WO2019230902A1 - Blowout unit - Google Patents

Blowout unit Download PDF

Info

Publication number
WO2019230902A1
WO2019230902A1 PCT/JP2019/021582 JP2019021582W WO2019230902A1 WO 2019230902 A1 WO2019230902 A1 WO 2019230902A1 JP 2019021582 W JP2019021582 W JP 2019021582W WO 2019230902 A1 WO2019230902 A1 WO 2019230902A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind direction
inclination angle
axial
air
direction plate
Prior art date
Application number
PCT/JP2019/021582
Other languages
French (fr)
Japanese (ja)
Inventor
悦郎 吉野
武内 康浩
潤 山岡
雅晴 酒井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019230902A1 publication Critical patent/WO2019230902A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser

Definitions

  • This disclosure relates to the blowout unit.
  • a grill that forms an air outlet that is opened in a circular shape centered on an axis, and a radial direction that is disposed in the air outlet and that is centered on the axis are provided.
  • the plurality of louvers are arranged in the circumferential direction around the axis.
  • Each of the plurality of louvers is configured to advance in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the air flow passing between two louvers adjacent in the circumferential direction among the plurality of louvers can be blown out as a swirl flow centered on the axis. For this reason, it is possible to suppress the swirling flow from diffusing by negative pressure on the central side in the radial direction.
  • a lateral vortex is an air flow that swirls around an imaginary line that intersects the axis of the swirling flow.
  • This disclosure is intended to provide a blowout unit that breaks a horizontal vortex and suppresses a reduction in the arrival distance of a swirling flow.
  • the blowout unit that controls the airflow blown from the air conditioning unit includes: A plurality of wind direction plates formed over the radial direction centered on the axis and arranged at intervals in the circumferential direction centered on the axis; Between the two wind direction plates adjacent in the circumferential direction among the plurality of wind direction plates, an air passage through which an air flow passes is formed, When the direction in which the axis extends is defined as the axial direction, each of the plurality of wind direction plates passes through the air passage by being configured to advance from the one side in the axial direction toward the other side in the axial direction. The air flow is swirled around the axis, The plurality of wind direction plates are formed such that the inclination angle of the radially inner region and the inclination angle of the radially outer region are different from each other.
  • a swirling flow swirling around an axis flows as an air flow from an air passage between two wind direction plates adjacent in the circumferential direction among the plurality of wind direction plates.
  • the inclination angle of the radially inner region and the inclination angle of the radially outer region are different from each other. For this reason, the energy that acts on the swirling of the air flow is different between the radially outer side and the radially inner side of the swirling flow.
  • the lateral vortex generated around the swirling flow is broken by the radially outer side of the swirling flow, and the radially inner side of the swirling flow advances in the axial direction. Therefore, it is possible to suppress the arrival distance of the swirling flow from being shortened by the horizontal vortex.
  • the tilt angle, the radially inner region, and the radially outer region are defined as follows.
  • the circumferential direction is from the one end in the axial direction to the other end in the axial direction.
  • An angle formed toward one side is defined as an inclination angle.
  • the amount of change in the circumferential angle of the other end portion in the axial direction with respect to the circumferential angle of the one end portion in the axial direction is defined as an inclination angle.
  • the radially inner region is a region located on the radially inner side around the axis in each of the plurality of wind direction plates.
  • the radially outer region is a region located on the radially outer side around the axis in each of the plurality of wind direction plates.
  • FIG. 1st Embodiment It is a figure which shows the whole structure of the vehicle-mounted air conditioner in 1st Embodiment. It is a perspective view of the blowing unit of FIG. It is a side view of the blowing unit of FIG. It is a figure which shows the axial direction other side edge part of the inner side wind direction board part in FIG. 2, and the axial direction other side edge part of an outer side wind direction board part when it sees from an axial direction one side. In 1st Embodiment, it is a figure which shows the comparison of the increase / decrease in the arrival rate of the airflow of a 1st case and a 2nd case. It is a perspective view of the blowing unit of the vehicle-mounted air conditioner in 2nd Embodiment.
  • FIG. 6 It is a side view of the blowing unit of FIG. 6 when viewed from one side in the axial direction, the other end in the axial direction of the inner wind direction plate portion in FIG. 6, the other end in the axial direction of the intermediate wind direction plate portion, and the other end in the axial direction of the outer wind direction plate portion.
  • FIG. It is a perspective view of the blowing unit of the vehicle-mounted air conditioner in 3rd Embodiment. It is a figure which shows the axial direction other side edge part of the wind direction board in FIG. 9 at the time of seeing from one axial direction side.
  • the blowing unit according to the first embodiment will be described with reference to FIGS.
  • the blowout unit 50 is connected via a duct 30 to an indoor air conditioning unit 1 that performs air conditioning of the vehicle.
  • the indoor air-conditioning unit 1 is an air-conditioning unit disposed on the inner side of the instrument panel (that is, the instrument panel) at the foremost part of the vehicle interior.
  • This indoor air-conditioning unit 1 has a case 2 and constitutes an air passage through which air is blown toward the vehicle interior.
  • the inside / outside air switching box 5 having the inside air introduction port 3 and the outside air introduction port 4 is arranged at the most upstream part of the air passage of the case 2.
  • An inside / outside air switching door 6 is rotatably arranged in the inside / outside air switching box 5.
  • This inside / outside air switching door 6 is driven by a servo motor (not shown), and switches between an inside air mode for introducing vehicle compartment air from the inside air introduction port 3 and an outside air mode for introducing vehicle compartment outside air from the outside air introduction port 4. .
  • An electric blower 8 that generates an air flow toward the passenger compartment is disposed on the air downstream side of the inside / outside air switching box 5.
  • the blower 8 includes a centrifugal blower fan 8a and a motor 8b that drives the blower fan 8a.
  • An evaporator 9 that cools the air flowing in the case 2 is disposed on the downstream side of the blower 8.
  • the evaporator 9 is a heat exchanger for cooling that cools the air blown from the blower 8 with a refrigerant, and is one of the elements constituting a known vapor compression refrigeration cycle.
  • a heater core 15 for heating the air flowing in the case 2 is disposed on the downstream side of the evaporator 9.
  • the heater core 15 is a heating heat exchanger that heats cold air that has passed through the evaporator 9 by using warm water of the vehicle engine as a heat source.
  • a bypass passage 16 is formed on the side of the heater core 15, and the bypass air of the heater core 15 flows through the bypass passage 16.
  • An air mix door 17 is rotatably disposed between the evaporator 9 and the heater core 15.
  • the air mix door 17 is driven by a servo motor (not shown), and its opening degree can be continuously adjusted.
  • the ratio of the amount of hot air passing through the heater core 15 and the amount of cold air passing through the bypass passage 16 and bypassing the heater core 15 is adjusted by the opening of the air mix door 17, thereby adjusting the temperature of the air blown into the vehicle interior. Will be.
  • a defroster outlet 19 for blowing conditioned air toward the front window glass of the vehicle and a face outlet 20 for blowing conditioned air toward the occupant's face are provided at the most downstream portion of the air passage of the case 2. It has been.
  • a foot outlet 21 is provided at the most downstream portion of the air passage of the case 2 for blowing air-conditioned air toward the feet of the passenger.
  • a defroster door 22, a face door 23, and a foot door 24 are rotatably disposed upstream of the defroster outlet 19, the face outlet 20, and the foot outlet 21.
  • the defroster door 22, the face door 23, and the foot door 24 are opened and closed by a common servo motor via a link mechanism (not shown).
  • the blowing unit 50 is connected to the face outlet 20 provided in the case 2 via a duct 30.
  • the air whose temperature has been adjusted by the indoor air conditioning unit 1 is blown from the case 2 through the duct 30 to the vehicle interior from the blowout unit 50.
  • the blowout unit 50 includes a case 51, a partition 52, and wind direction plates 53, 54, 55, and 56 (that is, a plurality of wind direction plates), as shown in part (a) in FIG.
  • the case 51, the partition part 52, and the wind direction plates 53, 54, 55, and 56 are each made of a resin material.
  • the case 51 is formed in a cylindrical shape centered on the axis S.
  • the partition part 52 is disposed in the case 51.
  • the partition portion 52 is formed in a cylindrical shape centered on the axis S.
  • the partition part 52 divides the inside of the case 51 into an inner air passage and an outer air passage.
  • the inner air passage is formed on the inner side in the radial direction centering on the axis S with respect to the partition portion 52, and distributes the air flow blown out from the duct 30.
  • the outer air passage is formed on the outer side in the radial direction around the axis S with respect to the partition portion 52.
  • the outer air passage is formed between the partition portion 52 and the case 51.
  • the outer air passage circulates the air flow blown out from the duct 30.
  • the wind direction plates 53, 54, 55, and 56 are wind direction plates that are arranged at equal intervals in the circumferential direction around the axis S.
  • the wind direction plates 53, 54, 55, 56 are formed in a plate shape and are arranged in the case 51.
  • the wind direction plates 53, 54, 55, and 56 are formed from the radial center around the axis S to the radially outer side.
  • the wind direction plates 53, 54, 55, and 56 are formed such that their thickness directions are orthogonal to the axial direction.
  • the wind direction plate 53 is a vane including an inner wind direction plate portion 53a and an outer wind direction plate portion 53b.
  • the inner wind direction plate portion 53 a constitutes a radially inner region that is disposed radially inward with respect to the partition portion 52.
  • the outer wind direction plate portion 53 b constitutes a radially outer region disposed between the case 51 and the partition portion 52.
  • the inner wind direction plate portion 53a is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the outer wind direction plate portion 53b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the circumferential direction is a circumferential direction around the axis S.
  • the inclination angle ⁇ 2a (that is, the first inclination angle) of the inner wind direction plate portion 53a is smaller than the inclination angle ⁇ 1a (that is, the second inclination angle) of the outer wind direction plate portion 53b ( ⁇ 2a ⁇ 1a).
  • the other end 153b in the axial direction from the one end 153a in the axial direction As viewed from one side in the axial direction between the one end 153a in the axial direction and the other end 153b in the axial direction in the inner wind direction plate portion 53a, the other end 153b in the axial direction from the one end 153a in the axial direction.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 2a.
  • the amount of change in the circumferential angle of the other end 153b in the axial direction with respect to the circumferential angle of the one end 153a in the axial direction is the inclination angle ⁇ 2a.
  • an angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 1a.
  • the amount of change in the circumferential angle of the other axial end 153d with respect to the circumferential angle of the axial end 153c is the inclination angle ⁇ 1a.
  • an imaginary line passing through one axial end 153a, one axial end 153c, and the axial line S is defined as an X-ray.
  • the wind direction plate 54 includes an inner wind direction plate portion 54a and an outer wind direction plate portion 54b.
  • the inner wind direction plate portion 54 a constitutes a radially inner region disposed radially inward with respect to the partition portion 52.
  • the outer wind direction plate portion 54 b constitutes a radially outer region arranged between the case 51 and the partition portion 52.
  • the inner wind direction plate portion 54a is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the outer wind direction plate portion 54b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the inclination angle ⁇ 2b (that is, the first inclination angle) of the inner wind direction plate portion 54a is smaller than the inclination angle ⁇ 1b (that is, the second inclination angle) of the outer wind direction plate portion 54b ( ⁇ 2b ⁇ 1b).
  • the other end 154b in the axial direction from the one end 154a in the axial direction As viewed from one side in the axial direction between the one end 154a in the axial direction and the other end 154b in the axial direction in the inner wind direction plate portion 54a, the other end 154b in the axial direction from the one end 154a in the axial direction.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 2b.
  • the amount of change in the circumferential angle of the other axial end 154b with respect to the circumferential angle of the axial one end 154a is the inclination angle ⁇ 2b.
  • the axial one end 154c to the other axial end 154d.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 1b.
  • the amount of change in the circumferential angle of the other axial end 154d relative to the circumferential angle of the axial end 154c is the inclination angle ⁇ 1b.
  • an imaginary line passing through the axial one side end 154a, the axial one end 154c, and the axis S is defined as a Y line.
  • the Y line is orthogonal to the X line on the axis S.
  • the wind direction plate 55 includes an inner wind direction plate portion 55a and an outer wind direction plate portion 55b.
  • the inner wind direction plate portion 55 a constitutes a radially inner region disposed radially inward with respect to the partition portion 52.
  • the outer wind direction plate portion 55 b constitutes a radially outer region disposed between the case 51 and the partition portion 52.
  • the inner wind direction plate portion 55a is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction.
  • the outer wind direction plate portion 55b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the inclination angle ⁇ 2c (that is, the first inclination angle) of the inner wind direction plate portion 55a is smaller than the inclination angle ⁇ 1c (that is, the second inclination angle) of the outer wind direction plate portion 55b ( ⁇ 2c ⁇ 1c).
  • the other end 155b in the axial direction from the one end 155a in the axial direction As viewed from one side in the axial direction between the one end 155a in the axial direction and the other end 155b in the axial direction of the inner wind direction plate portion 55a, the other end 155b in the axial direction from the one end 155a in the axial direction.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 2c.
  • the amount of change in the circumferential angle of the other axial end 155b with respect to the circumferential angle of the axial one end 155a is the inclination angle ⁇ 2c.
  • the other end 155d in the axial direction from the one end 155c in the axial direction As viewed from one side in the axial direction between the one end 155c in the axial direction and the other end 155d in the axial direction in the outer wind direction plate portion 55b, the other end 155d in the axial direction from the one end 155c in the axial direction.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 1c.
  • the amount of change in the circumferential angle of the other axial end 155d with respect to the circumferential angle of the axial end 155c is the inclination angle ⁇ 1c.
  • the one end portion 155a in the axial direction and the one end portion 155c in the axial direction are configured so that the above-described X-rays pass therethrough.
  • the wind direction plate 56 includes an inner wind direction plate portion 56a and an outer wind direction plate portion 56b.
  • the inner wind direction plate portion 56 a constitutes a radially inner region disposed radially inward with respect to the partition portion 52.
  • the outer wind direction plate portion 56 b constitutes a radially outer region arranged between the case 51 and the partition portion 52.
  • the inner wind direction plate portion 56a is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the outer wind direction plate portion 56b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the inclination angle ⁇ 2d (that is, the first inclination angle) of the inner wind direction plate portion 56a is smaller than the inclination angle ⁇ 1d (that is, the second inclination angle) of the outer wind direction plate portion 56b ( ⁇ 2d ⁇ 1d).
  • the other end 156b in the axial direction from the one end 156a in the axial direction As viewed from one side in the axial direction between the one end 156a in the axial direction and the other end 156b in the axial direction of the inner wind direction plate portion 56a, the other end 156b in the axial direction from the one end 156a in the axial direction.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 2d.
  • the amount of change in the circumferential angle of the other axial end 156b with respect to the circumferential angle of the axial one end 156a is the inclination angle ⁇ 2d.
  • the axial one end 156c to the other axial end 156d.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 1d.
  • the amount of change in the circumferential angle of the other axial end 156d with respect to the circumferential angle of the axial one end 156c is the inclination angle ⁇ 1d.
  • the one end 156a in the axial direction and the one end 156c in the axial direction are configured so that the above-described Y line passes through.
  • the inner wind direction plate portions 53a, 54a, 55a, and 56a of the present embodiment divide the inner air passage into four.
  • An inner air passage 57a is formed between two inner wind direction plate portions 53a and 54a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
  • An inner air passage 57b is formed between two inner wind direction plate portions 54a and 55a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
  • an inner air passage 57c is formed between two inner wind direction plate portions 55a and 56a adjacent in the circumferential direction.
  • An inner air passage 57d is formed between two inner wind direction plate portions 56a and 53a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
  • the outer wind direction plate portions 53b, 54b, 55b, and 56b of the present embodiment divide the outer air passage into four.
  • An outer air passage 58a is formed between two outer wind direction plate portions 53b and 54b adjacent in the circumferential direction among the outer wind direction plate portions 53b to 56b.
  • An outer air passage 58b is formed between two outer wind direction plate portions 54b and 55b adjacent in the circumferential direction among the outer wind direction plate portions 53b to 56b.
  • An outer air passage 58c is formed between two outer wind direction plate portions 55b and 56b adjacent in the circumferential direction among the outer wind direction plate portions 53b to 56b.
  • An outer air passage 58d is formed between two outer wind direction plates 56b and 53b adjacent in the circumferential direction among the outer wind direction plates 53b to 56b.
  • the air flow that has passed through the duct 30 flows into the inner air passages 57a, 57b, 57c, and 57d of the blowing unit 50. Then, the air flow flows along the inner wind direction plate portions 53a to 56a, so that it is blown out as a swirl flow that swirls around the axis S.
  • This swirl flow is an air flow that forms a vertical vortex centered on the axis S.
  • the air flow blown out from the inner air passages 57a to 57d in the swirling flow is referred to as an inner swirling flow.
  • the air flow that has passed through the duct 30 flows to the outer air passages 58a, 58b, 58c, and 58d of the blowing unit 50. Then, the air flow flows along the outer wind direction plate portions 53b to 56b, and is blown out as a swirl flow swirling around the axis S.
  • This swirl flow is an air flow that forms a longitudinal vortex centered on the axis S on the radially outer side with respect to the inner swirl flow.
  • the air flow blown out of the outer air passages 58a to 58d in the swirling flow is referred to as an outer swirling flow.
  • the outer swirling flow has a larger energy acting on the swirling of the air flow than the inner swirling flow.
  • the outer swirl flow destroys the lateral vortex of the air flow generated around the outer swirl flow.
  • it is possible to generate an inner swirl flow radially inward with respect to the outer swirl flow.
  • the flow velocity slightly outside in the radial direction is the fastest than the radially intermediate portion.
  • the radially intermediate portion side means an intermediate portion between the radially inner side and the radially outer side.
  • the inner side in the radial direction means the inner side in the radial direction around the axis S.
  • the radially outer side means a radially outer side centered on the axis S.
  • the blowout unit 50 controls the airflow blown from the indoor air conditioning unit 1 that adjusts the air in the vehicle interior.
  • the blowout unit 50 includes wind direction plates 53 to 56 that are formed over the radial direction centered on the axis S and arranged at intervals in the circumferential direction centered on the axis S.
  • inner air passages 57a to 57d and outer air passages 58a to 58d through which an air flow passes are formed.
  • the wind direction plates 53 to 56 are configured to advance in the circumferential direction from one side in the axial direction toward the other side in the axial direction, thereby passing through the air passage.
  • the air flow is swirled.
  • the inclination angles ( ⁇ 1a to ⁇ 1d) of the outer wind direction plate portions 53b to 56b are larger than the inclination angles ( ⁇ 2a to ⁇ 2d) of the inner wind direction plate portions 53a to 56a, respectively.
  • the inclination angles ( ⁇ 2a to ⁇ 2d) of the inner wind direction plate portions 53a to 56a are set to be constant over the radial direction.
  • the inclination angles ( ⁇ 1a to ⁇ 1d) of the outer wind direction plate portions 53b to 56b are set to be constant over the radial direction.
  • the outer swirl flow is blown out by the outer wind direction plate portions 53b to 56b.
  • An inner swirling flow is blown out by the inner wind direction plate portions 53a to 56a.
  • the outer swirl flow has a larger energy acting on the swirl of the air flow than the inner swirl flow.
  • the outer swirl flow breaks the horizontal vortex of the air flow generated around the outer swirl flow. For this reason, it is suppressed that the inside swirl flow is diffused radially outward. For this reason, it is possible to make the inner swirl flow reach farther.
  • blowout unit 50 that suppresses the lateral swirl of the air flow generated around the outer swirl flow from being destroyed by the outer swirl flow and shortening the reach distance of the swirl flow.
  • the outer turning energy is energy that acts on the turning of the outer turning flow.
  • the inner turning energy is energy that acts on the turning of the inner turning flow.
  • the first case in which the outer turning energy is larger than the inner turning energy means that the inclination angle of the outer wind direction plate portions 53b to 56b is larger than the inclination angle of the inner wind direction plate portions 53a to 56a.
  • the second case in which the outer turning energy is smaller than the inner turning energy means that the inclination angle of the outer wind direction plate portions 53b to 56b is made smaller than the inclination angle of the inner wind direction plate portions 53a to 56a.
  • the case where the outside turning energy and the inside turning energy are the same is taken as the third case.
  • the vertical axis in FIG. 5 shows the increase / decrease in the air flow arrival rate in the first case with the third case as the reference value (ie, pt) and the increase / decrease in the air flow arrival rate in the second case with the third case as the reference value ( That is, pt).
  • the first case has a longer airflow reach than the third case
  • the second case has a longer airflow reach than the third case. Furthermore, the reach distance of the airflow is longer in the first case than in the second case.
  • intermediate wind direction plate portions 53c to 56c are added to the blowing unit 50 of the first embodiment.
  • the same reference numerals as those in FIGS. 2, 3, and 4 indicate the same components.
  • blowout unit 50 will be mainly described, and the description of other configurations will be simplified.
  • the blowout unit 50 of the present embodiment includes partition portions 52a and 52b instead of the partition portion 52.
  • the partition parts 52 a and 52 b are disposed in the case 51.
  • the partition parts 52a and 52b are formed in a cylindrical shape centered on the axis S.
  • the radial dimension of the partition part 52a is larger than the radial dimension of the partition part 52b.
  • the partition part 52b is arrange
  • the partition parts 52a and 52b divide the inside of the case 51 into an inner air passage, an intermediate air passage, and an outer air passage.
