WO2019232700A1 - 一种二醋酸纤维素纤维薄膜及其制备方法 - Google Patents

一种二醋酸纤维素纤维薄膜及其制备方法 Download PDF

Info

Publication number
WO2019232700A1
WO2019232700A1 PCT/CN2018/090024 CN2018090024W WO2019232700A1 WO 2019232700 A1 WO2019232700 A1 WO 2019232700A1 CN 2018090024 W CN2018090024 W CN 2018090024W WO 2019232700 A1 WO2019232700 A1 WO 2019232700A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose diacetate
fiber
acetone
spinning
section
Prior art date
Application number
PCT/CN2018/090024
Other languages
English (en)
French (fr)
Inventor
杨旭红
李冰艳
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to PCT/CN2018/090024 priority Critical patent/WO2019232700A1/zh
Publication of WO2019232700A1 publication Critical patent/WO2019232700A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention relates to a cellulose diacetate fiber film and a preparation method thereof, and in particular, to a film composed of a cellulose acetate diacetate having a flat cross-section and a porous surface and a preparation method thereof.
  • the fiber membrane prepared by the electrospinning technology has the characteristics of small fiber diameter, large specific surface area, and strong adsorption capacity, and has broad application prospects in the fields of biomedicine, filtration and separation.
  • the fibers are mostly circular in cross section and have no holes on the surface.
  • Flat cross-section fibers have a larger specific surface area than circular cross-section fibers, and the pores on the fiber surface can further increase the specific surface area, so they have higher adsorption capacity and better air filtration effect. Therefore, the film composed of porous and flat cross-section fibers has good application prospects in the fields of drug release, tissue scaffolding, and air filtration.
  • Cellulose diacetate is a cellulose derivative that can be naturally degraded, has good biocompatibility, and is inexpensive. Its products do not cause allergic reactions due to long-term contact with the human body, and are environmentally friendly materials.
  • Chinese invention patent CN 106948164 A published a method for preparing a polylactic acid porous fiber film, which involved a process of dissolving polylactic acid and polyethylene oxide in a co-solvent at a certain weight ratio.
  • the polymer solution is spun into a polylactic acid / polyethylene oxide composite fiber, and the composite fiber is immersed in an aqueous solution to etch away the polyethylene oxide phase in the fiber.
  • the polymer used is polylactic acid
  • the resulting fiber has a circular cross-section, and the micropores on the fiber are obtained by removing one component of the fiber by etching. An etching process needs to be added after electrostatic spinning. Longer.
  • the present invention aims at the shortcomings of the prior art, and provides a fiber with short process flow and low production cost.
  • a technical solution to achieve the objective of the present invention is to provide a method for preparing a cellulose diacetate fiber film, including the following steps:
  • step 2 Using the cellulose diacetate solution obtained in step 1 as a spinning dope, an electrospinning process is used to obtain a cellulose diacetate fiber membrane with a porous surface on the fiber surface and a flat fiber cross section on the receiving screen.
  • the average molecular weight of the cellulose diacetate according to the technical scheme of the present invention is 40,000, and the acetylity is 39.8%; the average molecular weight of the polyethylene oxide is 30,000; and the acetone / water mixed solvent, in terms of volume ratio, Acetone: water is 3 ⁇ 5: 1; the acetone / dichloromethane mixed solvent is, by volume ratio, acetone: dichloromethane is 1: 0.5
  • a method for preparing a cellulose diacetate fiber film provided by the technical solution of the present invention, the conditions of its electrostatic spinning process include: a spinning flow rate of 1 ⁇ 7ml / h; a spinning voltage of 9 ⁇ 15kv; spinning The receiving distance is 10 ⁇ 15cm; the spinning temperature is 25 ⁇ 28 ° C, and the relative humidity is 25 ⁇ 81%.
  • the technical solution of the present invention further includes a cellulose diacetate fiber film obtained according to the above preparation method.
  • the fiber section in the film is flat, and the cross-section length of a single fiber is 0.8 ⁇ m and the width is 0.2 ⁇ 0> m.
  • the aspect ratio is 4 ⁇ 8: 1; the surface of the fiber in the membrane is a porous structure with a pore diameter of 25 ⁇ 154nm and a porosity of 6 ⁇ 36%.
