WO2019233129A1 - 图像采集 - Google Patents

图像采集 Download PDF

Info

Publication number
WO2019233129A1
WO2019233129A1 PCT/CN2019/076168 CN2019076168W WO2019233129A1 WO 2019233129 A1 WO2019233129 A1 WO 2019233129A1 CN 2019076168 W CN2019076168 W CN 2019076168W WO 2019233129 A1 WO2019233129 A1 WO 2019233129A1
Authority
WO
WIPO (PCT)
Prior art keywords
working mode
visible light
light
image
infrared
Prior art date
Application number
PCT/CN2019/076168
Other languages
English (en)
French (fr)
Inventor
赵国辉
李转强
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to EP19815122.7A priority Critical patent/EP3813348A4/en
Publication of WO2019233129A1 publication Critical patent/WO2019233129A1/zh
Priority to US17/112,683 priority patent/US11290646B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/188Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Definitions

  • the present disclosure relates to the field of image acquisition technology.
  • the camera at the traffic checkpoint collects and captures video images of passing vehicles. When capturing, it is generally required to be able to obtain information such as license plate color, license plate number, body color, and face information of the driver in the car.
  • the camera can be used with a visible light strobe device to achieve snapping.
  • the visible light strobe device is mainly used to supplement light.
  • infrared light flash devices are often used for supplementary light.
  • the infrared light flashing device when used to supplement the light, the image captured by the camera will appear color cast or black and white, which is not conducive to driver behavior and vehicle structured information (the vehicle structured information can include body color, license plate Information, etc.) for analysis, which does not meet the current requirements of traffic bayonet cameras.
  • vehicle structured information can include body color, license plate Information, etc.
  • the present disclosure provides an image acquisition method and system to provide a method capable of obtaining a captured image that does not have light pollution and meets requirements.
  • a first aspect of the present disclosure provides an image acquisition method, including:
  • the first working mode receiving visible light flash supplementary light, and controlling the first image sensor to perform visible light image acquisition to obtain a visible light image in the first working mode;
  • the second working mode receiving visible light non-flashing supplementary light and infrared supplementary light, controlling the first image sensor to perform visible light image acquisition to obtain a visible light image in the second operating mode, and controlling the second image sensor to perform infrared Image acquisition to obtain an infrared image, and performing fusion processing on the visible light image and the infrared image in the second working mode.
  • a second aspect of the present disclosure provides an image acquisition system, including:
  • a camera configured to include a first image sensor and a second image sensor
  • the camera controls a first image sensor for visible light image acquisition in a first working mode, controls a first image sensor for visible light image acquisition in a second working mode, and controls a second image sensor for infrared image acquisition. Performing fusion processing on the visible light image and the infrared image acquired in the second working mode;
  • Visible light strobe light supplement device the visible light strobe device is turned on in the first working mode, and turned off in the second working mode;
  • An infrared light supplement device the infrared light supplement device is turned off in the first working mode, and turned on in the second working mode;
  • a visible light non-flashing light compensation device the visible light non-flashing light compensation device is turned off in the first working mode and turned on in the second working mode.
  • the image acquisition method and system provided by the present disclosure, by setting a first working mode and a second working mode on a camera, and then controlling the camera to switch between the first working mode and the second working mode according to an event detection result; wherein, the camera In the first working mode, it receives visible light flashing supplementary light and controls the first image sensor for visible light image acquisition; in the second working mode, it receives visible light non-flashing supplementary light and infrared supplementary light, and controls the first image sensor for visible light.
  • FIG. 1 is a schematic structural diagram of a camera according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a flowchart of Embodiment 1 of an image acquisition method provided by the present disclosure.
  • FIG. 3 is a flowchart of a second embodiment of an image acquisition method provided by the present disclosure.
  • FIG. 4 is a schematic diagram of Embodiment 1 of an image acquisition system provided by the present disclosure.
  • FIG. 5 is a schematic diagram of a second embodiment of an image acquisition system provided by the present disclosure.
  • Fig. 6 is a schematic diagram of an image acquisition system according to an exemplary embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the image acquisition system shown in FIG. 6 operating during the day.
  • FIG. 8 is a schematic diagram when the image acquisition system shown in FIG. 6 works at night.
  • first, second, third, etc. may be used in this disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” as used herein can be interpreted as “at” or "when” or "in response to determination”.
  • the present disclosure provides a method capable of obtaining a captured image that satisfies requirements without light pollution.
  • FIG. 1 is a schematic structural diagram of a camera according to an exemplary embodiment of the present disclosure.
  • the camera provided by this embodiment includes a lens 11, a light splitting module 12 disposed on a light output path of the lens 11, and a first image sensor 13 and a second image sensor respectively disposed on different light output paths of the light splitting module 12. 14.
  • a polarizing plate 15 disposed between the spectroscopic module 12 and the first image sensor 13, and a chip 16 connected to the first image sensor 13 and the second image sensor 14, respectively.
  • the light splitting module 12 is configured to divide the light from the lens 11 into visible light and infrared light.
  • the visible light output from the spectroscopic module 12 is transmitted to the first image sensor 13 after being polarized by the polarizer 15; the infrared light output from the spectroscopic module 12 is transmitted to the second image sensor 14.
  • the first image sensor 13 is configured to acquire a visible light image based on the received visible light; the second image sensor 14 is configured to acquire an infrared image based on the received infrared light.
  • the camera provided in this embodiment has a first working mode and a second working mode.
  • the first working mode the second image sensor 14 is in a non-working state.
  • the camera receives visible light flashing supplementary light and controls the first image sensor 13 to perform visible light image acquisition.
  • the first image sensor 13 and the second image sensor 14 are both in an operating state.
  • the camera receives visible light flash supplementary light and infrared supplementary light, and controls the first image sensor 13 to perform visible light image acquisition.
  • the second image sensor 14 is controlled to perform infrared image acquisition, and fusion processing is performed on the visible light image acquired in the second working mode and the infrared image.
  • FIG. 2 is a flowchart of an embodiment of an image acquisition method provided by the present disclosure.
  • the image acquisition method can be applied to a camera or other control equipment, for example, it can be a computer.
  • the following description uses a camera as an example. Referring to FIG. 2, the method provided in this embodiment may include:
  • Fusion processing is performed on the visible light image and the infrared image in the second working mode.
  • the event detection result may include a point-in-time detection result or / and an environmental brightness detection result.
  • the event detection result includes a point-in-time detection result.
  • the control camera is switched from the second work mode to the first work mode, and when the second time point is detected, the control camera is switched from the first work mode to the second work mode.
  • the first time point and the second time point are set according to actual needs. In this embodiment, the specific values are not limited.
  • the first time point is 6:00 every day
  • the second time point is 18:00 every day.
  • the control camera is switched from the second working mode to the first working mode.
  • the control camera is switched from the first working mode to the second working mode.
