at the receiving end can be shown in Fig. 20, where the non-distinguishable symbols cannot be distinguished by the network equipment at the receiving end.
  • the modulation symbols and joint modulation symbols (joint symbols) of the information bits of the terminal device may be as shown in FIG. 20.
  • each joint modulation symbol in the joint constellation diagram may be as shown in FIG. 21.
  • constellation diagram at the receiving end is different from the constellation diagram at the transmitting end, and the constellation diagram at the receiving end changes according to the number of UEs, modulation order, and UE index. .
  • the constellation modulation method for multi-user scenarios can also be combined with the data transmission method based on differential encoding and differential decoding described in the foregoing embodiments to perform data transmission.
  • each transmitter modulates the original data based on its own constellation diagram.
  • the differential coding may be the time domain differential coding, the frequency domain differential coding, or the combined domain differential coding described in the foregoing embodiments.
  • the receiving end can remove the cyclic prefix, fast Fourier transform, differential decoding, and use a combiner to combine information on each carrier or symbol to obtain a decision threshold.
  • the original data sent by each sender is obtained
  • the terminal device when the terminal device is used as the sending end, it can perform data transmission based on the aforementioned differential encoding, and the network device, as the receiving end, can perform data detection based on the aforementioned differential decoding and other operations.
  • the terminal device u for each resource unit on a preset time-frequency resource block including K subcarriers and M symbols, the following formula modified from formula (2) in the above-mentioned time-domain differential coding can be used to determine the to-be-sent data:
  • the network device can use the following formulas modified from the formulas (6) and (7) in the time-domain differential decoding to determine the original data sent by the terminal device u
  • the network device can use the following formulas modified from the formulas (23) and (24) in the frequency domain differential decoding to determine the original data sent by the terminal device u
  • the network device can use the following formulas modified from formulas (41) and (42) in the above-mentioned combined domain differential decoding to determine the original data sent by the terminal device u
  • the network device can use the following formulas modified from formulas (39) and (40) in the above-mentioned combined domain differential decoding to determine the original data sent by the terminal device u
  • the differential encoding and differential decoding in the foregoing embodiments may not involve DMRS channel estimation, which is beneficial to provide more robust demodulation performance in various complex channel scenarios.
  • the embodiment of the application also avoids the high DMRS overhead, the problem of limited spectrum efficiency improvement caused by the surge in overhead in the high-dimensional MIMO system, and the large DMRS channel estimation error in the high-movement and high-latency scenarios The resulting demodulation performance loss is relatively large.
  • the coherent transmission scheme based on the aforementioned DMRS channel estimation has a higher symbol error rate than the single user-phase estimation (SU-PE) described in the embodiment of this application.
  • SU-PE single user-phase estimation
  • MU-RE Multi-user-true error
  • MU-PE multi-user-phase estimation
  • the throughput of the coherent transmission scheme based on the aforementioned DMRS channel estimation is much smaller than that of the single user described in the embodiment of this application.
  • SU-PE multi-user-true error
  • MU-RE multi-user-phase estimation
  • CDS coherent demodulation scheme
  • MU multi-user
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the sending end and the receiving end, respectively.
  • the sending end and the receiving end may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 24 is a schematic structural diagram of a data transmission device provided by an embodiment of this application.
  • the data transmission device 2400 shown in FIG. 24 may include a communication unit 2401 and a processing unit 2402.
  • the communication unit 2401 may include a sending unit and a receiving unit.
  • the sending unit is used to realize the sending function
  • the receiving unit is used to realize the receiving function
  • the communication unit 2401 may realize the sending function and/or the receiving function.
  • the communication unit can also be described as a transceiving unit.
  • the data transmission device 2400 may be a network device or a terminal device, or a device in a network device or a terminal device.
  • the data transmission device 2400 includes a communication unit 2401 and a processing unit 2402, and can perform related operations of the sending end in the foregoing embodiments;
  • the processing unit 2402 is configured to perform differential encoding on the original data on at least two consecutive resources to obtain the data to be sent;
  • the communication unit 2401 is configured to map the to-be-sent data on the at least two contiguous resources for transmission respectively;
  • the data transmission device does not need to rely on DMRS channel estimation when performing data demodulation, but performs data demodulation based on the differential data to be sent sent on continuous resources, which is beneficial to avoid high-dimensional MIMO systems because of the surge in overhead.
  • the at least two contiguous resources include a first resource and a second resource, and the second resource is a resource contiguous with the first resource; the to-be-sent on the second resource The data is obtained by using the data to be sent on the first resource to perform differential encoding on the original data on the second resource.
  • the second resource is a symbol that is continuous with the first resource
  • the data to be sent on the second resource uses the data to be sent on the first resource to send data to the second resource.
  • the original data is obtained by differential encoding in the time domain, which facilitates centralized processing of the original data on the entire symbol.
  • the second resource is a subcarrier that is continuous with the first resource
  • the data to be sent on the second resource is used to compare the data to the second resource with the data to be sent on the first resource.
  • the original data above is obtained by differential encoding in the frequency domain, which facilitates parallel processing of the original data on each symbol and saves processing time delay.
  • the second resource is a resource unit that is continuous with the first resource, and the data to be sent on the second resource is used to compare the data to the second resource with the data to be sent on the first resource.
  • the original data above is obtained by differential coding in the combined domain, which is conducive to saving resource overhead.
  • the at least two consecutive resources include one or more preset time-frequency resource blocks, and the starting resource in the preset time-frequency resource block is used for mapping first reference data, and the first reference data is used for To perform differential encoding on the original data on the resources that are continuous with the initial resource. That is, the location and density of the first reference data are deployed in units of preset time-frequency resource blocks.
  • one or more preset resources in the preset time-frequency resource block are used to map second reference data; the second reference data is used to estimate the difference between two consecutive subcarriers in combination with the first reference data Phase rotation information between.
  • the first reference data on the starting resource in each preset time-frequency resource block is also used to estimate phase rotation information between two consecutive subcarriers.
  • the time domain dimension of the preset time-frequency resource block is less than or equal to the coherence time.
  • the frequency domain dimension of the preset time-frequency resource block is less than or equal to the coherence bandwidth.
  • the preset time-frequency resource block includes one or more resource blocks RB.
  • the location and density of the mapping of the first reference data on the at least two contiguous resources are predefined or configured by signaling; or, the preset time and frequency in the at least two contiguous resources
  • the size and location of the resource block are predefined or configured by signaling.
  • the location and density of the mapping of the second reference data on the at least two consecutive resources are predefined or configured by signaling; or, the preset resource in the preset time-frequency resource block
  • the size and location are pre-defined or signaling configuration.
  • the data transmission device is a terminal device, or a device in a terminal device
  • the communication unit 2401 is further configured to receive constellation modulation parameters, where the constellation modulation parameters include the number of transmitters, modulation orders, and transmitter index numbers.
  • the processing unit 2402 is further configured to modulate the information bits according to the constellation modulation parameters to obtain original data on at least two consecutive resources.
  • the data transmission device is a network device, or a device in a network device
  • the processing unit 2402 is further configured to determine a joint constellation diagram according to the number of receiving ends; the processing unit 2402 is further configured to pair information according to the joint constellation diagram Bits are modulated to obtain the original data to be sent.
  • the constellation modulation method considers the differential detection scheme of the multi-user scenario, and its combined constellation design scheme ensures that the receiving end can reliably detect the data sent by each terminal device.
  • the relevant content of the foregoing implementation manners can refer to the relevant content of the foregoing method embodiment. No more details here.
  • the data transmission device 2400 includes a communication unit 2401 and a processing unit 2402, which can perform related operations at the receiving end in the foregoing embodiments;
  • the communication unit 2401 is configured to receive data on at least two consecutive resources
  • the processing unit 2402 is configured to perform differential decoding on the data received on the at least two consecutive resources, respectively, to obtain the original data on the at least two consecutive resources.
  • the data transmission device does not need to rely on DMRS channel estimation for data demodulation, but obtains original data based on differential decoding of data received on continuous resources, which is beneficial to avoid high-dimensional MIMO systems because of the surge in DMRS overhead.
  • the at least two continuous resources include a first resource and a second resource, and the second resource is a resource continuous with the first resource; the original data on the second resource Is obtained by using the data received on the first resource to perform differential decoding on the data received on the second resource.
  • the second resource is a symbol that is continuous with the first resource, and the original data on the second resource is used to compare the data received on the first resource to the first resource.
  • the data received on the resource is obtained by differential decoding in the time domain. It can be seen that this implementation manner is beneficial for centralized processing of the data received on the entire symbol.
  • the second resource is a subcarrier that is continuous with the first resource, and the original data on the second resource is used to compare data received on the first resource.
  • the data received on the second resource is obtained by performing differential decoding in the frequency domain. It can be seen that this embodiment is beneficial for parallel processing of data received on each symbol, and saves processing time delay.
  • the second resource is a resource unit continuous with the first resource, and the original data on the second resource is used to compare data received on the first resource.
  • the data received by the second resource is obtained by performing differential decoding on the combined domain.
  • the at least two consecutive resources include one or more preset time-frequency resource blocks, and the data received on the starting resource in the preset time-frequency resource block is the first reference received data
  • the first reference received data is used to perform differential decoding on data received on a resource that is continuous with the initial resource.
  • the data received on one or more preset resources in the preset time-frequency resource block is second reference received data; the second reference data is used in combination with the first reference
  • the received data estimates the phase rotation information between two consecutive subcarriers. It can be seen that this implementation manner is beneficial for estimating phase rotation information in a scene with greater frequency domain selectivity, so as to improve data demodulation performance.
  • the first reference received data received on the starting resource in each preset time-frequency resource block is also used to estimate phase rotation information between two consecutive subcarriers.
  • each first reference data can also be used for multiple sub-carriers to perform differential encoding and differential decoding in parallel.
  • the time domain dimension of the preset time-frequency resource block is less than or equal to the coherence time. In an optional implementation manner, the frequency domain dimension of the preset time-frequency resource block is less than or equal to the coherence bandwidth. In an optional implementation manner, the preset time-frequency resource block includes one or more resource blocks RB.
  • the position and density of the first reference received data in the at least two consecutive resources are predefined or configured by signaling; or, the location and density of the first reference received data in the at least two consecutive resources
  • the size and location of the preset time-frequency resource block are predefined or configured by signaling. That is to say, the number and location of reference data in at least two consecutive resources can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the number and positions of the preset time-frequency resource blocks in at least two consecutive resources can be configured through signaling, or standard agreement, or different types of signaling instructions; and each preset time-frequency resource block
  • the number and location of the reference data can be indicated by signaling configuration, or standard agreement, or using different types of signaling.
  • the position and density of the second reference data on the at least two consecutive resources are predefined or configured by signaling; or, in the preset time-frequency resource block
  • the size and location of the preset resource are predefined or configured by signaling.
  • the communication unit 2401 is further configured to receive constellation modulation parameters at the receiving end, and the constellation modulation parameters include the number of receiving ends, the modulation order, and the receiving end index.
  • the processing unit 2402 is also configured to demodulate the data received on the at least two consecutive resources according to the constellation modulation parameters to obtain information bits sent by the sending end.
  • the processing unit 2402 is further configured to determine a joint constellation diagram according to the number of sending ends; The data received on the at least two consecutive resources is demodulated to obtain information bits sent by each sending end.
  • the relevant content of the foregoing implementation manners can refer to the relevant content of the foregoing method embodiment. No more details here.
  • FIG. 25 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • the data transmission device 2500 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the terminal device or a network device to implement the above method, or a terminal device or a network device that supports the implementation The chip, chip system, or processor of the above method.
  • the data transmission device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the data transmission device 2500 may include one or more processors 2501.
  • the processor 2501 may be a general-purpose processor or a special-purpose processor.
  • the processor 2501 may be used to control a communication device (such as a terminal device or a network device, etc.), execute a software program, and process data of the software program.
  • the data transmission device 2500 may include one or more memories 2502, on which instructions 2504 may be stored, and the instructions may be executed on the processor 2501 to enable the data transmission device 2500 to execute The method described in the above method embodiment.
  • the memory 2502 may also store data.
  • the processor 2501 and the memory 2502 can be provided separately or integrated together.
  • the data transmission device 2500 may further include a transceiver 2505 and an antenna 2506.
  • the transceiver 2505 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 2505 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function;
  • the transmitter may be called a transmitter or a sending circuit, etc., for implementing a sending function.
  • the data transmission device 2500 performs related operations on the sending end in the foregoing method embodiment, and the processor 2501 may be used to perform the operation of step 201 in FIG. 4; and according to the operations shown in FIG. 5 to FIG.
  • the transceiver 2505 may perform the operation of step 202 to send the differentially encoded data to be sent.
  • the data transmission device 2500 executes the related operations of the receiving end in the foregoing method embodiment, and the processor 2501 may be used to execute the operation of step 204 in FIG. 4; Perform operations such as differential decoding and phase rotation information estimation based on the position and density of the reference data shown; the transceiver 2505 may perform the operation of step 203 to receive data on each resource.
  • the data transmission equipment does not need to rely on DMRS channel estimation when performing data demodulation, but performs data demodulation based on the differential data to be sent sent on continuous resources, which is beneficial to avoid high-dimensional MIMO systems because of the surge in overhead.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and transmitting functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit can be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit can be used for signal transmission or transmission.
  • the processor 2501 may store an instruction 2503, and the instruction 2503 runs on the processor 2501, so that the communication device 2500 can execute the method described in the foregoing method embodiment.
  • the instruction 2503 may be solidified in the processor 2501.
  • the processor 2501 may be implemented by hardware.
  • the communication device 2500 may include a circuit, and the circuit may implement the sending or receiving or communication functions in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC analog IC
  • radio frequency integrated circuit RFIC radio frequency integrated circuit
  • mixed signal IC mixed signal IC
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • the data transmission device described in the above embodiment may be a network device or a terminal device, but the scope of the data transmission device described in this application is not limited to this, and the structure of the data transmission device may not be limited by FIG. 25.