  • the present invention mixes solvents with different volatile energy to dissolve cellulose diacetate; using an electrostatic spinning method, under the action of an electrostatic high-voltage electric field force, the spinning droplets overcome the surface tension and break into smaller pieces. The droplets, then the solvent evaporates, the fibers are solidified and are drawn and deposited on the receiving screen to form a fiber film.
  • the cross-section of the fiber and the surface micropore diameter are controlled to obtain a flat cross-section diacetic acid with a fiber diameter of micron and a large number of holes on the surface Cellulose fiber membrane.
  • the present invention Due to the adoption of the above technical solution, compared with the prior art, the present invention has the following advantages: [0014] 1. According to the present invention, a method for preparing a porous flat cross-section cellulose acetate fiber membrane by adopting an electrostatic spinning process is simple in operation, low in cost, and easy to control process conditions.
  • the present invention uses a combination of solvents with different volatile energies to obtain fibers with a flat cross-section by controlling the mixing ratio of the solvents.
  • Flat cross-section fibers can be obtained without using special-shaped spinnerets.
  • the fiber surface has a porous structure, a flat cross section, a larger specific surface area than a conventional fiber membrane, and good adsorption performance.
  • the pore structure and pore size of the fiber surface can be controlled by changing the combination ratio of the solvents.
  • the present invention uses a highly volatile solvent.
  • the solvent is volatilized during the fiber forming process and will not remain inside the fiber and affect the further use of the product.
  • FIG. 1 is a scanning electron microscope image of a porous flat cross-section diacetate cellulose fiber membrane provided in Embodiment 1 of the present invention
  • FIG. Scanning electron microscope image [0020]
  • FIG. 3 is a scanning electron microscope image of a porous flat cross-section diacetate cellulose fiber membrane provided in Embodiment 3 of the present invention;
  • FIG. 4 is a porous flat cross-section diacetate fiber membrane provided in Embodiment 4 of the present invention
  • FIG. 5 is a scanning electron micrograph of a porous flat cross-section cellulose diacetate fiber membrane provided in Example 5 of the present invention.
  • This embodiment provides a porous flat cross-section cellulose diacetate fiber membrane, which is prepared as follows:
  • Spinning solution composition The mass concentration of cellulose diacetate (relative average molecular weight is 40,000) is
  • the mass of polyethylene oxide is 5% (relative to the mass of cellulose diacetate), the total mass concentration of acetone and water is 92%, and the volume ratio of acetone and water is 5: 1.
  • the pore diameter of the holes on the surface of the fibers constituting the fiber membrane was 26.3 to 32.3 nm, the average pore diameter was 28.4 nm, the porosity was 10.1%, and the fiber cross-section aspect ratio was 4 to 8: 1.
  • Spinning solution composition The mass concentration of cellulose diacetate (relative average molecular weight is 40,000) is
  • the mass of polyethylene oxide is 5% (relative to the mass of cellulose diacetate), the total mass concentration of acetone and water is 92%, and the volume ratio of acetone and water is 3: 1.
  • Appendix 2 is a scanning electron microscope image of a porous flat cross-section cellulose diacetate fiber membrane prepared in a mixed solvent with a volume ratio of acetone and water of 3: 1 in this embodiment, (a) is a magnification of the fiber membrane 1000 times; (b) 10,000 times the magnification of the fiber membrane.
  • the pore diameter of the holes on the surface of the fibers constituting the fiber membrane is 23.3 to 27.0 nm, the average pore diameter is 24.7 nm, the porosity is 6.2%, and the fiber cross-section aspect ratio is 4 to 8: 1.
  • a porous flat cross-section cellulose acetate fiber membrane is prepared as follows:
  • Spinning solution composition the mass concentration of cellulose diacetate (relative average molecular weight of 40,000) is 6%, the mass of polyethylene oxide is 15% (relative to the mass of cellulose diacetate), acetone and dichloromethane The total mass concentration was 94%, and the volume ratio of acetone and dichloromethane was 2: 1.
