WO2019228071A1 - 相机曝光时间调整方法、装置及设备 - Google Patents

相机曝光时间调整方法、装置及设备 Download PDF

Info

Publication number
WO2019228071A1
WO2019228071A1 PCT/CN2019/081889 CN2019081889W WO2019228071A1 WO 2019228071 A1 WO2019228071 A1 WO 2019228071A1 CN 2019081889 W CN2019081889 W CN 2019081889W WO 2019228071 A1 WO2019228071 A1 WO 2019228071A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure time
camera
imaging
energy value
energy
Prior art date
Application number
PCT/CN2019/081889
Other languages
English (en)
French (fr)
Inventor
韩欣欣
赵志勇
董南京
孙德波
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/976,745 priority Critical patent/US11153502B2/en
Publication of WO2019228071A1 publication Critical patent/WO2019228071A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths

Definitions

  • the present invention relates to the field of assembly technology, and in particular, to a method, device and equipment for adjusting camera exposure time.
  • optical modules with independent functions in the market to meet diversified market demands.
  • These optical modules can be embedded in other devices to perform their functions, such as camera modules, miniature projection modules, LED (Light Emitting Diode, light emitting diode) optical modules, and VR (Virtual Reality, Virtual Reality) / AR (Augmented Reality) , Augmented reality) optical modules.
  • LED Light Emitting Diode, light emitting diode
  • VR Virtual Reality, Virtual Reality
  • AR Augmented Reality
  • Augmented reality Augmented reality
  • an optical module is assembled from multiple optical components and other parts.
  • the camera module can be assembled from components such as image sensors, lens mounts, multiple lenses, and circuit boards.
  • the assembly accuracy of the lens plays a decisive role in the optical performance of the optical module.
  • the optical module during the assembly process is imaged, a camera is used to collect the imaging spot, and whether the lenses to be assembled are aligned according to the size of the imaging spot, if the lenses are not aligned, Constantly adjust the position of the lens to be assembled.
  • Various aspects of the present invention provide a camera exposure time adjustment method, device, and equipment for adjusting the camera exposure time to a reasonable value, which is conducive to capturing a clear imaging spot and improving the accuracy and reliability of the spot analysis.
  • the invention provides a camera exposure time adjusting method, which includes: controlling a camera to acquire an imaging spot of an imaging component at a first exposure time; obtaining an energy value received by the camera when collecting the imaging spot; if the energy value is not set, Within a predetermined energy range, a curve parameter corresponding to an exposure time-energy curve is obtained according to the energy value and the first exposure time; an estimated exposure time corresponding to an optimal energy value is calculated according to the curve parameter; The estimated exposure time corresponding to the optimal energy value updates the first exposure time.
  • the method further includes: using the first exposure time as an optimal exposure time for the camera to collect the imaging spot.
  • acquiring a curve parameter corresponding to an exposure time-energy curve according to the energy value and the first exposure time includes: according to the energy value e n and the first exposure time t n , and the The energy value e n-1 and the corresponding exposure time t n-1 received when the camera collected the imaging spot last time, determine the slope and intercept of the exposure time-energy curve.
  • the method further includes: making the imaging brightness of the imaging component constant, so that the camera is updated after the update.
  • the first exposure time of the first time captures an imaging spot of the imaging component with the same brightness.
  • the energy range of the camera is within 10000 ⁇ 500.
  • the invention also provides a camera exposure time adjustment device, including:
  • An acquisition module configured to control the camera to acquire an imaging light spot of the imaging component at a first exposure time
  • An energy acquisition module configured to acquire an energy value received by the camera when collecting the imaging spot
  • a curve parameter determining module configured to obtain a curve parameter corresponding to an exposure time-energy curve according to the energy value and the first exposure time when the energy value is not within a set energy range;
  • An estimation module configured to calculate an estimated exposure time corresponding to an optimal energy value according to the curve parameter
  • the exposure time update module is configured to update the first exposure time with an estimated exposure time corresponding to the optimal energy value.
  • the apparatus further includes an exposure time determination module, which is specifically configured to: when the energy value is not within a set energy range, use the first exposure time as a time for the camera to collect the imaging light spot Optimal exposure time.
  • the curve parameter determination module is specifically configured to: according to the energy value e n and the first exposure time t n , and the energy value e received by the camera when the imaging spot was last collected n-1 and the corresponding exposure time t n-1 determine the slope and intercept of the exposure time-energy curve.
  • the acquisition module is further configured to: after updating the first exposure time with an exposure time corresponding to the optimal energy value, control the imaging brightness of the imaging component to remain unchanged, so that the camera can The updated first exposure time collects imaging light spots of the imaging component with equal brightness.
  • the invention also provides an electronic device, comprising: a memory and a processor; wherein the memory is used to store at least one computer instruction; the processor is coupled to the memory for performing the camera exposure time adjustment method provided by the invention .
  • a camera can be used to acquire its imaging spot to analyze the imaging characteristics of the imaging component.
  • This implementation mode is beneficial to adjust the exposure time of the camera to a reasonable value, is conducive to capturing a clear imaging spot, and improves the accuracy and reliability of the spot analysis.
  • FIG. 1 is a method flowchart of a camera exposure time adjustment method according to an embodiment of the present invention
  • 2a is a method flowchart of a camera exposure time adjustment method according to another embodiment of the present invention.
  • 2b is a schematic diagram of an exposure time-energy curve provided by an embodiment of the present invention.
  • 2c is another schematic diagram of an exposure time-energy curve provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a camera exposure time adjustment device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • a light source is used to illuminate the optical module to be aligned for imaging, and then a camera is used to obtain an imaging spot of the optical module to be aligned. Then, based on the collected position and size of the imaging spot, analyze whether the to-be-assembled lens and the to-be-assembled optical component in the to-be-aligned optical module are aligned.
  • Exposure time is an important parameter for camera imaging. Generally, the longer the exposure time, the more photons received by the camera's photosensitive material, the brighter the captured image, and vice versa.
