WO2019228502A1 - Lentiviral vector used for treatment of sanfilippo a syndrome, lentivirus, and preparation method and application thereof - Google Patents

Lentiviral vector used for treatment of sanfilippo a syndrome, lentivirus, and preparation method and application thereof Download PDF

Info

Publication number
WO2019228502A1
WO2019228502A1 PCT/CN2019/089532 CN2019089532W WO2019228502A1 WO 2019228502 A1 WO2019228502 A1 WO 2019228502A1 CN 2019089532 W CN2019089532 W CN 2019089532W WO 2019228502 A1 WO2019228502 A1 WO 2019228502A1
Authority
WO
WIPO (PCT)
Prior art keywords
lentiviral vector
cell
gene
lentivirus
sgsh
Prior art date
Application number
PCT/CN2019/089532
Other languages
French (fr)
Inventor
Yingying Wang
Original Assignee
Shenzhen Geno-Immune Medical Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Geno-Immune Medical Institute filed Critical Shenzhen Geno-Immune Medical Institute
Publication of WO2019228502A1 publication Critical patent/WO2019228502A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0665Blood-borne mesenchymal stem cells, e.g. from umbilical cord blood
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/06Uses of viruses as vector in vitro

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Neurosurgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Psychology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Anesthesiology (AREA)
  • Physics & Mathematics (AREA)
  • Rheumatology (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

The present application provides a lentiviral vector used for the treatment of sanfilippo A syndrome, lentivirus, and preparation method and application thereof, wherein the lentiviral vector may be obtained by applying pTYF or modifying a pTYF lentiviral vector at the 5'-end splice donor site and further comprises a SGSH gene. The SGSH gene is specifically connected into the pTYF or the modified lentiviral vector of the present invention, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the SGSH gene in transgenic brain-related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of sanfilippo A syndrome.

