WO2014064754A1 - Method of desalinating boron-containing solution - Google Patents

Method of desalinating boron-containing solution Download PDF

Info

Publication number
WO2014064754A1
WO2014064754A1 PCT/JP2012/077263 JP2012077263W WO2014064754A1 WO 2014064754 A1 WO2014064754 A1 WO 2014064754A1 JP 2012077263 W JP2012077263 W JP 2012077263W WO 2014064754 A1 WO2014064754 A1 WO 2014064754A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
packed tower
anion exchange
boron
ion
Prior art date
Application number
PCT/JP2012/077263
Other languages
French (fr)
Japanese (ja)
Inventor
治雄 横田
田辺 円
峻一 磯部
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to PCT/JP2012/077263 priority Critical patent/WO2014064754A1/en
Priority to JP2014543022A priority patent/JP6185924B2/en
Priority to CN201280076585.4A priority patent/CN104736484B/en
Priority to KR1020157008154A priority patent/KR20150048866A/en
Publication of WO2014064754A1 publication Critical patent/WO2014064754A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for reducing salts other than boron by using an ion exchange resin from a boron-containing solution containing anions such as chloride ions.
  • boron compounds such as boric acid are contained in the plating solution and metal surface treatment solution, and cleaning wastewater containing boron is generated in factories that handle these solutions.
  • the environmental standard for boron is set to 1 mg / L or less, and it is desirable to remove boron from wastewater containing boron, or to recover and purify and reuse it.
  • the main impurity is a salt such as chloride ion
  • the salt concentration that is, to perform a desalting treatment.
  • the boron-containing wastewater has at least one of chloride ions, sulfate ions, nitrate ions, sulfite ions, and nitrite ions as anions. It is common that more than species are included.
  • an ion exchange treatment that is, a method using an ion exchange resin is effective.
  • an ion exchange resin for example, an H-type cation exchange resin that removes cations and an OH-type anion exchange resin that removes anions are combined to reduce the salt concentration in waste water.
  • Patent Document 1 in order to treat and reuse boron-containing water having a high boron concentration, after filtering the boron-containing water, the cation exchange tower having a cation exchange resin and the anion exchange tower having an anion exchange resin are in this order. And passing through a cation exchange column, an anion exchange column and an ion exchange column having a mixed bed ion exchange resin in this order.
  • Patent Document 2 describes a method for purifying a boron eluent as a type I strongly basic anion exchange resin adjusted to OH type, a type II strongly basic anion exchange resin adjusted to OH type, and a weakly basic type adjusted to OH type.
  • Patent Document 3 discloses that a boron eluent is purified by connecting two stages of ion exchange towers filled with an anion exchange resin in series as a method for purifying the boron eluent.
  • the boron concentration in the waste liquid generated by the regeneration treatment of the ion exchange resin that is, the boron concentration in the recycled waste liquid is preferably lower considering the influence on the environment. In short, it is desirable that boron is not adsorbed by the ion exchange resin in the desalting treatment of the boric acid-containing solution.
  • boron is generally present in the form of boric acid molecules in acidic solutions, it has the property of being partially dissociated as anions (for example, borate ions) in neutral and alkaline solutions. It is adsorbed by the ion exchange resin (anion exchange resin).
  • anion exchange resin anion exchange resin
  • the solution is in a neutral or alkaline atmosphere near the interface with the OH type strongly basic anion exchange resin.
  • boron is adsorbed on the functional group of the OH type strongly basic anion exchange resin and the boron concentration in the treated water is lowered.
  • the boron concentration in the recycled waste liquid becomes high due to the adsorption of boron to the OH type strongly basic anion exchange resin.
  • an object of the present invention is a desalting method for reducing salts other than boron by using an ion exchange resin from a boron-containing solution containing anions such as chloride ions, and reducing the boron concentration in treated water and It is an object of the present invention to provide a method capable of suppressing an increase in boron concentration in a recycled waste liquid.
  • the desalting method of the present invention is a desalting method for reducing salts other than boron from a boron-containing solution containing at least one anion of chloride ion, nitrate ion, sulfate ion, nitrite ion and sulfite ion.
  • each of the outlets of the cation exchange resin packed tower filled with the H-type strongly acidic cation exchange resin is filled with the free base type weakly basic anion exchange resin, and the liquid from the outlet of the cation exchange resin packed tower is Using an ion exchange apparatus in which a two-stage anion exchange resin packed tower that sequentially passes is arranged, the ion exchange apparatus is equipped with a desalting step for passing a boron-containing solution from the inlet of the cation exchange resin packed tower.
  • the anion exchange packed column of the anion exchange resin packed column closer to the cation exchange resin packed column in the flow path of the boron-containing solution. Degrees and monitored, characterized by continuing the desalting step until detecting any break in the anion.
  • a boron-containing solution is passed through an H-type strongly acidic cation exchange resin to remove cations such as calcium ions (Ca 2+ ) and sodium ions (Na + ) in the solution, and the solution liquid Makes sex acidic.
  • the acidified solution is passed through a free base weakly basic anion exchange resin to remove anions such as chloride ions in the solution.
  • the use of the free base type weakly basic anion exchange resin instead of the OH type strong base anion exchange resin means that if the OH type strongly basic anion exchange resin is used, a large amount of boron having low selectivity to the ion exchange resin is used. This is because they are removed.
  • the boron-containing solution needs to be in an acid state before the weakly basic anion exchange resin.
  • a cation exchange resin packed tower filled with an H-type strongly acidic cation exchange resin is provided in the previous stage.
  • this strongly acidic cation exchange resin breaks, the liquidity of the boron-containing solution supplied to the anion exchange resin packed tower may not be kept acidic. It is preferable that the exchange capacity of the entire strong acid cation exchange resin is larger than the exchange capacity of the entire free base weakly basic anion exchange resin in the first-stage anion exchange resin packed column.
  • the liquid passing is stopped. It is necessary to perform a regeneration process of the ion exchange resin.
  • the flow order of the boron-containing solution may be changed between the two-stage anion exchange resin packed towers, and then the flow for the desalting treatment may be resumed.
  • some of the boron that has passed through the first-stage anion exchange resin packed column may be adsorbed by the free base weakly basic anion exchange resin of the second-stage anion exchange resin packed tower.
  • boron adsorbed in the second anion exchange resin packed tower before the replacement of the flow order is also passed.
  • the anion exchange resin packed column is changed to the first stage by changing the liquid order, it is desorbed from the free base form weakly basic anion exchange resin. It will not be adsorbed on the anion exchange resin.
  • a conductivity meter can be used for monitoring the anion concentration in the outlet liquid of the first-stage anion exchange resin packed tower.
  • Ions having high selectivity with respect to anion exchange resins such as chloride ions, nitrate ions, sulfate ions, nitrite ions, and sulfite ions are easily dissociated and greatly contribute to conductivity.
  • boron has a low degree of dissociation and a small contribution to conductivity.
  • anion exchange can be performed by tracking the change in conductivity with a conductivity meter without directly measuring the ion concentration. It is possible to easily grasp the break state of those ions in the resin packed tower.
  • each of the outlets of the cation exchange resin packed tower filled with the H-type strongly acidic cation exchange resin is filled with the free base type weakly basic anion exchange resin, and is discharged from the outlet of the cation exchange resin packed tower.
  • the desalting apparatus shown in FIG. 1 implements the desalting method according to one embodiment of the present invention, and a cation packed with an H-type strongly acidic cation exchange resin as a packed tower packed with an ion exchange resin.
  • An exchange resin packed tower 5 and two anion exchange resin packed towers 6 and 7 each filled with a free base weakly basic anion exchange resin are provided.
  • the cation exchange resin packed tower 5 is an H-type strongly acidic cation exchanger, and the anion exchange resin packed towers 6 and 7 are free base type weakly basic anion exchangers.
  • the anion exchange resin packed towers 6 and 7 are connected in series to the outlet of the cation exchange resin packed tower 5.
  • a boron-containing solution containing anions such as chloride ions is used as raw water, and salts other than boron are reduced by ion exchange treatment.
  • the anions constituting the salts other than boron include nitrate ions, sulfate ions, nitrite ions and sulfite ions in addition to chloride ions.
  • the first stage refers to the anion exchange resin packed tower closer to the cation exchange resin packed tower 5 in the flow path of the raw water, and the second stage is the farther from the cation exchange resin packed tower 5. It refers to an anion exchange resin packed tower.
  • the desalination apparatus further regenerates the raw water tank 1 that stores the raw water, the supply pump 8 that supplies the raw water in the raw water tank 1 to the inlet of the cation exchange resin packed tower 5 through the valve 21, and the ion exchange resin.
  • a clarified water tank 2 for storing the clarified water used for the regeneration process a supply pump 9 for supplying the clarified water in the clarified water tank 2 to the clarified water pipe 51, a hydrochloric acid storage tank 3 for storing the hydrochloric acid used for the regeneration process, and a valve 39
  • the supply pump 10 supplies the hydrochloric acid in the hydrochloric acid storage tank 3 to the inlet of the cation exchange resin packed tower 5, the sodium hydroxide solution storage tank 4 that stores the sodium hydroxide solution used for the regeneration treatment, and the water through the valve 41.
  • a supply pump 11 for supplying the sodium hydroxide solution in the sodium oxide solution storage tank 4 to the intermediate pipe 52.
  • the intermediate pipe 52 is for supplying the liquid from the outlet of the cation exchange resin packed tower 5 to the anion exchange resin packed towers 6 and 7 and is connected to the outlet of the cation exchange resin packed tower 5 through the valve 22. At the same time, they are connected to the inlets of the anion exchange resin packed towers 6 and 7 through valves 23 and 26, respectively.
  • a pipe 53 connecting the outlet of the first anion exchange resin packed tower 6 and the inlet of the second anion exchange resin packed tower 7 is provided, and a valve 24 and a conductivity meter 12 are provided in the middle of the pipe 53. Yes.
  • a pipe 54 connecting the outlet of the second anion exchange resin packed tower 7 and the inlet of the first anion exchange resin packed tower 6 is provided, and a valve 27 and the conductivity meter 13 are provided in the middle of the pipe 54. Is provided.
  • the treated water pipe 55 is for supplying treated water treated by the desalting apparatus to the outside.
  • the treated water pipe 55 is connected to the outlet of the anion exchange resin packed tower 6 through the valve 28 and connected to the anion through the valve 25. It is connected to the outlet of the exchange resin packed tower 7.
  • any one of the anion exchange resin packed towers 6 and 7 is arbitrarily set to the first stage by opening and closing the valves 23 to 28, and the other is set to 2 It can be a step.
  • the clarified water pipe 51 is connected to the outlet of the cation exchange resin packed tower 5 through the valve 36, is connected to the outlet of the anion exchange resin packed tower 6 through the valve 37, and is connected to the treated water pipe 55 through the valve 38. They are connected, connected to the inlet of the cation exchange resin packed tower 5 through the valve 40, and connected to the intermediate pipe 52 through the valve 42.
  • the discharge ports provided at the bottoms of the packed towers 5 to 7 are connected to the pipe 56 via valves 32 to 34, respectively, and the recycled waste liquid is discharged from the pipe 56 via the valve 43.
  • the liquid in the pipe 56 is returned to the raw water tank 1 through the valve 35.
  • valves 29 to 31 for communicating the inside of the packed tower with the atmosphere are provided at the upper part of the packed towers 5 to 7, respectively.
  • this desalination apparatus is to connect the anion exchange resin packed towers 6 and 7 in series to the outlet of the cation exchange resin packed tower 5 to reduce salts other than boron in the raw water by ion exchange treatment.
  • a clarified water containing no boron is put in from the lower part of the packed tower, and the H-type strongly acidic cation exchange resin in the cation exchange resin packed tower 5 and the first stage
  • the first stage of the anion exchange resin packed towers 6 and 7 refers to the anion exchange resin packed tower located immediately after the cation exchange resin packed tower 5.
  • the order of connection between the anion exchange resin packed towers 6 and 7 with respect to the outlet of the cation exchange resin packed tower 5 can be changed.
  • the first and second stages are interchanged.
  • the liquid removal process and the pasting process are associated with the regeneration process as a preparation stage for the regeneration process.
  • the anion exchange resin packed tower 6 if the anion exchange resin packed tower 6 is in the first stage, the raw water passes through the anion exchange resin packed tower 6 from the cation exchange resin packed tower 5 and passes through the anion exchange resin packed tower 7 and is subjected to desalting treatment.
  • the treated water is supplied from the treated water pipe 55 to the outside. If the anion exchange resin packed tower 7 is in the first stage, the raw water flows from the cation exchange resin packed tower 5 to the anion exchange resin packed tower 6 through the anion exchange resin packed tower 7.
  • the desalting step is a conductivity meter provided between the first-stage anion exchange resin packed tower and the second-stage anion exchange resin packed tower, that is, if the anion exchange resin packed tower 6 is the first stage, the conductivity If a total of 12 and the anion exchange resin packed tower 7 is the 1st stage, it will continue until the electrical conductivity measured by the electrical conductivity meter 13 shows an upward tendency.
  • the conductivity of the liquid flowing therethrough is increasing, which means that ions having a large contribution to the conductivity, such as chloride ions, are present in the first-stage anion.
  • the valves 29, 32 and 35 are opened. Further, if the anion exchange resin packed tower 6 is in the first stage, the valves 30 and 33 are opened, and the anion exchange resin packed tower 7 is in the first stage. For example, the valves 31 and 34 are opened, and the liquid in the cation exchange resin packed tower 5 and the liquid in the first anion exchange resin packed tower are drained. The extracted liquid is returned to the raw water tank 1 through the pipe 56.
  • the sodium hydroxide solution in the sodium hydroxide solution storage tank 4 is supplied to the first-stage anion exchange resin packed tower, and the free base form weakly basic anion exchange in the anion exchange resin packed tower Regenerate the resin.
  • the recycled waste liquid is discharged to the outside through the pipe 56 and the valve 43.
  • the supply pumps 10 and 11 are stopped and the valves 39 and 41 are closed. After that, by operating the supply pump 9 and opening the valves 40 and 42, the clarified water in the clarified water tank 2 is sent to the packed tower that has been regenerated, and the chemical solution remaining in those packed towers. Extrusion of The waste liquid at this time is also discharged to the outside through the pipe 56 and the valve 43.
  • the regeneration process is completed, so that the desalting process of the next cycle can be performed by stopping the supply pump 9 and closing all the valves.
  • valves 23 to 25 are opened at the start of the desalination process.
  • the first-stage anion exchange resin packed tower is replaced with the second-stage anion exchange resin packed tower. That is, the anion exchange resin packed tower that was the first stage in the previous cycle is the second stage in the next cycle, and the anion exchange resin packed tower that was the second stage in the previous cycle is the first stage in the next cycle.
  • regeneration of the anion exchange resin is always performed only for the first-stage anion exchange resin packed tower, and efficient operation can be achieved when the entire apparatus for carrying out the desalting method is considered. It will be able to plan.
  • Example 1 An apparatus similar to that shown in FIG. 1 was manufactured as a test apparatus, and each step was advanced as described in the embodiment of the present invention.
  • the adopted conditions are as follows.
  • H-type strongly acidic cation exchange resin The product name “Amberlite IR120BH” (manufactured by Dow Chemical Co., Ltd., total exchange capacity 1.9 eq / LR (resin)) volume 300 mL is used as the H-type strongly acidic cation exchange resin, and this cation exchange resin is used as a resin column. To form a cation exchange resin packed tower. The resin column had a cylindrical shape and had an inner diameter of 25.4 mm and a length of 1000 mm.
  • Free base weakly basic anion exchange resin The product name “Amberlite IRA96SB” (manufactured by Dow Chemical Co., Ltd., total exchange capacity 1.3 eq / LR (resin)) volume 300 mL is used as a free base weakly basic anion exchange resin.
  • An anion exchange resin-packed tower was constructed by packing the column. The resin column had a cylindrical shape with an inner diameter of 25.4 mm and a length of 1000 mm. Two such anion exchange resin packed towers were produced.
  • the liquid quality of the boron-containing solution used as raw water is as follows: boron concentration is 2000 mg / L, chloride ion concentration is 3000 mg / L, sulfate ion concentration is 200 mg / L, pH is 7.5, and conductivity is 18000 ⁇ S / cm. there were.
  • the clarified water had a boron concentration of less than 0.1 mg / L, a chloride ion concentration of 10 mg / L, a sulfate ion concentration of 10 mg / L, a pH of 7.0, and a conductivity of 100 ⁇ S / cm.
  • Desalination process end point The desalting step was performed until the electrical conductivity at the outlet liquid of the first-stage anion exchange resin packed tower reached 2000 ⁇ S / cm. This time was taken as the end point of the desalting step. As a result, the flow rate was 3.6L.
  • Amount of water put into each packed tower The amount of clarified water applied to each packed tower in the application step was 200 mL.
  • Regeneration conditions cation exchange resin: In the regeneration of the H-form strongly acidic cation exchange resin, 5% hydrochloric acid (HCl) was used as a regenerant. The regeneration level was set to 60 g HCl / LR (resin), the flow rate of the regenerant and the flow rate of extrusion with clarified water were 4 BV / hour, and the extrusion time was 45 minutes.
  • HCl hydrochloric acid
  • Regeneration conditions anion exchange resin
  • NaOH sodium hydroxide
  • the regeneration level was 60 g NaOH / LR (resin)
  • the flow rate of the regenerant and the flow rate of extrusion with clarified water were 4 BV / hour, and the extrusion time was 45 minutes.
  • Example 1 the end point of the desalting step was set to the 2.4 L passing point before the conductivity at the outlet liquid of the first-stage anion exchange resin packed tower showed an increasing tendency. Other conditions are the same as those in Example 1.
  • Example 2 In Example 1, as the anion exchange resin packed in the anion exchange resin packed tower, instead of the free base type weak base anion exchange resin, an OH type strong basic anion exchange resin (trade name “Amberlite IRA-402BL (OH ) ", Manufactured by Dow Chemical Co., Ltd.) A volume of 300 mL was used. The size of the resin column and other conditions were the same as in Example 1. In Comparative Example 2, the conductivity at the outlet liquid of the first-stage anion exchange resin packed tower reached 2000 ⁇ S / cm when the liquid flow rate reached 3.0 L. This time was taken as the end point of the desalting step.
  • an OH type strong basic anion exchange resin trade name “Amberlite IRA-402BL (OH ) ", Manufactured by Dow Chemical Co., Ltd.
  • Example 1 and Comparative Examples 1 and 2 the boron concentration in the outlet liquid of the first-stage anion exchange resin packed tower and the boron concentration in the recycled waste liquid were measured. The results are shown in Table 1.
  • the boron concentration in the regenerated waste liquid was measured by collecting the waste liquid when supplying the regenerant and the waste liquid during extrusion. Since the regeneration treatment was performed separately for the cation exchange resin and the anion exchange resin, those relating to the regeneration treatment for the cation exchange resin are described in the column of “cation” in the table, and related to the anion exchange resin. Is described in the column of “anion” in the table, and the total regenerated waste liquid obtained is described in the column of “total”.
  • Example 1 compared with each comparative example, the boron concentration in the exit liquid of the first-stage anion exchange resin packed tower was high, and the boron concentration in the regeneration waste liquid was low.
  • the boron concentration in the outlet liquid of the first-stage anion exchange resin packed tower is higher than that in each comparative example. It means that it will be higher than the example. Therefore, when reducing salts other than boron by using an ion exchange resin from a boron-containing solution containing anions such as chloride ions, according to the present invention, it is possible to reduce the boron concentration in treated water and It can be seen that an increase in the boron concentration of can be suppressed.
  • Example 1 boron is detected from the recycled waste liquid due to moisture retained inside the ion exchange resin, that is, moisture that cannot be completely removed in the liquid removal step. This is supported by the fact that boron is also detected in the regenerated waste liquid from the cation exchange resin.
  • Example 1 the chloride ion concentration and the sulfate ion concentration were measured in the first stage anion exchange resin packed column outlet liquid at the end of each desalting step. The results are shown in Table 2.
  • the target of break detection in the outlet liquid of the first-stage anion exchange resin packed tower is It can be seen that it is preferable to use a chloride ion as the anion to be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