  • the optical module alignment assembly method based on spot analysis when the camera is used to collect the imaging spot, if the exposure time of the camera is too short, the collected imaging spot is dark, which is not conducive to capturing the characteristics of the imaging spot. If the exposure time is too long, the collected light spot will be brighter, which will cause the captured light spot to be abnormal. For example, some pixels at the edge of the light spot will be lost due to overexposure, which is also not conducive to capturing the characteristics of the imaging spot.
  • an embodiment of the present invention provides a method for adjusting camera exposure time. As shown in FIG. 1, the method includes:
  • Step 101 Control the camera to collect an imaging light spot of the imaging component at a first exposure time.
  • Step 102 Obtain an energy value received by the camera when collecting the imaging spot.
  • Step 103 If the energy value is not within a set energy range, obtain a curve parameter corresponding to an exposure time-energy curve according to the energy value and the first exposure time.
  • Step 104 Calculate an estimated exposure time corresponding to the optimal energy value according to the curve parameters.
  • Step 105 Update the first exposure time with the estimated exposure time corresponding to the optimal energy value.
  • the incident light falls on the pixel array of the photosensitive element in the form of photons, and the energy of each photon is absorbed by the photosensitive element and reacts to generate an electron.
  • the energy value received when the camera collects the imaging light spot in this embodiment refers to the light energy value absorbed by the photosensitive element in the camera when the camera is shooting the imaging light spot.
  • the light energy value is related to the imaging brightness of the imaging component and the exposure time of the camera. Therefore, in this embodiment, the exposure time of the camera can be adjusted by using the energy value received by the camera when collecting the imaging spot as a reference while ensuring that the imaging brightness of the imaging component is not changed.
  • the first exposure time refers to the time elapsed after the shutter of the camera is opened to closed.
  • the exposure time determines the quality of the imaging spot captured by the camera.
  • the camera can capture a better-quality imaging spot, and a better-quality imaging spot is advantageous for analyzing and calculating the spot size and the center of mass coordinates.
  • the range corresponding to the light energy value received by the photosensitive element in the camera can be used as the set energy range to determine whether the exposure time of the camera is reasonable.
  • the estimated exposure time corresponding to the optimal energy value may be determined based on the exposure time-energy curve, and the first exposure time may be updated with the estimated exposure time.
  • the camera Based on the updated first exposure time, the camera continues to collect the imaging spot, and then determines whether to continue adjusting the duration of the first exposure time based on the energy received by the camera when collecting the imaging spot. That is to say, the process of adjusting the first exposure time of the camera in this embodiment is a cyclic execution process. For the specific cyclic process, refer to the description of steps 101 to 105. When the energy value received by the camera when collecting the imaging spot is within the set energy range, the cycle ends.
  • the exposure time-energy curve refers to the correspondence between the exposure time of the camera and the energy received when the imaging spot is collected, and the correspondence reflects the trend of the energy received by the camera following the exposure time.
  • steps 101 to 105 are executed in a loop, after each acquisition of the imaging spot, the energy value received by the camera when the imaging spot is acquired and the exposure time corresponding to the acquisition are used to calculate the exposure time-energy curve. Curve parameters to fit the exposure time-energy curve.
  • a camera can be used to acquire its imaging spot to analyze the imaging characteristics of the imaging component.
  • This implementation mode is beneficial to adjust the exposure time of the camera to a reasonable value, is conducive to capturing a clear imaging spot, and improves the accuracy of the spot size and the calculation of the centroid.
  • FIG. 2a is a method flowchart of a camera exposure time adjustment method according to another embodiment of the present invention. As shown in FIG. 2a, the method includes:
  • Step 201 Control the camera to collect an imaging light spot of the imaging component at a first exposure time t n .
  • Step 202 acquiring the camera to capture the energy received when the imaging spot value e n.
  • Step 203 determining whether the energy value e n in the energy range is set, if it is yes, step 204 is performed; if not, then step 205 is executed.
  • Step 204 Use the first exposure time t n as an optimal exposure time for the camera to collect the imaging spot.
  • Step 205 according to the energy value e n and the first exposure time t n, and the first camera to capture the energy received when the imaging spot e n-1 and the value corresponding to the exposure time t n-1 Determine a slope k and an intercept b corresponding to the exposure time-energy curve.
  • Step 206 Calculate an estimated exposure time corresponding to the optimal energy value E according to the curve parameters k and b.
  • Step 208 Update the first exposure time t n with the estimated exposure time corresponding to the optimal energy value, and execute step 201.
  • the object-side light source included in the imaging component is a multi-color color light source.
  • the multiple optical modules included in the imaging module respectively image colored light sources to obtain different colored spots, and the camera can collect and analyze the imaging spots of multiple optical modules to finally achieve the alignment of multiple optical modules at the same time Assembly.
  • the camera used to capture the imaging spot needs to have high color image acquisition capabilities.
  • a camera with a color depth of 14 bits is selected to collect the imaging spot.
  • n indicates the order in which the imaging spots are collected, n is a positive integer and n ⁇ 2.
  • step 202 when the subject is focused on the camera's photosensitive element through the lens of the camera, such as on a CCD / CMOS chip, the photosensitive element can accumulate a corresponding proportion of charge according to the intensity of light and the number of photons, and form an image signal output .
  • the intensity can be obtained by a camera acquiring an image signal output from the camera to capture the energy received when the imaging spot value e n.
  • the magnitude of the energy collected by the camera can be quantified as the magnitude of the gray value. For example, the higher the energy collected by the camera, the brighter the corresponding image is, and the higher the gray value of the corresponding pixel is. Based on this, in the above or the following embodiments of the present invention, the magnitude of the gray value may be used to represent the energy value received by the camera when collecting the imaging spot, and the range of the gray value of the pixel is used to represent the energy range.