  • Spinning process Under the control of a flow pump, a cellulose diacetate solution is extruded from a circular metal needle of a 10mr syringe at a speed of 1ml / h, and is accelerated forward under the action of an electric field force of 12kv into a relative The atmospheric environment with a humidity of 81% and a temperature of 26 ° C finally fell on a metal receiving device with aluminum foil at a distance of 12 cm from the metal needle to obtain a porous flat cross-section cellulose diacetate fiber membrane.
  • FIG. 3 it is a scanning electron microscope image of a porous flat cross-section cellulose diacetate fiber membrane prepared by using a mixed solvent of a volume ratio of 2: 1 of acetone and dichloromethane provided in this embodiment; (a) is A fiber membrane with a magnification of 1000 times; (b) A fiber membrane with a magnification of 10,000 times. [0041]
  • the porous flat cross-section cellulose diacetate fiber membrane provided in this embodiment has a pore diameter range of 15.5 to 18.1 nm, an average pore diameter of 16.8 nm, a porosity of 1.8%, and a fiber cross section of the fiber surface holes constituting the fiber membrane. Aspect ratio 4 ⁇ 8: 1.
  • This embodiment provides a porous flat cross-section cellulose diacetate fiber membrane.
  • the preparation method is as follows:
  • Spinning solution composition The mass concentration of cellulose diacetate (relative average molecular weight is 40,000) is
  • FIG. 4 it is a scanning electron microscope image of a porous flat cross-section cellulose diacetate fiber membrane prepared by using a mixed solvent of a volume ratio of 1: 1 of acetone and dichloromethane provided in this embodiment, where (a) It is a fiber membrane with a magnification of 100 times, (b) is a fiber membrane with a magnification of 10,000 times.
  • the porous flat cross-section cellulose diacetate fiber membrane provided in this embodiment has a pore diameter range of 55.8 to 68.1 nm, an average pore diameter of 62.0 nm, and a porosity of 15.4%.
  • This embodiment provides a flat-cell structure cellulose diacetate fiber, which is prepared as follows:
  • Spinning solution composition The mass concentration of cellulose diacetate (relative average molecular weight is 40,000) is
  • the mass of polyethylene oxide is 15% (relative to the mass of cellulose diacetate)
  • the total mass concentration of acetone and dichloromethane is 94%
  • the mass ratio of acetone and dichloromethane is 1: 2.
  • FIG. 5 it is a scanning electron microscope image of a porous flat cross-section cellulose diacetate fiber membrane prepared by using a mixed solvent of acetone and dichloromethane in a volume ratio of 1: 2 in this embodiment; (a) is a magnification 1000 times the fiber membrane, (b) is a fiber membrane with a magnification of 8000 times.
  • the flat pore structure cellulose diacetate fiber provided in this embodiment has a pore diameter range of 94.5.5 to 110.8 nm, an average pore diameter of 98.4 nm, and a porosity of 28.4%. Cut Face aspect ratio 4 ⁇ 8: 1.
  • the cellulose diacetate fiber membrane prepared according to the technical solution of the present invention has thin fibers in the membrane, a micrometer in diameter, a porous surface on the fiber surface, and a flat cross-section. Therefore, the fiber membrane has a large specific surface area and an adsorption performance. Excellent, and has good application prospects in the fields of biological dressings, sustained release of drugs, tissue scaffolds and other fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种二醋酸纤维素纤维薄膜及其制备方法。将二醋酸纤维素粉末溶于丙酮/水,或者丙酮/二氯甲烷的混合溶剂中制成纺丝溶液,采用静电纺丝工艺,在静电高压电场力的作用下,二醋酸纤维素纺丝溶液被牵伸为纤维,在接收器上固化形成纤维膜。本发明提供的技术方案操作简单,条件容易控制。制得的二醋酸纤维素纤维膜中纤维细,直径为微米级,纤维表面具有多孔结构,截面为扁形,纤维膜比表面积大,吸附性能优良,在生物敷料、药物缓释、组织支架等领域具有良好的应用前景。

Description

说明书 发明名称:一种二醋酸纤维素纤维薄膜及其制备方法 技术领域
[0001] 本发明涉及一种二醋酸纤维素纤维膜及其制备方法, 特别涉及一种由扁截面状 、 表面多孔的二醋酸纤维素纤维构成的膜及其制备方法。
背景技术
[0002] 目前人们在药物控缓释、 组织工程、 生物敷料、 生物膜、 过滤分离等领域对吸 附能力强、 过滤效果好的材料有着迫切的需求。 利用静电纺丝技术制备的纤维 膜, 具有纤维直径小、 比表面积大、 吸附能力强等特性, 在生物医用、 过滤分 离等领域有着广阔的应用前景。 但目前用静电纺丝技术制备的纤维膜中纤维多 为圆形截面且表面没有孔洞。 扁平截面纤维比圆形截面纤维具有更大的比表面 积, 纤维表面的孔洞又可进一步增加比表面积, 因而具有更高的吸附能力和更 好的空气过滤效果。 因此, 由多孔、 扁截面纤维构成的薄膜在药物释放、 组织 支架、 空气过滤等领域具有良好的应用前景。
[0003] 二醋酸纤维素是纤维素衍生物, 能够自然降解, 生物相容性好, 价格低廉。 其 制品与人体长期接触不会引起过敏反应, 是环境友好材料。