  • the intermediate air passage is disposed between the inner air passage and the outer air passage.
  • the wind direction plate 53 of the present embodiment includes an inner wind direction plate portion 53a, an outer wind direction plate portion 53b, and an intermediate wind direction plate portion 53c.
  • the inner wind direction plate portion 53a constitutes a radially inner region arranged in the inner air passage, as in the first embodiment.
  • the outer wind direction plate portion 53b constitutes a radially outer region disposed in the outer air passage, as in the first embodiment.
  • the intermediate wind direction plate portion 53c constitutes an intermediate region disposed in the intermediate air passage.
  • the intermediate wind direction plate portion 53c is disposed between the inner wind direction plate portion 53a and the outer wind direction plate portion 53b.
  • the intermediate wind direction plate portion 53c is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction.
  • the axial one end portion 153e extends to the other axial end portion 153f.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 3a.
  • the amount of change in the circumferential angle of the other end 153f in the axial direction relative to the circumferential angle of the one end 153e in the axial direction is the inclination angle ⁇ 3a.
  • the X-ray is an imaginary line that passes through the axial one side end 153a, the axial one end 153e, the axial one end 153c, and the axial S.
  • the inclination angle ⁇ 3a (that is, the third inclination angle) of the intermediate wind direction plate portion 53c is smaller than the inclination angle ⁇ 1a of the outer wind direction plate portion 54b ( ⁇ 3a ⁇ 1a).
  • the inclination angle ⁇ 3a of the intermediate wind direction plate portion 53c is smaller than the inclination angle ⁇ 2a of the inner wind direction plate portion 54a ( ⁇ 3a ⁇ 2a).
  • the inclination angle ⁇ 1a of the outer wind direction plate portion 54b is larger than the inclination angle ⁇ 2a of the inner wind direction plate portion 54a ( ⁇ 2a ⁇ 1a).
  • the wind direction plate 54 includes an inner wind direction plate portion 54a, an outer wind direction plate portion 54b, and an intermediate wind direction plate portion 54c.
  • the inner wind direction plate portion 54a constitutes a radially inner region arranged in the inner air passage as in the first embodiment.
  • the outer wind direction plate portion 54b constitutes a radially outer region disposed in the outer air passage, as in the first embodiment.
  • the intermediate wind direction plate portion 54c constitutes an intermediate region disposed in the intermediate air passage.
  • the intermediate wind direction plate portion 54c is disposed between the inner wind direction plate portion 54a and the outer wind direction plate portion 54b.
  • the intermediate wind direction plate portion 54c is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction.
  • the intermediate wind direction plate portion 54c between the one axial end portion 154e and the other axial end portion 154f is viewed from one axial direction end to the other axial end portion 154f in the axial direction.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 3b.
  • the amount of change in the circumferential angle of the other axial end 154f relative to the circumferential angle of the axial one end 154e is the inclination angle ⁇ 3b.
  • the Y line is an imaginary line that passes through the one axial end 154a, the one axial end 154e, the one axial end 154c, and the axial line S.
  • the inclination angle ⁇ 3b (that is, the third inclination angle) of the intermediate wind direction plate portion 54c is smaller than the inclination angle ⁇ 1b of the outer wind direction plate portion 54b ( ⁇ 3b ⁇ 1b).
  • the inclination angle ⁇ 3b of the intermediate wind direction plate portion 54c is smaller than the inclination angle ⁇ 2b of the inner wind direction plate portion 54a ( ⁇ 3b ⁇ 2b).
  • the inclination angle ⁇ 1b of the outer wind direction plate portion 54b is larger than the inclination angle ⁇ 2b of the inner wind direction plate portion 54a ( ⁇ 2b ⁇ 1b).
  • the wind direction plate 55 includes an inner wind direction plate portion 55a, an outer wind direction plate portion 55b, and an intermediate wind direction plate portion 55c.
  • the inner wind direction plate portion 55a constitutes a radially inner region disposed in the inner air passage as in the first embodiment.
  • the outer wind direction plate portion 55b is disposed in the outer air passage as in the first embodiment.
  • the intermediate wind direction plate portion 55c constitutes an intermediate region disposed in the intermediate air passage.
  • the intermediate wind direction plate portion 55c is disposed between the inner wind direction plate portion 55a and the outer wind direction plate portion 55b.
  • the intermediate wind direction plate portion 55c is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the intermediate wind direction plate portion 55c between the one axial end portion 155e and the other axial end portion 155f is viewed from one axial direction end to the other axial end portion 155f in the axial direction.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 3c.
  • the amount of change in the circumferential angle of the other axial end 155f with respect to the circumferential angle of the axial one end 155e is the inclination angle ⁇ 3c.
  • the X-ray is an imaginary line passing through the one axial end 155a, the one axial end 155e, the one axial end 155c, and the axial line S.
  • the inclination angle ⁇ 3c (that is, the third inclination angle) of the intermediate wind direction plate portion 55c is smaller than the inclination angle ⁇ 1c of the outer wind direction plate portion 55b ( ⁇ 3c ⁇ 1c).
  • the inclination angle ⁇ 3c of the intermediate wind direction plate portion 55c is smaller than the inclination angle ⁇ 2c of the inner wind direction plate portion 55a ( ⁇ 3c ⁇ 2c).
  • the inclination angle ⁇ 1c of the outer wind direction plate portion 55b is larger than the inclination angle ⁇ 2c of the inner wind direction plate portion 55a ( ⁇ 2c ⁇ 1c).
  • the wind direction plate 56 includes an inner wind direction plate portion 56a, an outer wind direction plate portion 56b, and an intermediate wind direction plate portion 56c.
  • the inner wind direction plate portion 56a constitutes a radially inner region disposed in the inner air passage, as in the first embodiment.
  • the outer wind direction plate portion 56b constitutes a radially outer region disposed in the outer air passage, as in the first embodiment.
  • the intermediate wind direction plate portion 56c constitutes an intermediate region disposed in the intermediate air passage.
  • the intermediate wind direction plate portion 56c is disposed between the inner wind direction plate portion 56a and the outer wind direction plate portion 56b.
  • the intermediate wind direction plate portion 56c is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction.
  • the intermediate wind direction plate portion 56c between the one axial end portion 156e and the other axial end portion 156f is viewed from one axial direction side, from the axial one end portion 156e to the other axial end portion 156f.
  • An angle formed toward one side in the circumferential direction is defined as an inclination angle ⁇ 3d.
  • the amount of change in the circumferential angle of the other axial end 156f with respect to the circumferential angle of the axial one end 156e is the inclination angle ⁇ 3d.
  • the Y line is an imaginary line that passes through one axial end 156a, one axial end 156e, and one axial end 156c in the axial direction.
  • the inclination angle ⁇ 3d (that is, the third inclination angle) of the intermediate wind direction plate portion 56c is smaller than the inclination angle ⁇ 1d of the outer wind direction plate portion 56b ( ⁇ 3d ⁇ 1d).
  • the inclination angle ⁇ 3d of the intermediate wind direction plate portion 56c is smaller than the inclination angle ⁇ 2d of the inner wind direction plate portion 56a ( ⁇ 3d ⁇ 2d).
  • the inclination angle ⁇ 1d of the outer wind direction plate portion 56b is larger than the inclination angle ⁇ 2d of the inner wind direction plate portion 56a ( ⁇ 2d ⁇ 1d).
  • the intermediate wind direction plate portions 53c, 54c, 55c, and 56c of the present embodiment divide the intermediate air passage into four.
  • An intermediate air passage 59a is formed between two inner wind direction plate portions 53a and 54a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
  • An intermediate air passage 59b is formed between two inner wind direction plate portions 54a and 55a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
  • An intermediate air passage 59c is formed between two inner wind direction plate portions 55a and 56a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
  • An intermediate air passage 59d is formed between two inner wind direction plate portions 56a and 53a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
  • the air flow that has passed through the duct 30 flows into the inner air passages 57a, 57b, 57c, and 57d of the blowing unit 50. Then, the air flow is blown out as an inner swirl flow that flows along the inner wind direction plate portions 53a to 56a.
  • the air flow that has passed through the duct 30 flows to the outer air passages 58a, 58b, 58c, and 58d of the blowing unit 50. Then, the air flow is blown out as an outer swirl flow that flows along the outer wind direction plate portions 53b to 56b.
  • the air flow that has passed through the duct 30 flows into the intermediate air passages 59a, 59b, 59c, and 59d of the blowing unit 50. Then, the air flow is blown out as an intermediate swirl flow that flows along the intermediate wind direction plate portions 53c to 56c.
  • the intermediate swirl flow is a vortex flow of air flow swirling around the axis S.
  • the outer swirl flow destroys the lateral vortex of the air flow generated around the outer swirl flow.
  • an intermediate swirl flow and an inner swirl flow can be generated radially inward with respect to the outer swirl flow.
  • the outer swirl flow has more energy acting on the swirl of the air flow than the intermediate swirl flow and the inner swirl flow. For this reason, the intermediate side swirl flow and the inner swirl flow can be advanced in the axial direction while destroying the horizontal vortex by the outer swirl flow.
  • the inclination angles of the inner wind direction plate portions 53a to 56a are the inclination angles ⁇ 2a to ⁇ 2d
  • the inclination angles of the outer wind direction plate portions 53b to 56b are the inclination angles ⁇ 1a to ⁇ 1. It is assumed that ⁇ 1d.
  • the inclination angles of the intermediate wind direction plate portions 53c to 56c are assumed to be inclination angles ⁇ 3a to ⁇ 3d.
  • the inclination angles ⁇ 1a to ⁇ 1d and the inclination angles ⁇ 2a to ⁇ 2d are larger than the inclination angles ⁇ 3a to ⁇ 3d of the intermediate wind direction plates 53c to 56c. For this reason, the outer swirl flow is blown out by the outer wind direction plate portions 53b to 56b. An inner swirling flow is blown out by the inner wind direction plate portions 53a to 56a. An intermediate swirling flow is blown out by the intermediate wind direction plate portions 53c to 56c.
  • the outer swirl flow has more energy acting on the swirl of the air flow than the intermediate swirl flow and the inner swirl flow.
  • the outer swirl flow breaks the horizontal vortex of the air flow generated around the outer swirl flow.
  • an inner swirl flow and an intermediate swirl flow can be generated on the radially inner side with respect to the outer swirl flow.
  • the swirl flow is prevented from diffusing radially outward. Accordingly, the inner swirl flow and the intermediate swirl flow can be advanced in the axial direction. For this reason, the inner swirl flow and the intermediate swirl flow can reach farther.
  • blowout unit 50 that suppresses the lateral swirl of the air flow generated around the outer swirl flow from being destroyed by the outer swirl flow and shortening the reach distance of the swirl flow.
  • the inclination angles ⁇ 2a, ⁇ 2b, ⁇ 2c, ⁇ 2d of the inner wind direction plate portions 53a, 54a, 55a, 56a are the same as those of the intermediate wind direction plate portions 53c, 54c, 55c, 56c.
  • the inclination angles are larger than ⁇ 3a, ⁇ 3b, ⁇ 3c, and ⁇ 3d.
  • the intermediate swirl flow is an air flow that is blown out from the intermediate air passages 59a, 59b, 59c, and 59d in the swirl flow.
  • the inner swirl flow can be set to a negative pressure rather than the intermediate swirl flow, the swirl flow can be prevented from diffusing from the radially inner side to the radially middle side. Therefore, the distance traveled in the axial direction by the radially inner side of the swirling flow can be extended.
  • the inclination angles ⁇ 1a, ⁇ 1b, ⁇ 1c, and ⁇ 1d are larger than the inclination angles ⁇ 3a, ⁇ 3b, ⁇ 3c, and ⁇ 3d.
  • the inclination angles ⁇ 1a, ⁇ 1b, ⁇ 1c, and ⁇ 1d are larger than the inclination angles ⁇ 2a, ⁇ 2b, ⁇ 2c, and ⁇ 2d.
  • the intermediate swirling flow has less energy acting on the swirling of the air flow than the inner swirling flow and the outer swirling flow.
  • the intermediate swirl flow can serve as a protective layer that suppresses the reciprocal rotation of the inner swirl flow and the outer swirl flow. Therefore, both the function of the outer swirl flow that eliminates the transverse vortex and the function of the inner swirl flow that negatively advances and advances in the axial direction can be achieved.
  • blowout unit 50 Since the blowout unit 50 is mainly different from the present embodiment and the first embodiment, the blowout unit 50 will be mainly described, and the description of other configurations will be simplified. 9 and 10, the same reference numerals as those in FIGS. 2, 3, and 4 denote the same components.
  • the blowout unit 50 of the present embodiment is configured by a case 51 and wind direction plates 53, 54, 55, and 56 without the partition 52 in FIG. 2. .
  • the wind direction plate 53 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the wind direction plate 53 is not composed of the inner wind direction plate portion 53a and the outer wind direction plate portion 53b of FIG. 2, but the inclination angle ⁇ 4a gradually increases from the radially inner side toward the radially outer side.
  • the inclination angle ⁇ 4a that is, the first inclination angle
  • the inclination angle ⁇ 4a that is, the second inclination angle
  • the wind direction plate 53 is formed such that the inclination angle ⁇ 4a of the radially inner region and the inclination angle ⁇ 4a of the radially outer region gradually increase from the radially inner side toward the radially outer side.
  • the axial direction one side edge part 153p is an axial direction other side edge part.
  • An angle formed at 153r toward one side in the circumferential direction is defined as an inclination angle ⁇ 4a.
  • the amount of change in the circumferential angle of the other end 153r in the axial direction relative to the circumferential angle of the one end 153p in the axial direction is defined as the inclination angle ⁇ 4a.
  • the wind direction plate 54 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the wind direction plate 54 is not composed of the inner wind direction plate portion 54a and the outer wind direction plate portion 54b in FIG. 2, but the inclination angle ⁇ 4b gradually increases from the radially inner side toward the radially outer side.
  • the inclination angle ⁇ 4b that is, the first inclination angle
  • the wind direction plate 54 is formed so that the inclination angle ⁇ 4b of the radially inner region and the inclination angle ⁇ 4b of the radially outer region gradually increase from the radially inner side toward the radially outer side.
  • the axial direction one side edge part 154p is the axial direction other side edge part.
  • An angle formed at 154r toward one side in the circumferential direction is defined as an inclination angle ⁇ 4b.
  • the amount of change in the circumferential angle of the other axial end 154r relative to the circumferential angle of the axial end 154p is the inclination angle ⁇ 4b.
  • the wind direction plate 55 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the wind direction plate 55 is not composed of the inner wind direction plate portion 55a and the outer wind direction plate portion 55b of FIG. 2, but the inclination angle ⁇ 4c gradually increases from the radially inner side toward the radially outer side.
  • the inclination angle ⁇ 4c that is, the first inclination angle
  • the inclination angle ⁇ 4c that is, the second inclination angle
  • the wind direction plate 55 is formed so that the inclination angle ⁇ 4c of the radially inner region and the inclination angle ⁇ 4c of the radially outer region gradually increase from the radially inner side toward the radially outer side.
  • the axial direction one side edge part 155p is an axial direction other side edge part.
  • An angle formed at 155r toward one side in the circumferential direction is defined as an inclination angle ⁇ 4c.
  • the amount of change in the circumferential angle of the other end 155r in the axial direction relative to the circumferential angle of the one end 155p in the axial direction is the inclination angle ⁇ 4c.
  • the wind direction plate 56 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the wind direction plate 56 is not composed of the inner wind direction plate portion 56a and the outer wind direction plate portion 56b of FIG. 2, but the inclination angle ⁇ 4d gradually increases from the radially inner side toward the radially outer side.
  • the inclination angle ⁇ 4d (that is, the first inclination angle) of the radially inner region is different from the inclination angle ⁇ 4d (that is, the second inclination angle) of the radially outer region.
  • the wind direction plate 56 is formed such that the inclination angle ⁇ 4d of the radially inner region and the inclination angle ⁇ 4d of the radially outer region gradually increase from the radially inner side toward the radially outer side.
  • the axial direction one side edge part 156p is the axial direction other side edge part.
  • An angle formed at 156r toward one side in the circumferential direction is defined as an inclination angle ⁇ 4d.
  • the amount of change in the circumferential angle of the other end 156r in the axial direction relative to the circumferential angle of the one end 156p in the axial direction is the inclination angle ⁇ 4d.
  • the wind direction plates 53, 54, 55 and 56 of the present embodiment divide the air passage in the case 51 into four.
  • an air passage 60a is formed between the two wind direction plates 53 and 54 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56.
  • An air passage 60b is formed between two wind direction plates 54 and 55 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56.
  • An air passage 60c is formed between two wind direction plates 55 and 56 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56.
  • An air passage 60 is formed between two wind direction plates 56 and 53 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56.
  • an imaginary line passing through the one end 153p in the axial direction, the axis S, and the one end 155p in the axial direction is defined as an X-ray.
  • an imaginary line passing through the one end 154p in the axial direction, the axis S, and the one end 156p in the axial direction is defined as a Y line.
  • the air flow that has passed through the duct 30 flows into the air passages 60a, 60b, 60c, and 60d of the blowing unit 50. Then, the air flow is blown out as a swirl flow that flows along the wind direction plates 53 to 56.
  • the energy that acts on the swirling of the air flow is larger at the radially outer side of the swirling flow than at the radially inner side of the swirling flow.
  • the radially outer side of the swirl flow breaks the horizontal vortex of the air flow generated around the swirl flow.
  • the radially inner side of the swirl flow advances in the axial direction.
  • the blowing unit 50 includes the case 51 and the wind direction plates 53, 54, 55, and 56.
  • the wind direction plates 53 to 56 are twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
  • the inclination angles ⁇ 4a to ⁇ 4d gradually increase from the radially inner side toward the radially outer side.
  • blowout unit 50 that suppresses a reduction in the reach of the swirl flow by breaking the lateral vortex of the air flow generated around the outer swirl flow on the radially outer side of the outer swirl flow. Can do.
  • the blowout unit 50 of the present disclosure is applied to a vehicle air conditioner. Instead, a building air conditioner and a home air conditioner are used.
  • the present invention may be applied to a stationary air conditioner such as a mobile air conditioner other than an automobile. Or you may apply the blowing unit 50 of this indication to air blowers other than an air conditioner.
  • the wind direction plates 53 to 56 have the inclination angles of the outer wind direction plate portions 53b to 56b with respect to the inclination angles of the inner wind direction plate portions 53a to 56a (that is, ⁇ 2a to ⁇ 2d), respectively.
  • An example in which (that is, ⁇ 1a to ⁇ 1d) is larger has been described.
  • the inclination angle of the outer wind direction plate portions 53b to 56b (that is, ⁇ 1a to ⁇ 1d) is smaller than the inclination angle of the inner wind direction plate portions 53a to 56a (that is, ⁇ 2a to ⁇ 2d). 56 may be used.
  • the example in which the four wind direction plates 53 to 56 are provided in the blowing unit 50 of the present disclosure has been described. However, instead of this, in the blowing unit 50 of the present disclosure, three or less wind direction plates or five or more wind direction plates may be provided.
  • the blowing unit 50 may be disposed in the duct 30 and a louver may be provided on the air outlet side of the duct 30 to adjust the blowing direction of the air flow that has passed through the blowing unit 50.
  • a louver may be provided on the air outlet side of the duct 30 to adjust the blowing direction of the air flow that has passed through the blowing unit 50.
  • an example using the inner wind direction plate portions 53a, 54a, 55a, and 56a in which the inclination angles ⁇ 2a, ⁇ 2b, ⁇ 2c, and ⁇ 2d are uniformly formed in the radial direction is used. explained.
  • inner wind direction plate portions 53a, 54a, 55a, and 56a in which the inclination angles ⁇ 2a, ⁇ 2b, ⁇ 2c, and ⁇ 2d increase from the radially inner side toward the radially outer side may be used.
  • outer wind direction plate portions 53b, 54b, 55b, and 56b may be used in which the inclination angles ⁇ 1a, ⁇ 1b, ⁇ 1c, and ⁇ 1d decrease from the radially inner side toward the radially outer side.
  • the outer wind direction board part 53b, 54b, 55b, 56b from which inclination-angle (theta) 1a, (theta) 1b, (theta) 1c, (theta) 1d becomes large as it goes to radial direction outer side from radial inner side. . That is, in the said 1st, 2nd embodiment, you may use the outer wind direction board part 53b, 54b, 55b, 56b which is the shape which is twisted, respectively.
  • the blowing unit is a blowing unit that controls the air flow blown from the air conditioning unit. is there.
  • the blowout unit includes a plurality of wind direction plates that are formed in a radial direction centered on the axis and are arranged at intervals in the circumferential direction centered on the axis.
  • each of the plurality of wind direction plates passes through the air passage by being configured to advance from the one side in the axial direction toward the other side in the circumferential direction.
  • the air flow to be swirled around the axis is made.
  • the plurality of wind direction plates are formed so that the first inclination angle of the radially inner region and the second inclination angle of the radially outer region are different from each other.
  • each of the plurality of wind direction plates has a second inclination angle larger than the first inclination angle.
  • the energy that acts on the swirling of the air flow is larger in the swirling flow on the radially outer side than on the radially inner side.
  • the lateral vortex generated around the swirling flow can be further extinguished on the radially outer side of the swirling flow. Therefore, it is possible to further prevent the swirling flow from being collapsed by the lateral vortex and spreading the swirling flow radially outward.
  • the first tilt angle and the second tilt angle are set in the radial direction. A constant angle is set over the entire area.
  • the fourth aspect in each of the plurality of wind direction plates, when the inclination angle of the intermediate region between the radially inner region and the radially outer region is the third inclination angle, the first inclination angle and the second inclination angle Each corner is larger than the third tilt angle.
  • the radially inner side of the swirl flow than the radially middle side of the swirl flow is The energy acting on the swirling of the air flow is increased.
  • the radial inner side of the swirling flow can be set to a negative pressure than the radial intermediate side of the swirling flow, it is possible to suppress the swirling flow from diffusing from the radially inner side to the radially intermediate side. it can. Therefore, the distance traveled in the axial direction by the radially inner side of the swirling flow can be extended.
  • each of the first inclination angle and the second inclination angle is larger than the third inclination angle. For this reason, the energy that acts on the swirling of the air flow is smaller on the radially intermediate side of the swirling flow than on the radially inner side and the radially outer side of the swirling flow.
  • the radially intermediate side of the swirling flow can serve as a protective layer that suppresses the reversal of the radially inner side of the swirling flow and the radially outer side of the swirling flow. Therefore, it is possible to achieve both the radially outer function of the swirling flow that eliminates the transverse vortex and the radially inner function of moving negatively and proceeding in the axial direction.
  • each of the plurality of wind direction plates is formed such that the first inclination angle and the second inclination angle gradually increase from the radially inner side toward the radially outer side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Duct Arrangements (AREA)

