WO2019228501A1 - Lentiviral vector used for treatment of gaucher, lentivirus, and preparation method and application thereof - Google Patents

Lentiviral vector used for treatment of gaucher, lentivirus, and preparation method and application thereof Download PDF

Info

Publication number
WO2019228501A1
WO2019228501A1 PCT/CN2019/089528 CN2019089528W WO2019228501A1 WO 2019228501 A1 WO2019228501 A1 WO 2019228501A1 CN 2019089528 W CN2019089528 W CN 2019089528W WO 2019228501 A1 WO2019228501 A1 WO 2019228501A1
Authority
WO
WIPO (PCT)
Prior art keywords
lentiviral vector
cell
lentivirus
recombinant
gene
Prior art date
Application number
PCT/CN2019/089528
Other languages
French (fr)
Inventor
Zhangying ZHU
Original Assignee
Shenzhen Geno-Immune Medical Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Geno-Immune Medical Institute filed Critical Shenzhen Geno-Immune Medical Institute
Publication of WO2019228501A1 publication Critical patent/WO2019228501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0665Blood-borne mesenchymal stem cells, e.g. from umbilical cord blood
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present application belongs to the field of genetic engineering technology and relates to a lentiviral vector pTYF used for the treatment of Gaucher, a lentivirus, and a preparation method and application thereof, and particularly relates to use of a lentiviral vector improved for optimizing the expression of GBA gene in the preparation of a medicament for the treatment of Gaucher disease.
  • Gaucher disease is an inherited disease affecting various organs and tissues of the human body. Mutations in GBA gene greatly reduce or eliminate the activity of ⁇ -glucocerebrosidase, leaving no sufficient ⁇ -glucocerebrosidase and further resulting in a toxic level of glucocerebroside and related substances in cells. Tissues and organs are damaged by abnormal accumulation and storage of these substances, resulting in the characteristics of Gaucher disease. Symptoms and signs vary widely among patients. Gaucher disease type I is the most common form of Gaucher disease and is also called non-neurological Gaucher disease. The central nervous system of this type of patient is usually not affected. This disease has features from mild to severe. Symptoms may occur at any time from childhood to adulthood.
  • the main symptoms and signs include hepatosplenomegaly, anemia, and easy bruising, which are caused by a decrease in blood platelet levels, and also include lung disease, bone abnormalities, bone pain, fractures and arthritis.
  • Gaucher disease types II and III are called neuropathic Gaucher disease, which affect the central nervous system. In addition to the above symptoms and signs, Gaucher disease type II and type III can cause abnormal eye movements, seizures and brain damage. Gaucher disease type II begins in infancy and often causes life-threatening medical problems. Gaucher disease type III progresses slower than type II, although it also affects the nervous system.
  • Gaucher disease cardiovascular type Another form of Gaucher disease is called the Gaucher disease cardiovascular type because it primarily affects the heart and results in calcification of the heart valve.
  • Gaucher disease cardiovascular type may have symptoms including abnormalities in the eye, bone lesions and mild splenomegaly.
  • the incidence of Gaucher disease in the general population is from 1/100,000 to 1/50,000.
  • Type I is the most common form of the disease; it has a higher incidence in Jewish descendants in Ashkenazi (Eastern and Central European) than in other populations. The incidence of this disease among these Jewish is from 1/50,000 to 10/10,000.
  • Other forms of Gaucher disease are uncommon and have a lower incidence among Jewish descendants in Ashkenazi.
  • HSCs Hematopoietic stem cells
  • MSCs mesenchymal stem cells
  • AVROBIO, Inc. recently announced the completion of a $60 Million Series B Financing to advance multiple gene therapies of AVROBIO’s lentiviral platform, including AVR-RD-01 in Phase I clinical trial for Fabry disease, and three additional gene therapies for the treatment of other lysosomal storage disorders, including Gaucher disease, cystinosis, and Pompe disease.
  • AAV adeno-associated virus
  • the AAV vector will produce different levels of host immune responses in the human body depending on the tissue injected.
  • the specific causes and damages are still not clear so far, which will be the key to its application in clinical practice.
  • researchers have found volunteers and clinical trials for this are ongoing.
  • the present application provides a lentiviral vector used for the treatment of Gaucher, a lentivirus, and a preparation method and application thereof.
  • the lentiviral vector used for the treatment of Gaucher has higher transduction efficiency, stability and safety.
  • the application provides a lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, to be used for the treatment of Gaucher, wherein the specific modifications are as follows:
  • the lentiviral vector further comprises a GBA gene.
  • the application provides a lentiviral vector that can be obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and the gag AUG codon, wherein the specific modifications are as follows:
  • the lentiviral vector further comprises a GBA gene.
  • the GBA gene is a codon optimized and humanized sequence.
  • the 5'-end splice donor site is deleted or modified and the gag AUG may be deleted or modified so that the splice donor site of the lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus packaging plasmids, that is, the lentiviral vector is unlikely to become pathogenic due to homologous recombination.
  • This allow the HIV-derived virus genetic materials to lose its self-replication function, thereby greatly improving the safety of the lentiviral vector used in gene therapy. This is a safety improvement that none of the other lentiviral vectors have, and in addition, this is the first application using pTYF devied vector expressing GBA.
  • the modified lentiviral vector has higher transduction efficiency, high stability and improved safety, and it can express the delivered genes at higher efficiency during the gene therapy.
  • the GBA gene is specifically cloned into the modified lentiviral vector which is then transfected into cells to produce lentiviral vector, which can infect cells to achieve a successful and stable expression of the GBA gene in the target cells including stem cells, achieving a gene therapy of Gaucher with the lentiviral vector.
  • nucleotide sequences used in the deletion or modification of the 5'-end splice donor site of the lentiviral vector are listed below, for example:
  • the wild type 5' splice donor site GT is mutated to CA, wherein specific sequences are as follows:
  • Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
  • the wild type 5' splice donor site GT is mutated to GG, wherein specific sequences are as follows:
  • Wild type (SEQ ID NO. 5) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • Mutant (SEQ ID NO. 6) : GGCAAGAGGCGAGGGGCGGCGACTGGGGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
  • the GBA gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a nucleotide sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
  • the GBA gene has a nucleotide sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the GBA gene has a nucleotide sequence that shares at least 82%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the GBA gene has a nucleotide sequence that shares at least 85%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the GBA gene has a nucleotide sequence that shares at least 88%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the GBA gene has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the GBA gene has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the GBA gene has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1 is a modified GBA gene which still functions as a GBA gene. It may be a shortened form of the GBA protein or it may use only the functional domain sequence of the GBA. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the GBA gene to repair the GBA gene.