  • the data transmission device can be a standalone device or can be part of a larger device.
  • the data transmission device may be:
  • the set of ICs may also include storage components for storing data and instructions;
  • ASIC such as a modem (Modem)
  • Receivers smart terminals, wireless devices, handsets, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.;
  • the communication device may be a chip or a chip system
  • the chip 2600 shown in FIG. 26 includes a processor 2601 and an interface 2602.
  • the number of processors 2601 may be one or more, and the number of interfaces 2602 may be multiple.
  • the processor 2601 is configured to perform differential encoding on the original data on at least two consecutive resources to obtain the data to be sent;
  • the interface 2602 is configured to map the to-be-sent data on the at least two contiguous resources for transmission respectively;
  • the chip further includes a memory 2603 coupled with the processor 2601, and the memory 2603 is used to store necessary program instructions and data of the terminal device.
  • the chip does not need to rely on DMRS channel estimation when performing data demodulation, but based on the differential data to be sent on continuous resources for data demodulation, which is beneficial to avoid high-dimensional MIMO systems, which is caused by a surge in overhead.
  • the interface 2602 is used to receive data on at least two consecutive resources
  • the processor 2601 is configured to perform differential decoding on the data received on the at least two consecutive resources, respectively, to obtain the original data on the at least two consecutive resources.
  • the chip does not need to rely on DMRS channel estimation for data demodulation, but obtains original data based on differential decoding of data received on continuous resources, which is beneficial to avoid high-dimensional MIMO systems due to the surge in DMRS overhead.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法及相关设备,该数据传输方法中,发送端能够对至少两个连续资源上的原始数据进行差分编码,获得待发送数据,从而映射在该至少两个连续资源上进行发送;相应的,接收端能够接收至少两个连续资源上的数据,并对该至少两个连续资源上的数据进行差分解码,获得原始数据。可见,该数据传输方法不再依赖基于DMRS的信道估计,从而能够避免DMRS开销过大对系统频谱效率提升受限的问题,以及在高速移动或高时延场景中DMRS信道估计不准确所导致的性能损失较大的问题,因此,本申请有利于进一步的提升频谱效率,并控制高速移动或高时延场景中数据解调的性能损失程度相对较小。

Description

一种数据传输方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输方法及相关设备。
背景技术
为了满足通信系统对广覆盖和大容量的需求,多输入多输出(Multi-input Multi-output,MIMO)技术可在发送端和接收端利用多天线支持高达8层,甚至12层数据流的传输。然而,MIMO技术优势的前提是能够获得多天线系统的信道状态信息(Channel State Information,CSI),CSI的获取依赖于参考信号(Reference Signal,RS)的发送和可靠估计。例如,解调参考信号(Demodulation Reference Signal,DMRS)可用于物理下行共享信道(Physical Downlink Share Channel,PDSCH)的解调。新空口(New Radio,NR)可支持多达12端口的DMRS,并且该DMRS占用的资源元素(resource element,RE)个数在一个RB内为24个。可见,随着天线维度、传输流数的增加,其开销也会成倍增加,从而影响了数据传输的频谱效率的提升。
因此,如何进行数据传输,以避免DMRS开销过大对频谱效率提升受限的影响成为一个亟待解决的问题。
发明内容
本申请实施例提供了一种数据传输方法及相关设备,能够采用差分编码进行数据传输,避免DMRS开销对频谱效率提升的影响。
第一方面,本申请提供一种数据传输方法,该方法中,发送端可将至少两个连续资源上的原始数据进行差分编码,获得待发送数据;进而发送端将待发送数据分别映射在该至少两个连续资源上发送。可见,该数据传输方法中数据解调不需要依赖DMRS的信道估计,而是基于连续资源上发送的差分待发送数据进行数据解调的,从而有利于避免高维MIMO系统中,因为开销激增所导致的频谱效率提升受限的问题。
可选的,该数据传输方法中,至少两个连续资源可以为至少两个连续符号,或至少两个连续子载波或至少两个连续资源单元(resource element,RE)。其中,“连续的”也可以称为相邻的。连续或相邻可包括物理资源上的连续或相邻,以及虚拟资源上的连续或相邻。可选的,连续资源包括物理资源上绝对连续的资源,也包括物理资源上不是绝对连续的资源。例如,天线端口(port)0对应的子载波包括第1、3、5、7、9、11个子载波,天线端口(port)1对应的子载波包括第2、4、6、8、10、12个子载波,针对天线端口0,至少两个连续资源包括第1、3、5、7、9、11个子载波,发送端可依次对第1、3、5、7、9、11个子载波上的原始数据进行差分编码,获得待发送数据;针对天线端口1,至少两个连续资源包括第2、4、6、8、10、12个子载波,发送端可依次对第2、4、6、8、10、12个子载波进行差分编码,获得待发送数据。
在一种可选的实施方式中,该至少两个连续资源包括第一资源和第二资源,第二资源是与第一资源连续的资源,第二资源上的待发送数据,是利用第一资源上的待发送数据对 第二资源上的原始数据进行差分编码获得的。
一种可选的实施方式中,所述第二资源是与所述第一资源连续的符号,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行时域上的差分编码获得的;
另一种可选的实施方式中,所述第二资源是与所述第一资源连续的子载波,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行频域上的差分编码获得的;
又一种可选的实施方式中,所述第二资源是与所述第一资源连续的资源单元,所述第二资源与所述第一资源对应的资源单元可以在时域连续,也可以在频域连续,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行组合域上的差分编码获得的。
在一种可选的实施方式中,至少两个连续资源包括一个或多个预设时频资源块,所述预设时频资源块中起始资源上的待发送数据为第一基准数据,所述第一基准数据用于计算与所述起始资源连续的资源上的待发送数据。
可选的,各预设时频资源块中起始资源上的第一基准数据还用于估计相邻子载波之间的相位旋转信息。
可选的,所述预设时频资源块中一个或多个预设资源上的待发送数据为第二基准数据;所述第二基准数据用于结合所述第一基准数据估计相邻子载波之间的相位旋转信息。可见,该实施方式有利于接收端利用该相位变化信息检测资源单元上的数据。
在一种可选的实施方式中,所述预设时频资源块的时域维度小于或等于相干时间。在一种可选的实施方式中,所述预设时频资源块的频域维度小于或等于相干带宽。在一种可选的实施方式中,所述预设时频资源块包括一个或多个资源块RB。可见,该实施方式有利于保证所述至少两个连续资源单元上的系统响应是相同的,平坦的或非时变的。
在一种可选的实施方式中,发送端为终端设备,所述发送端将至少两个连续资源单元上的原始数据进行差分编码,获得待发送数据之前,所述方法还包括:所述发送端接收星座调制参数,所述星座调制参数包括发送端个数、调制阶数和发送端索引号;所述发送端根据所述星座调制参数,对待发送的信息比特进行调制,获得待发送的原始数据。可见,该实施方式能够针对多用户场景,差异化不同终端设备的星座调制方式来实现信息比特的调制,从而有利于提高网络设备检测信息的可靠性。
在另一种可选的实施方式中,发送端为网络设备,所述发送端将所述待发送数据分别映射在所述至少两个连续资源单元上发送之前,所述方法还包括:发送端根据接收端个数确定联合星座图;发送端根据所述联合星座图对待发送给各接收端的信息比特进行调制,获得待发送的原始数据。可见,该实施方式能够针对多用户场景,采用联合星座发送,有利于改善各终端设备检测信息的可靠性。
一种可选的实施方式中,所述第一基准数据在所述至少两个连续资源上映射的位置和密度是预定义的或信令配置的;或者,所述至少两个连续资源中所述预设时频资源块的大小和位置是预定义的或信令配置的,即通过配置预设时频资源块在至少两个连续资源中的大小和位置,以确定第一基准数据映射的位置和密度。可选的,以预设时频资源块为单位 配置基准数据所在的位置和密度,另外,至少两个连续资源中可包括一个或多个预设时频资源块,各预设时频资源块之间基准数据所在的位置和密度可相同或不同。
可选的,至少两个连续资源中基准数据的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,至少两个连续资源中预设时频资源块的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示;以及每个预设时频资源块中基准数据的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,本文所述的“个数和位置”也可替换为“密度和位置”。
一种可选的实施方式中,所述第二基准数据在所述至少两个连续资源上映射的位置和密度是预定义的或信令配置的;或者,所述预设时频资源块中所述预设资源的大小和位置是预定义的或信令配置的,或者,所述预设时频资源块中所述预设资源的个数和位置是预定义的或信令配置的。
第二方面,本申请还提供一种数据传输方法,该数据传输方法是从接收端的角度进行阐述的,该接收端可以为网络设备或终端设备。该方法中,接收端接收至少两个连续资源上的数据;接收端将所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。可见,该数据传输方法中,数据解调不需要依赖DMRS的信道估计,而是基于连续资源上接收的数据进行差分解码获得原始数据的,从而有利于避免高维MIMO系统中,因为DMRS开销激增所导致的频谱效率提升受限的问题。
可选的,该数据传输方法中,至少两个连续资源可以为连续两个符号,或连续的两个子载波或连续的两个资源单元(resource element,RE)。其中,“连续的”也可以称为相邻的。连续或相邻可包括物理资源上的连续或相邻,以及虚拟资源上的连续或相邻。可选的,连续资源包括物理资源上绝对连续的资源,也包括物理资源上不是绝对连续的资源。例如,天线端口(port)0对应的子载波包括第1、3、5、7、9、11个子载波,天线端口(port)1对应的子载波包括第2、4、6、8、10、12个子载波,针对天线端口0,至少两个连续资源包括第1、3、5、7、9、11个子载波,接收端可依次对第1、3、5、7、9、11个子载波上接收的数据进行差分解码,获得原始数据;针对天线端口1,至少两个连续资源包括第2、4、6、8、10、12个子载波,接收端可依次对第2、4、6、8、10、12个子载波上接收的数据进行差分解码,获得原始数据。
一种可选的实施方式中,所述至少两个连续资源包括第一资源和第二资源,所述第二资源是与所述第一资源连续的资源;所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行差分解码获得的。
一种可选的实施方式中,所述第二资源是与所述第一资源连续的符号,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行时域上的差分解码获得的。
另一种可选的实施方式中,所述第二资源是与所述第一资源连续的子载波,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行频域上的差分解码获得的。
又一种可选的实施方式中,所述第二资源是与所述第一资源连续的资源单元,所述第二资源与所述第一资源对应的资源单元可以在时域连续,也可以在频域连续,所述第二资 源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源接收的数据进行组合域上的差分解码获得的。
一种可选的实施方式中,所述至少两个连续资源包括一个或多个预设时频资源块,所述预设时频资源块中起始资源上接收的数据为第一基准接收数据,所述第一基准接收数据用于对与所述起始资源连续的资源上接收的数据进行差分解码。可选的,通过配置预设时频资源块在至少两个连续资源中的大小和位置,以确定第一基准数据映射的位置和密度。本文中,以预设时频资源块为单位阐述基准数据所在的位置和密度,另外,至少两个连续资源中可包括一个或多个预设时频资源块,各预设时频资源块之间基准数据所在的位置和密度可相同或不同。
一种可选的实施方式中,所述预设时频资源块中一个或多个预设资源上接收的数据为第二基准接收数据;所述第二基准数据用于结合所述第一基准接收数据估计两个连续子载波之间的相位旋转信息。
一种可选的实施方式中,所述预设时频资源块的时域维度小于或等于相干时间。在一种可选的实施方式中,所述预设时频资源块的频域维度小于或等于相干带宽。在一种可选的实施方式中,所述预设时频资源块包括一个或多个资源块RB。可见,该实施方式有利于保证至少两个连续资源单元上的系统响应是相同的,非时变的。
一种可选的实施方式中,所述接收端为终端设备,所述方法还包括:所述接收端接收星座调制参数,所述星座调制参数包括接收端个数、调制阶数和接收端索引号;所述接收端根据所述星座调制参数,对所述至少两个连续资源单元上的原始数据进行解调,获得信息比特。可见,该实施方式能够针对多用户场景,差异化不同终端设备的星座调制方式来实现数据的解调,从而有利于提高各终端设备检测信息的可靠性。
一种可选的实施方式中,所述接收端为网络设备,所述方法还包括:所述接收端根据发送端个数确定联合星座图;所述接收端根据所述联合星座图对所述至少两个连续资源单元上的原始数据进行解调,获得每个发送端发送的信息比特。可见,该实施方式能够针对多用户场景,差异化不同终端设备数量的星座调制方式来实现数据的解调,从而有利于提高信息检测的可靠性。
一种可选的实施方式中,各预设时频资源块中起始资源上接收的第一基准接收数据还用于估计两个连续子载波之间的相位旋转信息。