[0004] 在本发明作出之前, 中国发明专利 CN 106948164 A公布了一种制备聚乳酸多孔 纤维薄膜的方法, 涉及工艺为将聚乳酸和聚环氧乙烷按一定的重量比溶于共溶 剂中, 使用高压静电技术, 将聚合物溶液纺制成聚乳酸 /聚环氧乙烷复合纤维, 再将复合纤维浸入水溶液中, 刻蚀去除纤维中的聚环氧乙烷相。 由于其采用的 聚合物为聚乳酸, 所得纤维为圆形截面, 且纤维上的微孔是通过刻蚀去除纤维 中的一种组分得到的, 需要在静电纺丝之后增加刻蚀工艺, 流程较长。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 本发明针对现有技术存在的不足, 提供了一种工艺流程短、 生产成本低的纤维 表面具有多孔结构的扁截面二醋酸纤维素纤维膜及其制备方法。
[0006] 实现本发明目的的技术方案是提供一种二醋酸纤维素纤维薄膜的制备方法, 包 括如下步骤:
[0007] 1 . 常温条件下, 按聚氧化乙烯的质量为二醋酸纤维素质量的 1〜 20%, 将二醋 酸纤维素和聚氧化乙烯溶解于混合溶剂中, 所述的混合溶剂为丙酮 /水, 或丙酮 / 二氯甲烷, 得到二醋酸纤维素的浓度为 6〜 10%wt的溶液;
[0008] 2. 以步骤 1得到的二醋酸纤维素溶液为纺丝原液, 采用静电纺丝工艺, 在接收 屏上得到一种纤维表面具有多孔结构且纤维截面为扁形的二醋酸纤维素纤维膜
[0009] 本发明技术方案所述的二醋酸纤维素的均分子量为 40000, 乙酰度为 39.8% ; 所 述的聚氧化乙烯的均分子量为 30000; 所述丙酮 /水混合溶剂, 按体积比, 丙酮: 水为 3〜 5: 1 ; 所述丙酮 /二氯甲烷混合溶剂, 按体积比, 丙酮: 二氯甲烷为 1:0.5
〜 4。
[0010] 本发明技术方案提供的一种二醋酸纤维素纤维薄膜的制备方法, 其静电纺丝工 艺的条件包括: 纺丝流量为 1〜 7ml/h; 纺丝电压为 9〜 15kv; 纺丝接收距离为 10 〜 15cm; 纺丝温度为 25〜 28°C, 相对湿度为 25〜 81%。
[0011] 本发明技术方案还包括按上述制备方法得到的一种二醋酸纤维素纤维薄膜, 膜 中纤维截面为扁形, 单根纤维的横截面长为 0.8〜 m, 宽为 0.2〜 0>m, 长宽比 为 4〜 8: 1 ; 膜中纤维表面为多孔结构, 其孔径为 25〜 154nm, 孔隙率为 6〜 36%。
[0012] 本发明将具有不同挥发性能的溶剂混合, 用以溶解二醋酸纤维素; 采用静电纺 丝方法, 在静电高压电场力的作用下, 纺丝液滴克服表面张力而破裂成更小的 液滴, 继而溶剂挥发、 纤维固化并被牵伸沉积在接收屏上形成纤维膜。 通过调 节溶剂的混合比例、 纺丝溶液浓度、 流速、 电场电压、 接收距离和环境温湿度 , 控制纤维的截面和表面微孔孔径, 得到纤维直径为微米级、 表面具有大量孔 洞的扁截面二醋酸纤维素纤维膜。
发明的有益效果
有益效果
[0013] 由于上述技术方案的采用, 与现有技术相比, 本发明具有以下的优点: [0014] 1.本发明通过采用静电纺丝工艺制备多孔扁截面二醋酸纤维素纤维膜的方法, 操作简单, 成本低, 工艺条件易于控制。
[0015] 2.本发明采用具有不同挥发性能的溶剂组合, 通过控制溶剂混合比例得到截面 为扁形结构的纤维, 无需采用异形喷丝孔即可得到扁截面纤维。
[0016] 3.本发明制得的纤维膜中纤维表面具有多孔结构, 截面扁形, 比常规纤维膜比 表面积大, 吸附性能好。 通过改变溶剂的组合比例可控制纤维表面孔洞结构和 孔径尺寸。
[0017] 4.本发明采用的是高挥发性溶剂, 溶剂在纤维成形过程中挥发, 不会残留在纤 维内部而影响制品的进一步使用。
对附图的简要说明
附图说明
[0018] 图 1是本发明实施例 1提供的多孔扁截面二醋酸纤维素纤维膜的扫描电镜图; [0019] 图 2是本发明实施例 2提供的多孔扁截面二醋酸纤维素纤维膜的扫描电镜图; [0020] 图 3是本发明实施例 3提供的多孔扁截面二醋酸纤维素纤维膜的扫描电镜图; [0021] 图 4是本发明实施例 4提供的多孔扁截面二醋酸纤维素纤维膜的扫描电镜图; [0022] 图 5是本发明实施例 5提供的多孔扁截面二醋酸纤维素纤维膜的扫描电镜图。
发明实施例
本发明的实施方式
[0023] 下面结合附图和实施例, 对本发明的具体实施方式作进一步的详细描述。
[0024] 实施例 1
[0025] 本实施例提供一种多孔扁截面二醋酸纤维素纤维膜, 其制备方法如下:
[0026] ( 1) 纺丝溶液组成: 二醋酸纤维素 (相对平均分子量为 40000) 的质量浓度为
8% , 聚氧化乙烯的质量为 5% (相对二醋酸纤维素的质量) , 丙酮和水的总质量 浓度为 92%, 丙酮和水的体积比为 5: 1。
[0027] (2) 纺丝过程: 在流量泵的控制下, 二醋酸纤维素溶液以 2.5ml/h的速度从 10 ml注射器的圆形金属针头挤出, 在 15kv的电场力作用下加速向前运动, 进入相 对湿度为 29%、 温度为 21°C的大气环境, 最终落在距离金属针头 14cm处带有铝 箔的金属接收装置上, 得到多孔扁截面二醋酸纤维素纤维膜。 [0028] 参见附图 1, 它是本实施例以丙酮和水的体积比为 5: 1的混合溶剂制备的多孔 扁截面二醋酸纤维素纤维膜的扫描电镜图, 其中, (a) 为纤维膜放大倍数 1000 倍; (b) 为纤维膜放大倍数 10000倍; (c) 为纤维横截面放大倍数 2000倍。
