WO2019231197A1 - 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법 - Google Patents

마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법 Download PDF

Info

Publication number
WO2019231197A1
WO2019231197A1 PCT/KR2019/006339 KR2019006339W WO2019231197A1 WO 2019231197 A1 WO2019231197 A1 WO 2019231197A1 KR 2019006339 W KR2019006339 W KR 2019006339W WO 2019231197 A1 WO2019231197 A1 WO 2019231197A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass paste
color conversion
glass
lattice
led display
Prior art date
Application number
PCT/KR2019/006339
Other languages
English (en)
French (fr)
Inventor
박태호
권광우
박영수
Original Assignee
주식회사 베이스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 베이스 filed Critical 주식회사 베이스
Priority to CN201980002466.6A priority Critical patent/CN110785850A/zh
Priority to US16/682,277 priority patent/US20200083411A1/en
Publication of WO2019231197A1 publication Critical patent/WO2019231197A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method for producing a color conversion structure for micro LED display.
  • Micro LEDs are very small LEDs with a size of 100 ⁇ m or less. They have high contrast ratio, fast response speed, high power efficiency, and they do not cause breakage when they are bent due to their small size. There is no advantage. Therefore, the micro LED display using the same has attracted attention as a next generation display.
  • one pixel is composed of three LED chips of red, green, and blue, and thus, each of the red, green, and blue LED chips must be sequentially assembled at a predetermined position on a substrate.
  • a large number of micro LED displays are required for high resolution, for example, about 6.2 million (based on R, G, and B chips) for FHD (1,920X1,080) resolution. It is necessary, and a considerable process time is required to assemble each of them in a predetermined position.
  • a method of converting the color of light emitted from the LED chip using a phosphor after assembling a single color micro LED on the substrate may be considered.
  • the assembly time can be reduced by assembling the micro LEDs by a self assembly method, but a color conversion element must be additionally applied to each of the micro LEDs.
  • a color conversion element when using a material having excellent color reproducibility such as quantum dot (QD) but vulnerable to heat and moisture, there is a problem that the color conversion element must be protected from external heat and moisture. .
  • QD quantum dot
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a method of manufacturing a color conversion structure for a micro LED display, which can reduce the processing time of the micro LED display.
  • an object of the present invention is to provide a method for manufacturing a color conversion structure that can prevent the degradation of the characteristics of the phosphor used for color conversion of light emitted from the LED chip.
  • a method of manufacturing a color conversion structure for a micro LED display includes applying a barrier glass paste including a reflective material and glass powder in a lattice form on a substrate, and sintering the barrier glass paste.
  • Forming a barrier rib structure, and partitioning the grating in the barrier rib structure into a plurality of grating groups having three adjacent gratings as a group, and in the first grating of each of the plurality of grating groups, a first color conversion material and glass powder Injecting a first glass paste comprising a second glass paste including a second color conversion material and a glass powder into a second lattice of each lattice group; and a first glass paste and a second glass paste.
  • Sintering separating the barrier rib structure from the substrate, and lattice of the barrier rib structure containing the first glass paste and the second glass paste. Attaching a light blocking film to block predetermined light on the film.
  • injecting the first glass paste and the second glass paste may include injecting a third glass paste including glass powder into the third lattice of each of the plurality of lattice groups.
  • the sintering of the first glass paste and the second glass paste may further include sintering the third glass paste.
  • the reflective material included in the barrier glass paste including the reflective material and the glass powder may further include TiO 2.
  • the glass powder included in the first glass paste and the second glass paste may be sintered at 300 ° C. or less.
  • the first color conversion material included in the first glass paste and the second color conversion material included in the second glass paste may include quantum dots.
  • the first color conversion material included in the first glass paste may include a red phosphor
  • the second color conversion material included in the second glass paste may include a green phosphor
  • a blue cut filter film may be attached onto the lattice of the partition structure.
  • the area for applying the partition glass paste is 15 than the predetermined area of the partition structure It may be formed in a wide range of% to 20%.
  • separation of the barrier rib structure from the substrate may use any one of a laser lift-off method, a chemical lift-off method, a chemical mechanical polishing method, and a mechanical polishing method.
  • the method according to an embodiment of the present invention may further include planarizing one surface of the barrier rib structure, the first glass, and the second glass after the sintering of the first glass paste and the second glass paste.
  • FIG. 1 is a plan view of a color conversion structure for a micro LED display according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a color conversion structure for a micro LED display according to an embodiment of the present invention.
  • FIG. 3 is a view illustrating emission colors of an LED chip array before and after applying a color conversion structure for a micro LED display according to an embodiment of the present invention.
  • FIG. 4 is a plan view of a color conversion structure for a micro LED display according to a modification of an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a manufacturing process of a color conversion structure for a micro LED display according to an embodiment of the present invention.
  • FIG. 6 is a view sequentially illustrating a manufacturing process of the color conversion structure for a micro LED display according to an embodiment of the present invention.
  • 1 and 2 are a plan view and a cross-sectional view of a color conversion structure for a micro LED display according to an embodiment of the present invention, respectively.
  • the color conversion structure 100 for displaying a micro LED includes a partition structure 120, and a plurality of gratings are formed in the partition structure 120.
  • the barrier rib structure 120 includes barrier ribs 110 formed along the longitudinal direction and the transverse direction, and a plurality of gratings are formed by the intersection of the barrier ribs 110.
  • the partition wall 110 of the partition structure 120 may be formed of glass including a reflective material.
  • the reflective material may be a highly reflective or high refractive material such as TiO 2 , Y 2 O 3 , Ta 2 O 5 , Al 2 O 3 , Bi 2 O 3 , Nb 2 O 5 , SiO 2 , or the like.
  • the plurality of gratings formed in the barrier rib structure 120 may be divided into a plurality of grating groups 130 including three adjacent gratings 1301, 1302, and 1303 as one group.
  • Each grid group 130 is disposed on the three micro LED chip 210 when the micro LED color conversion structure 100 is disposed on the micro LED substrate 200, the light emitted from the three micro LED chip While passing through the grid group 130, red, green, and blue may be respectively expressed.
  • the color conversion material may be contained in the grid of each grid group 130.
  • one grating group 130 includes a first grating 1301, a second grating 1302, and a third grating 1303, of which the first grating 1301 and the second grating 1130 are included.
  • the grating 1302 contains the first glass 140 and the second glass 150 including the color conversion material, and the third grating 1303 is formed as an empty space not containing any material.
  • the color conversion structure 100 when the color conversion structure 100 is disposed on the LED chip 210 of a single color, the light transmitted through the first grating 1301 and the second grating 1302 is color converted, and the third Light passing through the grating 1303 is emitted without color conversion, and thus different colors may be expressed.
  • FIG. 3 is a view illustrating emission colors of a micro LED chip array before and after applying a color conversion structure for a micro LED display according to an embodiment of the present invention.
  • blue light may be converted into red and green in the first grating 1301 and the second grating 1302, respectively.
  • the first glass 140 and the second glass 150 including the color conversion material is contained therein, and through this, light passing through the first to third gratings 1301, 1302, and 1303 of one grating group is included. It can be expressed in red, green and blue, respectively.
  • the color conversion material included in the first glass 140 and the second glass 150 contained in the lattice may be quantum dot.
  • the size of the LED chip is 100 ⁇ m or less, and in some cases, 30 ⁇ m to 50 ⁇ m, so that YAG, LuAG, ⁇ -SiAlON, ⁇ SiAlON, CaSiN, and KSF have a central particle diameter of 10 ⁇ m to 30 ⁇ m.
  • a color conversion element such as the micro LED to the micro LED. Accordingly, it is necessary to apply a color conversion element such as a quantum dot having a central particle diameter to the micro LED.
  • the quantum dots may be formed in different wavelengths by using quantum dots having different particle sizes in the first grating 1301 and the second grating 1302. I can convert it.
  • the first glass 140 includes a quantum dot having a particle size of about 6 nm.
  • the second glass 150 may include a quantum dot having a particle size of about 3 nm to convert blue light emitted from the LED chip 210 into red and green, respectively.
  • the particle size is very small, about 2 nm, which is relatively difficult to manufacture than quantum dots emitting green and red. Therefore, in the present embodiment, the blue LED chip 210 is used as the LED chip, and the color conversion material is used as a quantum dot that emits red and green colors, which are relatively easy to manufacture, thereby reducing the overall process time and manufacturing cost. Can reduce the cost.
