WO2019228412A1 - 一种变压器的纵差保护方法 - Google Patents

一种变压器的纵差保护方法 Download PDF

Info

Publication number
WO2019228412A1
WO2019228412A1 PCT/CN2019/089067 CN2019089067W WO2019228412A1 WO 2019228412 A1 WO2019228412 A1 WO 2019228412A1 CN 2019089067 W CN2019089067 W CN 2019089067W WO 2019228412 A1 WO2019228412 A1 WO 2019228412A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
voltage
rated
electrical parameters
adjustment coefficient
Prior art date
Application number
PCT/CN2019/089067
Other languages
English (en)
French (fr)
Inventor
顾乔根
张晓宇
文继锋
吕航
莫品豪
郑超
龚啸
孙仲民
程骁
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810537869.8A external-priority patent/CN108599105B/zh
Priority claimed from CN201810537877.2A external-priority patent/CN108736443B/zh
Priority claimed from CN201810537904.6A external-priority patent/CN108599106B/zh
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to US17/058,378 priority Critical patent/US11881700B2/en
Priority to KR1020207033579A priority patent/KR102469129B1/ko
Priority to EP19811688.1A priority patent/EP3783763A4/en
Publication of WO2019228412A1 publication Critical patent/WO2019228412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters

Definitions

  • the invention relates to the field of relay protection of a power system, in particular to a method for longitudinal difference protection of a transformer.
  • the calculation method of the secondary rated current of the conventional transformer differential protection is:
  • S n is the nameplate parameter of the transformer: rated capacity
  • U 1n is the nameplate parameter of the transformer: the rated line voltage on the nth side
  • I 1n is the calculated value of the rated current of the nth side of the transformer
  • N n is the ratio of the current transformer on the nth side of the transformer
  • I 2n is the calculated value of the secondary rated current on the nth side of the transformer.
  • the current flowing through the winding of the series transformer is very small, and the terminal voltage across the winding of the series transformer is also very small.
  • the short-circuit current is small when a series-area fault occurs in the series transformer.
  • the following steps are generally included: collecting real-time secondary-side operating parameters of the longitudinal differential protection device; calculating according to the secondary-side operating parameters and the rated parameters of the transformer to determine whether the transformer is faulty.
  • an embodiment of the present application discloses a longitudinal differential protection method for a transformer, which includes: calculating a correction of the transformer according to a voltage of the transformer and an electrical parameter of the transformer. Parameters, wherein the electrical parameters of the transformer include the rated capacity of the transformer, and the modified parameters of the transformer include the capacity of the transformer.
  • calculating the correction parameter of the transformer according to the voltage of the transformer and the electrical parameters of the transformer includes: calculating an adjustment coefficient of the transformer according to the voltage of the transformer and the electrical parameters of the transformer. Calculating the correction parameter according to the adjustment coefficient and the electrical parameters of the transformer.
  • the electrical parameters of the transformer include a rated voltage and a minimum calculated voltage
  • calculating the adjustment coefficient of the transformer based on the voltage of the transformer and the electrical parameters of the transformer may include: if the voltage of the transformer is greater than Is equal to the minimum calculated voltage, and the voltage of the transformer is less than or equal to the rated voltage, the adjustment factor of the transformer is calculated according to a power function of the ratio of the voltage of the transformer to the rated voltage, where The exponent of a power function is a real number greater than 1.
  • the electrical parameters of the transformer include a rated voltage and a minimum calculated voltage
  • calculating the adjustment coefficient of the transformer based on the voltage of the transformer and the electrical parameters of the transformer may include: if the voltage of the transformer is greater than Is equal to the minimum calculated voltage, and the voltage of the transformer is less than or equal to the rated voltage, the adjustment factor of the transformer is calculated according to a power function of the ratio of the voltage of the transformer to the rated voltage, where the The exponent of a power function is a positive real number less than 1.
  • the electrical parameters of the transformer include a rated voltage and a minimum calculated voltage
  • calculating the adjustment coefficient of the transformer according to the voltage of the transformer and the electrical parameters of the transformer may also include: if the voltage of the transformer Greater than or equal to the minimum calculated voltage, and the voltage of the transformer is less than or equal to the rated voltage, the adjustment factor of the transformer of the transformer is calculated according to a linear function of a ratio of the voltage of the transformer to the rated voltage .
  • the electrical parameters of the transformer include a rated voltage and a minimum calculated voltage
  • calculating the adjustment coefficient of the transformer according to the voltage of the transformer and the electrical parameters of the transformer may further include: if the voltage of the transformer If the voltage is greater than the rated voltage, the adjustment factor of the transformer is a fixed value; if the voltage of the transformer is less than the minimum calculated voltage, the adjustment factor of the transformer is a fixed value.
  • the method may further include: calculating a critical value of a secondary side operation parameter of a longitudinal difference protection device connected to the transformer according to the correction parameter; collecting real-time secondary side operation of the longitudinal difference protection device Parameters; judging whether the transformer is faulty according to the real-time secondary-side operating parameters and the critical value.
  • the transformer is a series transformer.
  • the voltage of the transformer is a grid-side winding phase voltage of the transformer, a grid-side winding line voltage, a valve-side winding phase voltage, or a valve-side winding line voltage.
  • the electrical parameters of the transformer include a rated voltage and a rated capacity.
  • the secondary-side operating parameters may include a differential current, a braking current, or a braking threshold.
  • the voltage of the transformer includes a minimum phase voltage.
  • the above method can be used to obtain the correction parameters of the transformer according to the actual voltage and electrical parameters of the transformer; and then to determine whether the transformer is faulty according to the correction parameters. Since the correction parameter is smaller than the rated parameter when the transformer voltage is less than the rated value, the sensitivity of the fault judgment by this method is higher.
  • FIG. 1 is an embodiment of the present application, and illustrates a schematic flow chart of a method 1000 for protecting a transformer from a difference.
  • Figure 1a is a schematic diagram of an electrical model of a set of windings of a transformer.
  • FIG. 2 is a schematic diagram of a variation curve of an adjustment coefficient.
  • FIG. 3 is a schematic diagram of a variation curve of an adjustment coefficient.
  • FIG. 4 is a schematic diagram of a variation curve of an adjustment coefficient.
  • FIG. 5 is an embodiment of the present application, and illustrates a schematic flow chart of a method 2000 for transformer longitudinal difference protection.
  • FIG. 6 is an embodiment of the present application, and illustrates a schematic flow chart of a method 3000 for transformer longitudinal difference protection.
  • FIG. 7 is an embodiment of the present application, and illustrates a schematic flow chart of a method 4000 for transformer longitudinal difference protection.
  • the following steps are generally included: collecting real-time secondary-side operating parameters of the longitudinal differential protection device; calculating according to the secondary-side operating parameters and the rated parameters of the transformer to determine whether the transformer is faulty.
  • the present application discloses a method for longitudinal difference protection 1000 of a transformer.
  • the method further includes: Step S110, calculating a correction parameter of the transformer according to the voltage of the transformer and the electrical parameters of the transformer.
  • whether the transformer is faulty can be determined according to the comparison between the correction parameter of the transformer generated in step S110 and the secondary-side operation parameter of the longitudinal difference protection device.
  • step S110 may further include the following steps.
  • step S110A the adjustment coefficient of the transformer is calculated according to the voltage of the transformer and the electrical parameters of the transformer.
  • step S110B the correction parameters of the transformer are calculated according to the adjustment coefficient of the transformer and the electrical parameters of the transformer.