一种可选的实施方式中,所述第一基准接收数据在所述至少两个连续资源中的位置和密度是预定义的或信令配置的;或者,所述至少两个连续资源中所述预设时频资源块的大小和位置是预定义的或信令配置的,即通过配置预设时频资源块在至少两个连续资源中的大小和位置,以确定第一基准数据映射的位置和密度。本文中,以预设时频资源块为单位阐述基准数据所在的位置和密度,另外,至少两个连续资源中可包括一个或多个预设时频资源块,各预设时频资源块之间基准数据所在的位置和密度可相同或不同。
一种可选的实施方式中,所述第二基准数据在所述至少两个连续资源上中的位置和密度是预定义的或信令配置的;或者,所述预设时频资源块中所述预设资源的大小和位置是预定义的或信令配置的。
第三方面,本申请还提供一种数据传输方法,以终端设备作为发送端,终端设备可接 收星座调制参数,所述星座调制参数包括接收端个数、调制阶数和接收端索引号;终端设备根据所述星座调制参数,对所述至少两个连续资源上的信息比特进行调制,获得待发送的原始数据。
第四方面,本申请还提供一种数据传输方法,以网络设备作为接收端,网络设备根据终端设备的个数确定联合星座图;并根据所述联合星座图对所述至少两个连续资源上接收的数据进行解调,获得每个终端设备发送的信息比特。
在一种可选的实施方式中,各终端设备可依据以下公式实现等功率或等误差假设的星座调制:
Figure PCTCN2020082632-appb-000001
其中,
Figure PCTCN2020082632-appb-000002
表示终端设备u在资源单元(m,k)上的原始数据;U表示所有终端设备的总个数;G表示终端设备u的调制阶数。
可选的,终端设备所对应的索引u和调制阶数可由网络设备或系统为其分配,比如采用信令指示的方式告知各终端设备。
相应地,网络设备可根据各终端设备根据公式(46)确定的星座图,获得联合星座图,以接收各终端设备发送的数据。
可见,第三方面、第四方面所述的数据传输方法能够针对多用户场景,考虑了多用户场景的差分检测方案,其组合星座设计方案保证了接收端可靠地对各终端设备发送的数据进行检测。
本申请所述的数据传输方法中,针对多用户场景的星座调制方法也可以与上述各实施例中所述的基于差分编码和差分解码的数据传输方法相结合,进行数据传输,其中的相关内容可以参见上述各方面所述,此处不再详述。
第五方面,本申请还提供了一种数据传输设备,该数据传输设备具有实现上述第一方面或第三方面所述的方法示例中发送端的部分或全部功能,比如数据传输设备的功能可具备本申请中发送端的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该数据传输设备的结构中可包括处理单元和通信单元,所述处理单元被配置为支持数据传输设备执行上述方法中相应的功能。所述通信单元用于支持数据传输设备与其他设备之间的通信。所述数据传输设备还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存数据传输设备必要的程序指令和数据。
一种实施方式中,所述数据传输设备包括:
处理单元,用于对至少两个连续资源上的原始数据分别进行差分编码,获得待发送数据;
通信单元,用于将所述待发送数据分别映射在所述至少两个连续资源上发送。
可见,数据传输设备不再基于DMRS进行数据传输,从而能够避免DMRS开销过大对系统频谱效率提升受限的问题,以及在高速移动或高时延场景中DMRS信道估计不准确所导致的性能损失较大的问题,因此,本申请有利于进一步的提升频谱效率,并控制高速移 动或高时延场景中数据解调的性能损失程度。
另一种实施方式中,所述数据传输设备包括:
通信单元,用于接收星座调制参数,所述星座调制参数包括接收端个数、调制阶数和接收端索引号;
处理单元,用于根据所述星座调制参数,对所述至少两个连续资源上的信息比特进行调制,获得待发送的原始数据。
可见,该实施方式考虑了多用户场景的差分检测方法,其组合星座设计方法有利于保证接收端可靠地对各终端设备发送的数据进行检测。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述数据传输设备包括:
处理器,用于对至少两个连续资源上的原始数据分别进行差分编码,获得待发送数据;
收发器,用于将所述待发送数据分别映射在所述至少两个连续资源上发送。
另一种实施方式中,所述数据传输设备包括:
收发器,用于接收星座调制参数,所述星座调制参数包括接收端个数、调制阶数和接收端索引号;
处理器,用于根据所述星座调制参数,对所述至少两个连续资源上的信息比特进行调制,获得待发送的原始数据。
第六方面,本申请还提供了一种数据传输设备,该数据传输设备具有实现上述第二方面或第四方面所述的方法示例中接收端的部分或全部功能,比如数据传输设备的功能可具备本申请中接收端的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该数据传输设备的结构中可包括处理单元和通信单元,所述处理单元被配置为支持数据传输设备执行上述方法中相应的功能。所述通信单元用于支持数据传输设备与其他设备之间的通信。所述数据传输设备还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存数据传输设备必要的程序指令和数据。
一种实施方式中,所述数据传输设备包括:
处理单元,用于接收至少两个连续资源上的数据;
通信单元,用于对所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。
可见,该数据传输设备不再依赖基于DMRS的信道估计,从而能够避免DMRS开销过大对系统频谱效率提升受限的问题,以及在高速移动或高时延场景中DMRS信道估计不准确所导致的性能损失较大的问题,因此,本申请有利于进一步的提升频谱效率,并控制高速移动或高时延场景中数据解调的性能损失程度。
另一种实施方式中,所述数据传输设备包括:
处理单元,用于根据终端设备的个数确定联合星座图;
所述处理单元,还用于根据所述联合星座图对所述至少两个连续资源上接收的数据进 行解调,获得每个终端设备发送的信息比特。
可见,该实施方式考虑了多用户场景的差分检测方法,其组合星座设计方法有利于保证接收端可靠地对各终端设备发送的数据进行检测。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述数据传输设备包括:
收发器,用于接收至少两个连续资源上的数据;
处理器,用于对所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。
另一种实施方式中,所述数据传输设备包括:
处理器,用于根据终端设备的个数确定联合星座图;
所述处理器,还用于根据所述联合星座图对所述至少两个连续资源上接收的数据进行解调,获得每个终端设备发送的信息比特。
第五方面、第六方面,在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
第七方面,本申请还提供一种处理器,用于执行上述第一方面至第四方面其中一方面中的各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以 与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第八方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述数据传输设备所用的计算机软件指令,其包括用于执行上述方法的第一方面或第三方面所涉及的程序。
第九方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述数据传输设备所用的计算机软件指令,其包括用于执行上述方法的第二方面或第四方面所涉及的程序。
第十方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第三方面所述的方法。
第十一方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第四方面所述的方法。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持数据传输设备实现第一方面或第三方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存发送端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持数据传输设备实现第二方面或第四方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存接收端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四方面,一种通信系统,该通信系统包括:上述各设备。例如,该通信系统包括:两个数据传输设备,其中一个数据传输设备执行上述第一方面或第一方面的可选的实施方式所描述的方法,另一个数据传输设备执行上述第二方面或第二方面的可选的实施方式所描述的方法;或者,其中一个数据传输设备执行上述第三方面或第三方面的可选的实施方式所描述的方法,另一个数据传输设备执行上述第四方面或第四方面的可选的实施方式所描述的方法。
附图说明
图1是本申请实施例提供的一种通信系统的示意图;
图2a是本申请实施例提供的高移动场景下一种性能损失对比示意图;
图2b是本申请实施例提供的高时延场景下一种性能损失对比示意图;
图3是本申请实施例提供的一种数据处理过程的示意图;
图4是本申请实施例提供的一种数据传输方法的流程示意图;
图5是本申请实施例提供的一种时频资源中时域上差分编码、差分解码的示意图;
图6是本申请实施例提供的一种时频资源中频域上差分编码、差分解码的示意图;
图7是本申请实施例提供的一种多预设时频资源块中频域上差分编码、差分解码的示 意图;
图8是本申请实施例提供的另一种多预设时频资源块中频域上差分编码、差分解码的示意图;
图9是本申请实施例提供的一种预设时频资源块中基于多个基准数据的差分编码、差分解码的示意图;
图10是本申请实施例提供的另一种预设时频资源块中基于多个基准数据的差分编码、差分解码的示意图;
图11是本申请实施例提供的又一种预设时频资源块中基于多个基准数据的差分编码、差分解码的示意图;
图12是本申请实施例提供的一种多预设时频资源块中基于多个基准数据的差分编码、差分解码的示意图;
图13是本申请实施例提供的一种时频资源中组合域上差分编码、差分解码的示意图;
图14是本申请实施例提供的一种多预设时频资源块中组合域的差分编码、差分解码的示意图;
图15是本申请实施例提供的另一种多预设时频资源块中组合域的差分编码、差分解码的示意图;
图16是本申请实施例提供的一种多预设时频资源块中基于多个基准数据的组合域上差分编码、差分解码的示意图;
图17是本申请实施例提供的终端设备102的一种星座示意图;
图18是本申请实施例提供的终端设备103的一种星座示意图;
图19是本申请实施例提供的网络设备的一种联合星座示意图;
图20是本申请实施例提供的三个终端设备的一种联合星座示意图;
图21是本申请实施例提供的四个终端设备的一种联合星座示意图;
图22是本申请实施例提供的一种多用户场景的数据传输方法的示意图;
图23是本申请实施例提供的另一种性能损失对比示意图;
图24是本申请实施例提供的一种数据传输装置的结构示意图;
图25是本申请实施例提供的另一种数据传输设备的结构示意图;
图26是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
本申请实施例提供了一种数据传输方法及相关设备,能够采用差分编码进行数据传输,避免DMRS开销过大使得频谱效率提升受限。
为了能够更好地理解本申请实施例,下面对本申请实施例可应用的通信系统进行说明。
请参见图1,图1是本申请实施例提供的一种通信系统的示意图。如图1所示,该通信系统包括网络设备和至少一个终端设备。图1以该通信系统包括网络设备101、终端设备102和终端设备103为例。
本申请实施例可应用于独立组网,即未来网络中部署的新的基站、回程链路以及核心 网等通信系统中,也可应用非独立组网等各种通信系统中。
例如,本申请实施例可用于第五代(5th generation,5G)系统,也可以称为新空口(new radio,NR)系统,或者第六代(6th generation,6G)系统或未来的其他通信系统;或者还可用于设备到设备(device to device,D2D)系统,机器到机器(machine to machine,M2M)系统、长期演进(long term evolution,LTE)系统等等。
本申请实施例中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等;还可以为5G、6G甚至7G系统中使用的设备,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的网络设备的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或微微网络设备(Picocell),或毫微微网络设备(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)。
本申请实施例中,终端设备可包括但不限于:用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。再比如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
目前,广覆盖和大容量已成为通信系统的主要特征,多输入多输出(Multi-input Multi-output,MIMO)作为更大维度的多天线系统,利用空间维度的资源,可以在不增加系统带宽的前提下,使信号在空间获得阵列增益、复用和分集增益以及干扰抵消增益,从而成倍地提升通信系统的容量和频谱效率。例如,在长期演进(Long Term Evolution,LTE)系统中,系统便可以在发送端和接收端利用多天线支持高达8层的数据传输。在5G中,天线维度可支持到1024甚至更高,正交数据流数也由8提升到了12。
然而,MIMO优势获得的前提为多天线系统的信道状态信息(Channel State Information,CSI)的精确获取。CSI的精确获取主要依赖于参考信号(Reference Signal,RS)的发送和可靠估计。参考信号分布于时频二维空间中的不同的资源单元(Resource Element,RE)上,具有已知的幅度和相位。在MIMO系统中,各根发送天线(虚拟天线或物理天线)具有独立的数据信道,基于已知的参考信号,接收机针对每根发送天线进行信道估计,并基于此还原发送数据。信道估计是为了补偿信道衰落和噪声而重建接收信号的过程,它利用发送 机与接收机已知的参考信号来追踪信道的时域和频域变化。例如,为了实现高阶多天线系统的数据解调,系统定义了解调参考信号(Demodulation Reference Signal,DMRS),其中,DMRS用于物理下行共享信道(Physical Downlink Share Channel,PDSCH)的解调。
随着天线维度的进一步增加和传输流数的增加,其开销会也会成倍增加。例如,5G系统中支持多达12端口的DMRS,来辅助数据解调,其资源开销约是14%。因此该DMRS设计规则将会成为系统频谱效率进一步提升的瓶颈。
为了解决该问题,本申请提供一种数据传输方法,该数据传输方法是基于差分编码的非相干传输方法,有利于将DMRS信道估计与数据解调进行解耦,避免DMRS开销过大对系统频谱效率提升受限的影响以及对DMRS依赖所导致的数据解调性能损失。该数据传输方法可应用于上行传输中,也可应用于下行传输中,也就是说,本文所述的发送端可为终端设备,也可以为网络设备,接收端可为网络设备,也可以为终端设备。
在高移动场景,DMRS信道估计不准确会导致性能损失较大,例如,如图2a所示,在100km/h、180km/h的高移动速度场景,同一信噪比的情况下,基于DMRS信道估计的误符号率大于本申请实施例采用的非基于DMRS信道估计的误符号率,即基于DMRS信道估计的数据解调性能损失很大,而本申请实施例所述的非基于DMRS信道估计的数据解调性能损失相对较小。另外,在高频选场景中DMRS信道估计不准确也会带来较大的性能损失。如图2b所示,在中等速度移动,中高时延扩展信道中,如时延为100ns、1000ns场景中,在同一信噪比的情况下,基于DMRS信道估计的误符号率大于非基于DMRS信道估计的误符号率,即基于DMRS信道估计的数据解调性能比本申请实施例所述的非基于DMRS信道估计的数据解调性能的损失更大。
请参阅图3,图3是本申请实施例提供的一种数据处理过程的示意图,如图3所示,发送端需要对待发送的数据进行串并转换(serial-to-parallel conversion,S-to-P)、N点离散傅里叶变换(N-Point Discrete Fourier Transform,N-Point DFT)、子载波映射(subcarrier mapping)、M点离散傅里叶反变换(M-Point Inverse Discrete Fourier Transform,M-Point IDFT)、并串转换(parallel-to-serial conversion,P-to-S)、增加循环前缀(Cyclic Prefix,CP)以及数模转换(digital to analog converter,DAC)等处理,获得射频信号进行发送;通过信道(channel)传输;接收端接收数据,并对接收的数据执行对应的逆操作,如模数转换(analog to digital converter,ADC)、去除CP、S-to-P、DFT、子载波解映射(Subcarrier De-mapping)、M-Point IDFT、P-to-S以及检测(detect)等,获得原始数据。