  • the nucleotide sequence shown in SEQ ID NO. 1 is as follows:
  • a promoter sequence is further comprised in front of the GBA gene, wherein the promoter sequence is EF1 ⁇ and/or CMV, preferably EF1 ⁇ .
  • any promoter can be used as long as it is capable of initiating GBA gene expression.
  • the inventor has found that use of the EF1 ⁇ promoter achieves more efficient gene delivery while ensuring safety.
  • the EF1 ⁇ has the nucleotide sequence as shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
  • the EF1 ⁇ has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
  • the EF1 ⁇ has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
  • the EF1 ⁇ has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
  • the sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2 is a modified EF1 ⁇ which still functions as a promoter. It may be a shortened form of the EF1 ⁇ . Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the promoter to initiate the expression of the GBA gene.
  • the nucleotide sequence shown in SEQ ID NO. 2 is as follows:
  • the present application provides a recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to the first aspect and packaging helper plasmids pNHP and pHEF-VSV-G.
  • the mammalian cell is a HEK293T cell and/or a TE671 cell.
  • the present application provides a method for preparing the lentivirus according to the second aspect, comprising the steps of:
  • the insertion site in step (2) may be any restriction site that can be synthesized by genetic engineering, although restriction sites BgI II and SpeI are preferably used in the present application.
  • the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G.
  • the mammalian cell is a HEK293T cell and/or a TE671 cell.
  • the co-transfected mammalian cell is cultured for 24-72 h, for example, 24 h, 25 h, 26 h, 27 h, 28 h, 29 h, 30 h, 31 h, 32 h, 33 h, 34 h, 35 h, 36 h, 37 h, 38 h, 39 h, 40 h, 41 h, 42 h, 43 h, 44 h, 45 h, 46 h, 47 h, 48 h, 50 h, 52 h, 55 h, 58 h, 60 h, 62 h, 65 h, 68 h, 70 h or 72 h.
  • the present application provides a recombinant cell which comprises the lentiviral vector according to the first aspect and/or the recombinant lentivirus according to the second aspect.
  • the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
  • the lentivirus-transfected stem cells are capable of stably expressing the GBA gene in a large amount.
  • the recombinant lentivirus may be introduced into peripheral blood stem cells and mesenchymal stem cells to form a double stem cell treatment strategy, which can further improve the delivery efficiency and expression level of the GBA gene, thereby achieving a faster resolution of Gaucher symptoms and a more comprehensive and long-term gene therapy.
  • the present application provides a pharmaceutical composition which comprises any one selected from the group consisting of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, and the recombinant cell according to the forth aspect, or a combination of at least two selected therefrom.
  • the composition further comprises a pharmaceutically acceptable adjuvant which is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
  • a pharmaceutically acceptable adjuvant which is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
  • the present application provides use of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, the recombinant cell according to the forth aspect, or the pharmaceutical composition according to the fifth aspect in the preparation of a medicament and/or an agent for the treatment of Gaucher.
  • peripheral blood of a patient is collected and stem cells are isolated therefrom which are then transduced with the lentiviral vector, followed by i. v. retransfusion into the patient for the treatment of Gaucher disease.
  • the lentiviral vector can be injected directly into the lesion cell site for the treatment of Gaucher disease.
  • the lentiviral vector is specifically modified so that the HIV virus lose its self-replication function, thereby greatly improving the safety performance of the lentiviral vector itself used in gene therapy.
  • the modified lentiviral vector has higher transduction efficiency, stability and safety, and it can more efficiently complete the delivery of normal genes during the gene therapy;
  • a human codon optimized GBA gene is specifically connected into the modified lentiviral vector of the present invention under the EF1 ⁇ promoter, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the GBA gene in transgenic related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of Gaucher;
  • the lentiviral vector can directly correct the functionally defect GBA gene in cells, and can effectively improve the delivery efficiency and expression level of the GBA gene, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of Gaucher symptoms and a more comprehensive and long-term gene therapy.
  • Figure 1 is a schematic diagram showing the modification of the lentiviral vector pTYF
  • Figure 2 is a schematic diagram showing the structure of the lentiviral vector
  • Figure 3 is a schematic diagram showing the purification process of the lentiviral vector
  • Figure 4 is a schematic diagram showing the therapeutic process for treating Gaucher disease by a double stem cell system which is obtained by transduction with a lentiviral vector carrying a functional GBA.
  • This example provides a method for constructing a lentiviral vector, which specifically includes the following steps:
  • Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • the sequences of the normal GBA gene (as shown in SEQ ID NO. 1) and the human EF1 ⁇ promoter (as shown in SEQ ID NO. 2) were synthesized by whole gene synthesis, which were then connected into the lentiviral vector TYF via restriction sites.
  • the obtained product was identified by sequencing and digestion with double enzymes (BgI II clone site (ggatct/ccacc) -AUG was used for 5’a nd SpeI clone site (actagt) was used for 3’ ; the NEB original recommendation was referred to for the best reaction condition) to obtain a correctly linked lentiviral vector which carried the normal GBA gene inserted under the hEF1 ⁇ promoter.
  • the specific link position and the structure of the lentiviral vector are shown in Figure 2.
  • nucleotide sequence shown in SEQ ID NO. 1 is as follows:
  • nucleotide sequence shown in SEQ ID NO. 2 is as follows:
  • the lentiviral vector prepared in Example 1 was further packaged, purified and concentrated to obtain a lentivirus.
  • the specific process is shown in FIG. 3, and the specific steps are as follows:
  • Example 1 The lentiviral vector constructed in Example 1 and packaging helper plasmids pNHP and pHEF-VSV-G were co-transfected into mammalian cell HEK293T, and cultured for 24-72h;
  • the collected lentivirus carrying normal GBA gene were used to transduce cells which were then identified for protein expression to confirm the expression of the GBA gene in cells.
  • FIG. 4 The schematic diagram of the therapeutic process for treating Gaucher disease with a single or double stem cell system which was obtained by transduction with the lentiviral vector of the present application prepared in Example 2 carrying a normal GBA gene is shown in FIG 4.
  • Stem cells of a patient were mobilized, and then peripheral blood of the patient was collected and hematopoietic stem cells and mesenchymal stem cells were isolated therefrom.
  • the stem cells were transduced with the lentiviral vector carrying normal GBA gene to obtain stem cells carrying normal GBA gene, followed by i. v. retransfusion of these cells into the patient for the treatment of disease.
  • the lentiviral vector can directly repair the defective GBA gene in cells, and can effectively improve the delivery efficiency and expression level of the GBA gene, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of Gaucher symptoms and a more comprehensive and long-term gene therapy.