This method uses an ion exchange resin to decrease salts other than boron from a boron-containing solution containing anions such as chloride ions. In the method, two anion exchange resin-packed columns, each packed with a free base form of weak base anion exchange resin, are arranged in series at the outlet of a cation exchange resin-packed column packed with an H-type strong acid cation exchange resin. The boron-containing solution is passed from the inlet of the cation exchange resin-packed column, the density of anions, such as chloride ions, in the outlet solution from the anion exchange resin-packed column nearest the cation exchange resin-packed column is monitored, and the desalination process is continued until the breakpoint of the anions, such as chloride ions, is detected.

Description

ホウ素含有溶液の脱塩方法Desalination method for boron-containing solution
 本発明は、塩化物イオンなどのアニオンを含むホウ素含有溶液中からイオン交換樹脂を用いてホウ素以外の塩類を低減する方法に関する。 The present invention relates to a method for reducing salts other than boron by using an ion exchange resin from a boron-containing solution containing anions such as chloride ions.
 一般に、メッキ液や金属表面処理液中には、ホウ酸などのホウ素化合物が含まれており、これらの液を取り扱う工場などでは、ホウ素を含む洗浄排水が発生する。ホウ素の環境基準は1mg/L以下と定められており、ホウ素を含有する排水中のホウ素は、除去するか、あるいは回収し精製して再利用することが望ましい。 Generally, boron compounds such as boric acid are contained in the plating solution and metal surface treatment solution, and cleaning wastewater containing boron is generated in factories that handle these solutions. The environmental standard for boron is set to 1 mg / L or less, and it is desirable to remove boron from wastewater containing boron, or to recover and purify and reuse it.
 ホウ素含有排水を再利用するためには、その排水中のホウ素以外の不純物を低減する必要がある。例えば、不純物の主体が塩化物イオン等の塩類の場合には、塩類濃度を低減すること、すなわち脱塩処理を行うことが必要となる。なお、どのような処理工程からホウ素含有排水が排出されるかにも依存するが、ホウ素含有排水には、アニオンとして、塩化物イオン、硫酸イオン、硝酸イオン、亜硫酸イオン及び亜硝酸イオンの少なくとも1種以上が含まれていることが一般的である。 In order to reuse boron-containing wastewater, it is necessary to reduce impurities other than boron in the wastewater. For example, when the main impurity is a salt such as chloride ion, it is necessary to reduce the salt concentration, that is, to perform a desalting treatment. Although depending on from which treatment process the boron-containing wastewater is discharged, the boron-containing wastewater has at least one of chloride ions, sulfate ions, nitrate ions, sulfite ions, and nitrite ions as anions. It is common that more than species are included.
 ホウ素含有排水に対する脱塩処理の方法としては、イオン交換処理、すなわちイオン交換樹脂を用いた方法が有効である。イオン交換樹脂を用いる方法では、例えば、カチオンを除去するH形カチオン交換樹脂とアニオンを除去するOH形アニオン交換樹脂とを組み合わせ、排水中での塩類濃度の低減を図る。 As a method of desalting the boron-containing wastewater, an ion exchange treatment, that is, a method using an ion exchange resin is effective. In the method using an ion exchange resin, for example, an H-type cation exchange resin that removes cations and an OH-type anion exchange resin that removes anions are combined to reduce the salt concentration in waste water.
 特許文献1は、ホウ素濃度の高いホウ素含有水を処理して再利用するために、ホウ素含有水をろ過したのち、カチオン交換樹脂を有するカチオン交換塔とアニオン交換樹脂を有するアニオン交換塔にこの順で通液させることや、カチオン交換塔とアニオン交換塔と混床のイオン交換樹脂を有するイオン交換塔とにこの順で通液させることを開示している。特許文献2は、ホウ素溶離液の精製方法として、OH型に調整したI型強塩基性アニオン交換樹脂、OH型に調整したII型強塩基性アニオン交換樹脂、及びOH型に調整した弱塩基性陰イオン交換樹脂の群から選択されたアニオン交換樹脂を充填したイオン交換塔に、酸根を含むホウ素溶離液を通液させて酸根を除去し、高純度のホウ酸溶液を得ることを開示している。さらに特許文献3は、ホウ素溶離液の精製方法として、アニオン交換樹脂を充填したイオン交換塔を2段直列に接続してホウ素溶離液を通液させることを開示している。 In Patent Document 1, in order to treat and reuse boron-containing water having a high boron concentration, after filtering the boron-containing water, the cation exchange tower having a cation exchange resin and the anion exchange tower having an anion exchange resin are in this order. And passing through a cation exchange column, an anion exchange column and an ion exchange column having a mixed bed ion exchange resin in this order. Patent Document 2 describes a method for purifying a boron eluent as a type I strongly basic anion exchange resin adjusted to OH type, a type II strongly basic anion exchange resin adjusted to OH type, and a weakly basic type adjusted to OH type. Disclosed is that a boron eluent containing acid radicals is passed through an ion exchange column filled with an anion exchange resin selected from the group of anion exchange resins to remove the acid radicals to obtain a high-purity boric acid solution. Yes. Further, Patent Document 3 discloses that a boron eluent is purified by connecting two stages of ion exchange towers filled with an anion exchange resin in series as a method for purifying the boron eluent.
特開2003-53342号公報JP 2003-53342 A 特開2001-316108号公報JP 2001-316108 A 特開2001-335315号公報JP 2001-335315 A
 イオン交換処理によってホウ素含有溶液の脱塩処理を行う場合、ホウ素自体についてはイオン交換樹脂に吸着されずに処理水中に残存する方が、ホウ素の効率的な回収の観点からは好ましい。また、イオン交換樹脂の再生処理によって発生する廃液すなわち再生廃液中のホウ素濃度についても、環境への影響を考慮すると、低い方が望ましい。要するに、ホウ酸含有溶液の脱塩処理において、ホウ素がイオン交換樹脂に吸着されないことが望ましい。 When performing a desalting treatment of a boron-containing solution by ion exchange treatment, it is preferable from the viewpoint of efficient recovery of boron that boron itself remains in the treated water without being adsorbed on the ion exchange resin. Further, the boron concentration in the waste liquid generated by the regeneration treatment of the ion exchange resin, that is, the boron concentration in the recycled waste liquid is preferably lower considering the influence on the environment. In short, it is desirable that boron is not adsorbed by the ion exchange resin in the desalting treatment of the boric acid-containing solution.
 しかしながらホウ素は、酸性溶液中では一般にホウ酸分子の形態で存在するものの、中性及びアルカリ性溶液内で一部がアニオンで(例えばホウ酸イオン)として解離する性質があり、アニオンとして解離したホウ素はイオン交換樹脂(アニオン交換樹脂)に吸着されてしまう。脱塩処理においてOH形強塩基性アニオン交換樹脂を用いた場合には、OH形強塩基性アニオン交換樹脂との界面付近で溶液が中性またはアルカリ性雰囲気となっており、その結果、ホウ素がアニオンに解離し、OH形強塩基性アニオン交換樹脂の官能基へのホウ素の吸着が起こり、処理水におけるホウ素濃度が低下するという問題が生じる。また、OH形強塩基性アニオン交換樹脂へのホウ素の吸着により、再生廃液におけるホウ素濃度も高くなってしまうという問題も生じる。 However, although boron is generally present in the form of boric acid molecules in acidic solutions, it has the property of being partially dissociated as anions (for example, borate ions) in neutral and alkaline solutions. It is adsorbed by the ion exchange resin (anion exchange resin). When an OH type strongly basic anion exchange resin is used in the desalting treatment, the solution is in a neutral or alkaline atmosphere near the interface with the OH type strongly basic anion exchange resin. This results in a problem that boron is adsorbed on the functional group of the OH type strongly basic anion exchange resin and the boron concentration in the treated water is lowered. Further, there is a problem that the boron concentration in the recycled waste liquid becomes high due to the adsorption of boron to the OH type strongly basic anion exchange resin.
 脱塩処理に遊離塩基形弱塩基性アニオン交換樹脂を用いた場合には、樹脂に吸着されるホウ素量はOH形強塩基性アニオン交換樹脂を用いた場合に比べ大きく低減するが、それでも、遊離塩基形弱塩基性アニオン交換樹脂の官能基の中に強塩基性のものがいくらか存在することなどの理由により、ホウ素の一部は遊離塩基形弱塩基性アニオン交換樹脂に吸着されてしまい、その分、処理水におけるホウ素濃度の減少と再生廃液におけるホウ素濃度の増加が起きる。 When a free base type weakly basic anion exchange resin is used for desalting, the amount of boron adsorbed on the resin is greatly reduced as compared to the case of using an OH type strongly basic anion exchange resin. Some of the boron is adsorbed on the free base weakly basic anion exchange resin due to the presence of some strongly basic ones in the functional group of the basic weakly anion exchange resin. As a result, a decrease in the boron concentration in the treated water and an increase in the boron concentration in the recycled wastewater occur.
 そこで本発明の目的は、塩化物イオン等のアニオンを含むホウ素含有溶液の中からイオン交換樹脂を用いてホウ素以外の塩類を低減する脱塩方法であって、処理水でのホウ素濃度の減少と再生廃液でのホウ素濃度の増加とを抑制することが可能な方法を提供することにある。 Accordingly, an object of the present invention is a desalting method for reducing salts other than boron by using an ion exchange resin from a boron-containing solution containing anions such as chloride ions, and reducing the boron concentration in treated water and It is an object of the present invention to provide a method capable of suppressing an increase in boron concentration in a recycled waste liquid.
 本発明の脱塩方法は、塩化物イオン、硝酸イオン、硫酸イオン、亜硝酸イオン及び亜硫酸イオンのいずれか1つ以上のアニオンを含むホウ素含有溶液の中から、ホウ素以外の塩類を低減する脱塩方法において、H形強酸性カチオン交換樹脂が充填されたカチオン交換樹脂充填塔の出口に対し、いずれも遊離塩基形弱塩基性アニオン交換樹脂が充填されてカチオン交換樹脂充填塔の出口からの液が順次通過する2段のアニオン交換樹脂充填塔を配置したイオン交換装置を用い、このイオン交換装置に対し、カチオン交換樹脂充填塔の入口からホウ素含有溶液を通液する脱塩工程を備え、2段のアニオン交換充填塔のうちホウ素含有溶液の通液経路においてカチオン交換樹脂充填塔に近い方のアニオン交換樹脂充填塔の出口液中でのアニオンの濃度を監視して、アニオンのいずれかのブレークを検出するまで脱塩工程を継続することを特徴とする。 The desalting method of the present invention is a desalting method for reducing salts other than boron from a boron-containing solution containing at least one anion of chloride ion, nitrate ion, sulfate ion, nitrite ion and sulfite ion. In the method, each of the outlets of the cation exchange resin packed tower filled with the H-type strongly acidic cation exchange resin is filled with the free base type weakly basic anion exchange resin, and the liquid from the outlet of the cation exchange resin packed tower is Using an ion exchange apparatus in which a two-stage anion exchange resin packed tower that sequentially passes is arranged, the ion exchange apparatus is equipped with a desalting step for passing a boron-containing solution from the inlet of the cation exchange resin packed tower. Of the anion exchange packed column of the anion exchange resin packed column closer to the cation exchange resin packed column in the flow path of the boron-containing solution. Degrees and monitored, characterized by continuing the desalting step until detecting any break in the anion.
