JP7042692B2 - Treatment liquid treatment method and exhaust gas treatment method - Google Patents

Treatment liquid treatment method and exhaust gas treatment method Download PDF

Info

Publication number
JP7042692B2
JP7042692B2 JP2018103481A JP2018103481A JP7042692B2 JP 7042692 B2 JP7042692 B2 JP 7042692B2 JP 2018103481 A JP2018103481 A JP 2018103481A JP 2018103481 A JP2018103481 A JP 2018103481A JP 7042692 B2 JP7042692 B2 JP 7042692B2
Authority
JP
Japan
Prior art keywords
treatment liquid
exchange resin
boron
exhaust gas
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103481A
Other languages
Japanese (ja)
Other versions
JP2019205983A (en
Inventor
健史 北島
繁 瀬良
誠一郎 藤崎
貴司 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Denko Co Ltd
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd, Nippon Electric Glass Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2018103481A priority Critical patent/JP7042692B2/en
Priority to PCT/JP2019/017387 priority patent/WO2019230276A1/en
Publication of JP2019205983A publication Critical patent/JP2019205983A/en
Application granted granted Critical
Publication of JP7042692B2 publication Critical patent/JP7042692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、処理液の処理方法および排ガスの処理方法に関する。 The present invention relates to a method for treating a treatment liquid and a method for treating exhaust gas.

ガラス溶融炉では、粉状又は粒状のガラス原料を、ガス燃料を燃焼させるバーナーなどによって加熱することにより溶融ガラスを製造する。この溶融ガラスは、所定の成形工程を経て、ガラス板やガラス管などの種々のガラス物品になる。 In a glass melting furnace, molten glass is produced by heating a powdery or granular glass raw material with a burner or the like that burns gas fuel. The molten glass becomes various glass articles such as a glass plate and a glass tube through a predetermined molding process.

この際、ガラス溶融炉から発生する排ガス中には、ガラス原料中に含まれる成分の一部が気体又は微小固体の状態で含まれる。このため、排ガス中には、ガラス原料としてリサイクルできる成分も多く含まれている。したがって、排ガスからリサイクル原料を回収することができれば、ガラス原料の節約にも寄与し得る。また同時に環境にも配慮することができる。 At this time, the exhaust gas generated from the glass melting furnace contains a part of the components contained in the glass raw material in the state of gas or minute solid. Therefore, the exhaust gas contains many components that can be recycled as a raw material for glass. Therefore, if the recycled raw material can be recovered from the exhaust gas, it can contribute to the saving of the glass raw material. At the same time, it is possible to consider the environment.

このような方法の一つとして、例えば、特許文献1では、ホウ素を含むガラス原料を溶融するガラス溶融炉の排ガスからホウ素を含むリサイクル原料を回収することが開示されている。詳細には、排ガスに湿式捕集、中和、固液分離などを施し、ホウ素、カルシウム、その他の不純物を含む処理液(抽出液体)を得た後に、その処理液を陰イオン交換樹脂に流通させることにより、処理液から不純物を除去して、リサイクル原料を含むホウ素溶液を得ることが開示されている。 As one of such methods, for example, Patent Document 1 discloses that a recycled raw material containing boron is recovered from the exhaust gas of a glass melting furnace for melting a glass raw material containing boron. Specifically, the exhaust gas is wet-collected, neutralized, solid-liquid separated, etc. to obtain a treatment liquid (extraction liquid) containing boron, calcium, and other impurities, and then the treatment liquid is distributed to an anion exchange resin. It is disclosed that impurities are removed from the treatment liquid to obtain a boron solution containing a recycled raw material.

特開2013-180284号公報Japanese Unexamined Patent Publication No. 2013-180284

上記の処理液には、例えば、ガラス原料由来のホウ素が含まれ、処理液を中和するためにカルシウムが添加されている。 The above-mentioned treatment liquid contains, for example, boron derived from a glass raw material, and calcium is added to neutralize the treatment liquid.

また、上記の処理液には、例えば、塩素などのハロゲン化物(ハロゲン化物イオンやハロゲン化物塩を含む)などが不純物として含まれる。ハロゲン化物は清澄剤等に由来する。不純物は、処理液を陰イオン交換樹脂に流通させることによって除去される。 Further, the above-mentioned treatment liquid contains, for example, a halide such as chlorine (including a halide ion or a halide salt) as an impurity. The halide is derived from a clarifying agent or the like. Impurities are removed by circulating the treatment liquid through an anion exchange resin.

処理液には、亜硝酸がさらに含まれる。亜硝酸はガラス原料及び/又はガス燃料の窒素成分に由来する。亜硝酸が処理液に含まれていると、陰イオン交換樹脂を劣化させやすく、樹脂寿命が著しく低下する場合がある。これは、亜硝酸の酸化作用によるものと考えられる。 The treatment liquid further contains nitrite. Nitrite is derived from the nitrogen component of glass raw materials and / or gas fuels. If nitrite is contained in the treatment liquid, the anion exchange resin is likely to be deteriorated, and the resin life may be significantly shortened. This is thought to be due to the oxidizing action of nitrite.

本発明は、処理液から不純物を除去するための陰イオン交換樹脂の長寿命化を図ることを課題とする。 An object of the present invention is to extend the life of an anion exchange resin for removing impurities from a treatment liquid.