Abstract

This blowout unit, which controls the amount of air that is blown out from an air conditioning unit (1), is provided with a plurality of wind direction plates that are arranged at intervals in the circumferential direction about an axis (S), wherein air passages (57a-57d, 58a-58d, 59a-59d), through which air passes, are formed between two adjacent wind direction plates in the circumferential direction, among the plurality of wind direction plates, when a direction in which the axis extends is taken as an axial direction, each of the plurality of wind direction plates is configured to proceed in one circumferential direction from one side of the axial direction toward the other side of the axial direction to turn air flows, which pass through the air passages, about the axial line, and the plurality of wind direction plates are formed such that first inclination angles (θ2a, θ2b, θ2c, θ2d) of radially inner areas (53a, 54a, 55a, 56a) and first inclination angles (θ1a, θ1b, θ1c, θ1d) of radially outer areas (53b, 54b, 55b, 56b) are different from each other, respectively.

Description

吹出ユニットBlowout unit 関連出願への相互参照Cross-reference to related applications
 本出願は、2018年5月31日に出願された日本特許出願番号2018-104715号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-104715 filed on May 31, 2018, the description of which is incorporated herein by reference.
 本開示は、吹出ユニットに関するものである。 This disclosure relates to the blowout unit.
 従来、空調装置の吹出口ユニットでは、軸線を中心とする円形状に開口される吹出口を形成するグリルと、吹出口内に配置されて、かつ軸線を中心とする径方向に亘って設けられている複数のルーバーとを備えるものがある(例えば、特許文献1参照)。複数のルーバーは、軸線を中心とする周方向に並べられている。複数のルーバーは、それぞれ、軸線方向一方側から軸線方向の他方側に向かうほど周方向に進むように構成されている。 Conventionally, in an air outlet unit of an air conditioner, a grill that forms an air outlet that is opened in a circular shape centered on an axis, and a radial direction that is disposed in the air outlet and that is centered on the axis are provided. Some have a plurality of louvers (see, for example, Patent Document 1). The plurality of louvers are arranged in the circumferential direction around the axis. Each of the plurality of louvers is configured to advance in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
 このことにより、複数のルーバーのうち周方向にて隣り合う2つのルーバーの間を通過する空気流を軸線を中心とする旋回流にして吹き出させることができる。このため、旋回流のうち径方向中央側を負圧して旋回流が拡散することを抑えることができる。 Thus, the air flow passing between two louvers adjacent in the circumferential direction among the plurality of louvers can be blown out as a swirl flow centered on the axis. For this reason, it is possible to suppress the swirling flow from diffusing by negative pressure on the central side in the radial direction.
特開平4-155145号公報Japanese Patent Laid-Open No. 4-155145
 上記特許文献1の吹出口ユニットでは、軸線方向一方側から軸線方向の他方側に向かうほど周方向に進むように構成されている複数のルーバーを用いているため、空気流を軸線を中心とする旋回流にして吹き出させることができる。 In the air outlet unit of Patent Document 1, a plurality of louvers that are configured to advance in the circumferential direction from one side in the axial direction toward the other side in the axial direction are used, so the air flow is centered on the axis. It can be blown out as a swirling flow.
 しかし、発明者の検討によれば、旋回流が流れることに伴って旋回流の周囲に横渦が発生すると、横渦によって旋回流が拡散して旋回流の到達距離が短くなる。横渦とは、旋回流の軸線に交差する仮想線を中心に旋回する空気流のことである。 However, according to the inventor's study, when a lateral vortex is generated around the swirl flow as the swirl flows, the swirl flow is diffused by the lateral vortex and the reach of the swirl flow is shortened. A lateral vortex is an air flow that swirls around an imaginary line that intersects the axis of the swirling flow.
 本開示は、横渦を破壊して、旋回流の到達距離が短くになることを抑制するようにした吹出ユニットを提供することを目的とする。 This disclosure is intended to provide a blowout unit that breaks a horizontal vortex and suppresses a reduction in the arrival distance of a swirling flow.
 本開示の1つの観点によれば、空調ユニットから吹き出されている空気流を制御する吹出ユニットは、
 軸線を中心とする径方向に亘って形成され、かつ軸線を中心とする周方向に間隔を開けて並べられている複数の風向板を備え、
 複数の風向板のうち周方向に隣り合う2つの風向板の間には、空気流を通過させる空気通路が形成されており、
 軸線が延びる方向を軸線方向としたとき、複数の風向板は、それぞれ、軸線方向一方側から軸線方向の他方側に向かうほど周方向一方側に進むよう構成されることにより、空気通路を通過する空気流を軸線を中心として旋回させるようになっており、
 複数の風向板は、それぞれ、径方向内側領域の傾斜角と径方向外側領域の傾斜角が互いに相違するように形成されている。
According to one aspect of the present disclosure, the blowout unit that controls the airflow blown from the air conditioning unit includes:
A plurality of wind direction plates formed over the radial direction centered on the axis and arranged at intervals in the circumferential direction centered on the axis;
Between the two wind direction plates adjacent in the circumferential direction among the plurality of wind direction plates, an air passage through which an air flow passes is formed,
When the direction in which the axis extends is defined as the axial direction, each of the plurality of wind direction plates passes through the air passage by being configured to advance from the one side in the axial direction toward the other side in the axial direction. The air flow is swirled around the axis,
The plurality of wind direction plates are formed such that the inclination angle of the radially inner region and the inclination angle of the radially outer region are different from each other.
 以上により、複数の風向板のうち周方向に隣り合う2つの風向板の間の空気通路から、軸線を中心として旋回する旋回流が空気流として流れる。ここで、複数の風向板のそれぞれにおいて、径方向内側領域の傾斜角と径方向外側領域の傾斜角が互いに相違する。このため、旋回流のうち径方向外側と径方向内側とは、空気流の旋回に作用するエネルギが相違する。 As described above, a swirling flow swirling around an axis flows as an air flow from an air passage between two wind direction plates adjacent in the circumferential direction among the plurality of wind direction plates. Here, in each of the plurality of wind direction plates, the inclination angle of the radially inner region and the inclination angle of the radially outer region are different from each other. For this reason, the energy that acts on the swirling of the air flow is different between the radially outer side and the radially inner side of the swirling flow.
 したがって、旋回流の周辺に発生する横渦を旋回流のうち径方向外側が破壊して、旋回流のうち径方向内側が軸線方向に進むことになる。したがって、横渦によって旋回流の到達距離が短くなることを抑制することができる。 Therefore, the lateral vortex generated around the swirling flow is broken by the radially outer side of the swirling flow, and the radially inner side of the swirling flow advances in the axial direction. Therefore, it is possible to suppress the arrival distance of the swirling flow from being shortened by the horizontal vortex.
 但し、傾斜角、径方向内側領域、および径方向外側領域を次のように定義する。 However, the tilt angle, the radially inner region, and the radially outer region are defined as follows.
 まず、風向板のうち軸線方向一方側端部と軸線方向他方側端部との間において、軸線方向一方側から視た際に、軸線方向一方側端部から軸線方向他方側端部に周方向一方側に向かって形成される角度を傾斜角とする。換言すれば、当該軸線方向一方側端部の周方向角度に対する当該軸線方向他方側端部の周方向角度の変化量を、傾斜角とする。 First, when viewed from one side in the axial direction between the one end in the axial direction and the other end in the axial direction of the wind direction plate, the circumferential direction is from the one end in the axial direction to the other end in the axial direction. An angle formed toward one side is defined as an inclination angle. In other words, the amount of change in the circumferential angle of the other end portion in the axial direction with respect to the circumferential angle of the one end portion in the axial direction is defined as an inclination angle.
 径方向内側領域とは、複数の風向板のそれぞれにおいて、軸線を中心とする径方向内側に位置する領域のことである。径方向外側領域とは、複数の風向板のそれぞれにおいて、軸線を中心とする径方向外側に位置する領域のことである。 The radially inner region is a region located on the radially inner side around the axis in each of the plurality of wind direction plates. The radially outer region is a region located on the radially outer side around the axis in each of the plurality of wind direction plates.
  なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that reference numerals with parentheses attached to each component and the like indicate an example of a correspondence relationship between the component and the like and specific components described in the embodiments described later.
第1実施形態における車載空調装置の全体構成を示す図である。It is a figure which shows the whole structure of the vehicle-mounted air conditioner in 1st Embodiment. 図1の吹出ユニットの斜視図である。It is a perspective view of the blowing unit of FIG. 図1の吹出ユニットの側面図である。It is a side view of the blowing unit of FIG. 軸線方向一方側から視た際の、図2中の内側風向板部の軸線方向他方側端部、および外側風向板部の軸線方向他方側端部を示す図である。It is a figure which shows the axial direction other side edge part of the inner side wind direction board part in FIG. 2, and the axial direction other side edge part of an outer side wind direction board part when it sees from an axial direction one side. 第1実施形態において、第1ケースと第2ケースとの空気流の到達率の増減の比較を示す図である。In 1st Embodiment, it is a figure which shows the comparison of the increase / decrease in the arrival rate of the airflow of a 1st case and a 2nd case. 第2実施形態における車載空調装置の吹出ユニットの斜視図である。It is a perspective view of the blowing unit of the vehicle-mounted air conditioner in 2nd Embodiment. 図6の吹出ユニットの側面図である。It is a side view of the blowing unit of FIG. 軸線方向一方側から視た際の、図6中の内側風向板部の軸線方向他方側端部、中間風向板部の軸線方向他方側端部、および外側風向板部の軸線方向他方側端部を示す図である。6 when viewed from one side in the axial direction, the other end in the axial direction of the inner wind direction plate portion in FIG. 6, the other end in the axial direction of the intermediate wind direction plate portion, and the other end in the axial direction of the outer wind direction plate portion. FIG. 第3実施形態における車載空調装置の吹出ユニットの斜視図である。It is a perspective view of the blowing unit of the vehicle-mounted air conditioner in 3rd Embodiment. 軸線方向一方側から視た際の、図9中の風向板の軸線方向他方側端部を示す図である。It is a figure which shows the axial direction other side edge part of the wind direction board in FIG. 9 at the time of seeing from one axial direction side.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 第1実施形態に係る吹出ユニットについて図1~図5を用いて説明する。図1に示すように、吹出ユニット50は、車両の空調を行う室内空調ユニット1に対してダクト30を介して接続されている。
(First embodiment)
The blowing unit according to the first embodiment will be described with reference to FIGS. As shown in FIG. 1, the blowout unit 50 is connected via a duct 30 to an indoor air conditioning unit 1 that performs air conditioning of the vehicle.
 室内空調ユニット1は、車室内最前部のインストルメントパネル(すなわち、計器盤)の内側部に配設されている空調ユニットである。この室内空調ユニット1はケース2を有し、このケース2内に車室内へ向かって空気が送風されている空気通路を構成する。 The indoor air-conditioning unit 1 is an air-conditioning unit disposed on the inner side of the instrument panel (that is, the instrument panel) at the foremost part of the vehicle interior. This indoor air-conditioning unit 1 has a case 2 and constitutes an air passage through which air is blown toward the vehicle interior.
 このケース2の空気通路の最上流部に内気導入口3および外気導入口4を有する内外気切替箱5を配置している。この内外気切替箱5内には、内外気切替ドア6が回転自在に配置されている。 The inside / outside air switching box 5 having the inside air introduction port 3 and the outside air introduction port 4 is arranged at the most upstream part of the air passage of the case 2. An inside / outside air switching door 6 is rotatably arranged in the inside / outside air switching box 5.
 この内外気切替ドア6は不図示のサーボモータによって駆動されているもので、内気導入口3より車室内空気を導入する内気モードと外気導入口4より車室外空気を導入する外気モードとを切り替える。 This inside / outside air switching door 6 is driven by a servo motor (not shown), and switches between an inside air mode for introducing vehicle compartment air from the inside air introduction port 3 and an outside air mode for introducing vehicle compartment outside air from the outside air introduction port 4. .
 内外気切替箱5の空気下流側には、車室内に向かう空気流を発生させる電動式の送風機8が配置されている。この送風機8は、遠心式の送風ファン8aと、この送風ファン8aを駆動するモータ8bとを有している。送風機8の下流側にはケース2内を流れる空気を冷却する蒸発器9が配置されている。この蒸発器9は、送風機8の送風空気を冷媒によって冷却する冷房用熱交換器で、周知の蒸気圧縮式冷凍サイクルを構成する要素の一つである。 An electric blower 8 that generates an air flow toward the passenger compartment is disposed on the air downstream side of the inside / outside air switching box 5. The blower 8 includes a centrifugal blower fan 8a and a motor 8b that drives the blower fan 8a. An evaporator 9 that cools the air flowing in the case 2 is disposed on the downstream side of the blower 8. The evaporator 9 is a heat exchanger for cooling that cools the air blown from the blower 8 with a refrigerant, and is one of the elements constituting a known vapor compression refrigeration cycle.
 一方、室内空調ユニット1において、蒸発器9の下流側にはケース2内を流れる空気を加熱するヒータコア15が配置されている。このヒータコア15は車両エンジンの温水を熱源として、蒸発器9通過後の冷たい空気を加熱する暖房用熱交換器である。ヒータコア15の側方にはバイパス通路16が形成され、このバイパス通路16をヒータコア15のバイパス空気が流れる。 On the other hand, in the indoor air conditioning unit 1, a heater core 15 for heating the air flowing in the case 2 is disposed on the downstream side of the evaporator 9. The heater core 15 is a heating heat exchanger that heats cold air that has passed through the evaporator 9 by using warm water of the vehicle engine as a heat source. A bypass passage 16 is formed on the side of the heater core 15, and the bypass air of the heater core 15 flows through the bypass passage 16.
 蒸発器9とヒータコア15との間にはエアミックスドア17が回転自在に配置されている。このエアミックスドア17は不図示のサーボモータにより駆動されて、その開度が連続的に調整可能になっている。 An air mix door 17 is rotatably disposed between the evaporator 9 and the heater core 15. The air mix door 17 is driven by a servo motor (not shown), and its opening degree can be continuously adjusted.
 このエアミックスドア17の開度によりヒータコア15を通る温風量と、バイパス通路16を通過してヒータコア15をバイパスする冷風量との割合が調節され、これにより、車室内に吹き出す空気の温度が調整されることになる。 The ratio of the amount of hot air passing through the heater core 15 and the amount of cold air passing through the bypass passage 16 and bypassing the heater core 15 is adjusted by the opening of the air mix door 17, thereby adjusting the temperature of the air blown into the vehicle interior. Will be.
 ケース2の空気通路の最下流部には、車両の前面窓ガラスに向けて空調風を吹き出すためのデフロスタ吹出口19、乗員の顔部に向けて空調風を吹き出すためのフェイス吹出口20が設けられている。これに加えて、ケース2の空気通路の最下流部には、乗員の足元部に向けて空調風を吹き出すためのフット吹出口21が設けられている。 A defroster outlet 19 for blowing conditioned air toward the front window glass of the vehicle and a face outlet 20 for blowing conditioned air toward the occupant's face are provided at the most downstream portion of the air passage of the case 2. It has been. In addition to this, a foot outlet 21 is provided at the most downstream portion of the air passage of the case 2 for blowing air-conditioned air toward the feet of the passenger.
 これらのデフロスタ吹出口19、フェイス吹出口20、フット吹出口21の上流部にはデフロスタドア22、フェイスドア23およびフットドア24が回転自在に配置されている。これらのデフロスタドア22、フェイスドア23、フットドア24は、図示しないリンク機構を介して共通のサーボモータによって開閉操作されている。 A defroster door 22, a face door 23, and a foot door 24 are rotatably disposed upstream of the defroster outlet 19, the face outlet 20, and the foot outlet 21. The defroster door 22, the face door 23, and the foot door 24 are opened and closed by a common servo motor via a link mechanism (not shown).
 ケース2に設けられたフェイス吹出口20には、ダクト30を介して吹出ユニット50が接続されている。室内空調ユニット1で温度調整された空気は、ケース2からダクト30を通って吹出ユニット50から車室内に送風されている。 The blowing unit 50 is connected to the face outlet 20 provided in the case 2 via a duct 30. The air whose temperature has been adjusted by the indoor air conditioning unit 1 is blown from the case 2 through the duct 30 to the vehicle interior from the blowout unit 50.
 次に、吹出ユニット50の構成について図2~図5を用いて説明する。 Next, the configuration of the blowout unit 50 will be described with reference to FIGS.
 吹出ユニット50は、図2中の(a)部に示すように、ケース51、仕切部52、および風向板53、54、55、56(すなわち、複数の風向板)を備える。ケース51、仕切部52、および風向板53、54、55、56は、それぞれ、樹脂材料によって構成されている。 The blowout unit 50 includes a case 51, a partition 52, and wind direction plates 53, 54, 55, and 56 (that is, a plurality of wind direction plates), as shown in part (a) in FIG. The case 51, the partition part 52, and the wind direction plates 53, 54, 55, and 56 are each made of a resin material.
 ケース51は、軸線Sを中心とする円筒状に形成されている。仕切部52は、ケース51内に配置されている。仕切部52は、軸線Sを中心とする円筒状に形成されている。仕切部52は、ケース51の内側を内側空気通路と外側空気通路とに区分けする。 The case 51 is formed in a cylindrical shape centered on the axis S. The partition part 52 is disposed in the case 51. The partition portion 52 is formed in a cylindrical shape centered on the axis S. The partition part 52 divides the inside of the case 51 into an inner air passage and an outer air passage.
 内側空気通路は、仕切部52に対して軸線Sを中心とする径方向内側に形成されて、ダクト30から吹き出される空気流を流通させる。外側空気通路は、仕切部52に対して軸線Sを中心とする径方向外側に形成されている。 The inner air passage is formed on the inner side in the radial direction centering on the axis S with respect to the partition portion 52, and distributes the air flow blown out from the duct 30. The outer air passage is formed on the outer side in the radial direction around the axis S with respect to the partition portion 52.
 すなわち、外側空気通路は、仕切部52とケース51との間に形成されている。外側空気通路は、ダクト30から吹き出される空気流を流通させる。 That is, the outer air passage is formed between the partition portion 52 and the case 51. The outer air passage circulates the air flow blown out from the duct 30.
 風向板53、54、55、56は、それぞれ、軸線Sを中心とする周方向に同一間隔に並べられている風向板である。 The wind direction plates 53, 54, 55, and 56 are wind direction plates that are arranged at equal intervals in the circumferential direction around the axis S.
 風向板53、54、55、56は、板状に形成されて、かつケース51内に配置されている。風向板53、54、55、56は、軸線Sを中心とする径方向中央から径方向外側に亘って形成されている。風向板53、54、55、56は、それぞれの厚み方向が軸線方向に直交するように形成されている。 The wind direction plates 53, 54, 55, 56 are formed in a plate shape and are arranged in the case 51. The wind direction plates 53, 54, 55, and 56 are formed from the radial center around the axis S to the radially outer side. The wind direction plates 53, 54, 55, and 56 are formed such that their thickness directions are orthogonal to the axial direction.
 具体的には、風向板53は、内側風向板部53aと外側風向板部53bとを備えるベーンである。内側風向板部53aは、仕切部52に対して径方向内側に配置されている径方向内側領域を構成する。外側風向板部53bは、ケース51と仕切部52との間に配置されている径方向外側領域を構成する。 Specifically, the wind direction plate 53 is a vane including an inner wind direction plate portion 53a and an outer wind direction plate portion 53b. The inner wind direction plate portion 53 a constitutes a radially inner region that is disposed radially inward with respect to the partition portion 52. The outer wind direction plate portion 53 b constitutes a radially outer region disposed between the case 51 and the partition portion 52.