[0029] 经检测, 构成纤维膜的纤维表面孔洞的孔径为 26.3〜 32.3nm, 平均孔径为 28.4n m, 孔隙率为 10.1%, 纤维横截面长宽比 4〜 8: 1。
[0030] 实施例 2
[0031] 本实施例制备多孔扁截面二醋酸纤维素纤维膜的步骤如下:
[0032] (1) 纺丝溶液组成: 二醋酸纤维素 (相对平均分子量为 40000) 的质量浓度为
8% , 聚氧化乙烯的质量为 5% (相对二醋酸纤维素的质量) , 丙酮和水的总质量 浓度为 92%, 丙酮和水的体积比为 3: 1。
[0033] (2) 纺丝工艺同实施例 1。
[0034] 参见附 2, 它是本实施例以丙酮和水的体积比为 3: 1的混合溶剂制备的多孔扁 截面二醋酸纤维素纤维膜的扫描电镜图, (a) 为纤维膜放大倍数 1000倍; (b) 为纤维膜放大倍数 10000倍。
[0035] 构成纤维膜的纤维表面孔洞的孔径为 23.3〜 27.0nm, 平均孔径为 24.7nm, 孔隙 率为 6.2%, 纤维横截面长宽比 4〜 8:1。
[0036] 实施例 3
[0037] 本实施例按如下方法制备多孔扁截面二醋酸纤维素纤维膜:
[0038] 纺丝溶液组成: 二醋酸纤维素 (相对平均分子量为 40000) 的质量浓度为 6%, 聚氧化乙烯的质量为 15% (相对二醋酸纤维素的质量) , 丙酮和二氯甲烷的总质 量浓度为 94%, 丙酮和二氯甲烷的体积比为 2: 1。
[0039] 纺丝工艺: 在流量泵的控制下, 二醋酸纤维素溶液以 lml/h的速度从 10mr注射 器的圆形金属针头挤出, 在 12kv的电场力作用下加速向前运动, 进入相对湿度 为 81%、 温度为 26°C的大气环境, 最终落在距离金属针头 12cm处带有铝箔的金 属接收装置上, 得到多孔扁截面二醋酸纤维素纤维膜。
[0040] 参见附图 3 , 它是本实施例提供的以丙酮和二氯甲烷的体积比 2: 1的混合溶剂 制备的多孔扁截面二醋酸纤维素纤维膜的扫描电镜图; (a) 为放大倍数 1000倍 的纤维膜; (b) 为放大倍数 10000倍的纤维膜。 [0041] 本实施例提供的多孔扁截面二醋酸纤维素纤维膜, 其构成纤维膜的纤维表面孔 洞的孔径范围为 15.5〜 18.1nm, 平均孔径为 16.8nm, 孔隙率为 1.8%, 纤维横截面 长宽比 4〜 8: 1。
[0042] 实施例 4
[0043] 本实施例提供一种多孔扁截面二醋酸纤维素纤维膜, 制备方法如下:
[0044] (1) 纺丝溶液组成: 二醋酸纤维素 (相对平均分子量为 40000) 的质量浓度为
6% , 聚氧化乙烯的质量为 15% (相对二醋酸纤维素的质量) , 丙酮和二氯甲烷 的总质量浓度为 94%, 丙酮和二氯甲烷的质量比为 1 : 1。
[0045] (2) 纺丝过程: 同实施例 3。
[0046] 参见附图 4, 它是本实施例提供的以丙酮和二氯甲烷的体积比 1 : 1的混合溶剂 制备的多孔扁截面二醋酸纤维素纤维膜的扫描电镜图, 其中 (a) 为放大倍数 100 0倍的纤维膜, (b) 为放大倍数 10000倍的纤维膜。
[0047] 本实施例提供的多孔扁截面二醋酸纤维素纤维膜, 构成纤维膜的纤维表面孔洞 的孔径范围为 55.8〜 68.1nm, 平均孔径为 62.0nm, 孔隙率为 15.4%。
[0048] 实施例 5
[0049] 本实施例提供一种扁平孔结构二醋酸纤维素纤维, 其制备方法如下:
[0050] (1) 纺丝溶液组成: 二醋酸纤维素 (相对平均分子量为 40000) 的质量浓度为
6% , 聚氧化乙烯的质量为 15% (相对二醋酸纤维素的质量) , 丙酮和二氯甲烷 的总质量浓度为 94%, 丙酮和二氯甲烷的质量比为 1 : 2。
[0051] (2) 纺丝过程: 在流量泵的控制下, 二醋酸纤维素溶液以 lml/h的速度从 10ml 注射器的圆形金属针头挤出, 在 12kv的电场力作用下加速向前运动, 进入相对 湿度为 52%、 温度为 26°C的大气环境, 最终落在距离金属针头 12cm处带有铝箔 的金属接收装置上, 得到多孔扁截面二醋酸纤维素纤维膜。
[0052] 参见附图 5, 它是本实施例以丙酮和二氯甲烷的体积比 1 : 2的混合溶剂制备的 多孔扁截面二醋酸纤维素纤维膜的扫描电镜图; (a) 为放大倍数 1000倍的纤维 膜, (b) 为放大倍数 8000倍的纤维膜。
[0053] 本实施例提供的扁平孔结构二醋酸纤维素纤维, 其构成纤维膜的纤维表面孔洞 的孔径范围为 94.5.5〜 110.8nm, 平均孔径为 98.4nm, 孔隙率为 28.4%, 纤维横截 面长宽比 4〜 8: 1。
[0054] 按本发明技术方案制得的二醋酸纤维素纤维膜, 膜中的纤维细, 直径为微米级 , 且纤维表面具有多孔结构, 截面为扁形, 因此, 纤维膜比表面积大, 吸附性 能优良, 在生物敷料、 药物缓释、 组织支架等领域具有良好的应用前景。

Claims