  • step S110A may include:
  • step S110A1 if the voltage U of the transformer satisfies formula (1). Then, the adjustment factor K of the transformer can be calculated according to formula (2). Among them, ⁇ > 1.
  • U 1 is the minimum calculated voltage and U n is the rated voltage.
  • step S110A may also include step S110A2, if the voltage U of the transformer satisfies formula (1). Then, the adjustment factor K of the transformer can be calculated according to formula (2). Among them, 0 ⁇ ⁇ 1.
  • step S110A may further include step S110A3, if the voltage U of the transformer satisfies formula (1). Then, the adjustment factor K of the transformer can be calculated according to formula (3).
  • K min is the value of the adjustment coefficient when U p is equal to U 1 .
  • adjustment coefficient K may also be calculated according to other forms of linear functions.
  • the minimum calculated voltage U 1 may be zero.
  • the method 1000 may further include steps S120 and S130A. among them
  • Step S120 Collect real-time secondary-side operating parameters of the transformer-coupled longitudinal differential protection device.
  • step S130A it is determined whether the transformer is faulty according to the real-time secondary-side operating parameters and the transformer correction parameters.
  • step S130A may include steps S130 and S140.
  • step S130 a critical value of the secondary-side operation parameter is calculated according to the correction parameter.
  • Step S140 Determine whether the transformer is faulty according to the real-time secondary-side operating parameters and the critical values of the secondary-side operating parameters.
  • step S120 may be set before step S110 or between step S130 and step S140.
  • the transformer mentioned in step S110 may be a series transformer, and the series transformer may be connected in series with a device such as a converter and disposed in an application circuit.
  • the transformer mentioned in step S110 may include one set of grid-side windings, and may also include at least two sets of grid-side windings.
  • the transformer may include one set of valve-side windings, or may include at least two sets of valve-side windings.
  • FIG. 1a it is a schematic diagram of a set of windings of a transformer coupled to a longitudinal difference protection device.
  • the A-phase winding, the B-phase winding, and the C-phase winding can be the transformer winding on the grid side, or the valve-side winding of the transformer.
  • the three-phase windings of A, B, and C can be either delta-connected or star-connected.
  • the voltage of the transformer mentioned in step S110 may be the phase voltage or line voltage of the transformer-side winding, or the phase voltage or line voltage of the valve-side winding of the transformer. Further, the voltage of the transformer mentioned in step S110 may also be a certain calculated value of the above voltage, such as: the average value of the effective values of the three-phase phase voltages, or the minimum phase voltage with the smallest value among the three-phase phase voltages, etc. .
  • the secondary-side operating parameter mentioned in step S110 may be the current of the secondary side of the longitudinal difference protection device.
  • the secondary-side operating parameters can also be other real-time parameters of the secondary-side circuit that can be used to calculate the current in the three-phase windings of the transformer A, B, and C, such as voltage and frequency in the secondary-side circuit , And digital quantities.
  • the secondary-side operating parameters may also include calculated values of certain data related to the three-phase windings of A, B, and C, such as: differential current, braking current, or braking threshold, obtained using the above parameters.
  • the critical value of the secondary-side operating parameter is the critical value for performing fault judgment by using the foregoing secondary-side operating parameter under the actual operating voltage of the transformer.
  • the critical value can be calculated according to the correction parameters of the transformer.
  • the electrical parameters of the transformer mentioned in step S110 may include the rated voltage and rated capacity of the transformer, the rated current, and other rated parameters.
  • the rated voltage can be a rated phase voltage or a rated line voltage.
  • the rated current can be a rated phase current or a rated line current.
  • the rated voltage and rated current can be the related electrical parameters of the grid-side winding, or the related electrical parameters of the valve-side winding.
  • the electrical parameters of the transformer may further include other parameters of the transformer, such as a balance factor, involved in calculating a critical value of a secondary-side operating parameter at a rated voltage.
  • the correction parameter mentioned in step S110 may be a correction value of an electrical parameter of the transformer.
  • the correction parameter may include the capacity of the transformer, which is the correction value of the rated capacity of the transformer.
  • the correction parameter may also be a correction value of a parameter calculated through the electrical parameters of the transformer.
  • the correction parameter may also be the critical value of the real-time secondary-side running parameter mentioned in step S120.
  • step S110B may include calculating a correction value of the electrical parameters of the transformer according to the adjustment coefficient of the transformer and the electrical parameters of the transformer.
  • the electrical parameters calculated in step S110 may include: rated capacity, rated voltage, rated current, balance factor, and the like. It may also be the original differential current value and the original braking current value calculated by using the above electrical parameters.
  • the above method can be used to obtain the correction parameters of the transformer, and it can be judged whether the transformer is faulty according to the correction parameters. Since the correction parameter is more sensitive than the rated value of the transformer, the sensitivity of the fault judgment by this method is higher.
  • the present application also discloses a method for protecting a transformer's longitudinal difference 2000, which includes steps S210 and S220.
  • step S210 the adjustment coefficient is calculated according to the minimum phase voltage U p , the minimum calculated voltage U 1 and the rated phase voltage U n of the series transformer winding.
  • step S220 the capacity of the series transformer used in calculating the secondary rated current for protection of the longitudinal differential protection is the product of the rated capacity and the capacity adjustment factor in the series transformer nameplate parameters.
  • step S210 includes steps S210A, S210B, and S210C.
  • step S210A when the minimum phase voltage U p of the series transformer winding is greater than the rated phase voltage U n , the capacity adjustment coefficient is set to 1.
  • step S210B when the minimum phase voltage U p of the series transformer winding is less than the set minimum calculated voltage U 1 , the capacity adjustment factor is taken as K min ; the range of the minimum calculated voltage U 1 is: 0 ⁇ U 1 ⁇ U n ; The value range of K min is: 0 ⁇ K min ⁇ 1.
  • step S210C when the minimum phase voltage U p of the series transformer winding is greater than the set minimum calculated voltage U 1 and less than the rated phase voltage U n , the capacity adjustment coefficient increases linearly with the increase of U p ; the value of the capacity adjustment coefficient
  • the trajectory is a straight line composed of two-point coordinates, the starting coordinates are (U 1 , K min ), and the ending coordinates are (U n , 1).
  • the phase voltage of the series transformer winding is taken from the grid-side winding voltage or the valve-side winding voltage.
  • Figure 1a shows the winding phase voltages involved in the calculation of the longitudinal transformer protection capacity adjustment coefficient of the series transformer.
  • the minimum value of the three-phase voltages of the series transformer windings A, B, and C is compared with the rated phase voltage of the winding.
  • the phase voltages of the three-phase transformer windings A, B, and C can be the grid-side winding voltage or the valve-side winding voltage.
  • the value of the phase voltage of the three phases of the series transformer windings A, B, and C can be the same time as the current difference calculation of the relay protection device, or it can be earlier than the current time of the vertical difference calculation. No matter which time is taken, each The value of each phase voltage on the side should ensure that the phase voltage is under the same section at the same time.
  • phase voltages of the three-phase transformer windings A, B, and C When comparing the phase voltages of the three-phase transformer windings A, B, and C with the rated phase voltage of the winding, if the phase voltages of the three-phase transformer windings A, B, and C are taken from the grid side, the series transformer windings A, B The phase voltages of three phases of C and C are compared with the rated voltage of the grid side of the series transformer; if the phase voltages of the three phase of the series transformer windings A, B, and C are taken from the valve side, the phases of the three phase of the series transformer windings A, B, and C are The voltage is compared with the rated voltage on the valve side of the series transformer.