  • the camera works in the first working mode
  • at night the camera works in the second working mode.
  • the event detection result includes an environmental brightness detection result.
  • the control camera is switched from the second working mode to the first operating mode, and when it is detected that the ambient brightness has fallen below a preset threshold, the camera is controlled to The first working mode is switched to the second working mode.
  • the preset threshold is set according to actual needs.
  • the specific value of the preset threshold is not limited. It should be noted that when it is detected that the ambient brightness rises to be greater than or equal to a preset threshold, at this time, it indicates that the current environment is changed from night to day, and the control camera is switched to the first working mode; further, when the ambient brightness is detected When it is lower than the preset threshold, it indicates that the current environment is changed from day to night, and the control camera is switched to the second working mode. Thus, during the day, the camera works in the first working mode, and at night, the camera works in the second working mode.
  • the event detection result includes a point-in-time detection result and an environmental brightness detection result.
  • the control camera when it is detected that the current time is later than the first time point and the current environment brightness is greater than or equal to a preset threshold, the control camera is switched from the second working mode to the first working mode; when it is detected that the current time is late At the second time point, when the current ambient brightness is less than a preset threshold, the camera is controlled to switch from the first working mode to the second working mode.
  • the camera works in the first working mode.
  • the camera receives visible light flash supplementary light, and controls the first image sensor to perform visible light image acquisition.
  • the camera works in the second working mode.
  • the camera receives visible light non-flashing fill light and infrared fill light, controls the first image sensor to perform visible light image acquisition, and controls the second image sensor to perform infrared image acquisition.
  • the visible light image and the infrared light image collected in the second working mode are subjected to fusion processing.
  • the fusion image obtained by performing fusion processing on the visible light image and the infrared light image is a color image, which solves the problem of using infrared supplementary light. The problem that the obtained image does not meet the requirements.
  • the infrared fill light includes an infrared flash fill light or an infrared constant bright fill light.
  • Visible light non-strobe fill light includes visible light strobe fill light or visible light bright fill light.
  • the method provided in this embodiment is to set a first working mode and a second working mode on a camera, and then control the camera to switch between the first working mode and the second working mode according to an event detection result; wherein the camera is in the first In the working mode, it receives visible light flashing supplementary light and controls the first image sensor to perform visible light image acquisition; in the second working mode, it receives visible light non-flashing supplemental light and infrared supplementary light, and controls the first image sensor to perform visible light image acquisition.
  • the second image sensor is controlled to perform infrared image acquisition, and fusion processing is performed on the collected visible light image and infrared image in the second working mode.
  • the camera in the first working mode, further controls the light entering the lens to be split and polarized to enter the first image sensor;
  • the camera In the second working mode, the camera also controls the light entering the lens to split and enter the first image sensor and the second image sensor.
  • the camera controls the light entering the lens to be split by the spectroscopic module, and the visible light obtained by the splitting is polarized by the polarizer and enters the first image sensor to control the first
  • the image sensor collects visible light images.
  • the camera controls the light entering the lens to be split by the spectroscopic module, and the visible light obtained by the splitting is entered into the first image sensor, and the infrared light obtained by the splitting is entered into the second image sensor to control the first image sensor to perform visible light.
  • Image acquisition controlling the second image sensor to perform infrared image acquisition.
  • the camera performs image signal processing ISP and encoding processing on the collected visible light image
  • the camera performs fusion processing on the visible light image and the infrared image
  • the camera performs ISP processing and encoding processing on the fused image.
  • the visible light image signal may be further subjected to ISP (Image Signal Processing, ISP) processing and encoding processing to meet actual needs.
  • ISP Image Signal Processing, ISP
  • the second working mode after the camera acquires a visible light image through the first image sensor, acquires an infrared image through the second image sensor, and performs fusion processing on the collected visible light image and infrared image collected in the second working mode, It is also possible to further perform ISP processing and encoding processing on the fused image after the fusion processing.
  • ISP Image Signal Processing
  • FIG. 3 is a flowchart of an embodiment of an image acquisition method provided by the present disclosure. Referring to FIG. 3, the method provided in this embodiment may include:
  • the flashing device has a visible light flashing mode and an infrared light flashing mode, which can be switched between the two flashing modes.
  • the flash strobe device when the event detection result includes a point-in-time detection result.
  • the flash strobe device when the first time point is detected, can be controlled to perform visible light strobe, so that the flash strobe device can perform visible light strobe in the above-mentioned first working mode; when the second time point is detected, the burst is controlled.
  • the flashing device performs infrared light flashing, so that the flashing device performs infrared light flashing in the second working mode.
  • the strobe device when it is detected that the ambient brightness has risen to be greater than or equal to a preset threshold, the strobe device can be controlled to perform visible light strobe, so that the strobe device can perform visible light strobe in the above-mentioned first working mode; When the brightness is lower than a preset threshold, the flashing device is controlled to perform infrared light flashing, so that the flashing device performs infrared light flashing in the second working mode.
  • the flashing device when it is detected that the current time is later than the first time point and the current ambient brightness is greater than or equal to a preset threshold, the flashing device is controlled to perform visible light flashing, so that the flashing device performs in the first working mode described above. Visible light strobe; when it is detected that the current time is later than the first time point and the current ambient brightness is less than a preset threshold, controlling the strobe device to perform infrared light strobe, so that the strobe device performs infrared light in the second working mode Strobe.
  • the method provided in this embodiment controls the camera to switch between the first working mode and the second working mode according to the event detection result, and controls the strobe device to perform visible light strobe in the first working mode according to the event detection result.
  • the strobe device In the above-mentioned second working mode, infrared light flashing is performed. In this way, not only the automatic control of the flash device can be realized, but also the flash device can be controlled to match the current working mode of the camera.
  • the visible light non-flashing device when the event detection result includes a point-in-time detection result.
  • the visible light non-flashing device when the first time point is detected, can be controlled to be turned off, so that the visible light non-flashing device is turned off in the first working mode; when the second time point is detected, the visible light non-flashing device is controlled.
  • the device is turned on, so that the visible light non-flashing device is turned on in the second working mode.