Abstract

The present application provides a lentiviral vector used for the treatment of Gaucher, lentivirus, and preparation method and application thereof, wherein the lentiviral vector may be obtained by applying pTYF or modifying a pTYF lentiviral vector at the 5'-end splice donor site and it further comprises a GBA gene. The GBA gene is specifically connected into the pTYF or the modified lentiviral vector of the present invention, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the GBA gene in transgenic related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of Gaucher.

Description

LENTIVIRAL VECTOR USED FOR THE TREATMENT OF GAUCHER, LENTIVIRUS, AND PREPARATION METHOD AND APPLICATION THEREOF FIELD OF THE INVENTION
The present application belongs to the field of genetic engineering technology and relates to a lentiviral vector pTYF used for the treatment of Gaucher, a lentivirus, and a preparation method and application thereof, and particularly relates to use of a lentiviral vector improved for optimizing the expression of GBA gene in the preparation of a medicament for the treatment of Gaucher disease.
BACKGROUND
Gaucher disease is an inherited disease affecting various organs and tissues of the human body. Mutations in GBA gene greatly reduce or eliminate the activity of β-glucocerebrosidase, leaving no sufficient β-glucocerebrosidase and further resulting in a toxic level of glucocerebroside and related substances in cells. Tissues and organs are damaged by abnormal accumulation and storage of these substances, resulting in the characteristics of Gaucher disease. Symptoms and signs vary widely among patients. Gaucher disease type I is the most common form of Gaucher disease and is also called non-neurological Gaucher disease. The central nervous system of this type of patient is usually not affected. This disease has features from mild to severe. Symptoms may occur at any time from childhood to adulthood. The main symptoms and signs include hepatosplenomegaly, anemia, and easy bruising, which are caused  by a decrease in blood platelet levels, and also include lung disease, bone abnormalities, bone pain, fractures and arthritis. Gaucher disease types II and III are called neuropathic Gaucher disease, which affect the central nervous system. In addition to the above symptoms and signs, Gaucher disease type II and type III can cause abnormal eye movements, seizures and brain damage. Gaucher disease type II begins in infancy and often causes life-threatening medical problems. Gaucher disease type III progresses slower than type II, although it also affects the nervous system.
Another form of Gaucher disease is called the Gaucher disease cardiovascular type because it primarily affects the heart and results in calcification of the heart valve. Gaucher disease cardiovascular type may have symptoms including abnormalities in the eye, bone lesions and mild splenomegaly. The incidence of Gaucher disease in the general population is from 1/100,000 to 1/50,000. Type I is the most common form of the disease; it has a higher incidence in Jewish descendants in Ashkenazi (Eastern and Central European) than in other populations. The incidence of this disease among these Jewish is from 1/50,000 to 10/10,000. Other forms of Gaucher disease are uncommon and have a lower incidence among Jewish descendants in Ashkenazi.
Gaucher is a disease caused by β-glucocerebrosidase defects resulted from single gene mutation. Therefore, a gene therapy can theoretically achieve complete treatment of the disease. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have many characteristics that make them potential "transporters" in gene therapy. HSCs and MSCs can be obtained from blood or bone marrow. They  have the ability to differentiate into a series of somatic cells and to renew various tissue cells, and they can treat surrounding cells by cross correction.
Although many gene therapies for gene delivery using viral vectors are currently available in China and other countries, the gene transfer efficiency, which directly affects the therapeutic effects on a disease, is significantly different between different viral vectors or even between different preparation methods of the same vector. Most of the methods currently used for the treatment of inherited diseases by using cell therapy are inefficient and only modify blood stem cells, such that the obtained clinical therapeutic effects on the disease is less than expected. Therefore, methods for maximizing the viral gene delivery efficiency and modifying various stem cells to improve the therapeutic effects on inherited diseases are greatly in need.
AVROBIO, Inc. recently announced the completion of a $60 Million Series B Financing to advance multiple gene therapies of AVROBIO’s lentiviral platform, including AVR-RD-01 in Phase I clinical trial for Fabry disease, and three additional gene therapies for the treatment of other lysosomal storage disorders, including Gaucher disease, cystinosis, and Pompe disease. Some progress has been made in animal experiments using adeno-associated virus (AAV) as a vector. McEachern et al. injected a AAV8 vector carrying human GBA gene into Gaucher mice and obtained relative good test results.
However, the AAV vector will produce different levels of host immune responses in the human body depending on the tissue injected. The specific causes and damages are still not clear so far, which will be the key to its application in clinical practice. Researchers have found volunteers and clinical trials for this are  ongoing.
SUMMARY OF THE INVENTION
In view of the deficiencies in the prior art, the present application provides a lentiviral vector used for the treatment of Gaucher, a lentivirus, and a preparation method and application thereof. The lentiviral vector used for the treatment of Gaucher has higher transduction efficiency, stability and safety.