Description

[Title established by the ISA under Rule 37.2] LENTIVIRAL VECTOR USED FOR TREATMENT OF SANFILIPPO A SYNDROME, LENTIVIRUS, AND PREPARATION METHOD AND APPLICATION THEREOF FIELD OF THE INVENTION
The present application belongs to the field of genetic engineering technology and relates to a lentiviral vector pTYF used for the treatment of sanfilippo A syndrome, a lentivirus, and a preparation method and application thereof, and particularly relates to use of a lentiviral vector improved for optimizing the expression of SGSH gene in the preparation of a medicament for the treatment of sanfilippo A syndrome.
BACKGROUND
Sanfilippo syndrome, which belongs to Mucopolysaccharidosis (MPS) type III, is one of five MPS type III syndromes. It belongs to autosomal recessive inherited diseases and belongs to neurodegenerative lysosomal storage disorders. MPS IIIA involves the deficiency of sulfamidase, resulting in the accumulation of heparan sulfate (HS) in the brain, mainly in the reticuloendothelial tissue and mononuclear macrophage system, wherein the most serious accumulation is that in neurons. These accumulations lead to functional disorders of an organ. Patients will have serious changes in behavior, including attention deficit hyperactivity disorder (ADHD) and sleep disorders, and followed by decline in consciousness and motor function in the late stages, and lifespan will be significantly shortened. The patients usually live in  childhood or adolescence. The onset age is mostly between 2-6 years old. After 10 years old, the condition begins to deteriorate and patients will die around 15 years old. No specificity in gender, races and regions was found.
Sanfilippo A is a lysosomal storage disorder (LSD) caused by single gene mutation, involving the gene SGSH. Therefore, a gene therapy can theoretically achieve complete treatment of the disease. Direct injection of a viral vector carrying the normal SGSH gene into the brain can directly transfect the gene-deficient cells in the brain, to repair various brain cells, secret the desired sulfamidase, and reduce the accumulation of heparan sulfate for the subsequent degradation, and repair surrounding cells or even cells throughout the brain by cross correction. The viral vector is modified in vitro and directly injected into the brain. This method is convenient, rapid, low in cost, and has high applicability.
Although many gene therapies for gene delivery using viral vectors are currently available in China and other countries, the gene transfer efficiency, which directly affects the therapeutic effects on a disease, is significantly different between different viral vectors or even between different preparation methods of the same vector. Most of the methods currently used for the treatment of inherited diseases by using cell therapy are inefficient and only modify blood stem cells, such that the obtained clinical therapeutic effects on the disease is less than expected. Therefore, methods for maximizing the viral gene delivery efficiency to improve the therapeutic effects on inherited diseases are greatly in need.
Abeona Therapeutics Inc. (Nasdaq: ABEO) , a clinical-stage biopharmaceutical company focused on developing gene therapies for life-threatening rare diseases, is  undergoing a Phase 1/2 gene therapy clinical trial. The ongoing Phase 1/2 clinical trial, which has received FastTrack designation by the FDA, is designed to evaluate the safety and preliminary treatment effects of gene therapy for patients with MPS IIIA. According to the design of the trial, subjects in the low-dose and high-dose cohorts received a single injection, which delivers viral vector into the body, particularly into the CNS, to introduce a corrective copy of the gene causing the MPS IIIA disease. Subjects are evaluated at multiple time points over the initial 6-months post-injection for safety assessments and initial signals of biopotency.
SUMMARY OF THE INVENTION
In view of the deficiencies in the prior art, the present application provides a lentiviral vector used for the treatment of sanfilippo A syndrome, a lentivirus, and a preparation method and application thereof. The lentiviral vector used for the treatment of sanfilippo A syndrome has higher transduction efficiency, stability and safety.
To achieve this purpose, the present application uses the following technical solutions:
In a first aspect, the application provides a lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, to be used for the treatment of sanfilippo A syndrome, wherein the specific modifications are as follows:
(a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous  recombination between a packaging vector and the reference lentivirus pTYF;
(b) it still has the function of the packaging signal of a virus;
wherein, the lentiviral vector further comprises a SGSH gene.
In an embodiment of the present application, the application provides a lentiviral vector that can be obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and the gag AUG codon, wherein the specific modifications are as follows:
(a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination;
(b) the 5'-end gag AUG codon thereof is modified so that the modified lentiviral vector does not contain a gag AUG codon;
wherein, the lentiviral vector further comprises a SGSH gene.
Materials and procedures used for the modification can be found, for example, in references 1-6.
In an embodiment of the present application, the SGSH gene is a codon optimized and humanized sequence.