  • the energy range corresponding to the camera may be set within 10000 ⁇ 500.
  • the energy value received by the camera when collecting the imaging spot is within [9500, 10500], it is considered that the quality of the collected imaging spot is high.
  • step 204 when the energy value received when the camera collects the imaging spot is within the energy range, for example, [9500, 10500], the exposure time of the camera at this time may be considered to be within a reasonable range, and the exposure time may be collected as the camera Optimal exposure time for imaging spots.
  • the acquisition can be performed based on the optimal exposure time to improve the quality of the imaging spot, improve the accuracy of the spot size and centroid calculation, and improve the alignment accuracy of the optical module.
  • step 205 when the energy value received when the camera collects the imaging spot is outside the energy range, such as less than 9500 or greater than 10500, it may be determined that the setting of the first exposure time is unreasonable. At this time, a more suitable exposure time can be found based on the optimal energy value and the exposure time-energy curve.
  • the energy received by the camera is linear with the exposure time.
  • a curve determined by (t n-1 , e n-1 ) and (t n , e n ) can be obtained.
  • the curve can be shown in Fig. 2b.
  • the horizontal axis represents the exposure time.
  • the unit is ms
  • the vertical axis represents the energy value.
  • the estimated optimal exposure time is a value obtained by guessing the optimal exposure time based on the optimal energy value and the fitted exposure time-energy curve. In fact, is this value the best for the camera? The exposure time needs to be verified.
  • adjusting the exposure time of the camera based on the energy value received when the camera collects the imaging spot is beneficial to capturing a clear imaging spot , Improve the accuracy of the calculation of the spot size and the centroid, and help to improve the accuracy of the alignment and assembly of the optical module.
  • n 1
  • the camera collects the imaging spot for the first time, and an initial exposure value t 1 can be set for it, the energy value e 1 of the camera at this time is read, and whether e 1 is within the set energy range is determined.
  • an estimated optimal exposure value t 2 corresponding to the optimal energy value E can be calculated. Furthermore, according to (t 1 , e 1 ) and (t 2 , E), the exposure time-energy curve shown in FIG. 2c can be fitted.
  • the horizontal axis represents the exposure time, and the unit is ms.
  • the camera exposure time adjustment method can be implemented by a camera exposure time adjustment device, as shown in FIG.
  • An acquisition module 301 configured to control a camera to acquire an imaging light spot of an imaging component at a first exposure time
  • a curve parameter determining module 303 configured to obtain a curve parameter corresponding to an exposure time-energy curve according to the energy value and the first exposure time when the energy value is not within a set energy range;
  • An estimation module 304 configured to calculate an estimated exposure time corresponding to an optimal energy value according to the curve parameter
  • the exposure time update module 305 is configured to update the first exposure time with an estimated exposure time corresponding to the optimal energy value.
  • the apparatus further includes an exposure time determination module 306, which is specifically configured to: when the energy value is not within a set energy range, use the first exposure time as the camera to collect the imaging light spot The best exposure time.
  • the curve parameter determination module 303 is specifically configured to: according to the energy value e n and the first exposure time t n , and the energy value e n received by the camera when the imaging spot was last collected -1 and the corresponding exposure time t n-1 , determine the slope and intercept of the exposure time-energy curve.
  • the acquisition module 301 is further configured to: after updating the first exposure time with an exposure time corresponding to the optimal energy value, control the imaging brightness of the imaging component to remain unchanged, so that the camera updates with After the first exposure time, imaging spots of the imaging components with equal brightness are collected.
  • the above-mentioned camera exposure time adjustment device can execute the camera exposure time adjustment method provided by the embodiment of the present invention, and has corresponding function modules and beneficial effects of the execution method.
  • the camera exposure time adjustment method provided by the embodiment of the present invention, and has corresponding function modules and beneficial effects of the execution method.
  • the camera exposure time adjustment device can be represented as an electronic device. As shown in FIG. 4, the electronic device includes: a memory 401, a processor 402, an input device 403, and an output device 404.
  • the memory 401, the processor 402, the input device 403, and the output device 404 may be connected through a bus or other methods.
  • a bus connection is taken as an example.
  • the memory 401 is used to store one or more computer instructions and may be configured to store various other data to support operations on the camera exposure time adjustment device. Examples of this data include instructions for any application or method operating on a camera exposure time adjustment device.
  • the memory 401 can be implemented by any type of volatile or non-volatile storage devices or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory magnetic memory
  • flash memory magnetic disk or optical disk.
  • the memory 401 may optionally include a memory remotely set relative to the processor 402, and these remote memories may be connected to the camera exposure time adjustment device through a network.
  • Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the processor 402 is coupled to the memory 401 and is configured to execute the one or more computer instructions for executing the method provided by the embodiment corresponding to FIG. 1 to FIG. 2a.
  • the input device 403 may receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of a camera exposure time adjustment device.
  • the output device 404 may include a display device such as a display screen.
  • the camera exposure time adjusting device further includes a power source component 405.
  • the power source component 405 provides power to various components of a device in which the power source component is located.
  • Power components can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the equipment in which the power components are located.
  • the above-mentioned camera exposure time adjustment device can execute the camera exposure time adjustment method provided by the embodiment of the present application, and has corresponding function modules and beneficial effects of the execution method.
  • the camera exposure time adjustment method provided by the embodiment of the present application, and has corresponding function modules and beneficial effects of the execution method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本发明提供一种相机曝光时间调整方法、装置及设备,其中,方法包括:控制相机以第一曝光时间采集成像组件的成像光斑;获取所述相机采集所述成像光斑时接收到的能量值;若所述能量值不在设定的能量范围内,则根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数;根据所述曲线参数,计算最佳能量值对应的预估曝光时间;以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间。本发明提供的技术方案,能够将相机的曝光时间调整至合理值,以提升光斑分析的准确性和可靠性。