 以下、本発明の脱塩方法の原理を説明する。 Hereinafter, the principle of the desalting method of the present invention will be described.
 本発明では、まず、ホウ素含有溶液をH形強酸性カチオン交換樹脂に通液して、溶液中のカルシウムイオン(Ca2+)、ナトリウムイオン(Na+)などのカチオンを除去し、溶液の液性を酸性にする。次に、液性を酸性とした溶液を遊離塩基形弱塩基性アニオン交換樹脂に通液して、溶液中の塩化物イオンなどのアニオン類を除去する。ここでOH形強塩基性アニオン交換樹脂ではなく遊離塩基形弱塩基性アニオン交換樹脂を用いるのは、OH形強塩基性アニオン交換樹脂を用いたとするとイオン交換樹脂に対する選択性の低いホウ素までを多量に除去してしまうからである。しかしながら、遊離塩基形弱塩基性アニオン交換樹脂を用いた場合であっても、一部に強塩基性の官能基が存在するなどの理由で、通液初期にホウ素が吸着除去される。そこで、遊離塩基形弱塩基性アニオン交換樹脂に一度吸着したホウ素を完全に脱着する方法を検討した結果、その遊離塩基形弱塩基性アニオン交換樹脂に対し、塩化物イオンなど、ホウ酸イオンよりも選択性の高いイオンを吸着できなくなる、すなわちブレークするまで通液を継続することが有効であることを見出し、本発明を完成させた。 In the present invention, first, a boron-containing solution is passed through an H-type strongly acidic cation exchange resin to remove cations such as calcium ions (Ca 2+ ) and sodium ions (Na + ) in the solution, and the solution liquid Makes sex acidic. Next, the acidified solution is passed through a free base weakly basic anion exchange resin to remove anions such as chloride ions in the solution. The use of the free base type weakly basic anion exchange resin instead of the OH type strong base anion exchange resin here means that if the OH type strongly basic anion exchange resin is used, a large amount of boron having low selectivity to the ion exchange resin is used. This is because they are removed. However, even when a free base type weakly basic anion exchange resin is used, boron is adsorbed and removed at the initial stage of liquid passage due to a strong basic functional group in part. Therefore, as a result of examining a method for completely desorbing boron once adsorbed to the free base type weakly basic anion exchange resin, the free base type weakly basic anion exchange resin was compared with borate ions such as chloride ions. The inventors have found that it is effective to continue the liquid flow until it becomes impossible to adsorb ions with high selectivity, that is, break, and the present invention has been completed.
 イオン交換樹脂に対する選択性の高いイオンが、そのイオン交換樹脂に既に吸着されている選択性の低いイオンを脱着することは当然のことであり、この現象はOH形強塩基性アニオン交換樹脂でも起こり得ることである。しかしながらOH形強塩基性アニオン交換樹脂では、ホウ素が多量に吸着されてしまうとともに、ホウ素がある程度官能基に残留した状態で選択性の高いイオンとホウ酸イオンとの平衡に達してしまうので、ホウ素の完全な脱着は困難である。遊離塩基形弱塩基性アニオン交換樹脂を用いた場合には、ホウ酸イオンよりも選択性の高いイオンによって、既に吸着されているホウ酸イオンを完全に脱着させることができる。ホウ酸イオンが完全に脱着した状態では、ホウ酸イオンよりも選択性の高いイオンが遊離塩基形弱塩基性アニオン交換樹脂の官能基サイトのほぼ全部に吸着している状態にある、すなわち、その選択性の高いイオンに対して遊離塩基形弱塩基性アニオン交換樹脂がブレークする状態にあると考えられる。したがって、ホウ酸イオンよりも選択性の高いイオンがブレークする前に通液を終えてしまうと、アニオン交換樹脂においてホウ素形のままの官能基が残ってしまい、処理水でのホウ素濃度の減少、再生廃液でのホウ素濃度の増加につながってしまう。 It is natural that ions with high selectivity for an ion exchange resin desorb ions with low selectivity already adsorbed on the ion exchange resin, and this phenomenon also occurs in OH-type strongly basic anion exchange resins. Is to get. However, in the OH type strongly basic anion exchange resin, a large amount of boron is adsorbed, and since the boron remains in the functional group to some extent, an equilibrium between highly selective ions and borate ions is reached. Complete desorption is difficult. In the case of using a free base weakly basic anion exchange resin, boric acid ions already adsorbed can be completely desorbed by ions having higher selectivity than boric acid ions. When borate ions are completely desorbed, ions having higher selectivity than borate ions are adsorbed on almost all functional group sites of the free base type weakly basic anion exchange resin. It is considered that the free base type weak base anion exchange resin is in a state of breaking with respect to ions having high selectivity. Therefore, if the liquid flow is finished before the ions with higher selectivity than the borate ions break, the functional group remains in the boron form in the anion exchange resin, and the boron concentration in the treated water decreases. This leads to an increase in the boron concentration in the recycled wastewater.
 ホウ酸イオンより選択性の高いイオンがブレークするまで遊離塩基形弱塩基性アニオン交換樹脂を充填したアニオン交換樹脂充填塔に対して通液するということは、そのアニオン交換樹脂充填塔の出口液において処理水中でのホウ素以外の塩類濃度の上昇をもたらすが、本発明では、2段目のアニオン交換樹脂充填塔を備えることで、イオン交換装置全体として考えたときにその処理水でのホウ素以外の塩類濃度の上昇を防止することができる。 It passes through the anion exchange resin packed column packed with the free base weakly basic anion exchange resin until ions having higher selectivity than the borate ion break. The concentration of salts other than boron in the treated water is increased. In the present invention, by providing the second-stage anion exchange resin packed tower, when considering the ion exchange apparatus as a whole, other than boron in the treated water. An increase in salt concentration can be prevented.
 弱塩基性アニオン交換樹脂は、通液される液の液性が酸の状態でないとアニオンを吸着できないため、弱塩基性アニオン交換樹脂の前段でホウ素含有溶液を酸の状態とする必要があり、本発明では前段に、H形強酸性カチオン交換樹脂を充填したカチオン交換樹脂充填塔を設けている。また、この強酸性カチオン交換樹脂がブレークすると、アニオン交換樹脂充填塔に供給されるホウ素含有溶液の液性を酸性に保てなくなる場合があるから、本発明では、カチオン交換樹脂充填塔内のH形強酸性カチオン交換樹脂全体の交換容量が、1段目のアニオン交換樹脂充填塔内の遊離塩基形弱塩基性アニオン交換樹脂全体の交換容量よりも大きくなるようにすることが好ましい。 Since the weakly basic anion exchange resin cannot adsorb anions unless the liquid to be passed is in an acid state, the boron-containing solution needs to be in an acid state before the weakly basic anion exchange resin. In the present invention, a cation exchange resin packed tower filled with an H-type strongly acidic cation exchange resin is provided in the previous stage. In addition, when this strongly acidic cation exchange resin breaks, the liquidity of the boron-containing solution supplied to the anion exchange resin packed tower may not be kept acidic. It is preferable that the exchange capacity of the entire strong acid cation exchange resin is larger than the exchange capacity of the entire free base weakly basic anion exchange resin in the first-stage anion exchange resin packed column.
 本発明の脱塩方法では、ホウ酸イオンよりも選択性の高いイオンに関して1段目のアニオン交換樹脂充填塔内の遊離塩基形弱塩基性アニオン交換樹脂がブレークした時点で通液を中止し、イオン交換樹脂の再生処理を実行する必要がある。ここで、再生処理の実施ごとに2段のアニオン交換樹脂充填塔の間でホウ素含有溶液の通液順序を入れ換え、その後、脱塩処理のための通液を再開するようにしてもよい。このような構成により、遊離塩基形弱塩基性アニオン交換樹脂の再生は、常に1段目のアニオン交換樹脂充填塔にのみに対して行えばよいようになり、脱塩方法を実施するイオン交換装置全体として考えたときに効率的な運用が図れるようになる。また、1段目のアニオン交換樹脂充填塔を通過したホウ素のうちのいくばくかは2段目のアニオン交換樹脂充填塔の遊離塩基形弱塩基性アニオン交換樹脂に吸着されてしまう可能性があるが、1段目と2段目のアニオン交換樹脂充填塔との間で通液順序を入れ替えることにより、通液順序の入れ替え前に2段目のアニオン交換樹脂充填塔において吸着されたホウ素も、通液順序の入れ替えによってそのアニオン交換樹脂充填塔が1段目のものとされたときにその遊離塩基形弱塩基性アニオン交換樹脂から脱着するので、長期的に見てホウ素は遊離塩基形弱塩基性アニオン交換樹脂に吸着されないことになる。 In the desalting method of the present invention, when the free base type weakly basic anion exchange resin in the first-stage anion exchange resin packed column breaks with respect to ions having higher selectivity than borate ions, the liquid passing is stopped. It is necessary to perform a regeneration process of the ion exchange resin. Here, each time the regeneration treatment is performed, the flow order of the boron-containing solution may be changed between the two-stage anion exchange resin packed towers, and then the flow for the desalting treatment may be resumed. With such a configuration, the regeneration of the free base weakly basic anion exchange resin has to be always performed only to the first-stage anion exchange resin packed tower, and the ion exchange apparatus for performing the desalting method Efficient operation can be planned when considered as a whole. In addition, some of the boron that has passed through the first-stage anion exchange resin packed column may be adsorbed by the free base weakly basic anion exchange resin of the second-stage anion exchange resin packed tower. By exchanging the flow order between the first and second anion exchange resin packed towers, boron adsorbed in the second anion exchange resin packed tower before the replacement of the flow order is also passed. When the anion exchange resin packed column is changed to the first stage by changing the liquid order, it is desorbed from the free base form weakly basic anion exchange resin. It will not be adsorbed on the anion exchange resin.
