WO2019228498A1 - Lentiviral vector used for treatment of sanfilippo b syndrome, lentivirus, and preparation method and application thereof - Google Patents

Lentiviral vector used for treatment of sanfilippo b syndrome, lentivirus, and preparation method and application thereof Download PDF

Info

Publication number
WO2019228498A1
WO2019228498A1 PCT/CN2019/089519 CN2019089519W WO2019228498A1 WO 2019228498 A1 WO2019228498 A1 WO 2019228498A1 CN 2019089519 W CN2019089519 W CN 2019089519W WO 2019228498 A1 WO2019228498 A1 WO 2019228498A1
Authority
WO
WIPO (PCT)
Prior art keywords
lentiviral vector
cell
gene
lentivirus
recombinant
Prior art date
Application number
PCT/CN2019/089519
Other languages
French (fr)
Inventor
Yingying Wang
Original Assignee
Shenzhen Geno-Immune Medical Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Geno-Immune Medical Institute filed Critical Shenzhen Geno-Immune Medical Institute
Publication of WO2019228498A1 publication Critical patent/WO2019228498A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0075Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0665Blood-borne mesenchymal stem cells, e.g. from umbilical cord blood
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/0105Alpha-N-acetylglucosaminidase (3.2.1.50)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present application belongs to the field of genetic engineering technology and relates to a lentiviral vector pTYF used for the treatment of sanfilippo B syndrome, a lentivirus, and a preparation method and application thereof, and particularly relates to use of a lentiviral vector improved for optimizing the expression of NAGLU gene in the preparation of a medicament for the treatment of sanfilippo B syndrome.
  • Mucopolysaccharidosis (MPS) type III B (also known as Sanfilippo B syndrome) causes progressive cognitive dysfunction.
  • the disease is caused by the accumulation of partially degraded heparan sulfate oligosaccharide. Mutations in the Sanfilippo B related gene NAGLU leads to ⁇ -N-glucuronidase to lose its catalytic activity.
  • the symptoms and pathological features of Sanfilippo B syndrome are similar to those of Sanfilippo-A.
  • heparan sulfate oligosaccharides not only affects tissues and organs, especially neurons and non-neuronal cells in the CNS, but also leads to the appearance of secondary pathological features in the CNS, including a large number of metabolic damage, neuroinflammation, oxidative stress and neurological deterioration, and also has a profound impact on the peripheral nervous system (PNS) .
  • PNS peripheral nervous system
  • Sanfilippo B syndrome occurs mostly in children. The symptoms are not obvious before 2-4 years of age, after which, the condition will progess significantly and eventually die.
  • Sanfilippo B is a lysosomal storage disorder (LSD) caused by single gene mutation, involving the gene NAGLU. Therefore, a gene therapy can theoretically achieve complete treatment of the disease.
  • Direct injection of a viral vector carrying the normal NAGLU gene into the brain can directly transfect the gene-deficient cells in the brain, to repair various brain cells, secret the desired alaninease, and reduce the accumulation of heparan sulfate for the subsequent degradation, and repair surrounding cells or even cells throughout the brain by cross correction.
  • the viral vector is modified in vitro and directly injected into the brain. This method is convenient, rapid, low in cost, and has high applicability and a good application prospect in clinical gene therapy.
  • Abeona Therapeutics Inc. (Nasdaq: ABEO) , a clinical-stage biopharmaceutical company focused on developing gene therapies for life-threatening rare diseases, announced that the European Medicines Agency (EMA) Committee for Orphan Medicinal Products has granted Orphan Drug Designation (EMA/OD/226/16) for Abeona’s gene therapy program for children impacted by Sanfilippo syndrome type B (MPS IIIB) .
  • EMA European Medicines Agency
  • EMA/OD/226/16 Orphan Drug Designation
  • MPS IIIB Sanfilippo syndrome type B
  • This gene therapy program has previously been granted the U.S. Food and Drug Administration (FDA) Orphan Product Designation in the United States and received the Rare Pediatric Disease Designation as a pre-requisite part of the FDA’s Priority Review Voucher (PRV) process.
  • the FDA has allowed the Investigational New Drug (IND) for a Phase 1/2 clinical trial, and enrollments are anticipated to begin in the second quarter of 2017.
  • the present application provides a lentiviral vector used for the treatment of sanfilippo B syndrome, a lentivirus, and a preparation method and application thereof.
  • the lentiviral vector used for the treatment of sanfilippo B syndrome has higher transduction efficiency, stability and safety.
  • the application provides a lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, to be used for the treatment of sanfilippo B syndrome, wherein the specific modifications are as follows:
  • the lentiviral vector further comprises a NAGLU gene.
  • the application provides a lentiviral vector that can be obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and the gag AUG codon, wherein the specific modifications are as follows:
  • the lentiviral vector further comprises a NAGLU gene.
  • the NAGLU gene is a codon optimized and humanized sequence.