In the present application, the 5'-end splice donor site is deleted or modified and the gag AUG may be deleted or modified so that the splice donor site of the lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus packaging plasmids, that is, the lentiviral vector is unlikely to become pathogenic due to homologous recombination. This allow the HIV-derived virus genetic materials to lose its self-replication function, thereby  greatly improving the safety of the lentiviral vector used in gene therapy. This is a safety improvement that none of the other lentiviral vectors have, and in addition, this is the first application using pTYF derived vector expressing SGSH. The modified lentiviral vector has higher transduction efficiency, high stability and improved safety, and it can express the delivered genes at higher efficiency during the gene therapy. The SGSH gene is specifically cloned into the modified lentiviral vector which is then transfected into cells to produce lentiviral vector, which can infect cells to achieve a successful and stable expression of the SGSH gene in the target cells including stem cells, achieving a gene therapy of sanfilippo A syndrome with the lentiviral vector.
According to the present application, nucleotide sequences used in the deletion or modification of the 5'-end splice donor site of the lentiviral vector are listed below, for example:
In a specific embodiment, the wild type 5's plice donor site GT is mutated to CA, wherein specific sequences are as follows:
Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
In a specific embodiment, the wild type 5's plice donor site GT is mutated to GG, wherein specific sequences are as follows:
Wild type (SEQ ID NO. 5) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 6) : GGCAAGAGGCGAGGGGCGGCGACTGGGGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA.
According to the present application, the SGSH gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a nucleotide sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
In some embodiments, the SGSH gene has a nucleotide sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the SGSH gene has a nucleotide sequence that shares at least 82%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the SGSH gene has a nucleotide sequence that shares at least 85%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the SGSH gene has a nucleotide sequence that shares at least 88%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the SGSH gene has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the SGSH gene has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In some embodiments, the SGSH gene has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 1.
In the present application, the inventor has found that the sequence that shares at least 80%homology with the nucleotide sequence as shown in SEQ ID NO. 1 is a modified SGSH gene which still functions as a SGSH gene. It may be a shortened  form of the SGSH protein or it may use only the functional domain sequence of the SGSH. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the SGSH gene to repair the SGSH gene. The nucleotide sequence shown in SEQ ID NO. 1 is as follows:
Figure PCTCN2019089532-appb-000001
Figure PCTCN2019089532-appb-000002
According to the present application, a promoter sequence is further comprised in front of the SGSH gene, wherein the promoter sequence is EF1α and/or CMV, preferably EF1α.
In the present application, any promoter can be used as long as it is capable of initiating SGSH gene expression. The inventor has found that use of the whole EF1αpromoter achieves more efficient gene delivery while ensuring safety.
According to the present application, the EF1α has the nucleotide sequence as shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 92%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In some embodiments, the EF1α has a nucleotide sequence that shares at least 95%homology with the nucleotide sequence as shown in SEQ ID NO. 2.
In the present application, the inventor has found that the sequence that shares at least 90%homology with the nucleotide sequence as shown in SEQ ID NO. 2 is a modified EF1α which still functions as a promoter. It may be a shortened form of the EF1α. Loading any one of these modified nucleotide sequences into the lentiviral vector can achieve the function of the promoter to initiate the expression of the ARSA gene. The nucleotide sequence shown in SEQ ID NO. 2 is as follows:
Figure PCTCN2019089532-appb-000003
In a second aspect, the present application provides a recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to the first aspect and packaging helper plasmids pNHP and pHEF-VSV-G.
Materials and procedures used for the co-transfection can be found, for example, in references 1-6.
Preferably, the mammalian cell is a HEK293T cell and/or a TE671 cell.
In a third aspect, the present application provides a method for preparing the lentivirus according to the second aspect, comprising the steps of:
(1) modifying the lentiviral vector pTYF;
(2) synthesizing the sequences of a promoter and a SGSH gene by whole gene synthesis, and inserting the same into the point-mutated lentiviral vector of step (1) ;
(3) co-transfecting the constructed lentiviral vector and a packaging helper plasmid into a mammalian cell to obtain the recombinant lentivirus.
According to the present application, the insertion site in step (2) may be any restriction site that can be synthesized by genetic engineering, although restriction sites BamHI and SpeI are preferably used in the present application.
According to the present application, the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G.
According to the present application, the mammalian cell is a HEK293T cell and/or a TE671 cell.