如图3所示,将离散傅里叶变换后的数据称为资源单元上的原始数据,记为
Figure PCTCN2020082632-appb-000003
其中,m表示该资源单元对应的符号,k表示该资源单元对应的子载波。本申请实施例中,发送端可在子载波映射处理中,对原始数据
Figure PCTCN2020082632-appb-000004
进行差分编码,获得待发送数据为
Figure PCTCN2020082632-appb-000005
发送端可将该数据
Figure PCTCN2020082632-appb-000006
映射在相应的符号和子载波上发送。具体的,如图3所示,发送端可对数据
Figure PCTCN2020082632-appb-000007
进行IDFT、P-to-S、增加CP以及DAC等处理,获得射频信号进行发送。
相应地,接收端对接收的数据进行ADC、去除CP等处理后,可获得资源单元上接收的数据为
Figure PCTCN2020082632-appb-000008
进而,接收端在子载波解映射处理中,对数据
Figure PCTCN2020082632-appb-000009
进行差分解码,可获得原始数据
Figure PCTCN2020082632-appb-000010
请参阅图4,图4是本申请实施例提供的一种数据传输方法的流程示意图,基于图3 所示的数据处理过程,如图4所示,该数据传输方法可包括以下步骤:
201、发送端将至少两个连续资源上的原始数据进行差分编码,获得待发送数据;
202、发送端将所述待发送数据分别映射在所述至少两个连续资源上发送。
203、接收端接收至少两个连续资源上的数据;
204、接收端将所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。
可见,本申请实施例利用差分编码以及差分解码,获得该至少两个连续资源上的数据,从而避免依赖DMRS信道估计进行数据解调所导致的频谱效率提升问题,有利于进一步的改善系统频谱效率。另外,由于至少两个连续资源上的系统响应相近,因此,也能够保证数据解调的可靠性。
本申请实施例中,所述至少两个连续资源为至少两个连续符号、或为至少两个连续子载波、或为至少两个连续资源单元。即资源可为一个符号、或一个子载波、或一个资源单元RE。
一种可选的实施方式中,至少两个连续资源包括第一资源和第二资源,所述第二资源是与所述第一资源连续的资源;所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行差分编码获得的。相应地,对于接收端,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行差分解码获得的。
其中,该至少两个连续资源包括一个或多个预设时频资源块,或者该至少两个连续资源所在的带宽中包括一个或多个预设时频资源块。以每个预设时频资源块为单位,对各资源上的原始数据依次进行差分编码。其中,针对该预设时频资源块中的第一次差分编码需要采用第一基准数据。也就是说,所述预设时频资源块中起始资源上的待发送数据为第一基准数据,所述第一基准数据用于对与所述起始资源连续的资源上的原始数据进行差分编码。
例如,该预设时频资源块为一个资源块(resource block,RB),该RB中第1个子载波上可映射并发送第一基准数据,第2个子载波上的待发送数据是利用该第一基准数据对该第2个子载波上的原始数据进行差分编码获得的;进而,利用第2个子载波上的待发送数据计算第3个子载波上的待发送数据,…,直至获得第12个子载波上的待发送数据。
可见,第一基准数据并不携带信息,而是用于参与第一次差分编码,以依次获得连续资源上的待发送数据。
相应的,对于接收端,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行差分解码获得的。
所述预设时频资源块中起始资源上接收的数据为第一基准接收数据,所述第一基准接收数据用于对与所述起始资源连续的资源上接收的数据进行差分解码,也就是说,第一基准接收数据用于接收端进行第一次差分解码。
例如,以资源为子载波为例,RB中第1个子载波上发送的第一基准数据,通过信道传输,对于接收端来说为第一基准接收数据,接收端可根据该第一基准接收数据对第2个子载波上接收的数据进行差分解码,获得第2个子载波上的原始数据;进而,利用第2个子 载波上接收的数据对第3个子载波上接收的数据进行差分解码,获得第3个子载波上的原始数据,…,直至获得第12个子载波上的待发送数据。
所述第一基准数据所映射的资源可为预设时频资源块中的起始符号、起始子载波、或起始资源,以进行时域上的差分编码、差分解码,或进行频域上的差分编码、差分解码,或进行组合域上的差分编码、差分解码,具体可参见下文的详细举例。
本申请实施例中,该预设时频资源块为的时域维度小于或等于相干时间。在一种可选的实施方式中,所述预设时频资源块的频域维度小于或等于相干带宽。在一种可选的实施方式中,所述预设时频资源块包括一个或多个资源块RB。由于该预设时频资源块上的系统响应相近或相同,该实施方式有利于保证数据解调的可靠性。
所述第一基准数据所映射的资源为预设时频资源块中的起始符号,第一基准数据映射的位置和密度为该预设时频资源块中起始符号对应的所有资源单元。再例如,所述第一基准数据所映射的资源为预设时频资源块中的起始子载波,即第一基准数据映射的位置和密度为该预设时频资源块中起始子载波对应的各资源单元。又例如,所述第一基准数据所映射的资源为预设时频资源块中的起始资源单元,即第一基准数据映射的位置和密度为该预设时频资源块中的起始资源单元。
可选的,第一基准数据映射的位置和密度不限于上述所述的情况,可以是预定义的或是信令配置的。
在一种可选的实施方式中,该预设时频资源块中的一个或多个预设资源用于映射第二基准数据,所述第二基准数据用于估计两个连续子载波之间的相位旋转信息。从而,有利于对每个资源上接收的数据的相位进行调整。
可选的,第二基准数据所映射的资源可为预设时频资源块中的预设符号、预设子载波、预设资源。例如,第二基准数据所映射的资源可与第一基准数据所映射的资源相邻或间隔预设数量的符号或子载波或资源单元。
一种可选的实施方式中,第一资源、第二资源为时域上两个连续的符号,上述所述差分编码、差分解码可为时域上的差分编码、时域上的差分解码。另一种可选的实施方式中,第一资源、第二资源为频域上两个连续的子载波,上述所述差分编码、差分解码可为频域上的差分编码、频域上的差分解码。又一种可选的实施方式中,第一资源、第二资源可为时域上的两个连续资源单元、频域上的两个连续资源单元,所述差分编码、差分解码可为组合域上的差分编码、组合域上的差分解码,即该预设时频资源块上既存在时域上的差分编码、差分解码,也存在频域上的差分编码、差分解码。以下分别从该三种可选的实施方式的角度对本申请实施例进行进一步的阐述。
1、时域上的差分编码、差分解码
发送端可将至少两个连续符号上的原始数据进行差分编码,获得待发送数据;进而将待发送数据分别映射在该至少两个连续符号上发送。相应地,接收端接收至少两个连续符号上的数据;将该至少两个连续符号上的数据进行差分解码,获得该至少两个连续符号上的原始数据。
时域上的最小资源粒度为一个符号,频域上的最小资源粒度为一个子载波,资源单元可记为RE(m,k),m表示该资源单元对应的符号是第m个符号,k表示该资源单元对应 的子载波是第k个子载波。
假设第一资源为第m-1个符号,RE(m-1,k)表示第m-1个符号,第k个子载波所对应的资源单元,即RE(m-1,k)是第一资源中的一个RE;第二资源为第m个符号,RE(m,k)是第二资源中的一个RE;假设RE(m,k)上的原始数据为
Figure PCTCN2020082632-appb-000011
RE(m-1,k)上的待发送数据为
Figure PCTCN2020082632-appb-000012
那么,RE(m,k)上的待发送数据
Figure PCTCN2020082632-appb-000013
为:
Figure PCTCN2020082632-appb-000014
相应地,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行差分编码获得的,可以为:
Figure PCTCN2020082632-appb-000015
其中,K可为预设时频资源块中频率最大的一个子载波的顺序。
例如,如图5所示,假设预设时频资源块包括M个符号,K个子载波,第一基准数据记为
Figure PCTCN2020082632-appb-000016
第一基准数据可映射在预设时频资源块中的第1个符号上,用于参与第一次差分编码,以依次获得连续符号上的待发送数据,那么,该预设时频资源块上第2个符号上各资源单元{RE(2,k),k=1、2、…、K}上的待发送数据
Figure PCTCN2020082632-appb-000017
Figure PCTCN2020082632-appb-000018
分别为:
Figure PCTCN2020082632-appb-000019
相应地,该预设时频资源块上第3个符号上各资源单元{RE(3,k),k=1、2、…、K}上的待发送数据
Figure PCTCN2020082632-appb-000020
分别为:
Figure PCTCN2020082632-appb-000021
…,
根据图5所示的箭头方向,该预设时频资源块上第m个符号上各资源单元{RE(m,k),k=1、2、…、K}上的待发送数据
Figure PCTCN2020082632-appb-000022
分别为:
Figure PCTCN2020082632-appb-000023
…,
根据图5所示的箭头方向,该预设时频资源块上最后一个符号,即第M个符号上各资源单元{RE(M,k),k=1、2、…、K}上的待发送数据
Figure PCTCN2020082632-appb-000024
分别为:
Figure PCTCN2020082632-appb-000025
也就是说,公式(1)(2)表示:对于任意两个连续符号对应的RE之间,时域上靠后的RE上的待发送数据是基于时域上靠前RE的待发送数据的差分调制获得的。
相应地,接收端在至少两个连续符号上接收的数据,可包括:资源单元(m-1,k)上接收的
Figure PCTCN2020082632-appb-000026
资源单元(m,k)上接收的
Figure PCTCN2020082632-appb-000027
进而,接收端利用
Figure PCTCN2020082632-appb-000028
Figure PCTCN2020082632-appb-000029
进行差分解码,获得资源单元(m,k)上的原始数据。具体的,接收端可利用
Figure PCTCN2020082632-appb-000030
Figure PCTCN2020082632-appb-000031
进行差分解码,获得资源单元(m,k)上的判决因子
Figure PCTCN2020082632-appb-000032
Figure PCTCN2020082632-appb-000033
其中,V为接收端的天线数,t表示进行时域上的差分解码。该公式(7)可表示:对于任意连续或相邻的符号对应的RE之间,时域上靠后的RE上接收的数据与时域上靠前RE上接收的数据进行差分解码可获得判决因子。
进一步的,接收端可基于该判决因子
Figure PCTCN2020082632-appb-000034
获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000035
可以采用如下公式计算:
Figure PCTCN2020082632-appb-000036
其中,
Figure PCTCN2020082632-appb-000037
表示V趋于无穷大时,
Figure PCTCN2020082632-appb-000038
对应的接收数据;t表示时域上的差分解码;ρ t表示两个连续符号之间的时域相关性,d表示发送端的发送功率。可见,基于公式(8)可获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000039
相应地,所述第二资源上的原始数据
Figure PCTCN2020082632-appb-000040
是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行差分解码获得的,可以为:
Figure PCTCN2020082632-appb-000041
Figure PCTCN2020082632-appb-000042
例如,如图5所示,假设预设时频资源块包括M个符号,K个子载波,第一基准接收数据记为
Figure PCTCN2020082632-appb-000043
第一基准接收数据为预设时频资源块中的第1个符号上接收的数据,用于参与第一次差分解码,以依次获得连续符号上的原始数据,那么,该预设时频资源块上第2个符号上各资源单元{RE(2,k),k=1、2、…、K}上的原始数据
Figure PCTCN2020082632-appb-000044
Figure PCTCN2020082632-appb-000045
分别为:
Figure PCTCN2020082632-appb-000046
Figure PCTCN2020082632-appb-000047
相应地,该预设时频资源块上第3个符号上各资源单元{RE(3,k),k=1、2、…、K}上的原始数据
Figure PCTCN2020082632-appb-000048
分别为:
Figure PCTCN2020082632-appb-000049
Figure PCTCN2020082632-appb-000050
…,
根据图5所示的箭头方向,该预设时频资源块上第m个符号上各资源单元{RE(m,k),k=1、2、…、K}上的原始数据
Figure PCTCN2020082632-appb-000051
分别为公式(8)、公式(9)所示:
Figure PCTCN2020082632-appb-000052
Figure PCTCN2020082632-appb-000053
…,
根据图5所示的箭头方向,该预设时频资源块上最后一个符号,即第M个符号中各资源单元{RE(M,k),k=1、2、…、K}上的原始数据
Figure PCTCN2020082632-appb-000054
分别为:
Figure PCTCN2020082632-appb-000055
Figure PCTCN2020082632-appb-000056
也就是说,对于任意两个连续符号对应的RE之间,时域上靠后的RE上的原始数据是基于时域上靠前的RE上接收的数据进行差分调制获得的。
如图5所示,预设时频资源块中第一基准数据所在的位置和密度如图5所示,可为起始符号。第一基准接收数据是第一基准数据经过信道传输后,接收端接收的,故第一基准接收数据的位置和密度也如图5所示。该预设时频资源块可以小于或等于相干时间对应的时频资源块或一个RB对应的时频资源块。例如,若该预设时频资源块等于一个RB,则上述公式中M等于14,K等于12。
本申请实施例中,该预设时频资源块也可以称为第一基准数据映射的时间间隔,或者该第一基准数据所映射的两个符号之间的时间间隔范围或时间间隔。例如,预设时频资源块等于一个RB,那么该时间间隔范围可为一个资源块RB所占的14个符号。另外,该预设时频资源块或第一基准数据映射的时间间隔可通过显式或隐式指示的方式确定。也就是说,该第一基准数据在时域上所映射的位置和密度可以是显式或隐式指示的、预定义的、或信令配置的。
2、频域上的差分编码、差分解码
本申请实施例中,发送端可将至少两个连续子载波上的原始数据进行差分编码,获得待发送数据;进而将待发送数据分别映射在该至少两个连续子载波上发送。相应地,接收端接收至少两个连续子载波上的数据;将该至少两个连续子载波上的数据进行差分解码,获得该至少两个连续子载波上的原始数据。
假设第一资源为第k-1个子载波,RE(m,k-1)表示第m个符号,第k-1个子载波所对应的资源单元,即RE(m,k-1)是第一资源中的一个RE;第二资源为第k个子载波,RE(m,k)是第二资源中的一个RE;假设RE(m,k)上的原始数据为
Figure PCTCN2020082632-appb-000057
RE(m,k-1)上的待发送数据为
Figure PCTCN2020082632-appb-000058
那么,RE(m,k)上的待发送数据
Figure PCTCN2020082632-appb-000059
为:
Figure PCTCN2020082632-appb-000060
相应地,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行差分编码获得的,可以为:
Figure PCTCN2020082632-appb-000061
其中,M可为预设时频资源块中时域最靠后的一个符号的顺序。
例如,如图6所示,假设预设时频资源块包括M个符号,K个子载波,第一基准数据可映射在预设时频资源块中的第1个子载波上,用于参与第一次差分编码,以依次获得连 续符号上的待发送数据,那么,第一基准数据记为
Figure PCTCN2020082632-appb-000062
该预设时频资源块上第2个子载波上各资源单元{RE(m,2),m=1、2、…、M}上的待发送数据
Figure PCTCN2020082632-appb-000063
m=1、2、…、M}分别为:
Figure PCTCN2020082632-appb-000064
相应地,该预设时频资源块中第3个子载波中各资源单元{RE(m,3),m=1、2、…、M}上的待发送数据
Figure PCTCN2020082632-appb-000065
分别为:
Figure PCTCN2020082632-appb-000066
…,
根据图6所示的箭头方向,该预设时频资源块中第k个子载波中各资源单元{RE(m,k),m=1、2、2、3、…、M}上的待发送数据
Figure PCTCN2020082632-appb-000067
分别为:
Figure PCTCN2020082632-appb-000068
…,
根据图6所示的箭头方向,该预设时频资源块中最后一个子载波,即第K个子载波上各资源单元{RE(m,K),m=1、2、2、3、…、M}上的待发送数据
Figure PCTCN2020082632-appb-000069
Figure PCTCN2020082632-appb-000070
分别为如公式(17)所示:
Figure PCTCN2020082632-appb-000071
也就是说,公式(16)(17)表示:对于任意两个连续子载波分别对应的RE之间,频率较高的RE上的待发送数据是基于频率较低的RE的待发送数据的差分调制获得的。
相应地,接收端在至少两个连续子载波上接收的数据,可包括:资源单元(m,k-1)上接收的
Figure PCTCN2020082632-appb-000072
资源单元(m,k)上接收的
Figure PCTCN2020082632-appb-000073
进而,接收端利用
Figure PCTCN2020082632-appb-000074
Figure PCTCN2020082632-appb-000075
进行差分解码,获得资源单元(m,k)上的原始数据。
具体的,接收端可利用
Figure PCTCN2020082632-appb-000076
Figure PCTCN2020082632-appb-000077
进行差分解码,获得资源单元(m,k)上的判决因子
Figure PCTCN2020082632-appb-000078
Figure PCTCN2020082632-appb-000079
其中,V为接收端的天线数,f表示频域上的差分检测。该公式(21)可表示:对于任意连续或相邻的子载波对应的RE之间,频率较高的RE上接收的数据与频率较低的RE上接收的数据进行差分解码可获得判决因子。
进一步的,接收端可基于该判决因子获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000080
可选的,资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000081
可以采用如下公式计算:
Figure PCTCN2020082632-appb-000082
其中,
Figure PCTCN2020082632-appb-000083
表示V趋于无穷大时,
Figure PCTCN2020082632-appb-000084
对应的接收数据;ρ f表示两个连续子载波之间的频域相关性,exp(jθ f)表示两个连续子载波之间的相位旋转信息或相位变化信息,其中,在不进行相位估计情况下,即真实误差(real error,RE)下该exp(jθ f)等于1;在进行相位估计(phase evaluation,PE)下,该exp(jθ f)可基于第一基准数据或第二基准数据获得;d表示发送端的发送功率。可见,基于公式(22)可获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000085
相应地,所述第二资源上的原始数据
Figure PCTCN2020082632-appb-000086
是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行差分解码获得的,可以为:
Figure PCTCN2020082632-appb-000087
Figure PCTCN2020082632-appb-000088
例如,如图6所示,假设预设时频资源块包括M个符号,K个子载波,第一基准接收数据记为
Figure PCTCN2020082632-appb-000089
即第一基准接收数据为预设时频资源块中第1个子载波上接收的数据,用于参与第一次差分解码,以依次获得连续子载波上的原始数据,那么,该预设时频资源块上第2个子载波中各资源单元{RE(m,2),m=1、2、…、M}上的原始数据
Figure PCTCN2020082632-appb-000090
分别为:
Figure PCTCN2020082632-appb-000091
Figure PCTCN2020082632-appb-000092
相应地,该预设时频资源块中第3个子载波上各资源单元{RE(m,3),m=1、2、…、M}上的原始数据
Figure PCTCN2020082632-appb-000093
分别为:
Figure PCTCN2020082632-appb-000094
Figure PCTCN2020082632-appb-000095
…,
根据图6所示的箭头方向,该预设时频资源块上第k个子载波上各资源单元{RE(m,k),m=1、2、2、3、…、M}上的原始数据
Figure PCTCN2020082632-appb-000096
分别为如公式(23)、公式(24)所示:
Figure PCTCN2020082632-appb-000097
Figure PCTCN2020082632-appb-000098
…,
根据图6所示的箭头方向,该预设时频资源块上最后一个子载波,即第K个子载波中各资源单元{RE(m,K),m=1、2、2、3、…、M}上的原始数据
Figure PCTCN2020082632-appb-000099
Figure PCTCN2020082632-appb-000100
分别为:
Figure PCTCN2020082632-appb-000101
Figure PCTCN2020082632-appb-000102
也就是说,对于任意两个连续子载波中的RE之间,频率较高的RE上的原始数据是基于频率较低的RE上接收的数据进行差分调制获得的。
如图6所示,预设时频资源块中第一基准数据所在的位置和密度如图6所示,可为起始子载波(即第1个子载波)。第一基准接收数据是第一基准数据经过信道传输后,接收端接收的,故第一基准接收数据的位置和密度也如图6所示。该预设时频资源块的频域维度可以小于或等于相干带宽。例如,若假设该相干带宽为12个子载波,该预设时频资源块等于一个RB,则上述公式中M等于14,K等于12。
本申请实施例中,该预设时频资源块也可以称为第一基准数据映射的频率间隔,或者该第一基准数据所映射的两个子载波之间的频率间隔范围或频率间隔。例如,该频率间隔范围可为一个资源块RB所占的12子载波。另外,该预设时频资源块或第一基准数据映射的频率间隔可通过显式或隐式指示的方式确定。也就是说,该第一基准数据在频域上所映射的位置和密度可以是显式或隐式指示的、预定义的、或信令配置的。
可选的,至少两个连续资源包括多个预设时频资源块,针对每个预设时频资源块上的差分调制、差分解码可参考上述各实施方式的阐述。第一基准数据在每个预设时频资源块上映射的位置可均为起始子载波。可选的,不同预设时频资源块中所映射的基准数据可以相同或不同;不同预设时频资源块中所映射的基准数据还可以用于估计两个连续子载波之间的相位旋转信息。可见,该实施方式中,至少两个连续资源包括多个预设时频资源块时,各预设时频资源块可并行进行差分编码、差分解码等操作。
例如,如图7所示,假设至少两个连续资源为一个RB,包括两个预设时频资源块,每个预设时频资源块占14个符号,6个子载波。一个预设时频资源块中的起始子载波为第1个子载波,其上可映射一基准数据;另一个预设时频资源块中的起子载波为第7个子载波,其上映射另一基准数据,该两个基准数据可相同或不同,如图7所示,采用不同的填充图案进行表示。相应地,如图7所示的实线箭头方向,该两个预设时频资源块中,可分别以相应的基准数据为起始进行差分编码、差分解码。另外,如图7所示的虚线箭头方向,接收端可基于第1个子载波上的基准接收数据,第7个子载波上的基准接收数据,确定两个连续子载波之间的相位旋转信息。
再例如,如图8所示,假设至少两个连续资源为一个RB,包括三个预设时频资源块,每个预设时频资源块占14个符号,4个子载波。该RB中,一个预设时频资源块的起始子载波为第1个子载波,其上映射一基准数据;另一个预设时频资源块的起始子载波为第5个子载波,其上映射另一基准数据;又一个预设时频资源块的起始子载波为第9个子载波,其上映射又一基准数据,该三个基准数据可相同或不同,如图8所示,采用不同的填充图案进行表示。相应地,如图8所示的箭头方向,该三个预设时频资源块中,可分别以相应的基准数据为起始进行差分编码、差分解码。另外,如图8所示的虚线箭头方向,接收端可基于第1个子载波上的基准接收数据,第5个子载波上的基准接收数据,确定第1个子载波与第5个子载波之间的相位旋转信息;接收端可基于第1个子载波上的基准接收数据,第9个子载波上的基准接收数据,确定第1个子载波与第9个子载波之间的相位旋转信息;进而,利用第1个子载波与第5个子载波之间的相位旋转信息,以及第1个子载波与第9个子载波之间的相位旋转信息计算两个连续子载波之间的相位旋转信息。
可见,图8与图7相比,可以改善相位旋转信息估计的鲁棒性。
在另一种可选的实施方式中,预设时频资源块中的一个或多个预设资源上映射的待发送数据为第二基准数据,第二基准数据用于结合第一基准数据估计两个连续子载波之间的相位旋转信息。其中,预设时频资源块中该预设资源可为与起始资源连续的资源,或与起始资源距离一定间隔的资源。该预设资源可以为预设符号、预设子载波或预设资源单元。图9、图10以预设资源为预设子载波为例进行阐述。图11以预设资源单元为例进行阐述。
例如,如图9所示,假设至少两个连续资源为一个RB,包括一个预设时频资源块,占14个符号,12个子载波。该RB中,第1个子载波上映射第一基准数据,第2个子载波上映射第二基准数据,该两个基准数据可相同或不同,如图9所示,采用不同的填充图案进行表示。相应地,如图9所示的实线箭头方向,以第二基准数据所在的第2个子载波为起始进行差分编码、差分解码,或者以第一基准数据所在的第1个子载波为起始进行差分编码、差分解码。另外,如图9所示的虚线箭头方向,接收端可基于第1个子载波上的第一基准接收数据,第2个子载波上的第二基准接收数据,确定两个连续子载波之间的相位旋转信息。
再例如,如图10所示,假设至少两个连续资源为一个RB,包括一个预设时频资源块,占14个符号,12个子载波。该RB中,第1个子载波上映射第一基准数据,第2个子载波上映射第二基准数据,第3个子载波上映射第三基准数据,该三个基准数据可相同或不同,如图10所示,采用不同的填充图案进行表示。相应地,如图10所示的实线箭头方向,以第一基准数据所在的第1个子载波为起始,或以第二基准数据所在的第2个子载波为起始,或以第三基准数据所在的第3个子载波为起始进行差分编码、差分解码。另外,如图10所示的虚线箭头方向,接收端可基于第1个子载波上的第一基准接收数据,第2个子载波上的第二基准接收数据,确定第1个子载波与第2个子载波之间的相位旋转信息;基于第1个子载波上的第一基准数据,第3个子载波上的第三基准接收数据,确定第1个子载波与第3个子载波之间的相位旋转信息;进而,基于第1个子载波与第2个子载波之间的相位旋转信息、第1个子载波与第3个子载波之间的相位旋转信息确定两个连续子载波之间的相位旋转信息。
例如,如图11所示,假设至少两个连续资源为一个RB,包括一个预设时频资源块,占14个符号,12个子载波。该RB中,第1个子载波上映射第一基准数据,RE(1,2)和RE(8,2)映射第二基准数据,该两个基准数据可相同或不同,如图11所示,采用不同的填充图案进行表示。相应地,如图11所示的实线箭头方向,以第一基准数据所在的第1个子载波为起始进行差分编码、差分解码;或者,针对第1个符号和第8个符号上的各子载波,可以分别以第二基准数据所在的RE为起始进行差分编码、差分解码。另外,如图11所示的虚线箭头方向,接收端可基于第1个子载波上的第一基准数据,RE(1,2)和RE(8,2)上的第二基准数据,确定两个连续子载波之间的相位旋转信息。
在又一种可选的实施方式中,至少两个连续资源包括多个预设时频资源块,针对每个预设时频资源块上的差分调制、差分解码可参考上述各实施方式的阐述。第一基准数据在每个预设时频资源块上映射的位置可均为起始子载波。该多个预设时频资源块中的一个或多个预设时频资源块中的一个或多个预设资源上可映射第二基准数据,第二基准数据用于 结合第一基准数据估计两个连续子载波之间的相位旋转信息。不同预设时频资源块中所映射的第一基准数据也可以用于估计两个连续子载波之间的相位旋转信息。可见,该实施方式中,至少两个连续资源包括多个预设时频资源块时,各预设时频资源块可并行进行差分编码、差分解码等操作,另外,还能够改善估计的相位旋转信息的鲁棒性。
例如,如图12所示,假设至少两个连续资源为一个RB,包括两个预设时频资源块,每个时频资源块占14个符号,6个子载波。该RB中,第1个子载波上映射第一基准数据,第2个子载波上映射第二基准数据,第7个子载波上映射第三基准数据,该三个基准数据可相同或不同,如图12所示,采用不同的填充图案进行表示。相应地,如图12所示的实线箭头方向,以第一基准数据所在的第1个子载波为起始,与以第三基准数据所在的第7个子载波为起始,可并行进行差分编码、差分解码;或者,以第二基准数据所在的第2个子载波为起始,与以第三基准数据所在的第7个子载波为起始,并行进行差分编码、差分解码。另外,如图12所示的虚线箭头方向,接收端可基于第1个子载波上的第一基准接收数据,第2个子载波上的第二基准接收数据,确定第1个子载波与第2个子载波之间的相位旋转信息;基于第1个子载波上的第一基准数据,第7个子载波上的第三基准接收数据,确定第1个子载波与第7个子载波之间的相位旋转信息;进而,基于第1个子载波与第2个子载波之间的相位旋转信息、第1个子载波与第7个子载波之间的相位旋转信息确定两个连续子载波之间的相位旋转信息。
上述各实施方式中,除了第一基准数据外,预设时频资源块中还可以映射其他基准数据,有利于针对预设时频资源块中的所有符号进行相位追踪(即phase-trackers at each symbol)。并且,还可以以各基准数据及其所在的子载波为起始并行进行差分解码、差分编码,从而有利于保证数据解调的准确性同时,加快数据处理速度。
可选的,至少两个连续资源中基准数据的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,至少两个连续资源中预设时频资源块的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,本文所述的“个数和位置”也可替换为“密度和位置”。
可见,本申请实施例所述的频域差分编码、频域差分解码可不涉及DMRS的信道估计,从而有利于在各种复杂的信道场景中提供更鲁棒的解调性能。本申请实施例还避免了高昂的DMRS开销,避免了在高维MIMO系统中因为开销激增所导致的频谱效率提升受限的问题。另外,本申请实施例,如图6至图12中实线箭头所示,针对每个符号对应的各子载波,可并行进行差分解码等操作,从而有利于适用于低时延要求的传输场景中。
3、组合域上的差分编码、差分解码
本申请实施例中,发送端可将至少两个连续资源单元上的原始数据进行差分编码,获得待发送数据;进而将待发送数据分别映射在该至少两个连续资源单元上发送。相应地,接收端接收至少两个连续资源单元上的数据;将该至少两个连续子载波上的数据进行差分解码,获得该至少两个连续资源单元上的原始数据。
假设第一资源为RE(m,k-1);第二资源为RE(m,k),RE(m,k)上的原始数据为
Figure PCTCN2020082632-appb-000103
RE(m,k-1)上的待发送数据为
Figure PCTCN2020082632-appb-000104
那么,如上述公式(16)所述,RE(m,k)上的待发送数据
Figure PCTCN2020082632-appb-000105
