WO2019233045A1 - 一种快速精密定位方法和系统 - Google Patents

一种快速精密定位方法和系统 Download PDF

Info

Publication number
WO2019233045A1
WO2019233045A1 PCT/CN2018/117070 CN2018117070W WO2019233045A1 WO 2019233045 A1 WO2019233045 A1 WO 2019233045A1 CN 2018117070 W CN2018117070 W CN 2018117070W WO 2019233045 A1 WO2019233045 A1 WO 2019233045A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
positioning
navigation
observation
orbit
Prior art date
Application number
PCT/CN2018/117070
Other languages
English (en)
French (fr)
Inventor
穆旭成
Original Assignee
北京未来导航科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京未来导航科技有限公司 filed Critical 北京未来导航科技有限公司
Priority to US15/734,446 priority Critical patent/US11726213B2/en
Priority to RU2020139312A priority patent/RU2749667C1/ru
Priority to CA3102481A priority patent/CA3102481C/en
Priority to AU2018426890A priority patent/AU2018426890B2/en
Priority to EP18921490.1A priority patent/EP3805804A4/en
Priority to KR1020207035116A priority patent/KR102547522B1/ko
Priority to JP2020568476A priority patent/JP7122023B2/ja
Publication of WO2019233045A1 publication Critical patent/WO2019233045A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • H04B7/1855Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification
    • H04B7/18552Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification using a telephonic control signal and a second ranging satellite
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/19Earth-synchronous stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • G01S19/115Airborne or satellite based pseudolites or repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations

Definitions

  • the present application relates to satellite navigation technology, for example, to a fast and precise positioning method and system.
  • GNSS Global Satellite Navigation System
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • Galileo European Union
  • China Beidou Systems Japan's Quasi-Zenith Satellite System (QZSS) and India's India Regional Navigation Satellite System (IRNSS).
  • the global satellite navigation system mainly determines the position, speed and time (PVT) of the moving carrier by measuring the distance from the satellite to the receiver and using the principle of distance resection.
  • PVT position, speed and time
  • the convergence speed of the positioning, velocity measurement, and time positioning parameters depends on the spatial geometry of the navigation satellite.
  • the precise positioning convergence process ranges from 15 minutes to 30 minutes, and the long convergence time is difficult to meet the requirements of high-precision real-time positioning.
  • RTK Real-Time Kinematic
  • RTX Real-Time eXtended
  • PPP-RTK Precise Point Positioning-Real Time Kinematic
  • the reference station calculates the error information such as the ionosphere and troposphere in the current area to correct the corresponding error at the rover station, so as to achieve the rapid separation of the ambiguity parameter and the position parameter, and the ambiguity parameter can be fixed within a few epochs, reaching cm. Level positioning results, and speed and timing results with corresponding accuracy.
  • the use of multi-navigation satellite systems can greatly increase the number of observable satellites, improve the spatial geometry of the satellites, and speed up the convergence of parameter calculations, thereby improving PVT performance.
  • the above methods all have their limitations.
  • the area increasing system can only provide high-precision PVT services within a certain range
  • the multi-navigation satellite system has a limited effect on accelerating the convergence of Precise Point Positioning (PPP).
  • PPP Precise Point Positioning
  • the regional enhancement system is limited by region. Generally, it can only provide high-precision PVT services within a certain range. When the scope exceeds the scope, its enhancement information is no longer available.
  • the multi-navigation satellite system can improve its convergence speed, because the related navigation satellites are in medium or high orbit, the angle of the satellite sweeping in the zenith in a short time is small, and the geometrical configuration of the satellite is not changed significantly. The effect of point location convergence is limited, and the convergence time still needs at least 6 minutes under the condition of fixed ambiguity.
  • the low-orbit enhanced satellite moves relatively fast relative to the ground station, it will lead to rapid geometric changes and rapid separation of ambiguity parameters and position parameters, thereby accelerating the PVT convergence rate. Therefore, it is a breakthrough to combine the medium-high and low-orbit enhanced satellite to provide navigation services. An effective method for the bottleneck of high-precision PVT service.
  • the present application proposes a positioning method and system based on a navigation satellite and a low-orbit enhanced satellite by using a low-orbit enhanced satellite constellation to broadcast navigation satellite signals, thereby combining high-medium and low-orbit navigation satellites to achieve large-scale fast high-precision PVT services.
  • the method includes: Step 1: Obtain and preprocess observation data of a navigation satellite and a low-orbit enhanced satellite in the current epoch; and step 2, obtain a navigation satellite and a low-orbit enhanced satellite respectively.
  • step 3 According to the obtained navigation message of the low-orbit enhanced satellite, obtain the precise orbit and clock difference of the navigation satellite and the precise orbit and clock difference of the low-orbit enhanced satellite; step 3, according to the obtained navigation message, modify the positioning message The error received; step 4, using a satellite navigation system as a reference to obtain a unified linear observation equation to calculate the position and speed measurement parameter observations; step 5, according to the calculated position and speed measurement parameter observations and the previous epoch The estimated value of the positioning speed parameter is obtained by the state equation to obtain the estimated value of the positioning speed parameter of the current epoch. Step 6: According to the estimated value of the positioning speed parameter of the current epoch, the positioning and speed measurement result of the current epoch is generated and saved, and returns to step 1.
  • Step 2 includes: receiving state space representation SSR correction information in real time through a network to obtain a high-precision real-time orbit and real clock difference.
  • the navigation satellite includes at least one of a US GPS, a Chinese Beidou, an EU Galileo, and a Russian GLONASS satellite navigation system.
  • the present application also provides a positioning system including: a satellite observation data receiving and processing device configured to acquire observation data of a navigation satellite and a low-orbit enhanced satellite at each epoch and preprocess the observation data;
  • the satellite navigation message receiving and processing device is configured to obtain the navigation message of the navigation satellite and the low-orbit enhanced satellite at each epoch, and obtain the precise orbit and clock difference of the navigation satellite and the low-frequency based on the obtained navigation message of the low-orbit enhanced satellite.
  • Orbits enhance the precise orbit and clock difference of satellites; positioning error correction device is set to correct the errors encountered during positioning according to the obtained navigation message; positioning speed parameter observation value calculation device is set to use a satellite navigation system as a reference Normalize to obtain a unified linear observation equation to calculate the positioning speed measurement parameter observation value.
  • the positioning speed parameter estimation value calculation device is set to be based on the calculated positioning speed parameter observation value and the saved positioning speed parameter estimation value of the previous epoch.
  • the equation of state calculates the estimated value of the positioning speed parameter.
  • the positioning and speed measurement result saving device is configured to generate and save the positioning and speed measurement results of the current epoch based on the estimated values of the positioning speed parameters of the current epoch.
  • the satellite navigation message receiving and processing device includes a navigation satellite navigation message receiving and processing unit, and a low-orbit enhanced satellite navigation message receiving and processing unit.
  • the positioning error correction device includes a navigation satellite error correction unit and a low-orbit enhanced satellite error correction unit.
  • An embodiment of the present application provides a computer-readable storage medium, where the storage medium includes a stored program, and when the program runs, the positioning method according to any one of the foregoing is performed.
  • An embodiment of the present application provides a processor, and the processor is configured to run a program, and when the program runs, the positioning method according to any one of the foregoing is performed.
  • FIG. 1 is a flowchart of a fast precise positioning method according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a rapid precision positioning system according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a fast precise positioning method according to an embodiment of the present application.
  • a unified observation equation of medium, high or low orbit enhanced satellites needs to be constructed and linearized, and the receiver obtains the position and velocity parameter observation values according to the constructed linear observation equation.
  • the multi-frequency information sources of the middle-high or low-orbit constellation include multi-frequency information sources of at least one satellite navigation system and low-orbit enhanced satellite navigation system among all existing satellite navigation systems. Navigation satellites and low-orbit enhanced satellite positioning methods are the same, and the observations of the two can be put together for adjustment calculation.
  • the mathematical model of the observation equation itself is a non-linear equation, so the equation needs to be Taylor-expanded, and a linear equation can be obtained after discarding the second-order term.
  • the observations of navigation satellites and LEO satellites can be expressed as a set of linear equations between the position and the receiver clock difference.
  • the observation equations related to the velocity terms of the station and the rate of change of the receiver clock error can be obtained.
  • the optimal estimates of the three parameters of PVT can be obtained.
  • the basic observations of the navigation satellite obtained by the receiver from the navigation message include two types of multi-frequency pseudorange ⁇ and carrier phase ⁇ .
  • the pseudorange and phase observations from satellite s to station a at frequency i can be expressed as:
  • T a is the tropospheric delay parameter in the zenith direction of the station
  • the mapping function corresponding to T a is c is the speed of light in vacuum
  • ⁇ t s and ⁇ t a are the satellite clock difference and the receiver clock difference
  • f i is the carrier frequency of frequency point i
  • the corresponding wavelength of f i is For tilted ionospheric delay, with Pseudorange and carrier phase hardware delays at the receiver, with For satellite-side pseudorange and carrier-phase hardware delays
  • errors such as antenna phase deviation and change, phase winding, and the relativistic effect of satellite clock error, as well as errors such as multipath and observation noise, are ignored.
  • the zenith tropospheric delay parameter T a and the receiver clock difference ⁇ t a are only related to the station
  • the satellite clock difference ⁇ t s is only related to the satellite
  • the tilt ionosphere delay parameter It is related to the station and satellite
  • the hardware delay parameters of pseudorange and phase at the satellite or receiver are mainly related to the station, satellite, observation type and tracking frequency, respectively.
  • observation equation can be expressed as:
  • equation (2) can be extended to:
  • S represents a GNSS system.
  • the carrier frequencies of different satellites are the same, so the pseudo-range and carrier phase observation hardware delays at the receiver are the same for all single-system satellites.
  • the GLONASS system uses frequency division multiple access technology, its corresponding receiver-side pseudorange and phase hardware delay are also related to the satellite (frequency), and different GLONASS satellites (frequency) correspond to different receiver-side hardware delays.
  • the difference between the pseudo-range hardware delay at the receiver end of the GPS and any satellite navigation system other than the GPS that is, the code deviation. If you consider the difference in time reference between different navigation systems, you need to introduce an additional constant deviation parameter.
