WO2019230276A1 - Method for treating treatment liquid and method for treating exhaust gas - Google Patents

Method for treating treatment liquid and method for treating exhaust gas Download PDF

Info

Publication number
WO2019230276A1
WO2019230276A1 PCT/JP2019/017387 JP2019017387W WO2019230276A1 WO 2019230276 A1 WO2019230276 A1 WO 2019230276A1 JP 2019017387 W JP2019017387 W JP 2019017387W WO 2019230276 A1 WO2019230276 A1 WO 2019230276A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment liquid
exchange resin
liquid
boron
treatment
Prior art date
Application number
PCT/JP2019/017387
Other languages
French (fr)
Japanese (ja)
Inventor
健史 北島
繁 瀬良
誠一郎 藤崎
貴司 石川
Original Assignee
日本電気硝子株式会社
新日本電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, 新日本電工株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2019230276A1 publication Critical patent/WO2019230276A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces

Definitions

  • the present invention relates to a treatment liquid treatment method and an exhaust gas treatment method.
  • molten glass is produced by heating powdery or granular glass raw materials with a burner that burns gas fuel.
  • the molten glass becomes various glass articles such as a glass plate and a glass tube through a predetermined forming step.
  • the exhaust gas generated from the glass melting furnace a part of the components contained in the glass raw material is contained in a gas or fine solid state. For this reason, many components that can be recycled as a glass raw material are contained in the exhaust gas. Therefore, if the recycled material can be recovered from the exhaust gas, it can contribute to saving of the glass material. At the same time, the environment can be considered.
  • Patent Document 1 discloses that a recycled raw material containing boron is recovered from an exhaust gas of a glass melting furnace that melts a glass raw material containing boron. Specifically, wet collection, neutralization, solid-liquid separation, etc. are performed on the exhaust gas to obtain a treatment liquid (extraction liquid) containing boron, calcium and other impurities, and then the treatment liquid is distributed to the anion exchange resin. It is disclosed that impurities are removed from the treatment liquid by obtaining the boron solution containing the recycle raw material.
  • a treatment liquid extraction liquid
  • impurities are removed from the treatment liquid by obtaining the boron solution containing the recycle raw material.
  • the above treatment liquid contains, for example, boron derived from a glass raw material, and calcium is added to neutralize the treatment liquid.
  • the treatment liquid contains, for example, a halide such as chlorine (including halide ions and halide salts) as impurities.
  • a halide such as chlorine (including halide ions and halide salts) as impurities.
  • Halides are derived from fining agents and the like. Impurities are removed by passing the treatment liquid through the anion exchange resin.
  • the treatment liquid further contains nitrous acid.
  • Nitrous acid is derived from the nitrogen component of the glass raw material and / or gas fuel.
  • the anion exchange resin is likely to be deteriorated, and the resin life may be remarkably reduced. This is considered to be due to the oxidizing action of nitrous acid.
  • An object of the present invention is to extend the life of an anion exchange resin for removing impurities from a treatment liquid.
  • the present invention which was created to solve the above problems, is a removal step of removing impurities from a treatment liquid to obtain a boron solution by circulating the treatment liquid containing boron, calcium and nitrous acid through an anion exchange resin.
  • the method further comprises a reduction step of adding a reducing agent containing sulfurous acid to the treatment liquid before circulating the treatment liquid through the anion exchange resin.
  • nitrous acid contained in the treatment liquid is reduced by the reducing agent.
  • nitrous acid can be reduced from the treatment liquid before the treatment liquid is passed through the anion exchange resin. Therefore, the life of the anion exchange resin can be extended.
  • boron includes boron compounds such as boron oxide and boric acid and ions thereof.
  • calcium includes calcium compounds such as slaked lime and ions thereof.
  • nitrite includes nitrite compounds such as nitrite ions and nitrites.
  • impurities and “sulfurous acid” also include ions of each term.
  • removing impurities from the processing solution includes not only removing impurities completely but also reducing the amount thereof.
  • boron solution means a solution containing boron as a main component.
  • the sulfurous acid is preferably sulfamic acid.
  • the sulfurous acid may be sodium sulfite, sodium thiosulfate, or the like, but may react with calcium dissolved in the treatment liquid to precipitate calcium.
  • sulfamic acid hardly reacts with calcium dissolved in the treatment liquid, and can prevent precipitation of calcium. Therefore, when sulfamic acid is used, a removal facility such as a filter for removing precipitated calcium is not necessary, so that the facility cost can be reduced.
  • the reducing agent is preferably added in a pipe through which the treatment liquid flows. If it does in this way, a reducing agent will be automatically stirred by the flow of the process liquid which distribute
  • the anion exchange resin is preferably a weakly basic anion exchange resin. By doing so, it is possible to prevent boron from adsorbing to the anion exchange resin, so that the boron recovery efficiency can be increased.
  • the removing step it is preferable to distribute the treatment liquid to the cation exchange resin before the anion exchange resin.
  • the ion exchange performance of the anion exchange resin may deteriorate. Therefore, by passing the treatment liquid through the cation exchange resin before the anion exchange resin, the calcium in the treatment liquid is adsorbed on the cation exchange resin, and the calcium in the treatment liquid is removed (including reduction). It is preferable.
  • the present invention devised to solve the above problems is a method for treating exhaust gas in a glass melting furnace that melts a glass raw material containing boron, and the exhaust gas is treated by wet collection or dry collection.
  • a method for treating exhaust gas in a glass melting furnace that melts a glass raw material containing boron
  • the exhaust gas is treated by wet collection or dry collection.
  • the treatment method of the treatment liquid is not limited to the case of being incorporated in the treatment method of the exhaust gas, and can be carried out alone as a method of treating the treatment liquid.
  • the exhaust gas treatment method according to this embodiment includes a melting step, a collection step, a neutralization step, a solid-liquid separation step (extraction step), a recovery step, a removal step, and a reduction step.
  • the processing liquid processing method according to the present embodiment corresponds to the removal step and the reduction step.
  • the glass raw material a containing boron prepared so as to have a target glass composition is heated with a burner in the glass melting furnace 1 to produce a molten glass to be borosilicate glass.
  • glass articles such as a glass plate, a glass roll obtained by winding a glass ribbon into a roll, and a glass tube are produced.
  • the gas fuel for the burner it is preferable to use, for example, LPG or LNG with a low sulfur content. Moreover, it is preferable to use a glass raw material a having a low sulfur content. Furthermore, it is preferable to use oxygen combustion from the viewpoint of reducing nitrous acid in the treatment liquid described later. Alternatively, instead of or in combination with the burner, the glass raw material a may be heated with an electrode immersed in the molten glass.
  • the exhaust gas b generated from the glass melting furnace 1 contains fine solids and vaporized substances derived from the glass raw material a and the gas fuel of the burner. For this reason, the exhaust gas b contains impurities such as nitrous acid and halide derived from the glass raw material a and / or glass fuel, in addition to boron (including a boron compound) which is a recycled raw material.
  • the exhaust gas b generated from the glass melting furnace 1 is introduced into the collection device 2 to obtain a collection liquid c containing boron, nitrous acid and impurities from the exhaust gas b.
  • the exhaust gas b is cooled to, for example, 60 to 70 ° C., and boron contained in the vaporized state is precipitated.
  • the collection device 2 is a wet collection device including a spray tower 3 and a wet electrostatic precipitator 4.
  • the wet electrostatic precipitator 4 plays an auxiliary role of the spray tower 3, it may be omitted.
  • the type of the collector 2 is not particularly limited as long as it can wet-collect boron from the exhaust gas b.
  • the exhaust gas e purified by passing through the wet electrostatic precipitator 4 is discharged from the chimney 5 to the atmosphere (outside the system).