  • the quantum dot has excellent color reproducibility, but the particles may be decomposed due to moisture, and the quantum efficiency of the particles may drop sharply above a predetermined temperature.
  • the quantum dot is included in the glass to protect the quantum dot from heat and moisture. Its specific manufacturing method will be described later.
  • the quantum dot is used as the color converting material.
  • the present invention is not limited thereto. As described above, other known color converting elements having a central particle diameter of nano size may be used.
  • the color conversion material is contained only in the first grating 1301 and the second grating 1302.
  • the color conversion material may also be contained in the grating 1303.
  • the color conversion structure 100 for a micro LED display further includes a light blocking film 170.
  • the light blocking film 170 is disposed on the first grating 1301 and the second grating 1302 in which the color conversion material is contained, so that the light emitted from the micro LED chip 210 receives the first grating 1301 and the second.
  • the color purity may be improved by blocking light that is not partially converted.
  • a blue cut filter film is used as the light blocking film 170, and the color is emitted from the micro LED chip 210 to pass through the first grating 1301 and the second grating 1302.
  • the blue light which is not converted can be blocked.
  • the type and arrangement of the light blocking film 170 may be changed according to the color and arrangement of the micro LED chip 210 used.
  • FIG. 4 is a plan view of a color conversion structure for a micro LED display according to a modification of an embodiment of the present invention.
  • a first grating 1301 ′ and a second grating group 130 ′ are used in one grating group 130 ′.
  • the grating 1302 ′ and the third grating 1303 ′ may be arranged in a triangular shape, and in the adjacent grating group, the gratings may be arranged in an inverted triangle shape.
  • the present invention is characterized in that the method for manufacturing a color conversion structure for a micro LED display is described below.
  • the method for manufacturing a color conversion structure for a micro LED display according to an embodiment of the present invention will be described in detail.
  • FIG. 5 is a flowchart illustrating a process of manufacturing a color conversion structure according to an embodiment of the present invention
  • FIG. 6 is a view sequentially illustrating a process of manufacturing a color conversion structure according to an embodiment of the present invention.
  • the color conversion structure 100 for a micro LED display in order to manufacture the color conversion structure 100 for a micro LED display according to an embodiment of the present invention, as shown in Figure 6 (a), first to prepare a substrate 300 and the partition glass on the substrate 300 The paste 1101 is applied (S110).
  • the partition glass paste 1101 is applied in a lattice form along the transverse and longitudinal directions.
  • the substrate 300 may be made of glass, sapphire, or the like, and the partition glass paste 1101 applied on the substrate 300 may include glass powder and a reflective material.
  • the glass powder serves as a base material in forming the partition wall 110 and may include an aluminoborosilicate glass component composed mainly of SiO 2, Al 2 O 3, alkaline earth metal oxides (MgO, CrO, SrO, BaO), or B 2 O 3.
  • the reflective material included in the barrier glass paste 1101 may be a white pigment, and may be TiO 2 having a high refractive index and accurate particle size and dispersibility.
  • the partition glass paste 1101 may further include a binder resin and a solvent.
  • the binder resin may be added to provide a bonding force between the glass powder, and known resins such as polyvinyl butyral (PVB), polyvinyl alcohol (PVA), acrylic, cellulose, and the like may be used.
  • the solvent plays a role of controlling the viscosity of the glass paste, and is removed by volatilization in the drying process, and may be used alone or in combination of two or more of an alcohol solvent, a ketone solvent, and the like.
  • primary firing is performed to sinter the partition glass paste 1101 coated in a lattice form on the substrate 300 (S120).
  • the primary firing may be performed at a temperature higher than 300 ° C., and preferably, the partition wall structure 120 may have a sufficient mechanical strength and may be performed at a temperature of 600 ° C. or higher to secure the compactness of the firing in the primary firing step.
  • the partition structure 120 of the color conversion structure for micro LED display according to the present embodiment is formed.
  • the barrier rib structure 120 since the barrier rib structure 120 according to the present exemplary embodiment is formed to include the reflective material TiO 2 , the process of coating the reflective material after forming the barrier rib may be omitted, and thus the process time and manufacturing of the micro LED display color conversion structure. It can reduce the cost.
  • the partition glass paste 1101 is apply
  • the coating area of the partition glass paste 1101 is formed to be 15% to 20% wider than the cross-sectional area of the partition structure 120 to be formed.
  • a glass paste including a color conversion material is injected into the grid of the partition structure 120 (S130).
  • the second glass paste 1501 including the color conversion material and the glass powder is injected.
  • the glass powder of the first glass paste and the second glass paste serves as a base material in forming the color conversion element, and is a material capable of low-temperature firing such that the color conversion material is not modified during the sintering process, for example, P 2. O 5 -SnO 2 system, P 2 O 5 -SnO 2 -SnF system, P 2 O 5 -ZnO-SnO system.
  • the first glass paste and the second glass paste may further include a binder resin and a solvent in addition to the color conversion material and the glass powder, similar to the partition glass paste.
  • the first color conversion material and the second color conversion material included in the first glass paste and the second glass paste are materials that convert light emitted from the LED chip into different colors.
  • the first color conversion material and Quantum dots are used as the second color conversion material. Specifically, as described above, light emitted from the blue LED chip is converted into red and green by using quantum dots having different particle sizes as the first color conversion material and the second color conversion material.
  • secondary firing is performed at a temperature of 120 ° C to 300 ° C. If the firing temperature is lower than 120 ° C., since the firing temperature is lower than the softening behavior temperature and the firing is not properly performed, a large amount of bubbles may be generated in the glass, such that light transmittance may be lowered.
  • the firing temperature is higher than 300 ° C., the color conversion material included in the glass paste is denatured to perform a desired color conversion function.
  • the quantum dot used as the color conversion material in this embodiment is very susceptible to heat, in this embodiment, in order to prevent denaturation of the quantum dot, at a temperature of less than 300 ° C, more preferably less than 250 ° C. Secondary firing is carried out.
  • the exposed one surface of the sintered partition wall 110, the first glass 140, and the second glass 150 may be planarized.
  • the exposed surface may be irregularly formed due to the reaction and contraction between the materials included in the glass paste, and the light emitted from the LED chip may be When this irregular surface is transmitted, scattering may occur, thereby reducing color reproduction. Therefore, in the present embodiment, a process of planarizing one surface of the partition wall 110, the first glass 140, and the second glass 150 after the secondary firing is performed to prevent a decrease in color reproduction.
  • the planarization process can apply a well-known method, such as a CMP process.
  • the partition structure 120 is separated from the substrate 300 (S150).
  • the laser lift off method is applied to separate the barrier rib structure 120 from the substrate 300, but the present invention is not limited thereto, and the chemical lift off (CLO) method and the chemical mechanical Polishing (CMP) method, mechanical polishing (MP) method may be applied, and the partition structure 120 may be separated through other known methods.
  • CLO chemical lift off
  • CMP chemical mechanical Polishing
  • MP mechanical polishing
  • the light blocking film is attached to the grid containing the color conversion material (S160).
  • the first grating and the second grating are included in the first grating and the second grating in each grating group, respectively, to convert red and green into blue gratings. RGB light is realized by converting the light emitted from the chip into red and green, respectively.
  • the blue cut filter film is attached to the first grating and the second grating using the light blocking film 170 to block blue light having no color conversion while passing through the first grating and the second grating, thereby preventing color purity. Can increase.
  • the color conversion structure for a micro LED display and a method of manufacturing the same since it is possible to implement an RGB display using an LED substrate composed of a single color LED chip, manufacturing a micro LED display
  • the time to assemble the LED chip on the substrate during the process can be significantly shortened.
  • a glass paste containing a color conversion material such as a quantum dot into the structure for color conversion of the light emitted from the LED chip to form a color conversion structure by protecting the color conversion material with heat and moisture, thereby deteriorating characteristics Can be prevented.
  • a blue cut filter film on the lattice to block a small amount of blue light that is not color conversion, the color reproducibility and color purity of the micro LED display may be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법은, 격벽 구조체 내의 격자를 인접한 3개의 격자를 1군으로 하는 복수의 격자군으로 구획하고, 각각의 복수의 격자군의 제1 격자 내에 제1 색변환 물질과 유리 분말을 포함하는 제1 유리 페이스트를 주입하고, 각각의 격자군의 제2 격자 내에 제2 색변환 물질과 유리 분말을 포함하는 제2 유리 페이스트를 주입하는 단계를 포함한다.