To achieve this purpose, the present application uses the following technical solutions:
In a first aspect, the application provides a lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, to be used for the treatment of Gaucher, wherein the specific modifications are as follows:
(a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus pTYF;
(b) it still has the function of the packaging signal of a virus;
wherein, the lentiviral vector further comprises a GBA gene.
In an embodiment of the present application, the application provides a lentiviral vector that can be obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and the gag AUG codon, wherein the specific modifications are as follows:
(a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous  recombination;
(b) the 5'-end gag AUG codon thereof is modified so that the modified lentiviral vector does not contain a functional gag AUG codon;
wherein, the lentiviral vector further comprises a GBA gene.
Materials and procedures used for the modification can be found, for example, in references 1-6.
In an embodiment of the present application, the GBA gene is a codon optimized and humanized sequence.
In the present application, the 5'-end splice donor site is deleted or modified and the gag AUG may be deleted or modified so that the splice donor site of the lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus packaging plasmids, that is, the lentiviral vector is unlikely to become pathogenic due to homologous recombination. This allow the HIV-derived virus genetic materials to lose its self-replication function, thereby greatly improving the safety of the lentiviral vector used in gene therapy. This is a safety improvement that none of the other lentiviral vectors have, and in addition, this is the first application using pTYF devied vector expressing GBA. The modified lentiviral vector has higher transduction efficiency, high stability and improved safety, and it can express the delivered genes at higher efficiency during the gene therapy. The GBA gene is specifically cloned into the modified lentiviral vector which is then transfected into cells to produce lentiviral vector, which can infect cells to achieve a successful and stable expression of the GBA gene in the target cells including stem  cells, achieving a gene therapy of Gaucher with the lentiviral vector.
According to the present application, nucleotide sequences used in the deletion or modification of the 5'-end splice donor site of the lentiviral vector are listed below, for example:
In a specific embodiment, the wild type 5' splice donor site GT is mutated to CA, wherein specific sequences are as follows:
Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
In a specific embodiment, the wild type 5' splice donor site GT is mutated to GG, wherein specific sequences are as follows:
Wild type (SEQ ID NO. 5) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 6) : GGCAAGAGGCGAGGGGCGGCGACTGGGGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
According to the present application, the GBA gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a nucleotide sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
In some embodiments, the GBA gene has a nucleotide sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the GBA gene has a nucleotide sequence that shares at  least 82%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the GBA gene has a nucleotide sequence that shares at least 85%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the GBA gene has a nucleotide sequence that shares at least 88%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the GBA gene has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the GBA gene has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the GBA gene has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In the present application, the inventor has found that the sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1 is a modified GBA gene which still functions as a GBA gene. It may be a shortened form of the GBA protein or it may use only the functional domain sequence of the GBA. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the GBA gene to repair the GBA gene. The nucleotide sequence shown in SEQ ID NO. 1 is as follows:
Figure PCTCN2019089528-appb-000001
Figure PCTCN2019089528-appb-000002
According to the present application, a promoter sequence is further comprised in front of the GBA gene, wherein the promoter sequence is EF1α and/or CMV, preferably EF1α.
In the present application, any promoter can be used as long as it is capable of initiating GBA gene expression. The inventor has found that use of the EF1αpromoter achieves more efficient gene delivery while ensuring safety.
According to the present application, the EF1α has the nucleotide sequence as  shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In the present application, the inventor has found that the sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2 is a modified EF1α which still functions as a promoter. It may be a shortened form of the EF1α. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the promoter to initiate the expression of the GBA gene. The nucleotide sequence shown in SEQ ID NO. 2 is as follows:
Figure PCTCN2019089528-appb-000003
Figure PCTCN2019089528-appb-000004
In a second aspect, the present application provides a recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to the first aspect and packaging helper plasmids pNHP and pHEF-VSV-G.
Materials and procedures used for the co-transfection can be found, for example, in references 1-6.