Description

相机曝光时间调整方法、装置及设备
交叉引用
本申请引用于2018年5月31日递交的名称为“相机曝光时间调整方法、装置及设备”的第2018105536598号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及装配技术领域,尤其涉及一种相机曝光时间调整方法、装置及设备。
背景技术
现如今,市场上存在越来越多的具备独立功能的光学模组,以满足多样化的市场需求。这些光学模组可以嵌入到其他设备中发挥其功能,例如摄像头模组、微型投影模组、LED(Light Emitting Diode,发光二极管)光学模组以及VR(Virtual Reality,虚拟现实)/AR(Augmented Reality,增强现实)光学模组等。
通常,光学模组由多个光学元件以及其他零件组装得到。例如,摄像头模组可由图像传感器、镜座、多个镜片、线路板等零配件组装得到。其中,镜片的组装精度对光学模组的光学性能起到决定性的作用。在一种光学模组的组装方式中,使组装过程中的光学模组成像,采用相机采集成像光斑,并根据成像光斑的大小分析待组装镜片是否均已对准,在没有对准的情况下不断调整待组装镜片的位置。
在相机采集成像光斑的过程中,为确保成像光斑的采集质量,需使相机的曝光时间控制在合理的范围内。因此,如何将相机的曝光时间控制在目标范围内是一个亟待解决的技术问题。
发明内容
本发明的多个方面提供一种相机曝光时间调整方法、装置及设备,用以将相机的曝光时间调整至合理值,有利于拍摄到清晰的成像光斑,提升光斑分析的准确性和可靠性。
本发明提供一种相机曝光时间调整方法,包括:控制相机以第一曝光时间采集成像组件的成像光斑;获取所述相机采集所述成像光斑时接收到的能量值;若所述能量值不在设定的能量范围内,则根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数;根据所述曲线参数,计算最佳能量值对应的预估曝光时间;以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间。
进一步可选地,若所述能量值在设定的能量范围内,还包括:将所述第一曝光时间作为所述相机采集所述成像光斑的最佳曝光时间。
进一步可选地,根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数,包括:根据所述能量值e n和所述第一曝光时间t n,以及所述相机上一次采集所述成像光斑时接收到的能量值e n-1和对应的曝光时间t n-1,确定所述曝光时间-能量曲线对应的斜率和截距。
进一步可选地,以所述最佳能量值对应的曝光时间更新所述第一曝光时间之后,所述方法还包括:制所述成像组件的成像亮度不变,以使所述相机以更新后的所述第一曝光时间采集同等亮度的所述成像组件的成像光斑。
进一步可选地,当所述相机的色深为14位时,所述相机的所述能量范围为10000±500内。
本发明还提供一种相机曝光时间调整装置,包括:
采集模块,用于控制相机以第一曝光时间采集成像组件的成像光斑;
能量获取模块,用于获取所述相机采集所述成像光斑时接收到的能量值;
曲线参数确定模块,用于在所述能量值不在设定的能量范围内时,根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数;
预估模块,用于根据所述曲线参数,计算最佳能量值对应的预估曝光时间;
曝光时间更新模块,用于以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间。
进一步可选地,所述装置还包括曝光时间确定模块,具体用于:在所述能量值不在设定的能量范围内时,将所述第一曝光时间作为所述相机采集所述成像光斑的最佳曝光时间。
进一步可选地,所述曲线参数确定模块具体用于:根据所述能量值e n和所述第一曝光时间t n,以及所述相机上一次采集所述成像光斑时接收到的能量值e n-1和对应的曝光时间t n-1,确定所述曝光时间-能量曲线对应的斜率和截距。
进一步可选地,所述采集模块还用于:以所述最佳能量值对应的曝光时间更新所述第一曝光时间之后,控制所述成像组件的成像亮度不变,以使所述相机以更新后的所述第一曝光时间采集同等亮度的所述成像组件的成像光斑。
本发明还提供一种电子设备,包括:存储器以及处理器;其中,存储器用于存储至少一条计算机指令;所述处理器与所述存储器耦合,以用于执行本发明提供的相机曝光时间调整方法。
在本发明中,成像组件成像之后,可采用相机获取其成像光斑以分析成像组件的成像特点。在上述过程中,判断相机采集到成像光斑时接收到的能量值是否在设定的能量范围内,并基于判断的结果调整曝光时间。这种实施方式有利于将相机的曝光时间调整至合理值,有利于拍摄到清晰的成像光斑,提升光斑分析的准确性和可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的相机曝光时间调整方法的方法流程图;
图2a是本发明另一实施例提供的相机曝光时间调整方法的方法流程图;
图2b是本发明一实施例提供的曝光时间-能量曲线的一示意图;
图2c是本发明一实施例提供的曝光时间-能量曲线的另一示意图;
图3是本发明一实施例提供的相机曝光时间调整装置的结构示意图;
图4是本发明一实施例提供的电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在现有的一种光学模组对准组装方式中,采用光源照明待对准的光学模组使其成像,再采用相机获取该待对准光学模组的成像光斑。接着,基于采集到的成像光斑的位置和大小,分析该待对准光学模组中的待组装镜片和待组装光学件是否已对准。
曝光时间是相机成像的重要参数,通常曝光时间越长,相机的感光材料接收的光子越多,拍摄到的图像越亮,反之则越暗。在基于光斑分析的光学模组对准组装方式中,采用相机对成像光斑进行采集时,若相机的曝光时间过短,则采集到的成像光斑较暗,不利于捕获成像光斑的特征;若相机的曝光时间过长,则采集到的光斑较亮,导致拍摄到的光斑失常,例如光斑边缘会出现部分像素由于曝光过度而丢失的现象,同样不利于捕获成像光斑的特征。