  • the method provided in this embodiment controls the camera to switch between the first working mode and the second working mode according to the event detection result, and controls the visible light non-flash device to be turned off in the first working mode according to the event detection result. Turn on in the second working mode. In this way, not only the automatic control of visible light non-flash devices can be realized, but also the visible light non-flash devices can be controlled to match the current working mode of the camera.
  • FIG. 4 is a schematic diagram of an embodiment of an image acquisition system provided by the present disclosure.
  • the system provided by this embodiment may include:
  • the camera 1 includes a first image sensor and a second image sensor; the camera controls the first image sensor for visible light image acquisition in the first working mode, and controls the first image sensor for visible light image acquisition in the second working mode, and controls The second image sensor performs infrared image acquisition, and performs fusion processing on the visible light image acquired in the second working mode and the infrared image;
  • Visible light strobe light supplement device 2 the visible light strobe device is turned on in the first working mode and is turned off in the second working mode;
  • the infrared light supplement device 3 is turned off in the first working mode and turned on in the second working mode;
  • the visible-light non-flash-light supplementing device 4 is turned off in the first working mode and turned on in the second working mode.
  • the infrared light supplement device 3 may be an infrared flash light supplement device or an infrared constant light supplement device.
  • the visible light non-flashing supplementary light device 4 may be a visible light strobe device or a visible light always-on device.
  • the visible light strobe light supplement device 2 and the infrared light supplement device 3 are integrated into one, for example, integrated in a strobe light, and the strobe light performs visible light strobe light supplement in the first working mode In the second working mode, the infrared light flash is supplemented.
  • the visible light flash light compensation device when the camera is in the first working mode during the day, the visible light flash light compensation device is turned on. In this way, the visible light flash light compensation device is used in conjunction with the camera to collect images. Further, at night, the camera is placed in the second working mode. At this time, the infrared light supplement device is turned on and the visible light non-flash strobe light supplement device is turned on. At this time, the infrared light supplement device and the visible light non-strobe light supplement device are used to cooperate with the camera. Get the image. In this way, not only the light pollution can be avoided, but also an image satisfying the requirements can be obtained.
  • FIG. 5 is a schematic diagram of an embodiment of an image acquisition system provided by the present disclosure.
  • the system provided by this embodiment further includes an event detection device 5 based on the above embodiment, and controls the camera 1 to switch between the first work mode and the second work mode according to the event detection result.
  • the event detection device 5 includes a time detection device or / and an ambient brightness detection device.
  • the event detection device can be arranged separately or integrated in the camera 1. In this embodiment, this is not limited. It should be noted that, for the specific implementation principle and implementation process of controlling the camera 1 to switch between the first working mode and the second working mode according to the event detection result, reference may be made to the description in the foregoing embodiment, and details are not described herein again.
  • an event detection device is provided, and the event detection device controls the camera to switch between the first working mode and the second working mode according to the event detection result. In this way, automatic control of the camera can be achieved.
  • the event detection device 5 also controls the visible light flash light supplement device 2 to be turned on in the first working mode and turned off in the second operation mode according to the event detection result; and controls the infrared light supplement device 3 to The first working mode is turned off and the second working mode is turned on; and the visible light non-flashing light compensation device 4 is turned off in the first working mode and turned on in the second working mode.
  • the system provided by this embodiment automatically controls the visible light strobe light supplement device, infrared light supplement device, and visible light non-flash light supplement device through an event detection device, so that the visible light strobe light supplement device, infrared light supplement device, and visible light non-flash light supplement device.
  • the strobe light supplement device works according to the current working mode of the camera.
  • Fig. 6 is a schematic diagram of an image acquisition system according to an exemplary embodiment of the present disclosure. Please refer to FIG. 6.
  • a visible light strobe light supplement device 2 and an infrared light supplement device 3 are integrated into a strobe light 60, and the strobe light 60 performs visible light explosion in a first working mode. Flash fill light, which performs infrared light burst fill light in the second working mode.
  • the visible light non-flash strobe light compensation device 4 is a visible light strobe device.
  • an event detection device is integrated into the camera 1.
  • FIG. 7 is a schematic diagram when the image acquisition system shown in FIG. 6 works during the day
  • FIG. 8 is a schematic diagram when the image acquisition system shown in FIG. 6 works at night.
  • the first working mode and controls the strobe light 60 to switch to a visible light strobe mode, and controls the visible light strobe device 4 to switch to an off state.
  • the camera acquires a visible light image based on the visible light in the environment, and obtains a video image.
  • the strobe light 60 is controlled to perform a strobe, and a visible light image is acquired based on the visible light emitted by the strobe light 60 to obtain a captured image.
  • the camera 1 controls the device to switch to the second working mode, and controls the strobe light 60 to switch to the infrared light burst.
  • the camera 1 collects the visible light image and the infrared light image based on the visible light emitted from the visible light strobe device 4 and the infrared light in the environment, and further performs fusion processing on the visible light image and the infrared light image to obtain a video image (the video image is a color image) ).
  • the strobe light is controlled to flash and the visible light strobe device is synchronized to flash.
  • an infrared image is acquired based on the infrared light emitted by the strobe light and the visible light emitted by the visible light strobe device.
  • visible light image and perform fusion processing on the collected visible light image and infrared light image to obtain a captured image (the captured image is a color image).
  • the image acquisition system provided in this embodiment provides an image acquisition system that can be adapted to both day and night, to avoid the problems of light pollution and the obtained images not meeting the requirements.
  • the structure of the dual image sensor camera 1 may be as shown in FIG. 1.
  • the dual-sensor camera 1 further includes a lens, a beam splitting module, and a polarization module.
  • the camera controls the light entering the lens to split and polarize and enter the first sensor in a first working mode;
  • the camera controls the light entering the lens to split into the first image sensor and the second image sensor under the second working mode.
  • the camera 1 controls the light entering the lens to be split by the spectroscopic module, and the visible light obtained by the splitting is polarized by the polarizer to enter the first image sensor to control the first image sensor.
  • An image sensor collects visible light images.
  • the camera controls the light entering the lens to be split by the spectroscopic module, and the visible light obtained by the splitting is entered into the first image sensor, and the infrared light obtained by the splitting is entered into the second image sensor to control the first image sensor to perform visible light.
  • Image acquisition controlling the second image sensor to perform infrared image acquisition.
  • the camera further includes an image processing device, wherein:
  • the image processing device is configured to perform image signal ISP processing and encoding processing on the visible light image in the first working mode, and perform ISP processing and fusion processing on the fused image after the fusion processing in the second working mode. Encoding processing.
  • the image processing apparatus may be integrated in the chip 16. In this embodiment, this is not limited.