  • the capacity adjustment factor is taken as 1.
  • the capacity adjustment coefficient is taken as K min .
  • the range of the minimum calculated voltage U 1 is: 0 ⁇ U 1 ⁇ U n .
  • the capacity adjustment coefficient increases linearly as U p increases.
  • the value trajectory of the capacity adjustment coefficient is a straight line composed of two-point coordinates. The starting coordinates are (U 1 , K min ) and the ending coordinates are (U n , 1).
  • Figure 2 shows the variation curve of the series transformer longitudinal differential protection adjustment coefficient.
  • the minimum phase voltage U p of the winding is smaller than its rated phase voltage U n . Therefore, the calculated value of the secondary rated current on each side of the series transformer adjusted by the present invention is smaller than the calculated value of the secondary rated current on each side of the transformer obtained by the conventional calculation method. Therefore, the differential current calculation value of the longitudinal differential protection is enlarged, so that the longitudinal differential protection can be Better fit with the characteristics of the failure points in and outside the zone, so as to improve the sensitivity of longitudinal difference protection.
  • the present application discloses a method 3000 for protecting a transformer's longitudinal difference.
  • the method 3000 includes steps S310A, S310B, S310C, and S320. Steps S310A, S310B, and S320 are similar to the steps of the same name in the method 2000, and details are not described herein.
  • step S310C when the minimum phase voltage U p of the series transformer winding is between the set minimum calculated voltage U 1 and the rated phase voltage U n of the series transformer nameplate, the value adjustment curve of the capacity adjustment coefficient is based on the minimum phase voltage of the series transformer winding.
  • the voltage multiple k p is the power function curve of the independent variable, the dependent variable of the power function is the capacity adjustment coefficient, and the exponent of the power function is greater than 1; where: k p is the minimum phase voltage U p of the series transformer winding and the rated phase voltage of the series transformer nameplate The ratio of U n .
  • the variation curve of the adjustment coefficient in the method 3000 is shown in FIG. 3.
  • the capacity of the transformer adjusted by applying the present invention is less than the rated capacity, and the calculated value of the secondary rated current on each side of the series transformer is smaller than the calculated value of the secondary rated current on each side of the transformer calculated using the rated capacity, thus magnifying the differential current calculation of the differential protection
  • the capacity adjustment coefficient has an exponential relationship with the minimum phase voltage multiple of the series transformer winding. Under transient conditions, the capacity adjustment speed of the series transformer longitudinal difference calculation is increased, so that the longitudinal difference protection can better fit the faults in the area. Calculate the characteristics of the falling point, thereby improving the sensitivity of the longitudinal difference protection.
  • the present application discloses a method 4000 for protecting a transformer, which includes steps S410A, S410B, S410C, and S420. Steps S410A, S410B, and S420 are similar to the steps of the same name in the method 2000, and are not described herein again.
  • k p is the minimum phase series transformer windings transformer rated voltage U p and the ratio of phase voltage U n.
  • the variation curve of the adjustment coefficient in the method 4000 is shown in FIG. 4.
  • the minimum phase voltage U p of the winding is smaller than its rated phase voltage U n . Therefore, the capacity of the transformer adjusted by applying the present invention is less than the rated capacity, and the calculated value of the secondary rated current on each side of the series transformer is smaller than the calculated value of the secondary rated current on each side of the transformer calculated using the rated capacity, thus magnifying the differential current calculation of the differential protection.
  • the capacity adjustment coefficient changes less, which improves the transient braking characteristics of the longitudinal differential protection.
  • Solution 1 A method for longitudinal differential protection of a series transformer, wherein the capacity of the series transformer used in calculating the secondary rated current for the protection of the longitudinal difference is the product of the rated capacity and the capacity adjustment factor in the series transformer nameplate parameters; the capacity The adjustment coefficient is determined according to the relationship between the phase voltage of the series transformer winding and the rated phase voltage.
  • Solution two On the basis of solution one, when the minimum phase voltage U p of the series transformer winding is greater than the rated phase voltage U n , the capacity adjustment coefficient is taken as 1.
  • Solution three On the basis of solution 1, when the minimum phase voltage U p of the series transformer winding is less than the set minimum calculated voltage U 1 , the capacity adjustment coefficient is taken as K min ; the minimum calculated voltage U 1 is taken as a value range: 0 ⁇ U 1 ⁇ U n ; K min is in the range: 0 ⁇ K min ⁇ 1.
  • the fourth solution is based on the first solution, wherein when the minimum phase voltage U p of the series transformer winding is greater than the set minimum calculated voltage U 1 and less than the rated phase voltage U n , the capacity adjustment coefficient increases with U p And the linear increase; the value trajectory of the capacity adjustment coefficient is a straight line composed of two-point coordinates, the starting coordinates are (U 1 , K min ), and the ending coordinates are (U n , 1).
  • the fifth solution is based on the first solution, wherein the phase voltage of the series transformer winding is the grid-side winding voltage or the valve-side winding voltage.
  • Solution 6 A method for longitudinal differential protection of a series transformer, wherein the capacity of the series transformer used in calculating the secondary rated current for the protection of the longitudinal difference is the product of the rated capacity and the capacity adjustment factor in the series transformer nameplate parameters; the capacity The adjustment coefficient is determined according to the relationship between the phase voltage of the series transformer winding and the rated phase voltage.
  • the capacity the value of the curve adjustment coefficient is minimum phase series transformer winding voltage times k p is a power function curve independent variable, the dependent variable is a function of the power capacity adjustment factor, the power function exponent greater than 1; wherein: k p is a series transformer The ratio of the minimum phase voltage U p of the winding to the rated phase voltage U n of the series transformer nameplate.
  • Scheme 7 On the basis of scheme 6, where the minimum phase voltage multiple k p is less than k 1 , the capacity adjustment coefficient is fixed at K min , where: K min ranges from (0,1), and k 1 is The ratio of the minimum calculated voltage U 1 to the rated voltage U n of the transformer winding nameplate. The value range of U 1 is (0, U n ); when the minimum phase voltage multiple k p is greater than 1, the capacity adjustment factor is fixedly set to 1.
  • the eighth scheme based on the sixth scheme, wherein the phase voltage of the series transformer winding is the grid-side winding voltage or the valve-side winding voltage.
  • Solution IX A method for longitudinal differential protection of a series transformer, wherein the capacity of the series transformer used for calculating the secondary rated current for the protection of the longitudinal differential is the product of the rated capacity and the capacity adjustment coefficient in the series nameplate parameters; the capacity adjustment The coefficient k changes non-linearly with the change of the minimum phase voltage multiple k p , where: k p is the ratio of the minimum phase voltage U p of the series transformer winding to the rated phase voltage U n of the transformer.
  • Scheme 11 On the basis of Scheme 6, where the minimum phase voltage multiple k p is less than k 1 , the capacity adjustment coefficient is fixed at K min , where: K min ranges from (0,1), k 1 The ratio of the minimum calculated voltage U 1 to the rated voltage U n of the transformer winding nameplate. The value of U 1 ranges from (0, U n ); when the minimum phase voltage multiple k p is greater than 1, the capacity adjustment factor is fixedly set to 1.
  • the twelfth aspect is based on the sixth aspect, wherein the minimum phase voltage of the series transformer winding is the grid-side winding voltage or the valve-side winding voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Protection Of Transformers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本申请涉及一种变压器的纵差保护方法,其中包括:根据变压器的电压和变压器的电气参数,计算变压器的修正参数,其中,变压器的电气参数包括变压器的额定容量,变压器的修正参数包括变压器的容量。