  • an alkaline neutralizing agent f containing calcium such as slaked lime is added to the collected liquid c to neutralize the acidic collected liquid c.
  • neutralization is performed so that the hydrogen ion concentration (pH) of the collection liquid c is weakly alkaline, preferably 7.5 to 12.0, more preferably 8.0 to 10.0.
  • Solid-liquid separation process In the solid-liquid separation step, the collected liquid g neutralized in the neutralization tank 6 is introduced into the solid-liquid separation device 7.
  • the collected liquid g is solid-liquid separated and separated into a filtrate h and a cake i. Therefore, the filtrate h is a processing liquid in the processing liquid processing method according to the present embodiment.
  • the calcium, nitrous acid, and impurities contained in the collected liquid g are often dissolved in the collected liquid g, and most of them are recovered as the filtrate h.
  • a part of the boron in the collection liquid g is contained undissolved.
  • a part of calcium in the collection liquid g is also included in an undissolved state. For this reason, some boron and calcium contained in the collection liquid g are collected as filtrate h, and the rest are collected as cake i. Therefore, the filtrate h contains boron, calcium, nitrous acid, and impurities (halides).
  • each of these substances may be included in the state of compounds such as ions and salts.
  • solid-liquid separator 7 examples include a filter press, centrifugal separation, and vacuum filtration, but the type is not particularly limited.
  • the dryer 8 moisture contained in the cake i is removed by drying, and a dried powdery recycled material j is obtained.
  • the obtained recycled raw material j is supplied to the glass melting furnace 1 together with the glass raw material a.
  • the cake i to be dried contains boron, boron with less impurities can be recovered by removing moisture by drying.
  • calcium can be used for a glass raw material, for example as calcium oxide, there is no problem even if it is recovered together with boron.
  • Examples of the dryer 8 include a vacuum dryer, a rotary dryer, a band dryer, and a spray dryer, but the type is not particularly limited.
  • the filtrate h which is a treatment liquid
  • the ion exchange resin tower 9 the filtrate h
  • impurities are removed from the filtrate h to obtain a boron solution k.
  • the ion exchange resin tower 9 includes a cation exchange resin 10 disposed on the upstream side (solid-liquid separator 7 side) and an anion exchange resin 11 disposed on the downstream side.
  • the cation exchange resin 10 is a strongly acidic cation exchange resin
  • the anion exchange resin 11 is a weakly basic anion exchange resin.
  • a weakly basic anion exchange resin is used, adsorption of boron in the filtrate h can be suppressed.
  • the cation exchange resin 10 calcium contained in the filtrate h is removed (including reduction), and in the anion exchange resin 11, impurities (eg, halides) contained in the filtrate h are removed (including reduction). Is done. Thereby, calcium and impurities can be removed from the filtrate h to obtain a boron solution k.
  • the obtained boron solution k is supplied as washing water to the above-described collection device 2 (spray tower 3 and / or wet electrostatic precipitator 4). In this way, since the boron concentration of the washing water is saturated or close to that state, it becomes difficult for boron to be dissolved in the collection liquid c. As a result, boron tends to remain as an undissolved substance and is easily recovered as cake i by solid-liquid separation.
  • the solid-liquid separator 7 and the cation exchange resin 10 and the cation exchange resin 10 and the anion exchange resin 11 are connected by pipes, respectively.
  • the boron solution k may contain calcium. Further, the cation exchange resin 10 may be omitted. However, if there is too much calcium, the ion exchange performance of the anion exchange resin 11 may deteriorate, so it is preferable to place the cation exchange resin 10 upstream of the anion exchange resin 11.
  • the filtrate h contains nitrous acid. Nitrous acid degrades the anion exchange resin 11 and causes a reduction in the resin life. Therefore, the exhaust gas treatment method according to the present embodiment includes a reduction step of adding a reducing agent m containing sulfurous acid to the filtrate h before the removal step. Sulfurous acid may be contained in an ionic state.
  • Reducing agent m reduces nitrous acid contained in filtrate h.
  • nitrous acid can be removed (including reduction) from the filtrate h before flowing the filtrate h through the anion exchange resin 11. Therefore, the life of the anion exchange resin 11 can be extended. Specifically, for example, the lifetime of the anion exchange resin 11 extends from 1 year to 3 years.
  • sulfurous acid contained in the reducing agent m examples include sodium sulfite, sodium thiosulfate, and sulfamic acid (also referred to as amidosulfuric acid).
  • sulfamic acid is used. Sulfamic acid does not easily react with calcium dissolved in the filtrate h, and can prevent precipitation of calcium. Therefore, when sulfamic acid is used, removal equipment such as a filter for removing precipitated calcium is not necessary, and equipment costs can be reduced.
  • the reaction of nitrite (MNO 2 ) and sulfamic acid (H 3 NSO 3 ) is represented by the following reaction formula. Nitrogen gas generated by the reaction is released from the ion exchange resin tower 9 into the atmosphere (outside the system). Further, hydrogen sulfate ions (MHSO 4 ) are removed (including reduction) by the anion exchange resin 11. MNO 2 + H 3 NSO 3 ⁇ MHSO 4 + N 2 + H 2 O Where M is a monovalent cation
  • the amount of sulfamic acid added is appropriately adjusted according to the concentration of nitrite. If the concentration of nitrite is about 1000 ppm, the amount of sulfamic acid added can be 100 ppm to 1000 ppm. In order to increase the reaction rate by adding sulfamic acid in excess, the amount of sulfamic acid added may be over 1000 ppm, and is preferably 5000 ppm or more. Since the improvement in the reaction rate due to excessive addition is saturated, the amount of sulfamic acid added is preferably 15000 ppm or less.
  • the reducing agent m is added in the pipe from the solid-liquid separator 7 to the cation exchange resin 10. Thereby, the reducing agent m is automatically stirred by the flow of the filtrate h that circulates in the pipe. As a result, since it is not necessary to provide a separate stirring facility, the facility cost can be reduced.
  • the reaction between nitrite and sulfamic acid tends to occur in an acidic environment.
  • a halide for example, chlorine
  • the pH of the filtrate h decreases and becomes acidic. Therefore, it is considered that the reaction between nitrite and sulfamic acid mainly occurs on the downstream side of the cation exchange resin 10, that is, between the cation exchange resin 10 and the anion exchange resin 11.
  • the reaction between nitrite and sulfamic acid proceeds slowly even upstream of the cation exchange resin 10.
  • the addition position and addition method of the reducing agent m are not particularly limited as long as they are upstream of the anion exchange resin 11.
  • the reducing agent m may be added in a pipe from the cation exchange resin 10 to the anion exchange resin 11.
  • a tank for temporarily storing the filtrate h and the reducing agent m may be provided on the upstream side of the anion exchange resin 11, and stirring equipment such as stirring blades may be provided in the tank.
  • the present invention is not limited to the above embodiment, and is not limited to the above-described effects.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the boron solution obtained in the removing step is supplied to the collecting means.
  • the boron solution may be mixed with the cake obtained by solid-liquid separation (for example, Patent Documents). 1 and FIG. 2).
  • the moisture in the mixture of the boron solution and the cake may be directly removed by drying with a spray dryer or the like, or the moisture in the cake obtained by solid-liquid separation of the mixture again is dried under reduced pressure. It may be removed by drying with a machine.
  • the solid-liquid separation may be performed a plurality of times.
  • the filtrate obtained in each solid-liquid separation is supplied to the ion exchange resin tower, and the boron solution obtained in each ion-exchange resin tower is mixed with the cake obtained in each solid-liquid separation. You may make it (for example, the structure of FIG. 2 of patent document 1).
  • boron may be dry-collected from exhaust gas.
  • the dry collection means include those provided with a cooling tower and a bag filter.
  • the collected matter since the collected matter becomes collected powder, for example, it is preferably mixed with a liquid component (for example, pure water or a boron solution obtained in the removal step) before solid-liquid separation (for example, the configuration of FIG.