Abstract

本公开提供一种图像采集方法和系统。本公开提供的图像采集方法,包括:根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换;在所述第一工作模式下接收可见光爆闪补光,并控制第一图像传感器进行可见光图像采集;在所述第二工作模式下接收可见光非爆闪补光和红外补光,控制第一图像传感器进行可见光图像采集,控制第二图像传感器进行红外图像采集,并对所述第二工作模式下采集的可见光图像和所述红外图像进行融合处理。

Description

图像采集 技术领域
本公开涉及图像采集技术领域。
背景技术
交通卡口用摄像机对通过的车辆进行视频图像采集和抓拍,在抓拍时,一般要求能够获取车牌颜色、车牌号码、车身颜色,车内驾驶员人脸信息等信息。可采用摄像机配合可见光爆闪装置的方式实现抓拍,可见光爆闪装置主要用于补光。
采用可见光爆闪装置进行补光时,可见光在夜晚存在光污染,会对司机产生影响,造成驾驶安全隐患。为避免上述问题,近年来,常采用红外光爆闪装置进行补光。
但是,当采用红外光爆闪装置进行补光时,摄像机抓拍到的图像会出现偏色或者是黑白的,不利于对驾驶员行为和车辆结构化信息(车辆结构化信息可以包括车身颜色、车牌信息等)进行分析,不满足目前的交通卡口摄像机的要求。
发明内容
有鉴于此,本公开提供一种图像采集方法和系统,以提供一种不存在光污染,且能够获得满足要求的抓拍图像的方法。
本公开第一方面提供一种图像采集方法,包括:
根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换;
在所述第一工作模式下,接收可见光爆闪补光,并控制第一图像传感器进行可见光图像采集,以获得所述第一工作模式下的可见光图像;
在所述第二工作模式下,接收可见光非爆闪补光和红外补光,控制第一图像传感器进行可见光图像采集以获得所述第二工作模式下的可见光图像,控制第二图像传感器进行红外图像采集以获得红外图像,以及对所述第二工作模式下的可见光图像和所述红外图像进行融合处理。
本公开第二方面提供一种图像采集系统,包括:
摄像机,其被构造为包括第一图像传感器和第二图像传感器;
所述摄像机在第一工作模式下控制第一图像传感器进行可见光图像采集,在第二工作模式下控制第一图像传感器进行可见光图像采集,并控制第二图像传感器进行红外图像采集,并对所述第二工作模式下采集的可见光图像和所述红外图像进行融合处理;
可见光爆闪补光装置,所述可见光爆闪装置在所述第一工作模式下开启,在所述第二工作模式下关闭;
红外补光装置,所述红外补光装置在所述第一工作模式下关闭,在所述第二工作模式下开启;
可见光非爆闪补光装置,所述可见光非爆闪补光装置在所述第一工作模式下关闭,在所述第二工作模式下开启。
本公开提供的图像采集方法和系统,通过在摄像机上设置第一工作模式和第二工作模式,进而根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换;其中,摄像机在第一工作模式下接收可见光爆闪补光,并控制第一图像传感器进行可见光图像采集;在第二工作模式下接收可见光非爆闪补光和红外补光,并控制第一图像传感器进行可见光图像采集,控制第二图像传感器进行红外图像采集,并对采集到的第二工作模式下的可见光图像和红外图像进行融合处理。这样,可提供一种同时适应于夜晚和白天的图像采集方法,以避免光污染或获得的抓拍图像不满足要求的问题。
附图说明
图1为本公开一示例性实施例示出的摄像机的结构示意图。
图2为本公开提供的图像采集方法实施例一的流程图。
图3为本公开提供的图像采集方法实施例二的流程图。
图4为本公开提供的图像采集系统实施例一的示意图。
图5为本公开提供的图像采集系统实施例二的示意图。
图6为本公开一示例性实施例示出的图像采集系统的示意图。
图7为图6所示图像采集系统工作在白天时的示意图。
图8为图6所示图像采集系统工作在夜晚时的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开提供一种不存在光污染,且能够获得满足要求的抓拍图像的方法。
下面给出几个具体的实施例,用于详细介绍本公开的技术方案。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
下面先简单介绍一下本公开的摄像机。具体的,图1为本公开一示例性实施例示出的摄像机的结构示意图。请参照图1,本实施例提供的摄像机,包括镜头11、设置在镜头11出光光路上的分光模块12、分别设置在分光模块12的不同出光光路上的第一图像传感器13和第二图像传感器14,设置在分光模块12和第一图像传感器13之间的偏振片15,以及分别与第一图像传感器13和第二图像传感器14连接的芯片16。分光模块12,用于将来自镜头11的光线分为可见光和红外光。自分光模块12输出的可见光经过偏振片15的偏振后被传入到第一图像传感器13;自分光模块12输出的红外光被传入到第二图像传感器14。第一图像传感器13,用于基于接收到的可见光采集可见光图像;第二图像传感器14,用于基于接收到的红外光采集红外图像。
请继续参照图1,本实施例提供的摄像机具有第一工作模式和第二工作模式。其中,在第一工作模式下,第二图像传感器14处于不工作状态,此时,摄像机接收可见光爆闪补光,并控制第一图像传感器13进行可见光图像采集。在第二工作模式下,第一图 像传感器13和第二图像传感器14均处于工作状态,此时,摄像机接收可见光爆闪补光和红外补光,并控制第一图像传感器13进行可见光图像采集,控制第二图像传感器14进行红外图像采集,并对上述第二工作模式下采集的可见光图像和上述红外图像进行融合处理。
下面详细介绍本公开提供的图像采集方法。
图2为本公开提供的图像采集方法的实施例的流程图。该图像采集方法可以应用于摄像机或其他控制设备,例如,可以为计算机。下面以摄像机为例进行说明。请参照图2,本实施例提供的方法,可以包括:
S201、根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换;其中,在上述第一工作模式下,
接收可见光爆闪补光,并控制第一图像传感器进行可见光图像采集,以获得第一工作模式下的可见光图像;
在上述第二工作模式下,
接收可见光非爆闪补光和红外补光,
控制第一图像传感器进行可见光图像采集,,以获得所述第二工作模式下的可见光图像
控制第二图像传感器进行红外图像采集,以获得红外图像,以及
对上述第二工作模式下的可见光图像和上述红外图像进行融合处理。
可选地,事件检测结果可以包括时间点检测结果或/和环境亮度检测结果。
一实施例中,事件检测结果包括时间点检测结果。本步骤中,当检测到第一时间点时,控制摄像机从第二工作模式切换为第一工作模式,当检测到第二时间点时,控制摄像机从第一工作模式切换为第二工作模式。