 内側風向板部53aは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。外側風向板部53bは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。但し、周方向とは、軸線Sを中心とする周方向のことである。 The inner wind direction plate portion 53a is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. The outer wind direction plate portion 53b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. However, the circumferential direction is a circumferential direction around the axis S.
 内側風向板部53aの傾斜角θ2a(すなわち、第1傾斜角)は、外側風向板部53bの傾斜角θ1a(すなわち、第2傾斜角)よりも小さくなっている(θ2a<θ1a)。 The inclination angle θ2a (that is, the first inclination angle) of the inner wind direction plate portion 53a is smaller than the inclination angle θ1a (that is, the second inclination angle) of the outer wind direction plate portion 53b (θ2a <θ1a).
 内側風向板部53aのうち軸線方向一方側端部153aと軸線方向他方側端部153bとの間において、軸線方向一方側から視て、軸線方向一方側端部153aから軸線方向他方側端部153bに周方向一方側に向かって形成される角度を傾斜角θ2aとする。換言すれば、当該軸線方向一方側端部153aの周方向角度に対する当該軸線方向他方側端部153bの周方向角度の変化量を、傾斜角θ2aとする。 As viewed from one side in the axial direction between the one end 153a in the axial direction and the other end 153b in the axial direction in the inner wind direction plate portion 53a, the other end 153b in the axial direction from the one end 153a in the axial direction. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ2a. In other words, the amount of change in the circumferential angle of the other end 153b in the axial direction with respect to the circumferential angle of the one end 153a in the axial direction is the inclination angle θ2a.
 外側風向板部53bのうち軸線方向一方側端部153cと軸線方向他方側端部153dとの間において、軸線方向一方側から視て、軸線方向一方側端部153cから軸線方向他方側端部153dに周方向一方側に向かって形成される角度を傾斜角θ1aとする。換言すれば、当該軸線方向一方側端部153cの周方向角度に対する当該軸線方向他方側端部153dの周方向角度の変化量を、傾斜角θ1aとする。 Of the outer wind direction plate portion 53b, between the one axial end 153c and the other axial end 153d, when viewed from one axial end, the axial one end 153c to the other axial end 153d. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ1a. In other words, the amount of change in the circumferential angle of the other axial end 153d with respect to the circumferential angle of the axial end 153c is the inclination angle θ1a.
 ここで、軸線方向一方側端部153a、軸線方向一方側端部153c、および軸線Sを通過する仮想線をX線とする。 Here, an imaginary line passing through one axial end 153a, one axial end 153c, and the axial line S is defined as an X-ray.
 風向板54は、内側風向板部54aと外側風向板部54bとを備える。内側風向板部54aは、仕切部52に対して径方向内側に配置されている径方向内側領域を構成する。外側風向板部54bは、ケース51と仕切部52との間に配置されている径方向外側領域を構成する。 The wind direction plate 54 includes an inner wind direction plate portion 54a and an outer wind direction plate portion 54b. The inner wind direction plate portion 54 a constitutes a radially inner region disposed radially inward with respect to the partition portion 52. The outer wind direction plate portion 54 b constitutes a radially outer region arranged between the case 51 and the partition portion 52.
 内側風向板部54aは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。外側風向板部54bは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。 The inner wind direction plate portion 54a is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. The outer wind direction plate portion 54b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
 内側風向板部54aの傾斜角θ2b(すなわち、第1傾斜角)は、外側風向板部54bの傾斜角θ1b(すなわち、第2傾斜角)よりも小さくなっている(θ2b<θ1b)。 The inclination angle θ2b (that is, the first inclination angle) of the inner wind direction plate portion 54a is smaller than the inclination angle θ1b (that is, the second inclination angle) of the outer wind direction plate portion 54b (θ2b <θ1b).
 内側風向板部54aのうち軸線方向一方側端部154aと軸線方向他方側端部154bとの間において、軸線方向一方側から視て、軸線方向一方側端部154aから軸線方向他方側端部154bに周方向一方側に向かって形成される角度を傾斜角θ2bとする。換言すれば、当該軸線方向一方側端部154aの周方向角度に対する当該軸線方向他方側端部154bの周方向角度の変化量を、傾斜角θ2bとする。 As viewed from one side in the axial direction between the one end 154a in the axial direction and the other end 154b in the axial direction in the inner wind direction plate portion 54a, the other end 154b in the axial direction from the one end 154a in the axial direction. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ2b. In other words, the amount of change in the circumferential angle of the other axial end 154b with respect to the circumferential angle of the axial one end 154a is the inclination angle θ2b.
 外側風向板部54bのうち軸線方向一方側端部154cと軸線方向他方側端部154dとの間において、軸線方向一方側から視て、軸線方向一方側端部154cから軸線方向他方側端部154dに周方向一方側に向かって形成される角度を傾斜角θ1bとする。換言すれば、当該軸線方向一方側端部154cの周方向角度に対する当該軸線方向他方側端部154dの周方向角度の変化量を、傾斜角θ1bとする。 Of the outer wind direction plate portion 54b, between the one axial end 154c and the other axial end 154d, when viewed from one axial end, the axial one end 154c to the other axial end 154d. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ1b. In other words, the amount of change in the circumferential angle of the other axial end 154d relative to the circumferential angle of the axial end 154c is the inclination angle θ1b.
 ここで、軸線方向一方側端部154a、軸線方向一方側端部154c、および軸線Sを通過する仮想線をY線とする。Y線は、軸線Sにおいて、X線に直交している。 Here, an imaginary line passing through the axial one side end 154a, the axial one end 154c, and the axis S is defined as a Y line. The Y line is orthogonal to the X line on the axis S.
 風向板55は、内側風向板部55aと外側風向板部55bとを備える。内側風向板部55aは、仕切部52に対して径方向内側に配置されている径方向内側領域を構成する。外側風向板部55bは、ケース51と仕切部52との間に配置されている径方向外側領域を構成する。 The wind direction plate 55 includes an inner wind direction plate portion 55a and an outer wind direction plate portion 55b. The inner wind direction plate portion 55 a constitutes a radially inner region disposed radially inward with respect to the partition portion 52. The outer wind direction plate portion 55 b constitutes a radially outer region disposed between the case 51 and the partition portion 52.
 内側風向板部55aは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。外側風向板部55bは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。 The inner wind direction plate portion 55a is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction. The outer wind direction plate portion 55b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
 内側風向板部55aの傾斜角θ2c(すなわち、第1傾斜角)は、外側風向板部55bの傾斜角θ1c(すなわち、第2傾斜角)よりも小さくなっている(θ2c<θ1c)。 The inclination angle θ2c (that is, the first inclination angle) of the inner wind direction plate portion 55a is smaller than the inclination angle θ1c (that is, the second inclination angle) of the outer wind direction plate portion 55b (θ2c <θ1c).
 内側風向板部55aのうち軸線方向一方側端部155aと軸線方向他方側端部155bとの間において、軸線方向一方側から視て、軸線方向一方側端部155aから軸線方向他方側端部155bに周方向一方側に向かって形成される角度を傾斜角θ2cとする。換言すれば、当該軸線方向一方側端部155aの周方向角度に対する当該軸線方向他方側端部155bの周方向角度の変化量を、傾斜角θ2cとする。 As viewed from one side in the axial direction between the one end 155a in the axial direction and the other end 155b in the axial direction of the inner wind direction plate portion 55a, the other end 155b in the axial direction from the one end 155a in the axial direction. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ2c. In other words, the amount of change in the circumferential angle of the other axial end 155b with respect to the circumferential angle of the axial one end 155a is the inclination angle θ2c.
 外側風向板部55bのうち軸線方向一方側端部155cと軸線方向他方側端部155dとの間において、軸線方向一方側から視て、軸線方向一方側端部155cから軸線方向他方側端部155dに周方向一方側に向かって形成される角度を傾斜角θ1cとする。換言すれば、当該軸線方向一方側端部155cの周方向角度に対する当該軸線方向他方側端部155dの周方向角度の変化量を、傾斜角θ1cとする。 As viewed from one side in the axial direction between the one end 155c in the axial direction and the other end 155d in the axial direction in the outer wind direction plate portion 55b, the other end 155d in the axial direction from the one end 155c in the axial direction. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ1c. In other words, the amount of change in the circumferential angle of the other axial end 155d with respect to the circumferential angle of the axial end 155c is the inclination angle θ1c.
 軸線方向一方側端部155a、および軸線方向一方側端部155cは、上述のX線が通過するように構成されている。 The one end portion 155a in the axial direction and the one end portion 155c in the axial direction are configured so that the above-described X-rays pass therethrough.
 風向板56は、内側風向板部56aと外側風向板部56bとを備える。内側風向板部56aは、仕切部52に対して径方向内側に配置されている径方向内側領域を構成する。外側風向板部56bは、ケース51と仕切部52との間に配置されている径方向外側領域を構成する。 The wind direction plate 56 includes an inner wind direction plate portion 56a and an outer wind direction plate portion 56b. The inner wind direction plate portion 56 a constitutes a radially inner region disposed radially inward with respect to the partition portion 52. The outer wind direction plate portion 56 b constitutes a radially outer region arranged between the case 51 and the partition portion 52.
 内側風向板部56aは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。外側風向板部56bは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。 The inner wind direction plate portion 56a is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. The outer wind direction plate portion 56b is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
 内側風向板部56aの傾斜角θ2d(すなわち、第1傾斜角)は、外側風向板部56bの傾斜角θ1d(すなわち、第2傾斜角)よりも小さくなっている(θ2d<θ1d)。 The inclination angle θ2d (that is, the first inclination angle) of the inner wind direction plate portion 56a is smaller than the inclination angle θ1d (that is, the second inclination angle) of the outer wind direction plate portion 56b (θ2d <θ1d).
 内側風向板部56aのうち軸線方向一方側端部156aと軸線方向他方側端部156bとの間において、軸線方向一方側から視て、軸線方向一方側端部156aから軸線方向他方側端部156bに周方向一方側に向かって形成される角度を傾斜角θ2dとする。換言すれば、当該軸線方向一方側端部156aの周方向角度に対する当該軸線方向他方側端部156bの周方向角度の変化量を、傾斜角θ2dとする。 As viewed from one side in the axial direction between the one end 156a in the axial direction and the other end 156b in the axial direction of the inner wind direction plate portion 56a, the other end 156b in the axial direction from the one end 156a in the axial direction. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ2d. In other words, the amount of change in the circumferential angle of the other axial end 156b with respect to the circumferential angle of the axial one end 156a is the inclination angle θ2d.
 外側風向板部56bのうち軸線方向一方側端部156cと軸線方向他方側端部156dとの間において、軸線方向一方側から視て、軸線方向一方側端部156cから軸線方向他方側端部156dに周方向一方側に向かって形成される角度を傾斜角θ1dとする。換言すれば、当該軸線方向一方側端部156cの周方向角度に対する当該軸線方向他方側端部156dの周方向角度の変化量を、傾斜角θ1dとする。 Of the outer wind direction plate portion 56b, between the one axial end 156c and the other axial end 156d, when viewed from one axial direction, the axial one end 156c to the other axial end 156d. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ1d. In other words, the amount of change in the circumferential angle of the other axial end 156d with respect to the circumferential angle of the axial one end 156c is the inclination angle θ1d.
 軸線方向一方側端部156a、および軸線方向一方側端部156cは、上述のY線が通過するように構成されている。 The one end 156a in the axial direction and the one end 156c in the axial direction are configured so that the above-described Y line passes through.
 ここで、傾斜角θ1a、傾斜角θ1b、傾斜角θ1c、傾斜角θ1dは、それぞれ同一角度である(θ1a=θ1b=θ1c=θ1d)。傾斜角θ2a、傾斜角θ2b、傾斜角θ2c、傾斜角θ2dは、それぞれ同一角度である(θ2a=θ2b=θ2c=θ2d)。 Here, the inclination angle θ1a, the inclination angle θ1b, the inclination angle θ1c, and the inclination angle θ1d are the same angle (θ1a = θ1b = θ1c = θ1d). The inclination angle θ2a, the inclination angle θ2b, the inclination angle θ2c, and the inclination angle θ2d are the same angle (θ2a = θ2b = θ2c = θ2d).
 本実施形態の内側風向板部53a、54a、55a、56aは、内側空気通路を4つに区分けする。 The inner wind direction plate portions 53a, 54a, 55a, and 56a of the present embodiment divide the inner air passage into four.
 内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部53a、54aの間には、内側空気通路57aが形成されている。内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部54a、55aの間には、内側空気通路57bが形成されている。 An inner air passage 57a is formed between two inner wind direction plate portions 53a and 54a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a. An inner air passage 57b is formed between two inner wind direction plate portions 54a and 55a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
 内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部55a、56aの間には、内側空気通路57cが形成されている。内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部56a、53aの間には、内側空気通路57dが形成されている。 Among the inner wind direction plate portions 53a to 56a, an inner air passage 57c is formed between two inner wind direction plate portions 55a and 56a adjacent in the circumferential direction. An inner air passage 57d is formed between two inner wind direction plate portions 56a and 53a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
 本実施形態の外側風向板部53b、54b、55b、56bは、外側空気通路を4つに区分けする。 The outer wind direction plate portions 53b, 54b, 55b, and 56b of the present embodiment divide the outer air passage into four.
 外側風向板部53b~56bのうち周方向に隣り合う2つの外側風向板部53b、54bの間には、外側空気通路58aが形成されている。外側風向板部53b~56bのうち周方向に隣り合う2つの外側風向板部54b、55bの間には、外側空気通路58bが形成されている。 An outer air passage 58a is formed between two outer wind direction plate portions 53b and 54b adjacent in the circumferential direction among the outer wind direction plate portions 53b to 56b. An outer air passage 58b is formed between two outer wind direction plate portions 54b and 55b adjacent in the circumferential direction among the outer wind direction plate portions 53b to 56b.
 外側風向板部53b~56bのうち周方向に隣り合う2つの外側風向板部55b、56bの間には、外側空気通路58cが形成されている。外側風向板部53b~56bのうち周方向に隣り合う2つの外側風向板部56b、53bの間には、外側空気通路58dが形成されている。 An outer air passage 58c is formed between two outer wind direction plate portions 55b and 56b adjacent in the circumferential direction among the outer wind direction plate portions 53b to 56b. An outer air passage 58d is formed between two outer wind direction plates 56b and 53b adjacent in the circumferential direction among the outer wind direction plates 53b to 56b.
 次に、本実施形態の吹出ユニット50の作動について説明する。 Next, the operation of the blowing unit 50 of this embodiment will be described.
 まず、ダクト30を通過した空気流が吹出ユニット50の内側空気通路57a、57b、57c、57dに流れる。すると、空気流が内側風向板部53a~56aに沿って流れることにより、軸線Sを中心として旋回する旋回流として吹き出される。この旋回流は、軸線Sを中心とする縦渦を形成する空気流である。このように旋回流のうち内側空気通路57a~57dから吹き出される空気流を内側旋回流という。 First, the air flow that has passed through the duct 30 flows into the inner air passages 57a, 57b, 57c, and 57d of the blowing unit 50. Then, the air flow flows along the inner wind direction plate portions 53a to 56a, so that it is blown out as a swirl flow that swirls around the axis S. This swirl flow is an air flow that forms a vertical vortex centered on the axis S. The air flow blown out from the inner air passages 57a to 57d in the swirling flow is referred to as an inner swirling flow.
 また、ダクト30を通過した空気流が吹出ユニット50の外側空気通路58a、58b、58c、58dに流れる。すると、空気流は外側風向板部53b~56bに沿って流れることにより、軸線Sを中心として旋回する旋回流として吹き出される。この旋回流は、内側旋回流に対して径方向外側において軸線Sを中心とする縦渦を形成する空気流である。このように旋回流のうち外側空気通路58a~58dから吹き出される空気流を、外側旋回流という。 Also, the air flow that has passed through the duct 30 flows to the outer air passages 58a, 58b, 58c, and 58d of the blowing unit 50. Then, the air flow flows along the outer wind direction plate portions 53b to 56b, and is blown out as a swirl flow swirling around the axis S. This swirl flow is an air flow that forms a longitudinal vortex centered on the axis S on the radially outer side with respect to the inner swirl flow. The air flow blown out of the outer air passages 58a to 58d in the swirling flow is referred to as an outer swirling flow.
 外側旋回流は、内側旋回流に比べて、空気流の旋回に作用するエネルギが大きい。このような外側旋回流および内側旋回流が吹出ユニット50から吹き出されることに伴って、外側旋回流の周辺に発生する空気流の横渦を外側旋回流が破壊する。これに加えて、外側旋回流に対して径方向内側に内側旋回流を発生させることができる。 The outer swirling flow has a larger energy acting on the swirling of the air flow than the inner swirling flow. As the outer swirl flow and the inner swirl flow are blown out from the blowing unit 50, the outer swirl flow destroys the lateral vortex of the air flow generated around the outer swirl flow. In addition to this, it is possible to generate an inner swirl flow radially inward with respect to the outer swirl flow.
 これにより、図2中の(b)部に示すように、吹出ユニット50から吹き出される空気流の周方向の流速において、径方向中間部よりもやや径方向外側の流速が最も早くなる。径方向中間部側は、径方向内側および径方向外側の間の中間部を意味する。径方向内側は、軸線Sを中心とする径方向内側を意味する。径方向外側は、軸線Sを中心とする径方向外側を意味する。 As a result, as shown in part (b) of FIG. 2, in the circumferential flow velocity of the air flow blown from the blowing unit 50, the flow velocity slightly outside in the radial direction is the fastest than the radially intermediate portion. The radially intermediate portion side means an intermediate portion between the radially inner side and the radially outer side. The inner side in the radial direction means the inner side in the radial direction around the axis S. The radially outer side means a radially outer side centered on the axis S.
 以上説明した本実施形態によれば、吹出ユニット50は、車室内の空気を調整する室内空調ユニット1から吹き出されている空気流を制御する。 According to this embodiment described above, the blowout unit 50 controls the airflow blown from the indoor air conditioning unit 1 that adjusts the air in the vehicle interior.
 吹出ユニット50は、軸線Sを中心とする径方向に亘って形成され、かつ軸線Sを中心とする周方向に間隔を開けて並べられている風向板53~56を備える。 The blowout unit 50 includes wind direction plates 53 to 56 that are formed over the radial direction centered on the axis S and arranged at intervals in the circumferential direction centered on the axis S.
 風向板53~56のうち周方向に隣り合う2つの風向板の間には、空気流を通過させる内側空気通路57a~57d、外側空気通路58a~58dが形成されている。 Between the two wind direction plates adjacent to each other in the circumferential direction among the wind direction plates 53 to 56, inner air passages 57a to 57d and outer air passages 58a to 58d through which an air flow passes are formed.
 軸線Sが延びる方向を軸線方向としたとき、風向板53~56は、それぞれ、軸線方向一方側から軸線方向の他方側に向かうほど周方向に進むように構成されることにより、空気通路を通過する空気流を旋回させるようになっている。 When the direction in which the axis S extends is the axis direction, the wind direction plates 53 to 56 are configured to advance in the circumferential direction from one side in the axial direction toward the other side in the axial direction, thereby passing through the air passage. The air flow is swirled.