According to the present application, the co-transfected mammalian cell is cultured for 24-72 h, for example, 24 h, 25 h, 26 h, 27 h, 28 h, 29 h, 30 h, 31 h, 32 h, 33 h, 34 h, 35 h, 36 h, 37 h, 38 h, 39 h, 40 h, 41 h, 42 h, 43 h, 44 h, 45 h, 46 h, 47 h, 48 h, 50 h, 52 h, 55 h, 58 h, 60 h, 62 h, 65 h, 68 h, 70 h or 72 h.
In a fourth aspect, the present application provides a recombinant cell which comprises the lentiviral vector according to the first aspect and/or the recombinant  lentivirus according to the second aspect.
According to the present application, the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
In the present application, the lentivirus-transfected stem cells are capable of stably expressing the SGSH gene in a large amount. The recombinant lentivirus may be introduced into peripheral blood stem cells and mesenchymal stem cells to form a double stem cell treatment strategy, which can further improve the delivery efficiency and expression level of the SGSH gene in the brain, thereby achieving a faster resolution of sanfilippo A syndrome symptoms and a more comprehensive and long-term gene therapy.
In a fifth aspect, the present application provides a pharmaceutical composition which comprises any one selected from the group consisting of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, and the recombinant cell according to the forth aspect, or a combination of at least two selected therefrom.
According to the present application, the composition further comprises a pharmaceutically acceptable adjuvant which is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
In a sixth aspect, the present application provides use of the lentiviral vector according to the first aspect, the recombinant lentivirus according to the second aspect, the recombinant cell according to the forth aspect, or the pharmaceutical  composition according to the fifth aspect in the preparation of a medicament and/or an agent for the treatment of sanfilippo A syndrome.
In a specific embodiment, peripheral blood of a patient is collected and stem cells are isolated therefrom which are then transduced with the lentiviral vector, followed by i. v. retransfusion into the patient for the treatment of sanfilippo A syndrome disease.
In a specific embodiment, the lentiviral vector can be injected directly into the lesion cell site for the treatment of sanfilippo A syndrome disease.
In a specific embodiment, the lentiviral vector can be used to transfect blood for the treatment of sanfilippo A syndrome disease.
Compared with the prior art, the present application has the following beneficial effects:
(1) In the present application, the lentiviral vector is specifically modified so that the HIV virus lose its self-replication function, thereby greatly improving the safety performance of the lentiviral vector itself used in gene therapy. The modified lentiviral vector has higher transduction efficiency, stability and safety, and it can more efficiently complete the delivery of normal genes during the gene therapy;
(2) A human codon optimized SGSH gene is specifically connected into the modified lentiviral vector of the present invention under the EF1α promoter, thereby achieving a more efficient gene delivery while ensuring safety, significantly increasing the expression level of the SGSH gene in transgenic brain-related cells, and more efficiently accomplishing the transfer of normal genes during the gene therapy of sanfilippo A syndrome;
(3) In the present application, the lentiviral vector can directly correct the functionally defect SGSH gene in cells, and can effectively improve the delivery efficiency and expression level of the SGSH gene in the brain, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of sanfilippo A syndrome symptoms and a more comprehensive and long-term gene therapy.
DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram showing the modification of the lentiviral vector pTYF;
Figure 2 is a schematic diagram showing the structure of the lentiviral vector;
Figure 3 is a schematic diagram showing the purification process of the lentiviral vector;
Figure 4 is a schematic diagram showing the treatment process of sanfilippo A syndrome by directly injecting a lentiviral vector carrying a functional SGSH gene into the brain;
Figure 5 is a schematic diagram showing the protein antibody staining for brain nerve cells U87MG transduced with lentiviral vectors carrying functional SGSH gene (LV-SGSH) .
DETAILED DESCRIPTION
In order to further illustrate the technical measures adopted by the present application and the effects thereof, the present application is further described below  with reference to the embodiments and accompanying drawings. It can be understand that the specific embodiments described herein are merely illustrative of the present application and are not intended to limit the present application.
In the examples, techniques or conditions, which are not specifically indicated, are performed according to techniques or conditions described in the literature of the art, or according to product instructions. The reagents or instruments for use, which are not indicated with manufacturers, are conventional products that are commercially available from formal sources.
Example 1 Construction of a lentiviral vector
This example provides a method for constructing a lentiviral vector, which specifically includes the following steps:
(1) The schematic diagram of the modification of the lentiviral vector pTYF is shown in Figure 1. The specific mutations were mutation of the wild type 5's plice donor site GT to CA and deletion of the enhancer in U3. For specific modification methods, see "Contributions of Viral Splice Sites and cis-Regulatory Elements to Lentivirus Vector Function, YAN CUI, JOURNAL OF VIROLOGY, July 1999, p. 6171–6176" . Specific steps are as follows:
Modification of the 5's plice donor site:
Wild type (SEQ ID NO. 3) : GGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
Mutant (SEQ ID NO. 4) : GGCAAGAGGCGAGGGGCGGCGACTGCAGAGTACGCCAAAAATTTTGACTAGCGGAGGCTA;
(2) Insertion of a promoter and the human codon optimized SGSH gene:
The sequences of the normal SGSH gene (as shown in SEQ ID NO. 1) and the human EF1α promoter (as shown in SEQ ID NO. 2) were synthesized by whole gene synthesis, which were then connected into the lentiviral vector TYF via restriction sites. The obtained product was identified by sequencing and digestion with double enzymes (the NEB original recommendation was referred to for the best reaction condition; BamHI clone site (ggatccacc) -AUG was used for 5’ and SpeI clone site (actagt) was used for 3’) to obtain a correctly linked lentiviral vector which carried the normal SGSH gene inserted under the hEF1α promoter. The specific link position and the structure of the lentiviral vector are shown in Figure 2.
Specifically, the nucleotide sequence shown in SEQ ID NO. 1 is as follows:
Figure PCTCN2019089532-appb-000004
Figure PCTCN2019089532-appb-000005
Specifically, the nucleotide sequence shown in SEQ ID NO. 2 is as follows:
Figure PCTCN2019089532-appb-000006
Figure PCTCN2019089532-appb-000007
Example 2 Preparation and Identification of a Lentivirus
1) Preparation of a lentivirus
The lentiviral vector prepared in Example 1 was further packaged, purified and concentrated to obtain a lentivirus. The specific process is shown in FIG. 3, and the specific steps are as follows:
(1) The lentiviral vector constructed in Example 1 and packaging helper plasmids pNHP and pHEF-VSV-G were co-transfected into mammalian cell HEK293T, and cultured for 24-72h;
(2) The lentivirus obtained after the culture was purified and concentrated to obtain a lentivirus.
2) Identification of the lentivirus
The collected lentivirus carrying normal SGSH gene were used to transduce neuronal cells and glial cells which were then identified for protein expression to confirm the expression of the SGSH gene in neuronal cells.
As can be seen from the results, there was no SGSH protein expression in negative control cells which were neuronal cells without transduction of lentivirus, but a significantly larger amount of SGSH protein expression was observed in neuronal cells transduced with the lentivirus carrying the normal SGSH gene.
This indicates that the present application can successfully allow a neuronal cell to express SGSH protein in a large amount by lentivirus, having a good therapeutic potential for diseases.
Example 3 Therapeutic effect of the lentivirus
The lentivirus carrying normal SGSH prepared in Example 2 was directly injected into the brain to treat sanfilippo A syndrome disease. The schematic diagram of the treatment process is shown in Figure 4. The site and specific coordinate in the brain at which the lentiviral vector was injected was determined by MRI or CT of the brain, and the lentiviral vector carrying normal SGSH gene was delivered into the patient's brain via direct intracranial injection for disease treatment.
Brain nerve cells U87MG were transduced with lentivirus carrying functional SGSH (LV-SGSH) as prepared in Example 2 and then cell lysis proteins were collected for Western Blot. Stained with anti-SGSH antibody. Figure 5 shows a high expression level of SGSH protein in neural cells U87MG.
It can be seen from the results that the delivery efficiency and expression level of the SGSH gene in the brain were effectively increased after direct injection of the lentivirus.
In summary in the present application, the lentiviral vector can directly repair the damaged SGSH gene in cells, and can effectively improve the delivery efficiency and expression level of the SGSH gene in the brain, which has great significance in ensuring the effectiveness of gene therapy and lays foundation for a faster resolution of sanfilippo A syndrome symptoms and a more comprehensive and long-term gene therapy.
The applicant states that detailed methods of the present application are demonstrated in the present application through the above embodiments, however, the present application is not limited to the above detailed methods, and does not mean that the present application must rely on the above detailed methods to implement. It should be apparent to those skilled in the art that, for any improvement of the present application, the equivalent replacement of the raw materials of the present application, the addition of auxiliary components, and the selection of specific modes, etc., will all fall within the protection scope and the disclosure scope of the present application.
References:
1. Chang, L. -J., V. Urlacher, T. Iwakuma, Y. Cui, and J. Zucali (1999) . Efficacy and safety analyses of a recombinant human immunodeficiency virus derived vector system. Gene Therapy 6, 715-728.
2. Cui, Y., T. Iwakuma and L. -J. Chang (1999) . Contributions of viral splice sites and cis-regulatory elements to lentivirus vector functions. J Virol 73, 6171-6176.
3. Iwakuma T., Y. Cui, and L. -J. Chang (1999) . Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120-132.
4. Chang, L. -J. and Gay, E. (2001) The molecular genetics of lentiviral vectors -current and future perspectives. Current Gene Therapy 1, 237-251.
5. L-J Chang, X Liu and J He. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Therapy  (2005) 12, 1133–1144.
6. Ayed O. Ayed, Lung-Ji Chang, Jan S. Moreb. Immunotherapy for multiple myeloma: Current status and future directions. Critical Reviews in Oncology/Hematology. Volume 96, Issue 3, December 2015, Pages 399-412.