  • the 5'-end splice donor site is deleted or modified and the gag AUG may be deleted or modified so that the splice donor site of the lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus packaging plasmids, that is, the lentiviral vector is unlikely to become pathogenic due to homologous recombination.
  • This allow the HIV-derived virus genetic materials to lose its self-replication function, thereby greatly improving the safety of the lentiviral vector used in gene therapy. This is a safety improvement that none of the other lentiviral vectors have, and in addition, this is the first application using pTYF derived vector expressing NAGLU.
  • the modified lentiviral vector has higher transduction efficiency, high stability and improved safety, and it can express the delivered genes at higher efficiency during the gene therapy.
  • the NAGLU gene is specifically cloned into the modified lentiviral vector which is then transfected into cells to produce lentiviral vector, which can infect cells to achieve a successful and stable expression of the NAGLU gene in the target neuronal cells including stem cells, achieving a gene therapy of sanfilippo B syndrome with the lentiviral vector.
  • nucleotide sequences used in the deletion or modification of the 5'-end splice donor site of the lentiviral vector are listed below, for example:
  • the wild type 5' splice donor site GT is mutated to CA, wherein specific sequences are as follows:
  • Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
  • the wild type 5' splice donor site GT is mutated to GG, wherein specific sequences are as follows:
  • Wild type (SEQ ID NO. 5) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • Mutant (SEQ ID NO. 6) : GGCAAGAGGCGAGGGGCGGCGACTGGGGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
  • the NAGLU gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a nucleotide sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
  • the NAGLU gene has a nucleotide sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the NAGLU gene has a nucleotide sequence that shares at least 82%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the NAGLU gene has a nucleotide sequence that shares at least 85%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the NAGLU gene has a nucleotide sequence that shares at least 88%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the NAGLU gene has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the NAGLU gene has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the NAGLU gene has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
  • the sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1 is a modified NAGLU gene which still functions as a NAGLU gene. It may be a shortened form of the NAGLU protein or it may use only the functional domain sequence of the NAGLU. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the NAGLU gene to repair the NAGLU gene.
  • the nucleotide sequence shown in SEQ ID NO. 1 is as follows:
  • a promoter sequence is further comprised in front of the NAGLU gene, wherein the promoter sequence is EF1 ⁇ and/or CMV, preferably EF1 ⁇ .
  • any promoter can be used as long as it is capable of initiating NAGLU gene expression.
  • the inventor has found that use of the whole EF1 ⁇ promoter achieves more efficient gene delivery while ensuring safety.
  • the EF1 ⁇ has the nucleotide sequence as shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
  • the EF1 ⁇ has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
  • the EF1 ⁇ has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
  • the EF1 ⁇ has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
  • the sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2 is a modified EF1 ⁇ which still functions as a promoter. It may be a shortened form of the EF1 ⁇ . Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the promoter to initiate the expression of the NAGLU gene.
  • the nucleotide sequence shown in SEQ ID NO. 2 is as follows:
  • the present application provides a recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to the first aspect and packaging helper plasmids pNHP and pHEF-VSV-G.
  • the mammalian cell is a HEK293T cell and/or a TE671 cell.
  • the present application provides a method for preparing the lentivirus according to the second aspect, comprising the steps of:
  • the insertion site in step (2) may be any restriction site that can be synthesized by genetic engineering, although restriction sites BamHI and SpeI are preferably used in the present application.
  • the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G.
  • the mammalian cell is a HEK293T cell and/or a TE671 cell.
  • the co-transfected mammalian cell is cultured for 24-72 h, for example, 24 h, 25 h, 26 h, 27 h, 28 h, 29 h, 30 h, 31 h, 32 h, 33 h, 34 h, 35 h, 36 h, 37 h, 38 h, 39 h, 40 h, 41 h, 42 h, 43 h, 44 h, 45 h, 46 h, 47 h, 48 h, 50 h, 52 h, 55 h, 58 h, 60 h, 62 h, 65 h, 68 h, 70 h or 72 h.
  • the present application provides a recombinant cell which comprises the lentiviral vector according to the first aspect and/or the recombinant lentivirus according to the second aspect.
  • the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
  • the lentivirus-transfected stem cells are capable of stably expressing the NAGLU gene in a large amount.
  • the recombinant lentivirus may be introduced into peripheral blood stem cells and mesenchymal stem cells to form a double stem cell treatment strategy, which can further improve the delivery efficiency and expression level of the NAGLU gene in the brain, thereby achieving a faster resolution of sanfilippo B syndrome symptoms and a more comprehensive and long-term gene therapy.