 風向板53~56は、それぞれ、内側風向板部53a~56aの傾斜角(θ2a~θ2d)よりも外側風向板部53b~56bの傾斜角(θ1a~θ1d)の方が大きくなっている。 In the wind direction plates 53 to 56, the inclination angles (θ1a to θ1d) of the outer wind direction plate portions 53b to 56b are larger than the inclination angles (θ2a to θ2d) of the inner wind direction plate portions 53a to 56a, respectively.
 ここで、内側風向板部53a~56aの傾斜角(θ2a~θ2d)は、径方向に亘って一定角度に設定されている。外側風向板部53b~56bの傾斜角(θ1a~θ1d)は、径方向に亘って一定角度に設定されている。 Here, the inclination angles (θ2a to θ2d) of the inner wind direction plate portions 53a to 56a are set to be constant over the radial direction. The inclination angles (θ1a to θ1d) of the outer wind direction plate portions 53b to 56b are set to be constant over the radial direction.
 以上により、外側風向板部53b~56bによって外側旋回流が吹き出される。内側風向板部53a~56aによって内側旋回流が吹き出される。外側旋回流は、内側旋回流に比べて、空気流の旋回に作用するエネルギが大きい。
 このことに伴って、外側旋回流の周辺に発生する空気流の横渦を外側旋回流が破壊する。このため、内側旋回流が径方向外側に拡散されることが抑制される。このため、内側旋回流をより遠くまでに到達させることができる。
As described above, the outer swirl flow is blown out by the outer wind direction plate portions 53b to 56b. An inner swirling flow is blown out by the inner wind direction plate portions 53a to 56a. The outer swirl flow has a larger energy acting on the swirl of the air flow than the inner swirl flow.
Along with this, the outer swirl flow breaks the horizontal vortex of the air flow generated around the outer swirl flow. For this reason, it is suppressed that the inside swirl flow is diffused radially outward. For this reason, it is possible to make the inner swirl flow reach farther.
 したがって、外側旋回流の周辺に発生する空気流の横渦を外側旋回流が破壊して、旋回流の到達距離が短くなることを抑制するようにした吹出ユニット50を提供することができる。 Therefore, it is possible to provide the blowout unit 50 that suppresses the lateral swirl of the air flow generated around the outer swirl flow from being destroyed by the outer swirl flow and shortening the reach distance of the swirl flow.
 次に、本実施形態において、外側旋回エネルギを内側旋回エネルギよりも大きくした第1ケースと、外側旋回エネルギを内側旋回エネルギよりも小さくした第2ケースとの比較について図5を参照して説明する。
 ここで、外側旋回エネルギは、外側旋回流の旋回に作用するエネルギである。内側旋回エネルギは、内側旋回流の旋回に作用するエネルギである。
Next, in the present embodiment, a comparison between a first case in which the outside turning energy is made larger than the inside turning energy and a second case in which the outside turning energy is made smaller than the inside turning energy will be described with reference to FIG. .
Here, the outer turning energy is energy that acts on the turning of the outer turning flow. The inner turning energy is energy that acts on the turning of the inner turning flow.
 外側旋回エネルギを内側旋回エネルギよりも大きくした第1ケースとは、内側風向板部53a~56aの傾斜角よりも外側風向板部53b~56bの傾斜角の方を大きくした場合を意味する。 The first case in which the outer turning energy is larger than the inner turning energy means that the inclination angle of the outer wind direction plate portions 53b to 56b is larger than the inclination angle of the inner wind direction plate portions 53a to 56a.
 外側旋回エネルギを内側旋回エネルギよりも小さくした第2ケースとは、内側風向板部53a~56aの傾斜角よりも外側風向板部53b~56bの傾斜角の方を小さくした場合を意味する。 The second case in which the outer turning energy is smaller than the inner turning energy means that the inclination angle of the outer wind direction plate portions 53b to 56b is made smaller than the inclination angle of the inner wind direction plate portions 53a to 56a.
 外側旋回エネルギと内側旋回エネルギとを同一にした場合を第3ケースとする。図5の縦軸は、第3ケースを基準値として第1ケースにおける空気流の到達率の増減(すなわちpt)と、第3ケースを基準値として第2ケースにおける空気流の到達率の増減(すなわちpt)とを示している。 The case where the outside turning energy and the inside turning energy are the same is taken as the third case. The vertical axis in FIG. 5 shows the increase / decrease in the air flow arrival rate in the first case with the third case as the reference value (ie, pt) and the increase / decrease in the air flow arrival rate in the second case with the third case as the reference value ( That is, pt).
 以上によれば、第1ケースでは、第3ケースよりも空気流の到達距離が長くなり、第2ケースでは、第3ケースよりも空気流の到達距離が長くなる。さらに、第1ケースでは、第2ケースよりも空気流の到達距離が長くなる。 According to the above, the first case has a longer airflow reach than the third case, and the second case has a longer airflow reach than the third case. Furthermore, the reach distance of the airflow is longer in the first case than in the second case.
 (第2実施形態)
 上記第1実施形態では、内側風向板部53a~56aに対して径方向外側に外側風向板部53b~56bを配置した例について説明した。これに代えて、内側風向板部53a~56aおよび外側風向板部53b~56bの間に中間風向板部53c~56cを配置した例について図6、図7、図8を参照して説明する。
(Second Embodiment)
In the first embodiment, the example in which the outer wind direction plate portions 53b to 56b are disposed radially outside the inner wind direction plate portions 53a to 56a has been described. Instead, an example in which intermediate wind direction plate portions 53c to 56c are arranged between the inner wind direction plate portions 53a to 56a and the outer wind direction plate portions 53b to 56b will be described with reference to FIGS.
 本実施形態は、上記第1実施形態の吹出ユニット50に中間風向板部53c~56cを追加した構成になっている。図6、図7、図8において、図2、図3、図4と同一の符号は、同一のものを示している。 In the present embodiment, intermediate wind direction plate portions 53c to 56c are added to the blowing unit 50 of the first embodiment. 6, 7, and 8, the same reference numerals as those in FIGS. 2, 3, and 4 indicate the same components.
 そこで、本実施形態では、主に吹出ユニット50について説明し、その他の構成の説明を簡素化する。 Therefore, in the present embodiment, the blowout unit 50 will be mainly described, and the description of other configurations will be simplified.
 本実施形態の吹出ユニット50は、仕切部52に代わる仕切部52a、52bを備える。仕切部52a、52bは、ケース51内に配置されている。仕切部52a、52bは、軸線Sを中心とする円筒状に形成されている。 The blowout unit 50 of the present embodiment includes partition portions 52a and 52b instead of the partition portion 52. The partition parts 52 a and 52 b are disposed in the case 51. The partition parts 52a and 52b are formed in a cylindrical shape centered on the axis S.
 仕切部52aの径方向寸法は、仕切部52bの径方向寸法よりも大きくなっている。仕切部52bは、仕切部52aに対して径方向内側に配置されている。仕切部52a、52bは、ケース51の内側を内側空気通路、中間側空気通路、および外側空気通路とに区分けする。中間側空気通路は、内側空気通路および外側空気通路の間に配置されている。 The radial dimension of the partition part 52a is larger than the radial dimension of the partition part 52b. The partition part 52b is arrange | positioned at the radial inside with respect to the partition part 52a. The partition parts 52a and 52b divide the inside of the case 51 into an inner air passage, an intermediate air passage, and an outer air passage. The intermediate air passage is disposed between the inner air passage and the outer air passage.
 本実施形態の風向板53は、内側風向板部53a、外側風向板部53b、および中間風向板部53cを備える。 The wind direction plate 53 of the present embodiment includes an inner wind direction plate portion 53a, an outer wind direction plate portion 53b, and an intermediate wind direction plate portion 53c.
 内側風向板部53aは、上記第1実施形態と同様に、内側空気通路内に配置されている径方向内側領域を構成している。外側風向板部53bは、上記第1実施形態と同様に、外側空気通路に配置されている径方向外側領域を構成している。中間風向板部53cは、中間側空気通路に配置されている中間領域を構成している。 The inner wind direction plate portion 53a constitutes a radially inner region arranged in the inner air passage, as in the first embodiment. The outer wind direction plate portion 53b constitutes a radially outer region disposed in the outer air passage, as in the first embodiment. The intermediate wind direction plate portion 53c constitutes an intermediate region disposed in the intermediate air passage.
 中間風向板部53cは、内側風向板部53aおよび外側風向板部53bの間に配置されている。中間風向板部53cは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。 The intermediate wind direction plate portion 53c is disposed between the inner wind direction plate portion 53a and the outer wind direction plate portion 53b. The intermediate wind direction plate portion 53c is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction.
 中間風向板部53cのうち軸線方向一方側端部153eと軸線方向他方側端部153fとの間において、軸線方向一方側から視て、軸線方向一方側端部153eから軸線方向他方側端部153fに周方向一方側に向かって形成される角度を傾斜角θ3aとする。換言すれば、当該軸線方向一方側端部153eの周方向角度に対する当該軸線方向他方側端部153fの周方向角度の変化量を、傾斜角θ3aとする。 In the intermediate wind direction plate portion 53c, between the one axial end portion 153e and the other axial end portion 153f, when viewed from one axial direction side, the axial one end portion 153e extends to the other axial end portion 153f. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ3a. In other words, the amount of change in the circumferential angle of the other end 153f in the axial direction relative to the circumferential angle of the one end 153e in the axial direction is the inclination angle θ3a.
 X線は、軸線方向一方側端部153a、軸線方向一方側端部153e、軸線方向一方側端部153c、および軸線Sを通過する仮想線である。 The X-ray is an imaginary line that passes through the axial one side end 153a, the axial one end 153e, the axial one end 153c, and the axial S.
 中間風向板部53cの傾斜角θ3a(すなわち、第3傾斜角)は、外側風向板部54bの傾斜角θ1aよりも小さくなっている(θ3a<θ1a)。中間風向板部53cの傾斜角θ3aは、内側風向板部54aの傾斜角θ2aよりも小さくなっている(θ3a<θ2a)。外側風向板部54bの傾斜角θ1aは、内側風向板部54aの傾斜角θ2aよりも大きくなっている(θ2a<θ1a)。 The inclination angle θ3a (that is, the third inclination angle) of the intermediate wind direction plate portion 53c is smaller than the inclination angle θ1a of the outer wind direction plate portion 54b (θ3a <θ1a). The inclination angle θ3a of the intermediate wind direction plate portion 53c is smaller than the inclination angle θ2a of the inner wind direction plate portion 54a (θ3a <θ2a). The inclination angle θ1a of the outer wind direction plate portion 54b is larger than the inclination angle θ2a of the inner wind direction plate portion 54a (θ2a <θ1a).
 風向板54は、内側風向板部54a、外側風向板部54b、および中間風向板部54cを備える。 The wind direction plate 54 includes an inner wind direction plate portion 54a, an outer wind direction plate portion 54b, and an intermediate wind direction plate portion 54c.
 内側風向板部54aは、上記第1実施形態と同様に、内側空気通路内に配置されている径方向内側領域を構成している。外側風向板部54bは、上記第1実施形態と同様に、外側空気通路に配置されている径方向外側領域を構成している。中間風向板部54cは、中間側空気通路に配置されている中間領域を構成している。 The inner wind direction plate portion 54a constitutes a radially inner region arranged in the inner air passage as in the first embodiment. The outer wind direction plate portion 54b constitutes a radially outer region disposed in the outer air passage, as in the first embodiment. The intermediate wind direction plate portion 54c constitutes an intermediate region disposed in the intermediate air passage.
 中間風向板部54cは、内側風向板部54aおよび外側風向板部54bの間に配置されている。中間風向板部54cは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。 The intermediate wind direction plate portion 54c is disposed between the inner wind direction plate portion 54a and the outer wind direction plate portion 54b. The intermediate wind direction plate portion 54c is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction.
 中間風向板部54cのうち軸線方向一方側端部154eと軸線方向他方側端部154fとの間において、軸線方向一方側から視て、軸線方向一方側端部154eから軸線方向他方側端部154fに周方向一方側に向かって形成される角度を傾斜角θ3bとする。換言すれば、当該軸線方向一方側端部154eの周方向角度に対する当該軸線方向他方側端部154fの周方向角度の変化量を、傾斜角θ3bとする。 The intermediate wind direction plate portion 54c between the one axial end portion 154e and the other axial end portion 154f is viewed from one axial direction end to the other axial end portion 154f in the axial direction. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ3b. In other words, the amount of change in the circumferential angle of the other axial end 154f relative to the circumferential angle of the axial one end 154e is the inclination angle θ3b.
 Y線は、軸線方向一方側端部154a、軸線方向一方側端部154e、軸線方向一方側端部154c、および軸線Sを通過する仮想線である。 The Y line is an imaginary line that passes through the one axial end 154a, the one axial end 154e, the one axial end 154c, and the axial line S.
 中間風向板部54cの傾斜角θ3b(すなわち、第3傾斜角)は、外側風向板部54bの傾斜角θ1bよりも小さくなっている(θ3b<θ1b)。中間風向板部54cの傾斜角θ3bは、内側風向板部54aの傾斜角θ2bよりも小さくなっている(θ3b<θ2b)。外側風向板部54bの傾斜角θ1bは、内側風向板部54aの傾斜角θ2bよりも大きくなっている(θ2b<θ1b)。 The inclination angle θ3b (that is, the third inclination angle) of the intermediate wind direction plate portion 54c is smaller than the inclination angle θ1b of the outer wind direction plate portion 54b (θ3b <θ1b). The inclination angle θ3b of the intermediate wind direction plate portion 54c is smaller than the inclination angle θ2b of the inner wind direction plate portion 54a (θ3b <θ2b). The inclination angle θ1b of the outer wind direction plate portion 54b is larger than the inclination angle θ2b of the inner wind direction plate portion 54a (θ2b <θ1b).
 風向板55は、内側風向板部55a、外側風向板部55b、および中間風向板部55cを備える。 The wind direction plate 55 includes an inner wind direction plate portion 55a, an outer wind direction plate portion 55b, and an intermediate wind direction plate portion 55c.
 内側風向板部55aは、上記第1実施形態と同様に、内側空気通路内に配置されている径方向内側領域を構成している。外側風向板部55bは、上記第1実施形態と同様に、外側空気通路に配置されている。中間風向板部55cは、中間側空気通路に配置されている中間領域を構成している。 The inner wind direction plate portion 55a constitutes a radially inner region disposed in the inner air passage as in the first embodiment. The outer wind direction plate portion 55b is disposed in the outer air passage as in the first embodiment. The intermediate wind direction plate portion 55c constitutes an intermediate region disposed in the intermediate air passage.
 中間風向板部55cは、内側風向板部55aおよび外側風向板部55bの間に配置されている。中間風向板部55cは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。 The intermediate wind direction plate portion 55c is disposed between the inner wind direction plate portion 55a and the outer wind direction plate portion 55b. The intermediate wind direction plate portion 55c is configured to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction.
 中間風向板部55cのうち軸線方向一方側端部155eと軸線方向他方側端部155fとの間において、軸線方向一方側から視て、軸線方向一方側端部155eから軸線方向他方側端部155fに周方向一方側に向かって形成される角度を傾斜角θ3cとする。換言すれば、当該軸線方向一方側端部155eの周方向角度に対する当該軸線方向他方側端部155fの周方向角度の変化量を、傾斜角θ3cとする。 The intermediate wind direction plate portion 55c between the one axial end portion 155e and the other axial end portion 155f is viewed from one axial direction end to the other axial end portion 155f in the axial direction. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ3c. In other words, the amount of change in the circumferential angle of the other axial end 155f with respect to the circumferential angle of the axial one end 155e is the inclination angle θ3c.
 X線は、軸線方向一方側端部155a、軸線方向一方側端部155e、軸線方向一方側端部155c、および軸線Sを通過する仮想線である。 The X-ray is an imaginary line passing through the one axial end 155a, the one axial end 155e, the one axial end 155c, and the axial line S.
 中間風向板部55cの傾斜角θ3c(すなわち、第3傾斜角)は、外側風向板部55bの傾斜角θ1cよりも小さくなっている(θ3c<θ1c)。中間風向板部55cの傾斜角θ3cは、内側風向板部55aの傾斜角θ2cよりも小さくなっている(θ3c<θ2c)。外側風向板部55bの傾斜角θ1cは、内側風向板部55aの傾斜角θ2cよりも大きくなっている(θ2c<θ1c)。 The inclination angle θ3c (that is, the third inclination angle) of the intermediate wind direction plate portion 55c is smaller than the inclination angle θ1c of the outer wind direction plate portion 55b (θ3c <θ1c). The inclination angle θ3c of the intermediate wind direction plate portion 55c is smaller than the inclination angle θ2c of the inner wind direction plate portion 55a (θ3c <θ2c). The inclination angle θ1c of the outer wind direction plate portion 55b is larger than the inclination angle θ2c of the inner wind direction plate portion 55a (θ2c <θ1c).
 風向板56は、内側風向板部56a、外側風向板部56b、および中間風向板部56cを備える。内側風向板部56aは、上記第1実施形態と同様に、内側空気通路内に配置されている径方向内側領域を構成している。外側風向板部56bは、上記第1実施形態と同様に、外側空気通路に配置されている径方向外側領域を構成している。中間風向板部56cは、中間側空気通路に配置されている中間領域を構成している。 The wind direction plate 56 includes an inner wind direction plate portion 56a, an outer wind direction plate portion 56b, and an intermediate wind direction plate portion 56c. The inner wind direction plate portion 56a constitutes a radially inner region disposed in the inner air passage, as in the first embodiment. The outer wind direction plate portion 56b constitutes a radially outer region disposed in the outer air passage, as in the first embodiment. The intermediate wind direction plate portion 56c constitutes an intermediate region disposed in the intermediate air passage.
 中間風向板部56cは、内側風向板部56aおよび外側風向板部56bの間に配置されている。中間風向板部56cは、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むように構成されている。 The intermediate wind direction plate portion 56c is disposed between the inner wind direction plate portion 56a and the outer wind direction plate portion 56b. The intermediate wind direction plate portion 56c is configured to advance toward one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction.
 中間風向板部56cのうち軸線方向一方側端部156eと軸線方向他方側端部156fとの間において、軸線方向一方側から視て、軸線方向一方側端部156eから軸線方向他方側端部156fに周方向一方側に向かって形成される角度を傾斜角θ3dとする。換言すれば、当該軸線方向一方側端部156eの周方向角度に対する当該軸線方向他方側端部156fの周方向角度の変化量を、傾斜角θ3dとする。 The intermediate wind direction plate portion 56c between the one axial end portion 156e and the other axial end portion 156f is viewed from one axial direction side, from the axial one end portion 156e to the other axial end portion 156f. An angle formed toward one side in the circumferential direction is defined as an inclination angle θ3d. In other words, the amount of change in the circumferential angle of the other axial end 156f with respect to the circumferential angle of the axial one end 156e is the inclination angle θ3d.
 Y線は、軸線方向一方側端部156a、軸線方向一方側端部156e、および軸線方向一方側端部156cを通過する仮想線である。 The Y line is an imaginary line that passes through one axial end 156a, one axial end 156e, and one axial end 156c in the axial direction.
 中間風向板部56cの傾斜角θ3d(すなわち、第3傾斜角)は、外側風向板部56bの傾斜角θ1dよりも小さくなっている(θ3d<θ1d)。中間風向板部56cの傾斜角θ3dは、内側風向板部56aの傾斜角θ2dよりも小さくなっている(θ3d<θ2d)。外側風向板部56bの傾斜角θ1dは、内側風向板部56aの傾斜角θ2dよりも大きくなっている(θ2d<θ1d)。 The inclination angle θ3d (that is, the third inclination angle) of the intermediate wind direction plate portion 56c is smaller than the inclination angle θ1d of the outer wind direction plate portion 56b (θ3d <θ1d). The inclination angle θ3d of the intermediate wind direction plate portion 56c is smaller than the inclination angle θ2d of the inner wind direction plate portion 56a (θ3d <θ2d). The inclination angle θ1d of the outer wind direction plate portion 56b is larger than the inclination angle θ2d of the inner wind direction plate portion 56a (θ2d <θ1d).
 ここで、傾斜角θ3a、傾斜角θ3b、傾斜角θ3c、傾斜角θ3dは、それぞれ同一角度である(θ3a=θ3b=θ3c=θ3d)。本実施形態の中間風向板部53c、54c、55c、56cは、中間側空気通路を4つに区分けする。 Here, the inclination angle θ3a, the inclination angle θ3b, the inclination angle θ3c, and the inclination angle θ3d are the same angle (θ3a = θ3b = θ3c = θ3d). The intermediate wind direction plate portions 53c, 54c, 55c, and 56c of the present embodiment divide the intermediate air passage into four.