Abstract

This method for treating a treatment liquid comprises a removal step for removing impurities from a filtrate h to obtain a boron solution k, by circulating, through an anion exchange resin 11, the filtrate h as a treatment liquid containing boron, calcium, and a nitrous acid. Furthermore, this method for treating a treatment liquid comprises, prior to the removal step, a reduction step in which a reducing agent m containing a sulfamic acid is added to the filtrate h.

Description

処理液の処理方法および排ガスの処理方法Treatment liquid treatment method and exhaust gas treatment method
 本発明は、処理液の処理方法および排ガスの処理方法に関する。 The present invention relates to a treatment liquid treatment method and an exhaust gas treatment method.
 ガラス溶融炉では、粉状又は粒状のガラス原料を、ガス燃料を燃焼させるバーナーなどによって加熱することにより溶融ガラスを製造する。この溶融ガラスは、所定の成形工程を経て、ガラス板やガラス管などの種々のガラス物品になる。 In a glass melting furnace, molten glass is produced by heating powdery or granular glass raw materials with a burner that burns gas fuel. The molten glass becomes various glass articles such as a glass plate and a glass tube through a predetermined forming step.
 この際、ガラス溶融炉から発生する排ガス中には、ガラス原料中に含まれる成分の一部が気体又は微小固体の状態で含まれる。このため、排ガス中には、ガラス原料としてリサイクルできる成分も多く含まれている。したがって、排ガスからリサイクル原料を回収することができれば、ガラス原料の節約にも寄与し得る。また同時に環境にも配慮することができる。 At this time, in the exhaust gas generated from the glass melting furnace, a part of the components contained in the glass raw material is contained in a gas or fine solid state. For this reason, many components that can be recycled as a glass raw material are contained in the exhaust gas. Therefore, if the recycled material can be recovered from the exhaust gas, it can contribute to saving of the glass material. At the same time, the environment can be considered.
 このような方法の一つとして、例えば、特許文献1では、ホウ素を含むガラス原料を溶融するガラス溶融炉の排ガスからホウ素を含むリサイクル原料を回収することが開示されている。詳細には、排ガスに湿式捕集、中和、固液分離などを施し、ホウ素、カルシウム、その他の不純物を含む処理液(抽出液体)を得た後に、その処理液を陰イオン交換樹脂に流通させることにより、処理液から不純物を除去して、リサイクル原料を含むホウ素溶液を得ることが開示されている。 As one of such methods, for example, Patent Document 1 discloses that a recycled raw material containing boron is recovered from an exhaust gas of a glass melting furnace that melts a glass raw material containing boron. Specifically, wet collection, neutralization, solid-liquid separation, etc. are performed on the exhaust gas to obtain a treatment liquid (extraction liquid) containing boron, calcium and other impurities, and then the treatment liquid is distributed to the anion exchange resin. It is disclosed that impurities are removed from the treatment liquid by obtaining the boron solution containing the recycle raw material.
特開2013-180284号公報JP 2013-180284 A
 上記の処理液には、例えば、ガラス原料由来のホウ素が含まれ、処理液を中和するためにカルシウムが添加されている。 The above treatment liquid contains, for example, boron derived from a glass raw material, and calcium is added to neutralize the treatment liquid.
 また、上記の処理液には、例えば、塩素などのハロゲン化物(ハロゲン化物イオンやハロゲン化物塩を含む)などが不純物として含まれる。ハロゲン化物は清澄剤等に由来する。不純物は、処理液を陰イオン交換樹脂に流通させることによって除去される。 In addition, the treatment liquid contains, for example, a halide such as chlorine (including halide ions and halide salts) as impurities. Halides are derived from fining agents and the like. Impurities are removed by passing the treatment liquid through the anion exchange resin.
 処理液には、亜硝酸がさらに含まれる。亜硝酸はガラス原料及び/又はガス燃料の窒素成分に由来する。亜硝酸が処理液に含まれていると、陰イオン交換樹脂を劣化させやすく、樹脂寿命が著しく低下する場合がある。これは、亜硝酸の酸化作用によるものと考えられる。 The treatment liquid further contains nitrous acid. Nitrous acid is derived from the nitrogen component of the glass raw material and / or gas fuel. When nitrous acid is contained in the treatment liquid, the anion exchange resin is likely to be deteriorated, and the resin life may be remarkably reduced. This is considered to be due to the oxidizing action of nitrous acid.
 本発明は、処理液から不純物を除去するための陰イオン交換樹脂の長寿命化を図ることを課題とする。 An object of the present invention is to extend the life of an anion exchange resin for removing impurities from a treatment liquid.
 上記の課題を解決するために創案された本発明は、ホウ素、カルシウム及び亜硝酸を含む処理液を陰イオン交換樹脂に流通させることにより、処理液から不純物を除去してホウ素溶液を得る除去工程を備えた処理液の処理方法であって、処理液を陰イオン交換樹脂に流通させる前に、処理液に亜硫酸を含む還元剤を添加する還元工程を更に備えることを特徴とする。このような構成によれば、処理液に含まれる亜硝酸が還元剤によって還元される。その結果、陰イオン交換樹脂に処理液を流通させる前に、処理液から亜硝酸を減少させることができる。従って、陰イオン交換樹脂の長寿命化を図ることができる。ここで、「ホウ素」という用語には、酸化ホウ素やホウ酸といったホウ素化合物やそれらのイオンも含まれる。また、「カルシウム」という用語には、消石灰といったカルシウム化合物やそれらのイオンも含まれる。「亜硝酸」という用語には、亜硝酸イオンや亜硝酸塩といった亜硝酸化合物が含まれる。「不純物」、「亜硫酸」という用語には、各用語のイオンも含まれる。「処理液から不純物を除去する」という用語には、不純物を完全に取り除く場合の他、その量を低減する場合も含まれる。「ホウ素溶液」という用語は、ホウ素を主成分として含む溶液という意味である。 The present invention, which was created to solve the above problems, is a removal step of removing impurities from a treatment liquid to obtain a boron solution by circulating the treatment liquid containing boron, calcium and nitrous acid through an anion exchange resin. The method further comprises a reduction step of adding a reducing agent containing sulfurous acid to the treatment liquid before circulating the treatment liquid through the anion exchange resin. According to such a configuration, nitrous acid contained in the treatment liquid is reduced by the reducing agent. As a result, nitrous acid can be reduced from the treatment liquid before the treatment liquid is passed through the anion exchange resin. Therefore, the life of the anion exchange resin can be extended. Here, the term “boron” includes boron compounds such as boron oxide and boric acid and ions thereof. Further, the term “calcium” includes calcium compounds such as slaked lime and ions thereof. The term “nitrite” includes nitrite compounds such as nitrite ions and nitrites. The terms “impurities” and “sulfurous acid” also include ions of each term. The term “removing impurities from the processing solution” includes not only removing impurities completely but also reducing the amount thereof. The term “boron solution” means a solution containing boron as a main component.
 上記の構成において、亜硫酸が、スルファミン酸であることが好ましい。亜硫酸は、亜硫酸ナトリウムやチオ硫酸ナトリウムなどであってもよいが、処理液に溶解しているカルシウムと反応し、カルシウムが沈殿する場合がある。これに対し、スルファミン酸は、処理液に溶解しているカルシウムと反応しにくく、カルシウムの沈殿を防止することができる。従って、スルファミン酸を用いた場合、沈殿したカルシウムを除去するフィルターなどの除去設備が不要となるため、設備コストを低減することができる。 In the above configuration, the sulfurous acid is preferably sulfamic acid. The sulfurous acid may be sodium sulfite, sodium thiosulfate, or the like, but may react with calcium dissolved in the treatment liquid to precipitate calcium. On the other hand, sulfamic acid hardly reacts with calcium dissolved in the treatment liquid, and can prevent precipitation of calcium. Therefore, when sulfamic acid is used, a removal facility such as a filter for removing precipitated calcium is not necessary, so that the facility cost can be reduced.
 上記の構成において、還元剤は、処理液が流通する配管内で添加することが好ましい。このようにすれば、還元剤が配管内を流通する処理液の流れによって自動的に撹拌される。従って、撹拌羽根などの撹拌設備が不要となるため、設備コストを低減することができる。 In the above configuration, the reducing agent is preferably added in a pipe through which the treatment liquid flows. If it does in this way, a reducing agent will be automatically stirred by the flow of the process liquid which distribute | circulates the inside of piping. Therefore, since the agitation equipment such as the agitation blade is not necessary, the equipment cost can be reduced.
 上記の構成において、陰イオン交換樹脂が、弱塩基性陰イオン交換樹脂であることが好ましい。このようにすれば、陰イオン交換樹脂にホウ素が吸着するのを防止することができるため、ホウ素の回収効率を上げることができる。 In the above configuration, the anion exchange resin is preferably a weakly basic anion exchange resin. By doing so, it is possible to prevent boron from adsorbing to the anion exchange resin, so that the boron recovery efficiency can be increased.