上記の課題を解決するために創案された本発明は、ホウ素、カルシウム及び亜硝酸を含む処理液を陰イオン交換樹脂に流通させることにより、処理液から不純物を除去してホウ素溶液を得る除去工程を備えた処理液の処理方法であって、処理液を陰イオン交換樹脂に流通させる前に、処理液に亜硫酸を含む還元剤を添加する還元工程を更に備えることを特徴とする。このような構成によれば、処理液に含まれる亜硝酸が還元剤によって還元される。その結果、陰イオン交換樹脂に処理液を流通させる前に、処理液から亜硝酸を減少させることができる。従って、陰イオン交換樹脂の長寿命化を図ることができる。ここで、「ホウ素」という用語には、酸化ホウ素やホウ酸といったホウ素化合物やそれらのイオンも含まれる。また、「カルシウム」という用語には、消石灰といったカルシウム化合物やそれらのイオンも含まれる。「亜硝酸」という用語には、亜硝酸イオンや亜硝酸塩といった亜硝酸化合物を含む。「不純物」、「亜硫酸」という用語には、各用語のイオンも含まれる。「処理液から不純物を除去する」という用語には、不純物を完全に取り除く場合の他、その量を低減する場合も含まれる。「ホウ素溶液」という用語は、ホウ素を主成分として含む溶液という意味である。 The present invention, which was devised to solve the above problems, is a removal step of removing impurities from the treatment liquid to obtain a boron solution by circulating a treatment liquid containing boron, calcium and nitrite through an anion exchange resin. The method for treating a treatment solution comprising the above, further comprising a reduction step of adding a reducing agent containing sulfurous acid to the treatment solution before distributing the treatment solution to an anion exchange resin. According to such a configuration, the nitrite contained in the treatment liquid is reduced by the reducing agent. As a result, nitrite can be reduced from the treatment liquid before the treatment liquid is circulated through the anion exchange resin. Therefore, the life of the anion exchange resin can be extended. Here, the term "boron" also includes boron compounds such as boron oxide and boric acid and their ions. The term "calcium" also includes calcium compounds such as slaked lime and their ions. The term "nitrite" includes nitrite compounds such as nitrite ions and nitrites. The terms "impurity" and "sulfurous acid" also include the ions of each term. The term "removing impurities from the treatment liquid" includes not only the case of completely removing impurities but also the case of reducing the amount of impurities. The term "boron solution" means a solution containing boron as a main component.

上記の構成において、亜硫酸が、スルファミン酸であることが好ましい。亜硫酸は、亜硫酸ナトリウムやチオ硫酸ナトリウムなどであってもよいが、処理液に溶解しているカルシウムと反応し、カルシウムが沈殿する場合がある。これに対し、スルファミン酸は、処理液に溶解しているカルシウムと反応しにくく、カルシウムの沈殿を防止することができる。従って、スルファミン酸を用いた場合、沈殿したカルシウムを除去するフィルターなどの除去設備が不要となるため、設備コストを低減することができる。 In the above configuration, the sulfurous acid is preferably sulfamic acid. Sulfurous acid may be sodium sulfite, sodium thiosulfate, or the like, but may react with calcium dissolved in the treatment solution to precipitate calcium. On the other hand, sulfamic acid does not easily react with calcium dissolved in the treatment liquid, and can prevent the precipitation of calcium. Therefore, when sulfamic acid is used, removal equipment such as a filter for removing precipitated calcium becomes unnecessary, and the equipment cost can be reduced.

上記の構成において、還元剤は、処理液が流通する配管内で添加することが好ましい。このようにすれば、還元剤が配管内を流通する処理液の流れによって自動的に撹拌される。従って、撹拌羽根などの撹拌設備が不要となるため、設備コストを低減することができる。 In the above configuration, the reducing agent is preferably added in the pipe through which the treatment liquid flows. In this way, the reducing agent is automatically agitated by the flow of the processing liquid flowing through the pipe. Therefore, since a stirring facility such as a stirring blade is not required, the facility cost can be reduced.

上記の構成において、陰イオン交換樹脂が、弱塩基性陰イオン交換樹脂であることが好ましい。このようにすれば、陰イオン交換樹脂にホウ素が吸着するのを防止することができるため、ホウ素の回収効率を上げることができる。 In the above configuration, the anion exchange resin is preferably a weakly basic anion exchange resin. By doing so, it is possible to prevent boron from being adsorbed on the anion exchange resin, so that the efficiency of boron recovery can be improved.

上記の構成において、除去工程では、陰イオン交換樹脂の前に、処理液を陽イオン交換樹脂に流通させることが好ましい。処理液に含まれるカルシウムが多すぎると、陰イオン交換樹脂のイオン交換性能が低下する場合がある。従って、陰イオン交換樹脂の前に、処理液を陽イオン交換樹脂に流通させることにより、処理液中のカルシウムを陽イオン交換樹脂に吸着させ、処理液中のカルシウムを除去(低減を含む)することが好ましい。 In the above configuration, in the removal step, it is preferable to distribute the treatment liquid to the cation exchange resin before the anion exchange resin. If the treatment liquid contains too much calcium, the ion exchange performance of the anion exchange resin may deteriorate. Therefore, by circulating the treatment liquid through the cation exchange resin before the anion exchange resin, the calcium in the treatment liquid is adsorbed on the cation exchange resin, and the calcium in the treatment liquid is removed (including reduction). Is preferable.

上記の課題を解決するために創案された本発明は、ホウ素を含むガラス原料を溶融するガラス溶融炉の排ガスの処理方法であって、排ガスに湿式捕集又は乾式捕集を施すことにより、排ガスからホウ素及び亜硝酸を含む捕集物を得る捕集工程と、捕集物にカルシウムを含む中和剤を添加する中和工程と、中和工程を経た捕集物を固液分離することにより、処理液を得る固液分離工程と、上記の構成を適宜備えた方法により、処理液を処理してホウ素溶液を得る処理工程とを備えていることを特徴とする。このような構成によれば、排ガスから高濃度のホウ素を回収可能なホウ素溶液を効率よく得ることができると共に、既に述べた理由から、陰イオン交換樹脂の長寿命化を図ることができる。 The present invention, which was devised to solve the above problems, is a method for treating exhaust gas from a glass melting furnace that melts a glass raw material containing boron, and is obtained by subjecting the exhaust gas to wet collection or dry collection. By a collection step of obtaining a collection containing boron and nitrite from, a neutralization step of adding a neutralizing agent containing calcium to the collection, and a solution separation of the collection after the neutralization step. It is characterized by comprising a solid-liquid separation step for obtaining a treatment liquid and a treatment step for treating the treatment liquid to obtain a boron solution by a method appropriately provided with the above configuration. With such a configuration, a boron solution capable of recovering a high concentration of boron from the exhaust gas can be efficiently obtained, and for the reasons already described, the life of the anion exchange resin can be extended.