 内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部53a、54aの間には、中間側空気通路59aが形成されている。内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部54a、55aの間には、中間側空気通路59bが形成されている。 An intermediate air passage 59a is formed between two inner wind direction plate portions 53a and 54a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a. An intermediate air passage 59b is formed between two inner wind direction plate portions 54a and 55a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
 内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部55a、56aの間には、中間側空気通路59cが形成されている。内側風向板部53a~56aのうち周方向に隣り合う2つの内側風向板部56a、53aの間には、中間側空気通路59dが形成されている。 An intermediate air passage 59c is formed between two inner wind direction plate portions 55a and 56a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a. An intermediate air passage 59d is formed between two inner wind direction plate portions 56a and 53a adjacent to each other in the circumferential direction among the inner wind direction plate portions 53a to 56a.
 次に、本実施形態の吹出ユニット50の作動について説明する。 Next, the operation of the blowing unit 50 of this embodiment will be described.
 まず、ダクト30を通過した空気流が吹出ユニット50の内側空気通路57a、57b、57c、57dに流れる。すると、空気流は内側風向板部53a~56aに沿って流れる内側旋回流として吹き出される。 First, the air flow that has passed through the duct 30 flows into the inner air passages 57a, 57b, 57c, and 57d of the blowing unit 50. Then, the air flow is blown out as an inner swirl flow that flows along the inner wind direction plate portions 53a to 56a.
 また、ダクト30を通過した空気流が吹出ユニット50の外側空気通路58a、58b、58c、58dに流れる。すると、空気流は外側風向板部53b~56bに沿って流れる外側旋回流として吹き出される。 Also, the air flow that has passed through the duct 30 flows to the outer air passages 58a, 58b, 58c, and 58d of the blowing unit 50. Then, the air flow is blown out as an outer swirl flow that flows along the outer wind direction plate portions 53b to 56b.
 さらに、ダクト30を通過した空気流が吹出ユニット50の中間側空気通路59a、59b、59c、59dに流れる。すると、空気流は中間風向板部53c~56cに沿って流れる中間側旋回流として吹き出される。中間側旋回流は、軸線Sを中心として旋回する空気流の渦流である。 Furthermore, the air flow that has passed through the duct 30 flows into the intermediate air passages 59a, 59b, 59c, and 59d of the blowing unit 50. Then, the air flow is blown out as an intermediate swirl flow that flows along the intermediate wind direction plate portions 53c to 56c. The intermediate swirl flow is a vortex flow of air flow swirling around the axis S.
 このような外側旋回流、内側旋回流、および中間側旋回流が吹出ユニット50から吹き出されることに伴って、外側旋回流の周辺に発生する空気流の横渦を外側旋回流が破壊する。これに加えて、外側旋回流に対して径方向内側に中間側旋回流および内側旋回流を発生させることができる。 As the outer swirl flow, the inner swirl flow, and the intermediate swirl flow are blown out from the blowing unit 50, the outer swirl flow destroys the lateral vortex of the air flow generated around the outer swirl flow. In addition, an intermediate swirl flow and an inner swirl flow can be generated radially inward with respect to the outer swirl flow.
 この際に、中間側旋回流および内側旋回流に比べて外側旋回流の方が、空気流の旋回に作用するエネルギが大きい。このため、外側旋回流によって横渦を破壊しつつ、中間側旋回流および内側旋回流を軸線方向に進めることができる。 At this time, the outer swirl flow has more energy acting on the swirl of the air flow than the intermediate swirl flow and the inner swirl flow. For this reason, the intermediate side swirl flow and the inner swirl flow can be advanced in the axial direction while destroying the horizontal vortex by the outer swirl flow.
 これにより、図6中の(b)部に示すように、吹出ユニット50から吹き出される空気流の周方向の流速において、外側旋回流の流速Paと、径方向中心側の流速Pbとが高速となる。 As a result, as shown in part (b) of FIG. 6, the flow velocity Pa of the outer swirling flow and the flow velocity Pb on the radial center side are high in the circumferential flow velocity of the air flow blown out from the blowing unit 50. It becomes.
 以上説明した本実施形態によれば、風向板53~56において、内側風向板部53a~56aの傾斜角を傾斜角θ2a~θ2dとし、外側風向板部53b~56bの傾斜角を傾斜角θ1a~θ1dとする。中間風向板部53c~56cの傾斜角を傾斜角θ3a~θ3dとする。 According to the present embodiment described above, in the wind direction plates 53 to 56, the inclination angles of the inner wind direction plate portions 53a to 56a are the inclination angles θ2a to θ2d, and the inclination angles of the outer wind direction plate portions 53b to 56b are the inclination angles θ1a to θ1. It is assumed that θ1d. The inclination angles of the intermediate wind direction plate portions 53c to 56c are assumed to be inclination angles θ3a to θ3d.
 傾斜角θ1a~θ1dおよび傾斜角θ2a~θ2dは、中間風向板部53c~56cの傾斜角θ3a~θ3dよりも大きくなっている。このため、外側風向板部53b~56bによって外側旋回流が吹き出される。内側風向板部53a~56aによって内側旋回流が吹き出される。中間風向板部53c~56cによって中間側旋回流が吹き出される。 The inclination angles θ1a to θ1d and the inclination angles θ2a to θ2d are larger than the inclination angles θ3a to θ3d of the intermediate wind direction plates 53c to 56c. For this reason, the outer swirl flow is blown out by the outer wind direction plate portions 53b to 56b. An inner swirling flow is blown out by the inner wind direction plate portions 53a to 56a. An intermediate swirling flow is blown out by the intermediate wind direction plate portions 53c to 56c.
 この際に、中間側旋回流および内側旋回流に比べて外側旋回流の方が、空気流の旋回に作用するエネルギが大きい。このことに伴って、外側旋回流の周辺に発生する空気流の横渦を外側旋回流が破壊する。これに加えて、外側旋回流に対して径方向内側において内側旋回流および中間側旋回流を発生させることができる。 At this time, the outer swirl flow has more energy acting on the swirl of the air flow than the intermediate swirl flow and the inner swirl flow. Along with this, the outer swirl flow breaks the horizontal vortex of the air flow generated around the outer swirl flow. In addition, an inner swirl flow and an intermediate swirl flow can be generated on the radially inner side with respect to the outer swirl flow.
 このため、外側旋回流によって横渦を破壊させるため、旋回流が径方向外側に拡散されることが抑制される。これに伴い、内側旋回流および中間側旋回流を軸線方向に進ませることができる。このため、内側旋回流および中間側旋回流を、より遠くまでに到達させることができる。 For this reason, since the lateral vortex is destroyed by the outer swirl flow, the swirl flow is prevented from diffusing radially outward. Accordingly, the inner swirl flow and the intermediate swirl flow can be advanced in the axial direction. For this reason, the inner swirl flow and the intermediate swirl flow can reach farther.
 したがって、外側旋回流の周辺に発生する空気流の横渦を外側旋回流が破壊して、旋回流の到達距離が短くなることを抑制するようにした吹出ユニット50を提供することができる。 Therefore, it is possible to provide the blowout unit 50 that suppresses the lateral swirl of the air flow generated around the outer swirl flow from being destroyed by the outer swirl flow and shortening the reach distance of the swirl flow.
 本実施形態では、風向板53、54、55、56では、内側風向板部53a、54a、55a、56aの傾斜角θ2a、θ2b、θ2c、θ2dが中間風向板部53c、54c、55c、56cの傾斜角θ3a、θ3b、θ3c、θ3dよりも大きい。 In the present embodiment, in the wind direction plates 53, 54, 55, 56, the inclination angles θ2a, θ2b, θ2c, θ2d of the inner wind direction plate portions 53a, 54a, 55a, 56a are the same as those of the intermediate wind direction plate portions 53c, 54c, 55c, 56c. The inclination angles are larger than θ3a, θ3b, θ3c, and θ3d.
 したがって、内側旋回流よりも中間旋回流の方が、空気流の旋回に作用するエネルギが大きい。中間旋回流は、旋回流のうち中間側空気通路59a、59b、59c、59dから吹き出される空気流である。 Therefore, the energy that acts on the swirling of the air flow is greater in the intermediate swirling flow than in the inner swirling flow. The intermediate swirl flow is an air flow that is blown out from the intermediate air passages 59a, 59b, 59c, and 59d in the swirl flow.
 このため、中間旋回流よりも内側旋回流の方を負圧にすることができるので、旋回流が径方向内側から径方向中間側に拡散することを抑制することができる。よって、旋回流の径方向内側が軸線方向に進む距離を延ばすことができる。 For this reason, since the inner swirl flow can be set to a negative pressure rather than the intermediate swirl flow, the swirl flow can be prevented from diffusing from the radially inner side to the radially middle side. Therefore, the distance traveled in the axial direction by the radially inner side of the swirling flow can be extended.
 本実施形態では、傾斜角θ1a、θ1b、θ1c、θ1dは、傾斜角θ3a、θ3b、θ3c、θ3dよりも大きくなっている。傾斜角θ1a、θ1b、θ1c、θ1dは、傾斜角θ2a、θ2b、θ2c、θ2dよりも大きくなっている。 In this embodiment, the inclination angles θ1a, θ1b, θ1c, and θ1d are larger than the inclination angles θ3a, θ3b, θ3c, and θ3d. The inclination angles θ1a, θ1b, θ1c, and θ1d are larger than the inclination angles θ2a, θ2b, θ2c, and θ2d.
 このため、中間旋回流は、内側旋回流や外側旋回流に比べて、空気流の旋回に作用するエネルギが小さくなる。 For this reason, the intermediate swirling flow has less energy acting on the swirling of the air flow than the inner swirling flow and the outer swirling flow.
 これにより、中間旋回流は、内側旋回流や外側旋回流が打ち返しあうことを抑制する保護層の役割を果たすことができる。よって、横渦を消滅させる外側旋回流の機能と負圧して軸線方向に進行させる内側旋回流の機能とを両立させることができる。 Thereby, the intermediate swirl flow can serve as a protective layer that suppresses the reciprocal rotation of the inner swirl flow and the outer swirl flow. Therefore, both the function of the outer swirl flow that eliminates the transverse vortex and the function of the inner swirl flow that negatively advances and advances in the axial direction can be achieved.
 (第3実施形態)
 上記第1実施形態では、風向板53~56のうち内側風向板部53a~56aにおいて傾斜角が径方向に亘って一定角度になっている例について説明した。しかし、これに代えて、風向板53~56は、径方向内側から径方向外側に向かうほど傾斜角が徐々に大きくなるように形成されている例について図9、図10を参照して説明する。
(Third embodiment)
In the first embodiment, the example in which the inclination angle of the inner wind direction plates 53a to 56a of the wind direction plates 53 to 56 is a constant angle in the radial direction has been described. However, instead of this, an example in which the wind direction plates 53 to 56 are formed so that the inclination angle gradually increases from the radially inner side to the radially outer side will be described with reference to FIGS. 9 and 10. .
 本実施形態と上記第1実施形態とは主に吹出ユニット50が相違するため、主に吹出ユニット50について説明し、その他の構成の説明を簡素化する。図9、図10において、図2、図3、図4と同一の符号は、同一のものを示している。 Since the blowout unit 50 is mainly different from the present embodiment and the first embodiment, the blowout unit 50 will be mainly described, and the description of other configurations will be simplified. 9 and 10, the same reference numerals as those in FIGS. 2, 3, and 4 denote the same components.
 本実施形態の吹出ユニット50は、図9中の(a)部に示すように、図2の仕切部52が削除され、ケース51、および風向板53、54、55、56から構成されている。 As shown in part (a) in FIG. 9, the blowout unit 50 of the present embodiment is configured by a case 51 and wind direction plates 53, 54, 55, and 56 without the partition 52 in FIG. 2. .
 風向板53は、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むようにねじれている。風向板53は、図2の内側風向板部53aと外側風向板部53bとから構成されているのでなく、径方向内側から径方向外側に向かうほど傾斜角θ4aが徐々に大きくなる。
風向板53は、径方向内側領域の傾斜角θ4a(すなわち、第1傾斜角)と径方向外側領域の傾斜角θ4a(すなわち、第2傾斜角)とが相違している。風向板53は、径方向内側領域の傾斜角θ4aと径方向外側領域の傾斜角θ4aとが径方向内側から径方向外側に向かうほど徐々に大きくなるように形成されている。
The wind direction plate 53 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. The wind direction plate 53 is not composed of the inner wind direction plate portion 53a and the outer wind direction plate portion 53b of FIG. 2, but the inclination angle θ4a gradually increases from the radially inner side toward the radially outer side.
In the wind direction plate 53, the inclination angle θ4a (that is, the first inclination angle) of the radially inner region and the inclination angle θ4a (that is, the second inclination angle) of the radially outer region are different. The wind direction plate 53 is formed such that the inclination angle θ4a of the radially inner region and the inclination angle θ4a of the radially outer region gradually increase from the radially inner side toward the radially outer side.
 ここで、風向板53のうち軸線方向一方側端部153pと軸線方向他方側端部153rとの間において、軸線方向一方側から視て、軸線方向一方側端部153pから軸線方向他方側端部153rに周方向一方側に向かって形成される角度を傾斜角θ4aとする。換言すれば、当該軸線方向一方側端部153pの周方向角度に対する当該軸線方向他方側端部153rの周方向角度の変化量を、傾斜角θ4aとする。 Here, between the axial direction one side edge part 153p and the axial direction other side edge part 153r among the wind direction boards 53, seeing from the axial direction one side, the axial direction one side edge part 153p is an axial direction other side edge part. An angle formed at 153r toward one side in the circumferential direction is defined as an inclination angle θ4a. In other words, the amount of change in the circumferential angle of the other end 153r in the axial direction relative to the circumferential angle of the one end 153p in the axial direction is defined as the inclination angle θ4a.
 風向板54は、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むようにねじれている。風向板54は、図2の内側風向板部54aと外側風向板部54bとから構成されているのでなく、径方向内側から径方向外側に向かうほど傾斜角θ4bが徐々に大きくなる。
風向板54は、径方向内側領域の傾斜角θ4b(すなわち、第1傾斜角)と径方向外側領域の傾斜角θ4b(すなわち、第2傾斜角)とが相違している。風向板54は、径方向内側領域の傾斜角θ4bと径方向外側領域の傾斜角θ4bとが径方向内側から径方向外側に向かうほど徐々に大きくなるように形成されている。
The wind direction plate 54 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. The wind direction plate 54 is not composed of the inner wind direction plate portion 54a and the outer wind direction plate portion 54b in FIG. 2, but the inclination angle θ4b gradually increases from the radially inner side toward the radially outer side.
In the wind direction plate 54, the inclination angle θ4b (that is, the first inclination angle) of the radially inner region is different from the inclination angle θ4b (that is, the second inclination angle) of the radially outer region. The wind direction plate 54 is formed so that the inclination angle θ4b of the radially inner region and the inclination angle θ4b of the radially outer region gradually increase from the radially inner side toward the radially outer side.
 ここで、風向板54のうち軸線方向一方側端部154pと軸線方向他方側端部154rとの間において、軸線方向一方側から視て、軸線方向一方側端部154pから軸線方向他方側端部154rに周方向一方側に向かって形成される角度を傾斜角θ4bとする。換言すれば、当該軸線方向一方側端部154pの周方向角度に対する当該軸線方向他方側端部154rの周方向角度の変化量を、傾斜角θ4bとする。 Here, between the axial direction one side edge part 154p and the axial direction other side edge part 154r among the wind direction plates 54, seeing from the axial direction one side, the axial direction one side edge part 154p is the axial direction other side edge part. An angle formed at 154r toward one side in the circumferential direction is defined as an inclination angle θ4b. In other words, the amount of change in the circumferential angle of the other axial end 154r relative to the circumferential angle of the axial end 154p is the inclination angle θ4b.
 風向板55は、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むようにねじれている。風向板55は、図2の内側風向板部55aと外側風向板部55bとから構成されているのでなく、径方向内側から径方向外側に向かうほど傾斜角θ4cが徐々に大きくなる。
風向板55は、径方向内側領域の傾斜角θ4c(すなわち、第1傾斜角)と径方向外側領域の傾斜角θ4c(すなわち、第2傾斜角)とが相違している。風向板55は、径方向内側領域の傾斜角θ4cと径方向外側領域の傾斜角θ4cとが径方向内側から径方向外側に向かうほど徐々に大きくなるように形成されている。
The wind direction plate 55 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. The wind direction plate 55 is not composed of the inner wind direction plate portion 55a and the outer wind direction plate portion 55b of FIG. 2, but the inclination angle θ4c gradually increases from the radially inner side toward the radially outer side.
In the wind direction plate 55, the inclination angle θ4c (that is, the first inclination angle) of the radially inner region and the inclination angle θ4c (that is, the second inclination angle) of the radially outer region are different. The wind direction plate 55 is formed so that the inclination angle θ4c of the radially inner region and the inclination angle θ4c of the radially outer region gradually increase from the radially inner side toward the radially outer side.
 ここで、風向板55のうち軸線方向一方側端部155pと軸線方向他方側端部155rとの間において、軸線方向一方側から視て、軸線方向一方側端部155pから軸線方向他方側端部155rに周方向一方側に向かって形成される角度を傾斜角θ4cとする。換言すれば、当該軸線方向一方側端部155pの周方向角度に対する当該軸線方向他方側端部155rの周方向角度の変化量を、傾斜角θ4cとする。 Here, between the axial direction one side edge part 155p and the axial direction other side edge part 155r among the wind direction boards 55, seeing from the axial direction one side, the axial direction one side edge part 155p is an axial direction other side edge part. An angle formed at 155r toward one side in the circumferential direction is defined as an inclination angle θ4c. In other words, the amount of change in the circumferential angle of the other end 155r in the axial direction relative to the circumferential angle of the one end 155p in the axial direction is the inclination angle θ4c.
 風向板56は、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むようにねじれている。風向板56は、図2の内側風向板部56aと外側風向板部56bとから構成されているのでなく、径方向内側から径方向外側に向かうほど傾斜角θ4dが徐々に大きくなる。
風向板56は、径方向内側領域の傾斜角θ4d(すなわち、第1傾斜角)と径方向外側領域の傾斜角θ4d(すなわち、第2傾斜角)とが相違している。風向板56は、径方向内側領域の傾斜角θ4dと径方向外側領域の傾斜角θ4dとが径方向内側から径方向外側に向かうほど徐々に大きくなるように形成されている。
The wind direction plate 56 is twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. The wind direction plate 56 is not composed of the inner wind direction plate portion 56a and the outer wind direction plate portion 56b of FIG. 2, but the inclination angle θ4d gradually increases from the radially inner side toward the radially outer side.
In the wind direction plate 56, the inclination angle θ4d (that is, the first inclination angle) of the radially inner region is different from the inclination angle θ4d (that is, the second inclination angle) of the radially outer region. The wind direction plate 56 is formed such that the inclination angle θ4d of the radially inner region and the inclination angle θ4d of the radially outer region gradually increase from the radially inner side toward the radially outer side.
 ここで、風向板56のうち軸線方向一方側端部156pと軸線方向他方側端部156rとの間において、軸線方向一方側から視て、軸線方向一方側端部156pから軸線方向他方側端部156rに周方向一方側に向かって形成される角度を傾斜角θ4dとする。換言すれば、当該軸線方向一方側端部156pの周方向角度に対する当該軸線方向他方側端部156rの周方向角度の変化量を、傾斜角θ4dとする。 Here, between the axial direction one side edge part 156p and the axial direction other side edge part 156r among the wind direction plates 56, seeing from the axial direction one side, the axial direction one side edge part 156p is the axial direction other side edge part. An angle formed at 156r toward one side in the circumferential direction is defined as an inclination angle θ4d. In other words, the amount of change in the circumferential angle of the other end 156r in the axial direction relative to the circumferential angle of the one end 156p in the axial direction is the inclination angle θ4d.
 本実施形態の風向板53、54、55、56は、ケース51内の空気通路を4つに区分けする。 The wind direction plates 53, 54, 55 and 56 of the present embodiment divide the air passage in the case 51 into four.