 上記の構成において、除去工程では、陰イオン交換樹脂の前に、処理液を陽イオン交換樹脂に流通させることが好ましい。処理液に含まれるカルシウムが多すぎると、陰イオン交換樹脂のイオン交換性能が低下する場合がある。従って、陰イオン交換樹脂の前に、処理液を陽イオン交換樹脂に流通させることにより、処理液中のカルシウムを陽イオン交換樹脂に吸着させ、処理液中のカルシウムを除去(低減を含む)することが好ましい。 In the above configuration, in the removing step, it is preferable to distribute the treatment liquid to the cation exchange resin before the anion exchange resin. When there is too much calcium contained in the treatment liquid, the ion exchange performance of the anion exchange resin may deteriorate. Therefore, by passing the treatment liquid through the cation exchange resin before the anion exchange resin, the calcium in the treatment liquid is adsorbed on the cation exchange resin, and the calcium in the treatment liquid is removed (including reduction). It is preferable.
 上記の課題を解決するために創案された本発明は、ホウ素を含むガラス原料を溶融するガラス溶融炉の排ガスの処理方法であって、排ガスに湿式捕集又は乾式捕集を施すことにより、排ガスからホウ素及び亜硝酸を含む捕集物を得る捕集工程と、捕集物にカルシウムを含む中和剤を添加する中和工程と、中和工程を経た捕集物を固液分離することにより、処理液を得る固液分離工程と、上記の構成を適宜備えた方法により、処理液を処理してホウ素溶液を得る処理工程とを備えていることを特徴とする。このような構成によれば、排ガスから高濃度のホウ素を回収可能なホウ素溶液を効率よく得ることができると共に、既に述べた理由から、陰イオン交換樹脂の長寿命化を図ることができる。 The present invention devised to solve the above problems is a method for treating exhaust gas in a glass melting furnace that melts a glass raw material containing boron, and the exhaust gas is treated by wet collection or dry collection. By collecting the collected material containing boron and nitrous acid from the solid, separating the collected material after the neutralizing step by solid-liquid separation, adding the neutralizing agent containing calcium to the collected material And a solid-liquid separation step for obtaining a treatment liquid, and a treatment step for treating the treatment liquid to obtain a boron solution by a method having the above-described configuration as appropriate. According to such a configuration, it is possible to efficiently obtain a boron solution capable of recovering a high concentration of boron from exhaust gas, and to extend the life of the anion exchange resin for the reasons already described.
 本発明によれば、処理液から不純物を除去する陰イオン交換樹脂の長寿命化を図ることができる。 According to the present invention, it is possible to extend the life of the anion exchange resin that removes impurities from the treatment liquid.
実施形態に係る排ガスの処理方法のフロー図である。It is a flowchart of the processing method of the waste gas concerning an embodiment.
 以下、排ガスの処理方法の実施形態を添付図面に基づいて説明する。なお、以下の排ガスの処理方法の実施形態の中で、処理液の処理方法の実施形態についても説明する。もちろん、処理液の処理方法は、排ガスの処理方法に組み込まれる場合に限定されるものではなく、処理液を処理する方法として単独で実施することもできる。 Hereinafter, an embodiment of an exhaust gas treatment method will be described with reference to the accompanying drawings. In the following embodiments of the exhaust gas treatment method, embodiments of the treatment liquid treatment method will also be described. Of course, the treatment method of the treatment liquid is not limited to the case of being incorporated in the treatment method of the exhaust gas, and can be carried out alone as a method of treating the treatment liquid.
 図1に示すように、本実施形態に係る排ガスの処理方法は、溶融工程、捕集工程、中和工程、固液分離工程(抽出工程)、回収工程、除去工程、還元工程を含む。このうち、本実施形態に係る処理液の処理方法は、除去工程と還元工程に相当する部分である。 As shown in FIG. 1, the exhaust gas treatment method according to this embodiment includes a melting step, a collection step, a neutralization step, a solid-liquid separation step (extraction step), a recovery step, a removal step, and a reduction step. Among these, the processing liquid processing method according to the present embodiment corresponds to the removal step and the reduction step.
(溶融工程)
 溶融工程では、ガラス溶融炉1で、目的のガラス組成となるように調製されたホウ素を含むガラス原料aをバーナーで加熱し、ホウ珪酸ガラスとなる溶融ガラスを製造する。溶融ガラスからは、ガラス板、ガラスリボンをロール状に巻き取ったガラスロール、ガラス管などのガラス物品が製造される。
(Melting process)
In the melting step, the glass raw material a containing boron prepared so as to have a target glass composition is heated with a burner in the glass melting furnace 1 to produce a molten glass to be borosilicate glass. From the molten glass, glass articles such as a glass plate, a glass roll obtained by winding a glass ribbon into a roll, and a glass tube are produced.
 バーナーのガス燃料としては、例えば、硫黄分の少ないLPGやLNGを用いることが好ましい。また、ガラス原料aも、硫黄分の少ないものを用いることが好ましい。更に、後述する処理液中の亜硝酸を低減する観点からは、酸素燃焼を用いることが好ましい。あるいは、バーナーに代えて又はこれと併用して、ガラス原料aを溶融ガラス中に浸漬された電極で通電加熱してもよい。 As the gas fuel for the burner, it is preferable to use, for example, LPG or LNG with a low sulfur content. Moreover, it is preferable to use a glass raw material a having a low sulfur content. Furthermore, it is preferable to use oxygen combustion from the viewpoint of reducing nitrous acid in the treatment liquid described later. Alternatively, instead of or in combination with the burner, the glass raw material a may be heated with an electrode immersed in the molten glass.
 ガラス溶融炉1から発生する排ガスb中には、ガラス原料aやバーナーのガス燃料に由来する微小固体や気化物質が含まれる。このため、排ガスbは、リサイクル原料であるホウ素(ホウ素化合物を含む)以外にも、ガラス原料a及び/又はガラス燃料に由来する、亜硝酸、ハロゲン化物などの不純物を含んでいる。 The exhaust gas b generated from the glass melting furnace 1 contains fine solids and vaporized substances derived from the glass raw material a and the gas fuel of the burner. For this reason, the exhaust gas b contains impurities such as nitrous acid and halide derived from the glass raw material a and / or glass fuel, in addition to boron (including a boron compound) which is a recycled raw material.
(捕集工程)
 捕集工程では、ガラス溶融炉1から発生する排ガスbを捕集装置2へと導入し、排ガスbからホウ素、亜硝酸及び不純物を含む捕集液cを得る。
(Collection process)
In the collection step, the exhaust gas b generated from the glass melting furnace 1 is introduced into the collection device 2 to obtain a collection liquid c containing boron, nitrous acid and impurities from the exhaust gas b.
 捕集装置2では、排ガスbを例えば60~70℃まで冷却し、排ガスb中に気化した状態で含まれるホウ素を析出させる。 In the collection device 2, the exhaust gas b is cooled to, for example, 60 to 70 ° C., and boron contained in the vaporized state is precipitated.
 捕集装置2は、本実施形態では、スプレー塔3と湿式電気集塵機4とを備えた湿式の捕集装置である。なお、湿式電気集塵機4は、スプレー塔3の補助的な役割を果たすものであるため省略してもよい。捕集装置2は、排ガスbからホウ素を湿式捕集できるものであれば、その種類は特に限定されない。 In the present embodiment, the collection device 2 is a wet collection device including a spray tower 3 and a wet electrostatic precipitator 4. In addition, since the wet electrostatic precipitator 4 plays an auxiliary role of the spray tower 3, it may be omitted. The type of the collector 2 is not particularly limited as long as it can wet-collect boron from the exhaust gas b.
 排ガスbに含まれるホウ素(微小固体や気化物質)は、スプレー塔3内に噴霧された洗浄水と接触することによって冷却されて析出し、捕集液cとして捕集される。スプレー塔3を通過した排ガスdに残留するホウ素も、湿式電気集塵機4の洗浄水と接触することにより、捕集液cとして捕集される。これら捕集液cが捕集物となる。捕集装置2でホウ素を捕集するのに伴い、排ガスbに含まれる亜硝酸や不純物も捕集液cとして捕集される。ここで、スプレー塔3及び湿式電気集塵機4の洗浄水には、ホウ素を含む洗浄水が用いられるので、捕集液cのホウ素濃度は飽和又はそれに近い状態となる。このため、捕集液cに含まれるホウ素の一部は未溶解となる。 Boron (micro solids or vaporized substances) contained in the exhaust gas b is cooled and deposited by contacting with the washing water sprayed in the spray tower 3 and collected as a collection liquid c. Boron remaining in the exhaust gas d that has passed through the spray tower 3 is also collected as the collected liquid c by contacting with the washing water of the wet electrostatic precipitator 4. These collected liquids c become collected matter. As boron is collected by the collection device 2, nitrous acid and impurities contained in the exhaust gas b are also collected as the collection liquid c. Here, since the washing water containing boron is used as the washing water for the spray tower 3 and the wet electrostatic precipitator 4, the boron concentration of the collection liquid c is saturated or close to that. For this reason, a part of boron contained in the collection liquid c becomes undissolved.
 湿式電気集塵機4を通過して清浄化された排ガスeは、煙突5から大気中(系外)に放出される。 The exhaust gas e purified by passing through the wet electrostatic precipitator 4 is discharged from the chimney 5 to the atmosphere (outside the system).
(中和工程)
 中和工程では、スプレー塔3及び湿式電気集塵機4で捕集した捕集液cを中和槽6に導入する。