以上のような本発明によれば、処理液から不純物を除去する陰イオン交換樹脂の長寿命化を図ることができる。 According to the present invention as described above, it is possible to extend the life of the anion exchange resin that removes impurities from the treatment liquid.

実施形態に係る排ガスの処理方法のフロー図である。It is a flow chart of the exhaust gas treatment method which concerns on embodiment.

以下、排ガスの処理方法の実施形態を添付図面に基づいて説明する。なお、以下の排ガスの処理方法の実施形態の中で、処理液の処理方法の実施形態についても説明する。もちろん、処理液の処理方法は、排ガスの処理方法に組み込まれる場合に限定されるものではなく、処理液を処理する方法として単独で実施することもできる。 Hereinafter, embodiments of the exhaust gas treatment method will be described with reference to the accompanying drawings. In addition, among the following embodiments of the exhaust gas treatment method, the embodiment of the treatment liquid treatment method will also be described. Of course, the treatment liquid treatment method is not limited to the case where it is incorporated into the exhaust gas treatment method, and can be carried out independently as a method for treating the treatment liquid.

図1に示すように、本実施形態に係る排ガスの処理方法は、溶融工程、捕集工程、中和工程、固液分離工程(抽出工程)、回収工程、除去工程、還元工程を含む。このうち、本実施形態に係る処理液の処理方法は、除去工程と還元工程に相当する部分である。 As shown in FIG. 1, the method for treating exhaust gas according to the present embodiment includes a melting step, a collecting step, a neutralizing step, a solid-liquid separation step (extraction step), a recovery step, a removing step, and a reducing step. Of these, the treatment method for the treatment liquid according to the present embodiment is a portion corresponding to the removal step and the reduction step.

(溶融工程)
溶融工程では、ガラス溶融炉1で、目的のガラス組成となるように調製されたホウ素を含むガラス原料aをバーナーで加熱し、ホウ珪酸ガラスとなる溶融ガラスを製造する。溶融ガラスからは、ガラス板、ガラスリボンをロール状に巻き取ったガラスロール、ガラス管などのガラス物品が製造される。
(Melting process)
In the melting step, the glass raw material a containing boron prepared to have a desired glass composition is heated by a burner in the glass melting furnace 1 to produce molten glass to be borosilicate glass. From the molten glass, glass articles such as a glass plate, a glass roll obtained by winding a glass ribbon into a roll, and a glass tube are manufactured.

バーナーのガス燃料としては、例えば、硫黄分の少ないLPGやLNGを用いることが好ましい。また、ガラス原料aも、硫黄分の少ないものを用いることが好ましい。更に、後述する処理液中の亜硝酸を低減する観点からは、酸素燃焼を用いることが好ましい。あるいは、バーナーに代えて又はこれと併用して、ガラス原料aを溶融ガラス中に浸漬された電極で通電加熱してもよい。 As the gas fuel for the burner, for example, it is preferable to use LPG or LNG having a low sulfur content. Further, it is preferable to use a glass raw material a having a low sulfur content. Further, from the viewpoint of reducing nitrite in the treatment liquid described later, it is preferable to use oxygen combustion. Alternatively, instead of or in combination with the burner, the glass raw material a may be energized and heated by an electrode immersed in molten glass.

ガラス溶融炉1から発生する排ガスb中には、ガラス原料aやバーナーのガス燃料に由来する微小固体や気化物質が含まれる。このため、排ガスbは、リサイクル原料であるホウ素(ホウ素化合物を含む)以外にも、ガラス原料a及び/又はガラス燃料に由来する、亜硝酸、ハロゲン化物などの不純物を含んでいる。 The exhaust gas b generated from the glass melting furnace 1 contains minute solids and vaporized substances derived from the glass raw material a and the gas fuel of the burner. Therefore, the exhaust gas b contains impurities such as nitrite and halide derived from the glass raw material a and / or the glass fuel in addition to boron (including a boron compound) which is a recycled raw material.

(捕集工程)
捕集工程では、ガラス溶融炉1から発生する排ガスbを捕集装置2へと導入し、排ガスbからホウ素、亜硝酸及び不純物を含む捕集液cを得る。
(Collecting process)
In the collection step, the exhaust gas b generated from the glass melting furnace 1 is introduced into the collection device 2, and the collection liquid c containing boron, nitrite and impurities is obtained from the exhaust gas b.

捕集装置2では、排ガスbを例えば60~70℃まで冷却し、排ガスb中に気化した状態で含まれるホウ素を析出させる。 In the collection device 2, the exhaust gas b is cooled to, for example, 60 to 70 ° C., and boron contained in the exhaust gas b in a vaporized state is deposited.

捕集装置2は、本実施形態では、スプレー塔3と湿式電気集塵機4とを備えた湿式の捕集装置である。なお、湿式電気集塵機4は、スプレー塔3の補助的な役割を果たすものであるため省略してもよい。捕集装置2は、排ガスbからホウ素を湿式捕集できるものであれば、その種類は特に限定されない。 In the present embodiment, the collection device 2 is a wet collection device including a spray tower 3 and a wet electrostatic precipitator 4. The wet electrostatic precipitator 4 may be omitted because it plays an auxiliary role of the spray tower 3. The type of the collecting device 2 is not particularly limited as long as it can wet-collect boron from the exhaust gas b.