Description

마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법
본 발명은 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법에 관한 것이다.
마이크로 엘이디(LED, Light-emitting diode)는 100㎛ 이하의 크기를 갖는 초소형의 엘이디로서, 높은 명암비와 빠른 응답 속도를 갖고 전력 효율이 우수하며 그 작은 크기로 인하여 휘어질 때 깨어지는 문제가 발생하지 않는 이점이 있다. 이에, 최근 이를 이용한 마이크로 엘이디 디스플레이가 차세대 디스플레이로서 주목받고 있다.
마이크로 엘이디 디스플레이에서는 적색, 녹색, 청색 3개의 엘이디 칩으로 하나의 화소를 구성해야 하고, 이에 따라 적색, 녹색, 청색 엘이디 칩 각각을 기판 상의 정해진 위치에 순차적으로 조립해야 한다. 하지만, 마이크로 엘이디 디스플레이를 고해상도로 구현하기 위하여는 많은 수 - 예를 들어 FHD급(1,920X1,080) 해상도를 구현하기 위하여는 약 622만 개(R, G, B 칩 기준) - 의 마이크로 엘이디가 필요하고, 이들을 각각 정해진 위치에 조립하기 위하여는 상당한 공정시간이 소요된다.
이러한 문제를 해결하기 위하여 기판 상에 단색의 마이크로 엘이디를 조립한 후 형광체를 이용하여 엘이디 칩에서 출사되는 광의 색을 변환하는 방법을 고려할 수 있다. 이 경우, 마이크로 엘이디를 셀프 어셈블리(self assembly) 등의 방법으로 조립함으로써 조립 시간을 줄일 수 있지만, 마이크로 엘이디 각각에 색변환 소자를 추가로 적용해야 한다. 특히, 색변환 소자를 적용함에 있어서, 퀀텀닷(quantum dot; QD)과 같이 색재현율이 우수하지만 열과 습기에 취약한 재료를 사용하는 경우, 색변환 소자를 외부의 열과 습기로부터 보호해야 하는 문제가 있다.
이처럼, 마이크로 엘이디 디스플레이를 구현하기 위하여는 공정시간을 절감시키면서도 특성의 변환 없이 우수한 색변환 효율을 갖는 색변환 소자를 적용시킬 수 있는 기술 개발이 요구되는 실정이다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 마이크로 엘이디 디스플레이의 공정시간을 절감할 수 있는 마이크로 엘이디 디스플레이용 색변환 구조체의 제조방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 엘이디 칩에서 출사되는 광의 색변환을 위해 사용되는 형광체의 특성 저하를 방지할 수 있는 색변환 구조체의 제조 방법을 제공하는데 목적이 있다.
본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법은, 기판 상에 반사성 물질과 유리 분말을 포함하는 격벽용 유리 페이스트를 격자 형태로 도포하는 단계와, 격벽용 유리 페이스트를 소결하여 격벽 구조체를 형성하는 단계와, 격벽 구조체 내의 격자를 인접한 3개의 격자를 1군으로 하는 복수의 격자군으로 구획하고, 각각의 복수의 격자군의 제1 격자 내에 제1 색변환 물질과 유리 분말을 포함하는 제1 유리 페이스트를 주입하고, 각각의 격자군의 제2 격자 내에 제2 색변환 물질과 유리 분말을 포함하는 제2 유리 페이스트를 주입하는 단계와, 제1 유리 페이스트 및 제2 유리 페이스트를 소결하는 단계와, 격벽 구조체를 기판으로부터 분리하는 단계와, 제1 유리 페이스트와 제2 유리 페이스트가 담긴 격벽 구조체의 격자 상에 소정의 광을 차단하는 광차단 필름을 부착하는 단계를 포함한다.
본 발명의 일 실시예에 따르면, 제1 유리 페이스트와 제2 유리 페이스트를 주입하는 단계는 각각의 복수의 격자군의 제3 격자 내에 유리 분말을 포함하는 제3 유리 페이스트를 주입하는 단계를 포함할 수 있고, 제1 유리 페이스트 및 제2 유리 페이스트를 소결하는 단계는 제3 유리 페이스트를 소결하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 반사성 물질과 유리 분말을 포함하는 격벽용 유리 페이스트에 포함되는 반사성 물질은 TiO2를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 제1 유리 페이스트 및 제2 유리 페이스트에 포함되는 유리 분말은 300℃ 이하로 소결할 수 있다.
본 발명의 일 실시예에 따르면, 제1 유리 페이스트에 포함되는 제1 색변환 물질 및 제2 유리 페이스트에 포함되는 제2 색변환 물질은 퀀텀닷을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 제1 유리 페이스트에 포함되는 제1 색변환 물질은 적색 형광체를 포함하고, 제2 유리 페이스트에 포함되는 제2 색변환 물질은 녹색 형광체를 포함할 수 있다. 또한, 격벽 구조체의 격자 상에 블루 컷 필터(blue cut filter) 필름이 부착될 수 있다.
본 발명의 일 실시예에 따르면, 상기 반사성 물질과 유리 분말을 포함하는 격벽용 유리 페이스트를 격자 형태로 도포하는 단계에서는, 상기 격벽용 유리 페이스트를 도포하는 면적을 상기 격벽 구조체의 사전 설정된 면적보다 15% 내지 20% 넓게 형성할 수 있다.
본 발명의 일 실시예에 따르면, 격벽 구조체의 기판으로부터의 분리는 레이저 리프트 오프 방식, 케미칼 리프트 오프 방식, 화학적 기계적 연마 방식 및 기계적 연마 방식 중 어느 하나의 방식을 이용할 수 있다.
본 발명의 일 실시예에 따른 방법은 제1 유리 페이스트 및 제2 유리 페이스트를 소결하는 단계 이후에 격벽 구조체, 제1 유리 및 제2 유리의 일면을 평탄화하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 의하면, 단일 색상의 엘이디 기판 상에 안착시킬 수 있는 색변환 구조체를 제공함으로써 엘이디 칩의 조립 시간을 절감할 수 있고, 이에 따라 마이크로 엘이디 디스플레이의 공정시간을 절감할 수 있다.
또한, 엘이디 칩에서 출사되는 광의 색변환을 위한 형광체를 유리 분말과 혼합하고 이를 소결하여 색변환 소자를 형성함으로써 열과 수분에 의한 형광체의 특성 저하를 방지하고, 이에 따라 발광 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 평면도이다.