(Neutralization process)
In the neutralization step, the collection liquid c collected by the spray tower 3 and the wet electric dust collector 4 is introduced into the neutralization tank 6.
 中和槽6では、捕集液cに消石灰等のカルシウムを含むアルカリ性の中和剤fを添加し、酸性を示す捕集液cを中和する。具体的には、捕集液cの水素イオン濃度(pH)が、好ましくは7.5~12.0、より好ましくは8.0~10.0の弱アルカリ性になるように中和する。これにより、後工程における配管等の酸による腐食を防止すると共に、捕集液c中のホウ素の溶解度を下げてその回収効率を高めることができる。 In the neutralization tank 6, an alkaline neutralizing agent f containing calcium such as slaked lime is added to the collected liquid c to neutralize the acidic collected liquid c. Specifically, neutralization is performed so that the hydrogen ion concentration (pH) of the collection liquid c is weakly alkaline, preferably 7.5 to 12.0, more preferably 8.0 to 10.0. Thereby, while preventing the corrosion by piping etc. in a post process, the solubility of the boron in the collection liquid c can be lowered | hung and the collection | recovery efficiency can be raised.
(固液分離工程)
 固液分離工程では、中和槽6で中和された捕集液gを、固液分離装置7に導入する。
(Solid-liquid separation process)
In the solid-liquid separation step, the collected liquid g neutralized in the neutralization tank 6 is introduced into the solid-liquid separation device 7.
 固液分離装置7では、捕集液gが固液分離され、ろ液hとケーキiとに分けられる。従って、ろ液hが、本実施形態に係る処理液の処理方法における処理液である。 In the solid-liquid separation device 7, the collected liquid g is solid-liquid separated and separated into a filtrate h and a cake i. Therefore, the filtrate h is a processing liquid in the processing liquid processing method according to the present embodiment.
 捕集液gに含まれるカルシウムや亜硝酸、不純物は、捕集液gに溶解している場合が多く、そのほとんどがろ液hとして回収される。一方、捕集液gのホウ素は、前述の通り、その一部が未溶解で含まれる。また、捕集液gのカルシウムも、その一部が未溶解で含まれる。このため、捕集液gに含まれるホウ素及びカルシウムのうち、一部はろ液hとして回収され、残りはケーキiとして回収される。従って、ろ液hには、ホウ素やカルシウム、亜硝酸、不純物(ハロゲン化物)が含まれる。なお、これらの各物質は、イオンや塩などの化合物の状態で含まれていてもよい。 The calcium, nitrous acid, and impurities contained in the collected liquid g are often dissolved in the collected liquid g, and most of them are recovered as the filtrate h. On the other hand, as described above, a part of the boron in the collection liquid g is contained undissolved. Further, a part of calcium in the collection liquid g is also included in an undissolved state. For this reason, some boron and calcium contained in the collection liquid g are collected as filtrate h, and the rest are collected as cake i. Therefore, the filtrate h contains boron, calcium, nitrous acid, and impurities (halides). In addition, each of these substances may be included in the state of compounds such as ions and salts.
 固液分離装置7としては、例えば、フィルタープレス、遠心分離、減圧ろ過などが挙げられるが、その種類は特に限定されない。 Examples of the solid-liquid separator 7 include a filter press, centrifugal separation, and vacuum filtration, but the type is not particularly limited.
(回収工程)
 回収工程では、回収手段としての乾燥機8にケーキiを導入し、ケーキiからリサイクル原料jを回収する。
(Recovery process)
In the recovery process, the cake i is introduced into the dryer 8 as a recovery means, and the recycled material j is recovered from the cake i.
 乾燥機8では、ケーキi中に含まれる水分を乾燥除去し、乾燥した粉末状のリサイクル原料jが得られる。得られたリサイクル原料jは、ガラス原料aと共にガラス溶融炉1に供給される。 In the dryer 8, moisture contained in the cake i is removed by drying, and a dried powdery recycled material j is obtained. The obtained recycled raw material j is supplied to the glass melting furnace 1 together with the glass raw material a.
 ここで、乾燥対象となるケーキiには、ホウ素が含まれるため、乾燥により水分を除去すれば、不純物の少ないホウ素を回収することができる。また、カルシウムは、例えば、酸化カルシウムとしてガラス原料に使用できるため、ホウ素と一緒に回収されても問題はない。もちろん、カルシウムが回収されないように、ケーキi(又はリサイクル原料j)に対して、カルシウムの除去処理を行ってもよい。 Here, since the cake i to be dried contains boron, boron with less impurities can be recovered by removing moisture by drying. Moreover, since calcium can be used for a glass raw material, for example as calcium oxide, there is no problem even if it is recovered together with boron. Of course, you may perform the removal process of calcium with respect to the cake i (or recycling raw material j) so that calcium may not be collect | recovered.
 乾燥機8としては、例えば、減圧乾燥機、ロータリードライヤー、バンド乾燥機、スプレードライヤーなどが挙げられるが、その種類は特に限定されない。 Examples of the dryer 8 include a vacuum dryer, a rotary dryer, a band dryer, and a spray dryer, but the type is not particularly limited.
(除去工程)
 除去工程では、処理液である、ろ液hをイオン交換樹脂塔9に導入し、ろ液hから不純物を除去してホウ素溶液kを得る。
(Removal process)
In the removal step, the filtrate h, which is a treatment liquid, is introduced into the ion exchange resin tower 9, and impurities are removed from the filtrate h to obtain a boron solution k.
 イオン交換樹脂塔9は、上流側(固液分離装置7側)に配置された陽イオン交換樹脂10と、下流側に配置された陰イオン交換樹脂11とを備えている。例えば、陽イオン交換樹脂10は強酸性陽イオン交換樹脂であり、陰イオン交換樹脂11は弱塩基性陰イオン交換樹脂である。弱塩基性陰イオン交換樹脂を用いると、ろ液h中のホウ素の吸着を抑えることができる。 The ion exchange resin tower 9 includes a cation exchange resin 10 disposed on the upstream side (solid-liquid separator 7 side) and an anion exchange resin 11 disposed on the downstream side. For example, the cation exchange resin 10 is a strongly acidic cation exchange resin, and the anion exchange resin 11 is a weakly basic anion exchange resin. When a weakly basic anion exchange resin is used, adsorption of boron in the filtrate h can be suppressed.
 陽イオン交換樹脂10では、ろ液hに含まれるカルシウムが除去(低減を含む)され、陰イオン交換樹脂11では、ろ液hに含まれる不純物(例えば、ハロゲン化物)が除去(低減を含む)される。これにより、ろ液hからカルシウム及び不純物を除去して、ホウ素溶液kを得ることができる。得られたホウ素溶液kは、上述の捕集装置2(スプレー塔3及び/又は湿式電気集塵機4)に洗浄水として供給される。このようにすれば、洗浄水のホウ素濃度が飽和又はそれに近い状態となるので、捕集液c中でホウ素が溶解しにくくなる。その結果、ホウ素が未溶解物として残存しやすくなり、固液分離によってケーキiとして回収しやすくなる。 In the cation exchange resin 10, calcium contained in the filtrate h is removed (including reduction), and in the anion exchange resin 11, impurities (eg, halides) contained in the filtrate h are removed (including reduction). Is done. Thereby, calcium and impurities can be removed from the filtrate h to obtain a boron solution k. The obtained boron solution k is supplied as washing water to the above-described collection device 2 (spray tower 3 and / or wet electrostatic precipitator 4). In this way, since the boron concentration of the washing water is saturated or close to that state, it becomes difficult for boron to be dissolved in the collection liquid c. As a result, boron tends to remain as an undissolved substance and is easily recovered as cake i by solid-liquid separation.
 固液分離装置7と陽イオン交換樹脂10の間、および、陽イオン交換樹脂10と陰イオン交換樹脂11の間は、それぞれ配管で接続されている。 The solid-liquid separator 7 and the cation exchange resin 10 and the cation exchange resin 10 and the anion exchange resin 11 are connected by pipes, respectively.
 なお、ホウ素溶液kは、カルシウムを含んでいてもよい。また、陽イオン交換樹脂10は省略してもよい。ただし、カルシウムが多すぎると、陰イオン交換樹脂11のイオン交換性能が低下する場合があるため、陰イオン交換樹脂11の上流側に陽イオン交換樹脂10を配置することが好ましい。 Note that the boron solution k may contain calcium. Further, the cation exchange resin 10 may be omitted. However, if there is too much calcium, the ion exchange performance of the anion exchange resin 11 may deteriorate, so it is preferable to place the cation exchange resin 10 upstream of the anion exchange resin 11.
(還元工程)
 ここで、ろ液hは、亜硝酸を含む。亜硝酸は陰イオン交換樹脂11を劣化させて樹脂寿命を低下させる原因となる。そこで、本実施形態に係る排ガスの処理方法は、除去工程の前に、ろ液hに亜硫酸を含む還元剤mを添加する還元工程を含む。亜硫酸は、イオンの状態で含まれていてもよい。
(Reduction process)
Here, the filtrate h contains nitrous acid. Nitrous acid degrades the anion exchange resin 11 and causes a reduction in the resin life. Therefore, the exhaust gas treatment method according to the present embodiment includes a reduction step of adding a reducing agent m containing sulfurous acid to the filtrate h before the removal step. Sulfurous acid may be contained in an ionic state.