 また本発明においては、1段目のアニオン交換樹脂充填塔の出口液中でのアニオン濃度の監視に導電率計を用いることができる。塩化物イオン、硝酸イオン、硫酸イオン、亜硝酸イオン及び亜硫酸イオンなどのアニオン交換樹脂に対して高い選択性を有するイオンは解離しやすく、導電率への寄与も大きい。これに対し、ホウ素は解離度が低く、導電率への寄与が小さい。このため、塩化物イオン、硝酸イオン、硫酸イオン、亜硝酸イオン及び亜硫酸イオンなどについては、そのイオン濃度を直接測定しなくても、導電率計によって導電率の変化を追跡することによって、アニオン交換樹脂充填塔におけるそれらイオンのブレーク状況を容易に把握することが可能である。 In the present invention, a conductivity meter can be used for monitoring the anion concentration in the outlet liquid of the first-stage anion exchange resin packed tower. Ions having high selectivity with respect to anion exchange resins such as chloride ions, nitrate ions, sulfate ions, nitrite ions, and sulfite ions are easily dissociated and greatly contribute to conductivity. In contrast, boron has a low degree of dissociation and a small contribution to conductivity. For this reason, for chloride ions, nitrate ions, sulfate ions, nitrite ions, and sulfite ions, anion exchange can be performed by tracking the change in conductivity with a conductivity meter without directly measuring the ion concentration. It is possible to easily grasp the break state of those ions in the resin packed tower.
 本発明によれば、H形強酸性カチオン交換樹脂が充填されたカチオン交換樹脂充填塔の出口に対し、いずれも遊離塩基形弱塩基性アニオン交換樹脂が充填されてカチオン交換樹脂充填塔の出口からの液が順次通過する2段のアニオン交換樹脂充填塔を配置したイオン交換装置を用い、このイオン交換装置に対しカチオン交換充填塔の入口からホウ素含有溶液を通液し、1段目のアニオン交換装置の出口液中でのアニオン濃度を監視してアニオンのいずれかのブレークが検出するまで通液を継続することにより、処理水でのホウ素濃度の減少と再生廃液でのホウ素濃度の増加とをともに抑制することができるようになる。 According to the present invention, each of the outlets of the cation exchange resin packed tower filled with the H-type strongly acidic cation exchange resin is filled with the free base type weakly basic anion exchange resin, and is discharged from the outlet of the cation exchange resin packed tower. Using an ion exchange apparatus in which a two-stage anion exchange resin packed tower through which the liquid of the liquid passes sequentially is passed through the boron-containing solution from the inlet of the cation exchange packed tower to this ion exchange apparatus, and the first stage anion exchange By monitoring the anion concentration in the outlet liquid of the device and continuing the flow until any anion break is detected, the decrease in the boron concentration in the treated water and the increase in the boron concentration in the recycled wastewater Both can be suppressed.
本発明の実施の一形態の脱塩方法の実施に用いられる構成の一例を示す図である。It is a figure which shows an example of the structure used for implementation of the desalting method of one Embodiment of this invention.
 次に、本発明の実施の形態について図面を参照して説明する。以下に説明する実施の形態及び実施例は、本発明を実施するための一例を示すものであり、本発明は、以下の実施の形態及び実施例に限定されるものではない。 Next, embodiments of the present invention will be described with reference to the drawings. The embodiments and examples described below show examples for carrying out the present invention, and the present invention is not limited to the following embodiments and examples.
 図1に示す脱塩装置は、本発明の実施の一形態の脱塩方法を実施するものであり、イオン交換樹脂が充填された充填塔として、H形強酸性カチオン交換樹脂が充填されたカチオン交換樹脂充填塔5と、いずれも遊離塩基形弱塩基性アニオン交換樹脂が充填された2つのアニオン交換樹脂充填塔6,7を備えている。カチオン交換樹脂充填塔5はH形強酸性カチオン交換装置であり、アニオン交換樹脂充填塔6,7は遊離塩基形弱塩基性アニオン交換装置である。以下に説明するように、アニオン交換樹脂充填塔6,7は、カチオン交換樹脂充填塔5の出口に対して直列に接続するようになっている。ここでは、後述するように、アニオン交換樹脂充填塔6,7の間で通液順序を入れ替えること可能であり、これによって、アニオン交換樹脂充填塔6,7のどちらを1段目とし他方を2段目とするかを任意に設定できるようになっている。本実施形態では、塩化物イオンなどのアニオンを含むホウ素含有溶液を原水とし、イオン交換処理によってホウ素以外の塩類を低減するものとする。ここでいうホウ素以外の塩類を構成するアニオンとしては、塩化物イオンの他に、例えば、硝酸イオン、硫酸イオン、亜硝酸イオン及び亜硫酸イオンが挙げられる。本明細書において1段目とは、原水の流れる経路においてカチオン交換樹脂充填塔5に近い方のアニオン交換樹脂充填塔のことを指し、2段目とはカチオン交換樹脂充填塔5から遠い方のアニオン交換樹脂充填塔のことを指すものとする。 The desalting apparatus shown in FIG. 1 implements the desalting method according to one embodiment of the present invention, and a cation packed with an H-type strongly acidic cation exchange resin as a packed tower packed with an ion exchange resin. An exchange resin packed tower 5 and two anion exchange resin packed towers 6 and 7 each filled with a free base weakly basic anion exchange resin are provided. The cation exchange resin packed tower 5 is an H-type strongly acidic cation exchanger, and the anion exchange resin packed towers 6 and 7 are free base type weakly basic anion exchangers. As will be described below, the anion exchange resin packed towers 6 and 7 are connected in series to the outlet of the cation exchange resin packed tower 5. Here, as will be described later, it is possible to change the flow order between the anion exchange resin packed columns 6 and 7, so that either one of the anion exchange resin packed columns 6 and 7 is the first stage and the other is 2 It is possible to arbitrarily set whether to set the stage. In the present embodiment, a boron-containing solution containing anions such as chloride ions is used as raw water, and salts other than boron are reduced by ion exchange treatment. Examples of the anions constituting the salts other than boron include nitrate ions, sulfate ions, nitrite ions and sulfite ions in addition to chloride ions. In the present specification, the first stage refers to the anion exchange resin packed tower closer to the cation exchange resin packed tower 5 in the flow path of the raw water, and the second stage is the farther from the cation exchange resin packed tower 5. It refers to an anion exchange resin packed tower.
 脱塩装置には、さらに、原水として貯える原水槽1と、原水槽1内の原水をバルブ21を介してカチオン交換樹脂充填塔5の入口に供給する供給ポンプ8と、イオン交換樹脂を再生する再生処理に使用する清澄水を貯える清澄水槽2と、清澄水槽2内の清澄水を清澄水配管51に供給する供給ポンプ9と、再生処理に使用する塩酸を貯える塩酸貯槽3と、バルブ39を介して塩酸貯槽3内の塩酸をカチオン交換樹脂充填塔5の入口に供給する供給ポンプ10と、再生処理に使用する水酸化ナトリウム溶液を貯える水酸化ナトリウム溶液貯槽4と、バルブ41を介して水酸化ナトリウム溶液貯槽4内の水酸化ナトリウム溶液を中間配管52に供給する供給ポンプ11と、を備えている。中間配管52は、カチオン交換樹脂充填塔5の出口からの液をアニオン交換樹脂充填塔6,7に供給するためのものであり、バルブ22を介してカチオン交換樹脂充填塔5の出口に接続するとともに、バルブ23,26を介してアニオン交換樹脂充填塔6,7の入口にそれぞれ接続している。第1のアニオン交換樹脂充填塔6の出口と第2のアニオン交換樹脂充填塔7の入口を接続する配管53が設けられ、配管53の途中にはバルブ24と導電率計12とが設けられている。同様に、第2のアニオン交換樹脂充填塔7の出口と第1のアニオン交換樹脂充填塔6の入口を接続する配管54が設けられ、配管54の途中にはバルブ27と導電率計13とが設けられている。処理水配管55は、この脱塩装置によって処理された処理水を外部に供給するためのものであり、バルブ28を介してアニオン交換樹脂充填塔6の出口に接続し、バルブ25を介してアニオン交換樹脂充填塔7の出口に接続している。この構成では、配管53,54とバルブ23~28を設けたことにより、バルブ23~28の開閉によって、任意に、アニオン交換樹脂充填塔6,7のいずれか一方を1段目とし他方を2段目とすることができる。 The desalination apparatus further regenerates the raw water tank 1 that stores the raw water, the supply pump 8 that supplies the raw water in the raw water tank 1 to the inlet of the cation exchange resin packed tower 5 through the valve 21, and the ion exchange resin. A clarified water tank 2 for storing the clarified water used for the regeneration process, a supply pump 9 for supplying the clarified water in the clarified water tank 2 to the clarified water pipe 51, a hydrochloric acid storage tank 3 for storing the hydrochloric acid used for the regeneration process, and a valve 39 The supply pump 10 supplies the hydrochloric acid in the hydrochloric acid storage tank 3 to the inlet of the cation exchange resin packed tower 5, the sodium hydroxide solution storage tank 4 that stores the sodium hydroxide solution used for the regeneration treatment, and the water through the valve 41. And a supply pump 11 for supplying the sodium hydroxide solution in the sodium oxide solution storage tank 4 to the intermediate pipe 52. The intermediate pipe 52 is for supplying the liquid from the outlet of the cation exchange resin packed tower 5 to the anion exchange resin packed towers 6 and 7 and is connected to the outlet of the cation exchange resin packed tower 5 through the valve 22. At the same time, they are connected to the inlets of the anion exchange resin packed towers 6 and 7 through valves 23 and 26, respectively. A pipe 53 connecting the outlet of the first anion exchange resin packed tower 6 and the inlet of the second anion exchange resin packed tower 7 is provided, and a valve 24 and a conductivity meter 12 are provided in the middle of the pipe 53. Yes. Similarly, a pipe 54 connecting the outlet of the second anion exchange resin packed tower 7 and the inlet of the first anion exchange resin packed tower 6 is provided, and a valve 27 and the conductivity meter 13 are provided in the middle of the pipe 54. Is provided. The treated water pipe 55 is for supplying treated water treated by the desalting apparatus to the outside. The treated water pipe 55 is connected to the outlet of the anion exchange resin packed tower 6 through the valve 28 and connected to the anion through the valve 25. It is connected to the outlet of the exchange resin packed tower 7. In this configuration, by providing the pipes 53 and 54 and the valves 23 to 28, any one of the anion exchange resin packed towers 6 and 7 is arbitrarily set to the first stage by opening and closing the valves 23 to 28, and the other is set to 2 It can be a step.
 清澄水配管51は、バルブ36を介してカチオン交換樹脂充填塔5の出口に接続し、バルブ37を介してアニオン交換樹脂充填塔6の出口に接続し、バルブ38を介して処理水配管55に接続し、バルブ40を介してカチオン交換樹脂充填塔5の入口に接続し、バルブ42を介して中間配管52に接続している。各充填塔5~7の底部に設けられた排出口は、それぞれ、バルブ32~34を介して配管56に接続し、配管56からはバルブ43を介して再生廃液が排出されるようになっているとともに、配管56内の液はバルブ35を介して原水槽1に戻されるようになっている。また、各充填塔5~7の上部には、それぞれ、充填塔内を大気と連通するためのバルブ29~31が設けられている。 The clarified water pipe 51 is connected to the outlet of the cation exchange resin packed tower 5 through the valve 36, is connected to the outlet of the anion exchange resin packed tower 6 through the valve 37, and is connected to the treated water pipe 55 through the valve 38. They are connected, connected to the inlet of the cation exchange resin packed tower 5 through the valve 40, and connected to the intermediate pipe 52 through the valve 42. The discharge ports provided at the bottoms of the packed towers 5 to 7 are connected to the pipe 56 via valves 32 to 34, respectively, and the recycled waste liquid is discharged from the pipe 56 via the valve 43. In addition, the liquid in the pipe 56 is returned to the raw water tank 1 through the valve 35. Further, valves 29 to 31 for communicating the inside of the packed tower with the atmosphere are provided at the upper part of the packed towers 5 to 7, respectively.