因此,在基于光斑分析光学模组对准组装方式中,为提升光斑分析的可靠性以及准确性,需要将光斑的亮度和清晰度保持在一个合理的范围内,进而需要对相机的曝光时间进行控制。
有鉴于此,本发明一实施例提供一种相机曝光时间调整方法,如图1所示,该方法包括:
步骤101、控制相机以第一曝光时间采集成像组件的成像光斑。
步骤102、获取所述相机采集所述成像光斑时接收到的能量值。
步骤103、若所述能量值不在设定的能量范围内,则根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数。
步骤104、根据所述曲线参数,计算最佳能量值对应的预估曝光时间。
步骤105、以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间。
相机对某一对象进行拍摄时,入射光以光子的形式落在相机内感光元件的像素阵列上,每一个光子的能量被感光元件吸收后发生反应,产生一个电子。本实施例中所述的相机采集成像光斑时接收到的能量值,指的是相机在拍摄成像光斑时,相机内感光元件所吸收的光能量值。该光能量值与成像组件的成像亮度以及相机的曝光时间有关。因而,在本实施例中,可在保证成像组件的成像亮度不变的情况下,将相机采集成像光斑时接收到能量值作为参考来调整相机的曝光时间。
其中,第一曝光时间,指的是相机的快门从打开到关闭所经历的时间。曝光时间决定了相机拍摄到的成像光斑的质量。当第一曝光时间在合理范围内时,相机能够拍摄到质量较佳的成像光斑,质量较佳的成像光斑有利于进行光斑大小以及质心坐标的分析计算。上述相机拍摄到质量较佳的成像光斑时,相机内的感光元件接收到的光能量值对应的范围,可作为所述设定的能量范围,以用于判断相机的曝光时间是否合理。
若相机采集成像光斑时接收到的能量不在设定的能量范围内,则说明第一曝光时间不合理,此时对第一曝光时间进行更新。在本实施例中,可基于曝光时间-能量曲线,确定最佳能量值对应的预估曝光时间,并以预估曝光时间来更新第一曝光时间。
基于更新后的第一曝光时间,相机继续对成像光斑进行采集,接着根据相机采集成像光斑时接收到的能量判断是否继续调整第一曝光时间的时长。也就是说,本实施例中对相机的第一曝光时间的调整过程是一个循环执行的过程,具体循环过程参考步骤101ˉ105的记载。当相机采集成像光斑时接收到的能量值在设定的能量范围内时,循环结束。
其中,曝光时间-能量曲线指的是相机的曝光时间以及采集成像光斑时接收到的能量之间的对应关系,该对应关系反应了相机接收到的能量跟随曝光时间变化的趋势。本实施例中,当步骤101ˉ105循环执行时,在每一次采集成像光斑之后,可根据采集成像光斑时相机接收到的能量值,以及该次采集对应的曝光时间,计算曝光时间-能量曲线对应的曲线参数,以拟合得到曝光时间-能量曲线。
在本实施例中,成像组件成像之后,可采用相机获取其成像光斑以分析成像组件的成像特点。在上述过程中,判断相机采集到成像光斑时接收到的能量值是否在设定的能量范围内,并基于判断的结果调整曝光时间。这种实施方式有利于将相机的曝光时间调整至合理值,有利于拍摄到清晰的成像光斑,提升对光斑大小及质心计算的准确性。
本发明的上述或下述实施例适用于以CCD(Charge-coupled Device,电荷耦合元件)/CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)为感光元件的相机。以下部分将结合图2a,以一个具体的可选实施例对本发明提供的相机曝光时间调整方法进行具体说明。
图2a为本发明另一实施例提供的相机曝光时间调整方法的方法流程图,如图2a所示,该方法包括:
步骤201、控制相机以第一曝光时间t n采集成像组件的成像光斑。
步骤202、获取所述相机采集所述成像光斑时接收到的能量值e n
步骤203、判断所述能量值e n是否在设定的能量范围内,若为是,则执行步骤204;若为否,则执行步骤205。
步骤204、将所述第一曝光时间t n作为所述相机采集所述成像光斑的最佳曝光时间。
步骤205、根据所述能量值e n和所述第一曝光时间t n,以及所述相机上一次采集所述成像光斑时接收到的能量值e n-1和对应的曝光时间t n-1,确定所述曝光时间-能量曲线对应的斜率k和截距b。
步骤206、根据所述曲线参数k和b,计算最佳能量值E对应的预估曝光时间。
步骤207、令n=n+1。
步骤208、以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间t n,并执行步骤201。
可选的,光学模组对准组装中所采用的光斑检测装置中,成像组件包含的物方光源为多色的彩色光源。成像组件包含的多个光学模组分别对彩色光源成像可得到不同颜色的光斑,进而相机可对多个光学模组的成像光斑进行采集分析,以最终实现同时对多个光学模组进行对准组装。
在这种应用场景中,用于拍摄成像光斑的相机需要具有较高的彩色图像采集能力。本实施例中,可选的,为使得彩色的成像光斑在相机上具有较好的成像效果,选择为色深为14位的相机对成像光斑进行采集。
在本实施例中,n标识采集成像光斑的次序,n为正整数且n≥2。
在步骤202中,被拍摄对象经相机的镜头聚焦至相机的感光元件,例如CCD/CMOS芯片上时,感光元件可根据光的强弱以及光子的数量积累相应比例的电荷,并形成图像信号输出。因此,本步骤中,可通过获取相机输出的图像信号的强度来获取所述相机采集所述成像光斑时接收到的能量值e n。应当理解,相机采集到的能量的大小可量化为灰度值的大小。例如,相机采集到的能量越高,对应的图像亮度越亮,相应像素点的灰度值也越高。基于此,本发明的上述或下述实施例中可以采用灰度值的大小来表示相机采集所述成像光斑时接收到的能量值的大小,采用像素的灰度值的范围来表示能量范围。
在步骤203中,可选的,当相机的色深为14位时,可设置相机对应的能量范围为10000±500内。当相机采集成像光斑时接收到的能量值在[9500,10500]内时,认为采集到的成像光斑的质量较高。