 還元剤mは、ろ液hに含まれる亜硝酸を還元する。その結果、陰イオン交換樹脂11にろ液hを流通させる前に、ろ液hから亜硝酸を除去(低減を含む)することができる。従って、陰イオン交換樹脂11の長寿命化を図ることができる。具体的には、例えば、陰イオン交換樹脂11の寿命が1年から3年に延びる。 Reducing agent m reduces nitrous acid contained in filtrate h. As a result, nitrous acid can be removed (including reduction) from the filtrate h before flowing the filtrate h through the anion exchange resin 11. Therefore, the life of the anion exchange resin 11 can be extended. Specifically, for example, the lifetime of the anion exchange resin 11 extends from 1 year to 3 years.
 還元剤mに含まれる亜硫酸としては、例えば、亜硫酸ナトリウム、チオ硫酸ナトリウム、スルファミン酸(アミド硫酸ともいう)などが挙げられるが、本実施形態ではスルファミン酸が用いられる。スルファミン酸は、ろ液hに溶解しているカルシウムと反応しにくく、カルシウムの沈殿を防止することができる。従って、スルファミン酸を用いた場合、沈殿したカルシウムを除去するフィルターなどの除去設備が不要となり、設備コストを低減することができる。 Examples of sulfurous acid contained in the reducing agent m include sodium sulfite, sodium thiosulfate, and sulfamic acid (also referred to as amidosulfuric acid). In this embodiment, sulfamic acid is used. Sulfamic acid does not easily react with calcium dissolved in the filtrate h, and can prevent precipitation of calcium. Therefore, when sulfamic acid is used, removal equipment such as a filter for removing precipitated calcium is not necessary, and equipment costs can be reduced.
 亜硝酸塩(MNO2)とスルファミン酸(H3NSO3)の反応は、下記の反応式で表される。反応により発生した窒素ガスは、イオン交換樹脂塔9から大気中(系外)に放出される。また、硫酸水素イオン(MHSO4)は、陰イオン交換樹脂11によって除去(低減を含む)される。
   MNO2+H3NSO3→MHSO4+N2+H2
    ただし、Mは一価の陽イオン
The reaction of nitrite (MNO 2 ) and sulfamic acid (H 3 NSO 3 ) is represented by the following reaction formula. Nitrogen gas generated by the reaction is released from the ion exchange resin tower 9 into the atmosphere (outside the system). Further, hydrogen sulfate ions (MHSO 4 ) are removed (including reduction) by the anion exchange resin 11.
MNO 2 + H 3 NSO 3 → MHSO 4 + N 2 + H 2 O
Where M is a monovalent cation
 スルファミン酸の添加量は、亜硝酸塩の濃度によって適宜調整される。亜硝酸塩の濃度が1000ppm程度であれば、スルファミン酸の添加量は、100ppm~1000ppmとすることができる。スルファミン酸を過剰添加して反応速度を高めるために、スルファミン酸の添加量を1000ppm超としてもよく、5000ppm以上とすることが好ましい。過剰添加による反応速度の向上が飽和するので、スルファミン酸の添加量を15000ppm以下とすることが好ましい。 The amount of sulfamic acid added is appropriately adjusted according to the concentration of nitrite. If the concentration of nitrite is about 1000 ppm, the amount of sulfamic acid added can be 100 ppm to 1000 ppm. In order to increase the reaction rate by adding sulfamic acid in excess, the amount of sulfamic acid added may be over 1000 ppm, and is preferably 5000 ppm or more. Since the improvement in the reaction rate due to excessive addition is saturated, the amount of sulfamic acid added is preferably 15000 ppm or less.
 本実施形態では、固液分離装置7から陽イオン交換樹脂10へ至る配管内で、還元剤mが添加される。これにより、還元剤mが配管内を流通する、ろ液hの流れによって自動的に撹拌される。その結果、撹拌設備を別途設なくてもよいため、設備コストを低減することができる。 In this embodiment, the reducing agent m is added in the pipe from the solid-liquid separator 7 to the cation exchange resin 10. Thereby, the reducing agent m is automatically stirred by the flow of the filtrate h that circulates in the pipe. As a result, since it is not necessary to provide a separate stirring facility, the facility cost can be reduced.
 ここで、亜硝酸塩とスルファミン酸の反応は、酸性環境下で生じやすい。陽イオン交換樹脂10でカルシウムを除去した後、ハロゲン化物(例えば塩素)が残るため、ろ液hのpHが下がって酸性になる。従って、亜硝酸塩とスルファミン酸の反応は、主に陽イオン交換樹脂10の下流側、すなわち、陽イオン交換樹脂10と陰イオン交換樹脂11との間で生じると考えられる。ただし、亜硝酸塩とスルファミン酸の反応は、陽イオン交換樹脂10の上流側でもゆっくりと進むと考えられる。 Here, the reaction between nitrite and sulfamic acid tends to occur in an acidic environment. After removing calcium with the cation exchange resin 10, since a halide (for example, chlorine) remains, the pH of the filtrate h decreases and becomes acidic. Therefore, it is considered that the reaction between nitrite and sulfamic acid mainly occurs on the downstream side of the cation exchange resin 10, that is, between the cation exchange resin 10 and the anion exchange resin 11. However, it is considered that the reaction between nitrite and sulfamic acid proceeds slowly even upstream of the cation exchange resin 10.
 なお、還元剤mの添加位置や添加方法は、陰イオン交換樹脂11の上流側であれば、特に限定されない。例えば、陽イオン交換樹脂10から陰イオン交換樹脂11へ至る配管内で、還元剤mを添加してもよい。また、陰イオン交換樹脂11の上流側に、ろ液hと還元剤mを一時的に貯留するタンクを設け、タンク内に撹拌羽根などの撹拌設備を設けてもよい。 Note that the addition position and addition method of the reducing agent m are not particularly limited as long as they are upstream of the anion exchange resin 11. For example, the reducing agent m may be added in a pipe from the cation exchange resin 10 to the anion exchange resin 11. Further, a tank for temporarily storing the filtrate h and the reducing agent m may be provided on the upstream side of the anion exchange resin 11, and stirring equipment such as stirring blades may be provided in the tank.
 本発明は、上記の実施形態に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the above embodiment, and is not limited to the above-described effects. The present invention can be variously modified without departing from the gist of the present invention.
 上記の実施形態では、除去工程で得られたホウ素溶液を、捕集手段に供給する場合を説明したが、ホウ素溶液を固液分離で得られたケーキと混合してもよい(例えば、特許文献1の図1及び図2の構成)。この場合、リサイクル原料を得るために、ホウ素溶液とケーキの混合物の水分をそのままスプレードライヤー等で乾燥除去してもよいし、その混合物を再び固液分離して得られたケーキの水分を減圧乾燥機等で乾燥除去してもよい。 In the above embodiment, the case where the boron solution obtained in the removing step is supplied to the collecting means has been described. However, the boron solution may be mixed with the cake obtained by solid-liquid separation (for example, Patent Documents). 1 and FIG. 2). In this case, in order to obtain a recycled raw material, the moisture in the mixture of the boron solution and the cake may be directly removed by drying with a spray dryer or the like, or the moisture in the cake obtained by solid-liquid separation of the mixture again is dried under reduced pressure. It may be removed by drying with a machine.
 上記の実施形態では、固液分離装置で捕集液を一回だけ固液分離する場合を説明したが、固液分離を複数回行ってもよい。この場合、例えば、各回の固液分離で得られたろ液をそれぞれイオン交換樹脂塔に供給し、各イオン交換樹脂塔で得られたホウ素溶液を各回の固液分離で得られたケーキと混合するようにしてもよい(例えば、特許文献1の図2の構成)。 In the above embodiment, the case where the collected liquid is solid-liquid separated only once by the solid-liquid separation apparatus has been described, but the solid-liquid separation may be performed a plurality of times. In this case, for example, the filtrate obtained in each solid-liquid separation is supplied to the ion exchange resin tower, and the boron solution obtained in each ion-exchange resin tower is mixed with the cake obtained in each solid-liquid separation. You may make it (for example, the structure of FIG. 2 of patent document 1).
 上記の実施形態では、捕集手段として、排ガスからホウ素を湿式捕集する場合を説明したが、排ガスからホウ素を乾式捕集してもよい。乾式の捕集手段としては、例えば、冷却塔とバグフィルターとを備えたものが挙げられる。乾式捕集する場合、捕集物は捕集粉となるため、例えば、固液分離する前に液体成分(例えば、純水や、除去工程で得られたホウ素溶液)と混合することが好ましい(例えば、特許文献1の図3の構成)。 In the above embodiment, the case where boron is wet-collected from exhaust gas as the collecting means has been described, but boron may be dry-collected from exhaust gas. Examples of the dry collection means include those provided with a cooling tower and a bag filter. In the case of dry collection, since the collected matter becomes collected powder, for example, it is preferably mixed with a liquid component (for example, pure water or a boron solution obtained in the removal step) before solid-liquid separation ( For example, the configuration of FIG.
1   ガラス溶融炉
2   捕集装置
3   スプレー塔
4   湿式電気集塵機
5   煙突
6   中和槽
7   固液分離装置
8   乾燥機
9   イオン交換樹脂塔
10  陽イオン交換樹脂
11  陰イオン交換樹脂
a   ガラス原料
b   排ガス
c   捕集液(捕集物)
e   排ガス
f   中和剤
g   捕集液(捕集物)
h   ろ液
i   ケーキ
j   リサイクル原料
k   ホウ素溶液
m   還元剤
DESCRIPTION OF SYMBOLS 1 Glass melting furnace 2 Collection apparatus 3 Spray tower 4 Wet electrostatic precipitator 5 Chimney 6 Neutralization tank 7 Solid-liquid separator 8 Dryer 9 Ion exchange resin tower 10 Cation exchange resin 11 Anion exchange resin a Glass raw material b Exhaust gas c Collection liquid (collected matter)
e Exhaust gas f Neutralizer g Collected liquid (collected material)
h Filtrate i Cake j Recycled raw material k Boron solution m Reducing agent