도 2는 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체를 적용하기 전과 후의 엘이디 칩 어레이의 발광색을 나타내는 도면이다.
도 4는 본 발명의 일 실시예의 변형예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 평면도이다.
도 5는 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 과정을 나타낸 순서도이다.
도 6은 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 과정을 순차적으로 나타낸 도면이다.
<부호의 설명>
100: 색변환 구조체
110: 격벽
1101: 격벽용 유리 페이스트
120: 격벽 구조체
130: 격자군
140: 제1 유리
1401: 제1 유리 페이스트
150: 제2 유리
1501: 제2 유리 페이스트
170: 광차단 필름
200: 엘이디 기판
210: 엘이디 칩
300: 기판
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 상세하게 설명한다. 본 발명을 명확하게 설명하기 위하여 본 발명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
본 명세서에서 하나의 구성요소가 다른 구성요소의 "위"에 있다 라고 기재된 경우, 이는 다른 구성요소 "바로 위"에 위치하는 경우뿐만 아니라 이들 사이에 또 다른 구성요소가 존재하는 경우도 포함한다. 또한, 도면에서 나타난 각 구성의 크기 등은 설명의 편의를 위해 임의로 나타내었으므로, 본 발명은 반드시 도시된 바에 한정되지 않는다.
즉, 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 사상 및 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있으며 개별 구성요소의 위치 또는 배치도 본 발명의 사상 및 범위를 벗어나지 않으면서 변경될 수 있는 것으로 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다.
마이크로 엘이디 디스플레이용 색변환 구조체
도 1 및 도 2는 각각 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 평면도 및 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체(100)는 격벽 구조체(120)를 포함하고, 격벽 구조체(120) 내에는 복수의 격자가 형성된다. 본 실시예에 따르면, 격벽 구조체(120)는 종방향 및 횡방향을 따라 형성되는 격벽(110)으로 이루어지며, 이들 격벽(110)의 교차에 의해 복수의 격자가 형성된다.
격벽 구조체(120)의 격벽(110)은 반사성 물질을 포함하는 유리로 이루어질 수 있다. 여기에서, 반사성 물질은 TiO2, Y2O3, Ta2O5, Al2O3, Bi2O3, Nb2O5, SiO2 등의 고반사 또는 고굴절 물질일 수 있다.
본 발명의 일 실시예에 따르면, 격벽 구조체(120) 내에 형성되는 복수의 격자는 인접하는 3개의 격자(1301, 1302, 1303)를 1군으로 하는 복수의 격자군(130)으로 구획될 수 있다. 각각의 격자군(130)은 마이크로 엘이디 색변환 구조체(100)가 마이크로 엘이디 기판(200) 상에 배치될 때 3개의 마이크로 엘이디 칩(210) 상에 배치되어, 3개의 마이크로 엘이디 칩에서 방출된 광이 격자군(130)을 통과하면서 각각 적색, 녹색, 청색이 발현될 수 있도록 한다.
이를 위하여, 각각의 격자군(130)의 격자 내에는 색변환 물질이 담겨있을 수 있다. 구체적으로, 본 실시예에서는 하나의 격자군(130)이 제1 격자(1301), 제2 격자(1302) 및 제3 격자(1303)를 포함하고, 이 중 제1 격자(1301) 및 제2 격자(1302)에는 색변환 물질을 포함하는 제1 유리(140) 및 제2 유리(150)가 담기며, 제3 격자(1303)는 어떠한 물질도 담기지 않은 빈 공간으로 형성된다. 이를 통해, 단일 색상의 엘이디 칩(210) 상에 색변환 구조체(100)가 배치되면, 제1 격자(1301) 및 제2 격자(1302)를 투과하는 광은 색변환이 이루어지게 되고, 제3 격자(1303)를 투과하는 광은 색변환이 없이 출사되어, 서로 다른 색이 발현될 수 있다.
도 3은 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체를 적용하기 전과 후의 마이크로 엘이디 칩 어레이의 발광색을 나타내는 도면이다. 도 3을 참조하면, 마이크로 엘이디 기판(200)에 청색의 단일 엘이디 칩(210)만을 배치하는 경우, 제1 격자(1301) 및 제2 격자(1302)에 각각 청색광을 적색 및 녹색으로 변환할 수 있는 색변환 물질을 포함하는 제1 유리(140) 및 제2 유리(150)가 담기게 되고, 이를 통해 하나의 격자군의 제1 내지 제3 격자(1301, 1302, 1303)를 투과하는 광이 각각 적색, 녹색 및 청색으로 발현될 수 있게 된다.
본 발명의 일 실시예에 따르면, 격자 내에 담기는 제1 유리(140) 및 제2 유리(150)에 포함되는 색변환 물질은 퀀텀닷일 수 있다. 마이크로 엘이디의 경우, 엘이디 칩의 크기가 100㎛ 이하, 경우에 따라서는 30㎛∼50㎛로 작기 때문에, 중심 입경이 10㎛∼30㎛인 YAG, LuAG, α-SiAlON, β SiAlON, CaSiN, KSF 등과 같은 색변환 소자를 마이크로 엘이디에 적용하는 것은 한계가 있다. 따라서, 마이크로 엘이디에는 중심 입경이 나노 사이즈인 퀀텀닷과 같은 색변환 소자를 적용할 필요가 있다. 퀀텀닷은 그 입자의 크기에 따라, 방출하는 광의 색상이 달라질 수 있기에, 제1 격자(1301) 및 제2 격자(1302)에 각기 다른 입자 크기를 갖는 퀀텀닷을 사용하여 서로 다른 파장의 색으로 변환할 수 있다. 예를 들어, 마이크로 엘이디 기판(200) 상에 청색의 단일 엘이디 칩(210)만이 배치되는 경우, RGB 디스플레이를 구현하기 위해서는 제1 유리(140)는 입자 크기가 약 6nm인 퀀텀닷을 포함하고, 제2 유리(150)는 입자 크기가 약 3nm인 퀀텀닷을 포함하여, 엘이디 칩(210)에서 발현되는 청색광을 각각 적색 및 녹색으로 변환할 수 있다.