排ガスbに含まれるホウ素(微小固体や気化物質)は、スプレー塔3内に噴霧された洗浄水と接触することによって冷却されて析出し、捕集液cとして捕集される。スプレー塔3を通過した排ガスdに残留するホウ素も、湿式電気集塵機4の洗浄水と接触することにより、捕集液cとして捕集される。これら捕集液cが捕集物となる。捕集装置2でホウ素を捕集するのに伴い、排ガスbに含まれる亜硝酸や不純物も捕集液cとして捕集される。ここで、スプレー塔3及び湿式電気集塵機4の洗浄水には、ホウ素を含む洗浄水が用いられるので、捕集液cのホウ素濃度は飽和又はそれに近い状態となる。このため、捕集液cに含まれるホウ素の一部は未溶解となる。 Boron (micro solids and vaporized substances) contained in the exhaust gas b is cooled and precipitated by coming into contact with the washing water sprayed in the spray tower 3, and is collected as the collected liquid c. Boron remaining in the exhaust gas d that has passed through the spray tower 3 is also collected as the collected liquid c by coming into contact with the washing water of the wet electrostatic precipitator 4. These collected liquids c become the collected material. As boron is collected by the collection device 2, nitrite and impurities contained in the exhaust gas b are also collected as the collection liquid c. Here, since the cleaning water containing boron is used as the cleaning water of the spray tower 3 and the wet electrostatic precipitator 4, the boron concentration of the collected liquid c becomes saturated or close to it. Therefore, a part of boron contained in the collected liquid c becomes undissolved.

湿式電気集塵機4を通過して清浄化された排ガスeは、煙突5から大気中(系外)に放出される。 The exhaust gas e that has passed through the wet electrostatic precipitator 4 and has been cleaned is discharged from the chimney 5 into the atmosphere (outside the system).

(中和工程)
中和工程では、スプレー塔3及び湿式電気集塵機4で捕集した捕集液cを中和槽6に導入する。
(Neutralization process)
In the neutralization step, the collected liquid c collected by the spray tower 3 and the wet electrostatic precipitator 4 is introduced into the neutralization tank 6.

中和槽6では、捕集液cに消石灰等のカルシウムを含むアルカリ性の中和剤fを添加し、酸性を示す捕集液cを中和する。具体的には、捕集液cの水素イオン濃度(pH)が、好ましくは7.5~12.0、より好ましくは8.0~10.0の弱アルカリ性になるように中和する。これにより、後工程における配管等の酸による腐食を防止すると共に、捕集液c中のホウ素の溶解度を下げてその回収効率を高めることができる。 In the neutralization tank 6, an alkaline neutralizing agent f containing calcium such as slaked lime is added to the collecting liquid c to neutralize the collecting liquid c showing acidity. Specifically, the collected liquid c is neutralized so that the hydrogen ion concentration (pH) is preferably 7.5 to 12.0, more preferably 8.0 to 10.0. As a result, it is possible to prevent corrosion of pipes and the like due to acid in the subsequent process, and to reduce the solubility of boron in the collected liquid c to improve its recovery efficiency.

(固液分離工程)
固液分離工程では、中和槽6で中和された捕集液gを、固液分離装置7に導入する。
(Solid-liquid separation process)
In the solid-liquid separation step, the collected liquid g neutralized in the neutralization tank 6 is introduced into the solid-liquid separation device 7.

固液分離装置7では、捕集液gが固液分離され、ろ液hとケーキiとに分けられる。従って、ろ液hが、本実施形態に係る処理液の処理方法における処理液である。 In the solid-liquid separation device 7, the collected liquid g is solid-liquid separated and separated into a filtrate h and a cake i. Therefore, the filtrate h is the treatment liquid in the treatment liquid treatment method according to the present embodiment.

捕集液gに含まれるカルシウムや亜硝酸、不純物は、捕集液gに溶解している場合が多く、そのほとんどがろ液hとして回収される。一方、捕集液gのホウ素は、前述の通り、その一部が未溶解で含まれる。また、捕集液gのカルシウムも、その一部が未溶解で含まれる。このため、捕集液gに含まれるホウ素及びカルシウムのうち、一部はろ液hとして回収され、残りはケーキiとして回収される。従って、ろ液hには、ホウ素やカルシウム、亜硝酸、不純物(ハロゲン化物)が含まれる。なお、これらの各物質は、イオンや塩などの化合物の状態で含まれていてもよい。 Calcium, nitrite, and impurities contained in the collected liquid g are often dissolved in the collected liquid g, and most of them are recovered as the filtrate h. On the other hand, as described above, a part of boron in the collected liquid g is undissolved and contained. In addition, a part of calcium in the collected liquid g is also contained in an undissolved state. Therefore, of the boron and calcium contained in the collected liquid g, a part is recovered as the filtrate h and the rest is recovered as the cake i. Therefore, the filtrate h contains boron, calcium, nitrite, and impurities (halides). In addition, each of these substances may be contained in the state of a compound such as an ion or a salt.

固液分離装置7としては、例えば、フィルタープレス、遠心分離、減圧ろ過などが挙げられるが、その種類は特に限定されない。 Examples of the solid-liquid separation device 7 include a filter press, centrifugation, vacuum filtration, and the like, but the type thereof is not particularly limited.

(回収工程)
回収工程では、回収手段としての乾燥機8にケーキiを導入し、ケーキiからリサイクル原料jを回収する。
(Recovery process)
In the recovery step, the cake i is introduced into the dryer 8 as a recovery means, and the recycled raw material j is recovered from the cake i.

乾燥機8では、ケーキi中に含まれる水分を乾燥除去し、乾燥した粉末状のリサイクル原料jが得られる。得られたリサイクル原料jは、ガラス原料aと共にガラス溶融炉1に供給される。 In the dryer 8, the water contained in the cake i is dried and removed to obtain a dried powdery recycled raw material j. The obtained recycled raw material j is supplied to the glass melting furnace 1 together with the glass raw material a.