Description

一种变压器的纵差保护方法 技术领域
本发明涉及电力系统继电保护领域,具体涉及一种变压器的纵差保护方法。
背景技术
常规的变压器纵差保护的二次额定电流计算方法为:
Figure PCTCN2019089067-appb-000001
其中:
S n为变压器铭牌参数:额定容量;U 1n为变压器铭牌参数:第n侧额定线电压;I 1n为变压器第n侧一次额定电流计算值;N n为变压器第n侧电流互感器变比;I 2n为变压器第n侧二次额定电流计算值。
串联变压器与普通电力系统变压器相比,应用场合不同,运行工况不同。本申请的发明人发现,目前在柔性交流输电等应用场合下,变压器网侧绕组电压波动幅度较大。当变压器的网侧电压过低时,该变压器的短路电流也很低。此时,采用常规的变压器纵差保护的故障判定方法面临灵敏度不足的问题,难以满足实际需要。
当串联变压器所在线路处于轻载运行,同时串联变压器也轻载运行时,流经串联变压器绕组的电流很小,串联变压器绕组两端的端电压也很小。在这种情况下,当串联变压器发生轻微区内故障时,短路电流很小。采用常规的变压器纵差保护二次额定电流计算方法,得到的差流就很小,纵差保护反映串联变压器区内轻微故障的灵敏度降低。
发明内容
在传统的纵差保护方法中,一般包括以下步骤:采集纵差保护装置的实时二次侧运行参数;根据该二次侧运行参数与该变压器的额定参数 进行计算,判断该变压器是否故障。
在传统纵差保护方法的基础上,本申请的一个实施例公开了一种变压器的纵差保护方法,其中包括:根据所述变压器的电压和所述变压器的电气参数,计算所述变压器的修正参数,其中,所述变压器的电气参数包括所述变压器的额定容量,所述变压器的修正参数包括所述变压器的容量。
可以根据纵差保护装置的实时二次侧运行参数与上述方法得到的修正参数,判断该变压器是否故障。
可选地,所述根据所述变压器的电压和所述变压器的电气参数,计算所述变压器的修正参数,包括:根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数;根据所述调整系数和所述变压器的电气参数计算所述修正参数。
进一步地,所述变压器的电气参数包括额定电压和最小计算电压,所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,可以包括:若所述变压器的电压大于等于所述最小计算电压,且所述变压器的电压小于等于所述额定电压,则根据所述变压器的电压与所述额定电压的比值的幂函数,计算所述变压器的调整系数,其中,所述幂函数的幂指数为大于1的实数。
进一步地,所述变压器的电气参数包括额定电压和最小计算电压,所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,可以包括:若所述变压器的电压大于等于所述最小计算电压,且所述变压器的电压小于等于所述额定电压,则根据所述变压器的电压与所述额定电压的比值的幂函数,计算所述变压器的调整系数,其中,所述幂函数的幂指数为小于1的正实数。
进一步地,所述变压器的电气参数包括额定电压和最小计算电压,所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,也可以包括:若所述变压器的电压大于等于所述最小计算电压,且所述变压器的电压小于等于所述额定电压,则根据所述变压器的电压与所述额定电压的比值的线性函数来计算所述变压器的所述变压器的调整系数。
进一步地,所述变压器的电气参数包括额定电压和最小计算电压,所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,还可以包括:若所述变压器的电压大于所述额定电压,则所述变压器的调整系数为固定值;若所述变压器的电压小于所述最小计算电压,则所述变压器的调整系数为固定值。
可选地,该方法还可以包括:根据所述修正参数计算与所述变压器藕接的纵差保护装置的二次侧运行参数的临界值;采集所述纵差保护装置的实时二次侧运行参数;根据所述实时二次侧运行参数和所述临界值判断所述变压器是否故障。
可选地,所述变压器为串联变压器。
可选地,所述变压器的电压为变压器的网侧绕组相电压、网侧绕组线电压、阀侧绕组相电压或阀侧绕组线电压。
可选地,所述变压器的电气参数包括额定电压和额定容量。
可选地,二次侧运行参数可以包括差动电流、制动电流或制动门槛。
可选地,所述变压器的电压包括最小相电压。
当变压器网侧电压小于该变压器网侧额定电压时,利用上述方法可以根据该变压器的实际电压和电气参数得到该变压器的修正参数;再根据该修正参数判断该变压器是否故障。由于在变压器电压小于额定值时修正参数比额定参数小,所以利用本方法进行的故障判断的灵敏度更高。
附图说明
图1为本申请的一个实施例,示出了变压器的纵差保护方法1000的流程示意图。
图1a为一种变压器的一组绕组的电气模型示意图。
图2为调整系数的一种变化曲线示意图。
图3为调整系数的一种变化曲线示意图。
图4为调整系数的一种变化曲线示意图。
图5为本申请的一个实施例,示出了变压器的纵差保护方法2000的流程示意图。
图6为本申请的一个实施例,示出了变压器的纵差保护方法3000的流程示意图。
图7为本申请的一个实施例,示出了变压器的纵差保护方法4000的流程示意图。
具体实施方式
在传统的纵差保护方法中,一般包括以下步骤:采集纵差保护装置的实时二次侧运行参数;根据该二次侧运行参数与该变压器的额定参数进行计算,判断该变压器是否故障。
本申请公开了变压器的纵差保护方法1000在传统的纵差保护方法的基础上,还包括:步骤S110,根据变压器的电压和变压器的电气参数,计算该变压器的修正参数。
进一步地,可以根据步骤S110中产生的变压器的修正参数与纵差保护装置的二次侧运行参数比较判断变压器是否故障。
可选地,步骤S110还可以包括以下步骤。
步骤S110A,根据变压器的电压和变压器的电气参数,计算该变压器的调整系数。
步骤S110B,根据变压器的调整系数和变压器的电气参数,计算该变压器的修正参数。
进一步地,步骤S110A可以包括:
步骤S110A1,若变压器的电压U满足式(1)。则可以根据式(2)计算变压器的调整系数K。其中,α>1。
U 1≤U≤U n          (1)
其中,U 1为最小计算电压,U n为额定电压。
K=(U/U n) α         (2)