权利要求书 [权利要求 1] 一种二醋酸纤维素纤维薄膜的制备方法, 其特征在于包括如下步骤:
( 1) 常温条件下, 按聚氧化乙烯的质量为二醋酸纤维素质量的 1〜 20 % , 将二醋酸纤维素和聚氧化乙烯溶解于混合溶剂中, 所述的混合溶 剂为丙酮 /水, 或丙酮 /二氯甲烷, 得到二醋酸纤维素的浓度为 6〜 10% wt的溶液;
(2) 以步骤 (1) 得到的二醋酸纤维素溶液为纺丝原液, 采用静电纺 丝工艺, 在接收屏上得到一种纤维表面具有多孔结构且纤维截面为扁 形的二醋酸纤维素纤维膜。
[权利要求 2] 根据权利要求 1所述的一种二醋酸纤维素纤维薄膜的制备方法, 其特 征在于: 所述的二醋酸纤维素的均分子量为 40000, 乙酰度为 39.8%。
[权利要求 3] 根据权利要求 1所述的一种二醋酸纤维素纤维薄膜的制备方法, 其特 征在于: 所述的聚氧化乙烯的均分子量为 30000。
[权利要求 4] 根据权利要求 1所述的一种二醋酸纤维素纤维薄膜的制备方法, 其特 征在于: 所述丙酮 /水混合溶剂, 按体积比, 丙酮: 水为 3〜 5: 1。
[权利要求 5] 根据权利要求 1所述的一种二醋酸纤维素纤维薄膜的制备方法, 其特 征在于: 所述丙酮 /二氯甲烷混合溶剂, 按体积比, 丙酮: 二氯甲烷 为 1:0.5〜 4。
[权利要求 6] 根据权利要求 1所述的一种二醋酸纤维素纤维薄膜的制备方法, 其特 征在于: 静电纺丝工艺的条件包括: 纺丝流量为 1〜 7ml/h; 纺丝电压 为 9〜 15kv; 纺丝接收距离为 10〜 15cm; 纺丝温度为 25〜 28°C, 相对 湿度为 25〜 81%。
[权利要求 7] 按权利要求 1制备方法得到的一种二醋酸纤维素纤维薄膜, 其特征在 于: 膜中纤维截面为扁形, 单根纤维的横截面长为 0.8〜 m, 宽为 0. 2〜 0.5—, 长宽比为 4〜 8: 1 ; 膜中纤维表面为多孔结构, 其孔径为 25 〜 154nm, 孔隙率为 6〜 36%。
PCT/CN2018/090024 2018-06-05 2018-06-05 一种二醋酸纤维素纤维薄膜及其制备方法 WO2019232700A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090024 WO2019232700A1 (zh) 2018-06-05 2018-06-05 一种二醋酸纤维素纤维薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090024 WO2019232700A1 (zh) 2018-06-05 2018-06-05 一种二醋酸纤维素纤维薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2019232700A1 true WO2019232700A1 (zh) 2019-12-12

Family

ID=68769694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090024 WO2019232700A1 (zh) 2018-06-05 2018-06-05 一种二醋酸纤维素纤维薄膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2019232700A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404635A (zh) * 2014-11-07 2015-03-11 刘秀珠 一种醋酸纤维素静电纺丝溶液的制备方法
KR20160139264A (ko) * 2015-05-27 2016-12-07 국방과학연구소 3차원 나노섬유 멤브레인 및 액체 컬렉터를 이용한 이의 제조 방법
CN106948164A (zh) * 2017-03-08 2017-07-14 杭州安诺过滤器材有限公司 由纳米连续多孔结构的聚乳酸纤维构成的薄膜及其制备方法
CN107051408A (zh) * 2017-06-01 2017-08-18 北京化工大学 一种可重复吸油的三维纳米纤维疏水海绵的制备方法
CN108486768A (zh) * 2018-06-05 2018-09-04 南通纺织丝绸产业技术研究院 一种二醋酸纤维素纤维薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404635A (zh) * 2014-11-07 2015-03-11 刘秀珠 一种醋酸纤维素静电纺丝溶液的制备方法
KR20160139264A (ko) * 2015-05-27 2016-12-07 국방과학연구소 3차원 나노섬유 멤브레인 및 액체 컬렉터를 이용한 이의 제조 방법
CN106948164A (zh) * 2017-03-08 2017-07-14 杭州安诺过滤器材有限公司 由纳米连续多孔结构的聚乳酸纤维构成的薄膜及其制备方法
CN107051408A (zh) * 2017-06-01 2017-08-18 北京化工大学 一种可重复吸油的三维纳米纤维疏水海绵的制备方法