청색을 방출하는 퀀텀닷의 경우 입자의 크기가 약 2nm로 매우 작기 때문에 녹색 및 적색을 방출하는 퀀텀닷보다 상대적으로 제조에 어려움이 따른다. 따라서, 본 실시예에서는 엘이디 칩으로 청색의 엘이디 칩(210)을 사용하고, 색변환 물질을 상대적으로 제조가 용이한 적색 및 녹색을 방출하는 퀀텀닷으로 사용하였으며, 이에 의해 전체적인 공정 시간과 제조 비용을 절감할 수 있다.
한편, 퀀텀닷은 색재현율이 우수하나, 습기로 인해 입자가 분해될 수 있고 소정의 온도 이상에서는 입자의 양자 효율이 급격히 떨어질 수 있다. 이에, 본 발명에서는 퀀텀닷을 열과 수분으로부터 보호하기 위하여 유리에 퀀텀닷을 포함시킨다. 이의 구체적인 제조 방법은 후술하기로 한다.
본 실시예에서는 색변환 물질로 퀀텀닷을 사용하고 있으나, 물론 본 발명이 이에 한정되는 것은 아니며, 전술한 바와 같이, 중심 입경이 나노 사이즈인 다른 공지의 색변환 소자 등을 사용할 수도 있다.
또한, 본 실시예에서는 제1 격자(1301) 및 제2 격자(1302) 내에만 색변환 물질이 담겨 있는 것으로 예시하고 있으나, 마이크로 엘이디 칩에서 방출되는 광의 색상에 따라 RGB 화소를 구현하기 위하여 제3 격자(1303) 내에도 색변환 물질이 담길 수 있다.
다시 도 2를 참조하면, 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체(100)는 광차단 필름(170)을 더 포함한다. 광차단 필름(170)은 색변환 물질이 담기는 제1 격자(1301) 및 제2 격자(1302) 상에 배치되어 마이크로 엘이디 칩(210)에서 출사된 광이 제1 격자(1301) 및 제2 격자(1302)에 담긴 색변환 물질을 통과하는 과정에서 일부 색변환이 이루어지지 않은 광을 차단하여 색의 순도를 높일 수 있다.
본 실시예에서는 광차단 필름(170)으로 블루 컷 필터(blue cut filter) 필름을 사용하여, 마이크로 엘이디 칩(210)에서 출사되어 제1 격자(1301) 및 제2 격자(1302)를 통과하면서 색변환이 이루어지지 않은 청색광을 차단할 수 있다. 다만, 광차단 필름(170)의 종류 및 배치는 사용하는 마이크로 엘이디 칩(210)의 색상 및 배열에 따라 변경할 수 있음은 물론이다.
본 발명의 일 실시예에서는, 도 1에 도시된 바와 같이, 하나의 격자군을 구성하는 제1 격자(1301), 제2 격자(1302) 및 제3 격자(1303)가 일렬로 배열되어 있으나, 하나의 격자군을 구성하는 격자의 배치 방법은 다양한 방법으로 변경할 수 있다. 예를 들어, 도 4은 본 발명의 일 실시예의 변형예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 평면도로서, 이를 참조하면 하나의 격자군(130')에서는 제1 격자(1301'), 제2 격자(1302') 및 제3 격자(1303')가 삼각형 형상으로 배치되고, 인접하는 격자군에서는 격자들이 역삼각형 형상으로 배치될 수 있다.
본 발명은 상술한 마이크로 엘이디 디스플레이용 색변환 구조체를 제조하는 방법에 일 특징이 있는 것으로서, 이하에서는 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법을 구체적으로 설명한다.
엘이디 디스플레이용 색변환 구조체의 제조 방법
도 5는 본 발명의 일 실시예에 따른 색변환 구조체의 제조 과정을 나타낸 순서도이고, 도 6은 본 발명의 일 실시예에 따른 색변환 구조체의 제조 과정을 순차적으로 나타낸 도면이다.
본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체(100)를 제조하기 위하여, 도 6의 (a)에서와 같이, 우선 기판(300)을 준비하고 기판(300) 상에 격벽용 유리 페이스트(1101)를 도포한다(S110). 본 실시예에서는 횡방향 및 종방향을 따라 격자 형태로 격벽용 유리 페이스트(1101)를 도포한다.
기판(300)은 유리, 사파이어 등으로 이루어질 수 있고, 기판(300) 상에 도포되는 격벽용 유리 페이스트(1101)는 유리 분말과 반사성 물질을 포함할 수 있다. 유리 분말은 격벽(110)을 형성하는데 있어서 모재의 역할을 하는 것으로서, SiO2, Al2O3, 알칼리토금속산화물(MgO, CrO, SrO, BaO) 또는 B2O3를 주성분으로 하는 알루미노보로실리케이트 유리 성분을 포함할 수 있으며, 이외에 공지의 유리 성분으로 구성될 수도 있다. 또한, 격벽용 유리 페이스트(1101)에 포함되는 반사성 물질은 백색안료로서, 높은 굴절율을 가지고 정확한 입도와 분산성을 갖는 TiO2일 수 있다.
격벽용 유리 페이스트(1101)는 바인더 수지와 용매를 더 포함할 수 있다. 바인더 수지는 유리 분말 사이의 결합력을 제공하기 위해 첨가될 수 있으며, PVB(polyvinyl butyral), PVA(polyvinyl alcohol), 아크릴계, 셀루로오스계 등 공지된 수지를 사용할 수 있다. 용매는 유리 페이스트의 점도를 조절하는 역할을 하는 것으로, 건조 과정에서 휘발되어 제거되며, 알코올계 용매, 케톤계 용매 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
이어서, 기판(300) 상에 격자 형태로 도포된 격벽용 유리 페이스트(1101)를 소결하는 1차 소성을 진행한다(S120). 1차 소성은 300℃ 보다 높은 온도에서 진행할 수 있으며, 바람직하게는 격벽 구조체(120)가 충분한 기계 강도를 갖고 1차 소성 단계에서 소성의 치밀성을 확보하기 위하여 600℃ 이상의 온도에서 진행될 수 있다. 이에 의해, 본 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체의 격벽 구조체(120)가 형성된다.