或者,步骤S110A也可以包括步骤S110A2,若变压器的电压U满足式(1)。则可以根据式(2)计算变压器的调整系数K。其中,0<α<1。
或者,步骤S110A还可以包括步骤S110A3,若变压器的电压U满足式(1)。则可以根据式(3)计算变压器的调整系数K。
Figure PCTCN2019089067-appb-000002
其中,K min为U p等于U 1时,调整系数的取值。
进一步地,也可根据其他形式的线性函数计算调整系数K。
更进一步地,在步骤S110A中,若U>U n,则变压器的调整系数K为固定值,比如1。若U<U 1,则根据最小计算电压U 1和额定电压U n计算变压器的调整系数K为固定值K min。进一步地,可以令U p=U 1利用前述步骤S110A1、S110A2、S110A3计算变压器的调整系数的固定值K min
可选地,最小计算电压U 1可以为零。
可选地,方法1000还可以包括步骤S120、步骤S130A。其中
步骤S120,采集该变压器耦合的纵差保护装置的实时二次侧运行参数。
步骤S130A,根据实时的二次侧运行参数和变压器修正参数判断该变压器是否故障。
进一步地,步骤S130A可以包括步骤S130和步骤S140。
步骤S130,根据该修正参数,计算二次侧运行参数的临界值。
步骤S140,根据实时二次侧运行参数和二次侧运行参数的临界值判断变压器是否故障
进一步地,步骤S120可以设于步骤S110之前,或者设于步骤S130与步骤S140之间。
可选地,步骤S110中提到的变压器可以是串联变压器,该串联变压器可以与换流器等设备串联连接,设置于应用电路中。
可选地,步骤S110中提到的变压器可以包含一组网侧绕组,也可以包括至少两组网侧绕组。该变压器可以包含一组阀侧绕组,也可以包含至少两组阀侧绕组。
如图1a所示,为纵差保护装置所耦合的变压器一组绕组的原理示意图。其中,A相绕组、B相绕组和C相绕组可以是网侧的变压器绕组,也可以是变压器的阀侧绕组。A、B、C三相绕组可以是三角形连接也可以是星形连接。
可选地,步骤S110中提到的变压器的电压,既可以为变压器网侧绕组的相电压或者线电压,也可以为变压器阀侧绕组的相电压或者线电压。 进一步地,步骤S110中提到的变压器的电压还可以为上述电压的某种计算值,比如:三相相电压的有效值的平均值,或者三相相电压中数值最小的最小相电压等等。
可选地,步骤S110中提到的二次侧运行参数可以是纵差保护装置的二次侧的电流。进一步地,二次侧运行参数还可以是其他可以用以计算该变压器A、B、C三相绕组中的电流的,二次侧电路的实时参数,比如:二次侧电路中的电压、频率、以及数字量。更进一步地,二次侧运行参数还可以包括利用上述参数得到的,与A、B、C三相绕组相关的某些数据的计算值,比如:差动电流、制动电流或制动门槛。
进一步地,二次侧运行参数的临界值为,该变压器实际工作电压下,利用前述二次侧运行参数进行故障判断的临界值。可以根据该变压器的修正参数计算得到该临界值。
可选地步骤S110中提到的变压器的电气参数可以包括变压器的额定电压和额定容量、额定电流、以及其他额定参数。其中,额定电压可以是额定相电压,也可以是额定线电压。额定电流可以是额定相电流也可以是额定线电流。额定电压和额定电流可以是网侧绕组的相关电气参数,也可以是阀侧绕组的相关电气参数。
进一步地,变压器的电气参数还可以包括:参与计算额定电压下的,二次侧运行参数的临界值的,变压器的其他参数,比如平衡系数。
可选地,步骤S110中提到的修正参数可以是变压器的电气参数的修正值。比如:修正参数可以包括变压器的容量,该容量为变压器的额定容量的修正值。进一步地,该修正参数还可以是,经变压器的电气参数计算的到的参数的修正值。比如:修正参数也可以是步骤S120中提到的,实时二次侧运行参数的临界值。
进一步地,步骤S110B可以包括根据变压器的调整系数和变压器的电气参数,计算该变压器的电气参数的修正值。
参与步骤S110计算的电气参数可以包括:额定容量、额定电压、额定电流、平衡系数等。也可以是利用上述电气参数计算的到的差动电流原始值和制动电流原始值。
当变压器网侧电压小于该变压器网侧额定电压时,利用上述方法可 以得到该变压器的修正参数,并可以根据修正参数判断该变压器是否故障。由于该修正参数比该变压器的额定值更灵敏,所以利用本方法对故障判断的灵敏度更高。
如图5所示,本申请还公开了一种变压器的纵差保护方法2000,包括步骤S210和S220。
步骤S210,根据串联变压器绕组的最小相电压U p、最小计算电压U 1和额定相电压U n计算调整系数。
步骤S220纵差保护中计算保护二次额定电流时使用的串联变压器容量取串联变压器铭牌参数中的额定容量与容量调整系数的乘积。
其中,步骤S210包括步骤S210A、S210B和S210C。
步骤S210A,当串联变压器绕组的最小相电压U p大于额定相电压U n时,容量调整系数取1。
步骤S210B,当串联变压器绕组的最小相电压U p小于设定的最小计算电压U 1时,容量调整系数取K min;最小计算电压U 1的取值范围为:0<U 1<U n;K min的取值范围为:0<K min<1。
步骤S210C,当串联变压器绕组的最小相电压U p大于设定的最小计算电压U 1且小于额定相电压U n时,容量调整系数随U p增大而线性增大;容量调整系数的取值轨迹是由两点坐标构成的直线,起始坐标为(U 1,K min),终点坐标为(U n,1)。
串联变压器绕组的相电压取网侧绕组电压或者阀侧绕组电压。
如图1a所示为参与串联变压器纵差保护容量调整系数计算的绕组相电压,首先取串联变压器绕组A、B、C三相相电压的最小值,与绕组额定相电压比较。串联变压器绕组A、B、C三相的相电压,可以取网侧绕组电压,也可以取阀侧绕组电压。串联变压器绕组A、B、C三相的相电压的取值时刻,可以取继电保护装置当前差流计算的同一时刻,也可以取早于当前纵差计算时刻,无论取哪种时刻,各侧各相电压的取值点,应保证相电压在同一时间断面下。串联变压器绕组A、B、C三相的相电压与绕组额定相电压进行比较时,若串联变压器绕组A、B、C三相的相电压是取自网侧,则将串联变压器绕组A、B、C三相的相电压与串联变压器网侧额定电压比较;若串联变压器绕组A、B、C三相的相电压是取 自阀侧,则将串联变压器绕组A、B、C三相的相电压与串联变压器阀侧额定电压比较。