Claims (6)

  1.  ホウ素、カルシウム及び亜硝酸を含む処理液を陰イオン交換樹脂に流通させることにより、前記処理液から不純物を除去してホウ素溶液を得る除去工程を備えた処理液の処理方法であって、
     前記処理液を前記陰イオン交換樹脂に流通させる前に、前記処理液に亜硫酸を含む還元剤を添加する還元工程を更に備えることを特徴とする処理液の処理方法。
    A treatment liquid treatment method comprising a removal step of removing impurities from the treatment liquid to obtain a boron solution by circulating a treatment liquid containing boron, calcium and nitrous acid through an anion exchange resin,
    A treatment method for a treatment liquid, further comprising a reduction step of adding a reducing agent containing sulfurous acid to the treatment liquid before flowing the treatment liquid through the anion exchange resin.
  2.  前記亜硫酸が、スルファミン酸であることを特徴とする請求項1に記載の処理液の処理方法。 The method for treating a treatment liquid according to claim 1, wherein the sulfurous acid is sulfamic acid.
  3.  前記還元剤は、前記処理液が流通する配管内で添加することを特徴とする請求項1又は2に記載の処理液の処理方法。 3. The processing liquid treatment method according to claim 1, wherein the reducing agent is added in a pipe through which the processing liquid flows.
  4.  前記陰イオン交換樹脂が、弱塩基性陰イオン交換樹脂であることを特徴とする請求項1~3のいずれか1項に記載の処理液の処理方法。 The treatment liquid treatment method according to any one of claims 1 to 3, wherein the anion exchange resin is a weakly basic anion exchange resin.
  5.  前記除去工程では、前記陰イオン交換樹脂の前に、前記処理液を陽イオン交換樹脂に流通させることを特徴とする請求項1~4のいずれか1項に記載の処理液の処理方法。 The treatment liquid treatment method according to any one of claims 1 to 4, wherein, in the removing step, the treatment liquid is circulated through the cation exchange resin before the anion exchange resin.
  6.  ホウ素を含むガラス原料を溶融するガラス溶融炉の排ガスの処理方法であって、
    前記排ガスに湿式捕集又は乾式捕集を施すことにより、前記排ガスからホウ素及び亜硝酸を含む捕集物を得る捕集工程と、
      前記捕集物にカルシウムを含む中和剤を添加する中和工程と、
      前記中和工程を経た前記捕集物を固液分離することにより、処理液を得る固液分離工程と、
      請求項1~5のいずれか1項に記載の方法により、前記処理液を処理してホウ素溶液を得る処理工程とを備えていることを特徴とする排ガスの処理方法。
    A method for treating exhaust gas from a glass melting furnace for melting glass material containing boron,
    A collection step of obtaining a collected product containing boron and nitrous acid from the exhaust gas by performing wet collection or dry collection on the exhaust gas;
    A neutralization step of adding a neutralizing agent containing calcium to the collected matter;
    A solid-liquid separation step for obtaining a treatment liquid by solid-liquid separation of the collected matter that has undergone the neutralization step; and
    A method for treating exhaust gas, comprising a treatment step of treating the treatment liquid to obtain a boron solution by the method according to any one of claims 1 to 5.
PCT/JP2019/017387 2018-05-30 2019-04-24 Method for treating treatment liquid and method for treating exhaust gas WO2019230276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-103481 2018-05-30
JP2018103481A JP7042692B2 (en) 2018-05-30 2018-05-30 Treatment liquid treatment method and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
WO2019230276A1 true WO2019230276A1 (en) 2019-12-05