  • This constant deviation parameter and Differential Code Bias (DCB) parameters will constitute Inter-System Bias (ISB) parameters .
  • ISB Inter-System Bias
  • the combination of inter-system code deviation, time reference deviation, and inter-Frequency Bias (IFB) of different satellites in the GLONASS system As a satellite navigation system, the LEO enhanced satellite group has the same positioning mathematical model as the related GNSS system. The LEO enhanced satellite navigation system can be regarded as a new navigation system, and only additional ISB parameters need to be
  • the GNSS observation equation itself is a nonlinear equation.
  • the related parameter estimation methods are generally applicable to linear systems, so they need to be Taylor-expanded.
  • the GNSS observation equation is expanded according to Taylor's formula at the approximate coordinates of the station, and its second-order terms are discarded, so that a linear expression about position and time is obtained, as follows:
  • I the distance of the station star calculated from the initial coordinates of the station star
  • l, m, n linearization coefficients, respectively
  • x s , y s and z s are satellite coordinates
  • x a , y a and z a are initial station coordinates
  • ⁇ x a , ⁇ y a and ⁇ z a are their correction values, respectively.
  • Equation (9) only completes the timing and positioning functions, and the speed measurement observation equation is:
  • the root-mean-square filtering algorithm is used to estimate the position and velocity parameters. Due to the addition of low-orbit enhanced satellite observations, PPP can be quickly converged and more accurate parameters can be obtained. information.
  • x k ⁇ (t k , t k-1 ) x k-1 + ⁇ (t k , t k-1 ) u k-1
  • prior variance is the position, velocity, or clock parameter to be estimated.
  • the square root of the prior variance is used to construct the virtual observation equation:
  • a root mean square information filtering algorithm can be constructed to observe and update the performance function:
  • root-mean-square information filtering algorithm state update performance function can be constructed according to the minimum variance criterion:
  • FIG. 1 shows a flowchart of a positioning method according to an embodiment of the present application.
  • the method may be executed by a positioning system, which may be implemented in at least one of software and hardware.
  • the multi-frequency information sources of the middle-high or low-orbit constellation include multi-frequency information sources of at least one satellite navigation system and low-orbit enhanced satellite navigation system among all existing satellite navigation systems.
  • the positioning method according to an embodiment of the present application includes steps S110 to S160.
  • step S110 in the current epoch, the observation data of the navigation satellite and the LEO enhanced satellite are acquired and preprocessed.
  • the process is as follows: Observe the multi-system multi-band observations and low-orbit enhanced satellite observations through receiver tracking observations, and preprocess the data.
  • the navigation satellites include at least one of the US GPS, the Chinese Beidou, the EU Galileo, and the Russian GLONASS satellite navigation system.
  • step S120 the navigation messages of the navigation satellite and the low-orbit enhanced satellite are acquired, and the precise orbits and clock offsets of the navigation satellite and the low-orbit enhanced satellite are obtained simultaneously according to the obtained navigation messages of the low-orbit enhanced satellite.
  • the process is: obtaining the navigation message of the navigation satellite and the low-orbit enhanced satellite, and using the number of orbits and the clock difference coefficient provided by the navigation message to interpolate the satellite position and satellite clock at the current moment.
  • the LEO enhanced satellite since the LEO enhanced satellite has different characteristics from the navigation satellite, the navigation message of the LEO enhanced satellite is different from the navigation message of the navigation satellite.
  • SSR state space representation
  • step S130 the error received during the positioning process is corrected according to the obtained navigation message.
  • step 130 For errors that can be corrected by the error model, corrections are made in step 130. For errors that cannot be corrected by the error model, corrections are made by calculating the positioning speed parameter observation values in step S140 and estimating the positioning speed parameter parameters in step S150. There are some errors between low-orbit enhanced satellites and navigation satellites, which need to be corrected according to different satellite navigation systems.
  • each error is the basis for obtaining high-precision positioning results. According to the correlation, these errors can be divided into station-related errors, satellite-related errors, and satellite signal propagation-related errors.
  • Common methods for weakening positioning errors include model correction and parameter estimation.
  • the correction formula can be used to accurately eliminate their effects, such as the relativity effect, the earth's rotation effect, etc.
  • the model values derived from the fitted model can be used Eliminate its impact, such as correction of solid tide, correction of troposphere, etc.
  • step S140 an observation value of the positioning speed measurement parameter is calculated according to a unified linear observation equation normalized with a satellite navigation system as a reference.
  • the process is as follows: According to the obtained observation data and navigation message, the position of the receiver is calculated through the above formula (9), and the clock difference of the receiver can also be calculated; the speed of the receiver can also be calculated through the above formula (10).
  • step S150 according to the calculated positioning velocity measurement parameter observation value and the positioning velocity measurement parameter estimation value of the previous epoch, the positioning velocity measurement parameter estimation of the current epoch is performed through the state equation to obtain the current epoch positioning velocity measurement parameter estimation value.
  • the process is as follows: According to the calculated positioning velocity measurement parameter observation value and the positioning velocity measurement parameter estimation value of the previous epoch, calculate the positioning velocity measurement parameter estimation value of this epoch through the above formula (11), and save the calculated positioning velocity measurement parameter estimation value. .
  • step S160 the positioning and speed measurement results of the current epoch are generated and saved according to the estimated value of the positioning speed measurement parameters of the current epoch, and the process returns to step S110.
  • FIG. 2 illustrates a positioning system according to an embodiment of the present application.
  • the multi-frequency information sources of the middle-high or low-orbit constellation include multi-frequency information sources of at least one satellite navigation system and low-orbit enhanced satellite navigation system among all existing satellite navigation systems.
  • the positioning system includes a satellite observation data receiving and processing device 11, a satellite navigation message receiving and processing device 12, a positioning error correction device 13, and a positioning speed parameter observation value calculation device 14 And a positioning speed measurement parameter estimation value calculation device 15 and a positioning speed measurement result storage device 16.
  • the satellite observation data receiving and processing device 11 is configured to acquire observation data of a navigation satellite and a low-orbit enhanced satellite at each epoch and preprocess the data.
  • the satellite navigation message receiving and processing device 12 is configured to obtain the navigation message of the navigation satellite and the low-orbit enhanced satellite at each epoch, and obtain the precise orbit of the navigation satellite and the low-orbit enhanced satellite at the same time according to the obtained navigation message of the low-orbit enhanced satellite. And clock difference.
  • the satellite navigation message receiving and processing device 12 includes a navigation satellite navigation message receiving and processing unit and a low-orbit enhanced satellite navigation message receiving and processing unit.
  • the positioning error correction device 13 is configured to correct errors received during the positioning process based on the obtained navigation message.
  • the positioning error correction device 13 includes a navigation satellite error correction unit and a low-orbit enhanced satellite error correction unit.
  • the positioning speed parameter observation value calculation device 14 is configured to calculate the positioning speed parameter observation value based on a unified linear observation equation normalized with a satellite navigation system as a reference.
  • the positioning speed parameter estimation value calculation device 15 is configured to perform the local epoch positioning speed parameter estimation through the state equation according to the calculated positioning speed parameter observation value and the saved positioning speed parameter estimation value of the previous epoch. The estimated value of the positioning speed parameter.
  • the positioning and speed measurement result saving device 16 is configured to generate and save the positioning and speed measurement results of the current epoch according to the estimated value of the positioning speed parameter.
  • FIG. 3 is a schematic diagram of the working principle of a fast and precise positioning method according to an embodiment of the present application.
  • the positioning method may include a navigation satellite constellation, a low-orbit constellation, a ground operation control system, and a user receiver.
  • the navigation satellite constellation includes at least one of the US GPS, the Chinese Beidou, the EU Galileo, and the Russian GLONASS satellite navigation system. , Set to play navigation satellite signals.
  • a low-orbit constellation includes a plurality of low-orbit satellites distributed on multiple orbital planes. The multiple low-orbit satellites broadcast a direct navigation signal based on a high-precision time-frequency reference through a specific frequency band, and provide stable coverage to a global or specific service area. Set to broadcast navigation direct signals and navigation enhancement information.
  • the ground operation control system performs business calculation processing and controls and manages satellites and constellations.
  • the user receiver receives direct navigation signals transmitted by navigation satellites and low-orbit satellites, and navigation enhanced information transmitted by low-orbit satellites, and performs precise positioning based on the direct navigation signals of navigation satellites and low-orbit satellites, and the navigation enhanced information. , Speed and timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种快速精密定位方法和系统,方法包括:获取当前历元的导航卫星和低轨增强卫星的观测数据(S110);分别获取导航卫星和低轨增强卫星的导航电文,得到精密轨道和钟差(S120);根据获取的导航电文改正在定位过程中受到的误差(S130);以一种卫星导航系统为基准归一化得到统一线性观测方程,并计算定位测速参数观测值(S140);根据算得的定位测速参数观测值和上一历元的定位测速参数估计值,经过状态方程计算当前历元的定位测速参数估计值(S150);根据定位测速参数估计值生成当前历元的定位和测速结果并保存(S160)。