  • the present application provides a pharmaceutical composition which comprises any one selected from the group consisting of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, and the recombinant cell according to the forth aspect, or a combination of at least two selected therefrom.
  • the composition further comprises a pharmaceutically acceptable adjuvant which is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
  • a pharmaceutically acceptable adjuvant which is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
  • the present application provides use of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, the recombinant cell according to the forth aspect, or the pharmaceutical composition according to the fifth aspect in the preparation of a medicament and/or an agent for the treatment of sanfilippo B syndrome.
  • peripheral blood of a patient is collected and stem cells are isolated therefrom which are then transduced with the lentiviral vector, followed by i. v. retransfusion into the patient for the treatment of sanfilippo B syndrome disease.
  • the lentiviral vector can be injected directly into the lesion cell site for the treatment of sanfilippo B syndrome disease.
  • the lentiviral vector can be used to transfect blood for the treatment of sanfilippo B syndrome disease.
  • the lentiviral vector is specifically modified so that the HIV virus lose its self-replication function, thereby greatly improving the safety performance of the lentiviral vector itself used in gene therapy.
  • the modified lentiviral vector has higher transduction efficiency, stability and safety, and it can more efficiently complete the delivery of normal genes during the gene therapy;
  • a human codon optimized NAGLU gene is specifically connected into the modified lentiviral vector of the present invention under the EF1 ⁇ promoter, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the NAGLU gene in transgenic brain-related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of sanfilippo B syndrome;
  • the lentiviral vector can directly correct the functionally defect NAGLU gene in cells, and can effectively improve the delivery efficiency and expression level of the NAGLU gene in the brain, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of sanfilippo B syndrome symptoms and a more comprehensive and long-term gene therapy.
  • Figure 1 is a schematic diagram showing the modification of the lentiviral vector pTYF
  • Figure 2 is a schematic diagram showing the structure of the lentiviral vector
  • Figure 3 is a schematic diagram showing the purification process of the lentiviral vector
  • Figure 4 is a schematic diagram showing the treatment process of sanfilippo B syndrome by directly injecting a lentiviral vector carrying a functional NAGLU gene into the brain.
  • This example provides a method for constructing a lentiviral vector, which specifically includes the following steps:
  • Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
  • the sequences of the normal NAGLU gene (as shown in SEQ ID NO. 1) and the human EF1 ⁇ promoter (as shown in SEQ ID NO. 2) were synthesized by whole gene synthesis, which were then connected into the lentiviral vector TYF via restriction sites.
  • the obtained product was identified by sequencing and digestion with double enzymes (the NEB original recommendation was referred to for the best reaction condition; BamHI clone site (ggatccacc) -AUG was used for 5’a nd SpeI clone site (actagt) was used for 3’ ) to obtain a correctly linked lentiviral vector which carried the normal NAGLU gene inserted under the hEF1 ⁇ promoter.
  • the specific link position and the structure of the lentiviral vector are shown in Figure 2.
  • nucleotide sequence shown in SEQ ID NO. 1 is as follows:
  • nucleotide sequence shown in SEQ ID NO. 2 is as follows:
  • the lentiviral vector prepared in Example 1 was further packaged, purified and concentrated to obtain a lentivirus.
  • the specific process is shown in FIG. 3, and the specific steps are as follows:
  • Example 1 The lentiviral vector constructed in Example 1 and packaging helper plasmids pNHP and pHEF-VSV-G were co-transfected into mammalian cell HEK293T, and cultured for 24-72h;
  • the collected lentivirus carrying normal NAGLU gene were used to transduce neuronal cells and glial cells which were then identified for protein expression to confirm the expression of the NAGLU gene in neuronal cells.
  • the lentivirus carrying normal NAGLU prepared in Example 2 was directly injected into the brain to treat sanfilippo B syndrome disease.
  • the schematic diagram of the treatment process is shown in Figure 4.
  • the site and specific coordinate in the brain at which the lentiviral vector was injected was determined by MRI or CT of the brain, and the lentiviral vector carrying normal NAGLU gene was delivered into the patient's brain via direct intracranial injection for disease treatment.
  • the lentiviral vector can directly repair the defective NAGLU gene in cells, and can effectively improve the delivery efficiency and expression level of the NAGLU gene in the brain, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of sanfilippo B syndrome symptoms and a more comprehensive and long-term gene therapy.