在步骤204中,当相机采集成像光斑时接收到的能量值在能量范围,例如[9500,10500]内时,可认为相机此时的曝光时间在合理范围内,可将该曝光时间作为相机采集成像光斑的最佳曝光时间。后续针对成像光斑进行采集时,可 基于该最佳曝光时间进行采集,以提升成像光斑的质量,提升对光斑大小及质心计算的准确性,提高光学模组的对准精度。
在步骤205中,当相机采集成像光斑时接收到的能量值在能量范围之外,例如小于9500或大于10500时,可确定第一曝光时间的设置是不合理的。此时,可根据基于最佳能量值以及曝光时间-能量曲线寻找更合适的曝光时间。
在一可选实施方式中,相机接收到的能量与曝光时间之间成线性关系,曝光时间-能量曲线可表达为e=k*t+b,其中,e表示能量,t表示曝光时间,k和b分别是常数。因此,本步骤中,可利用相机此次采集成像光斑是接收到的对能量值e n和对应的第一曝光时间t n,以及相机上一次采集成像光斑时接收到的能量值e n-1和对应的曝光时间t n-1,确定曝光时间-能量曲线对应的斜率k和截距b。具体地,将(t n-1,e n-1)以及(t n,e n)代入e=k*t+b,则可得到:
k=(e n-e n-1)/(t n-t n-1)
b=e n-1-t n-1*(e n-e n-1)/(t n-t n-1)=e n-t n*(e n-e n-1)/(t n-t n-1)
根据k和b,可得到由(t n-1,e n-1)以及(t n,e n)确定的曲线,该曲线可如图2b所示,在图2b中,横轴表示曝光时间,单位为ms,纵轴表示能量值。
在步骤206中,确定曲线参数k和b之后,可基于曝光时间-能量曲线,计算最佳能量值E对应的预估最佳曝光时间t n+1,此时t n+1=(E-b)/k。如图2b所示,计算得到的(t n+1,E)位于由(t n-1,e n-1)以及(t n,e n)确定的曲线上。
应当理解,预估最佳曝光时间是以最佳能量值以及拟合得到的曝光时间-能量曲线为基础,对最佳曝光时间进行猜测得到的一个值,实际上该值是否为相机的最佳曝光时间还需验证。
在步骤207ˉ208中,计算得到预估曝光时间之后,可令n=n+1,以预估曝光时间作为下一次采集成像光斑时相机对应的第一曝光时间,并继续执行步骤201,以调整后的第一曝光时间继续对成像光斑进程采集,此处不赘述。需要说明的是,在本实施例中,每一次以更新的第一曝光时间采集成像光斑时,需控制成像组件的成像亮度不变,以确保获取到的能量值的可靠性。
在本实施例中,采用相机获取成像组件的成像光斑以分析成像组件的成像 特点时,基于相机采集到成像光斑时接收到的能量值来调整相机的曝光时间,有利于拍摄到清晰的成像光斑,提升对光斑大小及质心计算的准确性,并有利于最终提升光学模组对准组装的精度。
需要说明的是,当n=1时,相机初次采集成像光斑,可为其设置一个初始曝光值t 1,读取此时相机的能量值e 1,并判定e 1是否在设定的能量范围内。若e 1在预设的能量范围内,则将t 1作为最佳曝光时间。若t 1不在目标范围内,可假设曝光时间-能量曲线为e=k*t,并根据(t 1,e 1)计算斜率k的值,k=e 1/t 1。基于e=e 1/t 1*t,可计算最佳能量值E对应的预估最佳曝光值t 2。进而,根据(t 1,e 1)以及(t 2、E)可拟合得到如图2c所示的曝光时间-能量曲线,在图2c中,横轴表示曝光时间,单位为ms,纵轴表示能量值。接着,当n=2时,可执行图2a对应的实施例,以t 2为相机的第一曝光时间,采集成像光斑,得到t 2对应的能量值e 2。在获取(t 1、e 1)以及(t 2、e 2)之后,可假设曝光时间-能量曲线为e=k*t+b,继续执行图2a对应的实施例中所记载的步骤,此处不再赘述。
另外,需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上描述了相机曝光时间调整方法的可选实施方式,如图3所示,实际中,该相机曝光时间调整方法可通过相机曝光时间调整装置实现,如图3所示,该装置包括:
采集模块301,用于控制相机以第一曝光时间采集成像组件的成像光斑;
能量获取模块302,用于获取所述相机采集所述成像光斑时接收到的能量值;
曲线参数确定模块303,用于在所述能量值不在设定的能量范围内时,根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数;
预估模块304,用于根据所述曲线参数,计算最佳能量值对应的预估曝光时间;
曝光时间更新模块305,用于以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间。
进一步可选地,所述装置还包括曝光时间确定模块306,具体用于:在所述能量值不在设定的能量范围内时,将所述第一曝光时间作为所述相机采集所述成像光斑的最佳曝光时间。
进一步可选地,曲线参数确定模块303具体用于:根据所述能量值e n和所述第一曝光时间t n,以及所述相机上一次采集所述成像光斑时接收到的能量值e n-1和对应的曝光时间t n-1,确定所述曝光时间-能量曲线对应的斜率和截距。
进一步可选地,采集模块301还用于:以所述最佳能量值对应的曝光时间更新所述第一曝光时间之后,控制所述成像组件的成像亮度不变,以使所述相机以更新后的所述第一曝光时间采集同等亮度的所述成像组件的成像光斑。
上述相机曝光时间调整装置可执行本发明实施例所提供的相机曝光时间调整方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法,不再赘述。
以上描述了相机曝光时间调整装置的内部结构和功能,实际中,相机曝光时间调整装置可表现为一电子设备。如图4所示,该电子设备包括:存储器401、处理器402、输入装置403以及输出装置404。
存储器401、处理器402、输入装置403以及输出装置404可以通过总线或其他方式连接,图4中以总线连接为例。