Preferably, the mammalian cell is a HEK293T cell and/or a TE671 cell.
In a third aspect, the present application provides a method for preparing the lentivirus according to the second aspect, comprising the steps of:
(1) modifying the lentiviral vector pTYF;
(2) synthesizing the sequences of a promoter and a GBA gene by whole gene synthesis, and inserting the same into the point-mutated lentiviral vector of step (1) ;
(3) co-transfecting the constructed lentiviral vector and a packaging helper  plasmid into a mammalian cell to obtain the recombinant lentivirus.
According to the present application, the insertion site in step (2) may be any restriction site that can be synthesized by genetic engineering, although restriction sites BgI II and SpeI are preferably used in the present application.
According to the present application, the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G.
According to the present application, the mammalian cell is a HEK293T cell and/or a TE671 cell.
According to the present application, the co-transfected mammalian cell is cultured for 24-72 h, for example, 24 h, 25 h, 26 h, 27 h, 28 h, 29 h, 30 h, 31 h, 32 h, 33 h, 34 h, 35 h, 36 h, 37 h, 38 h, 39 h, 40 h, 41 h, 42 h, 43 h, 44 h, 45 h, 46 h, 47 h, 48 h, 50 h, 52 h, 55 h, 58 h, 60 h, 62 h, 65 h, 68 h, 70 h or 72 h.
In a fourth aspect, the present application provides a recombinant cell which comprises the lentiviral vector according to the first aspect and/or the recombinant lentivirus according to the second aspect.
According to the present application, the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
In the present application, the lentivirus-transfected stem cells are capable of stably expressing the GBA gene in a large amount. The recombinant lentivirus may be introduced into peripheral blood stem cells and mesenchymal stem cells to form a double stem cell treatment strategy, which can further improve the delivery efficiency and expression level of the GBA gene, thereby achieving a faster resolution of  Gaucher symptoms and a more comprehensive and long-term gene therapy.
In a fifth aspect, the present application provides a pharmaceutical composition which comprises any one selected from the group consisting of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, and the recombinant cell according to the forth aspect, or a combination of at least two selected therefrom.
According to the present application, the composition further comprises a pharmaceutically acceptable adjuvant which is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
In a sixth aspect, the present application provides use of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, the recombinant cell according to the forth aspect, or the pharmaceutical composition according to the fifth aspect in the preparation of a medicament and/or an agent for the treatment of Gaucher.
In a specific embodiment, peripheral blood of a patient is collected and stem cells are isolated therefrom which are then transduced with the lentiviral vector, followed by i. v. retransfusion into the patient for the treatment of Gaucher disease.
In a specific embodiment, the lentiviral vector can be injected directly into the lesion cell site for the treatment of Gaucher disease.
Compared with the prior art, the present application has the following beneficial effects:
(1) In the present application, the lentiviral vector is specifically modified so that  the HIV virus lose its self-replication function, thereby greatly improving the safety performance of the lentiviral vector itself used in gene therapy. The modified lentiviral vector has higher transduction efficiency, stability and safety, and it can more efficiently complete the delivery of normal genes during the gene therapy;
(2) A human codon optimized GBA gene is specifically connected into the modified lentiviral vector of the present invention under the EF1α promoter, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the GBA gene in transgenic related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of Gaucher;
(3) In the present application, the lentiviral vector can directly correct the functionally defect GBA gene in cells, and can effectively improve the delivery efficiency and expression level of the GBA gene, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of Gaucher symptoms and a more comprehensive and long-term gene therapy.
DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram showing the modification of the lentiviral vector pTYF;
Figure 2 is a schematic diagram showing the structure of the lentiviral vector;
Figure 3 is a schematic diagram showing the purification process of the lentiviral vector;
Figure 4 is a schematic diagram showing the therapeutic process for treating  Gaucher disease by a double stem cell system which is obtained by transduction with a lentiviral vector carrying a functional GBA.
DETAILED DESCRIPTION
In order to further illustrate the technical measures adopted by the present application and the effects thereof, the present application is further described below with reference to the embodiments and accompanying drawings. It can be understand that the specific embodiments described herein are merely illustrative of the present application and are not intended to limit the present application.
In the examples, techniques or conditions, which are not specifically indicated, are performed according to techniques or conditions described in the literature of the art, or according to product instructions. The reagents or instruments for use, which are not indicated with manufacturers, are conventional products that are commercially available from formal sources.
Example 1 Construction of a lentiviral vector