Abstract

The present application provides a lentiviral vector used for the treatment of sanfilippo B syndrome, lentivirus, and preparation method and application thereof, wherein the lentiviral vector may be obtained by applying pTYF or modifying a pTYF lentiviral vector at the 5'-end splice donor site and it further comprises a NAGLU gene. The NAGLU gene is specifically connected into the pTYF or the modified lentiviral vector of the present invention, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the NAGLU gene in transgenic brain-related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of sanfilippo B syndrome.

Description

[Title established by the ISA under Rule 37.2] LENTIVIRAL VECTOR USED FOR TREATMENT OF SANFILIPPO B SYNDROME, LENTIVIRUS, AND PREPARATION METHOD AND APPLICATION THEREOF FIELD OF THE INVENTION
The present application belongs to the field of genetic engineering technology and relates to a lentiviral vector pTYF used for the treatment of sanfilippo B syndrome, a lentivirus, and a preparation method and application thereof, and particularly relates to use of a lentiviral vector improved for optimizing the expression of NAGLU gene in the preparation of a medicament for the treatment of sanfilippo B syndrome.
BACKGROUND
Mucopolysaccharidosis (MPS) type III B (also known as Sanfilippo B syndrome) causes progressive cognitive dysfunction. The disease is caused by the accumulation of partially degraded heparan sulfate oligosaccharide. Mutations in the Sanfilippo B related gene NAGLU leads to α-N-glucuronidase to lose its catalytic activity. The symptoms and pathological features of Sanfilippo B syndrome are similar to those of Sanfilippo-A. The accumulation of heparan sulfate oligosaccharides not only affects tissues and organs, especially neurons and non-neuronal cells in the CNS, but also leads to the appearance of secondary pathological features in the CNS, including a large number of metabolic damage, neuroinflammation, oxidative stress and neurological deterioration, and also has a profound impact on the peripheral nervous  system (PNS) . Sanfilippo B syndrome occurs mostly in children. The symptoms are not obvious before 2-4 years of age, after which, the condition will progess significantly and eventually die.
Sanfilippo B is a lysosomal storage disorder (LSD) caused by single gene mutation, involving the gene NAGLU. Therefore, a gene therapy can theoretically achieve complete treatment of the disease. Direct injection of a viral vector carrying the normal NAGLU gene into the brain can directly transfect the gene-deficient cells in the brain, to repair various brain cells, secret the desired alaninease, and reduce the accumulation of heparan sulfate for the subsequent degradation, and repair surrounding cells or even cells throughout the brain by cross correction. The viral vector is modified in vitro and directly injected into the brain. This method is convenient, rapid, low in cost, and has high applicability and a good application prospect in clinical gene therapy.
Although many gene therapies for gene delivery using viral vectors are currently available in China and other countries, the gene transfer efficiency, which directly affects the therapeutic effects on a disease, is significantly different between different viral vectors or even between different preparation methods of the same vector. Most of the methods currently used for the treatment of inherited diseases by using cell therapy are inefficient and only modify blood stem cells, such that the obtained clinical therapeutic effects on the disease is less than expected. Therefore, methods for maximizing the viral gene delivery efficiency to improve the therapeutic effects on inherited diseases are greatly in need.
Abeona Therapeutics Inc. (Nasdaq: ABEO) , a clinical-stage biopharmaceutical  company focused on developing gene therapies for life-threatening rare diseases, announced that the European Medicines Agency (EMA) Committee for Orphan Medicinal Products has granted Orphan Drug Designation (EMA/OD/226/16) for Abeona’s gene therapy program for children impacted by Sanfilippo syndrome type B (MPS IIIB) . This gene therapy program has previously been granted the U.S. Food and Drug Administration (FDA) Orphan Product Designation in the United States and received the Rare Pediatric Disease Designation as a pre-requisite part of the FDA’s Priority Review Voucher (PRV) process. The FDA has allowed the Investigational New Drug (IND) for a Phase 1/2 clinical trial, and enrollments are anticipated to begin in the second quarter of 2017.
SUMMARY OF THE INVENTION
In view of the deficiencies in the prior art, the present application provides a lentiviral vector used for the treatment of sanfilippo B syndrome, a lentivirus, and a preparation method and application thereof. The lentiviral vector used for the treatment of sanfilippo B syndrome has higher transduction efficiency, stability and safety.
To achieve this purpose, the present application uses the following technical solutions:
In a first aspect, the application provides a lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, to be used for the treatment of sanfilippo B syndrome, wherein the specific modifications are as follows:
(a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus pTYF;
(b) it still has the function of the packaging signal of a virus;
wherein, the lentiviral vector further comprises a NAGLU gene.
In an embodiment of the present application, the application provides a lentiviral vector that can be obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and the gag AUG codon, wherein the specific modifications are as follows:
(a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination;
(b) the 5'-end gag AUG codon thereof is modified so that the modified lentiviral vector does not contain a functional gag AUG codon;
wherein, the lentiviral vector further comprises a NAGLU gene.
Materials and procedures used for the modification can be found, for example, in references 1-6.
In an embodiment of the present application, the NAGLU gene is a codon optimized and humanized sequence.
In the present application, the 5'-end splice donor site is deleted or modified and the gag AUG may be deleted or modified so that the splice donor site of the lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus packaging plasmids, that is, the lentiviral vector is  unlikely to become pathogenic due to homologous recombination. This allow the HIV-derived virus genetic materials to lose its self-replication function, thereby greatly improving the safety of the lentiviral vector used in gene therapy. This is a safety improvement that none of the other lentiviral vectors have, and in addition, this is the first application using pTYF derived vector expressing NAGLU. The modified lentiviral vector has higher transduction efficiency, high stability and improved safety, and it can express the delivered genes at higher efficiency during the gene therapy. The NAGLU gene is specifically cloned into the modified lentiviral vector which is then transfected into cells to produce lentiviral vector, which can infect cells to achieve a successful and stable expression of the NAGLU gene in the target neuronal cells including stem cells, achieving a gene therapy of sanfilippo B syndrome with the lentiviral vector.
According to the present application, nucleotide sequences used in the deletion or modification of the 5'-end splice donor site of the lentiviral vector are listed below, for example:
In a specific embodiment, the wild type 5' splice donor site GT is mutated to CA, wherein specific sequences are as follows:
Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
In a specific embodiment, the wild type 5' splice donor site GT is mutated to GG, wherein specific sequences are as follows:
Wild type (SEQ ID NO. 5) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 6) : GGCAAGAGGCGAGGGGCGGCGACTGGGGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
According to the present application, the NAGLU gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a nucleotide sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
In some embodiments, the NAGLU gene has a nucleotide sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the NAGLU gene has a nucleotide sequence that shares at least 82%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the NAGLU gene has a nucleotide sequence that shares at least 85%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the NAGLU gene has a nucleotide sequence that shares at least 88%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the NAGLU gene has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the NAGLU gene has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the NAGLU gene has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In the present application, the inventor has found that the sequence that shares at  least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1 is a modified NAGLU gene which still functions as a NAGLU gene. It may be a shortened form of the NAGLU protein or it may use only the functional domain sequence of the NAGLU. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the NAGLU gene to repair the NAGLU gene. The nucleotide sequence shown in SEQ ID NO. 1 is as follows:
Figure PCTCN2019089519-appb-000001
Figure PCTCN2019089519-appb-000002
According to the present application, a promoter sequence is further comprised in front of the NAGLU gene, wherein the promoter sequence is EF1α and/or CMV, preferably EF1α.
In the present application, any promoter can be used as long as it is capable of initiating NAGLU gene expression. The inventor has found that use of the whole EF1α promoter achieves more efficient gene delivery while ensuring safety.
According to the present application, the EF1α has the nucleotide sequence as shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
In some embodiments, the EF1α has a nucleotide sequence that shares at least  90%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In the present application, the inventor has found that the sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2 is a modified EF1α which still functions as a promoter. It may be a shortened form of the EF1α. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the promoter to initiate the expression of the NAGLU gene. The nucleotide sequence shown in SEQ ID NO. 2 is as follows:
Figure PCTCN2019089519-appb-000003
Figure PCTCN2019089519-appb-000004
In a second aspect, the present application provides a recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to the first aspect and packaging helper plasmids pNHP and pHEF-VSV-G.
Materials and procedures used for the co-transfection can be found, for example, in references 1-6.
Preferably, the mammalian cell is a HEK293T cell and/or a TE671 cell.
In a third aspect, the present application provides a method for preparing the lentivirus according to the second aspect, comprising the steps of:
(1) modifying the lentiviral vector pTYF;
(2) synthesizing the sequences of a promoter and a NAGLU gene by whole gene synthesis, and inserting the same into the point-mutated lentiviral vector of step (1) ;
(3) co-transfecting the constructed lentiviral vector and a packaging helper plasmid into a mammalian cell to obtain the recombinant lentivirus.
According to the present application, the insertion site in step (2) may be any restriction site that can be synthesized by genetic engineering, although restriction  sites BamHI and SpeI are preferably used in the present application.
According to the present application, the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G.
According to the present application, the mammalian cell is a HEK293T cell and/or a TE671 cell.
According to the present application, the co-transfected mammalian cell is cultured for 24-72 h, for example, 24 h, 25 h, 26 h, 27 h, 28 h, 29 h, 30 h, 31 h, 32 h, 33 h, 34 h, 35 h, 36 h, 37 h, 38 h, 39 h, 40 h, 41 h, 42 h, 43 h, 44 h, 45 h, 46 h, 47 h, 48 h, 50 h, 52 h, 55 h, 58 h, 60 h, 62 h, 65 h, 68 h, 70 h or 72 h.
In a fourth aspect, the present application provides a recombinant cell which comprises the lentiviral vector according to the first aspect and/or the recombinant lentivirus according to the second aspect.
According to the present application, the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
In the present application, the lentivirus-transfected stem cells are capable of stably expressing the NAGLU gene in a large amount. The recombinant lentivirus may be introduced into peripheral blood stem cells and mesenchymal stem cells to form a double stem cell treatment strategy, which can further improve the delivery efficiency and expression level of the NAGLU gene in the brain, thereby achieving a faster resolution of sanfilippo B syndrome symptoms and a more comprehensive and long-term gene therapy.
In a fifth aspect, the present application provides a pharmaceutical composition  which comprises any one selected from the group consisting of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, and the recombinant cell according to the forth aspect, or a combination of at least two selected therefrom.
According to the present application, the composition further comprises a pharmaceutically acceptable adjuvant which is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
In a sixth aspect, the present application provides use of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, the recombinant cell according to the forth aspect, or the pharmaceutical composition according to the fifth aspect in the preparation of a medicament and/or an agent for the treatment of sanfilippo B syndrome.
In a specific embodiment, peripheral blood of a patient is collected and stem cells are isolated therefrom which are then transduced with the lentiviral vector, followed by i. v. retransfusion into the patient for the treatment of sanfilippo B syndrome disease.
In a specific embodiment, the lentiviral vector can be injected directly into the lesion cell site for the treatment of sanfilippo B syndrome disease.
In a specific embodiment, the lentiviral vector can be used to transfect blood for the treatment of sanfilippo B syndrome disease.
Compared with the prior art, the present application has the following beneficial effects:
(1) In the present application, the lentiviral vector is specifically modified so that the HIV virus lose its self-replication function, thereby greatly improving the safety performance of the lentiviral vector itself used in gene therapy. The modified lentiviral vector has higher transduction efficiency, stability and safety, and it can more efficiently complete the delivery of normal genes during the gene therapy;
(2) A human codon optimized NAGLU gene is specifically connected into the modified lentiviral vector of the present invention under the EF1α promoter, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the NAGLU gene in transgenic brain-related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of sanfilippo B syndrome;