 風向板53~56のうち周方向に隣り合う2つの風向板53、54の間には、空気通路60aが形成されている。風向板53~56のうち周方向に隣り合う2つの風向板54、55の間には、空気通路60bが形成されている。 Between the two wind direction plates 53 and 54 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56, an air passage 60a is formed. An air passage 60b is formed between two wind direction plates 54 and 55 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56.
 風向板53~56のうち周方向に隣り合う2つの風向板55、56の間には、空気通路60cが形成されている。風向板53~56のうち周方向に隣り合う2つの風向板56、53の間には、空気通路60が形成されている。 An air passage 60c is formed between two wind direction plates 55 and 56 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56. An air passage 60 is formed between two wind direction plates 56 and 53 adjacent to each other in the circumferential direction among the wind direction plates 53 to 56.
 なお、軸線方向一方側から視た際に、軸線方向一方側端部153p、軸線S、および軸線方向一方側端部155pを通過する仮想線をX線とする。軸線方向一方側から視た際に、軸線方向一方側端部154p、軸線S、および軸線方向一方側端部156pを通過する仮想線をY線とする。 Note that, when viewed from one side in the axial direction, an imaginary line passing through the one end 153p in the axial direction, the axis S, and the one end 155p in the axial direction is defined as an X-ray. When viewed from one side in the axial direction, an imaginary line passing through the one end 154p in the axial direction, the axis S, and the one end 156p in the axial direction is defined as a Y line.
 次に、本実施形態の吹出ユニット50の作動について説明する。 Next, the operation of the blowing unit 50 of this embodiment will be described.
 まず、ダクト30を通過した空気流が吹出ユニット50の空気通路60a、60b、60c、60dに流れる。すると、空気流は風向板53~56に沿って流れる旋回流として吹き出される。この旋回流のうち径方向外側は、旋回流のうち径方向内側に比べて、空気流の旋回に作用するエネルギが大きくなる。 First, the air flow that has passed through the duct 30 flows into the air passages 60a, 60b, 60c, and 60d of the blowing unit 50. Then, the air flow is blown out as a swirl flow that flows along the wind direction plates 53 to 56. The energy that acts on the swirling of the air flow is larger at the radially outer side of the swirling flow than at the radially inner side of the swirling flow.
 このような旋回流が吹出ユニット50から吹き出されることに伴って、旋回流の径方向外側が旋回流の周辺に発生する空気流の横渦を破壊する。これに加えて、旋回流の径方向内側が軸線方向に進むことになる。 As such a swirl flow is blown out from the blowing unit 50, the radially outer side of the swirl flow breaks the horizontal vortex of the air flow generated around the swirl flow. In addition to this, the radially inner side of the swirl flow advances in the axial direction.
 以上説明した本実施形態によれば、吹出ユニット50は、ケース51、および風向板53、54、55、56から構成されている。風向板53~56は、軸線方向一方側から軸線方向他方側に向かうほど周方向一方側に進むようにねじれている。風向板53~56は、径方向内側から径方向外側に向かうほど傾斜角θ4a~θ4dが徐々に大きくなる。 According to the present embodiment described above, the blowing unit 50 includes the case 51 and the wind direction plates 53, 54, 55, and 56. The wind direction plates 53 to 56 are twisted so as to advance toward the one side in the circumferential direction from the one side in the axial direction toward the other side in the axial direction. In the wind direction plates 53 to 56, the inclination angles θ4a to θ4d gradually increase from the radially inner side toward the radially outer side.
 これにより、旋回流の周辺に発生する空気流の横渦を旋回流の径方向外側が破壊するため、旋回流が径方向外側に拡散されることが抑制される。これに加えて、旋回流の径方向内側が軸線方向に進むことになる。 This causes the lateral vortex of the air flow generated around the swirling flow to be destroyed on the radially outer side of the swirling flow, and thus the swirling flow is prevented from diffusing radially outward. In addition to this, the radially inner side of the swirl flow advances in the axial direction.
 したがって、外側旋回流の周辺に発生する空気流の横渦を外側旋回流の径方向外側が破壊して、旋回流の到達距離が短くなることを抑制するようにした吹出ユニット50を提供することができる。 Accordingly, it is possible to provide a blowout unit 50 that suppresses a reduction in the reach of the swirl flow by breaking the lateral vortex of the air flow generated around the outer swirl flow on the radially outer side of the outer swirl flow. Can do.
 (他の実施形態)
 (1)上記第1、第2、第3実施形態では、本開示の吹出ユニット50を車両用空調装置に適用した例について説明したが、これに代えて、ビル用空調装置、家庭用空調装置等の設置型空調装置、自動車以外の移動体用空調装置に適用してもよい。或いは、空調装置以外の送風機に本開示の吹出ユニット50を適用してもよい。
 (2)上記第1、第2実施形態では、風向板53~56は、それぞれ、内側風向板部53a~56aの傾斜角(すなわちθ2a~θ2d)よりも外側風向板部53b~56bの傾斜角(すなわちθ1a~θ1d)の方が大きくした例について説明した。
(Other embodiments)
(1) In the first, second, and third embodiments, the example in which the blowout unit 50 of the present disclosure is applied to a vehicle air conditioner has been described. Instead, a building air conditioner and a home air conditioner are used. The present invention may be applied to a stationary air conditioner such as a mobile air conditioner other than an automobile. Or you may apply the blowing unit 50 of this indication to air blowers other than an air conditioner.
(2) In the first and second embodiments described above, the wind direction plates 53 to 56 have the inclination angles of the outer wind direction plate portions 53b to 56b with respect to the inclination angles of the inner wind direction plate portions 53a to 56a (that is, θ2a to θ2d), respectively. An example in which (that is, θ1a to θ1d) is larger has been described.
 しかし、これに代えて、内側風向板部53a~56aの傾斜角(すなわちθ2a~θ2d)よりも外側風向板部53b~56bの傾斜角(すなわちθ1a~θ1d)の方を小さくした風向板53~56を用いてもよい。
 (3)上記第1、第2、第3実施形態では、本開示の吹出ユニット50において4つの風向板53~56を設けた例について説明した。しかし、これに代えて、本開示の吹出ユニット50において3つ以下の風向板、或いは、5つ以上の風向板を設けてもよい。
 (4)上記第3実施形態では、風向板53~55は、径方向内側から径方向外側に向かうほど傾斜角が徐々に大きくなるように形成されている例について説明した。しかし、これに代えて、径方向内側から径方向外側に向かうほど傾斜角が徐々に小さくなるように形成されている風向板53~56を用いてもよい。
 (5)上記第1、第2、第3実施形態では、本開示の空調ユニットとして、空調風を吹き出す室内空調ユニット1を用いた例について説明した。しかし、これに代えて、室内の空気流や室外の空気流を吹き出す空調ユニットを本開示の空調ユニットとして用いてもよい。
 (6)上記第1、第2、第3実施形態では、ダクト30の空気出口側に吹出ユニット50を設けた例について説明した。しかし、これに代えて、ダクト30内に吹出ユニット50を配置し、かつダクト30の空気出口側において、吹出ユニット50を通過した空気流の吹き出し方向を調整するルーバーを設けてもよい。
 (7)上記第1、第2実施形態では、傾斜角θ2a、θ2b、θ2c、θ2dが径方向に亘って一定に形成されている内側風向板部53a、54a、55a、56aを用いた例について説明した。
However, instead of this, the inclination angle of the outer wind direction plate portions 53b to 56b (that is, θ1a to θ1d) is smaller than the inclination angle of the inner wind direction plate portions 53a to 56a (that is, θ2a to θ2d). 56 may be used.
(3) In the first, second, and third embodiments, the example in which the four wind direction plates 53 to 56 are provided in the blowing unit 50 of the present disclosure has been described. However, instead of this, in the blowing unit 50 of the present disclosure, three or less wind direction plates or five or more wind direction plates may be provided.
(4) In the third embodiment, the example in which the wind direction plates 53 to 55 are formed such that the inclination angle gradually increases from the radially inner side toward the radially outer side has been described. However, instead of this, wind direction plates 53 to 56 formed so that the inclination angle gradually decreases from the radially inner side toward the radially outer side may be used.
(5) In the first, second, and third embodiments, the example in which the indoor air conditioning unit 1 that blows out conditioned air is used as the air conditioning unit of the present disclosure has been described. However, instead of this, an air conditioning unit that blows out an indoor air flow or an outdoor air flow may be used as the air conditioning unit of the present disclosure.
(6) In the first, second, and third embodiments, the example in which the blowing unit 50 is provided on the air outlet side of the duct 30 has been described. However, instead of this, the blowing unit 50 may be disposed in the duct 30 and a louver may be provided on the air outlet side of the duct 30 to adjust the blowing direction of the air flow that has passed through the blowing unit 50.
(7) In the first and second embodiments described above, an example using the inner wind direction plate portions 53a, 54a, 55a, and 56a in which the inclination angles θ2a, θ2b, θ2c, and θ2d are uniformly formed in the radial direction is used. explained.
 しかし、これに代えて、傾斜角θ2a、θ2b、θ2c、θ2dが径方向内側から径方向外側に向かうほど大きくなる内側風向板部53a、54a、55a、56aを用いてもよい。 However, instead of this, inner wind direction plate portions 53a, 54a, 55a, and 56a in which the inclination angles θ2a, θ2b, θ2c, and θ2d increase from the radially inner side toward the radially outer side may be used.
 或いは、上記第1、第2実施形態では、傾斜角θ2a、θ2b、θ2c、θ2dが径方向内側から径方向外側に向かうほど小さくなる内側風向板部53a、54a、55a、56aを用いてもよい。
 すなわち、上記第1、第2実施形態において、それぞれ、ねじれている形状である内側風向板部53a、54a、55a、56aを用いてもよい。
 (8)上記第1、第2、第3実施形態では、傾斜角θ1a、θ1b、θ1c、θ1dが径方向に亘って一定である外側風向板部53b、54b、55b、56bを用いた例について説明した。
Or in the said 1st, 2nd embodiment, you may use inner wind direction board part 53a, 54a, 55a, 56a which becomes small, so that inclination | tilt angle (theta) 2a, (theta) 2b, (theta) 2c, (theta) 2d goes to radial direction outer side from radial inner side. .
That is, in the said 1st, 2nd embodiment, you may use the inner wind direction board part 53a, 54a, 55a, 56a which is a twisted shape, respectively.
(8) In the first, second, and third embodiments, examples using the outer wind direction plate portions 53b, 54b, 55b, and 56b in which the inclination angles θ1a, θ1b, θ1c, and θ1d are constant in the radial direction. explained.
 しかし、これに代えて、傾斜角θ1a、θ1b、θ1c、θ1dが径方向内側から径方向外側に向かうほど小さくなる外側風向板部53b、54b、55b、56bを用いてもよい。 However, instead of this, outer wind direction plate portions 53b, 54b, 55b, and 56b may be used in which the inclination angles θ1a, θ1b, θ1c, and θ1d decrease from the radially inner side toward the radially outer side.
 或いは、上記第1、第2実施形態では、傾斜角θ1a、θ1b、θ1c、θ1dが径方向内側から径方向外側に向かうほど大きくなる外側風向板部53b、54b、55b、56bを用いてもよい。
 すなわち、上記第1、第2実施形態において、それぞれ、ねじれている形状である外側風向板部53b、54b、55b、56bを用いてもよい。
 (9)上記第2実施形態では、傾斜角θ3a、θ3b、θ3c、θ3dが径方向に亘って一定である中間風向板部53c、54c、55c、56cを用いた例について説明した。 しかし、これに代えて、傾斜角θ3a、θ3b、θ3c、θ3dが径方向内側から径方向外側に向かうほど小さくなる中間風向板部53c、54c、55c、56cを用いてもよい。
Or in the said 1st, 2nd embodiment, you may use the outer wind direction board part 53b, 54b, 55b, 56b from which inclination-angle (theta) 1a, (theta) 1b, (theta) 1c, (theta) 1d becomes large as it goes to radial direction outer side from radial inner side. .
That is, in the said 1st, 2nd embodiment, you may use the outer wind direction board part 53b, 54b, 55b, 56b which is the shape which is twisted, respectively.
(9) In the second embodiment, the example using the intermediate wind direction plate portions 53c, 54c, 55c, and 56c in which the inclination angles θ3a, θ3b, θ3c, and θ3d are constant in the radial direction has been described. However, instead of this, intermediate wind direction plate portions 53c, 54c, 55c, and 56c that become smaller as the inclination angles θ3a, θ3b, θ3c, and θ3d go from the radially inner side to the radially outer side may be used.
 或いは、上記第2実施形態では、傾斜角θ3a、θ3b、θ3c、θ3dが径方向内側から径方向外側に向かうほど大きくなる中間風向板部53c、54c、55c、56cを用いてもよい。
 (10)上記第1、第2実施形態では、傾斜角θ1a、θ1b、θ1c、θ1dをそれぞれ同一にした例について説明した。しかし、これに代えて、傾斜角θ1a、θ1b、θ1c、θ1dのうちいずれか2つ以上の傾斜角を相違させるようにしてもよい。
 (11)上記第1、第2実施形態では、傾斜角θ2a、θ2b、θ2c、θ2dをそれぞれ同一にした例について説明した。しかし、これに代えて、傾斜角θ2a、θ2b、θ2c、θ2dのうちいずれか2つ以上の傾斜角を相違させるようにしてもよい。
 (12)上記第2実施形態では、傾斜角θ3a、θ3b、θ3c、θ3dをそれぞれ同一にした例について説明した。しかし、これに代えて、傾斜角θ3a、θ3b、θ3c、θ3dのうちいずれか2つ以上の傾斜角を相違させるようにしてもよい。
 (13)なお、本開示は上記した実施形態に限定されているものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定されている場合等を除き、その特定の数に限定されているものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定されている場合等を除き、その形状、位置関係等に限定されているものではない。
 (まとめ)/*
 上記第1~第3実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、吹出ユニットは、空調ユニットから吹き出されている空気流を制御する吹出ユニットである。
Or in the said 2nd Embodiment, you may use the intermediate | middle wind direction board part 53c, 54c, 55c, 56c from which inclination-angle (theta) 3a, (theta) 3b, (theta) 3c, (theta) 3d becomes large as it goes to radial direction outer side from radial inner side.
(10) In the first and second embodiments, examples in which the inclination angles θ1a, θ1b, θ1c, and θ1d are the same have been described. However, instead of this, any two or more of the inclination angles θ1a, θ1b, θ1c, and θ1d may be made different.
(11) In the first and second embodiments, examples in which the inclination angles θ2a, θ2b, θ2c, and θ2d are the same have been described. However, instead of this, any two or more of the inclination angles θ2a, θ2b, θ2c, and θ2d may be made different.
(12) In the second embodiment, the example in which the inclination angles θ3a, θ3b, θ3c, and θ3d are the same has been described. However, instead of this, any two or more of the inclination angles θ3a, θ3b, θ3c, and θ3d may be made different.
(13) It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except where it is. In each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the component, etc., unless specifically stated or in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.
(Summary) / *
According to the first aspect described in the first to third embodiments and part or all of the other embodiments, the blowing unit is a blowing unit that controls the air flow blown from the air conditioning unit. is there.
 吹出ユニットは、軸線を中心とする径方向に亘って形成され、かつ軸線を中心とする周方向に間隔を開けて並べられている複数の風向板を備える。 The blowout unit includes a plurality of wind direction plates that are formed in a radial direction centered on the axis and are arranged at intervals in the circumferential direction centered on the axis.
 複数の風向板のうち周方向に隣り合う2つの風向板の間には、空気流を通過させる空気通路が形成されている。 Between the two wind direction plates adjacent in the circumferential direction among the plurality of wind direction plates, an air passage through which an air flow passes is formed.
 軸線が延びる方向を軸線方向としたとき、複数の風向板は、それぞれ、軸線方向一方側から軸線方向の他方側に向かうほど周方向一方側に進むように構成されることにより、空気通路を通過する空気流を軸線を中心として旋回させるようになっている。 When the direction in which the axial line extends is defined as the axial direction, each of the plurality of wind direction plates passes through the air passage by being configured to advance from the one side in the axial direction toward the other side in the circumferential direction. The air flow to be swirled around the axis is made.
 複数の風向板は、それぞれ、径方向内側領域の第1傾斜角と径方向外側領域の第2傾斜角が互いに相違するように形成されている。 The plurality of wind direction plates are formed so that the first inclination angle of the radially inner region and the second inclination angle of the radially outer region are different from each other.
 第2の観点によれば、複数の風向板は、それぞれ、第1傾斜角よりも第2傾斜角の方が大きくなっている。 According to the second aspect, each of the plurality of wind direction plates has a second inclination angle larger than the first inclination angle.
 このため、旋回流のうち径方向内側よりも旋回流のうち径方向外側の方が、空気流の旋回に作用するエネルギが大きくなる。このため、旋回流の周辺に発生する横渦を旋回流のうち径方向外側がより一層消滅させることができる。よって、旋回流が横渦によって崩壊させて旋回流が径方向外側に拡散することをより一層防ぐことができる
 第3の観点によれば、第1傾斜角および第2傾斜角は、径方向に亘って一定角度に設定されている。
For this reason, the energy that acts on the swirling of the air flow is larger in the swirling flow on the radially outer side than on the radially inner side. For this reason, the lateral vortex generated around the swirling flow can be further extinguished on the radially outer side of the swirling flow. Therefore, it is possible to further prevent the swirling flow from being collapsed by the lateral vortex and spreading the swirling flow radially outward. According to the third aspect, the first tilt angle and the second tilt angle are set in the radial direction. A constant angle is set over the entire area.
 第4の観点によれば、複数の風向板のそれぞれにおいて、径方向内側領域および径方向外側領域の間の中間領域の傾斜角を第3傾斜角としたとき、第1傾斜角および第2傾斜角は、それぞれ、第3傾斜角よりも大きくなっている。 According to the fourth aspect, in each of the plurality of wind direction plates, when the inclination angle of the intermediate region between the radially inner region and the radially outer region is the third inclination angle, the first inclination angle and the second inclination angle Each corner is larger than the third tilt angle.
 したがって、径方向内側領域の第1傾斜角を中間領域の傾斜角の第3傾斜角よりも大きくすることにより、旋回流のうち径方向中間側よりも旋回流のうち径方向内側の方が、空気流の旋回に作用するエネルギが大きくなる。 Therefore, by making the first tilt angle of the radially inner region larger than the third tilt angle of the tilt angle of the intermediate region, the radially inner side of the swirl flow than the radially middle side of the swirl flow is The energy acting on the swirling of the air flow is increased.
 このため、旋回流のうち径方向内側を旋回流のうち径方向中間側よりも負圧にすることができるので、旋回流が径方向内側から径方向中間側に拡散することを抑制することができる。よって、旋回流の径方向内側が軸線方向に進む距離を延ばすことができる。 For this reason, since the radial inner side of the swirling flow can be set to a negative pressure than the radial intermediate side of the swirling flow, it is possible to suppress the swirling flow from diffusing from the radially inner side to the radially intermediate side. it can. Therefore, the distance traveled in the axial direction by the radially inner side of the swirling flow can be extended.
 さらに、第4の観点によれば、第1傾斜角および第2傾斜角は、それぞれ、第3傾斜角よりも大きくなっている。このため、旋回流のうち径方向中間側は、旋回流のうち径方向内側や径方向外側に比べて、空気流の旋回に作用するエネルギが小さくなる。 Furthermore, according to the fourth aspect, each of the first inclination angle and the second inclination angle is larger than the third inclination angle. For this reason, the energy that acts on the swirling of the air flow is smaller on the radially intermediate side of the swirling flow than on the radially inner side and the radially outer side of the swirling flow.
 これにより、旋回流のうち径方向中間側は、旋回流のうち径方向内側と旋回流のうち径方向外側とが打ち返しあうことを抑制する保護層の役割を果たすことができる。よって、横渦を消滅させる旋回流のうち径方向外側の機能と負圧して軸線方向に進行させる径方向内側の機能とを両立させることができる。 Thus, the radially intermediate side of the swirling flow can serve as a protective layer that suppresses the reversal of the radially inner side of the swirling flow and the radially outer side of the swirling flow. Therefore, it is possible to achieve both the radially outer function of the swirling flow that eliminates the transverse vortex and the radially inner function of moving negatively and proceeding in the axial direction.
 第5の観点によれば、複数の風向板は、それぞれ、径方向内側から径方向外側に向かうほど第1傾斜角および第2傾斜角が徐々に大きくなるように形成されている。 According to the fifth aspect, each of the plurality of wind direction plates is formed such that the first inclination angle and the second inclination angle gradually increase from the radially inner side toward the radially outer side.