需要说明的是,第一时间点和第二时间点是根据实际需要设定的,本实施例中,不对其具体值进行限定。下面以第一时间点为每天6:00,第二时间点为每天18:00为例进行说明。本例中,当检测到当前时刻为6:00时,控制摄像机从第二工作模式切换为第一工作模式。当检测到当前时刻为18:00时,控制摄像机从第一工作模式切换为第二工作模式。这样,在白天,摄像机工作在第一工作模式,在夜晚,摄像机工作在第二工作模式。
另一实施例中,事件检测结果包括环境亮度检测结果。本步骤中,当检测到环境亮度升高到大于或等于预设阈值时,控制摄像机从第二工作模式切换为第一工作模式,当检测到环境亮度降低到小于预设阈值时,控制摄像机从第一工作模式切换为第二工作模式。
具体的,预设阈值是根据实际需要设定的,本实施例中,不对预设阈值的具体值进行限定。需要说明的是,当检测到环境亮度升高到大于或等于预设阈值时,此时,说明当前环境由夜晚变为白天,控制摄像机切换为第一工作模式;进一步地,当检测到环境亮度降低到小于预设阈值时,此时,说明当前环境由白天变为夜晚,控制摄像机切换为第二工作模式。这样,在白天,摄像机工作在第一工作模式,在夜晚,摄像机工作在第二工作模式。
在再一实施例中,事件检测结果包括时间点检测结果和环境亮度检测结果。例如,本步骤中,当检测到当前时刻晚于第一时间点,且当前环境亮度大于或等于预设阈值时,控制摄像机从第二工作模式切换为第一工作模式;当检测到当前时刻晚于第二时间点,且当前环境亮度小于预设阈值时,控制摄像机从第一工作模式切换为第二工作模式。
结合前面的描述,在白天,摄像机工作在第一工作模式下,此时,摄像机接收可见光爆闪补光,并控制第一图像传感器进行可见光图像采集。在夜晚,摄像机工作在第二工作模式下,此时,摄像机接收可见光非爆闪补光和红外补光,控制第一图像传感器进行可见光图像采集,控制第二图像传感器进行红外图像采集,并对上述第二工作模式下采集的可见光图像和红外光图像进行融合处理。这样,在夜晚,由于没有使用可见光爆闪补光,不会存在光污染的问题,此外,通过对上述可见光图像和红外光图像进行融合处理获得的融合图像为彩色图像,解决了采用红外补光时,获得的图像不满足要求的问题。
可选地,红外补光包括红外爆闪补光或红外常亮补光。可见光非爆闪补光包括可见光频闪补光或可见光常亮补光。
本实施例提供的方法,通过在摄像机上设置第一工作模式和第二工作模式,进而根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换;其中,摄像机在第一工作模式下接收可见光爆闪补光,并控制第一图像传感器进行可见光图像采集;在第二工作模式下接收可见光非爆闪补光和红外补光,并控制第一图像传感器进行可见光图像采集,控制第二图像传感器进行红外图像采集,并对采集到的第二工作模式下的可见光图像和红外图像进行融合处理。这样,可提供一种同时适应于夜晚和白天的图像 采集方法,以避免光污染或获得的抓拍图像不满足要求的问题。
可选地,在一实施例中,在上述第一工作模式下,摄像机还控制进入镜头的光线进行分光、偏振后进入上述第一图像传感器;
在上述第二工作模式下,摄像机还控制进入镜头的光线进行分光后进入上述第一图像传感器和上述第二图像传感器。
具体的,请继续参照图1,在第一工作模式下,摄像机控制进入镜头的光线经分光模块进行分光,并使分光得到的可见光经偏振片偏振后进入上述第一图像传感器,以控制第一图像传感器进行可见光图像采集。在第二工作模式下,摄像机控制进入镜头的光线经分光模块进行分光,并使分光得到的可见光进入第一图像传感器、分光得到的红外光进入第二图像传感器,以控制第一图像传感器进行可见光图像采集,控制第二图像传感器进行红外图像采集。
进一步地,在本公开一可能的实现方式中,在上述第一工作模式下,摄像机对采集到的可见光图像进行图像信号处理ISP和编码处理;
在上述第二工作模式下,摄像机对上述可见光图像和上述红外图像进行融合处理后,对融合图像进行ISP处理和编码处理。
具体的,在第一工作模式下,摄像机通过第一图像传感器采集到可见光图像之后,还可以进一步对该可见光图像信号进行ISP(Image Signal Processing,简称ISP)处理和编码处理,以满足实际需求。在第二工作模式下,摄像机通过第一图像传感器采集到可见光图像,通过第二图像传感器采集到红外图像,并对采集到的第二工作模式下采集的可见光图像和红外图像进行融合处理之后,还可以进一步对经融合处理后的融合图像进行ISP处理和编码处理。有关ISP处理和编码处理的具体实现过程和实现原理,此处不再赘述。
图3为本公开提供的图像采集方法的实施例的流程图。请参照图3,本实施例提供的方法,可以包括:
S301、根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换。
具体的,有关该步骤的具体实现过程和实现原理可以参见前面实施例中的描述,此处不再赘述。
S302、根据上述事件检测结果控制爆闪装置在上述第一工作模式下进行可见光爆闪, 在上述第二工作模式下进行红外光爆闪。
具体的,本实施例中,爆闪装置具有可见光爆闪模式和红外光爆闪模式,其可在两种爆闪模式之间进行切换。
结合上面的例子,当事件检测结果包括时间点检测结果时。此时,可在检测到第一时间点时,控制爆闪装置进行可见光爆闪,以使爆闪装置在上述第一工作模式下进行可见光爆闪;在检测到第二时间点时,控制爆闪装置进行红外光爆闪,以使爆闪装置在第二工作模式下进行红外光爆闪。
进一步地,当事件检测结果包括环境亮度检测结果时。此时,可在检测到环境亮度升高到大于或等于预设阈值时,控制爆闪装置进行可见光爆闪,以使爆闪装置在上述第一工作模式下进行可见光爆闪;在检测到环境亮度降低到小于预设阈值时,控制爆闪装置进行红外光爆闪,以使爆闪装置在第二工作模式下进行红外光爆闪。
此外,当事件检测结果包括时间点检测结果和环境亮度检测结果时。此时,可在检测到当前时刻晚于第一时间点,且当前环境亮度大于或等于预设阈值时,控制爆闪装置进行可见光爆闪,以使爆闪装置在上述第一工作模式下进行可见光爆闪;在检测到当前时刻晚于第一时间点,且当前环境亮度小于预设阈值时,控制爆闪装置进行红外光爆闪,以使爆闪装置在第二工作模式下进行红外光爆闪。
本实施例提供的方法,在根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换的同时,根据事件检测结果控制爆闪装置在上述第一工作模式下进行可见光爆闪,在上述第二工作模式下进行红外光爆闪。这样,不仅可实现爆闪装置的自动控制,还可以控制爆闪装置匹配摄像机当前工作模式进行工作。
S303、根据上述事件检测结果控制可见光非爆闪装置在上述第一工作模式下关闭,在上述第二工作模式下开启。
结合前面的描述,例如,一实施例中,当事件检测结果包括时间点检测结果时。此时,可在检测到第一时间点时,控制可见光非爆闪装置关闭,以使可见光非爆闪装置在第一工作模式下关闭;在检测到第二时间点时,控制可见光非爆闪装置开启,以使可见光非爆闪装置在第二工作模式下开启。