Claims (14)

  1. A lentiviral vector that is obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site, used for the treatment of sanfilippo A syndrome, wherein the specific modifications are as follows:
    (a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between the packaging vector and the reference lentivirus;
    (b) it still has the function of the packaging signal of a virus;
    wherein, the lentiviral vector further comprises a SGSH gene.
  2. The lentiviral vector according to claim 1, wherein the lentiviral vector is based on pTYF or obtained by modifying a pTYF lentiviral vector at the 5'-end splice donor site and gag AUG codon, wherein the specific modifications are as follows:
    (a) the 5'-end splice donor site thereof is deleted or modified so that the splice donor site of the modified lentiviral vector is not a potential site for homologous recombination between a packaging vector and the reference lentivirus;
    (b) the 5'-end gag AUG codon thereof is modified so that the modified lentiviral vector does not contain a gag AUG codon;
    (c) it still has the function of the packaging signal of a virus;
    wherein, the lentiviral vector further comprises a SGSH gene.
  3. The lentiviral vector according to claim 1 or 2, wherein the SGSH gene is a humanized sequence.
  4. The lentiviral vector according to any one of claims 1 to 3, wherein the SGSH gene has the nucleotide sequence as shown in SEQ ID NO. 1, or a nucleotide  sequence that shares at least 80%homology, preferably at least 85%homology, further preferably at least 95%homology therewith.
  5. The lentiviral vector according to any one of claims 1 to 4, wherein a promoter sequence is further comprised in front of the SGSH gene;
    preferably, the promoter sequence is EF1α and/or CMV, preferably EF1α;
    preferably, the EF1α has the nucleotide sequence as shown in SEQ ID NO. 2, or a nucleotide sequence that shares at least 90%homology, preferably at least 95%homology therewith.
  6. A recombinant lentivirus that is obtained by co-transfecting a mammalian cell with the lentiviral vector pTYF according to any one of claims 1 to 5 and packaging helper plasmids pNHP and pHEF-VSV-G.
  7. The recombinant lentivirus according to claim 6, wherein the mammalian cell is a HEK293T cell and/or a TE671 cell.
  8. A method for preparing the lentivirus according to claim 6 or 7, comprising the steps of:
    (1) subjecting the 5'-end splice donor site of lentiviral vector pTYF to point mutation;
    (2) synthesizing the sequences of a promoter and a SGSH gene by whole gene synthesis, and inserting the same into the point-mutated lentiviral vector of step (1) ;
    (3) co-transfecting the constructed lentiviral vector and a packaging helper plasmid into a mammalian cell to obtain the recombinant lentivirus.
  9. The method according to claim 8, wherein the packaging helper plasmid in step (3) is pNHP and pHEF-VSV-G;
    preferably, the mammalian cell is a HEK293T cell and/or a TE671 cell;
    preferably, the co-transfected mammalian cell is cultured for 24-72h.
  10. A recombinant cell comprising the lentiviral vector according to any one of claims 1 to 5 and/or the recombinant lentivirus according to claim 6 or 7.
  11. The recombinant cell according to claim 10, wherein the recombinant cell is a recombinant stem cell and/or a progenitor cell, preferably a blood stem cell and/or a mesenchymal stem cell.
  12. A pharmaceutical composition comprising any one selected from the group consisting of the lentiviral vector according to any one of claims 1 to 5, the recombinant lentivirus according to claim 6 or 7, and the recombinant cell according to claim 10 or 11, or a combination of at least two selected therefrom.
  13. The pharmaceutical composition according to claim 12, wherein the composition further comprises a pharmaceutically acceptable adjuvant;
    preferably, the adjuvant is any one selected from the group consisting of a growth-stimulating factor, an excipient, a diluent, a carrier, a flavoring agent, a binder and a filler, or a combination of at least two selected therefrom.
  14. Use of the lentiviral vector according to any one of claims 1 to 5, the recombinant lentivirus according to claim 6 or 7, the recombinant cell according to claim 10 or 11, or the pharmaceutical composition according to claim 12 or 13 in the preparation of a medicament and/or an agent for the treatment of sanfilippo A syndrome.
PCT/CN2019/089532 2018-05-31 2019-05-31 Lentiviral vector used for treatment of sanfilippo a syndrome, lentivirus, and preparation method and application thereof WO2019228502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810549057.5A CN108728495A (en) 2018-05-31 2018-05-31 A kind of Sanfilippo A syndromes slow virus carrier, slow virus and its preparation method and application
CN201810549057.5 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019228502A1 true WO2019228502A1 (en) 2019-12-05