存储器401用于存储一条或多条计算机指令,并可被配置为存储其它各种 数据以支持在相机曝光时间调整设备上的操作。这些数据的示例包括用于在相机曝光时间调整设备上操作的任何应用程序或方法的指令。
存储器401可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
在一些实施例中,存储器401可选包括相对于处理器402远程设置的存储器,这些远程存储器可以通过网络连接至相机曝光时间调整设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
处理器402,与存储器401耦合,用于执行所述一条或多条计算机指令以用于执行图1ˉ图2a对应的实施例所提供的方法。
输入装置403可接收输入的数字或字符信息,以及产生与相机曝光时间调整设备的用户设置以及功能控制有关的键信号输入。输出装置404可包括显示屏等显示设备。
进一步,如图4所示,该相机曝光时间调整设备还包括:电源组件405。电源组件405,为电源组件所在设备的各种组件提供电力。电源组件可以包括电源管理系统,一个或多个电源,及其他与为电源组件所在设备生成、管理和分配电力相关联的组件。
上述相机曝光时间调整设备可执行本申请实施例所提供的相机曝光时间调整方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法,不再赘述。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种相机曝光时间调整方法,其特征在于,包括:
    控制相机以第一曝光时间采集成像组件的成像光斑;
    获取所述相机采集所述成像光斑时接收到的能量值;
    若所述能量值不在设定的能量范围内,则根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数;
    根据所述曲线参数,计算最佳能量值对应的预估曝光时间;
    以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间。
  2. 根据权利要求1所述的方法,其特征在于,若所述能量值在设定的能量范围内,还包括:
    将所述第一曝光时间作为所述相机采集所述成像光斑的最佳曝光时间。
  3. 根据权利要求1所述的方法,其特征在于,根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数,包括:
    根据所述能量值e n和所述第一曝光时间t n,以及所述相机上一次采集所述成像光斑时接收到的能量值e n-1和对应的曝光时间t n-1,确定所述曝光时间-能量曲线对应的斜率和截距。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,以所述最佳能量值对应的曝光时间更新所述第一曝光时间之后,所述方法还包括:
    控制所述成像组件的成像亮度不变,以使所述相机以更新后的所述第一曝光时间采集同等亮度的所述成像组件的成像光斑。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,当所述相机的色深为14位时,所述相机的所述能量范围为10000±500内。
  6. 一种相机曝光时间调整装置,其特征在于,包括:
    采集模块,用于控制相机以第一曝光时间采集成像组件的成像光斑;
    能量获取模块,用于获取所述相机采集所述成像光斑时接收到的能量值;
    曲线参数确定模块,用于在所述能量值不在设定的能量范围内时,根据所述能量值与所述第一曝光时间获取曝光时间-能量曲线对应的曲线参数;
    预估模块,用于根据所述曲线参数,计算最佳能量值对应的预估曝光时间;
    曝光时间更新模块,用于以所述最佳能量值对应的预估曝光时间更新所述第一曝光时间。
  7. 根据权利要求6所述的装置,其特征在于,所述装置还包括曝光时间确定模块,具体用于:
    在所述能量值不在设定的能量范围内时,将所述第一曝光时间作为所述相机采集所述成像光斑的最佳曝光时间。
  8. 根据权利要求1所述的装置,其特征在于,所述曲线参数确定模块具体用于:
    根据所述能量值e n和所述第一曝光时间t n,以及所述相机上一次采集所述成像光斑时接收到的能量值e n-1和对应的曝光时间t n-1,确定所述曝光时间-能量曲线对应的斜率和截距。
  9. 根据权利要求6-8中任一项所述的装置,其特征在于,所述采集模块还用于:
    以所述最佳能量值对应的曝光时间更新所述第一曝光时间之后,控制所述成像组件的成像亮度不变,以使所述相机以更新后的所述第一曝光时间采集同等亮度的所述成像组件的成像光斑。
  10. 一种电子设备,其特征在于,包括:存储器以及处理器;
    其中,存储器用于存储至少一条计算机指令;
    所述处理器与所述存储器耦合,以用于执行权利要求1-5中任一项权利要求所述的方法。
PCT/CN2019/081889 2018-05-31 2019-04-09 相机曝光时间调整方法、装置及设备 WO2019228071A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/976,745 US11153502B2 (en) 2018-05-31 2019-04-09 Method and apparatus for adjusting exposure time of camera and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810553659.8A CN108777769B (zh) 2018-05-31 2018-05-31 相机曝光时间调整方法、装置及设备
CN201810553659.8 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019228071A1 true WO2019228071A1 (zh) 2019-12-05