本实施例提供的方法,在根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换的同时,根据事件检测结果控制可见光非爆闪装置在上述第一工作模式下关闭,在上述第二工作模式下开启。这样,不仅可实现可见光非爆闪装置的自动控 制,还可以控制可见光非爆闪装置匹配摄像机当前工作模式进行工作。
前面对本公开提供的图像采集方法进行了介绍,下面对本公开提供的图像采集系统进行介绍:
图4为本公开提供的图像采集系统的实施例的示意图。请参照图4,本实施例提供的系统,可以包括:
摄像机1,包括第一图像传感器和第二图像传感器;上述摄像机在第一工作模式下控制第一图像传感器进行可见光图像采集,在第二工作模式下控制第一图像传感器进行可见光图像采集,并控制第二图像传感器进行红外图像采集,并对上述第二工作模式下采集的可见光图像和上述红外图像进行融合处理;
可见光爆闪补光装置2;上述可见光爆闪装置在上述第一工作模式下开启,在上述第二工作模式下关闭;
红外补光装置3;上述红外补光装置在所述第一工作模式下关闭,在上述第二工作模式下开启;
可见光非爆闪补光装置4,上述可见光非爆闪补光装置在上述第一工作模式下关闭,在上述第二工作模式下开启。
具体的,有关摄像机的工作原理可以参见前面实施例中的描述,此处不再赘述。
可选地,红外补光装置3可以为红外爆闪补光装置或红外常亮补光装置。此外,可见光非爆闪补光装置4可以为可见光频闪装置或可见光常亮装置。
进一步地,一实施例中,可见光爆闪补光装置2和红外补光装置3集成于一体,例如集成在一个爆闪灯中,该爆闪灯在第一工作模式下进行可见光爆闪补光,在第二工作模式下进行红外光爆闪补光。
本实施例提供的系统,在白天,可让摄像机处于第一工作模式时,可见光爆闪补光装置开启,这样,通过可见光爆闪补光装置配合摄像机采集图像。进一步地,在夜晚,让摄像机处于第二工作模式,此时,红外补光装置开启,可见光非爆闪补光装置开启,此时,通过红外补光装置和可见光非爆闪补光装置配合摄像机获取图像。这样,不仅可避免光污染,而且,还能够获得满足要求的图像。
可选地,图5为本公开提供的图像采集系统的实施例的示意图。请参照图5,本实施例提供的系统,在上述实施例的基础上,还包括事件检测装置5,根据其事件检测结 果控制摄像机1在第一工作模式和第二工作模式之间进行切换。
可选地,事件检测装置5包括时间检测装置或/和环境亮度检测装置。该事件检测装置可以单独布置,也可以集成在摄像机1中。本实施例中,不对此作出限定。需要说明的是,有关根据事件检测结果控制摄像机1在第一工作模式和第二工作模式之间进行切换的具体实现原理和实现过程可以参见前面实施例中的描述,此处不再赘述。
本实施例提供的系统,通过设置事件检测装置,该事件检测装置根据其事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换。这样,可实现摄像机的自动化控制。
进一步地,事件检测装置5,还根据其事件检测结果控制可见光爆闪补光装置2在所述第一工作模式下开启,在所述第二工作模式下关闭;并控制红外补光装置3在所述第一工作模式下关闭,在所述第二工作模式下开启;以及控制可见光非爆闪补光装置4在所述第一工作模式下关闭,在所述第二工作模式下开启。
具体的,有关具体的控制原理和控制过程可以参见前面实施例中的描述,此处不再赘述。
本实施例提供的系统,通过事件检测装置来自动化控制可见光爆闪补光装置、红外补光装置、可见光非爆闪补光装置,以使可见光爆闪补光装置、红外补光装置、可见光非爆闪补光装置匹配摄像机当前工作模式进行工作。
下面给出一个具体的例子,用以详细说明本公开提供的图像采集系统
图6为本公开一示例性实施例示出的图像采集系统的示意图。请参照图6,本实施例提供的图像采集系统,可见光爆闪补光装置2和红外补光装置3集成于一爆闪灯60中,该爆闪灯60在第一工作模式下进行可见光爆闪补光,在第二工作模式下进行红外光爆闪补光。进一步地,本实施例中,可见光非爆闪补光装置4为可见光频闪装置。此外,本实施例提供的系统,摄像机1中集成有事件检测装置。
图7为图6所示图像采集系统工作在白天时的示意图,图8为图6所示图像采集系统工作在夜晚时的示意图。请同时参照图7和图8,例如,一实施例中,当摄像机检测到环境亮度升高到大于或等于预设阈值(白天),此时,请参照图7,摄像机1控制本设备切换为第一工作模式,并控制爆闪灯60切换为可见光爆闪模式,以及控制可见光频闪装置4切换为关闭状态。此时,摄像机基于环境中的可见光获取可见光图像,得到视频图像。进一步地,当检测到抓拍信号时,控制爆闪灯60进行爆闪,基于爆闪灯60 发射的可见光获取可见光图像,得到抓拍图像。
进一步地,当摄像机检测到环境亮度降低至小于预设阈值(夜晚),此时,请参照图8,摄像机1控制本设备切换为第二工作模式,并控制爆闪灯60切换至红外光爆闪模式,以及控制可见光频闪装置4切换为开启状态。此时,摄像机1基于可见光频闪装置4发射的可见光和环境中的红外光采集可见光图像和红外光图像,进而对可见光图像和红外光图像进行融合处理,得到视频图像(该视频图像为彩色图像)。进一步地,当检测到抓拍信号时,控制爆闪灯进行爆闪,并控制可见光频闪装置进行同步闪烁,此时,基于爆闪灯发射的红外光和可见光频闪装置发射的可见光获取红外图像和可见光图像,并对采集的可见光图像和红外光图像进行融合处理,得到抓拍图像(该抓拍图像为彩色图像)。
本实施例提供的图像采集系统,提供了一种可同时适应于白天和夜晚的图像采集系统,以避免光污染及获得的图像不满足要求的问题。
进一步地,本实施例提供的图像采集系统,双图像传感器摄像机1的结构可以如图1所示。请参照图1,该双传感器摄像机1还包括镜头、分光模块和偏振模块所述摄像机在第一工作模式下控制进入所述镜头的光线分光、偏振后进入所述第一传感器;
所述摄像机在所述第二工作模式下控制进入所述镜头的光线分光后进入所述第一图像传感器和所述第二图像传感器。
具体的,请继续参照图1,在第一工作模式下,摄像机1控制进入镜头的光线经分光模块进行分光,并使分光得到的可见光经偏振片偏振后进入上述第一图像传感器,以控制第一图像传感器进行可见光图像采集。在第二工作模式下,摄像机控制进入镜头的光线经分光模块进行分光,并使分光得到的可见光进入第一图像传感器、分光得到的红外光进入第二图像传感器,以控制第一图像传感器进行可见光图像采集,控制第二图像传感器进行红外图像采集。
进一步地,所述摄像机还包括图像处理装置,其中,
所述图像处理装置,用于在所述第一工作模式下对所述可见光图像进行图像信号ISP处理和编码处理;在所述第二工作模式下对经融合处理后的融合图像进行ISP处理和编码处理。
具体的,参照图1,一实施例中,该图像处理装置可集成在芯片16中。本实施例中,不对此作出限定。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (18)