Description

一种快速精密定位方法和系统
本申请要求在2018年06月04日提交中国专利局、申请号为201810566043.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星导航技术,例如涉及一种快速精密定位方法和系统。
背景技术
全球卫星导航系统(Global Navigation Satellite System,GNSS),包括美国全球定位系统(Global Positioning System,GPS)、俄罗斯格洛纳斯(Global Navigation Satellite System,GLONASS)、欧盟伽利略定位系统(Galileo)、中国北斗系统、日本准天顶卫星系统(Quasi-ZenithSatelliteSystem,QZSS)和印度的印度区域导航卫星系统(India Regional Navigation Satellite System,IRNSS)等。全球卫星导航系统主要是通过测定从卫星至接收机间的距离,采用距离后方交会原理确定运动载体位置、速度和时间(Position Velocity Time,PVT)。卫星导航系统PVT性能除受限于卫星轨道、钟差产品精度外,还与电离层、对流层等误差模型精度以及模糊度参数固定的正确性相关。但是,定位、测速和授时定位参数解算的收敛速度则主要取决于导航卫星空间几何构型。当前,精密定位收敛过程在15分钟到30分钟不等,较长的收敛时间难以满足高精度实时定位要求。
为了减少收敛时间,当前主要采用区域增强或者多导航系统联合求解。区域增强系统,例如实时动态定位(Real Time Kinematic,RTK)、实时扩展定位(Real-Time eXtended,RTX)、实时动态精密单点定位(Precise Point Positioning-Real Time Kinematic,PPP-RTK)通过采用区域参考站解算当前区域的电离层、对流层等误差信息,以改正流动站处相应误差,从而达到模糊度参数与位置参数的快速分离,即可在几个历元内固定模糊度参数,达到厘米级定位结果以及相应精度的测速和授时结果。利用多导航卫星系统可以极大地增加可观测卫星数,改善卫星的空间几何构型,加快参数解算的收敛速度,从而提高PVT性能。
然而,上述方法都存在其局限性,例如区域增加系统只能在一定的范围内提供高精度PVT服务,多导航卫星系统对于加快精密单点定位(Precise Point  Positioning,PPP)收敛的效果有限。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
区域增强系统受到了地域的限制,一般只能在一定的范围内提供高精度PVT服务,超过作用范围,其增强信息就不再可用。多导航卫星系统虽然能提高其收敛速度,但是由于相关导航卫星都处在中高轨道,卫星短时间内在天顶扫过的角度较小,卫星空间几何构型变化不明显,该方法对于加快精密单点定位收敛的效果有限,在模糊度固定的情况下其收敛时间仍旧需要至少6分钟。考虑到低轨增强卫星相对于地面测站运动较快,会导致快速几何结构变化以及模糊度参数与位置参数的快速分离,从而加速PVT收敛速度,因此联合中高低轨增强卫星进行导航服务是突破当前高精度PVT服务瓶颈的有效手段。
本申请提出一种通过采用低轨增强卫星星群播发导航卫星信号,从而联合高中低轨导航卫星实现大尺度快速高精度PVT服务的基于导航卫星和低轨增强卫星的定位方法和系统。
本申请采用如下技术方案:
本申请提供一种快速精密定位方法,该方法包括:步骤1,在当前历元,获取导航卫星和低轨增强卫星的观测数据并进行预处理;步骤2,分别获取导航卫星和低轨增强卫星的导航电文,根据所获取的低轨增强卫星的导航电文,得到导航卫星的精密轨道和钟差以及低轨增强卫星的精密轨道和钟差;步骤3,根据获取的导航电文改正在定位过程中所受到的误差;步骤4,以一种卫星导航系统为基准归一化得到统一线性观测方程来计算定位测速参数观测值;步骤5,根据计算得到的定位测速参数观测值和上一历元的定位测速参数估计值,通过状态方程得到当前历元的定位测速参数估计值;步骤6,根据当前历元的定位测速参数估计值生成当前历元的定位和测速结果并保存,返回步骤1。
其中,步骤2包括:通过网络实时收取状态空间表示法SSR改正信息,获得高精度的实时轨道和实时钟差。
其中,如果以GPS系统对应的接收机钟差
Figure PCTCN2018117070-appb-000001
为基准,则GPS以外的卫星导航系统的线性观测方程为:
Figure PCTCN2018117070-appb-000002
Figure PCTCN2018117070-appb-000003
式中,
Figure PCTCN2018117070-appb-000004
Figure PCTCN2018117070-appb-000005
分别为消电离层组合伪距和相位观测值,
Figure PCTCN2018117070-appb-000006
Figure PCTCN2018117070-appb-000007
分别为接收机端消电离层组合伪距和相位观测值硬件延迟;
Figure PCTCN2018117070-appb-000008
Figure PCTCN2018117070-appb-000009
分别为卫星端消电离层组合伪距和相位观测值硬件延迟;
Figure PCTCN2018117070-appb-000010
为消电离层组合观测值波长,
Figure PCTCN2018117070-appb-000011
为相应的整周模糊度参数,式中,
Figure PCTCN2018117070-appb-000012
为所述GPS与所述GPS以外的任意一个卫星导航系统在接收机端伪距硬件延迟之差,也即码偏差;
Figure PCTCN2018117070-appb-000013
为根据站星初始坐标计算的站星距离,l、m、n为线性化系数,分别为
Figure PCTCN2018117070-appb-000014
Figure PCTCN2018117070-appb-000015
而x s、y s和z s为卫星坐标,x a、y a和z a为测站初始坐标,Δx a、Δy a和Δz a分别为其改正值。
其中,测速观测方程为:
Figure PCTCN2018117070-appb-000016
式中,
Figure PCTCN2018117070-appb-000017
表示测站与卫星之间相位变化速率,单位为周/s,Δt表示采样间隔,而
Figure PCTCN2018117070-appb-000018
Figure PCTCN2018117070-appb-000019
为卫星速率,
Figure PCTCN2018117070-appb-000020
Figure PCTCN2018117070-appb-000021
为测站速率,
Figure PCTCN2018117070-appb-000022
表示接收机钟速,
Figure PCTCN2018117070-appb-000023
表示对流层的变化率。
其中,所述导航卫星包括美国GPS、中国北斗、欧盟伽利略以及俄罗斯GLONASS卫星导航系统中的至少一种。
本申请还提供一种定位系统,该定位系统包括:卫星观测数据接收和处理装置,设置为在每一历元获取导航卫星和低轨增强卫星的观测数据并对所述观测数据进行预处理;卫星导航电文接收和处理装置,设置为在每一历元分别获取导航卫星和低轨增强卫星的导航电文,根据所获取的低轨增强卫星的导航电文得到导航卫星的精密轨道和钟差以及低轨增强卫星的精密轨道和钟差;定位误差改正装置,设置为根据获取的导航电文改正在定位过程中所受到的误差;定位测速参数观测值计算装置,设置为以一种卫星导航系统为基准归一化得到 统一线性观测方程,计算定位测速参数观测值;定位测速参数估计值计算装置,设置为根据计算得到的定位测速参数观测值和所保存上一历元的定位测速参数估计值,通过状态方程计算定位测速参数估计值。
定位测速结果保存装置,设置为根据所述当前历元的定位测速参数估计值生成当前历元的定位和测速结果并保存。
其中,卫星导航电文接收和处理装置包括导航卫星导航电文接收和处理单元,以及低轨增强卫星导航电文接收和处理单元。
其中,定位误差改正装置包括导航卫星误差改正单元和低轨增强卫星误差改正单元。
其中,如果以GPS系统对应的接收机钟差
Figure PCTCN2018117070-appb-000024
为基准,则GPS以外的卫星导航系统的线性观测方程为:
Figure PCTCN2018117070-appb-000025
Figure PCTCN2018117070-appb-000026
式中,
Figure PCTCN2018117070-appb-000027
Figure PCTCN2018117070-appb-000028
分别为消电离层组合伪距和相位观测值,
Figure PCTCN2018117070-appb-000029
Figure PCTCN2018117070-appb-000030
分别为接收机端消电离层组合伪距和相位观测值硬件延迟,相似地,
Figure PCTCN2018117070-appb-000031
Figure PCTCN2018117070-appb-000032
分别为卫星端消电离层组合伪距和相位观测值硬件延迟;
Figure PCTCN2018117070-appb-000033
为消电离层组合观测值波长,
Figure PCTCN2018117070-appb-000034
为相应的整周模糊度参数,式中,
Figure PCTCN2018117070-appb-000035
为所述GPS与所述GPS以外的任意一个卫星导航系统在接收机端伪距硬件延迟之差,也即码偏差;
Figure PCTCN2018117070-appb-000036
为根据站星初始坐标计算的站星距离,l、m、n为线性化系数,分别为
Figure PCTCN2018117070-appb-000037
Figure PCTCN2018117070-appb-000038
而x s、y s和z s为卫星坐标,x a、y a和z a为测站初始坐标,Δx a、Δy a和Δz a分别为其改正值。
其中,测速观测方程为:
Figure PCTCN2018117070-appb-000039
式中,
Figure PCTCN2018117070-appb-000040
表示测站与卫星之间相位变化速率,单位为周/s,Δt表示采样间隔,而
Figure PCTCN2018117070-appb-000041
Figure PCTCN2018117070-appb-000042
为卫星速率,
Figure PCTCN2018117070-appb-000043
Figure PCTCN2018117070-appb-000044
为测站速率,
Figure PCTCN2018117070-appb-000045
表示接收机钟速,
Figure PCTCN2018117070-appb-000046
表示对流层的变化率。
本申请一实施例提供一种计算机可读存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的定位方法。
本申请一实施例提供一种处理器,所述处理器设置为运行程序,所述程序运行时执行上述任一项所述的定位方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图仅用于示出示例实施方式,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。
在附图中:
图1是本申请一个实施例所述的快速精密定位方法的流程图;
图2是本申请一个实施例所述的快速精密定位系统的结构示意图;
图3是本申请一个实施例所述的快速精密定位方法的流程图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以多种形式实现本公开而不应被这里阐述的实施例所限制。
一、以一种卫星导航系统为基准归一化得到的中高低轨增强卫星统一线性观测方程
实现本申请提供的定位方法,首先需要构建中高低轨增强卫星统一的观测方程并线性化,接收机根据所构建的线性观测方程得到定位测速参数观测值。其中,中高低轨星座多频信息源包括现有所有卫星导航系统中至少一种卫星导航系统和低轨增强卫星导航系统的多频信息源。导航卫星与低轨增强卫星定位方式一致,两者观测值可以放入一起进行平差解算。观测方程本身的数学模型是一个非线性方程,因此需要将该方程进行泰勒展开,舍弃二阶项之后可以得到一个线性方程。导航卫星与低轨增强卫星的观测值可表达为位置与接收机钟差的线性方程组。利用差分观测值,可以得到与测站速度项和接收机钟差变化率有关的观测方程。通过联立这两类观测方程,可以得到PVT三个参数的最优估计。
接收机从导航电文中获取的导航卫星基本观测值包括多频点伪距ρ和载波相位φ两类。在频点i从卫星s至测站a的伪距和相位观测值可以表示为:
Figure PCTCN2018117070-appb-000047
式中,
Figure PCTCN2018117070-appb-000048
为卫星和测站间几何距离,T a为测站天顶方向对流层延迟参数,T a对应的映射函数为
Figure PCTCN2018117070-appb-000049
c为真空中光速,δt s和δt a分别为卫星钟差和接收机钟差,
Figure PCTCN2018117070-appb-000050
其中f i为频点i的载波频率,f i对应波长为
Figure PCTCN2018117070-appb-000051
Figure PCTCN2018117070-appb-000052
为倾斜电离层延迟,
Figure PCTCN2018117070-appb-000053
Figure PCTCN2018117070-appb-000054
分别为接收机端的伪距和载波相位硬件延迟,
Figure PCTCN2018117070-appb-000055
Figure PCTCN2018117070-appb-000056
为卫星端的伪距和载波相位硬件延迟,
Figure PCTCN2018117070-appb-000057
为整周模糊度参数。上式中忽略了天线相位偏差和变化、相位缠绕、卫星钟差的相对论效应等误差改正以及多路径和观测值噪声等误差。