Family

ID=63931511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089532 WO2019228502A1 (en) 2018-05-31 2019-05-31 Lentiviral vector used for treatment of sanfilippo a syndrome, lentivirus, and preparation method and application thereof

Country Status (2)

Country Link
CN (1) CN108728495A (en)
WO (1) WO2019228502A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108795985A (en) * 2018-05-31 2018-11-13 深圳市免疫基因治疗研究院 A kind of mucopolysaccharidosis slow virus carrier, slow virus and its preparation method and application
CN108715867A (en) * 2018-05-31 2018-10-30 深圳市免疫基因治疗研究院 A kind of Sanfilippo B syndromes slow virus carrier, slow virus and its preparation method and application
CN111718947B (en) * 2020-06-18 2022-08-23 舒泰神(北京)生物制药股份有限公司 Adeno-associated virus vector for treating type IIIA or IIIB mucopolysaccharidosis and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040741A2 (en) * 1999-01-07 2000-07-13 The Government Of The United States Of America, As Represented By The Secretary Department Of Health And Human Services, The National Institutes Of Health Lentivirus vector system
US6207455B1 (en) * 1997-05-01 2001-03-27 Lung-Ji Chang Lentiviral vectors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394667A1 (en) * 2010-06-10 2011-12-14 Laboratorios Del Dr. Esteve, S.A. Vectors and sequences for the treatment of diseases
CN107949640A (en) * 2015-07-01 2018-04-20 加利福尼亚大学董事会 Retroviral vector containing inverted orientation people's Ubiquitin C promoter
MX2019013528A (en) * 2017-05-12 2020-07-14 The Children´S Hospital Of Philadelphia Sulfamidase (sgsh) variants, vectors, compositions and methods and uses for treating mucopolysaccharidosis type iiia (mps iiia).
CN108715867A (en) * 2018-05-31 2018-10-30 深圳市免疫基因治疗研究院 A kind of Sanfilippo B syndromes slow virus carrier, slow virus and its preparation method and application
CN111718947B (en) * 2020-06-18 2022-08-23 舒泰神(北京)生物制药股份有限公司 Adeno-associated virus vector for treating type IIIA or IIIB mucopolysaccharidosis and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207455B1 (en) * 1997-05-01 2001-03-27 Lung-Ji Chang Lentiviral vectors
WO2000040741A2 (en) * 1999-01-07 2000-07-13 The Government Of The United States Of America, As Represented By The Secretary Department Of Health And Human Services, The National Institutes Of Health Lentivirus vector system

Also Published As

Publication number Publication date
CN108728495A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
JP7229161B2 (en) Gene therapy to treat phenylketonuria
US20230414724A1 (en) Treatment of hyperbilirubinemia
JP2023159235A (en) Novel adeno-associated virus (aav) vectors, aav vectors having reduced capsid deamidation and uses thereof
BR112020001940A2 (en) cell models of and therapies for eye diseases
JP7057281B2 (en) Gene therapy for eye diseases
JP2021502058A (en) Compositions and methods for editing RNA
WO2019228502A1 (en) Lentiviral vector used for treatment of sanfilippo a syndrome, lentivirus, and preparation method and application thereof
WO2019169004A9 (en) Novel adeno-associated virus (aav) vectors, aav vectors having reduced capsid deamidation and uses therefor
WO2019228527A1 (en) Lentiviral vector used for treatment of hemophilia a, lentivirus, and preparation method and application thereof
AU2018352855B2 (en) Adeno-associated virus compositions for restoring HBB gene function and methods of use thereof
KR20220133854A (en) Adeno-associated virus (AAV) system for the treatment of genetic hearing loss
WO2019228505A1 (en) Lentiviral vector used for treatment of mld, lentivirus, and preparation method and application thereof
KR20220020261A (en) Compositions useful for the treatment of ichthyosis leukodystrophy
JP2022530824A (en) Composition useful for the treatment of Pompe disease
US20150045416A1 (en) Methods and Compositions for Gene Delivery
JP2020527335A (en) Gene therapy for eye diseases
CN115029360A (en) Transgenic expression cassette for treating mucopolysaccharidosis type IIIA
WO2019228498A1 (en) Lentiviral vector used for treatment of sanfilippo b syndrome, lentivirus, and preparation method and application thereof
Zhao et al. Recombinant adeno-associated virus 8 vector in gene therapy: Opportunities and challenges
KR20230044522A (en) Nucleic Acid Constructs and Uses Thereof for Treating Spinal Muscular Atrophy
CN111601620A (en) Adeno-associated virus gene therapy for 21-hydroxylase deficiency
US11793887B2 (en) Gene therapy for treating peroxisomal disorders
US20200263206A1 (en) Targeted integration systems and methods for the treatment of hemoglobinopathies
WO2019228528A1 (en) Lentiviral vector used for treatment of hemophilia b, lentivirus, and preparation method and application thereof
WO2019228525A1 (en) Lentiviral vector used for treatment of x-scid, lentivirus, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810158

Country of ref document: EP

Kind code of ref document: A1