当串联变压器绕组的最小相电压U p大于额定相电压U n时,容量调整系数取1。
当串联变压器绕组的最小相电压U p小于最小计算电压U 1时,容量调整系数取K min。最小计算电压U 1的取值范围为:0<U 1<U n
当串联变压器绕组的最小相电压U p大于最小计算电压且小于额定相电压时,容量调整系数随U p增大而线性增大。容量调整系数的取值轨迹是由两点坐标构成的直线。起始坐标为(U 1,K min),终点坐标为(U n,1)。如图2所示为串联变压器纵差保护调整系数的变化曲线。
串联变压器正常运行时的绕组最小相电压U p要小于其额定相电压U n。因此应用本发明调整后的串联变压器各侧二次额定电流计算值小于常规计算方法得到的变压器各侧二次额定电流计算值,因而放大了纵差保护的差流计算值,使纵差保护能够更好地与区内外故障落点特性贴合,从而提高纵差保护灵敏度。
如图6所示,本申请公开了一种变压器的纵差保护方法3000,方法3000包括步骤S310A、S310B、S310C和S320。其中,步骤S310A、S310B和S320与方法2000中的同名步骤相似,在此不做赘述。
步骤S310C,当串联变压器绕组的最小相电压U p在设定的最小计算电压U 1和串联变压器铭牌额定相电压U n之间时,容量调整系数的取值曲线是以串联变压器绕组的最小相电压倍数k p为自变量的幂函数曲线,幂函数的因变量为容量调整系数,幂函数的指数大于1;其中:k p为串联变压器绕组的最小相电压U p与串联变压器铭牌额定相电压U n的比值。
方法3000中,调整系数的变化曲线如图3所示。
串联变压器正常运行时的绕组最小相电压U p要小于其额定相电压U n。因此应用本发明调整后的变压器容量小于额定容量,串联变压器各侧二次额定电流计算值小于用额定容量计算得到的变压器各侧二次额定电流计算值,因而放大了纵差保护的差流计算值,同时,容量调整系数与串联变压器绕组的最小相电压倍数呈指数关系,暂态情况下增大了串联变压器纵差计算的容量调整速度,使纵差保护能够更好地贴合区内故 障计算落点的特性,从而提高纵差保护灵敏度。
如图7所示,本申请公开了一种变压器的纵差保护方法4000,方法4000包括步骤S410A、S410B、S410C和S420。其中,步骤S410A、S410B和S420与方法2000中的同名步骤相似,在此不做赘述。
步骤S410C,当串联变压器绕组的最小相电压U p在最小计算电压U 1和串联变压器绕组铭牌额定相电压U n之间时,容量调整系数k的取值公式为:k=k p α,α的范围为0<α<1。其中:k p为串联变压器绕组的最小相电压U p与变压器额定相电压U n的比值。
方法4000中,调整系数的变化曲线如图4所示。
串联变压器正常运行时的绕组最小相电压U p要小于其额定相电压U n。因此应用本发明调整后的变压器容量小于额定容量,串联变压器各侧二次额定电流计算值小于用额定容量计算得到的变压器各侧二次额定电流计算值,因而放大了纵差保护的差流计算值,同时,当串联变压器绕组的最小相电压快速变化时,容量调整系数变化幅度较小,提高了纵差保护的暂态制动特性。
本申请还公开了以下方案:
方案一、一种串联变压器的纵差保护方法,其中,纵差保护中计算保护二次额定电流时使用的串联变压器容量取串联变压器铭牌参数中的额定容量与容量调整系数的乘积;所述容量调整系数根据串联变压器绕组的相电压与额定相电压的关系确定。
方案二、在方案一的基础上,其中:当串联变压器绕组的最小相电压U p大于额定相电压U n时,所述容量调整系数取1。
方案三、在方案一的基础上,其中,当串联变压器绕组的最小相电压U p小于设定的最小计算电压U 1时,所述容量调整系数取K min;最小计算电压U 1的取值范围为:0<U 1<U n;K min的取值范围为:0<K min<1。
方案四、在方案一的基础上,其中,当串联变压器绕组的最小相电压U p大于设定的最小计算电压U 1且小于额定相电压U n时,所述容量调整系数随U p增大而线性增大;容量调整系数的取值轨迹是由两点坐标构成的直线,起始坐标为(U 1,K min),终点坐标为(U n,1)。
方案五、在方案一的基础上,其中,所述串联变压器绕组的相电压 取网侧绕组电压或者阀侧绕组电压。
方案六、一种串联变压器的纵差保护方法,其中,纵差保护中计算保护二次额定电流时使用的串联变压器容量取串联变压器铭牌参数中的额定容量与容量调整系数的乘积;所述容量调整系数根据串联变压器绕组的相电压与额定相电压的关系确定,当串联变压器绕组的最小相电压U p在设定的最小计算电压U 1和串联变压器铭牌额定相电压U n之间时,容量调整系数的取值曲线是以串联变压器绕组的最小相电压倍数k p为自变量的幂函数曲线,幂函数的因变量为容量调整系数,幂函数的指数大于1;其中:k p为串联变压器绕组的最小相电压U p与串联变压器铭牌额定相电压U n的比值。
方案七、在方案六的基础上,其中,当最小相电压倍数k p小于k 1时,容量调整系数固定取K min,其中:K min的取值范围为(0,1),k 1为最小计算电压U 1与变压器绕组铭牌额定电压U n的比值,U 1的取值范围为(0,U n);当最小相电压倍数k p大于1时,容量调整系数固定取1。
方案八、在方案六的基础上,其中,所述串联变压器绕组的相电压取网侧绕组电压或者阀侧绕组电压。
方案九、一种串联变压器的纵差保护方法,其中,纵差保护中计算保护二次额定电流使用的串联变压器容量取串联变压器铭牌参数中的额定容量与容量调整系数的乘积;所述容量调整系数k随最小相电压倍数k p的变化而非线性地变化,其中:k p为串联变压器绕组的最小相电压U p与变压器额定相电压U n的比值。
方案十、在方案六的基础上,其中,当串联变压器绕组的最小相电压U p在最小计算电压U 1和串联变压器绕组铭牌额定相电压U n之间时,容量调整系数k的取值公式为:k=k p α,α的范围为0<α<1。
方案十一、在方案六的基础上,其中,当最小相电压倍数k p小于k 1时,容量调整系数固定取K min,其中:K min的取值范围为(0,1),k 1为最小计算电压U 1与变压器绕组铭牌额定电压U n的比值,U 1的取值范围为(0,U n);当最小相电压倍数k p大于1时,容量调整系数固定取1。
方案十二、在方案六的基础上,其中,所述串联变压器绕组的最小相电压取网侧绕组电压或者阀侧绕组电压。