CN108486768A (zh) * 2018-06-05 2018-09-04 南通纺织丝绸产业技术研究院 一种二醋酸纤维素纤维薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ET AL.: "Ultra-fine cellulose acetate/poly(ethylene oxide) bicomponent fibers", CARBOHYDRATE POLYMERS, 2 June 2007 (2007-06-02) *

Similar Documents

Publication Publication Date Title
Hou et al. Highly porous fibers prepared by centrifugal spinning
Dadol et al. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications
Szewczyk et al. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology
CN108486768B (zh) 一种二醋酸纤维素纤维薄膜及其制备方法
Chen et al. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability
Tungprapa et al. Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter
Medeiros et al. Effect of relative humidity on the morphology of electrospun polymer fibers
Ou et al. Membranes of epitaxial-like packed, super aligned electrospun micron hollow poly (l-lactic acid)(PLLA) fibers
JP5027554B2 (ja) 1軸または多軸配向ナノファイバー集積体の製造方法及び製造装置
KR101201412B1 (ko) 다공성 코어쉘 나노웹의 제조방법
AK S et al. Fabrication of poly (Caprolactone) nanofibers by electrospinning
KR102216454B1 (ko) 포러스 탄소 나노섬유들 및 이들의 제조 방법
CN105903271B (zh) 可调控混合纳米结构纤维复合过滤材料及其制备方法
JP5246652B2 (ja) 極細ナノファイバーの製造方法
Kalluri et al. Effect of electrospinning parameters on the fiber diameter and morphology of PLGA nanofibers
Zhang et al. Development of highly oil-absorbent polylactic-acid microfibers with a nanoporous structure via simple one-step centrifugal spinning
KR101033278B1 (ko) 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법
WO2019232700A1 (zh) 一种二醋酸纤维素纤维薄膜及其制备方法
Sa’adon et al. Fabrication of Dual Layer Polyvinyl Alcohol Transdermal Patch: Effect of Freezing-Thawing Cycles on Morphological and Swelling Ability
CN105561371B (zh) 一种具有网格结构的可水冲散遗弃的敷料及其制备工艺
Shahgaldi et al. Investigation of the effect of electrospun polyethersulfone nanofibers in membrane
CN108754872B (zh) 静电纺plga超细纤维膜的生产方法
CN106757788B (zh) 一种输液滤器过滤用纳米纤维膜及其制备方法
CN108707977B (zh) 一种扁平截面的二醋酸纤维素纤维及其制备方法
Kumar et al. Polymer and composite nanofiber: electrospinning parameters and rheology properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921363

Country of ref document: EP

Kind code of ref document: A1