This example provides a method for constructing a lentiviral vector, which specifically includes the following steps:
(1) The schematic diagram of the modification of the lentiviral vector pTYF is shown in Figure 1. The specific mutations were mutation of the wild type 5' splice donor site GT to CA and deletion of the enhancer in U3. For specific modification methods, see "Contributions of Viral Splice Sites and cis-Regulatory Elements to Lentivirus Vector Function, YAN CUI, JOURNAL OF VIROLOGY, July 1999, p. 6171–6176" . Specific steps are as follows:
Modification of the 5' splice donor site:
Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
(2) Insertion of a promoter and the human codon optimized GBA gene:
The sequences of the normal GBA gene (as shown in SEQ ID NO. 1) and the human EF1α promoter (as shown in SEQ ID NO. 2) were synthesized by whole gene synthesis, which were then connected into the lentiviral vector TYF via restriction sites. The obtained product was identified by sequencing and digestion with double enzymes (BgI II clone site (ggatct/ccacc) -AUG was used for 5’a nd SpeI clone site (actagt) was used for 3’ ; the NEB original recommendation was referred to for the best reaction condition) to obtain a correctly linked lentiviral vector which carried the normal GBA gene inserted under the hEF1α promoter. The specific link position and the structure of the lentiviral vector are shown in Figure 2.
Specifically, the nucleotide sequence shown in SEQ ID NO. 1 is as follows:
Figure PCTCN2019089528-appb-000005
Figure PCTCN2019089528-appb-000006
Specifically, the nucleotide sequence shown in SEQ ID NO. 2 is as follows:
Figure PCTCN2019089528-appb-000007
Figure PCTCN2019089528-appb-000008
Example 2 Preparation and Identification of a Lentivirus
1) Preparation of a lentivirus
The lentiviral vector prepared in Example 1 was further packaged, purified and concentrated to obtain a lentivirus. The specific process is shown in FIG. 3, and the specific steps are as follows:
(1) The lentiviral vector constructed in Example 1 and packaging helper plasmids pNHP and pHEF-VSV-G were co-transfected into mammalian cell HEK293T, and cultured for 24-72h;
(2) The lentivirus obtained after the culture was purified and concentrated to obtain a lentivirus.
2) Identification of the lentivirus
The collected lentivirus carrying normal GBA gene were used to transduce cells  which were then identified for protein expression to confirm the expression of the GBA gene in cells.
As can be seen from the results, there was no GBA protein expression in negative control cells which were cells without transduction of lentivirus, but a significantly larger amount of GBA protein expression was observed in cells transduced with the lentivirus carrying the normal GBA gene.
This indicates that the present application can successfully allow a cell to express GBA protein in a large amount by lentivirus, having a good therapeutic potential for diseases.
Example 3 Therapeutic effect of the lentivirus
The schematic diagram of the therapeutic process for treating Gaucher disease with a single or double stem cell system which was obtained by transduction with the lentiviral vector of the present application prepared in Example 2 carrying a normal GBA gene is shown in FIG 4. Stem cells of a patient were mobilized, and then peripheral blood of the patient was collected and hematopoietic stem cells and mesenchymal stem cells were isolated therefrom. The stem cells were transduced with the lentiviral vector carrying normal GBA gene to obtain stem cells carrying normal GBA gene, followed by i. v. retransfusion of these cells into the patient for the treatment of disease.
It can be seen from the results that the delivery efficiency and expression level of the GBA gene were effectively increased after direct injection of the lentivirus.
In summary, in the present application, the lentiviral vector can directly repair the defective GBA gene in cells, and can effectively improve the delivery efficiency  and expression level of the GBA gene, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of Gaucher symptoms and a more comprehensive and long-term gene therapy.
The applicant states that detailed methods of the present application are demonstrated in the present application through the above embodiments, however, the present application is not limited to the above detailed methods, and does not mean that the present application must rely on the above detailed methods to implement. It should be apparent to those skilled in the art that, for any improvement of the present application, the equivalent replacement of the raw materials of the present application, the addition of auxiliary components, and the selection of specific modes, etc., will all fall within the protection scope and the disclosure scope of the present application.
References:
1. Chang, L. -J., V. Urlacher, T. Iwakuma, Y. Cui, and J. Zucali (1999) . Efficacy and safety analyses of a recombinant human immunodeficiency virus derived vector system. Gene Therapy 6, 715-728.
2. Cui, Y., T. Iwakuma and L. -J. Chang (1999) . Contributions of viral splice sites and cis-regulatory elements to lentivirus vector functions. J Virol 73, 6171-6176.
3. Iwakuma T., Y. Cui, and L. -J. Chang (1999) . Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120-132.
4. Chang, L. -J. and Gay, E. (2001) The molecular genetics of lentiviral vectors - current and future perspectives. Current Gene Therapy 1, 237-251.
5. L-J Chang, X Liu and J He. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Therapy (2005) 12, 1133–1144.
6. Ayed O. Ayed, Lung-Ji Chang, Jan S. Moreb. Immunotherapy for multiple myeloma: Current status and future directions. Critical Reviews in Oncology/Hematology. Volume 96, Issue 3, December 2015, Pages 399-412.