이처럼, 본 실시예에 따른 격벽 구조체(120)는 반사성 물질인 TiO2를 포함하여 형성되므로 격벽을 형성한 후 반사성 물질을 코팅하는 공정을 생략할 수 있어 마이크로 엘이디 디스플레이 색변환 구조체의 공정시간 및 제조비용을 절감하는 효과를 가져올 수 있다.
한편, 기판(300) 상에 도포된 격벽용 유리 페이스트(1101)가 소결되는 과정에서 밀도가 증가하면서 수축이 일어날 수 있다. 따라서, 기판(300) 상에 격벽용 유리 페이스트(1101)를 도포할 때에는 형성하고자 하는 격벽의 단면적보다 넓은 면적으로 격벽용 유리 페이스트(1101)를 도포한다. 예를 들어, 격벽용 유리 페이스트(1101)의 도포 면적을 형성하고자 하는 격벽 구조체(120)의 단면적보다 15%∼20% 넓게 형성한다.
다음으로, 도 6의 (b)에 도시된 바와 같이, 격벽 구조체(120)의 격자 내에 색변환 물질을 포함하는 유리 페이스트를 주입한다(S130). 구체적으로, 1개의 격자군을 구성하는 인접한 3개의 격자 중 2개의 격자(제1 격자 및 제2 격자)에 각각 제1 색변환 물질과 유리 분말을 포함하는 제1 유리 페이스트(1401) 및 제2 색변환 물질과 유리 분말을 포함하는 제2 유리 페이스트(1501)를 주입한다.
제1 유리 페이스트 및 제2 유리 페이스트의 유리 분말은 색변환 소자를 형성하는데 있어 모재의 역할을 하는 것으로서, 소결 과정에서 색변환 물질의 변성이 이루어지지 않도록 저온 소성이 가능한 재질, 예를 들어 P2O5-SnO2 계, P2O5-SnO2-SnF 계, P2O5-ZnO-SnO 계로 이루어진다. 또한, 제1 유리 페이스트 및 제2 유리 페이스트는 격벽용 유리 페이스트와 마찬가지로 색변환 물질과 유리분말 이외에 바인더 수지와 용매를 더 포함할 수 있다.
제1 유리 페이스트 및 제2 유리 페이스트에 포함되는 제1 색변환 물질 및 제2 색변환 물질은 엘이디 칩에서 출사되는 광을 서로 다른 색상으로 변환하는 물질로서, 본 실시예에서는 제1 색변환 물질 및 제2 색변환 물질로서 퀀텀닷을 사용한다. 구체적으로는, 상술한 바와 같이 제1 색변환 물질과 제2 색변환 물질로서 입자 크기를 달리하는 퀀텀닷을 사용하여, 각각 청색 엘이디 칩에서 출사되는 광을 적색 및 녹색으로 변환시킨다.
격자 내에 유리 페이스트를 주입한 후에는 주입된 유리 페이스트(1401,1501)를 소결하는 공정인 2차 소성을 진행한다(S140).
본 실시예에서는 2차 소성을 120℃ ~ 300℃의 온도로 진행한다. 만일 소성 온도가 120℃보다 낮은 경우에는 소성 온도가 연화 거동 온도보다 낮아 소성이 제대로 되지 않는 관계로 유리 내에 다량의 기포가 발생하여 광투과율이 저하될 수 있다. 소성 온도가 300℃보다 높은 경우에는 유리 페이스트에 포함되는 색변환 물질이 변성되어 원하는 색변환 기능을 수행할 수 없게 된다. 특히, 상술한 바와 같이 본 실시예에서 색변환 물질로 사용하는 퀀텀닷은 열에 매우 취약하므로, 본 실시예에서는 퀀텀닷의 변성을 방지하기 위하여 300℃ 미만, 더욱 바람직하게는 250℃ 미만의 온도에서 2차 소성을 진행한다.
2차 소성 후에는 소결된 격벽(110), 제1 유리(140) 및 제2 유리(150)의 노출된 일면을 평탄화할 수 있다. 격벽용 유리 페이스트(1101) 및 유리 페이스트(1401, 1501)를 소결하는 과정에서, 유리 페이스트에 포함된 물질 간의 반응 및 수축으로 인하여 노출되는 면이 불규칙적으로 형성될 수 있으며, 엘이디 칩에서 출사된 광이 이러한 불규칙한 면을 투과하는 경우 산란이 일어나게 되어 색재현율이 저하될 수 있다. 따라서, 본 실시예에서는 2차 소성 이후 격벽(110), 제1 유리(140) 및 제2 유리(150)의 일면을 평탄화하는 공정을 수행하여 색재현율 저하를 방지한다. 평탄화 공정은 CMP 공정 등 공지의 방법을 적용할 수 있다.
이어서, 도 6의 (c)에 도시된 바와 같이, 격벽 구조체(120)를 기판(300)으로부터 분리한다(S150). 본 실시예에서는 격벽 구조체(120)를 기판(300)으로부터 분리하기 위하여 레이저 리프트 오프(laser lift off) 방식을 적용하지만, 본 발명이 이에 한정되는 것은 아니며, 케미칼 리프트 오프(CLO) 방식, 화학적 기계적 연마(CMP) 방식, 기계적 연마(MP) 방식이 적용될 수 있으며, 이외에 다른 공지의 방법을 통해 격벽 구조체(120)를 분리할 수도 있다.
마지막으로, 도 6의 (d)에 도시된 바와 같이, 색변환 물질이 담겨 있는 격자 상에 광차단 필름을 부착한다(S160). 상술한 바와 같이, 본 실시예에서는 각각의 격자군에서 제1 격자 및 제2 격자에 각각 적색 및 녹색으로 변환하기 위한 제1 색변환 물질 및 제2 색변환 물질이 담기게 되고, 이를 통해 청색 엘이디 칩에서 출사되는 광을 각각 적색 및 녹색으로 변환하여 RGB 화소를 구현한다. 이에, 본 실시예에서는 광차단 필름(170)으로 블루 컷 필터 필름을 제1 격자 및 제2 격자 상에 부착하여 제1 격자 및 제2 격자를 통과하면서 색변환이 이루어지지 않은 청색광을 차단하여 색순도를 높일 수 있다.
이상 설명한 바와 같이, 본 발명의 일 실시예에 따른 마이크로 엘이디 디스플레이용 색변환 구조체와 그 제조 방법에 의하면, 단일 색상 엘이디 칩으로 구성된 엘이디 기판을 사용하여 RGB 디스플레이를 구현할 수 있기 때문에, 마이크로 엘이디 디스플레이 제조 과정 중 기판 상에 엘이디 칩을 조립하는 시간을 현저히 단축할 수 있다. 또한, 엘이디 칩에서 출사되는 광의 색변환을 위해 퀀텀닷과 같은 색변환 물질을 포함하는 유리 페이스트를 구조체 내에 주입하고 소결하여 색변환 구조체를 형성함으로써 색변환 물질을 열과 수분으로 보호하여 이로 인한 특성 저하를 방지할 수 있다. 또한, 블루 컷 필터 필름을 격자 상에 부착하여 색변환되지 않은 미량의 청색광을 차단함으로써 마이크로 엘이디 디스플레이의 색재현율 및 색순도를 높일 수도 있다.
이상, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.