Claims (5)

  1.  空調ユニット(1)から吹き出されている空気流を制御する吹出ユニットであって、
     軸線(S)を中心とする径方向に亘って形成され、かつ前記軸線を中心とする周方向に間隔を開けて並べられている複数の風向板(53~56)を備え、
     前記複数の風向板のうち前記周方向に隣り合う2つの風向板の間には、前記空気流を通過させる空気通路(57a~57d、58a~58d、59a~59d)が形成されており、
     前記軸線が延びる方向を軸線方向としたとき、前記複数の風向板は、それぞれ、前記軸線方向の一方側から前記軸線方向の他方側に向かうほど前記周方向の一方側に進むように構成されることにより、前記空気通路を通過する前記空気流を前記軸線を中心として旋回させるようになっており、
     前記複数の風向板は、それぞれ、径方向内側領域(53a、54a、55a、56a)の第1傾斜角(θ2a、θ2b、θ2c、θ2d)と径方向外側領域(53b、54b、55b、56b)の第2傾斜角(θ1a、θ1b、θ1c、θ1d)が互いに相違するように形成されている吹出ユニット。
    A blowout unit for controlling the airflow blown from the air conditioning unit (1),
    A plurality of wind direction plates (53 to 56) formed in a radial direction centered on the axis (S) and arranged at intervals in a circumferential direction centered on the axis;
    Air passages (57a to 57d, 58a to 58d, 59a to 59d) through which the air flow passes are formed between two wind direction plates adjacent in the circumferential direction among the plurality of wind direction plates.
    When the direction in which the axial line extends is defined as the axial direction, each of the plurality of wind direction plates is configured to advance to one side in the circumferential direction from one side in the axial direction toward the other side in the axial direction. Thus, the air flow passing through the air passage is swirled around the axis,
    The plurality of wind direction plates respectively include a first inclination angle (θ2a, θ2b, θ2c, θ2d) and a radially outer region (53b, 54b, 55b, 56b) of the radially inner region (53a, 54a, 55a, 56a). The blowout unit is formed so that the second inclination angles (θ1a, θ1b, θ1c, θ1d) are different from each other.
  2.  前記複数の風向板は、それぞれ、前記第1傾斜角よりも前記第2傾斜角の方が大きくなっている請求項1に記載の吹出ユニット。 The blowing unit according to claim 1, wherein each of the plurality of wind direction plates has a larger second inclination angle than the first inclination angle.
  3.  前記第1傾斜角および前記第2傾斜角は、前記径方向に亘って一定角度に設定されている請求項1に記載の吹出ユニット。 The blowing unit according to claim 1, wherein the first inclination angle and the second inclination angle are set to be constant over the radial direction.
  4.  前記複数の風向板のそれぞれにおいて、前記径方向内側領域および前記径方向外側領域の間の中間領域(53c、54c、55c、56c)の傾斜角を第3傾斜角としたとき、前記第1傾斜角および前記第2傾斜角は、それぞれ、前記第3傾斜角よりも大きくなっている請求項1に記載の吹出ユニット。 In each of the plurality of wind direction plates, when the inclination angle of the intermediate region (53c, 54c, 55c, 56c) between the radial inner region and the radial outer region is a third inclination angle, the first inclination The blowing unit according to claim 1, wherein each of the corner and the second inclination angle is larger than the third inclination angle.
  5.  前記複数の風向板は、それぞれ、径方向内側から径方向外側に向かうほど前記第1傾斜角および前記第2傾斜角が徐々に大きくなるように形成されている請求項1に記載の吹出ユニット。 The blow unit according to claim 1, wherein each of the plurality of wind direction plates is formed such that the first inclination angle and the second inclination angle gradually increase from the radially inner side toward the radially outer side.
PCT/JP2019/021582 2018-05-31 2019-05-30 Blowout unit WO2019230902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104715 2018-05-31
JP2018104715A JP2019211105A (en) 2018-05-31 2018-05-31 Discharge unit

Publications (1)

Publication Number Publication Date
WO2019230902A1 true WO2019230902A1 (en) 2019-12-05

Family

ID=68698872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021582 WO2019230902A1 (en) 2018-05-31 2019-05-30 Blowout unit

Country Status (2)

Country Link
JP (1) JP2019211105A (en)
WO (1) WO2019230902A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640751U (en) * 1992-11-11 1994-05-31 日本プラスト株式会社 Air outlet device for air conditioning
JP2006520294A (en) * 2003-03-13 2006-09-07 ベール ゲーエムベーハー ウント コー カーゲー Air spillers and accessory air spill methods especially for automobiles
JP2017526579A (en) * 2014-09-24 2017-09-14 株式会社ニフココリアNifco Korea Inc. Automotive air vent
JP2019085005A (en) * 2017-11-08 2019-06-06 株式会社Soken Air blowout device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640751U (en) * 1992-11-11 1994-05-31 日本プラスト株式会社 Air outlet device for air conditioning
JP2006520294A (en) * 2003-03-13 2006-09-07 ベール ゲーエムベーハー ウント コー カーゲー Air spillers and accessory air spill methods especially for automobiles
JP2017526579A (en) * 2014-09-24 2017-09-14 株式会社ニフココリアNifco Korea Inc. Automotive air vent
JP2019085005A (en) * 2017-11-08 2019-06-06 株式会社Soken Air blowout device

Also Published As

Publication number Publication date
JP2019211105A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP2577473B2 (en) Air conditioning air blower for automobile
JP6409440B2 (en) Air conditioner
JP4561693B2 (en) Air passage opening and closing device for vehicle air conditioner
WO2019077960A1 (en) Air conditioning device for vehicles
JP2008094251A (en) Vehicular air conditioner
WO2019077959A1 (en) Air conditioning device for vehicles
WO2020153064A1 (en) Vehicle air conditioning apparatus
JP5375721B2 (en) Air passage opening and closing device
JP2010018248A (en) Air conditioner for vehicle
JP2007152982A (en) Installation mechanism of door means for air conditioner for vehicle
WO2015115061A1 (en) Air conditioning device for vehicle
WO2019230902A1 (en) Blowout unit
JP2003226134A (en) Minus ion generator for vehicle
JP3760582B2 (en) Drive rotary shaft assembly mechanism for door means for vehicle air conditioner
JP2004338613A (en) Air conditioner for vehicle
JP7103110B2 (en) Blower for vehicles
WO2015129216A1 (en) Vehicular air conditioning device
JP2017154717A (en) Air conditioner for vehicle
JPS61188214A (en) Air-conditioner for automobile
JP6372330B2 (en) Air conditioning unit for vehicles
JP2011207279A (en) Air conditioning case
JP2003220820A (en) Vehicular air conditioner
JP2011207278A (en) Air conditioning case
JP7024545B2 (en) Vehicle air conditioner
JP2003267033A (en) Vehicular air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812193

Country of ref document: EP

Kind code of ref document: A1