Claims (14)

  1. A lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, used for the treatment of Gaucher, wherein the specific modifications are as follows:
    (a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between the packaging vector and the reference lentivirus;
    (b) it still has the function of the packaging signal of a virus;
    wherein, the lentiviral vector further comprises a GBA gene.
  2. The lentiviral vector according to claim 1, wherein the lentiviral vector is based on pTYF or obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and gag AUG codon, wherein the specific modifications are as follows:
    (a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus;
    (b) the 5'-end gag AUG codon thereof is modified so that the modified lentiviral vector does not contain a gag AUG codon;
    (c) it still has the function of the packaging signal of a virus;
    wherein, the lentiviral vector further comprises a GBA gene.
  3. The lentiviral vector according to claim 1 or 2, wherein the GBA gene is a humanized sequence.
  4. The lentiviral vector according to any one of claims 1 to 3, wherein the GBA gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a nucleotide  sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
  5. The lentiviral vector according to any one of claims 1 to 4, wherein a promoter sequence is further comprised in front of the GBA gene;
    preferably, the promoter sequence is EF1α and/or CMV, preferably EF1α;
    preferably, the EF1α has the nucleotide sequence as shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
  6. A recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to any one of claims 1 to 5 and packaging helper plasmids pNHP and pHEF-VSV-G.
  7. The recombinant lentivirus according to claim 6, wherein the mammalian cell is a HEK293T cell and/or a TE671 cell.
  8. A method for preparing the lentivirus according to claim 6 or 7, comprising the steps of:
    (1) subjecting the 5'-end splice donor site of lentiviral vector pTYF to point mutation;
    (2) synthesizing the sequences of a promoter and a GBA gene by whole gene synthesis, and inserting the same into the point-mutated lentiviral vector of step (1) ;
    (3) co-transfecting the constructed lentiviral vector and a packaging helper plasmid into a mammalian cell to obtain the recombinant lentivirus.
  9. The method according to claim 8, wherein the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G;
    preferably, the mammalian cell is a HEK293T cell and/or a TE671 cell;
    preferably, the co-transfected mammalian cell is cultured for 24-72h.
  10. A recombinant cell comprising the lentiviral vector according to any one of claims 1 to 5 and/or the recombinant lentivirus according to claim 6 or 7.
  11. The recombinant cell according to claim 9, wherein the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
  12. A pharmaceutical composition comprising any one selected from the group consisting of the lentiviral vector according to any one of claims 1 to 5, the recombinant lentivirus according to claim 6 or 7, and the recombinant cell according to claim 9 or 10, or a combination of at least two selected therefrom.
  13. The pharmaceutical composition according to claim 12, wherein the composition further comprises a pharmaceutically acceptable adjuvant;
    preferably, the adjuvant is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
  14. Use of the lentiviral vector according to any one of claims 1 to 5, the recombinant lentivirus according to claim 6 or 7, the recombinant cell according to claim 10 or 11, or the pharmaceutical composition according to claim 12 or 13 in the preparation of a medicament and/or an agent for the treatment of Gaucher.
PCT/CN2019/089528 2018-05-31 2019-05-31 Lentiviral vector used for treatment of gaucher, lentivirus, and preparation method and application thereof WO2019228501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810549038.2 2018-05-31
CN201810549038.2A CN108715868A (en) 2018-05-31 2018-05-31 A kind of Gaucher slow virus carriers, slow virus and its preparation method and application