(3) In the present application, the lentiviral vector can directly correct the functionally defect NAGLU gene in cells, and can effectively improve the delivery efficiency and expression level of the NAGLU gene in the brain, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of sanfilippo B syndrome symptoms and a more comprehensive and long-term gene therapy.
DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram showing the modification of the lentiviral vector pTYF;
Figure 2 is a schematic diagram showing the structure of the lentiviral vector;
Figure 3 is a schematic diagram showing the purification process of the  lentiviral vector;
Figure 4 is a schematic diagram showing the treatment process of sanfilippo B syndrome by directly injecting a lentiviral vector carrying a functional NAGLU gene into the brain.
DETAILED DESCRIPTION
In order to further illustrate the technical measures adopted by the present application and the effects thereof, the present application is further described below with reference to the embodiments and accompanying drawings. It can be understand that the specific embodiments described herein are merely illustrative of the present application and are not intended to limit the present application.
In the examples, techniques or conditions, which are not specifically indicated, are performed according to techniques or conditions described in the literature of the art, or according to product instructions. The reagents or instruments for use, which are not indicated with manufacturers, are conventional products that are commercially available from formal sources.
Example 1 Construction of a lentiviral vector
This example provides a method for constructing a lentiviral vector, which specifically includes the following steps:
(1) The schematic diagram of the modification of the lentiviral vector pTYF is shown in Figure 1. The specific mutations were mutation of the wild type 5' splice donor site GT to CA and deletion of the enhancer in U3. For specific modification methods, see "Contributions of Viral Splice Sites and cis-Regulatory Elements to  Lentivirus Vector Function, YAN CUI, JOURNAL OF VIROLOGY, July 1999, p. 6171–6176". Specific steps are as follows:
Modification of the 5' splice donor site:
Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
(2) Insertion of a promoter and the human codon optimized NAGLU gene:
The sequences of the normal NAGLU gene (as shown in SEQ ID NO. 1) and the human EF1α promoter (as shown in SEQ ID NO. 2) were synthesized by whole gene synthesis, which were then connected into the lentiviral vector TYF via restriction sites. The obtained product was identified by sequencing and digestion with double enzymes (the NEB original recommendation was referred to for the best reaction condition; BamHI clone site (ggatccacc) -AUG was used for 5’a nd SpeI clone site (actagt) was used for 3’ ) to obtain a correctly linked lentiviral vector which carried the normal NAGLU gene inserted under the hEF1α promoter. The specific link position and the structure of the lentiviral vector are shown in Figure 2.
Specifically, the nucleotide sequence shown in SEQ ID NO. 1 is as follows:
Figure PCTCN2019089519-appb-000005
Figure PCTCN2019089519-appb-000006
Figure PCTCN2019089519-appb-000007
Specifically, the nucleotide sequence shown in SEQ ID NO. 2 is as follows:
Figure PCTCN2019089519-appb-000008
Example 2 Preparation and Identification of a Lentivirus
1) Preparation of a lentivirus
The lentiviral vector prepared in Example 1 was further packaged, purified and concentrated to obtain a lentivirus. The specific process is shown in FIG. 3, and the specific steps are as follows:
(1) The lentiviral vector constructed in Example 1 and packaging helper plasmids pNHP and pHEF-VSV-G were co-transfected into mammalian cell HEK293T, and cultured for 24-72h;
(2) The lentivirus obtained after the culture was purified and concentrated to obtain a lentivirus.
2) Identification of the lentivirus
The collected lentivirus carrying normal NAGLU gene were used to transduce neuronal cells and glial cells which were then identified for protein expression to confirm the expression of the NAGLU gene in neuronal cells.
As can be seen from the results, there was no NAGLU protein expression in negative control cells which were neuronal cells without transduction of lentivirus, but a significantly larger amount of NAGLU protein expression was observed in neuronal cells transduced with the lentivirus carrying the normal NAGLU gene.
This indicates that the present application can successfully allow a neuronal cell to express NAGLU protein in a large amount by lentivirus, having a good therapeutic potential for diseases.
Example 3 Therapeutic effect of the lentivirus
The lentivirus carrying normal NAGLU prepared in Example 2 was directly  injected into the brain to treat sanfilippo B syndrome disease. The schematic diagram of the treatment process is shown in Figure 4. The site and specific coordinate in the brain at which the lentiviral vector was injected was determined by MRI or CT of the brain, and the lentiviral vector carrying normal NAGLU gene was delivered into the patient's brain via direct intracranial injection for disease treatment.
It can be seen from the results that the delivery efficiency and expression level of the NAGLU gene in the brain were effectively increased after direct injection of the lentivirus.
In summary in the present application, the lentiviral vector can directly repair the defective NAGLU gene in cells, and can effectively improve the delivery efficiency and expression level of the NAGLU gene in the brain, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of sanfilippo B syndrome symptoms and a more comprehensive and long-term gene therapy.
The applicant states that detailed methods of the present application are demonstrated in the present application through the above embodiments, however, the present application is not limited to the above detailed methods, and does not mean that the present application must rely on the above detailed methods to implement. It should be apparent to those skilled in the art that, for any improvement of the present application, the equivalent replacement of the raw materials of the present application, the addition of auxiliary components, and the selection of specific modes, etc., will all fall within the protection scope and the disclosure scope of the present application.
References:
1. Chang, L. -J., V. Urlacher, T. Iwakuma, Y. Cui, and J. Zucali (1999) . Efficacy and safety analyses of a recombinant human immunodeficiency virus derived vector system. Gene Therapy 6, 715-728.
2. Cui, Y., T. Iwakuma and L. -J. Chang (1999) . Contributions of viral splice sites and cis-regulatory elements to lentivirus vector functions. J Virol 73, 6171-6176.
3. Iwakuma T., Y. Cui, and L. -J. Chang (1999) . Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120-132.
4. Chang, L. -J. and Gay, E. (2001) The molecular genetics of lentiviral vectors -current and future perspectives. Current Gene Therapy 1, 237-251.
5. L-J Chang, X Liu and J He. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Therapy (2005) 12, 1133–1144.
6. Ayed O. Ayed, Lung-Ji Chang, Jan S. Moreb. Immunotherapy for multiple myeloma: Current status and future directions. Critical Reviews in Oncology/Hematology. Volume 96, Issue 3, December 2015, Pages 399-412.