式(1)中天顶对流层延迟参数T a、接收机钟差δt a仅与测站相关,卫星钟差δt s仅与卫星相关,倾斜电离层延迟参数
Figure PCTCN2018117070-appb-000058
与测站和卫星相关,而伪距和相位在卫星端或接收机端的硬件延迟参数则主要分别与测站、卫星、观测值类型和跟踪频率等相关。
在导航卫星数据处理中,常常根据需要构建不同类型的相位和伪距观测值组合,其中由于消电离层组合消除了一阶电离层影响,因此被广泛用于构建高精度数据处理的观测方程,所述观测方程可以表示为:
Figure PCTCN2018117070-appb-000059
式中,
Figure PCTCN2018117070-appb-000060
Figure PCTCN2018117070-appb-000061
分别为消电离层组合伪距和相位观测值,
Figure PCTCN2018117070-appb-000062
Figure PCTCN2018117070-appb-000063
分别为接收机端消电离层组合伪距和相位观测值硬件延迟,其值为:
Figure PCTCN2018117070-appb-000064
卫星端消电离层组合伪距和相位观测值硬件延迟
Figure PCTCN2018117070-appb-000065
Figure PCTCN2018117070-appb-000066
分别为:
Figure PCTCN2018117070-appb-000067
式中,
Figure PCTCN2018117070-appb-000068
为消电离层组合观测值波长,
Figure PCTCN2018117070-appb-000069
为相应的整周模糊度参数,其值为:
Figure PCTCN2018117070-appb-000070
考虑到式(2)中每个参数与测站、卫星以及信号频率等的相关性,因此对于多系统观测值,式(2)可以扩展为:
Figure PCTCN2018117070-appb-000071
式中,S表示GNSS系统。对于GPS、Galileo、QZSS和北斗等采用码分多址技术的导航卫星系统,其不同卫星载波频率相同,因此接收机端的伪距和载波相位观测值硬件延迟对所有单系统卫星相同。但是由于GLONASS系统采用频分多址技术,因此其相应接收机端伪距和相位硬件延迟还与卫星(频率)相关,不同GLONASS卫星(频率)对应不同的接收机端硬件延迟。
由于在PVT模型中,导航卫星钟差一致且其在估计时会吸收卫星端伪距硬件延迟
Figure PCTCN2018117070-appb-000072
而接收机端的伪距硬件延迟会被接收机钟差所吸收
Figure PCTCN2018117070-appb-000073
此时观测方程为:
Figure PCTCN2018117070-appb-000074
式中,
Figure PCTCN2018117070-appb-000075
当多模导航系统联合处理时,一般仅估计一个接收机钟差参数,但是前述表明接收机钟差参数会吸收伪距观测值在接收机端的硬件延迟,而此延迟参数与信号频率和导航系统相关,因此导致不同系统对应不同的接收机钟差
Figure PCTCN2018117070-appb-000076
如果以GPS系统对应的接收机钟差
Figure PCTCN2018117070-appb-000077
为基准,则其他系统观测方程可以改写为:
Figure PCTCN2018117070-appb-000078
式中,
Figure PCTCN2018117070-appb-000079
即为所述GPS与所述GPS以外的任意一个卫星导航系统在接收机端伪距硬件延迟之差,也即码偏差。如果考虑不同导航系统之间时间基准的差异,需要额外引入一个常量偏差参数,这个常量偏差参数与差分码偏差 (Differential Code Bias,DCB)参数将构成系统间偏差(Inter-System Bias,ISB)参数。对于采用码分多址的导航系统,其所有卫星对应相同的ISB参数,而由于GLONASS系统采用频分多址技术,因此其不同卫星(频率)对应不同的ISB参数,此时ISB参数实际为不同系统间码偏差、时间基准差和GLONASS系统内不同卫星频间偏差(Inter-Frequency Bias,IFB)的组合。低轨增强卫星群作为卫星导航系统,其定位数学模型与相关GNSS系统无异。低轨增强卫星导航系统可以视为新的导航系统,只需额外估计ISB参数即可。
GNSS观测方程本身是一个非线性方程,相关的参数估计方法一般适用于线性系统,因此需要将其进行泰勒展开。将GNSS观测方程在测站近似坐标处按照泰勒公式进行展开,舍弃其二阶项,从而得到了关于位置和时间的线性表达式,如下:
Figure PCTCN2018117070-appb-000080
式中,
Figure PCTCN2018117070-appb-000081
为根据站星初始坐标计算的站星距离,l、m、n为线性化系数,分别为
Figure PCTCN2018117070-appb-000082
Figure PCTCN2018117070-appb-000083
而x s、y s和z s为卫星坐标,x a、y a和z a为测站初始坐标,Δx a、Δy a和Δz a分别为其改正值。
式(9)中仅完成授时和定位功能,而测速观测方程为:
Figure PCTCN2018117070-appb-000084
Figure PCTCN2018117070-appb-000085
式中,
Figure PCTCN2018117070-appb-000086
表示测站与卫星之间相位变化速率,单位为周/s,Δt表示采样间隔,而
Figure PCTCN2018117070-appb-000087
Figure PCTCN2018117070-appb-000088
为卫星速率,
Figure PCTCN2018117070-appb-000089
Figure PCTCN2018117070-appb-000090
为测站速率,
Figure PCTCN2018117070-appb-000091
表示接收机钟速,
Figure PCTCN2018117070-appb-000092
表示对流层的变化率。
二、构建均方根滤波算法定位测速参数状态方程
在建立了位置和时间观测方程以及速度观测方程之后,利用均方根滤波算法对定位测速参数进行状态估计,由于添加了低轨增强卫星观测值,可以实现 PPP快速收敛,得到更高精度的参数信息。
下面给出均方根信息滤波的主要步骤,其状态方程为:
x k=Ф(t k,t k-1)x k-1+Γ(t k,t k-1)u k-1
式中,x k-1具有先验值
Figure PCTCN2018117070-appb-000093
和先验方差
Figure PCTCN2018117070-appb-000094
为待估计的位置、速度或者钟差参数。将先验方差进行平方根(Cholesky分解),构造虚拟观测方程:
Figure PCTCN2018117070-appb-000095
式中,
Figure PCTCN2018117070-appb-000096
而原式中:
Figure PCTCN2018117070-appb-000097
Figure PCTCN2018117070-appb-000098
从而构建状态噪声虚拟观测方程:
Figure PCTCN2018117070-appb-000099
滤波观测方程为:
y k-1=H k-1x+ε k-1
式中,E[ε]=0,E(εε T)=I。
根据最小方差准则,可以构建均方根信息滤波算法观测更新性能函数:
Figure PCTCN2018117070-appb-000100
将其写成矩阵形式:
Figure PCTCN2018117070-appb-000101
对上式进行正交变化可以得到:
Figure PCTCN2018117070-appb-000102
同样可以根据最小方差准则,构建均方根信息滤波算法状态更新性能函数:
Figure PCTCN2018117070-appb-000103
写成矩阵形式:
Figure PCTCN2018117070-appb-000104
式中
Figure PCTCN2018117070-appb-000105
做正交变换可以得到:
Figure PCTCN2018117070-appb-000106
利用中高轨信息源解算定位测速参数时,由于卫星星座的限制,解算精度与收敛时间常不能满足快速高精度定位的需求。采用中高低轨多频信息源融合定位,可以增强可视卫星的几何结构,实现快速收敛,从而提高定位解算的精度。图1示出本申请一实施例所述的定位方法流程图。该方法可由定位系统执行,该定位系统可以采用软件和硬件中至少一种的方式实现。其中,中高低轨星座多频信息源包括现有所有卫星导航系统中至少一种卫星导航系统和低轨增强卫星导航系统的多频信息源。如图1所示,本申请一实施例所述的定位方法包括步骤S110至步骤S160。
在步骤S110中,在当前历元,获取导航卫星和低轨增强卫星的观测数据并进行预处理。过程如下:通过接收机跟踪观测,获取多系统多频段观测值和低轨增强卫星观测值,并对数据进行预处理。
其中,导航卫星包括美国GPS、中国北斗、欧盟伽利略以及俄罗斯GLONASS卫星导航系统的中至少一种。
在步骤S120中,获取导航卫星和低轨增强卫星的导航电文,根据所获取的低轨增强卫星的导航电文同时得到导航卫星和低轨增强卫星的精密轨道和钟差。过程为:获取导航卫星与低轨增强卫星的导航电文,利用导航电文提供的轨道根数与钟差系数内插出当前时刻的卫星位置与卫星钟差。其中,由于低轨增强卫星具有与导航卫星不同的特点,所以低轨增强卫星的导航电文与导航卫星的导航电文有不同之处。例如,低轨增强卫星的导航电文的参数种类更多,因此低轨增强卫星的轨道和钟差的计算与导航卫星的轨道和种差的计算也有不同之处,例如,低轨增强卫星的轨道的计算与导航卫星的轨道的计算相比需要考虑的摄动因素更多。由于广播星历给出的导航卫星与低轨增强卫星轨道与卫星钟差的精度一般满足不了高精度的定位需求。在一实施例中,为了获得高精度的实时轨道和实时钟差,可以通过网络实时收取状态空间表示法(State Space Representation,SSR)改正信息。
在步骤S130中,根据获取的导航电文改正定位过程所受到的误差。
对于误差模型可以改正的误差,在步骤130中改正,对于误差模型不能改正的误差,则通过步骤S140的定位测速参数观测值计算和步骤S150的定位测速参数估计来改正。对于低轨增强卫星和导航卫星有些误差不同,需要根据不 同的卫星导航系统对应改正误差。
在定位过程中,定位结果往往受到多项误差的影响,削弱每项误差是获得高精度定位结果的基础。这些误差按相关性可以分为与测站有关的误差、与卫星有关的误差和与卫星信号传播有关的误差。常用的削弱定位误差的方法有模型改正与参数估计。对于一些了解其物理特性的误差项,可以利用改正公式准确地消除其影响,如相对论效应、地球自转效应等;对于一些能用模型拟合的误差项,可以利用拟合模型得出的模型值消除其影响,如固体潮改正、对流层改正等;而对于另一些物理特性未知并且模型拟合不佳的误差项,则可以利用参数估计的方法消除其对定位的影响,如接收机钟差等。
在步骤S140中,根据以一种卫星导航系统为基准归一化得到的统一线性观测方程来计算定位测速参数观测值。过程如下:根据获取的观测数据和导航电文,经由上述公式(9)计算接收机的位置,同时还可以计算接收机的钟差;还可以经由上述公式(10)计算接收机的速度。
在步骤S150中,根据计算得到的定位测速参数观测值和上一历元的定位测速参数估计值,通过状态方程进行本历元的定位测速参数估计,得到当前历元定位测速参数估计值。过程如下:根据计算得到的定位测速参数观测值和上一历元的定位测速参数估计值,经由上述公式(11)计算本历元的定位测速参数估计值,保存计算得到的定位测速参数估计值。
在步骤S160中,根据当前历元的定位测速参数估计值生成当前历元的定位和测速结果并保存,返回步骤S110。
图2示出本申请一个实施例所述的定位系统。其中,中高低轨星座多频信息源包括现有所有卫星导航系统中至少一种卫星导航系统和低轨增强卫星导航系统的多频信息源。
如图2所示,本申请一实施例所述的定位系统包括:卫星观测数据接收和处理装置11、卫星导航电文接收和处理装置12、定位误差改正装置13、定位测速参数观测值计算装置14、定位测速参数估计值计算装置15以及定位测速结果保存装置16。
其中,卫星观测数据接收和处理装置11设置为在每一历元获取导航卫星和低轨增强卫星的观测数据并对数据进行预处理。
卫星导航电文接收和处理装置12设置为在每一历元获取导航卫星和低轨增强卫星的导航电文,根据所获取的低轨增强卫星的导航电文同时得到导航卫星 和低轨增强卫星的精密轨道和钟差。在一实施例中,卫星导航电文接收和处理装置12包括导航卫星导航电文接收和处理单元以及低轨增强卫星导航电文接收和处理单元。
定位误差改正装置13设置为根据获取的导航电文改正定位过程所受到的误差。在一实施例中,定位误差改正装置13包括导航卫星误差改正单元和低轨增强卫星误差改正单元。
定位测速参数观测值计算装置14设置为根据以一种卫星导航系统为基准归一化得到的统一线性观测方程来计算定位测速参数观测值。
定位测速参数估计值计算装置15设置为根据计算得到的定位测速参数观测值和所保存上一历元的定位测速参数估计值,经由状态方程进行本历元的定位测速参数估计,得到当前历元的定位测速参数估计值。
定位测速结果保存装置16,设置为根据定位测速参数估计值生成当前历元的定位和测速结果并保存。
图3为本申请一个实施例提供的一种快速精密定位方法的工作原理示意图。其中,定位方法的实现可以包括导航卫星星座、低轨星座、地面运控系统以及用户接收机,其中:导航卫星星座,包含美国GPS、中国北斗、欧盟伽利略、俄罗斯GLONASS卫星导航系统的至少一种,设置为播放导航卫星信号。低轨星座,包括分布在多个轨道面的多颗低轨卫星,所述多颗低轨卫星通过特定频段播发基于高精度时频基准的导航直发信号,对全球或特定服务区稳定覆盖,设置为播发导航直发信号和导航增强信息。地面运控系统,进行业务计算处理,对卫星和星座进行控制管理。用户接收机,接收导航卫星和低轨卫星播发的导航直发信号,以及低轨卫星播发的导航增强信息,根据导航卫星和低轨卫星的导航直发信号,以及所述导航增强信息进行精密定位、测速和授时。