Claims (11)

  1. 一种变压器的纵差保护方法,其中包括:
    根据所述变压器的电压和所述变压器的电气参数,计算所述变压器的修正参数,其中,所述变压器的电气参数包括所述变压器的额定容量,所述变压器的修正参数包括所述变压器的容量。
  2. 根据权利要求1所述的方法,其中,所述根据所述变压器的电压和所述变压器的电气参数,计算所述变压器的修正参数,包括:
    根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数;
    根据所述调整系数和所述变压器的电气参数计算所述修正参数。
  3. 根据权利要求2所述的方法,其中,所述变压器的电气参数包括额定电压和最小计算电压,
    所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,包括:
    若所述变压器的电压大于等于所述最小计算电压,且所述变压器的电压小于等于所述额定电压,则根据所述变压器的电压与所述额定电压的比值的幂函数,计算所述变压器的调整系数,其中,所述幂函数的幂指数为大于1的实数。
  4. 根据权利要求2所述的方法,其中,所述变压器的电气参数包括额定电压和最小计算电压,
    所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,包括:
    若所述变压器的电压大于等于所述最小计算电压,且所述变压器的电压小于等于所述额定电压,则根据所述变压器的电压与所述额定电压的比值的幂函数,计算所述变压器的调整系数,其中,所述幂函数的幂指数为小于1的正实数。
  5. 根据权利要求2所述的方法,其中,所述变压器的电气参数包括额定电压和最小计算电压,
    所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,包括:
    若所述变压器的电压大于等于所述最小计算电压,且所述变压器的电压小于等于所述额定电压,则根据所述变压器的电压与所述额定电压的比值的线性函数来计算所述变压器的所述变压器的调整系数。
  6. 根据权利要求2所述的方法,其中,所述变压器的电气参数包括额定电压和最小计算电压,
    所述根据所述变压器的电压和所述变压器的电气参数计算所述变压器的调整系数,包括:
    若所述变压器的电压大于所述额定电压,则所述变压器的调整系数为固定值;
    若所述变压器的电压小于所述最小计算电压,所述变压器的调整系数为固定值。
  7. 根据权利要求1-6中任意一项所述的方法,其中,所述方法还包括:
    根据所述修正参数计算与所述变压器藕接的纵差保护装置的二次侧运行参数的临界值;
    采集所述纵差保护装置的实时二次侧运行参数;
    根据所述实时二次侧运行参数和所述临界值判断所述变压器是否故障。
  8. 根据权利要求1所述的方法,其中,所述变压器为串联变压器。
  9. 根据权利要求1所述的方法,其中,所述变压器的电压为变压器的网侧绕组相电压、网侧绕组线电压、阀侧绕组相电压或阀侧绕组线电 压。
  10. 根据权利要求7所述的方法,其中,所述二次侧运行参数包括差动电流、制动电流或制动门槛。
  11. 根据权利要求1所述的方法,其中,所述变压器的电压为最小相电压。
PCT/CN2019/089067 2018-05-30 2019-05-29 一种变压器的纵差保护方法 WO2019228412A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/058,378 US11881700B2 (en) 2018-05-30 2019-05-29 Longitudinal differential protection method of transformer
KR1020207033579A KR102469129B1 (ko) 2018-05-30 2019-05-29 변압기의 종 방향 차동 보호 방법
EP19811688.1A EP3783763A4 (en) 2018-05-30 2019-05-29 LONGITUDINAL DIFFERENTIAL PROTECTION METHOD FOR TRANSFORMERS

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810537904.6 2018-05-30
CN201810537869.8 2018-05-30
CN201810537869.8A CN108599105B (zh) 2018-05-30 2018-05-30 一种串联变压器纵差保护计算中容量非线性调整的方法
CN201810537877.2A CN108736443B (zh) 2018-05-30 2018-05-30 一种串联变压器纵差保护计算的线性调整方法
CN201810537877.2 2018-05-30
CN201810537904.6A CN108599106B (zh) 2018-05-30 2018-05-30 一种串联变压器纵差保护计算中容量调整的方法

Publications (1)

Publication Number Publication Date
WO2019228412A1 true WO2019228412A1 (zh) 2019-12-05

Family

ID=68697804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089067 WO2019228412A1 (zh) 2018-05-30 2019-05-29 一种变压器的纵差保护方法

Country Status (4)