为:
Figure PCTCN2020082632-appb-000106
该组合域上的差分编码是以资源单元为单位进行的,与上述如公式(2)时域上的差分编码以符号为单元进行的不同,也与上述如公式(17)频域上的差分编码以子载波为单位进行的不同。另外,假设预设时频资源块包括M个符号,K个子载波,那么,RE(m,K)上的待发送数据是利用RE(m-1,K)上的待发送数据进行时域差分编码获得的,如下公式所示,RE(m,K)上的待发送数据
Figure PCTCN2020082632-appb-000107
为:
Figure PCTCN2020082632-appb-000108
也就是说,组合域差分编码中,同一符号连续子载波之间各RE上的原始数据是利用频域差分编码的方式获得待发送数据的;同一子载波连续符号之间各RE上的原始数据是利用时域差分编码的方式获得待发送数据的。
例如,如图13所示,假设预设时频资源块包括M个符号,K个子载波,预设时频资源块中的起始资源单元为第1个符号,第1个子载波,用于映射第一基准数据,故第一基准数据记为
Figure PCTCN2020082632-appb-000109
用于参与第一次差分编码,以依次获得连续资源单元上的待发送数据,如图12中箭头所示,该预设时频资源块中与RE(1,1)连续或相邻的资源单元RE(1,2)上的待发送数据
Figure PCTCN2020082632-appb-000110
为:
Figure PCTCN2020082632-appb-000111
相应地,该预设时频资源块中与RE(1,2)连续的RE(1,3)上的待发送数据
Figure PCTCN2020082632-appb-000112
为:
Figure PCTCN2020082632-appb-000113
…,
根据图12所示的箭头方向,该预设时频资源块中资源单元{RE(m,k),k=1、2、…、K}上的待发送数据
Figure PCTCN2020082632-appb-000114
分别为:
Figure PCTCN2020082632-appb-000115
…,
根据图12所示的箭头方向,该预设时频资源块中RE(1,K)上的待发送数据
Figure PCTCN2020082632-appb-000116
为:
Figure PCTCN2020082632-appb-000117
进一步的,根据图12所示的箭头方向,该预设时频资源块中RE(2,K)上的待发送数据
Figure PCTCN2020082632-appb-000118
为:
Figure PCTCN2020082632-appb-000119
根据图12所示的箭头方向,该预设时频资源块中RE(2,K-1)上的待发送数据
Figure PCTCN2020082632-appb-000120
为:
Figure PCTCN2020082632-appb-000121
…,等等,直至该预设时频资源块中各RE的待发送数据确定完毕。可见,该实施例以RE为单位进行差分编码的。
相应地,接收端在至少两个连续资源单元上接收的数据,可包括:资源单元(m,k-1)上接收的
Figure PCTCN2020082632-appb-000122
资源单元(m,k)上接收的
Figure PCTCN2020082632-appb-000123
进而,接收端利用
Figure PCTCN2020082632-appb-000124
Figure PCTCN2020082632-appb-000125
进行差分解码,获得资源单元(m,k)上的原始数据。
具体的,接收端可利用
Figure PCTCN2020082632-appb-000126
Figure PCTCN2020082632-appb-000127
进行差分解码,获得资源单元(m,k)上的判决因子
Figure PCTCN2020082632-appb-000128
Figure PCTCN2020082632-appb-000129
其中,V为接收端的天线数,f表示频域上的差分解码。该公式(7)可表示:对于任意连续或相邻的RE之间,频率较高的RE上接收的数据与频率较低的RE上接收的数据进行差分解码可获得判决因子。
进一步的,接收端可基于该判决因子
Figure PCTCN2020082632-appb-000130
获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000131
Figure PCTCN2020082632-appb-000132
其中,
Figure PCTCN2020082632-appb-000133
表示V趋于无穷大时,
Figure PCTCN2020082632-appb-000134
对应的接收数据;ρ f表示两个连续子载波之间的频域相关性;exp(jθ f)表示两个连续子载波之间的相位旋转信息或相位变化信息,在不进行相位估计情况下,即真实误差(real error,RE)下该exp(jθ f)等于1;在进行相位估计(phase evaluation,PE)下,该exp(jθ f)可基于第一基准数据或第二基准数据获得;d表示发送端的发送功率。可见,基于公式(40)可获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000135
另外,接收端在至少两个连续资源单元上接收的数据,可包括:资源单元(m-1,K)上接收的
Figure PCTCN2020082632-appb-000136
资源单元(m,K)上接收的
Figure PCTCN2020082632-appb-000137
进而,接收端利用
Figure PCTCN2020082632-appb-000138
Figure PCTCN2020082632-appb-000139
进行差分解码,获得资源单元(m,k)上的原始数据。具体的,接收端可利用
Figure PCTCN2020082632-appb-000140
Figure PCTCN2020082632-appb-000141
进行差分解码,获得资源单元(m,k)上的判决因子
Figure PCTCN2020082632-appb-000142
Figure PCTCN2020082632-appb-000143
其中,V为接收端的天线数,t表示时域上的差分解码。该公式(38)可表示:对于任意连续或相邻的RE之间,频率较高的RE上接收的数据与频率较低的RE上接收的数据进行差分解码可获得判决因子。
进一步的,接收端可基于该判决因子
Figure PCTCN2020082632-appb-000144
获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000145
Figure PCTCN2020082632-appb-000146
其中,
Figure PCTCN2020082632-appb-000147
表示V趋于无穷大时,
Figure PCTCN2020082632-appb-000148
对应的接收数据;ρ t表示两个连续符号之间的时域相关性,d表示发送端的发送功率。可见,基于公式(41)(42)可获得资源单元(m,k)的原始数据
Figure PCTCN2020082632-appb-000149
也就是说,在组合域差分解码中,如公式(39)(40)所示,同一符号连续子载波之间各RE上的原始数据是利用频域差分解码的方式获得的;如公式(41)(42)所示,同一子载波连续符号之间各RE上的原始数据是利用时域差分解码的方式获得的。
例如,如图13所示,预设时频资源块中的起始资源单元“第1个符号,第1个子载波”接收的第一基准接收数据,记为
Figure PCTCN2020082632-appb-000150
用于参与第一次差分解码,以依次获得连续资源单元上的原始数据,如图13中箭头所示,该预设时频资源块中与RE(1,1)连续或相邻的资源单元RE(1,2)上的原始数据
Figure PCTCN2020082632-appb-000151
为:
Figure PCTCN2020082632-appb-000152
Figure PCTCN2020082632-appb-000153
相应地,该预设时频资源块中与RE(1,2)连续的RE(1,3)上的原始数据
Figure PCTCN2020082632-appb-000154
为:
Figure PCTCN2020082632-appb-000155
Figure PCTCN2020082632-appb-000156
…,
根据图13所示的箭头方向,该预设时频资源块中资源单元RE(1,K)上的原始数据
Figure PCTCN2020082632-appb-000157
为:
Figure PCTCN2020082632-appb-000158
Figure PCTCN2020082632-appb-000159
…,
根据图13所示的箭头方向,该预设时频资源块中第2个符号对应的RE(2,K)上的原始数据
Figure PCTCN2020082632-appb-000160
分别为:
Figure PCTCN2020082632-appb-000161
Figure PCTCN2020082632-appb-000162
…,等等,直至该预设时频资源块中各RE上的原始数据确定完毕。
可选的,至少两个连续资源包括多个预设时频资源块,针对每个预设时频资源块上的差分调制、差分解码可参考上述各实施方式的阐述。第一基准数据在每个预设时频资源块上映射的位置可均为起始资源单元。可选的,不同预设时频资源块中所映射的基准数据可以相同或不同;不同预设时频资源块中所映射的基准数据还可以用于估计两个连续子载波之间的相位旋转信息。可见,该实施方式中,至少两个连续资源包括多个预设时频资源块时,各预设时频资源块可并行进行差分编码、差分解码等操作。
例如,如图14所示,假设至少两个连续资源为一个RB,包括两个预设时频资源块,每个预设时频资源块占14个符号,6个子载波。一个预设时频资源块中的起始资源单元为RE(1,1),其上可映射一基准数据;另一个预设时频资源块中的起始资源单元为RE(1,7),其上映射另一基准数据,该两个基准数据可相同或不同,如图14所示,采用不同的填充图案进行表示。相应地,如图14所示的实线箭头方向,该两个预设时频资源块中,可分别以相应的基准数据为起始并行进行时域、频域的差分编码、差分解码。另外,如图14所示的虚线箭头方向,接收端可基于RE(1,1)上的基准接收数据,RE(1,7)上的基准接收数据,确定两个连续子载波之间的相位旋转信息。
再例如,如图15所示,假设至少两个连续资源为一个RB,包括三个预设时频资源块, 每个预设时频资源块占14个符号,4个子载波。该RB中,一个预设时频资源块的起始资源单元为RE(1,1),其上映射一基准数据;另一个预设时频资源块中起始的起始资源单元为RE(1,5),其上映射另一基准数据;又一个预设时频资源块中起始的起始资源单元为RE(1,9),其上映射又一基准数据,该三个基准数据可相同或不同,如图15所示,采用不同的填充图案进行表示。相应地,如图15所示的箭头方向,该三个预设时频资源块中,可分别以相应的基准数据为起始进行差分编码、差分解码。另外,如图15所示的虚线箭头方向,接收端可基于RE(1,1)上的基准接收数据,RE(1,5)上的基准接收数据,确定第1个子载波与第5个子载波之间的相位旋转信息;接收端可基于RE(1,1)上的基准接收数据,RE(1,9)上的基准接收数据,确定第1个子载波与第9个子载波之间的相位旋转信息;进而,利用第1个子载波与第5个子载波之间的相位旋转信息,以及第1个子载波与第9个子载波之间的相位旋转信息计算两个连续子载波之间的相位旋转信息。
可见,图15与图14相比,可以改善相位旋转信息估计的鲁棒性,并提高数据解调效率。
在另一种可选的实施方式中,预设时频资源块中的一个或多个预设资源单元上映射的待发送数据为第二基准数据,第二基准数据用于结合第一基准数据估计两个连续子载波之间的相位旋转信息。其中,预设时频资源块中该预设资源单元可为与起始资源单元连续的资源单元,或与起始资源单元距离一定间隔的资源单元。图16以预设资源单元为与起始资源单元连续的资源单元为例进行阐述。
例如,如图16所示,假设至少两个连续资源为一个RB,包括一个预设时频资源块,占14个符号,12个子载波。该RB中,RE(1,1)上映射第一基准数据,RE(1,2)上映射第二基准数据,该两个基准数据可相同或不同,如图16所示,采用不同的填充图案进行表示。相应地,如图16所示的实线箭头方向,以第二基准数据所在的RE(1,2)为起始,或以第一基准数据所在的RE(1,1)为起始,进行频域、时域的差分编码、差分解码。另外,如图16所示的虚线箭头方向,接收端可基于RE(1,1)上的第一基准接收数据,RE(1,2)上的第二基准接收数据,确定两个连续子载波之间的相位旋转信息。
可见,本申请实施例所述的组合域差分编码、差分解码可不涉及DMRS的信道估计,从而有利于在各种复杂的信道场景中提供更鲁棒的解调性能。本申请实施例还避免了高昂的DMRS开销,避免了在高维MIMO系统中因为开销激增所导致的频谱效率提升受限的问题。
另外,本申请实施例中基准数据在至少两个连续资源或预设时频资源块中的个数和位置除了如上述图5至图16所示外,还可以为其他图样。可选的,至少两个连续资源中基准数据的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,至少两个连续资源中预设时频资源块的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,预设时频资源块中基准数据的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,本文所述的“个数和位置”也可替换为“密度和位置”。
本申请还提供了一种数据传输方法,针对多用户场景,网络设备侧的星座图与配对的终端个数和调制阶数有关。例如,发送端为多个终端设备,接收端为网络设备,发送端的 星座图不同于接收端的星座图,且接收端的星座图与发送端的数目相关。如图22所示,需将待发送的信息比特进行星座调制,获得原始数据,进而基于差分编码等操作,获得各资源单元对应的待发送数据。相应地,对于接收端来说,接收端获得各资源对应的原始数据后,还需要进行星座解调等操作,以获得信息比特。其中,图22以网络设备具有V个天线为例进行阐述。
以发送端为终端设备,接收端为网络设备为例,终端设备可接收星座调制参数,所述星座调制参数包括接收端个数、调制阶数和接收端索引号;终端设备根据所述星座调制参数,对所述至少两个连续资源上的信息比特进行调制,获得待发送的原始数据。相应地,网络设备根据终端设备的个数确定联合星座图;并根据所述联合星座图对所述至少两个连续资源上接收的数据进行解调,获得每个终端设备发送的信息比特。
在一种可选的实施方式中,各终端设备可依据以下公式实现等功率或等误差假设的星座调制:
Figure PCTCN2020082632-appb-000163
其中,
Figure PCTCN2020082632-appb-000164
表示终端设备u在资源单元(m,k)上的原始数据;U表示所有终端设备的总个数;G表示终端设备u的调制阶数。可选的,终端设备所对应的索引u和调制阶数可由网络设备或系统为其分配,比如采用信令指示的方式告知各终端设备。
相应地,网络设备可根据各终端设备根据公式(51)确定的星座图,获得联合星座图,以接收各终端设备发送的数据。
在另一种可选的实施方式中,发送端为网络设备,接收端为终端设备的情况,网络设备可根据接收端的个数确定联合星座图,相应地,终端设备可根据自身的索引u、调制阶数以及总的接收端个数U,确定各自的星座图,以对接收的数据进行解调。
以图1所示的通信系统为例,终端设备102对应的索引u等于1,对应的调制阶数为2,根据上述公式(51)可获得的原始数据如图17所示的星座示意图;终端设备103对应的索引u等于2,对应的调制阶数也为2;那么根据上述公式(51)可获得的原始数据,如图18所示的星座示意图。那么,网络设备可基于图17、图18所示的星座图,获得联合星座图,如图19所示。
再例如,以发送端为3个终端设备为例,作为接收端的网络设备的联合星座示意图可入图20所示,其中,无法区分调制符号(non-distinguishable symbols)为接收端网络设备无法区分各终端设备的信息比特的调制符号,联合调制符号(joint symbols)可如图20所示。又例如,以发送端为4个终端设备为例,作为接收端的网络设备,其联合星座示意图中各联合调制符号可如图21所示。
可选的,本申请实施例也可以采用其他星座图的组合方式,但接收端的星座图不同于发送端的星座图,并且接收端的星座图根据UE个数,调制阶数,和UE的索引而改变。
本申请实施例所述的数据传输方法中,针对多用户场景的星座调制方法也可以与上述各实施例中所述的基于差分编码和差分解码的数据传输方法相结合,进行数据传输。如图22所示,针对U个发送端,每个发送端基于各自的星座图分别调制后获得的原始数据
Figure PCTCN2020082632-appb-000165