  1. 一种图像采集方法,包括:
    根据事件检测结果控制摄像机在第一工作模式和第二工作模式之间进行切换;
    在所述第一工作模式下,
    接收可见光爆闪补光,并
    控制第一图像传感器进行可见光图像采集,以获得所述第一工作模式下的可见光图像;
    在所述第二工作模式下,
    接收可见光非爆闪补光和红外补光,
    控制第一图像传感器进行可见光图像采集,以获得所述第二工作模式下的可见光图像,
    控制第二图像传感器进行红外图像采集,以获得红外图像,以及
    对所述第二工作模式下的可见光图像和所述红外图像进行融合处理。
  2. 根据权利要求1所述的方法,其特征在于,所述事件检测结果包括:时间点检测结果或/和环境亮度检测结果。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对所述摄像机接收到的光进行分光处理;
    其中,在所述第一工作模式下,将通过所述分光处理获得的可见光进行偏振处理并导入所述第一图像传感器;
    在所述第二工作模式下,将通过所述分光处理获得的可见光导入所述第一图像传感器,并且将通过所述分光处理获得的红外光导入所述第二图像传感器。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一工作模式下,对采集到的所述可见光图像进行图像信号处理和编码处理;
    在所述第二工作模式下,对通过所述融合处理获得的所述融合图像进行图像信号处理和编码处理。
  5. 根据权利要求1所述的方法,其特征在于,所述方法进一步包括:
    根据所述事件检测结果,控制爆闪装置在所述第一工作模式下进行可见光爆闪,在所述第二工作模式下进行红外光爆闪。
  6. 根据权利要求1所述的方法,其特征在于,所述方法进一步包括:
    根据所述事件检测结果,控制可见光非爆闪装置在所述第一工作模式下关闭,在所述第二工作模式下开启。
  7. 根据权利要求1所述的方法,其特征在于,所述红外补光包括红外爆闪补光或红外常亮补光。
  8. 根据权利要求1所述的方法,其特征在于,所述可见光非爆闪补光包括可见光频闪补光或可见光常亮补光。
  9. 一种图像采集系统,包括:
    摄像机,其被构造为包括第一图像传感器和第二图像传感器;
    在第一工作模式下,所述摄像机
    控制第一图像传感器进行可见光图像采集,以获得所述第一工作模式下的可见光图像,
    在第二工作模式下,所述摄像机
    控制第一图像传感器进行可见光图像采集,以获得所述第二工作模式下的可见光图像,
    控制第二图像传感器进行红外图像采集,以获得红外图像,以及
    对所述第二工作模式下的可见光图像和所述红外图像进行融合处理;
    可见光爆闪补光装置,所述可见光爆闪装置在所述第一工作模式下开启,在所述第二工作模式下关闭;
    红外补光装置,所述红外补光装置在所述第一工作模式下关闭,在所述第二工作模式下开启;
    可见光非爆闪补光装置,所述可见光非爆闪补光装置在所述第一工作模式下关闭,在所述第二工作模式下开启。
  10. 根据权利要求9所述的系统,其特征在于,所述系统还包括:
    事件检测装置,根据其事件检测结果控制所述摄像机在所述第一工作模式和所述第二工作模式之间进行切换。
  11. 根据权利要求10所述的系统,其特征在于,所述事件检测装置包括时间检测装置或/和环境亮度检测装置;
    在所述时间检测装置检测到当前时刻晚于第一时间点或/和在所述环境亮度检测装置检测到当前环境亮度大于或等于预设阈值时,所述事件检测装置控制所述摄像机从第二工作模式切换为第一工作模式;
    在所述时间检测装置检测到当前时刻晚于第二时间点或/和在所述环境亮度检测装置检测到当前环境亮度小于所述预设阈值时,所述事件检测装置控制所述摄像机从第一工作模式切换为第二工作模式。
  12. 根据权利要求9所述的系统,其特征在于,所述摄像机还包括:
    镜头;
    分光模块,位于所述镜头与所述第一图像传感器和所述第二图像传感器之间,用于对进入所述镜头的光进行分光处理;
    在所述摄像机处于所述第二工作模式下时,所述分光模块输出的可见光被导入所述第一图像传感器,并且所述分光模块输出的红外光被导入所述第二图像传感器。
  13. 根据权利要求12所述的系统,其特征在于,在所述分光模块与所述第一图像传感器之间还设有偏振模块,
    其中,在所述摄像机处于所述第一工作模式下时,所述分光模块输出的可见光在被导入所述第一图像传感器之前,经由所述偏振模块进行偏振处理。
  14. 根据权利要求9所述的系统,其特征在于,所述摄像机还包括图像处理装置,其中,
    所述图像处理装置,用于在所述第一工作模式下对所述可见光图像进行图像信号处理和编码处理;在所述第二工作模式下对经所述融合处理后的所述融合图像进行图像信号处理和编码处理。
  15. 根据权利要求9所述的系统,其特征在于,所述可见光非爆闪补光装置包括可见光频闪装置或可见光常亮装置。
  16. 根据权利要求9所述的系统,其特征在于,所述红外补光装置包括红外爆闪装置或红外常亮装置。
  17. 根据权利要求9所述的系统,其特征在于,所述可见光爆闪装置和所述红外光补光装置集成于一体,以使得在所述第一工作模式下进行可见光爆闪补光,在所述第二工作模式下进行红外光爆闪补光。
  18. 根据权利要求9所述的系统,其特征在于,所述可见光爆闪补光装置响应于所述摄像机接收到的抓拍信号进行可见光爆闪补光。
PCT/CN2019/076168 2018-06-04 2019-02-26 图像采集 WO2019233129A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19815122.7A EP3813348A4 (en) 2018-06-04 2019-02-26 CAPTURING IMAGES
US17/112,683 US11290646B2 (en) 2018-06-04 2020-12-04 Image capturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810563129.1A CN110557526B (zh) 2018-06-04 2018-06-04 一种图像采集方法和系统
CN201810563129.1 2018-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/112,683 Continuation US11290646B2 (en) 2018-06-04 2020-12-04 Image capturing