Claims (11)

  1. 一种快速精密定位方法,该方法包括:
    步骤1,在当前历元,获取导航卫星和低轨增强卫星的观测数据并进行预处理;
    步骤2,分别获取导航卫星和低轨增强卫星的导航电文,根据所获取的低轨增强卫星的导航电文,得到所述导航卫星的精密轨道和钟差以及所述低轨增强卫星的精密轨道和钟差;
    步骤3,根据获取的所述导航电文改正在定位过程中所受到的误差;
    步骤4,以一种卫星导航系统为基准归一化得到统一线性观测方程,计算定位测速参数观测值;
    步骤5,根据计算得到的所述定位测速参数观测值和上一历元的定位测速参数估计值,通过状态方程得到所述当前历元的定位测速参数估计值;
    步骤6,根据所述当前历元的定位测速参数估计值生成所述当前历元的定位和测速结果并保存,返回步骤1。
  2. 如权利要求1所述的定位方法,其中,所述统一线性观测方程包括定位观测方程,如果以全球定位系统GPS对应的接收机钟差
    Figure PCTCN2018117070-appb-100001
    为基准,则所述GPS以外的卫星导航系统的定位观测方程为:
    Figure PCTCN2018117070-appb-100002
    Figure PCTCN2018117070-appb-100003
    式中,
    Figure PCTCN2018117070-appb-100004
    Figure PCTCN2018117070-appb-100005
    分别为消电离层组合伪距和相位观测值,
    Figure PCTCN2018117070-appb-100006
    Figure PCTCN2018117070-appb-100007
    分别为接收机端消电离层组合伪距和相位观测值硬件延迟;,
    Figure PCTCN2018117070-appb-100008
    Figure PCTCN2018117070-appb-100009
    分别为卫星端消电离层组合伪距和相位观测值硬件延迟;
    Figure PCTCN2018117070-appb-100010
    为消电离层组合观测值波长,
    Figure PCTCN2018117070-appb-100011
    为相应的整周模糊度参数,式中,
    Figure PCTCN2018117070-appb-100012
    为所述GPS与所述GPS以外的任意一个卫星导航系统在接收机端伪距硬件延迟之差,也即码偏差;
    Figure PCTCN2018117070-appb-100013
    为根据站星初始坐标计算的站星距离,l、m、n为线性化系数,分别为
    Figure PCTCN2018117070-appb-100014
    Figure PCTCN2018117070-appb-100015
    而x s、y s和z s为卫星坐标,x a、y a和z a为测站初始坐标,Δx a、Δy a和Δz a分别为其改正值。
  3. 如权利要求2所述的定位方法,其中所述统一线性观测方程包括测速观测方程,所述测速观测方程为:
    Figure PCTCN2018117070-appb-100016
    式中,
    Figure PCTCN2018117070-appb-100017
    表示测站与卫星之间相位变化速率,单位为周/s,Δt表示采样间隔,而
    Figure PCTCN2018117070-appb-100018
    Figure PCTCN2018117070-appb-100019
    为卫星速率,
    Figure PCTCN2018117070-appb-100020
    Figure PCTCN2018117070-appb-100021
    为测站速率,
    Figure PCTCN2018117070-appb-100022
    表示接收机钟速,
    Figure PCTCN2018117070-appb-100023
    表示对流层的变化率。
  4. 如权利要求2所述的定位方法,其中,所述导航卫星包括美国全球定位系统GPS、中国北斗、欧盟伽利略以及俄罗斯格洛纳斯GLONASS卫星导航系统中的至少一种。
  5. 一种快速精密定位系统,该定位系统包括:
    卫星观测数据接收和处理装置,设置为在每一历元获取导航卫星和低轨增强卫星的观测数据并对所述观测数据进行预处理;
    卫星导航电文接收和处理装置,设置为在每一历元分别获取导航卫星和低轨增强卫星的导航电文,根据所获取的低轨增强卫星的导航电文得到导航卫星的精密轨道和钟差以及低轨增强卫星的精密轨道和钟差;
    定位误差改正装置,设置为根据获取的所述导航电文改正在定位过程中所受到的误差;
    定位测速参数观测值计算装置,设置为以一种卫星导航系统为基准归一化得到统一线性观测方程,计算定位测速参数观测值;
    定位测速参数估计值计算装置,设置为根据计算得到的所述定位测速参数观测值和所保存上一历元的定位测速参数估计值,通过状态方程计算当前历元的定位测速参数估计值;
    定位测速结果保存装置,设置为根据所述当前历元的定位测速参数估计值生成所述当前历元的定位和测速结果并保存。
  6. 如权利要求5所述的定位系统,其中,卫星导航电文接收和处理装置包括导航卫星导航电文接收和处理单元,以及低轨增强卫星导航电文接收和处理单元。
  7. 如权利要求5所述的定位系统,其中,定位误差改正装置包括导航卫星误差改正单元和低轨增强卫星误差改正单元。
  8. 如权利要求5所述的定位系统,其中,所述统一线性观测方程包括定位观测方程,如果以全球定位系统GPS对应的接收机钟差
    Figure PCTCN2018117070-appb-100024
    为基准,则所述GPS以外的卫星导航系统的定位观测方程为:
    Figure PCTCN2018117070-appb-100025
    Figure PCTCN2018117070-appb-100026
    式中,
    Figure PCTCN2018117070-appb-100027
    Figure PCTCN2018117070-appb-100028
    分别为消电离层组合伪距和相位观测值,
    Figure PCTCN2018117070-appb-100029
    Figure PCTCN2018117070-appb-100030
    分别为接收机端消电离层组合伪距和相位观测值硬件延迟;
    Figure PCTCN2018117070-appb-100031
    Figure PCTCN2018117070-appb-100032
    分别为卫星端消电离层组合伪距和相位观测值硬件延迟;
    Figure PCTCN2018117070-appb-100033
    为消电离层组合观测值波长,
    Figure PCTCN2018117070-appb-100034
    为相应的整周模糊度参数,式中,
    Figure PCTCN2018117070-appb-100035
    为所述GPS与所述GPS以外的任意一个卫星导航系统在接收机端伪距硬件延迟之差,也即码偏差;
    Figure PCTCN2018117070-appb-100036
    为根据站星初始坐标计算的站星距离,l、m、n为线性化系数,分别为
    Figure PCTCN2018117070-appb-100037
    Figure PCTCN2018117070-appb-100038
    而x s、y s和z s为卫星坐标,x a、y a和z a为测站初始坐标,Δx a、Δy a和Δz a分别为其改正值。
  9. 如权利要求8所述的定位系统,其中,所述统一线性观测方程包括测速观测方程,所述测速观测方程为:
    Figure PCTCN2018117070-appb-100039
    式中,
    Figure PCTCN2018117070-appb-100040
    表示测站与卫星之间相位变化速率,单位为周/s,Δt表示采样间隔,而
    Figure PCTCN2018117070-appb-100041
    Figure PCTCN2018117070-appb-100042
    为卫星速率,
    Figure PCTCN2018117070-appb-100043
    Figure PCTCN2018117070-appb-100044
    为测站速率,
    Figure PCTCN2018117070-appb-100045
    表示接收机钟速,
    Figure PCTCN2018117070-appb-100046
    表示对流层的变化率。
  10. 一种计算机可读存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至4中任一项所述的方法。
  11. 一种处理器,所述处理器设置为运行程序,所述程序运行时执行权利要求1至4中任一项所述的方法。
PCT/CN2018/117070 2018-06-04 2018-11-23 一种快速精密定位方法和系统 WO2019233045A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/734,446 US11726213B2 (en) 2018-06-04 2018-11-23 Fast and precise positioning method and system
RU2020139312A RU2749667C1 (ru) 2018-06-04 2018-11-23 Способ и система быстрого и точного позиционирования
CA3102481A CA3102481C (en) 2018-06-04 2018-11-23 Fast and precise positioning method and system
AU2018426890A AU2018426890B2 (en) 2018-06-04 2018-11-23 Fast and precise positioning method and system
EP18921490.1A EP3805804A4 (en) 2018-06-04 2018-11-23 METHOD AND SYSTEM FOR FAST AND PRECISE POSITIONING
KR1020207035116A KR102547522B1 (ko) 2018-06-04 2018-11-23 쾌속 정밀 측위 방법 및 시스템
JP2020568476A JP7122023B2 (ja) 2018-06-04 2018-11-23 高速精密測位方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810566043.4 2018-06-04
CN201810566043.4A CN109001786B (zh) 2018-06-04 2018-06-04 一种基于导航卫星和低轨增强卫星的定位方法和系统