Claims (14)

  1. A lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, used for the treatment of sanfilippo B syndrome, wherein the specific modifications are as follows:
    (a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between the packaging vector and the reference lentivirus;
    (b) it still has the function of the packaging signal of a virus;
    wherein, the lentiviral vector further comprises a NAGLU gene.
  2. The lentiviral vector according to claim 1, wherein the lentiviral vector is based on pTYF or obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and gag AUG codon, wherein the specific modifications are as follows:
    (a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus;
    (b) the 5'-end gag AUG codon thereof is modified so that the modified lentiviral vector does not contain a gag AUG codon;
    (c) it still has the function of the packaging signal of a virus;
    wherein, the lentiviral vector further comprises a NAGLU gene.
  3. The lentiviral vector according to claim 1 or 2, wherein the NAGLU gene is a humanized sequence.
  4. The lentiviral vector according to any one of claims 1 to 3, wherein the NAGLU gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a  nucleotide sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
  5. The lentiviral vector according to any one of claims 1 to 4, wherein a promoter sequence is further comprised in front of the NAGLU gene;
    preferably, the promoter sequence is EF1α and/or CMV, preferably EF1α;
    preferably, the EF1α has the nucleotide sequence as shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
  6. A recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to any one of claims 1 to 5 and packaging helper plasmids pNHP and pHEF-VSV-G.
  7. The recombinant lentivirus according to claim 6, wherein the mammalian cell is a HEK293T cell and/or a TE671 cell.
  8. A method for preparing the lentivirus according to claim 6 or 7, comprising the steps of:
    (1) subjecting the 5'-end splice donor site of lentiviral vector pTYF to point mutation;
    (2) synthesizing the sequences of a promoter and a NAGLU gene by whole gene synthesis, and inserting the same into the point-mutated lentiviral vector of step (1) ;
    (3) co-transfecting the constructed lentiviral vector and a packaging helper plasmid into a mammalian cell to obtain the recombinant lentivirus.
  9. The method according to claim 8, wherein the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G;
    preferably, the mammalian cell is a HEK293T cell and/or a TE671 cell;
    preferably, the co-transfected mammalian cell is cultured for 24-72h.
  10. A recombinant cell comprising the lentiviral vector according to any one of claims 1 to 5 and/or the recombinant lentivirus according to claim 6 or 7.
  11. The recombinant cell according to claim 10, wherein the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
  12. A pharmaceutical composition comprising any one selected from the group consisting of the lentiviral vector according to any one of claims 1 to 5, the recombinant lentivirus according to claim 6 or 7, and the recombinant cell according to claim 10 or 11, or a combination of at least two selected therefrom.
  13. The pharmaceutical composition according to claim 12, wherein the composition further comprises a pharmaceutically acceptable adjuvant;
    preferably, the adjuvant is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
  14. Use of the lentiviral vector according to any one of claims 1 to 5, the recombinant lentivirus according to claim 6 or 7, the recombinant cell according to claim 10 or 11, or the pharmaceutical composition according to claim 12 or 13 in the preparation of a medicament and/or an agent for the treatment of sanfilippo B syndrome.
PCT/CN2019/089519 2018-05-31 2019-05-31 Lentiviral vector used for treatment of sanfilippo b syndrome, lentivirus, and preparation method and application thereof WO2019228498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810548384.9A CN108715867A (en) 2018-05-31 2018-05-31 A kind of Sanfilippo B syndromes slow virus carrier, slow virus and its preparation method and application
CN201810548384.9 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019228498A1 true WO2019228498A1 (en) 2019-12-05