 次に、図1に示した脱塩装置の動作について説明する。 Next, the operation of the desalination apparatus shown in FIG. 1 will be described.
 この脱塩装置の運転は、カチオン交換樹脂充填塔5の出口に対してアニオン交換樹脂充填塔6,7を直列に接続して原水中のホウ素以外の塩類をイオン交換処理により低減し脱塩処理がなされた処理水を生成する脱塩工程と、カチオン交換樹脂充填塔5の内部の液とアニオン交換樹脂充填塔6,7のうちの1段目のものの内部の液を抜く脱液工程と、脱液工程で脱液した充填塔内に、ホウ素を含まない清澄水をその充填塔の下部から張り込む張り込み工程と、カチオン交換樹脂充填塔5内のH形強酸性カチオン交換樹脂と1段目のアニオン交換樹脂充填塔内の遊離塩基形弱塩基性アニオン交換樹脂を再生する再生工程とを1サイクルとして、これらの工程を繰り返して実施する。アニオン交換樹脂充填塔6,7のうちの1段目のものとは、カチオン交換樹脂充填塔5の直後に位置する方のアニオン交換樹脂充填塔を指す。脱塩工程に用いられるアニオン交換樹脂充填塔6,7に関し、カチオン交換樹脂充填塔5の出口に対するアニオン交換樹脂充填塔6,7間での接続順は変更可能としており、再生工程の実施ごとに、アニオン交換樹脂充填塔6,7において1段目のものと2段目のものとを入れ替えるようにしている。脱液工程及び張り込み工程は、再生工程のための準備段階として再生工程に付随するものである。 The operation of this desalination apparatus is to connect the anion exchange resin packed towers 6 and 7 in series to the outlet of the cation exchange resin packed tower 5 to reduce salts other than boron in the raw water by ion exchange treatment. A desalting step for generating treated water, and a draining step for draining the liquid inside the cation exchange resin packed tower 5 and the first stage of the anion exchange resin packed towers 6 and 7; In the packed tower drained in the drained process, a clarified water containing no boron is put in from the lower part of the packed tower, and the H-type strongly acidic cation exchange resin in the cation exchange resin packed tower 5 and the first stage These steps are repeated with one cycle consisting of the regeneration step of regenerating the free base weakly basic anion exchange resin in the anion exchange resin packed column. The first stage of the anion exchange resin packed towers 6 and 7 refers to the anion exchange resin packed tower located immediately after the cation exchange resin packed tower 5. Regarding the anion exchange resin packed towers 6 and 7 used in the desalting process, the order of connection between the anion exchange resin packed towers 6 and 7 with respect to the outlet of the cation exchange resin packed tower 5 can be changed. In the anion exchange resin packed towers 6 and 7, the first and second stages are interchanged. The liquid removal process and the pasting process are associated with the regeneration process as a preparation stage for the regeneration process.
 以下、各工程について説明する。なお、一番最初の状態では、バルブ21~43は閉じられており、各供給ポンプ8~11は停止しているものとする。 Hereinafter, each process will be described. In the initial state, the valves 21 to 43 are closed, and the supply pumps 8 to 11 are stopped.
 〈脱塩工程〉
 供給ポンプ8を稼働させ、バルブ21,22を開き、さらに、アニオン交換樹脂充填塔6を1段目とするのであればバルブ23~25を開き、アニオン交換樹脂充填塔7を1段目とするのであればバルブ26~28を開け、原水槽1内の原水を各充填塔5~7内へ順次送液する。原水は、各充填塔5~7内のイオン交換樹脂によりイオン交換処理される。このとき、アニオン交換樹脂充填塔6が1段目となっていれば、原水は、カチオン交換樹脂充填塔5からアニオン交換樹脂充填塔6を通りアニオン交換樹脂充填塔7を経て、脱塩処理がなされた処理水として処理水配管55から外部に供給される。アニオン交換樹脂充填塔7が1段目となっていれば、原水は、カチオン交換樹脂充填塔5からアニオン交換樹脂充填塔7を経てアニオン交換樹脂充填塔6に流れる。
<Desalination process>
If the supply pump 8 is operated, the valves 21 and 22 are opened, and if the anion exchange resin packed tower 6 is the first stage, the valves 23 to 25 are opened, and the anion exchange resin packed tower 7 is the first stage. In this case, the valves 26 to 28 are opened, and the raw water in the raw water tank 1 is sequentially fed into the packed towers 5 to 7. The raw water is subjected to ion exchange treatment with ion exchange resins in the packed towers 5 to 7. At this time, if the anion exchange resin packed tower 6 is in the first stage, the raw water passes through the anion exchange resin packed tower 6 from the cation exchange resin packed tower 5 and passes through the anion exchange resin packed tower 7 and is subjected to desalting treatment. The treated water is supplied from the treated water pipe 55 to the outside. If the anion exchange resin packed tower 7 is in the first stage, the raw water flows from the cation exchange resin packed tower 5 to the anion exchange resin packed tower 6 through the anion exchange resin packed tower 7.
 脱塩工程は、1段目のアニオン交換樹脂充填塔と2段目のアニオン交換樹脂充填塔との間に設けられている導電率計、すなわちアニオン交換樹脂充填塔6が1段目なら導電率計12、アニオン交換樹脂充填塔7が1段目なら導電率計13によって測定される導電率が上昇傾向を示すまで継続する。1段目のアニオン交換樹脂充填塔の直後の導電率計においてそこを流れる液の導電率が上昇傾向を示すということは、塩化物イオンなどの導電率に対する寄与が大きいイオンが1段目のアニオン交換樹脂充填塔から漏出していることであり、そのことは、そのイオンに関して1段目のアニオン交換樹脂充填塔がブレークしたことを意味する。1段目のアニオン交換樹脂充填塔の直後の導電率計において導電率が上昇傾向を示したら、供給ポンプ8を停止し、開いているバルブをすべて閉じて脱塩工程を終了させる。 The desalting step is a conductivity meter provided between the first-stage anion exchange resin packed tower and the second-stage anion exchange resin packed tower, that is, if the anion exchange resin packed tower 6 is the first stage, the conductivity If a total of 12 and the anion exchange resin packed tower 7 is the 1st stage, it will continue until the electrical conductivity measured by the electrical conductivity meter 13 shows an upward tendency. In the conductivity meter immediately after the first-stage anion exchange resin packed column, the conductivity of the liquid flowing therethrough is increasing, which means that ions having a large contribution to the conductivity, such as chloride ions, are present in the first-stage anion. It is leaking out from the exchange resin packed tower, which means that the first-stage anion exchange resin packed tower breaks with respect to the ions. When the conductivity shows a tendency to increase in the conductivity meter immediately after the first-stage anion exchange resin packed column, the supply pump 8 is stopped and all open valves are closed to complete the desalting step.
 〈脱液工程〉
 脱塩工程の終了後、バルブ29,32、35を開け、さらに、アニオン交換樹脂充填塔6が1段目であればバルブ30,33を開け、アニオン交換樹脂充填塔7が1段目であればバルブ31,34を開け、カチオン交換樹脂充填塔5内の液と1段目のアニオン交換樹脂充填塔内の液を抜く。抜かれた液は配管56を通って原水槽1に戻される。
<Dewatering process>
After completion of the desalting step, the valves 29, 32 and 35 are opened. Further, if the anion exchange resin packed tower 6 is in the first stage, the valves 30 and 33 are opened, and the anion exchange resin packed tower 7 is in the first stage. For example, the valves 31 and 34 are opened, and the liquid in the cation exchange resin packed tower 5 and the liquid in the first anion exchange resin packed tower are drained. The extracted liquid is returned to the raw water tank 1 through the pipe 56.
 〈張り込み工程〉
 脱液工程の実施後、バルブ32~35が全て閉じた状態となるようにし、供給ポンプ9を稼働し、バルブ36を開け、さらに、アニオン交換樹脂充填塔6が1段目であればバルブ37を開け、アニオン交換樹脂充填塔7が1段目であればバルブ38を開け、カチオン交換樹脂充填塔5と1段目のアニオン交換樹脂充填塔においてイオン交換樹脂が全て水に浸かる状態になるまで清澄水槽2内の清澄水をこれらの充填塔に送水する。
<Pasting process>
After the liquid removal step, all the valves 32 to 35 are closed, the supply pump 9 is operated, the valve 36 is opened, and if the anion exchange resin packed tower 6 is the first stage, the valve 37 If the anion exchange resin packed tower 7 is in the first stage, the valve 38 is opened until the ion exchange resin is completely immersed in water in the cation exchange resin packed tower 5 and the first stage anion exchange resin packed tower. The clarified water in the clarified water tank 2 is sent to these packed towers.
 〈再生工程〉
 張り込み工程の実施後、供給ポンプ9を停止し、開いているバルブをすべて閉じる。続いて、供給ポンプ10を稼働させ、バルブ39,42,43を開くことにより、塩酸貯槽3内の塩酸をカチオン交換樹脂充填塔5に供給し、H形強酸性カチオン交換樹脂の再生を行う。同時に、供給ポンプ11を稼働させ、バルブ41を開け、さらに、アニオン交換樹脂充填塔6が1段目であればバルブ23,33を開け、アニオン交換樹脂充填塔7が1段目であればバルブ26,33を開けることにより、水酸化ナトリウム溶液貯槽4内の水酸化ナトリウム溶液を1段目のアニオン交換樹脂充填塔に供給し、そのアニオン交換樹脂充填塔内の遊離塩基形弱塩基性アニオン交換樹脂の再生を行う。再生廃液は、配管56及びバルブ43を介して外部に排出される。
<Regeneration process>
After carrying out the tensioning process, the supply pump 9 is stopped and all open valves are closed. Subsequently, the supply pump 10 is operated and the valves 39, 42 and 43 are opened, whereby hydrochloric acid in the hydrochloric acid storage tank 3 is supplied to the cation exchange resin packed tower 5 to regenerate the H-type strongly acidic cation exchange resin. At the same time, the supply pump 11 is operated, the valve 41 is opened, the valves 23 and 33 are opened if the anion exchange resin packed tower 6 is the first stage, and the valves are opened if the anion exchange resin packed tower 7 is the first stage. By opening 26 and 33, the sodium hydroxide solution in the sodium hydroxide solution storage tank 4 is supplied to the first-stage anion exchange resin packed tower, and the free base form weakly basic anion exchange in the anion exchange resin packed tower Regenerate the resin. The recycled waste liquid is discharged to the outside through the pipe 56 and the valve 43.
 イオン交換樹脂が十分に再生されたら、供給ポンプ10,11を停止し、バルブ39,41を閉じる。そののち、供給ポンプ9を稼働させ、バルブ40,42を開くことにより、再生処理を行った充填塔に対して清澄水槽2内の清澄水を送水し、それらの充填塔内に残っている薬液の押出を実施する。このときの廃液も配管56及びバルブ43を介して外部に排出される。 When the ion exchange resin is sufficiently regenerated, the supply pumps 10 and 11 are stopped and the valves 39 and 41 are closed. After that, by operating the supply pump 9 and opening the valves 40 and 42, the clarified water in the clarified water tank 2 is sent to the packed tower that has been regenerated, and the chemical solution remaining in those packed towers. Extrusion of The waste liquid at this time is also discharged to the outside through the pipe 56 and the valve 43.
 残薬液の押出が完了すれば再生工程の終了なので、供給ポンプ9を停止させ、すべてのバルブを閉めることにより、次サイクルの脱塩工程を実施できるようになる。 If the extrusion of the remaining chemical solution is completed, the regeneration process is completed, so that the desalting process of the next cycle can be performed by stopping the supply pump 9 and closing all the valves.
 ここで説明した脱塩装置では、上述の脱塩工程、脱液工程、張り込み工程及び再生工程を1サイクルとして運転を行うが、次のサイクルでは、脱塩工程の開始時にバルブ23~25を開けるのかバルブ26~28を開けるのかを選択することにより、1段目のアニオン交換樹脂充填塔と2段目のアニオン交換樹脂充填塔とを入れ替えて処理を行う。すなわち、前サイクルで1段目だったアニオン交換樹脂充填塔が次サイクルでは2段目となり、前サイクルでは2段目であったアニオン交換樹脂充填塔が次サイクルでは1段目となるようにする。これにより、アニオン交換樹脂の再生は、常に1段目のアニオン交換樹脂充填塔にのみに対して行えばよいようになり、脱塩方法を実施する装置全体として考えたときに効率的な運用が図れるようになる。 In the desalination apparatus described here, the above-described desalination process, liquid removal process, filling process and regeneration process are performed as one cycle. In the next cycle, valves 23 to 25 are opened at the start of the desalination process. By selecting whether to open the valves 26 to 28, the first-stage anion exchange resin packed tower is replaced with the second-stage anion exchange resin packed tower. That is, the anion exchange resin packed tower that was the first stage in the previous cycle is the second stage in the next cycle, and the anion exchange resin packed tower that was the second stage in the previous cycle is the first stage in the next cycle. As a result, regeneration of the anion exchange resin is always performed only for the first-stage anion exchange resin packed tower, and efficient operation can be achieved when the entire apparatus for carrying out the desalting method is considered. It will be able to plan.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 図1に示したものと同様の装置を試験装置として製作し、上記の発明の実施の形態に記載した通りに各工程を進行させた。採用した条件は以下の通りである。
[Example 1]
An apparatus similar to that shown in FIG. 1 was manufactured as a test apparatus, and each step was advanced as described in the embodiment of the present invention. The adopted conditions are as follows.
 〈条件〉
 (1)H形強酸性カチオン交換樹脂:
 H形強酸性カチオン交換樹脂として商品名「アンバーライトIR120BH」(ダウ・ケミカル社製、総交換容量1.9eq/L-R(樹脂))体積300mLを使用し、このカチオン交換樹脂を樹脂製カラムに充填してカチオン交換樹脂充填塔を構成した。樹脂製カラムは円筒形状のものであり、その内直径は25.4mm、長さは1000mmであった。
<conditions>
(1) H-type strongly acidic cation exchange resin:
The product name “Amberlite IR120BH” (manufactured by Dow Chemical Co., Ltd., total exchange capacity 1.9 eq / LR (resin)) volume 300 mL is used as the H-type strongly acidic cation exchange resin, and this cation exchange resin is used as a resin column. To form a cation exchange resin packed tower. The resin column had a cylindrical shape and had an inner diameter of 25.4 mm and a length of 1000 mm.
 (2)遊離塩基形弱塩基性アニオン交換樹脂:
 遊離塩基形弱塩基性アニオン交換樹脂として商品名「アンバーライトIRA96SB」(ダウ・ケミカル社製、総交換容量1.3eq/L-R(樹脂))体積300mLを使用し、このアニオン交換樹脂を樹脂製カラムに充填してアニオン交換樹脂充填塔を構成した。樹脂製カラムは円筒形上のものであり、その内直径は25.4mm、長さは1000mmであった。このようなアニオン交換樹脂充填塔を2つ製作した。
(2) Free base weakly basic anion exchange resin:
The product name “Amberlite IRA96SB” (manufactured by Dow Chemical Co., Ltd., total exchange capacity 1.3 eq / LR (resin)) volume 300 mL is used as a free base weakly basic anion exchange resin. An anion exchange resin-packed tower was constructed by packing the column. The resin column had a cylindrical shape with an inner diameter of 25.4 mm and a length of 1000 mm. Two such anion exchange resin packed towers were produced.
 (3)供給液質:
 原水として用いられたホウ素含有溶液の液質は、ホウ素濃度が2000mg/L、塩化物イオン濃度が3000mg/L、硫酸イオン濃度が200mg/L、pHが7.5、導電率が18000μS/cmであった。
(3) Supply liquid quality:
The liquid quality of the boron-containing solution used as raw water is as follows: boron concentration is 2000 mg / L, chloride ion concentration is 3000 mg / L, sulfate ion concentration is 200 mg / L, pH is 7.5, and conductivity is 18000 μS / cm. there were.
 (4)清澄水質:
 清澄水の液質は、ホウ素濃度が0.1mg/L未満、塩化物イオン濃度が10mg/L、硫酸イオン濃度が10mg/L、pHが7.0、導電率が100μS/cmであった。
(4) Clear water quality:
The clarified water had a boron concentration of less than 0.1 mg / L, a chloride ion concentration of 10 mg / L, a sulfate ion concentration of 10 mg / L, a pH of 7.0, and a conductivity of 100 μS / cm.
 (5)通水LV(流量):
 脱塩工程での各充填塔での流量は、10m/hr(5.1L/hr)であった。
(5) Water flow LV (flow rate):
The flow rate in each packed tower in the desalting step was 10 m / hr (5.1 L / hr).
 (6)脱塩工程終点:
 脱塩工程は、1段目のアニオン交換樹脂充填塔の出口液での導電率が2000μS/cmになるまで行った。この時点を脱塩工程の終点とした。結果として、通液量は3.6Lとなった。
(6) Desalination process end point:
The desalting step was performed until the electrical conductivity at the outlet liquid of the first-stage anion exchange resin packed tower reached 2000 μS / cm. This time was taken as the end point of the desalting step. As a result, the flow rate was 3.6L.
 (7)脱液時間:
 脱液工程において、その開始から、カラム下部から液が出てこなくなるまでの時間は、10分であった。
(7) Drainage time:
In the liquid removal step, the time from the start until the liquid no longer comes out from the bottom of the column was 10 minutes.
 (8)各充填塔への張り込み水量:
 張り込み工程において各充填塔に張り込んだ清澄水の量は200mLであった。
(8) Amount of water put into each packed tower:
The amount of clarified water applied to each packed tower in the application step was 200 mL.
 (9)再生条件(カチオン交換樹脂):
 H形強酸性カチオン交換樹脂の再生では、再生剤として5%塩酸(HCl)を使用した。再生レベルを60gHCl/L-R(樹脂)に設定し、再生剤の流量及び清澄水による押出しの流量を4BV/時間とし、押出時間を45分とした。
(9) Regeneration conditions (cation exchange resin):
In the regeneration of the H-form strongly acidic cation exchange resin, 5% hydrochloric acid (HCl) was used as a regenerant. The regeneration level was set to 60 g HCl / LR (resin), the flow rate of the regenerant and the flow rate of extrusion with clarified water were 4 BV / hour, and the extrusion time was 45 minutes.
 (10)再生条件(アニオン交換樹脂)
 遊離塩基形弱塩基性アニオン交換樹脂の再生では、再生剤として、4%水酸化ナトリウム(NaOH)を使用した。再生レベルを60gNaOH/L-R(樹脂)とし、再生剤の流量及び清澄水による押出しの流量を4BV/時間とし、押出時間を45分とした。
(10) Regeneration conditions (anion exchange resin)
In the regeneration of the free base weakly basic anion exchange resin, 4% sodium hydroxide (NaOH) was used as a regenerant. The regeneration level was 60 g NaOH / LR (resin), the flow rate of the regenerant and the flow rate of extrusion with clarified water were 4 BV / hour, and the extrusion time was 45 minutes.
 [比較例1]
 実施例1において、脱塩工程の終点を1段目のアニオン交換樹脂充填塔の出口液での導電率が上昇傾向を示す前の2.4L通液時点とした。他の条件は実施例1と同じである。
[Comparative Example 1]
In Example 1, the end point of the desalting step was set to the 2.4 L passing point before the conductivity at the outlet liquid of the first-stage anion exchange resin packed tower showed an increasing tendency. Other conditions are the same as those in Example 1.
 [比較例2]
 実施例1において、アニオン交換樹脂充填塔に充填されるアニオン交換樹脂として、遊離塩基形弱塩基性アニオン交換樹脂の代わりにOH形強塩基性アニオン交換樹脂(商品名「アンバーライトIRA-402BL(OH)」、ダウ・ケミカル社製)体積300mLを用いた。樹脂製カラムのサイズや他の条件については実施例1と同じにした。比較例2では、通液量が3.0Lとなった時点で1段目のアニオン交換樹脂充填塔の出口液での導電率が2000μS/cmに到達した。この時点を脱塩工程の終点とした。
[Comparative Example 2]
In Example 1, as the anion exchange resin packed in the anion exchange resin packed tower, instead of the free base type weak base anion exchange resin, an OH type strong basic anion exchange resin (trade name “Amberlite IRA-402BL (OH ) ", Manufactured by Dow Chemical Co., Ltd.) A volume of 300 mL was used. The size of the resin column and other conditions were the same as in Example 1. In Comparative Example 2, the conductivity at the outlet liquid of the first-stage anion exchange resin packed tower reached 2000 μS / cm when the liquid flow rate reached 3.0 L. This time was taken as the end point of the desalting step.
 〈結果〉
 実施例1及び比較例1,2において、1段目のアニオン交換樹脂充填塔の出口液でのホウ素濃度と再生廃液でのホウ素濃度を測定した。結果を表1に示す。再生廃液でのホウ素濃度は、再生剤を供給しているときの廃液と押出を行っているときの廃液とをまとめて測定した。なお、再生処理は、カチオン交換樹脂に対するものとアニオン交換樹脂に対するものとを別々に実行したので、カチオン交換樹脂に対する再生処理に関するものが表中「カチオン」の欄に記載され、アニオン交換樹脂に関するものが表中「アニオン」の欄に記載され、得られた再生廃液全体に対するものが「全体」の欄に記載されている。
<result>
In Example 1 and Comparative Examples 1 and 2, the boron concentration in the outlet liquid of the first-stage anion exchange resin packed tower and the boron concentration in the recycled waste liquid were measured. The results are shown in Table 1. The boron concentration in the regenerated waste liquid was measured by collecting the waste liquid when supplying the regenerant and the waste liquid during extrusion. Since the regeneration treatment was performed separately for the cation exchange resin and the anion exchange resin, those relating to the regeneration treatment for the cation exchange resin are described in the column of “cation” in the table, and related to the anion exchange resin. Is described in the column of “anion” in the table, and the total regenerated waste liquid obtained is described in the column of “total”.
Figure JPOXMLDOC01-appb-T000001
 
 表1より、実施例1では、各比較例と比較して、1段目のアニオン交換樹脂充填塔の出口液でのホウ素濃度は高くなり、再生廃液でのホウ素濃度は低くなった。実施例1において1段目のアニオン交換樹脂充填塔の出口液でのホウ素濃度が各比較例よりも高いということは、2段目のアニオン交換樹脂充填塔の出口液でのホウ素濃度も各比較例より高くなるということを意味する。したがって、塩化物イオン等のアニオンを含むホウ素含有溶液の中からイオン交換樹脂を用いてホウ素以外の塩類を低減する際に、本発明によれば、処理水でのホウ素濃度の減少と再生廃液でのホウ素濃度の増加とを抑制することが可能となることがわかる。なお、実施例1において再生廃液からホウ素が検出されるのは、イオン交換樹脂内部に保持される水分、すなわち脱液工程で除去しきれない水分に起因する。このことは、カチオン交換樹脂からの再生廃液においてもホウ素が検出されることなどからも支持される。
Figure JPOXMLDOC01-appb-T000001

From Table 1, in Example 1, compared with each comparative example, the boron concentration in the exit liquid of the first-stage anion exchange resin packed tower was high, and the boron concentration in the regeneration waste liquid was low. In Example 1, the boron concentration in the outlet liquid of the first-stage anion exchange resin packed tower is higher than that in each comparative example. It means that it will be higher than the example. Therefore, when reducing salts other than boron by using an ion exchange resin from a boron-containing solution containing anions such as chloride ions, according to the present invention, it is possible to reduce the boron concentration in treated water and It can be seen that an increase in the boron concentration of can be suppressed. In Example 1, boron is detected from the recycled waste liquid due to moisture retained inside the ion exchange resin, that is, moisture that cannot be completely removed in the liquid removal step. This is supported by the fact that boron is also detected in the regenerated waste liquid from the cation exchange resin.
 次に、ブレークを検出するのに適したアニオンの種類を検討した結果を説明する。 Next, the results of examining the types of anions suitable for detecting breaks will be described.
 上述の実施例1及び比較例2において、それぞれの脱塩工程終点での1段目のアニオン交換樹脂充填塔出口液での塩化物イオン濃度と硫酸イオン濃度を測定した。結果を表2に示す。 In Example 1 and Comparative Example 2 described above, the chloride ion concentration and the sulfate ion concentration were measured in the first stage anion exchange resin packed column outlet liquid at the end of each desalting step. The results are shown in Table 2.
 脱塩工程終点での1段目のアニオン交換樹脂充填塔の各イオンのリーク率は、いずれの場合においても、塩化物イオンの方が硫酸イオンよりも大きくなった。実施例1と比較例2は、いずれも、導電率2000μS/cmに到達した時点を脱塩工程終点としているが、表2に示される結果は、導電率上昇の主要因が塩化物イオンのブレークであることを示している。 The leakage rate of each ion in the first-stage anion exchange resin packed tower at the end of the desalting step was higher in the chloride ion than in the sulfate ion in any case. In both Example 1 and Comparative Example 2, the time when the conductivity reached 2000 μS / cm was set as the end point of the desalting step. The results shown in Table 2 indicate that the main factor of the increase in conductivity is the breakage of chloride ions. It is shown that.
 以上のことから、ホウ素含有排水が、アニオンとして、塩化物イオンと、硫酸イオンなどのその他のアニオンとを含有する場合に、1段目のアニオン交換樹脂充填塔の出口液におけるブレーク検出の対象とするアニオンとして、塩化物イオンを用いることが好ましいことが分かる。 From the above, when the boron-containing wastewater contains chloride ions and other anions such as sulfate ions as anions, the target of break detection in the outlet liquid of the first-stage anion exchange resin packed tower is It can be seen that it is preferable to use a chloride ion as the anion to be used.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
  1  原水槽
  2  清澄水槽
  3  塩酸貯槽
  4  水酸化ナトリウム溶液貯槽
  5  強酸性カチオン交換樹脂充填塔
  6,7  弱塩基性アニオン交換樹脂充填塔
  8~11  供給ポンプ
 12,13  導電率計
 21~43  バルブ
 51  清澄水配管
 52  中間配管
 53,54,56  配管
 55  処理水配管
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Clarified water tank 3 Hydrochloric acid storage tank 4 Sodium hydroxide solution storage tank 5 Strong acid cation exchange resin packed tower 6,7 Weakly basic anion exchange resin packed tower 8-11 Supply pump 12,13 Conductivity meter 21-43 Valve 51 Clear water piping 52 Intermediate piping 53, 54, 56 Piping 55 Treated water piping

Claims (6)