Family

ID=68697478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017387 WO2019230276A1 (en) 2018-05-30 2019-04-24 Method for treating treatment liquid and method for treating exhaust gas

Country Status (2)

Country Link
JP (1) JP7042692B2 (en)
WO (1) WO2019230276A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022163880A (en) * 2021-04-15 2022-10-27 日本電気硝子株式会社 Manufacturing method for glass article, and manufacturing equipment for glass article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171731A (en) * 1986-01-24 1987-07-28 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for treating exhaust gas of glass melting furnace
JPH05138177A (en) * 1991-11-25 1993-06-01 Tougou Seisakusho:Kk Treatment of waste water containing nitric acid and nitrous acid
JP2003290785A (en) * 2002-04-01 2003-10-14 Japan Steel Works Ltd:The Method for treating waste water containing nitric acid and/or nitrous acid
WO2009072612A1 (en) * 2007-12-05 2009-06-11 Asahi Glass Co., Ltd. Process for producing boron-containing glass product and method for purifying waste gas generated in production of boron-containing glass product
JP2013180284A (en) * 2012-03-05 2013-09-12 Nippon Electric Glass Co Ltd Exhaust gas treating method and exhaust gas treatment apparatus
WO2014064754A1 (en) * 2012-10-22 2014-05-01 オルガノ株式会社 Method of desalinating boron-containing solution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155987A (en) * 1985-12-27 1987-07-10 Hitachi Plant Eng & Constr Co Ltd Treatment of dithionic acid-containing waste water wherein nitrite ion coexists
JP5138177B2 (en) 2006-04-17 2013-02-06 三菱レイヨン株式会社 Acrylic syrup manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171731A (en) * 1986-01-24 1987-07-28 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for treating exhaust gas of glass melting furnace
JPH05138177A (en) * 1991-11-25 1993-06-01 Tougou Seisakusho:Kk Treatment of waste water containing nitric acid and nitrous acid
JP2003290785A (en) * 2002-04-01 2003-10-14 Japan Steel Works Ltd:The Method for treating waste water containing nitric acid and/or nitrous acid
WO2009072612A1 (en) * 2007-12-05 2009-06-11 Asahi Glass Co., Ltd. Process for producing boron-containing glass product and method for purifying waste gas generated in production of boron-containing glass product
JP2013180284A (en) * 2012-03-05 2013-09-12 Nippon Electric Glass Co Ltd Exhaust gas treating method and exhaust gas treatment apparatus
WO2014064754A1 (en) * 2012-10-22 2014-05-01 オルガノ株式会社 Method of desalinating boron-containing solution

Also Published As

Publication number Publication date
JP2019205983A (en) 2019-12-05
JP7042692B2 (en) 2022-03-28

Similar Documents

Publication Publication Date Title
CN110127918B (en) Zero-discharge treatment method and device for acidic flue gas washing wastewater
KR101425289B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
JP3304300B2 (en) Cement raw material processing method
CN101745309B (en) Flue gas desulfurization (FGD) and comprehensive utilization method for flyash pudding blast furnace slag
KR101835837B1 (en) Calcium removal method
JP4461225B2 (en) Separation and recovery of valuable resources from stainless steel pickling waste liquid
CN112209528A (en) Method for synergistic treatment of desulfurization wastewater and fly ash
JP2002338312A (en) Treating method for making into cement raw material
CN102858430B (en) Process for the removal of heat stable salts from acid gas absorbents
WO2019230276A1 (en) Method for treating treatment liquid and method for treating exhaust gas
CN204619726U (en) Copper making ring collection flue gas desulfur device
JP2011189300A (en) Method for removing selenium
CN106268241A (en) Copper making ring collection fume desulphurization method and device
US9403119B1 (en) Emission gas treatment method and emission gas treatment apparatus
KR101902624B1 (en) Pretreatment method of desulfurization wastewater and system therefor
JP2000030741A (en) Treating method of organic electrolyte containing lithium hexafluorophosphate
CN215049255U (en) Resourceful pretreatment system of coal fired power plant desulfurization waste water
CN117897359A (en) Method and system for generating calcium carbonate
JP5114820B2 (en) Sodium chloride purification method and sodium hydroxide production method
JP5032784B2 (en) Sodium chloride production system
JPH09314128A (en) Method for treating regeneration waste liquid of cation exchange resin adsorbed of organic amine
JP3063123B2 (en) Wastewater treatment method for wet flue gas desulfurization equipment
CN113754160B (en) Method and system for cleanly recycling calcium chloride from acidic flue gas washing wastewater
JP2578112B2 (en) Method for treating fluorine in flue gas desulfurization wastewater
JP3295935B2 (en) Wet exhaust gas desulfurization equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812432

Country of ref document: EP

Kind code of ref document: A1