Claims (10)

  1. 기판 상에 반사성 물질과 유리 분말을 포함하는 격벽용 유리 페이스트를 격자 형태로 도포하는 단계,
    상기 격벽용 유리 페이스트를 소결하여 격벽 구조체를 형성하는 단계,
    상기 격벽 구조체 내의 격자를 인접한 3개의 격자를 1군으로 하는 복수의 격자군으로 구획하고, 각각의 상기 복수의 격자군의 제1 격자 내에 제1 색변환 물질과 유리 분말을 포함하는 제1 유리 페이스트를 주입하고, 각각의 상기 격자군의 제2 격자 내에 제2 색변환 물질과 유리 분말을 포함하는 제2 유리 페이스트를 주입하는 단계,
    상기 제1 유리 페이스트 및 상기 제2 유리 페이스트를 소결하는 단계,
    상기 격벽 구조체를 상기 기판으로부터 분리하는 단계 및
    상기 제1 유리 페이스트와 상기 제2 유리 페이스트가 주입된 상기 격벽 구조체의 격자 상에 소정 파장의 광을 차단하는 광차단 필름을 부착하는 단계
    를 포함하는
    마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  2. 제1항에 있어서,
    상기 제1 유리 페이스트와 상기 제2 유리 페이스트를 주입하는 단계는 각각의 상기 복수의 격자군의 제3 격자 내에 유리 분말을 포함하는 제3 유리 페이스트를 주입하는 단계를 포함하고,
    상기 제1 유리 페이스트 및 상기 제2 유리 페이스트를 소결하는 단계는 상기 제3 유리 페이스트를 소결하는 단계를 포함하는, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  3. 제1항에 있어서,
    상기 반사성 물질과 유리 분말을 포함하는 격벽용 유리 페이스트에 포함되는 반사성 물질은 TiO2를 포함하는, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  4. 제1항에 있어서,
    상기 제1 유리 페이스트 및 상기 제2 유리 페이스트에 포함되는 유리 분말은 소성 온도가 300℃ 이하인, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  5. 제1항에 있어서,
    상기 제1 유리 페이스트에 포함되는 제1 색변환 물질 및 상기 제2 유리 페이스트에 포함되는 제2 색변환 물질은 퀀텀닷을 포함하는, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  6. 제1항에 있어서,
    상기 제1 유리 페이스트에 포함되는 제1 색변환 물질은 적색 형광체를 포함하고, 제2 유리 페이스트에 포함되는 제2 색변환 물질은 녹색 형광체를 포함하는, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  7. 제6항에 있어서,
    상기 격벽 구조체의 격자 상에 부착되는 광차단 필름은 블루 컷 필터(blue cut filter) 필름인, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  8. 제1항에 있어서,
    상기 반사성 물질과 유리 분말을 포함하는 격벽용 유리 페이스트를 격자 형태로 도포하는 단계에서는, 상기 격벽용 유리 페이스트를 도포하는 면적을 상기 격벽 구조체의 사전 설정된 면적보다 15% 내지 20% 넓게 형성하는, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  9. 제1항에 있어서,
    상기 격벽 구조체의 상기 기판으로부터의 분리는 레이저 리프트 오프 방식, 케미칼 리프트 오프 방식, 화학적 기계적 연마 방식 및 기계적 연마 방식 중 어느 하나의 방식을 이용하는, 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
  10. 제1항에 있어서,
    상기 제1 유리 페이스트 및 상기 제2 유리 페이스트를 소결하는 단계 이후에 상기 격벽 구조체, 상기 제1 유리 및 상기 제2 유리의 일면을 평탄화하는 단계를 더 포함하는 마이크로 엘이디 디스플레이용 색변환 구조체 제조 방법.
PCT/KR2019/006339 2018-05-28 2019-05-27 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법 WO2019231197A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002466.6A CN110785850A (zh) 2018-05-28 2019-05-27 微型led显示器用颜色变换结构体的制造方法
US16/682,277 US20200083411A1 (en) 2018-05-28 2019-11-13 Manufacturing method of color conversion structure for micro led display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180060716A KR102040975B1 (ko) 2018-05-28 2018-05-28 마이크로 led 디스플레이용 색변환 구조체의 제조 방법
KR10-2018-0060716 2018-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/682,277 Continuation US20200083411A1 (en) 2018-05-28 2019-11-13 Manufacturing method of color conversion structure for micro led display