通过差分编码、快速傅里叶反变换、增加循环前缀等操作后,可通过天线发射出去。其中, 差分编码可为上述各实施例所述的时域差分编码、频域差分编码或组合域差分编码等。相应地,经过信道传输,接收端可将接收的数据进行去除循环前缀、快速傅里叶变换、差分解码以及利用合并器(combiner)对各载波或符号上的信息合并等操作可获得判决门限
Figure PCTCN2020082632-appb-000166
进而,获得各发送端所发送的原始数据
Figure PCTCN2020082632-appb-000167
相应地,上述各实施例中,终端设备作为发送端时,可基于上述所述的差分编码进行数据传输,网络设备作为接收端,可基于上述所述的差分解码等操作进行数据检测。例如,对于终端设备u来说,针对包括K个子载波和M个符号的预设时频资源块上的各资源单元,可采用上述时域差分编码中公式(2)变形的以下公式确定待发送数据:
Figure PCTCN2020082632-appb-000168
相应地,网络设备可采用上述时域差分解码中公式(6)、(7)变形的以下公式确定终端设备u发送的原始数据
Figure PCTCN2020082632-appb-000169
Figure PCTCN2020082632-appb-000170
Figure PCTCN2020082632-appb-000171
另一种可选的实施方式中,对于终端设备u来说,针对包括K个子载波和M个符号的预设时频资源块上的各资源单元,可采用上述频域差分编码中公式(17)变形的以下公式确定待发送数据:
Figure PCTCN2020082632-appb-000172
相应地,网络设备可采用上述频域差分解码中公式(23)、(24)变形的以下公式确定终端设备u发送的原始数据
Figure PCTCN2020082632-appb-000173
Figure PCTCN2020082632-appb-000174
Figure PCTCN2020082632-appb-000175
又一种可选的实施方式中,对于终端设备u来说,针对包括K个子载波和M个符号的预设时频资源块上的各资源单元:
针对同一子载波连续符号之间的各资源单元,可采用上述组合域差分编码中公式(32)变形的以下公式确定待发送数据:
Figure PCTCN2020082632-appb-000176
以及针对同一符号连续子载波之间的各资源单元,可采用上述组合域差分编码中公式(31)变形的以下公式确定待发送数据:
Figure PCTCN2020082632-appb-000177
相应地,针对同一子载波连续符号之间的各资源单元,网络设备可采用上述组合域差分解码中公式(41)、(42)变形的以下公式确定终端设备u发送的原始数据
Figure PCTCN2020082632-appb-000178
Figure PCTCN2020082632-appb-000179
Figure PCTCN2020082632-appb-000180
针对同一符号连续子载波之间的各资源单元,网络设备可采用上述组合域差分解码中公式(39)、(40)变形的以下公式确定终端设备u发送的原始数据
Figure PCTCN2020082632-appb-000181
Figure PCTCN2020082632-appb-000182
Figure PCTCN2020082632-appb-000183
另外,该部分的相关内容还可以参见上述各实施例的阐述,此处不再详述。
可见,上述各实施例中差分编码、差分解码可不涉及DMRS的信道估计,从而有利于在各种复杂的信道场景中提供更鲁棒的解调性能。本申请实施例还避免了高昂的DMRS开销,避免了在高维MIMO系统中因为开销激增所导致的频谱效率提升受限的问题,以及在高移动、高时延场景下DMRS信道估计误差较大所导致的解调性能损失较大的问题。
如图23左图所示,在同一信噪比的情况下,相干传输方案如前述的基于DMRS信道估计的误符号率要大于本申请实施例所述的单用户-相位估计(SU-PE)、多用户-真实误差(MU-RE)、多用户-相位估计(MU-PE)下差分编码、差分解码等数据传输方法的误符号率。如图23右图所示,在同一信噪比以及吞吐量增大到一定程度的情况下,相干传输方案如前述的基于DMRS信道估计的吞吐量要远小于本申请实施例所述的单用户-相位估计(SU-PE)、多用户-真实误差(MU-RE)、多用户-相位估计(MU-PE)下差分编码、差分解码等数据传输方法的吞吐量。因此,本申请实施例所述的数据传输方法在误码性能、吞吐量(或吞吐性能)相对于相干传输方案(Coherent Demodulation Scheme,CDS),多用户(MU)场景均可以获得较明显的性能增益。
上述本申请提供的实施例中,分别从发送端和接收端的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,发送端和接收端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图24,为本申请实施例提供的一种数据传输装置的结构示意图。图24所示的数据传输装置2400可包括通信单元2401和处理单元2402。通信单元2401可包括发送单元和接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元2401可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
数据传输装置2400可以是网络设备或终端设备,也可以是网络设备或终端设备中的装置。
一种实施方式中,数据传输装置2400包括通信单元2401和处理单元2402,可以执行上述各实施例中发送端的相关操作;
处理单元2402,用于对至少两个连续资源上的原始数据分别进行差分编码,获得待发送数据;
通信单元2401,用于将所述待发送数据分别映射在所述至少两个连续资源上发送;
可见,该数据传输装置进行数据解调时不需要依赖DMRS的信道估计,而是基于连续资源上发送的差分待发送数据进行数据解调的,从而有利于避免高维MIMO系统中,因为开销激增所导致的频谱效率提升受限的问题。
一种可选的实施方式中,所述至少两个连续资源包括第一资源和第二资源,所述第二资源是与所述第一资源连续的资源;所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行差分编码获得的。
可选的,所述第二资源是与所述第一资源连续的符号,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行时域上的差分编码获得的,从而有利于对整个符号上的原始数据进行集中处理。
可选的,所述第二资源是与所述第一资源连续的子载波,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行频域上的差分编码获得的,从而有利于对各符号上的原始数据进行并行处理,节省处理时延。
可选的,所述第二资源是与所述第一资源连续的资源单元,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行组合域上的差分编码获得的,有利于节省资源开销。
可选的,所述至少两个连续资源包括一个或多个预设时频资源块,所述预设时频资源块中起始资源用于映射第一基准数据,所述第一基准数据用于对与所述起始资源连续的资源上的原始数据进行差分编码。也就是说,第一基准数据的位置和密度以预设时频资源块为单位进行部署。
可选的,所述预设时频资源块中一个或多个预设资源用于映射第二基准数据;所述第二基准数据用于结合所述第一基准数据估计两个连续子载波之间的相位旋转信息。
可选的,各预设时频资源块中起始资源上的第一基准数据还用于估计两个连续子载波之间的相位旋转信息。
可选的,所述预设时频资源块的时域维度小于或等于相干时间。在一种可选的实施方式中,所述预设时频资源块的频域维度小于或等于相干带宽。在一种可选的实施方式中,所述预设时频资源块包括一个或多个资源块RB。
可选的,所述第一基准数据在所述至少两个连续资源上映射的位置和密度是预定义的或信令配置的;或者,所述至少两个连续资源中所述预设时频资源块的大小和位置是预定义的或信令配置的。
可选的,所述第二基准数据在所述至少两个连续资源上映射的位置和密度是预定义的或信令配置的;或者,所述预设时频资源块中所述预设资源的大小和位置是预定义的或信令配置的。
可选的,所述数据传输装置为终端设备,或终端设备中的装置,通信单元2401还用于接收星座调制参数,所述星座调制参数包括发送端个数、调制阶数和发送端索引号;处理单元2402还用于根据所述星座调制参数,对信息比特进行调制,获得至少两个连续资源上的原始数据。
可选的,所述数据传输装置为网络设备,或网络设备中的装置,处理单元2402还用于根据接收端个数确定联合星座图;处理单元2402还用于根据所述联合星座图对信息比特进 行调制,获得待发送的原始数据。
可见,该星座调制方式考虑了多用户场景的差分检测方案,其组合星座设计方案保证了接收端可靠地对各终端设备发送的数据进行检测。
其中,上述各实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
另一种实施方式中,数据传输装置2400包括通信单元2401和处理单元2402,可以执行上述各实施例中接收端的相关操作;
通信单元2401,用于接收至少两个连续资源上的数据;
处理单元2402,用于对所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。
可见,该数据传输装置进行数据解调不需要依赖DMRS的信道估计,而是基于连续资源上接收的数据进行差分解码获得原始数据的,从而有利于避免高维MIMO系统中,因为DMRS开销激增所导致的频谱效率提升受限的问题。
一种可选的实施方式中,所述至少两个连续资源包括第一资源和第二资源,所述第二资源是与所述第一资源连续的资源;所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行差分解码获得的。
一种可选的实施方式中,所述第二资源是与所述第一资源连续的符号,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行时域上的差分解码获得的。可见,该实施方式有利于对整个符号上接收的数据进行集中处理。
另一种可选的实施方式中,所述第二资源是与所述第一资源连续的子载波,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行频域上的差分解码获得的。可见,该实施方式有利于对各符号上接收的数据进行并行处理,节省处理时延。
又一种可选的实施方式中,所述第二资源是与所述第一资源连续的资源单元,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源接收的数据进行组合域上的差分解码获得的。
一种可选的实施方式中,所述至少两个连续资源包括一个或多个预设时频资源块,所述预设时频资源块中起始资源上接收的数据为第一基准接收数据,所述第一基准接收数据用于对与所述起始资源连续的资源上接收的数据进行差分解码。
一种可选的实施方式中,所述预设时频资源块中一个或多个预设资源上接收的数据为第二基准接收数据;所述第二基准数据用于结合所述第一基准接收数据估计两个连续子载波之间的相位旋转信息。可见,该实施方式有利于在频域选择性较大的场景下估计相位旋转信息,以改善数据解调性能。
一种可选的实施方式中,各预设时频资源块中起始资源上接收的第一基准接收数据还用于估计两个连续子载波之间的相位旋转信息。另外,各第一基准数据还可用于多个子载波并行进行差分编码、差分解码。
一种可选的实施方式中,所述预设时频资源块的时域维度小于或等于相干时间。在一种可选的实施方式中,所述预设时频资源块的频域维度小于或等于相干带宽。在一种可选的实施方式中,所述预设时频资源块包括一个或多个资源块RB。
一种可选的实施方式中,所述第一基准接收数据在所述至少两个连续资源中的位置和密度是预定义的或信令配置的;或者,所述至少两个连续资源中所述预设时频资源块的大小和位置是预定义的或信令配置的。也就是说,至少两个连续资源中基准数据的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。可选的,至少两个连续资源中预设时频资源块的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示;以及每个预设时频资源块中基准数据的个数和位置可通过信令配置、或标准约定、或采用不同类型的信令指示。
一种可选的实施方式中,所述第二基准数据在所述至少两个连续资源上中的位置和密度是预定义的或信令配置的;或者,所述预设时频资源块中所述预设资源的大小和位置是预定义的或信令配置的。
一种可选的实施方式中,所述数据传输装置为终端设备时,通信单元2401还用于接收端接收星座调制参数,所述星座调制参数包括接收端个数、调制阶数和接收端索引号;处理单元2402还用于根据所述星座调制参数,对所述至少两个连续资源上接收的数据进行解调,获得发送端所发送的信息比特。
另一种可选的实施方式中,所述数据传输装置为网络设备时,处理单元2402还用于根据发送端个数确定联合星座图;通信单元2401还用于根据所述联合星座图对所述至少两个连续资源上接收的数据进行解调,获得每个发送端发送的信息比特。
其中,上述各实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
请参阅图25,图25是本申请实施例提供的另一种数据传输设备的结构示意图。所述数据传输设备2500可以是网络设备,也可以是终端设备,也可以是支持终端设备或网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备或网络设备实现上述方法的芯片、芯片系统、或处理器等。该数据传输设备可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述数据传输设备2500可以包括一个或多个处理器2501。所述处理器2501可以是通用处理器或者专用处理器等。所述处理器2501可以用于对通信装置(如,终端设备或网络设备等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述数据传输设备2500中可以包括一个或多个存储器2502,其上可以存有指令2504,所述指令可在所述处理器2501上被运行,使得所述数据传输设备2500执行上述方法实施例中描述的方法。可选的,所述存储器2502中还可以存储有数据。所述处理器2501和存储器2502可以单独设置,也可以集成在一起。
可选的,所述数据传输设备2500还可以包括收发器2505、天线2506。所述收发器2505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
一种可选的实施方式中,所述数据传输设备2500执行上述方法实施例中发送端的相关操作,处理器2501可用于执行图4中的步骤201的操作;以及根据图5至图16所示的基准数据的位置和密度,进行差分编码等操作;收发器2505可以执行步骤202的操作,以对差分编码后的待发送数据进行发送。
另一种可选的实施方式中,所述数据传输设备2500执行上述方法实施例中接收端的相关操作,处理器2501可用于执行图4中的步骤204的操作;以及根据图5至图16所示的基准数据的位置和密度,进行差分解码、相位旋转信息估计等操作;收发器2505可以执行步骤203的操作,以接收各资源上的数据。
可见,数据传输设备进行数据解调时不需要依赖DMRS的信道估计,而是基于连续资源上发送的差分待发送数据进行数据解调的,从而有利于避免高维MIMO系统中,因为开销激增所导致的频谱效率提升受限的问题。
其中,数据传输设备其他的相关内容可参见上述方法实施例的相关内容或上述数据传输装置的相关操作。此处不再详述。
在另一种可能的设计中,该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,可选的,处理器2501可以存有指令2503,指令2503在处理器2501上运行,可使得所述通信装置2500执行上述方法实施例中描述的方法。指令2503可能固化在处理器2501中,该种情况下,处理器2501可能由硬件实现。
在又一种可能的设计中,通信装置2500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
以上实施例描述中的数据传输设备可以是网络设备或终端设备,但本申请中描述的数据传输设备的范围并不限于此,而且数据传输设备的结构可以不受图25的限制。数据传输设备可以是独立的设备或者可以是较大设备的一部分。例如所述数据传输设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图26所示的芯片的结构示意图。图26所示的芯片2600包括处理器2601和接口2602。其中,处理器2601的数量可以是一个或多个,接口2602的数量可以是多个。
对于芯片用于实现本申请实施例中发送端的功能的情况:
一种实施方式中,处理器2601,用于对至少两个连续资源上的原始数据分别进行差分编码,获得待发送数据;