Publications (1)

Publication Number Publication Date
WO2019233129A1 true WO2019233129A1 (zh) 2019-12-12

Family

ID=68735912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076168 WO2019233129A1 (zh) 2018-06-04 2019-02-26 图像采集

Country Status (4)

Country Link
US (1) US11290646B2 (zh)
EP (1) EP3813348A4 (zh)
CN (1) CN110557526B (zh)
WO (1) WO2019233129A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056839A (ja) * 2018-09-28 2020-04-09 パナソニック株式会社 撮像装置
CN112306405B (zh) * 2020-10-14 2021-09-17 宋协栋 应用大数据存储的电机驱动系统
US20220224844A1 (en) * 2021-01-11 2022-07-14 Michael Toth Multi-Spectral Imaging System for Mobile Devices
CN114827404B (zh) * 2022-04-07 2024-03-05 安徽蔚来智驾科技有限公司 车载图像采集系统、控制方法、车辆和存储介质
WO2024043353A1 (ko) * 2022-08-22 2024-02-29 엘지전자 주식회사 비디오 카메라 및 그 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150011098A (ko) * 2013-07-22 2015-01-30 현대모비스 주식회사 영상 처리 방법 및 이를 위한 위한 장치
CN106973241A (zh) * 2017-04-13 2017-07-21 合肥圣博瑞科技有限公司 智能卡口补光系统的控制方法
CN107370955A (zh) * 2017-08-21 2017-11-21 深圳市天视通电子科技有限公司 可自动切换日夜模式的网络摄像机、实现方法及监控系统
CN107580163A (zh) * 2017-08-12 2018-01-12 四川精视科技有限公司 一种双镜头黑光摄像机
CN107845083A (zh) * 2016-09-19 2018-03-27 杭州海康威视数字技术股份有限公司 分光融合的图像采集设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731854A (en) * 1986-07-17 1988-03-15 Perceptics Corporation Optical system for producing an image for a set of characters
US6650765B1 (en) * 2000-01-11 2003-11-18 Pulnix America, Inc. System for simultaneously imaging vehicles and their license plates
US20060269105A1 (en) * 2005-05-24 2006-11-30 Langlinais Ashton L Methods, Apparatus and Products for Image Capture
US8810651B2 (en) * 2007-09-26 2014-08-19 Honeywell International, Inc Pseudo-color covert night vision security digital camera system
US8749635B2 (en) * 2009-06-03 2014-06-10 Flir Systems, Inc. Infrared camera systems and methods for dual sensor applications
US8310377B2 (en) * 2009-08-24 2012-11-13 Optotraffic, Llc Mobile automated system for traffic monitoring
US8326142B2 (en) * 2010-02-12 2012-12-04 Sri International Optical image systems
US8704889B2 (en) * 2010-03-16 2014-04-22 Hi-Tech Solutions Ltd. Method and apparatus for acquiring images of car license plates
US9172913B1 (en) * 2010-09-24 2015-10-27 Jetprotect Corporation Automatic counter-surveillance detection camera and software
JP2013255144A (ja) * 2012-06-08 2013-12-19 Hitachi Consumer Electronics Co Ltd 撮像装置
TW201401186A (zh) * 2012-06-25 2014-01-01 Psp Security Co Ltd 人臉判斷系統以及方法
CN202887451U (zh) * 2012-10-26 2013-04-17 青岛海信网络科技股份有限公司 融合红外和可见光补光的电子警察系统
JP6264234B2 (ja) * 2014-09-02 2018-01-24 株式会社Jvcケンウッド 撮像装置、撮像装置の制御方法及び制御プログラム
KR101850795B1 (ko) * 2015-11-09 2018-04-20 엘지전자 주식회사 주차 수행 장치 및 차량
CN105407611A (zh) * 2015-12-15 2016-03-16 厦门市智联信通物联网科技有限公司 一种补光灯的远程智能控制系统
US10475171B2 (en) * 2016-01-22 2019-11-12 Hera Systems, Inc. Multi-camera imaging system for nanosatellites
CN106060364A (zh) * 2016-07-28 2016-10-26 浙江宇视科技有限公司 光学透雾彩色图像采集方法及摄像机
CN206865574U (zh) * 2017-03-30 2018-01-09 成都通甲优博科技有限责任公司 一种低照度环境下彩色图像获取装置
CN108111731A (zh) * 2017-12-27 2018-06-01 信利光电股份有限公司 一种摄像头模组
US10867193B1 (en) * 2019-07-10 2020-12-15 Gatekeeper Security, Inc. Imaging systems for facial detection, license plate reading, vehicle overview and vehicle make, model, and color detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150011098A (ko) * 2013-07-22 2015-01-30 현대모비스 주식회사 영상 처리 방법 및 이를 위한 위한 장치
CN107845083A (zh) * 2016-09-19 2018-03-27 杭州海康威视数字技术股份有限公司 分光融合的图像采集设备
CN106973241A (zh) * 2017-04-13 2017-07-21 合肥圣博瑞科技有限公司 智能卡口补光系统的控制方法
CN107580163A (zh) * 2017-08-12 2018-01-12 四川精视科技有限公司 一种双镜头黑光摄像机
CN107370955A (zh) * 2017-08-21 2017-11-21 深圳市天视通电子科技有限公司 可自动切换日夜模式的网络摄像机、实现方法及监控系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813348A4 *

Also Published As

Publication number Publication date
CN110557526A (zh) 2019-12-10
US11290646B2 (en) 2022-03-29
EP3813348A4 (en) 2021-07-14
CN110557526B (zh) 2021-03-23
US20210092295A1 (en) 2021-03-25
EP3813348A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019233129A1 (zh) 图像采集
CN113271400B (zh) 成像装置和电子设备
CN110557527B (zh) 一种摄像机及抓拍图片融合方法
KR101751362B1 (ko) 야간 카메라 영상 저장 장치 및 그 영상 저장 방법
US20100123395A1 (en) Headlamp control device for vehicle
JP2007142624A (ja) 車両搭載撮像装置
US20110035099A1 (en) Display control device, display control method and computer program product for the same
US8254010B2 (en) Imaging of a plurality of types of images based on light of a plurality of wavelength bands
US10124799B2 (en) Vehicle safety control apparatus and method using cameras
US11967228B2 (en) Peccancy monitoring system and peccancy monitoring method
JP2008258778A (ja) 撮像システム
TW201318422A (zh) 低耗能之行車紀錄器
US20170353642A1 (en) Driver state monitoring system
CN108248508A (zh) 驾驶安全显示方法、系统、介质和电子设备
TW201724839A (zh) 攝影裝置
US20160167581A1 (en) Driver interface for capturing images using automotive image sensors
KR20160146051A (ko) 교통 사고 감시 장치
JP2023019828A (ja) 情報処理装置、画像処理装置、及びプログラム等
US10999488B2 (en) Control device, imaging device, and control method
JP2001285678A (ja) 2画面同時撮像処理装置
CN103974035B (zh) 一种宽视野前视系统及其使用方法
US11818470B2 (en) Image generation device, image generation method, and vehicle control system
KR20120046954A (ko) 차량의 차선이탈 경보시스템
US20230110938A1 (en) Vehicular vision system with remote display feature
JP2023019827A (ja) システム、情報処理方法及びプログラム等

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815122

Country of ref document: EP

Effective date: 20210111