Publications (1)

Publication Number Publication Date
WO2019228501A1 true WO2019228501A1 (en) 2019-12-05

Family

ID=63911699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089528 WO2019228501A1 (en) 2018-05-31 2019-05-31 Lentiviral vector used for treatment of gaucher, lentivirus, and preparation method and application thereof

Country Status (2)

Country Link
CN (1) CN108715868A (en)
WO (1) WO2019228501A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040741A2 (en) * 1999-01-07 2000-07-13 The Government Of The United States Of America, As Represented By The Secretary Department Of Health And Human Services, The National Institutes Of Health Lentivirus vector system
US6207455B1 (en) * 1997-05-01 2001-03-27 Lung-Ji Chang Lentiviral vectors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150814A2 (en) * 2007-05-29 2008-12-11 Reid Christopher B Methods for production and uses of multipotent cell populations
EP2669381A1 (en) * 2012-05-30 2013-12-04 AmVac AG Method for expression of heterologous proteins using a recombinant negative-strand RNA virus vector comprising a mutated P protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207455B1 (en) * 1997-05-01 2001-03-27 Lung-Ji Chang Lentiviral vectors
WO2000040741A2 (en) * 1999-01-07 2000-07-13 The Government Of The United States Of America, As Represented By The Secretary Department Of Health And Human Services, The National Institutes Of Health Lentivirus vector system

Also Published As

Publication number Publication date
CN108715868A (en) 2018-10-30

Similar Documents

Publication Publication Date Title
JP2022065003A (en) Modified capsid proteins for enhanced delivery of parvovirus vectors
EA038695B1 (en) Methods and compositions for gene transfer across the vasculature
CN110325199A (en) For treating the gene therapy of phenylketonuria
JP7381494B2 (en) Transcriptional regulatory elements and their use
JP2022525955A (en) Recombinant adeno-associated virus vector
IL240761B2 (en) Vectors comprising stuffer/filler polynucleotide sequences and methods of use
JP7057281B2 (en) Gene therapy for eye diseases
US20210095313A1 (en) Adeno-associated virus (aav) systems for treatment of genetic hearing loss
US11535870B2 (en) Adeno-associated virus vectors encoding modified G6PC and uses thereof
US20190343920A1 (en) Aav-mediated gene therapy for nphp5 lca-ciliopathy
WO2019228527A1 (en) Lentiviral vector used for treatment of hemophilia a, lentivirus, and preparation method and application thereof
CN112225793B (en) Lysosome targeting peptide, fusion protein thereof, adeno-associated virus vector carrying fusion protein coding sequence and application thereof
CN113383010A (en) Ataxin expression constructs with engineered promoters and methods of use thereof
WO2019228502A1 (en) Lentiviral vector used for treatment of sanfilippo a syndrome, lentivirus, and preparation method and application thereof
WO2019228505A1 (en) Lentiviral vector used for treatment of mld, lentivirus, and preparation method and application thereof
WO2023231778A1 (en) Transgenic expression cassette for treatment of mucopolysaccharidosis type iiia
CN111718420B (en) Fusion protein for gene therapy and application thereof
WO2019228498A1 (en) Lentiviral vector used for treatment of sanfilippo b syndrome, lentivirus, and preparation method and application thereof
WO2019228501A1 (en) Lentiviral vector used for treatment of gaucher, lentivirus, and preparation method and application thereof
US20220387562A1 (en) Compositions and methods for treating glycogen storage disorders
WO2019228528A1 (en) Lentiviral vector used for treatment of hemophilia b, lentivirus, and preparation method and application thereof
WO2019228526A1 (en) Lentiviral vector used for treatment of mucopolysaccharidosis, lentivirus, and preparation method and application thereof
WO2019228525A1 (en) Lentiviral vector used for treatment of x-scid, lentivirus, and preparation method and application thereof
EP2558113B1 (en) Serca2 therapeutic compositions and methods of use
WO2020187272A1 (en) Fusion protein for gene therapy and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810706

Country of ref document: EP

Kind code of ref document: A1