Family

ID=64028373

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/104393 WO2019227758A1 (zh) 2018-05-31 2018-09-06 相机曝光时间调整方法、装置及设备
PCT/CN2019/081889 WO2019228071A1 (zh) 2018-05-31 2019-04-09 相机曝光时间调整方法、装置及设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104393 WO2019227758A1 (zh) 2018-05-31 2018-09-06 相机曝光时间调整方法、装置及设备

Country Status (3)

Country Link
US (1) US11153502B2 (zh)
CN (1) CN108777769B (zh)
WO (2) WO2019227758A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777769B (zh) * 2018-05-31 2020-02-18 歌尔股份有限公司 相机曝光时间调整方法、装置及设备
WO2022246666A1 (zh) 2021-05-25 2022-12-01 深圳市汇顶科技股份有限公司 生物特征采集方法、芯片及计算机可读存储介质
CN115426459B (zh) * 2022-08-30 2024-05-21 广州星博科仪有限公司 一种多光谱相机及其预曝光的优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050190287A1 (en) * 2004-02-26 2005-09-01 Pentax Corporation Digital camera for portable equipment
CN101399919A (zh) * 2007-09-25 2009-04-01 展讯通信(上海)有限公司 自动曝光和自动增益调节方法及其装置
CN106657802A (zh) * 2016-12-19 2017-05-10 北京空间机电研究所 一种转轮式多光谱相机自动曝光调节系统及调节方法
CN106982333A (zh) * 2017-05-12 2017-07-25 深圳怡化电脑股份有限公司 一种图像传感器快速校正方法、装置及设备
CN107948542A (zh) * 2018-01-15 2018-04-20 上海兴芯微电子科技有限公司 多摄像头爆光控制方法及装置
CN108777769A (zh) * 2018-05-31 2018-11-09 歌尔股份有限公司 相机曝光时间调整方法、装置及设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541106A (en) * 1984-02-22 1985-09-10 General Electric Company Dual energy rapid switching imaging system
US6852465B2 (en) * 2003-03-21 2005-02-08 Clariant International Ltd. Photoresist composition for imaging thick films
JP4049058B2 (ja) * 2003-08-29 2008-02-20 カシオ計算機株式会社 撮像装置及びそのプログラム
US8139054B2 (en) * 2005-12-30 2012-03-20 Mediatek Inc. Luminance compensation apparatus and method
KR100849846B1 (ko) * 2006-09-21 2008-08-01 삼성전자주식회사 이미지 밝기 보정 장치 및 방법
CN100458540C (zh) * 2006-10-27 2009-02-04 北京中星微电子有限公司 自动曝光调节方法与装置
CN101359148B (zh) * 2007-08-03 2011-04-06 深圳艾科创新微电子有限公司 一种用于自动曝光调节的方法及控制系统
KR100950465B1 (ko) * 2007-12-21 2010-03-31 손승남 차량출입통제 시스템을 위한 카메라 제어방법
CN101267505B (zh) * 2008-04-25 2010-06-02 北京中星微电子有限公司 一种曝光时间调整方法、装置及一种摄像头
CN102291538A (zh) * 2011-08-17 2011-12-21 浙江博视电子科技股份有限公司 摄像机的自动曝光方法及控制装置
US10575384B2 (en) * 2017-10-23 2020-02-25 Infineon Technologies Ag Adaptive transmit light control
CN108055485B (zh) * 2017-12-20 2020-08-25 思特威(上海)电子科技有限公司 多段斜率响应图像传感器的成像恢复方法
CN108419026B (zh) * 2018-05-31 2020-05-15 歌尔股份有限公司 相机曝光时间调整方法、装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050190287A1 (en) * 2004-02-26 2005-09-01 Pentax Corporation Digital camera for portable equipment
CN101399919A (zh) * 2007-09-25 2009-04-01 展讯通信(上海)有限公司 自动曝光和自动增益调节方法及其装置
CN106657802A (zh) * 2016-12-19 2017-05-10 北京空间机电研究所 一种转轮式多光谱相机自动曝光调节系统及调节方法
CN106982333A (zh) * 2017-05-12 2017-07-25 深圳怡化电脑股份有限公司 一种图像传感器快速校正方法、装置及设备
CN107948542A (zh) * 2018-01-15 2018-04-20 上海兴芯微电子科技有限公司 多摄像头爆光控制方法及装置
CN108777769A (zh) * 2018-05-31 2018-11-09 歌尔股份有限公司 相机曝光时间调整方法、装置及设备

Also Published As

Publication number Publication date
US11153502B2 (en) 2021-10-19
CN108777769A (zh) 2018-11-09
CN108777769B (zh) 2020-02-18
WO2019227758A1 (zh) 2019-12-05
US20210075950A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019227757A1 (zh) 相机曝光时间调整方法、装置及设备
CN109005366B (zh) 摄像模组夜景摄像处理方法、装置、电子设备及存储介质
CN109218628B (zh) 图像处理方法、装置、电子设备及存储介质
WO2019228071A1 (zh) 相机曝光时间调整方法、装置及设备
US20170256036A1 (en) Automatic microlens array artifact correction for light-field images
US8937677B2 (en) Digital photographing apparatus, method of controlling the same, and computer-readable medium
US8432466B2 (en) Multiple image high dynamic range imaging from a single sensor array
US8737755B2 (en) Method for creating high dynamic range image
CN105516611B (zh) 摄像装置和摄影方法
CN105635565A (zh) 一种拍摄方法及设备
CN108337446B (zh) 基于双摄像头的高动态范围图像获取方法、装置及设备
JP2018072554A (ja) 撮像装置および焦点調節方法
CN107888839B (zh) 高动态范围图像获取方法、装置及设备
CN104754196B (zh) 电子装置及方法
KR20190109605A (ko) 촬영 방법 및 장치
CN104754227A (zh) 一种拍摄视频的方法及装置
CN106664363A (zh) 闪光冲突检测、补偿和预防
JP2015034850A (ja) 撮影装置および撮影方法
US9485420B2 (en) Video imaging using plural virtual image capture devices
CN109379535A (zh) 拍摄方法和装置、电子设备、计算机可读存储介质
JP2018166253A (ja) 情報処理装置、情報処理方法及びプログラム
JP2013118474A (ja) 撮像装置及び撮像装置の制御方法
JP2017009815A (ja) 焦点検出装置、焦点検出方法、およびカメラシステム
CN113572968A (zh) 图像融合方法、装置、摄像设备及存储介质
KR20110073271A (ko) 촬상 장치 및 촬상 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810739

Country of ref document: EP

Kind code of ref document: A1