ここで、乾燥対象となるケーキiには、ホウ素が含まれるため、乾燥により水分を除去すれば、不純物の少ないホウ素を回収することができる。また、カルシウムは、例えば、酸化カルシウムとしてガラス原料に使用できるため、ホウ素と一緒に回収されても問題はない。もちろん、カルシウムが回収されないように、ケーキi(又はリサイクル原料j)に対して、カルシウムの除去処理を行ってもよい。 Here, since the cake i to be dried contains boron, it is possible to recover boron having few impurities by removing water by drying. Further, since calcium can be used as a raw material for glass as, for example, calcium oxide, there is no problem even if it is recovered together with boron. Of course, the cake i (or the recycled material j) may be subjected to calcium removal treatment so that calcium is not recovered.

乾燥機8としては、例えば、減圧乾燥機、ロータリードライヤー、バンド乾燥機、スプレードライヤーなどが挙げられるが、その種類は特に限定されない。 Examples of the dryer 8 include a vacuum dryer, a rotary dryer, a band dryer, a spray dryer, and the like, but the type thereof is not particularly limited.

(除去工程)
除去工程では、処理液である、ろ液hをイオン交換樹脂塔9に導入し、ろ液hから不純物を除去してホウ素溶液kを得る。
(Removal process)
In the removing step, the filtrate h, which is a treatment solution, is introduced into the ion exchange resin column 9, and impurities are removed from the filtrate h to obtain a boron solution k.

イオン交換樹脂塔9は、上流側(固液分離装置7側)に配置された陽イオン交換樹脂10と、下流側に配置された陰イオン交換樹脂11とを備えている。例えば、陽イオン交換樹脂10は強酸性陽イオン交換樹脂であり、陰イオン交換樹脂11は弱塩基性陰イオン交換樹脂である。弱塩基性陰イオン交換樹脂を用いると、ろ液h中のホウ素の吸着を抑えることができる。 The ion exchange resin tower 9 includes a cation exchange resin 10 arranged on the upstream side (solid-liquid separation device 7 side) and an anion exchange resin 11 arranged on the downstream side. For example, the cation exchange resin 10 is a strongly acidic cation exchange resin, and the anion exchange resin 11 is a weakly basic anion exchange resin. When a weakly basic anion exchange resin is used, the adsorption of boron in the filtrate h can be suppressed.

陽イオン交換樹脂10では、ろ液hに含まれるカルシウムが除去(低減を含む)され、陰イオン交換樹脂11では、ろ液hに含まれる不純物(例えば、ハロゲン化物)が除去(低減を含む)される。これにより、ろ液hからカルシウム及び不純物を除去して、ホウ素溶液kを得ることができる。得られたホウ素溶液kは、上述の捕集装置2(スプレー塔3及び/又は湿式電気集塵機4)に洗浄水として供給される。このようにすれば、洗浄水のホウ素濃度が飽和又はそれに近い状態となるので、捕集液c中でホウ素が溶解しにくくなる。その結果、ホウ素が未溶解物として残存しやすくなり、固液分離によってケーキiとして回収しやすくなる。 In the cation exchange resin 10, calcium contained in the filtrate h is removed (including reduction), and in the anion exchange resin 11, impurities (for example, halides) contained in the filtrate h are removed (including reduction). Will be done. Thereby, calcium and impurities can be removed from the filtrate h to obtain a boron solution k. The obtained boron solution k is supplied as washing water to the above-mentioned collection device 2 (spray tower 3 and / or wet electrostatic precipitator 4). By doing so, the boron concentration of the washing water becomes saturated or close to it, so that it becomes difficult for boron to dissolve in the collected liquid c. As a result, boron tends to remain as an undissolved substance, and it becomes easy to recover it as cake i by solid-liquid separation.

固液分離装置7と陽イオン交換樹脂10の間、および、陽イオン交換樹脂10と陰イオン交換樹脂11の間は、それぞれ配管で接続されている。 The solid-liquid separation device 7 and the cation exchange resin 10 and the cation exchange resin 10 and the anion exchange resin 11 are connected by pipes, respectively.

なお、ホウ素溶液kは、カルシウムを含んでいてもよい。また、陽イオン交換樹脂10は省略してもよい。ただし、カルシウムが多すぎると、陰イオン交換樹脂11のイオン交換性能が低下する場合があるため、陰イオン交換樹脂11の上流側に陽イオン交換樹脂10を配置することが好ましい。 The boron solution k may contain calcium. Further, the cation exchange resin 10 may be omitted. However, if the amount of calcium is too large, the ion exchange performance of the anion exchange resin 11 may deteriorate. Therefore, it is preferable to dispose the cation exchange resin 10 on the upstream side of the anion exchange resin 11.

(還元工程)
ここで、ろ液hは、亜硝酸を含む。亜硝酸は陰イオン交換樹脂11を劣化させて樹脂寿命を低下させる原因となる。そこで、本実施形態に係る排ガスの処理方法は、除去工程の前に、ろ液hに亜硫酸を含む還元剤mを添加する還元工程を含む。亜硫酸は、イオンの状態で含まれていてもよい。
(Reduction process)
Here, the filtrate h contains nitrite. Nitrite causes deterioration of the anion exchange resin 11 and shortens the resin life. Therefore, the method for treating exhaust gas according to the present embodiment includes a reduction step of adding a reducing agent m containing sulfurous acid to the filtrate h before the removal step. Sulfurous acid may be contained in the ionic state.

還元剤mは、ろ液hに含まれる亜硝酸を還元する。その結果、陰イオン交換樹脂11にろ液hを流通させる前に、ろ液hから亜硝酸を除去(低減を含む)することができる。従って、陰イオン交換樹脂11の長寿命化を図ることができる。具体的には、例えば、陰イオン交換樹脂11の寿命が1年から3年に延びる。 The reducing agent m reduces nitrite contained in the filtrate h. As a result, nitrite can be removed (including reduction) from the filtrate h before the filtrate h is circulated through the anion exchange resin 11. Therefore, the life of the anion exchange resin 11 can be extended. Specifically, for example, the life of the anion exchange resin 11 is extended from 1 year to 3 years.