Family

ID=63911671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089519 WO2019228498A1 (en) 2018-05-31 2019-05-31 Lentiviral vector used for treatment of sanfilippo b syndrome, lentivirus, and preparation method and application thereof

Country Status (2)

Country Link
CN (1) CN108715867A (en)
WO (1) WO2019228498A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728495A (en) * 2018-05-31 2018-11-02 深圳市免疫基因治疗研究院 A kind of Sanfilippo A syndromes slow virus carrier, slow virus and its preparation method and application
CN111718947B (en) * 2020-06-18 2022-08-23 舒泰神(北京)生物制药股份有限公司 Adeno-associated virus vector for treating type IIIA or IIIB mucopolysaccharidosis and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040741A2 (en) * 1999-01-07 2000-07-13 The Government Of The United States Of America, As Represented By The Secretary Department Of Health And Human Services, The National Institutes Of Health Lentivirus vector system
US6207455B1 (en) * 1997-05-01 2001-03-27 Lung-Ji Chang Lentiviral vectors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101125A1 (en) * 2015-06-05 2016-12-07 Laboratorios Del Dr. Esteve, S.A. Adenoassociated virus vectors for the treatment of mucopolysaccharidoses
CN108728495A (en) * 2018-05-31 2018-11-02 深圳市免疫基因治疗研究院 A kind of Sanfilippo A syndromes slow virus carrier, slow virus and its preparation method and application
CN111718947B (en) * 2020-06-18 2022-08-23 舒泰神(北京)生物制药股份有限公司 Adeno-associated virus vector for treating type IIIA or IIIB mucopolysaccharidosis and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207455B1 (en) * 1997-05-01 2001-03-27 Lung-Ji Chang Lentiviral vectors
WO2000040741A2 (en) * 1999-01-07 2000-07-13 The Government Of The United States Of America, As Represented By The Secretary Department Of Health And Human Services, The National Institutes Of Health Lentivirus vector system

Also Published As

Publication number Publication date
CN108715867A (en) 2018-10-30

Similar Documents

Publication Publication Date Title
US20230416787A1 (en) SYSTEMS AND METHODS FOR ONE-SHOT GUIDE RNA (ogRNA) TARGETING OF ENDOGENOUS AND SOURCE DNA
CN107828820B (en) Adeno-associated virus particles for gene transfer into nervous system cells
JP2023503637A (en) Microdystrophin gene therapy constructs and uses thereof
BR112020001940A2 (en) cell models of and therapies for eye diseases
WO2019228527A1 (en) Lentiviral vector used for treatment of hemophilia a, lentivirus, and preparation method and application thereof
KR20170121745A (en) Regulation of gene expression by aptamer mediated regulation of selective splicing
JP7057281B2 (en) Gene therapy for eye diseases
KR20170071541A (en) Compositions and methods of treating amyotrophic lateral sclerosis (als)
WO2019228505A1 (en) Lentiviral vector used for treatment of mld, lentivirus, and preparation method and application thereof
WO2019228502A1 (en) Lentiviral vector used for treatment of sanfilippo a syndrome, lentivirus, and preparation method and application thereof
CA3018076A1 (en) Therapeutic for treatment of diseases including the central nervous system
KR20220133854A (en) Adeno-associated virus (AAV) system for the treatment of genetic hearing loss
CN113383010A (en) Ataxin expression constructs with engineered promoters and methods of use thereof
KR20220020261A (en) Compositions useful for the treatment of ichthyosis leukodystrophy
WO2019228498A1 (en) Lentiviral vector used for treatment of sanfilippo b syndrome, lentivirus, and preparation method and application thereof
US20230054144A1 (en) Gene therapy for treating cdkl5 deficiency disorder
JP7289306B2 (en) Compositions and methods for treating retinal disorders
WO2023231778A1 (en) Transgenic expression cassette for treatment of mucopolysaccharidosis type iiia
US20150045416A1 (en) Methods and Compositions for Gene Delivery
JP2020516291A (en) Treatment of mucopolysaccharidosis type II with recombinant human iduronate-2-sulfatase (IDS) produced by human nerve cells or glial cells
US20200172929A1 (en) Gene therapy for ocular disorders
TW202346599A (en) Aav capsid variants and uses thereof
CN111601620A (en) Adeno-associated virus gene therapy for 21-hydroxylase deficiency
US20200263206A1 (en) Targeted integration systems and methods for the treatment of hemoglobinopathies
EP3844277A1 (en) Feedback enabled synthetic genes, target seed match cassettes, and their uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810618

Country of ref document: EP

Kind code of ref document: A1