Publications (1)

Publication Number Publication Date
WO2019231197A1 true WO2019231197A1 (ko) 2019-12-05

Family

ID=68541506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006339 WO2019231197A1 (ko) 2018-05-28 2019-05-27 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법

Country Status (4)

Country Link
US (1) US20200083411A1 (ko)
KR (1) KR102040975B1 (ko)
CN (1) CN110785850A (ko)
WO (1) WO2019231197A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797846B (zh) * 2021-11-24 2023-04-01 財團法人工業技術研究院 色彩轉換單元、應用其之色彩轉換結構及應用其之發光二極體顯示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092683A (ko) * 2003-04-25 2004-11-04 엘지전자 주식회사 플라즈마 디스플레이 패널의 격벽 형성방법
JP2013115351A (ja) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Led波長変換部材とその製造方法
KR20140054626A (ko) * 2012-10-29 2014-05-09 연세대학교 산학협력단 발광 효율을 개선할 수 있는 구조를 갖는 led 패키지 및 그 제조방법
KR20150030324A (ko) * 2013-09-11 2015-03-20 주식회사 베이스 Led용 색변환 소재 제조 방법
KR20180018945A (ko) * 2016-08-11 2018-02-22 삼성디스플레이 주식회사 컬러 필터 및 이를 포함하는 표시 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031135A (ja) * 2001-07-18 2003-01-31 Toppan Printing Co Ltd 反射型カラープラズマディスプレイの背面板およびその製造方法
JP2003335550A (ja) * 2002-03-13 2003-11-25 Toray Ind Inc ガラスペーストならびにそれを用いたディスプレイ用部材およびディスプレイ
KR20060029233A (ko) * 2003-08-11 2006-04-05 니폰 덴키 가라스 가부시키가이샤 유리 페이스트 및 그 제조방법
KR101265727B1 (ko) 2011-12-16 2013-05-20 한국과학기술원 발광 다이오드를 이용한 디스플레이 패널 및 그 제조방법
JP6168284B2 (ja) * 2013-04-03 2017-07-26 日本電気硝子株式会社 波長変換材料、波長変換部材及び発光デバイス
CN106030836B (zh) * 2014-03-10 2019-04-05 欧司朗光电半导体有限公司 波长转换元件、发光半导体部件及其制造方法
KR20160038094A (ko) * 2014-09-26 2016-04-07 코닝정밀소재 주식회사 발광 다이오드의 색변환용 기판 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092683A (ko) * 2003-04-25 2004-11-04 엘지전자 주식회사 플라즈마 디스플레이 패널의 격벽 형성방법
JP2013115351A (ja) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Led波長変換部材とその製造方法
KR20140054626A (ko) * 2012-10-29 2014-05-09 연세대학교 산학협력단 발광 효율을 개선할 수 있는 구조를 갖는 led 패키지 및 그 제조방법
KR20150030324A (ko) * 2013-09-11 2015-03-20 주식회사 베이스 Led용 색변환 소재 제조 방법
KR20180018945A (ko) * 2016-08-11 2018-02-22 삼성디스플레이 주식회사 컬러 필터 및 이를 포함하는 표시 장치

Also Published As

Publication number Publication date
US20200083411A1 (en) 2020-03-12
KR102040975B1 (ko) 2019-11-06
CN110785850A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
US20190165036A1 (en) Micro light-emitting diode display device and manufacturing method thereof
US7732827B2 (en) High efficient phosphor-converted light emitting diode
KR101216878B1 (ko) 광 생성 장치, 발광 디바이스 및 백색 발광 디바이스
US20090207111A1 (en) Full color light emitting diode display
WO2016105026A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2014046488A2 (ko) 색변환 엘리먼트 및 그 제조방법
JP6093127B2 (ja) 発光装置及びその製造方法
CN114747006B (zh) 具有包括多孔颗粒的反射侧壁的发光二极管
WO2016105018A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016105027A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
CN111403446B (zh) 显示面板及其制造方法
WO2019231197A1 (ko) 마이크로 엘이디 디스플레이용 색변환 구조체의 제조 방법
JP2014086694A (ja) 発光装置、及び発光装置の製造方法
WO2016047920A1 (ko) 발광 다이오드의 색변환용 기판 및 그 제조방법
EP4256626A1 (en) Laterally heterogenous wavelength-converting layer
WO2016122053A1 (ko) 투명 전광 장치
CN108400223A (zh) 发光二极管封装结构、量子点密封单元及其制备方法
JP2023072871A (ja) ディスプレイ装置、およびディスプレイ装置の製造方法
WO2016114480A1 (ko) 광균일도가 우수한 led용 색변환 유리
WO2016114481A1 (ko) 나노 유리 파우더를 이용한 색변환 소재 제조 방법 및 백색 발광 장치
WO2019212194A1 (ko) 조명 모듈 및 조명 장치
CN208433422U (zh) 发光二极管封装结构及量子点密封单元
WO2023204527A1 (ko) 발광 소자 및 그 제조 방법
WO2009145500A2 (ko) 광 여기 발광장치와 그 제조방법, 및 이를 이용한 백색 광원
WO2016208851A1 (ko) Led용 유리의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810506

Country of ref document: EP

Kind code of ref document: A1