還元剤mに含まれる亜硫酸としては、例えば、亜硫酸ナトリウム、チオ硫酸ナトリウム、スルファミン酸(アミド硫酸ともいう)などが挙げられるが、本実施形態ではスルファミン酸が用いられる。スルファミン酸は、ろ液hに溶解しているカルシウムと反応しにくく、カルシウムの沈殿を防止することができる。従って、スルファミン酸を用いた場合、沈殿したカルシウムを除去するフィルターなどの除去設備が不要となり、設備コストを低減することができる。 Examples of the sulfurous acid contained in the reducing agent m include sodium sulfite, sodium thiosulfate, sulfamic acid (also referred to as amidosulfate), and the like, and sulfamic acid is used in this embodiment. Sulfamic acid does not easily react with calcium dissolved in the filtrate h, and can prevent calcium precipitation. Therefore, when sulfamic acid is used, removal equipment such as a filter for removing precipitated calcium becomes unnecessary, and the equipment cost can be reduced.

亜硝酸塩(MNO)とスルファミン酸(HNSO)の反応は、下記の反応式で表される。反応により発生した窒素ガスは、イオン交換樹脂塔9から大気中(系外)に放出される。また、硫酸水素イオン(MHSO)は、陰イオン交換樹脂11によって除去(低減を含む)される。
MNO+HNSO→MHSO+N+H
ただし、Mは一価の陽イオン
The reaction between nitrite (MNO 2 ) and sulfamic acid (H 3 NSO 3 ) is represented by the following reaction formula. The nitrogen gas generated by the reaction is released into the atmosphere (outside the system) from the ion exchange resin tower 9. Further, hydrogen sulfate ion (MHSO 4 ) is removed (including reduction) by the anion exchange resin 11.
MNO 2 + H 3 NSO 3 → MHSO 4 + N 2 + H 2 O
However, M is a monovalent cation.

スルファミン酸の添加量は、亜硝酸塩の濃度によって適宜調整される。亜硝酸塩の濃度が1000ppm程度であれば、スルファミン酸の添加量は、100ppm~1000ppmとすることができる。スルファミン酸を過剰添加して反応速度を高めるために、スルファミン酸の添加量を1000ppm超としてもよく、5000ppm以上とすることが好ましい。過剰添加による反応速度の向上が飽和するので、スルファミン酸の添加量を15000ppm以下とすることが好ましい。 The amount of sulfamic acid added is appropriately adjusted according to the concentration of nitrite. When the concentration of nitrite is about 1000 ppm, the amount of sulfamic acid added can be 100 ppm to 1000 ppm. In order to increase the reaction rate by excessively adding sulfamic acid, the amount of sulfamic acid added may be more than 1000 ppm, preferably 5000 ppm or more. Since the improvement in reaction rate due to excessive addition is saturated, the amount of sulfamic acid added is preferably 15,000 ppm or less.

本実施形態では、固液分離装置7から陽イオン交換樹脂10へ至る配管内で、還元剤mが添加される。これにより、還元剤mが配管内を流通する、ろ液hの流れによって自動的に撹拌される。その結果、撹拌設備を別途設なくてもよいため、設備コストを低減することができる。 In the present embodiment, the reducing agent m is added in the pipe from the solid-liquid separation device 7 to the cation exchange resin 10. As a result, the reducing agent m is automatically agitated by the flow of the filtrate h flowing in the pipe. As a result, since it is not necessary to separately install the stirring equipment, the equipment cost can be reduced.

ここで、亜硝酸塩とスルファミン酸の反応は、酸性環境下で生じやすい。陽イオン交換樹脂10でカルシウムを除去した後、ハロゲン化物(例えば塩素)が残るため、ろ液hのpHが下がって酸性になる。従って、亜硝酸塩とスルファミン酸の反応は、主に陽イオン交換樹脂10の下流側、すなわち、陽イオン交換樹脂10と陰イオン交換樹脂11との間で生じると考えられる。ただし、亜硝酸塩とスルファミン酸の反応は、陽イオン交換樹脂10の上流側でもゆっくりと進むと考えられる。 Here, the reaction between nitrite and sulfamic acid tends to occur in an acidic environment. After removing calcium with the cation exchange resin 10, a halide (for example, chlorine) remains, so that the pH of the filtrate h drops and becomes acidic. Therefore, it is considered that the reaction between the nitrite and sulfamic acid mainly occurs on the downstream side of the cation exchange resin 10, that is, between the cation exchange resin 10 and the anion exchange resin 11. However, it is considered that the reaction between nitrite and sulfamic acid proceeds slowly even on the upstream side of the cation exchange resin 10.

なお、還元剤mの添加位置や添加方法は、陰イオン交換樹脂11の上流側であれば、特に限定されない。例えば、陽イオン交換樹脂10から陰イオン交換樹脂11へ至る配管内で、還元剤mを添加してもよい。また、陰イオン交換樹脂11の上流側に、ろ液hと還元剤mを一時的に貯留するタンクを設け、タンク内に撹拌羽根などの撹拌設備を設けてもよい。 The position and method of adding the reducing agent m are not particularly limited as long as they are on the upstream side of the anion exchange resin 11. For example, the reducing agent m may be added in the pipe from the cation exchange resin 10 to the anion exchange resin 11. Further, a tank for temporarily storing the filtrate h and the reducing agent m may be provided on the upstream side of the anion exchange resin 11, and a stirring facility such as a stirring blade may be provided in the tank.

本発明は、上記の実施形態に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and is not limited to the above-mentioned effects. The present invention can be modified in various ways without departing from the gist of the present invention.