Publications (1)

Publication Number Publication Date
WO2019233045A1 true WO2019233045A1 (zh) 2019-12-12

Family

ID=64574307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117070 WO2019233045A1 (zh) 2018-06-04 2018-11-23 一种快速精密定位方法和系统

Country Status (9)

Country Link
US (1) US11726213B2 (zh)
EP (1) EP3805804A4 (zh)
JP (1) JP7122023B2 (zh)
KR (1) KR102547522B1 (zh)
CN (1) CN109001786B (zh)
AU (1) AU2018426890B2 (zh)
CA (1) CA3102481C (zh)
RU (1) RU2749667C1 (zh)
WO (1) WO2019233045A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045066A (zh) * 2019-12-30 2020-04-21 威海欧瑞亚信息科技有限公司 一种基于参数等价约化原理确定gnss位置变化的方法
CN113805204A (zh) * 2020-06-16 2021-12-17 千寻位置网络有限公司 接收机dcb的更新方法及其装置
CN113866808A (zh) * 2021-09-29 2021-12-31 哈尔滨工程大学 一种gnss振荡器级实时周跳探测与修复方法
CN114137585A (zh) * 2021-11-03 2022-03-04 中国电子科技集团公司第二十研究所 一种北斗星基增强混合增强定位方法
CN115276769A (zh) * 2022-07-22 2022-11-01 福建鼎旸信息科技股份有限公司 一种卫星数据精准播发与服务覆盖方法及系统
CN116973948A (zh) * 2023-07-31 2023-10-31 中国科学院空天信息创新研究院 一种混合类型卫星导航接收机偏差精准处理方法和系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520512A (zh) * 2018-12-28 2019-03-26 上海海积信息科技股份有限公司 一种卫星精密定轨方法及装置
CN109752747B (zh) * 2019-01-16 2023-01-17 上海华测导航技术股份有限公司 差分数据确定方法、装置、服务器及存储介质
CN109856656B (zh) * 2019-02-14 2022-10-28 上海华测导航技术股份有限公司 一种导航定位方法、装置、电子设备及存储介质
CN110118978B (zh) * 2019-04-15 2020-05-19 中国人民解放军军事科学院国防科技创新研究院 基于低轨卫星的导航抗干扰系统及导航抗干扰方法
CN110187364B (zh) * 2019-06-14 2023-06-09 火眼位置数智科技服务有限公司 一种低轨导航增强精密改正数据生成、上注系统及方法
CN111045042B (zh) * 2019-12-20 2022-03-04 西安空间无线电技术研究所 一种基于“云-端”架构的ppp-rtk增强方法与系统
CN111947667B (zh) * 2020-06-24 2022-08-12 火眼位置数智科技服务有限公司 一种基于运动学和动力学组合的低轨卫星实时高精度定轨方法
US11742933B1 (en) * 2020-07-31 2023-08-29 Amazon Technologies, Inc. Antenna control using real-time sensor fusion
CN112327341B (zh) * 2020-10-21 2023-07-14 北京航空航天大学 一种通过网络辅助gnss终端实现亚米级定位的方法
CN112462396B (zh) * 2020-11-20 2023-06-16 中国人民解放军战略支援部队信息工程大学 一种高采样率导航卫星钟差的实时并行确定方法
CN112612043A (zh) * 2020-12-10 2021-04-06 国网四川省电力公司信息通信公司 一种高速无线通信与导航定位融合的区域增强系统及方法
CN113504557B (zh) * 2021-06-22 2023-05-23 北京建筑大学 面向实时应用的gps频间钟差新预报方法
CN113447971A (zh) * 2021-06-28 2021-09-28 中国科学院国家授时中心 一种leo与gnss融合精密单点定位方法及系统
CN115542354A (zh) * 2021-06-30 2022-12-30 博通集成电路(上海)股份有限公司 计算接收机位置-速度-时间结果的装置和方法
CN113641949B (zh) * 2021-08-05 2023-03-28 中国西安卫星测控中心 一种地球同步转移段轨道根数高精度拟合方法
CN113687402B (zh) * 2021-09-07 2024-03-19 中国电子科技集团公司第五十四研究所 一种顾及卫星轨道误差的低轨导航增强实时定位方法
CN113884704B (zh) * 2021-09-23 2023-07-14 中国人民解放军63620部队 运载火箭多源多类测量数据速度基准高精度对齐方法
CN114646992A (zh) * 2022-03-21 2022-06-21 腾讯科技(深圳)有限公司 定位方法、装置、计算机设备、存储介质和计算机程序产品
CN114594507B (zh) * 2022-05-11 2022-07-29 长安大学 一种融合K-means和KNN的GNSS数据质量综合评估方法
CN115407367B (zh) * 2022-08-17 2023-04-07 南京信息工程大学 一种混合星座卫星导航定位精度衰减因子估计方法
CN115657085B (zh) * 2022-09-21 2024-04-16 北京跟踪与通信技术研究所 多通道抗干扰装置及信号处理方法
CN116299618B (zh) * 2023-03-24 2024-03-19 中国科学院精密测量科学与技术创新研究院 基于ppp解算参数的载波相位卫星共视时间传递方法
CN117148394B (zh) * 2023-11-01 2024-01-02 北京凯芯微科技有限公司 一种卫星筛选方法
CN117492054B (zh) * 2023-11-15 2024-04-09 武汉理工大学 区域地面站支持下低轨卫星增强的全球精密单点定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443739A (zh) * 2016-09-09 2017-02-22 清华大学 辅助增强导航方法及设备
CN106646564A (zh) * 2016-10-31 2017-05-10 电子科技大学 一种基于低轨卫星增强导航方法
CN107153209A (zh) * 2017-07-06 2017-09-12 武汉大学 一种短弧段低轨导航卫星实时精密定轨方法
CN107229061A (zh) * 2017-07-18 2017-10-03 武汉大学 一种基于低轨卫星的星地差分实时精密定位方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU733187B2 (en) * 1995-10-24 2001-05-10 Inmarsat Global Limited Satellite radiodetermination
WO1998043372A1 (en) 1997-03-21 1998-10-01 The Board Of Trustees Of The Leland Stanford Junior University A system using leo satellites for centimeter-level navigation
US6725158B1 (en) * 1999-07-12 2004-04-20 Skybitz, Inc. System and method for fast acquisition reporting using communication satellite range measurement
US6480788B2 (en) * 1999-07-12 2002-11-12 Eagle-Eye, Inc. System and method for fast acquisition reporting using communication satellite range measurement
US6560536B1 (en) * 1999-07-12 2003-05-06 Eagle-Eye, Inc. System and method for rapid telepositioning
US20040143392A1 (en) * 1999-07-12 2004-07-22 Skybitz, Inc. System and method for fast acquisition reporting using communication satellite range measurement
JP2007524089A (ja) 2004-01-15 2007-08-23 ザ・ボーイング・カンパニー 高度なナビゲーション性能のための方法およびシステム
KR100685780B1 (ko) 2004-11-04 2007-02-22 한국전자통신연구원 이온층 오차 보정 방법과 그를 이용한 정밀 궤도 결정시스템 및 그 방법
RU2428714C2 (ru) * 2006-05-18 2011-09-10 Дзе Боинг Компани Универсальная высокоэффективная навигационная система
US7583225B2 (en) * 2006-05-18 2009-09-01 The Boeing Company Low earth orbit satellite data uplink
US7969352B2 (en) * 2008-01-08 2011-06-28 The Boeing Company Global positioning system accuracy enhancement
US8260551B2 (en) * 2008-01-10 2012-09-04 Trimble Navigation Limited System and method for refining a position estimate of a low earth orbiting satellite
US9121932B2 (en) * 2008-01-10 2015-09-01 Trimble Navigation Limited Refining a position estimate of a low earth orbiting satellite
US8989652B2 (en) * 2011-09-09 2015-03-24 The Boeing Company Advanced timing and time transfer for satellite constellations using crosslink ranging and an accurate time source
WO2013122497A1 (en) * 2012-02-17 2013-08-22 Veitsel Vladimir Viktorovich Improving a positioning quality of a global navigation satellite system receivers
EP3014298A1 (en) 2013-06-27 2016-05-04 Trimble Navigation Limited Refining a position estimate of a low earth orbiting satellite
AU2015222926A1 (en) 2014-02-26 2016-10-13 Clark Emerson Cohen An improved performance and cost Global Navigation Satellite System architecture
US20150247931A1 (en) 2014-02-28 2015-09-03 Hemisphere Gnss Inc. Locally enhanced gnss wide-area augmentation system
CN105158780B (zh) * 2015-07-24 2017-11-07 北京跟踪与通信技术研究所 一种基于多种导航卫星可互换的导航定位方法
CN106569241B (zh) * 2016-09-27 2019-04-23 北京航空航天大学 一种基于gnss的单频高精度定位方法
CN107390233B (zh) * 2017-07-18 2020-04-17 武汉大学 一种低轨卫星导航增强电离层延迟改正参数方法
CN108415050B (zh) * 2018-06-04 2020-05-26 北京未来导航科技有限公司 一种基于低轨星座导航增强系统的ppp-rtk定位方法
CN109001763B (zh) * 2018-06-04 2020-06-30 北京未来导航科技有限公司 一种基于低轨星座的导航增强方法及系统
US11513232B2 (en) * 2019-05-28 2022-11-29 Xona Space Systems Inc. Satellite for broadcasting high precision data
US11681052B2 (en) * 2020-01-07 2023-06-20 All. Space Networks Limited Non-cooperative position, navigation, and timing extraction from VSAT communications signals using multi-beam phased array antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443739A (zh) * 2016-09-09 2017-02-22 清华大学 辅助增强导航方法及设备
CN106646564A (zh) * 2016-10-31 2017-05-10 电子科技大学 一种基于低轨卫星增强导航方法
CN107153209A (zh) * 2017-07-06 2017-09-12 武汉大学 一种短弧段低轨导航卫星实时精密定轨方法
CN107229061A (zh) * 2017-07-18 2017-10-03 武汉大学 一种基于低轨卫星的星地差分实时精密定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KE , MINGXING ET AL.: "Integrating GPS and LEO to Accelerate Convergence Time of Precise Point Positioning", 2015 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP, 17 October 2015 (2015-10-17), pages 1 - 5, XP032820590, DOI: 10.1109/WCSP.2015.7341230 *
ZHAO, YI ET AL.: "PPP Augmentation and Real-Time Precise Orbit Determination for LEO Satellites", PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE, 28 July 2017 (2017-07-28), pages 5937 - 5941, XP033149680, DOI: 10.23919/ChiCC.2017.8028299 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045066A (zh) * 2019-12-30 2020-04-21 威海欧瑞亚信息科技有限公司 一种基于参数等价约化原理确定gnss位置变化的方法
CN113805204A (zh) * 2020-06-16 2021-12-17 千寻位置网络有限公司 接收机dcb的更新方法及其装置
CN113805204B (zh) * 2020-06-16 2023-07-25 千寻位置网络有限公司 接收机dcb的更新方法及其装置
CN113866808A (zh) * 2021-09-29 2021-12-31 哈尔滨工程大学 一种gnss振荡器级实时周跳探测与修复方法
CN114137585A (zh) * 2021-11-03 2022-03-04 中国电子科技集团公司第二十研究所 一种北斗星基增强混合增强定位方法
CN115276769A (zh) * 2022-07-22 2022-11-01 福建鼎旸信息科技股份有限公司 一种卫星数据精准播发与服务覆盖方法及系统
CN116973948A (zh) * 2023-07-31 2023-10-31 中国科学院空天信息创新研究院 一种混合类型卫星导航接收机偏差精准处理方法和系统
CN116973948B (zh) * 2023-07-31 2024-02-23 中国科学院空天信息创新研究院 一种混合类型卫星导航接收机偏差精准处理方法和系统