  1.  塩化物イオン、硝酸イオン、硫酸イオン、亜硝酸イオン及び亜硫酸イオンのいずれか1つ以上のアニオンを含むホウ素含有溶液の中から、ホウ素以外の塩類を低減する脱塩方法において、
     H形強酸性カチオン交換樹脂が充填されたカチオン交換樹脂充填塔の出口に対し、いずれも遊離塩基形弱塩基性アニオン交換樹脂が充填されて前記カチオン交換樹脂充填塔の出口からの液が順次通過する2段のアニオン交換樹脂充填塔を配置したイオン交換装置を用い、前記イオン交換装置に対し、前記カチオン交換樹脂充填塔の入口から前記ホウ素含有溶液を通液する脱塩工程を備え、
     前記2段のアニオン交換樹脂充填塔のうち前記ホウ素含有溶液の通液経路において前記カチオン交換樹脂充填塔に近い方のアニオン交換樹脂充填塔の出口液中での前記アニオンの濃度を監視して、前記アニオンのいずれかのブレークを検出するまで前記脱塩工程を継続することを特徴とする、脱塩方法。
    In a desalting method for reducing salts other than boron from a boron-containing solution containing at least one anion of chloride ion, nitrate ion, sulfate ion, nitrite ion and sulfite ion,
    Each of the outlets of the cation exchange resin packed tower filled with the H-type strongly acidic cation exchange resin is filled with the free base form weakly basic anion exchange resin, and the liquid from the outlet of the cation exchange resin packed tower sequentially passes. Using a deionization step of passing the boron-containing solution from the inlet of the cation exchange resin packed tower to the ion exchange apparatus, using an ion exchange apparatus having a two-stage anion exchange resin packed tower
    Monitoring the concentration of the anion in the outlet liquid of the anion exchange resin packed tower closer to the cation exchange resin packed tower in the flow path of the boron-containing solution in the two-stage anion exchange resin packed tower; The desalting method is characterized in that the desalting step is continued until any break of the anion is detected.
  2.  前記脱塩工程の後に少なくとも前記カチオン交換樹脂充填塔内及び前記カチオン交換樹脂充填塔に近い方のアニオン交換樹脂充填塔内のイオン交換樹脂を再生する樹脂再生工程をさらに有し、
     前記樹脂再生工程の実施ごとに前記イオン交換装置内において、前記2段のアニオン交換樹脂充填塔の間で前記ホウ素含有溶液の通液順序を入れ換え、前記脱塩工程と前記樹脂再生工程とを繰り返して実行する、請求項1に記載の脱塩方法。
    A resin regeneration step for regenerating the ion exchange resin in at least the cation exchange resin packed tower and the anion exchange resin packed tower closer to the cation exchange resin packed tower after the desalting step;
    Each time the resin regeneration step is performed, the flow of the boron-containing solution is exchanged between the two-stage anion exchange resin packed towers in the ion exchange apparatus, and the desalting step and the resin regeneration step are repeated. The desalting method according to claim 1, wherein the desalting method is performed.
  3.  前記カチオン交換樹脂充填塔内のH型強酸性カチオン交換樹脂全体の交換容量が、前記カチオン交換樹脂充填塔に近い方のアニオン交換樹脂充填塔内の遊離塩基形弱塩基性アニオン交換樹脂全体の交換容量よりも大きい、請求項1または2に記載の脱塩方法。 The exchange capacity of the entire H-type strongly acidic cation exchange resin in the cation exchange resin packed tower is the exchange of the free base type weak base anion exchange resin in the anion exchange resin packed tower closer to the cation exchange resin packed tower. The desalting method according to claim 1 or 2, wherein the desalting method is larger than the capacity.
  4.  前記ホウ素含有溶液は塩化物イオンを含み、前記出口液での塩化物イオンの濃度を監視して、前記塩化物イオンのブレークを検出するまで前記脱塩工程を継続する、請求項1乃至3のいずれか1項に記載の脱塩方法。 The boron-containing solution contains chloride ions, the concentration of chloride ions in the outlet liquid is monitored, and the desalting step is continued until a break in the chloride ions is detected. The desalting method according to any one of the above.
  5.  前記ホウ素含有溶液は、さらに、硝酸イオン、硫酸イオン、亜硝酸イオン及び亜硫酸イオンにいずれか1つ以上のアニオンを含む、請求項4に記載の脱塩方法。 The desalinization method according to claim 4, wherein the boron-containing solution further contains at least one anion in nitrate ion, sulfate ion, nitrite ion and sulfite ion.
  6.  前記アニオンの濃度を導電率計により監視する、請求項1乃至5のいずれか1項に記載の脱塩方法。 The desalting method according to any one of claims 1 to 5, wherein the concentration of the anion is monitored by a conductivity meter.
PCT/JP2012/077263 2012-10-22 2012-10-22 Method of desalinating boron-containing solution WO2014064754A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/077263 WO2014064754A1 (en) 2012-10-22 2012-10-22 Method of desalinating boron-containing solution
JP2014543022A JP6185924B2 (en) 2012-10-22 2012-10-22 Desalination method for boron-containing solution
CN201280076585.4A CN104736484B (en) 2012-10-22 2012-10-22 The desalination process of boron-containing solution
KR1020157008154A KR20150048866A (en) 2012-10-22 2012-10-22 Method of desalinating boron-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077263 WO2014064754A1 (en) 2012-10-22 2012-10-22 Method of desalinating boron-containing solution

Publications (1)

Publication Number Publication Date
WO2014064754A1 true WO2014064754A1 (en) 2014-05-01

Family

ID=50544155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077263 WO2014064754A1 (en) 2012-10-22 2012-10-22 Method of desalinating boron-containing solution

Country Status (4)

Country Link
JP (1) JP6185924B2 (en)
KR (1) KR20150048866A (en)
CN (1) CN104736484B (en)
WO (1) WO2014064754A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203053A (en) * 2015-04-16 2016-12-08 オルガノ株式会社 Method and apparatus for regenerating ion exchange resin
CN109661374A (en) * 2016-09-16 2019-04-19 栗田工业株式会社 The method of operation of water quality management system and water quality management system
JP2019130496A (en) * 2018-02-01 2019-08-08 株式会社神鋼環境ソリューション Wastewater treatment facility and water treatment method
WO2019230276A1 (en) * 2018-05-30 2019-12-05 日本電気硝子株式会社 Method for treating treatment liquid and method for treating exhaust gas
US11033893B2 (en) * 2019-07-09 2021-06-15 Jay Vanier Multi-column continuous resin regeneration system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092102B2 (en) 2019-10-18 2022-06-28 Jfeスチール株式会社 Pipe end shape measuring device, pipe end shape measuring method, and steel pipe manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128874A (en) * 1973-04-13 1974-12-10
JPS618190A (en) * 1984-06-25 1986-01-14 Hitachi Ltd Method and apparatus for monitoring breaking of ion adsorbing apparatus
JPH08117744A (en) * 1994-10-21 1996-05-14 Nomura Micro Sci Co Ltd Method for detecting break of ion exchange apparatus
JP2000126764A (en) * 1998-10-28 2000-05-09 Samson Co Ltd Hard water softening apparatus for foreknowing and detecting hard water leakage
JP2001335314A (en) * 2000-05-19 2001-12-04 Nippon Denko Kk Method and apparatus for recovering boron from high purity boron-containing water
JP2001335315A (en) * 2000-05-25 2001-12-04 Nippon Denko Kk Apparatus and method for refining boron eluent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290164A (en) * 1976-01-23 1977-07-28 Kurita Water Ind Ltd Method for treating water containing 6 valment chromium
JPS5815193B2 (en) * 1980-11-11 1983-03-24 栗田工業株式会社 How to treat boron-containing water
JPH0232952B2 (en) * 1981-11-11 1990-07-24 Mitsubishi Heavy Ind Ltd HOSOGANJUSUINOSHORIHOHO
JP3883781B2 (en) * 2000-05-11 2007-02-21 日本電工株式会社 Apparatus and method for purifying boron eluent
JP4691276B2 (en) * 2001-07-05 2011-06-01 日本電工株式会社 Method and apparatus for recovering high purity boron-containing water
JP2003053342A (en) * 2001-08-10 2003-02-25 Nippon Denko Kk Method and device for removing impurity in boron- containing solution
WO2009073175A2 (en) * 2007-11-30 2009-06-11 Siemens Water Technologies Corp. Systems and methods for water treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128874A (en) * 1973-04-13 1974-12-10
JPS618190A (en) * 1984-06-25 1986-01-14 Hitachi Ltd Method and apparatus for monitoring breaking of ion adsorbing apparatus
JPH08117744A (en) * 1994-10-21 1996-05-14 Nomura Micro Sci Co Ltd Method for detecting break of ion exchange apparatus
JP2000126764A (en) * 1998-10-28 2000-05-09 Samson Co Ltd Hard water softening apparatus for foreknowing and detecting hard water leakage
JP2001335314A (en) * 2000-05-19 2001-12-04 Nippon Denko Kk Method and apparatus for recovering boron from high purity boron-containing water
JP2001335315A (en) * 2000-05-25 2001-12-04 Nippon Denko Kk Apparatus and method for refining boron eluent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203053A (en) * 2015-04-16 2016-12-08 オルガノ株式会社 Method and apparatus for regenerating ion exchange resin
CN109661374A (en) * 2016-09-16 2019-04-19 栗田工业株式会社 The method of operation of water quality management system and water quality management system
JP2019130496A (en) * 2018-02-01 2019-08-08 株式会社神鋼環境ソリューション Wastewater treatment facility and water treatment method
JP7018325B2 (en) 2018-02-01 2022-02-10 株式会社神鋼環境ソリューション Wastewater treatment equipment and wastewater treatment method
WO2019230276A1 (en) * 2018-05-30 2019-12-05 日本電気硝子株式会社 Method for treating treatment liquid and method for treating exhaust gas
JP2019205983A (en) * 2018-05-30 2019-12-05 日本電気硝子株式会社 Processing method of process liquid and processing method of exhaust gas
JP7042692B2 (en) 2018-05-30 2022-03-28 日本電気硝子株式会社 Treatment liquid treatment method and exhaust gas treatment method
US11033893B2 (en) * 2019-07-09 2021-06-15 Jay Vanier Multi-column continuous resin regeneration system
WO2022010582A1 (en) * 2019-07-09 2022-01-13 Jay Vanier Multi-column continuous resin regeneration system

Also Published As

Publication number Publication date
CN104736484B (en) 2016-08-17
JPWO2014064754A1 (en) 2016-09-05
CN104736484A (en) 2015-06-24
JP6185924B2 (en) 2017-08-23
KR20150048866A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6185924B2 (en) Desalination method for boron-containing solution
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
TWI727046B (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
JP5792984B2 (en) Method and apparatus for removing dissolved aluminum
JP2016083660A (en) Method and device for reducing regenerant and waste water by the use of compressed air
KR101918771B1 (en) Ion-exchange device
TWI483778B (en) Ion exchange device
JP5729062B2 (en) Water treatment method and water treatment system
JP2012016673A (en) Device and method of treating iodine/boron-containing solution
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP6331014B2 (en) Method and apparatus for regenerating multilayer anion exchange resin tower
JP6651382B2 (en) Wastewater treatment method and wastewater treatment device
TWI538887B (en) Method for demineralization of boron-containing solution
JP6601642B2 (en) Method and apparatus for regenerating multilayer anion exchange resin tower
JP2012196634A (en) Method and system for treatment of water
JP6337933B2 (en) Water quality management system and operation method of water quality management system
JP4927670B2 (en) Etching waste liquid recycling method and recycling apparatus
JP2008101247A (en) Regeneration method and regeneration device for etching waste liquid
JP2001340851A (en) Method and apparatus for treating boron-containing wastewater
JPH11165168A (en) Pure water producing apparatus
TWI846715B (en) Method and device for removing dissolved aluminum
JP6421021B2 (en) Method and apparatus for purification of high concentration sulfate solution
US11008230B2 (en) Exchange based-water treatment
JP4411669B2 (en) Regeneration method of cation exchange resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543022

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157008154

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887293

Country of ref document: EP

Kind code of ref document: A1