上記の実施形態では、除去工程で得られたホウ素溶液を、捕集手段に供給する場合を説明したが、ホウ素溶液を固液分離で得られたケーキと混合してもよい(例えば、特許文献1の図1及び図2の構成)。この場合、リサイクル原料を得るために、ホウ素溶液とケーキの混合物の水分をそのままスプレードライヤー等で乾燥除去してもよいし、その混合物を再び固液分離して得られたケーキの水分を減圧乾燥機等で乾燥除去してもよい。 In the above embodiment, the case where the boron solution obtained in the removal step is supplied to the collecting means has been described, but the boron solution may be mixed with the cake obtained by solid-liquid separation (for example, Patent Document). 1 of FIG. 1 and FIG. 2). In this case, in order to obtain a recycled raw material, the water content of the mixture of the boron solution and the cake may be dried and removed as it is with a spray dryer or the like, or the water content of the cake obtained by solid-liquid separation of the mixture may be dried under reduced pressure. It may be removed by drying with a machine or the like.

上記の実施形態では、固液分離装置で捕集液を一回だけ固液分離する場合を説明したが、固液分離を複数回行ってもよい。この場合、例えば、各回の固液分離で得られたろ液をそれぞれイオン交換樹脂塔に供給し、各イオン交換樹脂塔で得られたホウ素溶液を各回の固液分離で得られたケーキと混合するようにしてもよい(例えば、特許文献1の図2の構成)。 In the above embodiment, the case where the collected liquid is separated by the solid-liquid separation device only once has been described, but the solid-liquid separation may be performed a plurality of times. In this case, for example, the filtrate obtained in each solid-liquid separation is supplied to the ion exchange resin column, and the boron solution obtained in each ion exchange resin column is mixed with the cake obtained in each solid-liquid separation. (For example, the configuration of FIG. 2 of Patent Document 1).

上記の実施形態では、捕集手段として、排ガスからホウ素を湿式捕集する場合を説明したが、排ガスからホウ素を乾式捕集してもよい。乾式の捕集手段としては、例えば、冷却塔とバグフィルターとを備えたものが挙げられる。乾式捕集する場合、捕集物は捕集粉となるため、例えば、固液分離する前に液体成分(例えば、純水や、除去工程で得られたホウ素溶液)と混合することが好ましい(例えば、特許文献1の図3の構成)。 In the above embodiment, the case where boron is wet-collected from the exhaust gas has been described as the collection means, but boron may be dry-collected from the exhaust gas. Examples of the dry collection means include those equipped with a cooling tower and a bag filter. In the case of dry collection, since the collected material becomes collected powder, it is preferable to mix it with a liquid component (for example, pure water or a boron solution obtained in the removal step) before solid-liquid separation (for example). For example, the configuration of FIG. 3 of Patent Document 1).

1 ガラス溶融炉
2 捕集装置
3 スプレー塔
4 湿式電気集塵機
5 煙突
6 中和槽
7 固液分離装置
8 乾燥機
9 イオン交換樹脂塔
10 陽イオン交換樹脂
11 陰イオン交換樹脂
a ガラス原料
b 排ガス
c 捕集液(捕集物)
e 排ガス
f 中和剤
g 捕集液(捕集物)
h ろ液
i ケーキ
j リサイクル原料
k ホウ素溶液
m 還元剤
1 Glass melting furnace 2 Collection device 3 Spray tower 4 Wet electrostatic collector 5 Chimney 6 Neutralization tank 7 Solid-liquid separator 8 Dryer 9 Ion exchange resin tower 10 Ion exchange resin 11 Anion exchange resin a Glass raw material b Exhaust gas c Collection liquid (collection)
e Exhaust gas f Neutralizer g Collected liquid (collected material)
h Filtration i Cake j Recycled raw material k Boron solution m Reducing agent

Claims (6)

ホウ素、カルシウム及び亜硝酸を含む処理液を陰イオン交換樹脂に流通させることにより、前記処理液から不純物を除去してホウ素溶液を得る除去工程を備えた処理液の処理方法であって、
前記処理液を前記陰イオン交換樹脂に流通させる前に、前記処理液に亜硫酸を含む還元剤を添加する還元工程を更に備えることを特徴とする処理液の処理方法。
A treatment liquid treatment method comprising a removal step of removing impurities from the treatment liquid to obtain a boron solution by circulating a treatment liquid containing boron, calcium and nitrite through an anion exchange resin.
A method for treating a treatment liquid, which further comprises a reduction step of adding a reducing agent containing sulfurous acid to the treatment liquid before distributing the treatment liquid to the anion exchange resin.
前記亜硫酸が、スルファミン酸であることを特徴とする請求項1に記載の処理液の処理方法。 The method for treating a treatment liquid according to claim 1, wherein the sulfurous acid is sulfamic acid. 前記還元剤は、前記処理液が流通する配管内で添加することを特徴とする請求項1又は2に記載の処理液の処理方法。 The method for treating a treatment liquid according to claim 1 or 2, wherein the reducing agent is added in a pipe through which the treatment liquid flows. 前記陰イオン交換樹脂が、弱塩基性陰イオン交換樹脂であることを特徴とする請求項1~3のいずれか1項に記載の処理液の処理方法。 The method for treating a treatment liquid according to any one of claims 1 to 3, wherein the anion exchange resin is a weakly basic anion exchange resin. 前記除去工程では、前記陰イオン交換樹脂の前に、前記処理液を陽イオン交換樹脂に流通させることを特徴とする請求項1~4のいずれか1項に記載の処理液の処理方法。 The method for treating a treatment liquid according to any one of claims 1 to 4, wherein in the removal step, the treatment liquid is circulated through the cation exchange resin before the anion exchange resin. ホウ素を含むガラス原料を溶融するガラス溶融炉の排ガスの処理方法であって、
前記排ガスに湿式捕集又は乾式捕集を施すことにより、前記排ガスからホウ素及び亜硝酸を含む捕集物を得る捕集工程と、
前記捕集物にカルシウムを含む中和剤を添加する中和工程と、
前記中和工程を経た前記捕集物を固液分離することにより、処理液を得る固液分離工程と、
請求項1~5のいずれか1項に記載の方法により、前記処理液を処理してホウ素溶液を得る処理工程とを備えていることを特徴とする排ガスの処理方法。
A method for treating exhaust gas from a glass melting furnace that melts glass raw materials containing boron.
A collection step of obtaining a collection containing boron and nitrite from the exhaust gas by subjecting the exhaust gas to wet collection or dry collection.
A neutralization step of adding a neutralizing agent containing calcium to the collected material,
A solid-liquid separation step of obtaining a treatment liquid by solid-liquid separation of the collected material that has undergone the neutralization step,
A method for treating exhaust gas, which comprises a treatment step of treating the treatment liquid to obtain a boron solution by the method according to any one of claims 1 to 5.
JP2018103481A 2018-05-30 2018-05-30 Treatment liquid treatment method and exhaust gas treatment method Active JP7042692B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018103481A JP7042692B2 (en) 2018-05-30 2018-05-30 Treatment liquid treatment method and exhaust gas treatment method
PCT/JP2019/017387 WO2019230276A1 (en) 2018-05-30 2019-04-24 Method for treating treatment liquid and method for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103481A JP7042692B2 (en) 2018-05-30 2018-05-30 Treatment liquid treatment method and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2019205983A JP2019205983A (en) 2019-12-05
JP7042692B2 true JP7042692B2 (en) 2022-03-28