Also Published As

Publication number Publication date
CA3102481C (en) 2024-01-09
CN109001786B (zh) 2020-06-16
US11726213B2 (en) 2023-08-15
KR20210008384A (ko) 2021-01-21
JP7122023B2 (ja) 2022-08-19
KR102547522B1 (ko) 2023-06-23
EP3805804A1 (en) 2021-04-14
EP3805804A4 (en) 2021-09-22
CN109001786A (zh) 2018-12-14
US20210223405A1 (en) 2021-07-22
AU2018426890A1 (en) 2020-12-24
RU2749667C1 (ru) 2021-06-16
AU2018426890B2 (en) 2021-09-23
CA3102481A1 (en) 2019-12-12
JP2021526217A (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2019233045A1 (zh) 一种快速精密定位方法和系统
WO2019233039A1 (zh) 精密单点定位与实时动态组合(ppp-rtk)的定位方法和设备
Liu et al. Multi-GNSS precise point positioning (MGPPP) using raw observations
US10281587B2 (en) Navigation satellite system positioning involving the generation of correction information
US10605926B2 (en) Satellite navigation receiver and method for switching between real-time kinematic mode and relative positioning mode
US8174437B2 (en) System and method for augmenting DGNSS with internally-generated differential correction
Leandro et al. RTX positioning: The next generation of cm-accurate real-time GNSS positioning
US10802160B2 (en) Rapid determination of precise position by aiding data
US9671501B2 (en) Global navigation satellite systems (GNSS) positioning using precise satellite data
WO2010104782A1 (en) Removing biases in dual frequency gnss receivers using sbas
AU2009330687A1 (en) Navigation receiver and method for combined use of a standard RTK system and a global carrier-phase differential positioning system
CN112526564A (zh) 一种精密单点定位重新收敛方法
CN106405582A (zh) 一种电离层误差的处理方法及装置
Chen et al. Models and performance of SBAS and PPP of BDS
US6704650B1 (en) Technique for accurate distance and velocity calculations using the global positioning system (GPS)
CN114935770A (zh) 一种多历元加快精密单点定位收敛速度的方法及装置
Liu et al. Real-time multi-constellation precise point positioning with integer ambiguity resolution
Li et al. Spatial–temporal characteristic of BDS phase delays and PPP ambiguity resolution with GEO/IGSO/MEO satellites
Azab et al. Precise point positioning using combined GPS/GLONASS measurements
CN115144878A (zh) 基于ppp的短距离大高差nrtk对流层延迟改正方法
Liu et al. A new method to improve the performance of multi-GNSS pseudorange positioning in signal-degraded environment
CN109143273B (zh) 多频多模gnss周跳和数据中断的修复方法
Liu et al. Optimal selection of elevation-dependent stochastic models for real-time PPP with GPS/Galileo/BDS
Ehigiator-Irughe et al. Establishment of geodetic control in Jebba Dam using CSRS-PPP processing software
JP2024075775A (ja) 測位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3102481

Country of ref document: CA

Ref document number: 2020568476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035116

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018426890

Country of ref document: AU

Date of ref document: 20181123

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018921490

Country of ref document: EP

Effective date: 20210111