接口2602,用于将所述待发送数据分别映射在所述至少两个连续资源上发送;
可选的,芯片还包括与处理器2601耦合的存储器2603,存储器2603用于存储终端设备必要的程序指令和数据。
可见,该芯片进行数据解调时不需要依赖DMRS的信道估计,而是基于连续资源上发送的差分待发送数据进行数据解调的,从而有利于避免高维MIMO系统中,因为开销激增所导致的频谱效率提升受限的问题。
其他可选的实施方式可参见上述方法实施例的相关内容、上述数据传输装置的相关内容,此处不再详述。
对于芯片用于实现本申请实施例中接收端的功能的情况:
接口2602,用于接收至少两个连续资源上的数据;
处理器2601,用于对所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。
可见,该芯片进行数据解调不需要依赖DMRS的信道估计,而是基于连续资源上接收的数据进行差分解码获得原始数据的,从而有利于避免高维MIMO系统中,因为DMRS开销激增所导致的频谱效率提升受限的问题。
其中,其他可选的实施方式的相关内容可参见上述方法实施例、上述数据传输装置的相关内容,此处不再详述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid  state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种数据传输方法,其特征在于,包括:
    发送端对至少两个连续资源上的原始数据分别进行差分编码,获得待发送数据;
    所述发送端将所述待发送数据分别映射在所述至少两个连续资源上发送。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个连续资源包括第一资源和第二资源,所述第二资源是与所述第一资源连续的资源;
    所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行差分编码获得的。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第二资源是与所述第一资源连续的符号,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行时域上的差分编码获得的;
    或者,所述第二资源是与所述第一资源连续的子载波,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行频域上的差分编码获得的;
    或者,所述第二资源是与所述第一资源连续的资源单元,所述第二资源上的待发送数据,是利用所述第一资源上的待发送数据对所述第二资源上的原始数据进行组合域上的差分编码获得的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述至少两个连续资源包括一个或多个预设时频资源块,所述预设时频资源块中起始资源用于映射第一基准数据,所述第一基准数据用于对与所述起始资源连续的资源上的原始数据进行差分编码。
  5. 根据权利要求4所述的方法,其特征在于,所述预设时频资源块中一个或多个预设资源用于映射第二基准数据;所述第二基准数据用于结合所述第一基准数据估计两个连续子载波之间的相位旋转信息。
  6. 根据权利要求4或5所述的方法,其特征在于,各预设时频资源块中起始资源上的第一基准数据还用于估计两个连续子载波之间的相位旋转信息。
  7. 根据权利要求4至6任一项所述的方法,其特征在于,
    所述预设时频资源块的时域维度小于或等于相干时间;或者,所述预设时频资源块的频域维度小于或等于相干带宽;或者,所述预设时频资源块包括一个或多个资源块。
  8. 根据权利要求4至7任一项所述的方法,其特征在于,所述第一基准数据在所述至少两个连续资源上映射的位置和密度是预定义的或信令配置的;
    或者,所述至少两个连续资源中所述预设时频资源块的大小和位置是预定义的或信令配置的。
  9. 根据权利要求5至8任一项所述的方法,其特征在于,所述第二基准数据在所述至少两个连续资源上映射的位置和密度是预定义的或信令配置的;
    或者,所述预设时频资源块中所述预设资源的大小和位置是预定义的或信令配置的。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述发送端为终端设备,所述方法还包括:
    所述发送端接收星座调制参数,所述星座调制参数包括发送端个数、调制阶数和发送 端索引号;
    所述发送端根据所述星座调制参数,对信息比特进行调制,获得至少两个连续资源上的原始数据。
  11. 根据权利要求1至9任一项所述的方法,其特征在于,所述发送端为网络设备,所述方法还包括:
    所述发送端根据接收端个数确定联合星座图;
    所述发送端根据所述联合星座图对信息比特进行调制,获得待发送的原始数据。
  12. 一种数据传输方法,其特征在于,包括:
    接收端接收至少两个连续资源上的数据;
    所述接收端对所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。
  13. 根据权利要求12所述的方法,其特征在于,所述至少两个连续资源包括第一资源和第二资源,所述第二资源是与所述第一资源连续的资源;
    所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行差分解码获得的。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第二资源是与所述第一资源连续的符号,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行时域上的差分解码获得的;
    或者,所述第二资源是与所述第一资源连续的子载波,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源上接收的数据进行频域上的差分解码获得的;
    或者,所述第二资源是与所述第一资源连续的资源单元,所述第二资源上的原始数据,是利用所述第一资源上接收的数据对所述第二资源接收的数据进行组合域上的差分解码获得的。
  15. 根据权利要求12至14任一项所述的方法,其特征在于,所述至少两个连续资源包括一个或多个预设时频资源块,所述预设时频资源块中起始资源上接收的数据为第一基准接收数据,所述第一基准接收数据用于对与所述起始资源连续的资源上接收的数据进行差分解码。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述预设时频资源块中一个或多个预设资源上接收的数据为第二基准接收数据;所述第二基准数据用于结合所述第一基准接收数据估计两个连续子载波之间的相位旋转信息。
  17. 根据权利要求15或16所述的方法,其特征在于,各预设时频资源块中起始资源上接收的第一基准接收数据还用于估计两个连续子载波之间的相位旋转信息。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,
    所述预设时频资源块的时域维度小于或等于相干时间;或者,所述预设时频资源块的频域维度小于或等于相干带宽;或者,所述预设时频资源块包括一个或多个资源块。
  19. 根据权利要求14至17任一项所述的方法,其特征在于,所述第一基准接收数据在所述至少两个连续资源中的位置和密度是预定义的或信令配置的;
    或者,所述至少两个连续资源中所述预设时频资源块的大小和位置是预定义的或信令配置的。
  20. 根据权利要求16至19任一项所述的方法,其特征在于,所述第二基准数据在所述至少两个连续资源上中的位置和密度是预定义的或信令配置的;
    或者,所述预设时频资源块中所述预设资源的大小和位置是预定义的或信令配置的。
  21. 根据权利要求12至20任一项所述的方法,其特征在于,所述接收端为终端设备,所述方法还包括:
    所述接收端接收星座调制参数,所述星座调制参数包括接收端个数、调制阶数和接收端索引号;
    所述接收端根据所述星座调制参数,对所述至少两个连续资源上接收的数据进行解调,获得发送端所发送的信息比特。
  22. 根据权利要求12至20任一项所述的方法,其特征在于,所述接收端为网络设备,所述方法还包括:
    所述接收端根据发送端个数确定联合星座图;
    所述接收端根据所述联合星座图对所述至少两个连续资源上接收的数据进行解调,获得每个发送端发送的信息比特。
  23. 一种数据传输设备,其特征在于,包括处理器、存储器和收发器;
    所述存储器,用于存储程序代码;
    所述处理器,用于从所述存储器中调用所述程序代码执行如权利要求1至11任一项所述的方法;
    所述收发器,用于将待发送数据分别映射在至少两个连续资源上发送。
  24. 一种数据传输设备,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收至少两个连续资源上的数据;
    所述存储器,用于存储程序代码;
    所述处理器,用于从所述存储器中调用所述程序代码执行如权利要求12至22任一项所述的方法。
  25. 一种芯片系统,其特征在于,包括:处理器和接口;
    所述处理器,用于对至少两个连续资源上的原始数据分别进行差分编码,获得待发送数据;
    所述接口,用于将所述待发送数据分别映射在所述至少两个连续资源上发送。
  26. 一种芯片系统,其特征在于,包括:处理器和接口;
    所述接口,用于接收至少两个连续资源上的数据;
    所述处理器,用于对所述至少两个连续资源上接收的数据分别进行差分解码,获得所述至少两个连续资源上的原始数据。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如权利要求1至11任一项所述的方法被实现。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如权利要求12至22任一项所述的方法被实现。
PCT/CN2020/082632 2020-03-31 2020-03-31 一种数据传输方法及相关设备 WO2021196048A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/082632 WO2021196048A1 (zh) 2020-03-31 2020-03-31 一种数据传输方法及相关设备
CN202080098224.4A CN115244904A (zh) 2020-03-31 2020-03-31 一种数据传输方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082632 WO2021196048A1 (zh) 2020-03-31 2020-03-31 一种数据传输方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021196048A1 true WO2021196048A1 (zh) 2021-10-07

Family

ID=77927277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082632 WO2021196048A1 (zh) 2020-03-31 2020-03-31 一种数据传输方法及相关设备

Country Status (2)

Country Link
CN (1) CN115244904A (zh)
WO (1) WO2021196048A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197639A (zh) * 2006-12-04 2008-06-11 华为技术有限公司 信号检测方法、系统以及发送装置、接收装置
CN102427387A (zh) * 2011-12-02 2012-04-25 北京邮电大学 光通信方法和系统
CN107295036A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 一种数据发送方法及数据合并设备
CN109150782A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 一种pucch的发送方法、检测方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489418A (en) * 1983-04-18 1984-12-18 At&T Bell Laboratories Differential encoding technique
CN110086743B (zh) * 2019-03-14 2021-04-02 西安电子科技大学 一种基于差分编码的短突发mimo-ofdm通信系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197639A (zh) * 2006-12-04 2008-06-11 华为技术有限公司 信号检测方法、系统以及发送装置、接收装置
CN102427387A (zh) * 2011-12-02 2012-04-25 北京邮电大学 光通信方法和系统
CN107295036A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 一种数据发送方法及数据合并设备
CN109150782A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 一种pucch的发送方法、检测方法及设备

Also Published As

Publication number Publication date
CN115244904A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US11658772B2 (en) Electronic device and communication method for non-orthogonal-resource based multiple access
CN113824481B (zh) 上行传输方法、装置、芯片系统及存储介质
CN111447048B (zh) 数据传输的方法、设备和系统
US11956112B2 (en) Electronic device and communication method
US11184056B2 (en) Generation node-B (gNB), user equipment (UE) and methods for interleaving in multiple-input multiple-output (MIMO) arrangements
CN107689845B (zh) 一种传输参考信号的方法、相关设备及通信系统
US10477555B2 (en) Device and method for non-orthogonal multiplexing
US10999108B2 (en) Wireless communication method, apparatus, and system
US20230353435A1 (en) Ofdm-based method and device for spreading and transmitting compressed data
WO2021196048A1 (zh) 一种数据传输方法及相关设备
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2021104020A1 (zh) 数据传输方法、发送设备和接收设备
WO2020259356A1 (zh) 通信方法和通信装置
CN116671208A (zh) 一种数据发送方法及装置
CN115039373B (zh) 解调参考信号dmrs的传输方法和装置
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2023039806A1 (zh) 数据传输方法、装置、设备及存储介质
WO2021217382A1 (zh) 信道跟踪方法及装置
CN116458128A (zh) 交织、解交织方法及装置
CN115413035A (zh) 一种多用户通信的方法及相关通信装置
CN117859297A (zh) 基于人工智能ai的信道估计方法和装置
CN117322099A (zh) 多天线面板协作传输的解调参考信号端口分配方法及装置
CN114631375A (zh) 参考信号传输方法及装置
CN117397340A (zh) 相干带宽的测量方法和装置
CN117322095A (zh) 多天线面板协作传输的解调参考信号端口分配方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928067

Country of ref document: EP

Kind code of ref document: A1