Family

ID=68697478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103481A Active JP7042692B2 (en) 2018-05-30 2018-05-30 Treatment liquid treatment method and exhaust gas treatment method

Country Status (2)

Country Link
JP (1) JP7042692B2 (en)
WO (1) WO2019230276A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022163880A (en) * 2021-04-15 2022-10-27 日本電気硝子株式会社 Manufacturing method for glass article, and manufacturing equipment for glass article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290785A (en) 2002-04-01 2003-10-14 Japan Steel Works Ltd:The Method for treating waste water containing nitric acid and/or nitrous acid
WO2009072612A1 (en) 2007-12-05 2009-06-11 Asahi Glass Co., Ltd. Process for producing boron-containing glass product and method for purifying waste gas generated in production of boron-containing glass product
JP5138177B2 (en) 2006-04-17 2013-02-06 三菱レイヨン株式会社 Acrylic syrup manufacturing method
JP2013180284A (en) 2012-03-05 2013-09-12 Nippon Electric Glass Co Ltd Exhaust gas treating method and exhaust gas treatment apparatus
WO2014064754A1 (en) 2012-10-22 2014-05-01 オルガノ株式会社 Method of desalinating boron-containing solution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155987A (en) * 1985-12-27 1987-07-10 Hitachi Plant Eng & Constr Co Ltd Treatment of dithionic acid-containing waste water wherein nitrite ion coexists
JPS62171731A (en) * 1986-01-24 1987-07-28 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for treating exhaust gas of glass melting furnace
JPH05138177A (en) * 1991-11-25 1993-06-01 Tougou Seisakusho:Kk Treatment of waste water containing nitric acid and nitrous acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290785A (en) 2002-04-01 2003-10-14 Japan Steel Works Ltd:The Method for treating waste water containing nitric acid and/or nitrous acid
JP5138177B2 (en) 2006-04-17 2013-02-06 三菱レイヨン株式会社 Acrylic syrup manufacturing method
WO2009072612A1 (en) 2007-12-05 2009-06-11 Asahi Glass Co., Ltd. Process for producing boron-containing glass product and method for purifying waste gas generated in production of boron-containing glass product
JP2013180284A (en) 2012-03-05 2013-09-12 Nippon Electric Glass Co Ltd Exhaust gas treating method and exhaust gas treatment apparatus
WO2014064754A1 (en) 2012-10-22 2014-05-01 オルガノ株式会社 Method of desalinating boron-containing solution

Also Published As

Publication number Publication date
WO2019230276A1 (en) 2019-12-05
JP2019205983A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
US9242875B2 (en) Calcium removal method
KR101425289B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
KR101552650B1 (en) Industrial salt, and apparatus and process for producing industrial salt
EP3260423A1 (en) Water treatment system and method
CN101745309B (en) Flue gas desulfurization (FGD) and comprehensive utilization method for flyash pudding blast furnace slag
EP3018100B1 (en) Water treatment system and method
CN109879507A (en) A kind of technique and device of coking high-salt wastewater resource utilization
JP4461225B2 (en) Separation and recovery of valuable resources from stainless steel pickling waste liquid
JP5468945B2 (en) How to remove selenium
JP7042692B2 (en) Treatment liquid treatment method and exhaust gas treatment method
JP2012245467A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US9403119B1 (en) Emission gas treatment method and emission gas treatment apparatus
JP5114820B2 (en) Sodium chloride purification method and sodium hydroxide production method
CN109534542A (en) The method of fume desulfurizing agent purified treatment
JP5032784B2 (en) Sodium chloride production system
EP1142626B1 (en) Combustion exhaust gas treatment apparatus
JPH09314128A (en) Method for treating regeneration waste liquid of cation exchange resin adsorbed of organic amine
JP5762783B2 (en) Salt recovery method
JP2013166678A (en) Wastewater treating device and wastewater treating method
KR19990006889A (en) Method and apparatus for recovering sulfides from combustion gases
JPH0140680B2 (en)
JP2003003178A (en) Method for cleaning gas formed in gasification of waste
JPH0436728B2 (en)
JPH08132064A (en) Treatment of waste water
JPS63305919A (en) Process for recovering mg from flue gas desulfurization waste liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7042692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150