Country Link
US (1) US11881700B2 (zh)
EP (1) EP3783763A4 (zh)
KR (1) KR102469129B1 (zh)
WO (1) WO2019228412A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110055423A1 (en) * 2009-09-01 2011-03-03 Fujitsu Limited Transmission device and method of controlling selection of received data
CN105552839A (zh) * 2016-03-07 2016-05-04 国家电网公司 一种基于电压在线积分的变压器和应涌流识别方法
CN106451354A (zh) * 2016-11-07 2017-02-22 上海思源弘瑞自动化有限公司 变压器差动保护方法及装置
CN108599106A (zh) * 2018-05-30 2018-09-28 南京南瑞继保电气有限公司 一种串联变压器纵差保护计算中容量调整的方法
CN108599105A (zh) * 2018-05-30 2018-09-28 南京南瑞继保电气有限公司 一种串联变压器纵差保护计算中容量非线性调整的方法
CN108736443A (zh) * 2018-05-30 2018-11-02 南京南瑞继保电气有限公司 一种串联变压器纵差保护计算的线性调整方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902854B2 (en) * 2003-07-25 2011-03-08 Power Measurement, Ltd. Body capacitance electric field powered device for high voltage lines
JP2005269870A (ja) 2004-03-22 2005-09-29 Mitsubishi Electric Corp 比率差動保護装置
KR100842800B1 (ko) 2006-12-29 2008-07-01 주식회사 케이디파워 최소자승법을 사용한 변압기 용량 산정 방법
US7738221B2 (en) * 2007-12-07 2010-06-15 Cooper Technologies Company Transformer inrush current detector
CN101800415B (zh) 2010-04-27 2012-07-04 宁夏回族自治区电力公司 电炉变压器纵差保护方法
EP2466322B1 (en) 2010-12-17 2013-09-11 ABB Research Ltd. Method and apparatus for transformer diagnosis
CN102255284B (zh) * 2011-07-26 2013-07-17 重庆电力高等专科学校 电流故障分量瞬时值极性比较实现变压器保护的方法
CN102623953B (zh) 2012-03-27 2014-04-23 国网山东省电力公司 一种利用goose网络提高主变纵差保护灵敏度的方法
RU2502168C1 (ru) 2012-04-27 2013-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Устройство продольной дифференциальной защиты двухобмоточных силовых трансформаторов
CN103560487B (zh) 2013-11-19 2016-02-03 国家电网公司 多分接头特种变压器差动保护方法
CN103715930B (zh) 2013-11-25 2016-09-21 国家电网公司 一种提升柔性直流输电系统容量的方法
CN104065038A (zh) 2013-12-06 2014-09-24 国家电网公司 大功率整流变压器组差动保护方法
JP2015163005A (ja) 2014-02-28 2015-09-07 株式会社創発システム研究所 長尺ケーブルを介して駆動する道路トンネルのジェットファン用誘導電動機の可変速駆動装置
CN106786633B (zh) 2017-03-24 2018-02-06 广东电网有限责任公司河源供电局 无功电压调节装置的配置方法和无功电压调节装置
CN106953365A (zh) 2017-05-05 2017-07-14 云南电网有限责任公司 一种逆变器并联运行优化控制方法
CN206849669U (zh) 2017-05-11 2018-01-05 山东电工电气集团智能电气有限公司 一种干式有载分接开关电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110055423A1 (en) * 2009-09-01 2011-03-03 Fujitsu Limited Transmission device and method of controlling selection of received data
CN105552839A (zh) * 2016-03-07 2016-05-04 国家电网公司 一种基于电压在线积分的变压器和应涌流识别方法
CN106451354A (zh) * 2016-11-07 2017-02-22 上海思源弘瑞自动化有限公司 变压器差动保护方法及装置
CN108599106A (zh) * 2018-05-30 2018-09-28 南京南瑞继保电气有限公司 一种串联变压器纵差保护计算中容量调整的方法
CN108599105A (zh) * 2018-05-30 2018-09-28 南京南瑞继保电气有限公司 一种串联变压器纵差保护计算中容量非线性调整的方法
CN108736443A (zh) * 2018-05-30 2018-11-02 南京南瑞继保电气有限公司 一种串联变压器纵差保护计算的线性调整方法

Also Published As

Publication number Publication date
EP3783763A1 (en) 2021-02-24
KR102469129B1 (ko) 2022-11-18
US20210203147A1 (en) 2021-07-01
EP3783763A4 (en) 2022-02-23
KR20210003848A (ko) 2021-01-12
US11881700B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
CN109873443B (zh) 基于临界电压的电网故障下直流连续换相失败预测方法
US20230396143A1 (en) Method For Solving For Converter Valve States And Valve Currents Based On Valve-Side Current Timing Characteristics
CN102403716A (zh) 一种多馈入交直流电网动态等值的方法
CN104364988A (zh) 通过电流差动保护识别故障的方法及其设备
CN103855720A (zh) 一种双馈异步风力发电机低电压穿越保护方法
CN111983377A (zh) 高压直流输电线路故障判定方法和装置
WO2018023909A1 (zh) 基于电压量积分判别变压器铁芯饱和的方法
CN108964110A (zh) 一种继发性换相失败的判别方法及系统
CN111680884A (zh) 一种电力电子并网变流器韧性评估方法
Polycarpou Power quality and voltage sag indices in electrical power systems
CN113675820B (zh) 一种用于应对变压器直流偏磁的应急控制方法
CN112952775B (zh) 一种含分布式光伏电源的配电网电压量保护方法
WO2019228412A1 (zh) 一种变压器的纵差保护方法
CN112924784A (zh) 一种直流输电系统换相失败的判别方法、系统、诊断装置
CN108599106B (zh) 一种串联变压器纵差保护计算中容量调整的方法
CN108599105B (zh) 一种串联变压器纵差保护计算中容量非线性调整的方法
CN103543315A (zh) 一种500kV自耦变压器短路电流的阻抗网络分析方法
CN111478284A (zh) 一种变压器差动速断保护整定方法及装置
RU2772289C1 (ru) Способ продольно-дифференциальной защиты трансформатора
CN115663766A (zh) 考虑电流变化量相似性的风电场送出线路保护方法
Elmitwally et al. A Coordination Scheme for a Combined Protection System Considering Dynamic Behavior and Wind DGs Fault Ride-Through Constraints
CN112398093B (zh) 差动动作门槛自适应的串联变压器差动保护方法和装置
CN108736443B (zh) 一种串联变压器纵差保护计算的线性调整方法
CN109995005B (zh) 一种基于触发角变化率均值的直流输电线路纵联保护方法
CN109066613B (zh) 一种纵联差动保护整定值的整定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019811688

Country of ref document: EP

Effective date: 20201116

Ref document number: 20207033579

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE