WO2019227939A1 - 移位寄存器单元、电路结构、栅极驱动电路、驱动电路及显示装置 - Google Patents

移位寄存器单元、电路结构、栅极驱动电路、驱动电路及显示装置 Download PDF

Info

Publication number
WO2019227939A1
WO2019227939A1 PCT/CN2019/070895 CN2019070895W WO2019227939A1 WO 2019227939 A1 WO2019227939 A1 WO 2019227939A1 CN 2019070895 W CN2019070895 W CN 2019070895W WO 2019227939 A1 WO2019227939 A1 WO 2019227939A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive portion
connection conductive
transistor
circuit
signal
Prior art date
Application number
PCT/CN2019/070895
Other languages
English (en)
French (fr)
Inventor
先建波
许晨
郝学光
乔勇
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2019570504A priority Critical patent/JP7303127B2/ja
Priority to KR1020197037441A priority patent/KR102314548B1/ko
Priority to EP19732243.1A priority patent/EP3806078A4/en
Priority to US16/475,513 priority patent/US11488513B2/en
Publication of WO2019227939A1 publication Critical patent/WO2019227939A1/zh
Priority to US17/807,908 priority patent/US11705048B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/007Use of pixel shift techniques, e.g. by mechanical shift of the physical pixels or by optical shift of the perceived pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0245Clearing or presetting the whole screen independently of waveforms, e.g. on power-on
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking

Definitions

  • Embodiments of the present disclosure relate to a shift register unit, a circuit structure, a gate driving circuit, a driving circuit, and a display device.
  • a pixel array of a display panel generally includes a plurality of rows of gate lines and a plurality of columns of data lines interlaced therewith.
  • the gate line can be driven by an integrated driving circuit.
  • the gate driving circuit can also be directly integrated on the thin film transistor array substrate to form a GOA (Gate Driver On Array) to drive the gate lines.
  • GOA Gate Driver On Array
  • a GOA circuit composed of a plurality of cascaded shift register units may be used to provide switching state voltage signals to multiple rows of gate lines of a pixel array, thereby controlling the multiple rows of gate lines to sequentially turn on.
  • At least one embodiment of the present disclosure provides a shift register unit, which can flexibly select a position for connecting conductive parts according to the distance between the transistors, and avoids that the connecting conductive parts connected to each transistor are provided on the same layer, thereby simplifying the display panel. Routing design and improve the accuracy of signal transmission.
  • At least one embodiment of the present disclosure provides a shift register unit, which includes a base substrate and an input circuit, a reset circuit, and a first output circuit, a first output terminal, a first output terminal, and the input circuit disposed on the base substrate.
  • the input circuit is configured to control a level of a first node in response to an input signal; the reset circuit is configured to reset the first node in response to a reset signal; and the first output circuit is configured to Under the control of the level of the first node, outputting a first signal to the first output terminal; in the first connection conductive portion, the second connection conductive portion, and the third connection conductive portion Of any two or three different layers.
  • the shift register unit provided by an embodiment of the present disclosure further includes a first signal line input terminal and a fourth connection conductive portion.
  • the fourth connection conductive portion connects the first output circuit and the first signal line input terminal, and is configured to be connected to the first connection conductive portion, the second connection conductive portion, and the third connection. Any two or three different layers of the conductive portion are provided.
  • the shift register unit provided by an embodiment of the present disclosure further includes an output noise reduction circuit and a fifth connection conductive portion.
  • the output noise reduction circuit is configured to perform noise reduction on the first output terminal under the control of the level of the second node; the fifth connection conductive part connects the output noise reduction circuit and the first
  • the output circuit is configured to be disposed in a different layer from any two or three of the first connection conductive portion, the second connection conductive portion, and the third connection conductive portion.
  • the shift register unit provided by an embodiment of the present disclosure further includes a control circuit, a second signal line input terminal, and a sixth connection conductive portion.
  • the control circuit is configured to control the level of the second node under the control of the level of the first node and / or the second signal; the sixth connection conductive portion is configured to connect to the The control circuit and the second signal line input end are arranged in different layers from the fourth connection conductive portion.
  • a length of the first connection conductive portion is shorter than a length of the second connection conductive portion; or the first signal includes a clock signal, a voltage signal, At least one of a current signal; or the second signal includes at least one of a clock signal, a voltage signal, and a current signal.
  • At least one embodiment of the present disclosure further provides a circuit structure including a base substrate, a first transistor, a second transistor, a third transistor, and a storage capacitor, a first output terminal, and a first connection disposed on the base substrate.
  • the first connection conductive portion is configured to connect a first pole of the first transistor and a first electrode of the second transistor; and the second connection conductive portion is configured to connect a first pole of the second transistor.
  • the third connection conductive portion is configured to connect the first output terminal and the first electrode of the third transistor; the Any two or three of the first connection conductive portion, the second connection conductive portion, and the third connection conductive portion are disposed in different layers.
  • the circuit structure provided by an embodiment of the present disclosure further includes a fourth transistor, a first signal line input terminal, a fourth connection conductive portion, and a fifth connection conductive portion.
  • the fourth connection conductive portion is configured to connect the second pole of the third transistor and the first signal line input terminal, and is connected to the first connection conductive portion, the second connection conductive portion, and the first connection line. Any two or three different layers of the third connection conductive portion are provided; the fifth connection conductive portion is configured to connect the first pole of the third transistor and the first pole of the fourth transistor, and Any two or three of the first connection conductive portion, the second connection conductive portion, and the third connection conductive portion are disposed in different layers.
  • the circuit structure provided by an embodiment of the present disclosure further includes a fifth transistor, a sixth transistor, a second signal line input terminal, and a sixth connection conductive portion.
  • the first pole of the fifth transistor is connected to the first pole of the sixth transistor through the first connection conductive portion; the sixth connection conductive portion is configured to connect the gate of the sixth transistor and the gate of the sixth transistor.
  • the second signal line input terminal is disposed in a different layer from the fourth connection conductive portion.
  • the first pole of the third transistor is disposed on the same layer as the second connection conductive portion; or the first connection conductive portion and the first transistor
  • the semiconductor layer is made of the same material.
  • the circuit structure provided by an embodiment of the present disclosure further includes a seventh transistor, a third signal line input terminal, and a seventh connection conductive portion.
  • the gate of the seventh transistor is configured to be connected to the first output terminal to receive an output signal of the circuit structure, and the first pole of the seventh transistor is configured to be connected to the conductive portion through the seventh connection.
  • An input terminal of the third signal line is connected to receive a third signal, and a second pole of the seventh transistor is configured to be connected to a second output terminal.
  • all The seventh connection conductive portion is configured to be disposed at a different layer from the fourth connection conductive portion.
  • a circuit structure provided by an embodiment of the present disclosure further includes an eighth transistor; a gate of the eighth transistor is configured to be connected to a second node through the second connection conductive portion, and the first One pole is configured to be connected to the second output terminal, and the second pole of the eighth transistor is configured to be connected to a first voltage terminal to receive a first voltage.
  • At least one embodiment of the present disclosure provides a gate driving circuit including a plurality of cascaded shift register units provided by any one of the embodiments of the present disclosure.
  • the gate driving circuit further includes a second output circuit, a third signal line input terminal, and a seventh connection conductive portion.
  • the second output circuit is configured to output a third signal to the second output terminal under the control of the level output from the first output terminal; when the shift register unit includes a fourth connection conductive portion
  • the seventh connection conductive portion is configured to connect the third signal line input terminal and the second output circuit, and is disposed at a different layer from the fourth connection conductive portion.
  • At least one embodiment of the present disclosure also provides a driving circuit including a plurality of cascaded circuit structures provided by any one of the embodiments of the present disclosure.
  • At least one embodiment of the present disclosure provides a display device including a gate driving circuit or a driving circuit provided by any one of the embodiments of the present disclosure, and the gate driving circuit or the driving circuit is disposed on four sides of an array substrate.
  • a display device further includes a first conductive layer, a second conductive layer, a third conductive layer, a fourth conductive layer, a fifth conductive layer, and a sixth conductive layer.
  • the first conductive layer Same material as the active layer
  • the second conductive layer is the same as the first gate line layer
  • the third conductive layer is the same as the second gate line layer
  • the fourth conductive layer is the same as the first data line layer
  • the fifth conductive layer is made of the same material as the second data line layer
  • the sixth conductive layer is made of the same material as the pixel electrode.
  • FIG. 1 is a schematic diagram of an example of a shift register unit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of another example of a shift register unit according to an embodiment of the present disclosure.
  • FIG. 3 is a circuit diagram of an implementation example of the shift register unit shown in FIG. 1; FIG.
  • 4A is a schematic cross-sectional structure diagram of an example of an array substrate taken along line A1-A2 in FIG. 3;
  • 4B is a schematic cross-sectional structure view of the array substrate taken along the line C1-C2 in FIG. 3;
  • 4C is a schematic cross-sectional structure view of the array substrate taken along line D1-D2 in FIG. 3;
  • 4D is a schematic cross-sectional structure diagram of a conductive layer where each connection conductive portion is provided according to an embodiment of the present disclosure
  • FIG. 5 is a schematic circuit diagram of an implementation example of the shift register unit shown in FIG. 2; FIG.
  • FIG. 6 is a schematic diagram of still another example of a shift register unit according to an embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram of an implementation example of the shift register unit shown in FIG. 6; FIG.
  • FIG. 8 is a circuit diagram of another implementation example of the shift register unit shown in FIG. 6; FIG.
  • 9A is a schematic diagram of an example of a gate driving circuit according to an embodiment of the present disclosure.
  • 9B is a schematic diagram of another example of a gate driving circuit according to an embodiment of the present disclosure.
  • 9C is a schematic diagram of still another example of a gate driving circuit according to an embodiment of the present disclosure.
  • FIG. 10A is a schematic block diagram of a gate driving circuit shown in FIG. 9B or 9C;
  • FIG. 10B is a circuit diagram of an implementation example of the gate driving circuit shown in FIG. 10A;
  • FIG. 11A is a signal timing chart corresponding to the operation of the gate driving circuit shown in FIG. 9B;
  • FIG. 11B is a signal timing chart corresponding to the operation of the gate driving circuit shown in FIG. 9C.
  • FIG. 12 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • GOA Gate Driver On Array
  • the gate drive circuit is integrated on the display panel through a thin film transistor process, so that narrow bezels and reduced assembly costs can be achieved.
  • At least one embodiment of the present disclosure provides a shift register unit including a base substrate and an input circuit, a reset circuit and a first output circuit, a first output terminal, a first output terminal, and a first circuit connected to the input circuit and the reset circuit.
  • the input circuit is configured to control the level of the first node in response to the input signal; the reset circuit is configured to reset the first node in response to the reset signal; the first output circuit is configured to be at the level of the first node Under control, the first signal is output to the first output terminal; any two or three of the first connection conductive portion, the second connection conductive portion, and the third connection conductive portion are arranged in different layers.
  • At least one embodiment of the present disclosure also provides a circuit structure, a gate driving circuit, and a display device.
  • the shift register unit provided in the embodiment of the present disclosure can flexibly select a position for connecting the conductive parts according to the distance between the transistors, thereby avoiding that multiple connection conductive parts connected to each transistor are provided on the same layer, thereby simplifying the wiring of the display panel Design and improve the accuracy of signal transmission.
  • FIG. 1 is a schematic block diagram of an example of a shift register unit according to an embodiment of the present disclosure.
  • the shift register unit 100 includes a base substrate (not shown in FIG. 1) and an input circuit 110, a reset circuit 120, a first output circuit 130, and a first output terminal provided on the base substrate. OUT1.
  • the shift register unit 100 is formed as a constituent unit of a gate driving circuit on an array substrate of a display device.
  • the array substrate includes the above-mentioned base substrate, and has an array region (display region) and a peripheral region.
  • the gate driving circuit is formed in a peripheral region of the array substrate, and the pixel circuit is formed in an array region of the array substrate.
  • the pixel circuit may include at least one transistor, such as a switching transistor, and may further include components such as a driving transistor.
  • the thin film transistor in the array region and the thin film transistor in the peripheral region can be obtained through a semiconductor fabrication process.
  • the shift register unit 100 further includes a first connection conductive portion 1 connecting the input circuit 110 and the reset circuit 120, a second connection conductive portion 2 connecting the reset circuit 120 and the first output circuit 130, and a first connection conductive portion 2.
  • An output circuit 130 is connected to the third conductive portion 3 of the first output terminal OUT1.
  • the third connection conductive portion 3 may be integrated with the gate line of the array substrate in the array area, or the third connection conductive portion 3 may be electrically connected to the gate line of the array substrate in the array area through a via, a connection line, or the like .
  • the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3 are disposed on a base substrate, and any two or three of them are disposed in different layers.
  • the first connection conductive portion 1 and the second connection conductive portion 2 are disposed in different layers, and the third connection conductive portion 3 may be disposed in the same layer or a different layer from any of the first connection conductive portion 1 and the second connection conductive portion 2.
  • the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3 are all disposed on different layers, which are not limited in the embodiments of the present disclosure.
  • the embodiments of the present disclosure are not limited to the number and connection manner of the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3.
  • the first connection conductive portion 1 indicates that there is at least one first connection conductive portion 1 for electrical connection between the input circuit 110 and the reset circuit 120, and the number and manner of connection are not limited; that is, there is at least one input circuit
  • the connection conductive parts in the following embodiments are the same, and will not be described again.
  • the length of the first connection conductive portion is smaller than the length of the second connection conductive portion.
  • the length indicates the extension distance from the beginning to the end of the connection conductive portion, or the extension distance between the vias at the junction of the transistor elements in the circuit, so that the connection to the conductive portion can be flexibly selected according to the extension distance between the transistors. s position.
  • the extension distance depends on the shape (for example, line shape, S shape, etc.) of the connection conductive portion, rather than a straight line distance between the two ends.
  • the input circuit 110 is configured to control a level of a first node (not shown in FIG. 1, see FIG. 3) in response to an input signal, for example, to charge the first node.
  • the first node is a meeting point of the first connection conductive portion 1 and the second connection conductive portion 2, and belongs to both the first connection conductive portion 1 and the second connection conductive portion 2, and does not indicate an actually existing component.
  • the input circuit 110 may be respectively connected to the input terminal INPUT and the first connection conductive part 1 (ie, the first node), and is configured to transmit the voltage signal received by the input circuit 110 to the first node.
  • the reset circuit 120 is configured to reset the first node in response to a reset signal.
  • the reset circuit 120 may be configured to be connected to the reset terminal RST, the first connection conductive portion 1 (that is, the first node), and the second connection conductive portion 2 (that is, the first node), so that the reset terminal RST can be input.
  • the first node Under the control of the reset signal, the first node is applied with a low-level signal or is electrically connected to a low voltage terminal.
  • the low voltage terminal is, for example, the first voltage terminal VGL or a reference voltage terminal, so that the first node can be pulled down and reset. .
  • the embodiment of the present disclosure is described by taking an N-type transistor as an example. It should be noted that the embodiments of the present disclosure are not limited thereto, and a circuit structure of a P-type or mixed N-type and P-type transistor may also be adopted, and only the corresponding transistor needs to be Just turn on the low level.
  • controlling the level of a node includes charging the node to raise the level of the node, or Discharge the node to pull the node down.
  • Charging a node means, for example, electrically connecting the node with a high-level voltage signal, so that the high-level voltage signal is used to raise the level of the node;
  • discharging a node means, for example, connecting the node with A low-level voltage signal is electrically connected, so that the low-level voltage signal is used to pull down the level of the node.
  • a capacitor electrically connected to the node may be provided, and charging or discharging the node means charging or discharging the capacitor electrically connected to the node.
  • the high level and the low level are relative.
  • the high level indicates a higher voltage range (for example, the high level can be 5V, 10V, or other suitable voltages), and multiple high levels can be the same or different.
  • the low level indicates a lower voltage range (for example, the low level may adopt 0V, -5V, -10V, or other suitable voltages), and multiple low levels may be the same or different.
  • the minimum value of the high level is greater than the maximum value of the low level.
  • the first output circuit 130 is configured to output a first signal to the first output terminal OUT1 under the control of the level of the first node.
  • the first signal may include a first clock signal or other voltage signals (for example, High level signal).
  • the first output circuit 130 may be configured to be connected to the second connection conductive portion 2 (ie, the first node), the third connection conductive portion 3 (ie, the first output terminal OUT1), and the first signal line input terminal CLK1, respectively.
  • the first clock signal input from the first signal line input terminal CLK1 or other voltage signals input to the first output circuit 130 can be output to the first output terminal OUT1, so that As an output signal of the shift register unit 100, the output signal is input to other circuit structures connected to the first output circuit 130 (for example, a second output circuit, which will be described in detail later) .
  • the first output circuit 130 may be configured to be turned on under the control of the level of the first node, so that the first signal line input terminal CLK1 and the first output terminal OUT1 are electrically connected, so that the first signal line can be input.
  • the first signal input from the terminal CLK1 is output to the first output terminal OUT1 as an output signal of the shift register unit.
  • the first signal may include at least one of a clock signal, a voltage signal, or a current signal, which depends on specific situations, which is not limited in the embodiments of the present disclosure.
  • the clock signal may be a first clock signal
  • the voltage signal may be a first voltage (for example, a low voltage) or a second voltage (for example, a high voltage, for example, the first voltage is lower than the second voltage). ), Or other reference voltage.
  • FIG. 2 is a schematic diagram of another example of a shift register unit according to an embodiment of the present disclosure.
  • the shift register 100 may further include a fourth connection conductive portion 4.
  • the fourth connection conductive portion 4 is configured to connect the first output circuit 130 and the first signal line input terminal CLK1, and is connected to any two of the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3.
  • the fourth connection conductive portion 4 is not provided on the same layer as the first connection conductive portion 1 and the second connection conductive portion 2.
  • the shift register 100 may further include an output noise reduction circuit 140 and a fifth connection conductive portion 5.
  • the fifth connection conductive portion 5 is configured to connect the output noise reduction circuit 140 and the first output circuit 130, and is connected to at least one of the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3. Two different layers set.
  • the fifth connection conductive portion 5 is not provided on the same layer as the first connection conductive portion 1 and the second connection conductive portion 2.
  • the output noise reduction circuit 140 is configured to perform noise reduction on the first output terminal OUT1 under the control of the level of the second node PD.
  • the output noise reduction circuit 140 may be configured to electrically connect the first output terminal OUT1 and the first voltage terminal VGL under the control of the level of the second node PD, thereby performing pull-down noise reduction on the first output terminal OUT1.
  • the second node PD may be connected to a signal line input terminal or other circuits that can generate a level that controls the output noise reduction unit 140, which is not limited in the embodiments of the present disclosure.
  • the second node for example, the output noise reduction circuit 140 may be further configured to make at least two of the first output terminal OUT1 and the first voltage terminal VGL or other fixed voltage signals under the control of the level of the second node PD. Connected to pull down and reduce noise on the first output terminal OUT1.
  • FIG. 3 is a circuit diagram of an implementation example of the shift register unit shown in FIG. 1.
  • each transistor is described as an N-type transistor, but it does not constitute a limitation on the embodiment of the present disclosure.
  • Each transistor may also be a P-type transistor.
  • N-type transistors can use oxide as the active layer of the thin film transistor.
  • indium gallium zinc oxide (IGZO) is used as the active layer of the thin film transistor.
  • Polysilicon such as low temperature polysilicon LTPS or high temperature polysilicon HTPS
  • amorphous Silicon such as hydrogenated amorphous silicon
  • the active layer using indium gallium zinc oxide (IGZO) can effectively reduce the size of the transistor and prevent leakage current.
  • the shift register unit 100 includes first to third transistors T1 to T3 and a storage capacitor C.
  • the input circuit 110 may be implemented as a first transistor T1.
  • the gate and the first pole of the first transistor T1 are electrically connected to each other, and are configured to both be connected to the input terminal INPUT to receive an input signal, and the second pole is configured to connect the conductive portion 1 and the first node PU (that is, (The first pole of the second transistor) is connected so that when the first transistor T1 is turned on under the control of a turn-on signal (high-level signal) received at the input terminal INPUT, the turn-on signal is used to connect the first node PU Charging is performed so that the first node PU is at a high level.
  • the gate or the first pole of the first transistor T1 may be configured to be connected to at least one signal or a combination of a clock signal, a second voltage terminal VGH, or other fixed voltage signals, for example, the first transistor T1
  • the gate of is connected to the first signal terminal CLK1 to receive the clock signal
  • the first electrode of the first transistor T1 is connected to the second voltage terminal VGH to receive the second voltage.
  • connection conductive part can be used (it should be noted that these different parts are based on Need to be independent of each other or electrically connected to each other) for connection, for example, the first pole of the fifth transistor T5 and the first pole of the sixth transistor T6 shown in FIG. 7 can be connected using the first connection conductive part 1, and the remaining connections The conductive part can also do this.
  • the following embodiments are the same, and will not be described again.
  • the reset circuit 120 may be implemented as a second transistor T2.
  • the gate of the second transistor T2 is configured to be connected to the reset terminal RST to receive a reset signal
  • the first pole is configured to be connected to the first node PU through the first connection conductive portion 1
  • the second pole is configured to be connected to the first voltage
  • the terminal VGL is connected to receive a first voltage.
  • the output circuit 130 may be implemented as a third transistor T3.
  • the gate of the third transistor T3 is configured to be connected to the first node PU through the second connection conductive part 2, the first pole is configured to be connected to the first signal line input terminal CLK1 to receive the first signal, and the second pole is configured It is connected to the first output terminal OUT1 through the third connection conductive part 3.
  • the storage capacitor C may be part of the output circuit 130.
  • the storage capacitor C may also be an independent component of the shift register unit 100; or the storage capacitor C and other components form a component of the shift register unit 100.
  • the second pole of the storage capacitor C is configured to be connected to the first output terminal OUT1 through the third connection conductive portion 3, and the first pole is configured to be connected to the gate of the third transistor T3.
  • the first pole of the storage capacitor C is configured to be connected to the second connection conductive portion 2, and the second pole is connected to the clock signal terminal.
  • the first extremely transparent conductive layer and the second extremely first data line layer or gate line layer of the storage capacitor C are not limited in the embodiments of the present disclosure.
  • the first pole of the third transistor T3 is configured to be connected to the first signal line input terminal CLK1 through the fourth connection conductive portion 4 to receive the first signal.
  • different parts of the second connection conductive part 2 may be used (to be noted, these The different parts are independent of each other or electrically connected to each other as needed) for connection, for example, the second pole of the sixth transistor T6 and the gate of the fourth transistor T4 shown in FIG. 10B may be connected using the second connection conductive part 2, and the first The second electrode of the six transistor T6 and the gate of the eighth transistor T8 may be connected by the second connection conductive portion 2.
  • the first transistor T1 includes structures such as a first electrode 101, a second electrode 102, a gate 103, an active layer 111, and the like.
  • the second transistor T2 includes structures such as a first electrode 201, a second electrode 202, a gate electrode 203, and an active layer 111.
  • the first pole 101 of the first transistor T1 and the first pole 201 of the second transistor T2 are connected by the first connection conductive portion 1.
  • the start end of the first connection conductive portion 1 is a region corresponding to the first pole (for example, the drain) of the first transistor T1
  • the end end of the first connection conductive portion 1 is the first pole (for example, the source) of the second transistor T2. Pole) corresponding area. As shown in FIG.
  • the first connection conductive portion 1 includes a first electrode 101 (eg, a drain) of the first transistor T1 and a first electrode 201 (eg, a source) of the second transistor T2, that is, the first connection conductive portion 1 It is formed integrally with the first pole 101 of the first transistor T1 and the first pole 201 of the second transistor T2.
  • the first electrode 101 (for example, the drain) of the first transistor T1 and the first electrode 201 (for example, the source) of the second transistor T2 may be separately formed, and then pass through the first connection conductive part 1 respectively. Holes, laps, or integral formation are used for electrical connection, which are not limited in the embodiments of the present disclosure.
  • the first electrode 101 and the active layer of the first transistor T1 are connected to each other to establish an electrical connection; similarly, the first electrode 201 and the active layer of the second transistor T2 are connected to each other to establish an electrical connection.
  • the first connection conductive portion 1 includes an active layer conductive portion between the first transistor T1 and the second transistor T2.
  • the first connection conductive portion 1 and the second connection conductive portion 2 are disposed in different layers.
  • the first connection conductive portion 1 is in the same layer as the active layer 11 of the first transistor T1 and the second transistor T2, and the second connection conductive portion 2 is formed on the second passivation layer 1132 and passes through a second passivation layer.
  • the vias in the formation layer 1132, the first passivation layer 1131, and the gate insulating layer 112 are electrically connected to the first connection conductive portion 1.
  • the first connection conductive portion 1 is located on the first conductive layer 11 shown in FIG. 4D
  • the second connection conductive portion 2 is located on the fourth conductive layer 14 shown in FIG. 4D
  • the gate insulating layer 112 corresponds to FIG. 4D
  • the first insulating layer 21, the first passivation layer 1131 correspond to the second insulating layer 22 in FIG. 4D
  • the second passivation layer 1132 corresponds to the third insulating layer 23 in FIG. 4D.
  • one end (eg, the start end) of the second connection conductive portion 2 is formed between the gates of the first transistor T1 and the second transistor T2.
  • the gates of the second connection conductive part 2 and the third transistor T3 are electrically connected or formed integrally with each other, which is not limited in the embodiments of the present disclosure.
  • FIG. 4B is a schematic cross-sectional structure view of the array substrate taken along the line C1-C2 in FIG. 3.
  • the third transistor T3 includes structures such as a first electrode 301, a second electrode 302, a gate electrode 303, and an active layer 111.
  • the gate 303 of the third transistor, the gate 103 of the first transistor, and the gate 203 of the second transistor are provided in different layers.
  • the gate 303 of the third transistor is formed on the first passivation layer 1131.
  • the first pole 301 and the second pole 303 of the third transistor T3 are electrodes formed separately.
  • the first pole 301 and the second pole 302 of the third transistor T3 are formed on the second passivation layer 1132. And is connected to the active layer through vias on the second passivation layer 1132, the first passivation layer 1131, and the gate insulating layer 112.
  • the width-length ratio of the first transistor T1 is smaller than that of the third transistor T3.
  • the width-length ratio of the third transistor T3 is 3-50 times the width-length of the first transistor T1.
  • the width-length ratio of the first transistor T1 It is 0.6-1.2, and the aspect ratio of the third transistor T3 is 3-30.
  • the first electrode (for example, the drain) of the third transistor T3 and the second connection conductive part 2 are disposed on the same layer.
  • a third connection conductive portion 3 is further included.
  • the first electrode 301 of the third transistor T3 is electrically connected to the third connection conductive portion 3, and is connected to the first output terminal OUT1 through the third connection conductive portion 3.
  • the first electrode 301 of the third transistor T3 and the third connection conductive portion 3 may also be formed integrally, and thus both of them may be formed in the same layer, which is not limited in the embodiment of the present disclosure.
  • the third connection conductive portion 3 is formed on the third passivation layer 1133 and is connected to the first electrode 301 of the third transistor T3 through a via hole. Since the first electrode (for example, the drain) of the third transistor T3 is disposed on the same layer as the second connection conductive portion 2, the third connection conductive portion 3 and the second connection conductive portion 2 are disposed in different layers and connected to the first The conductive part 1 has a different layer, so that the connection conductive parts connected to each transistor can be prevented from being disposed on the same layer, thereby simplifying the wiring design of the display panel and improving the accuracy of signal transmission. It should be noted that, as long as any two or three different layers of the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3 are satisfied, the embodiment of the present disclosure does not limit this. .
  • a fourth connection conductive portion 4 may be further included.
  • the fourth connection conductive portion 4 is formed on the third passivation layer 1133 and is connected to the second electrode 302 of the third transistor T3 through a via.
  • the fourth connection conductive portion 4 is connected to the first signal line input terminal CLK1. Connect to receive the first signal.
  • the second electrode 302 of the third transistor T3 and the fourth connection conductive portion 4 may also be formed integrally, which is not limited in the embodiments of the present disclosure.
  • the third connection conductive portion 3 and the fourth connection conductive portion 4 are provided on the same layer, and are provided at different layers from the first connection conductive portion 1 and the second connection conductive portion 2.
  • connection conductive portion 4 only needs to be provided in any two or three layers of the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3.
  • the disclosed embodiments are not limited thereto.
  • a passivation layer may also be included between the second connection conductive part 2 and the gate 103 of the first transistor, for example, only the first passivation layer 1131 or the second passivation layer 1132 may be included.
  • FIG. 4C is a schematic cross-sectional structure view of the array substrate taken along line D1-D2 in FIG. 3.
  • the second connection conductive portion 2 and the third connection conductive portion 3 constitute a storage capacitor C.
  • a third passivation layer 1133 is formed on the second connection conductive portion 2, and a third connection conductive portion 3 is formed on the third passivation layer 1133.
  • the materials used for the first passivation layer 1131, the second passivation layer 1132, and the third passivation layer 1133 include inorganic insulating materials such as SiNx, SiOx, SiNxOy, organic insulating materials such as organic resin, or other suitable materials.
  • inorganic insulating materials such as SiNx, SiOx, SiNxOy, organic insulating materials such as organic resin, or other suitable materials.
  • organic insulating materials such as organic resin, or other suitable materials.
  • the array substrate includes a plurality of layer structures in sequence from bottom to top, including but not limited to a first conductive layer 11, a first insulating layer 21, a second conductive layer 12, a second insulating layer 22, The third conductive layer 13, the third insulating layer 23, the fourth conductive layer 14, the fourth insulating layer 24, the fifth conductive layer 15, the fifth insulating layer 25, the sixth conductive layer 16, and the like.
  • the first conductive layer 11 is the same material as the active layer
  • the second conductive layer 12 is the same material as the first gate line layer
  • the third conductive layer 13 is the same material as the second gate line layer
  • the fourth conductive layer 14 is the same as the first
  • the material of the data line layer is the same
  • the material of the fifth conductive layer 15 is the same as that of the second data line layer
  • the material of the sixth conductive layer 16 is the same as that of the pixel electrode.
  • conductive layers located on different layers but connected to each other can be electrically connected through vias (not shown in the figure).
  • other structures may be included under the first conductive layer 11.
  • Each of the above-mentioned conductive layers may include at least a part of a conductive structure.
  • the first connection conductive portion 1 is located on the first conductive layer 11.
  • the first connection conductive portion 1 and the semiconductor layer of the first transistor are made of the same material.
  • a part of the structure of the semiconductor layer is conductorized to form the first connection conductive portion 1.
  • the semiconductor layer may be a conductive portion of an active layer.
  • the gate 103 of the first transistor T1 and the gate 203 of the second transistor T2 are located on the second conductive layer 12 or the third conductive layer 13, and the gate 303 of the third transistor T3 is located on the third conductive layer 13 or the second conductive layer 12.
  • the second connection conductive portion 2 is located on the fourth conductive layer 14, the third connection conductive portion 3 is located on the fifth conductive layer 15, and the fourth connection conductive portion 4 is also located on the fifth conductive layer 15.
  • the embodiments of the present disclosure include, but are not limited to, as long as any two or three of the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3 are not in the same conductive layer.
  • any two or three of the fourth connection conductive portion 4 and the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3 may be disposed on different conductive layers, and the implementation of the present disclosure The example does not limit this.
  • the materials of the first conductive layer 11 to the sixth conductive layer 16 include aluminum, aluminum alloy, copper, copper alloy, or any other suitable material, which is not limited in the embodiments of the present disclosure. It should be noted that the number of layers of the conductive layer and the insulating layer may depend on specific circumstances, which is not limited in the embodiments of the present disclosure.
  • the gate insulation layer 112 is located on the first insulation layer 21, the first passivation layer 1131 is located on the second insulation layer 22, and the second passivation layer 1132 is located on the third insulation layer. 23.
  • the third passivation layer 1133 is located on the fourth insulating layer 24.
  • the first conductive layer 11 may include a conductive active layer
  • the second conductive layer 12 may be a layer where the gates of the transistors are located
  • the third conductive layer 13 may be a first transparent conductive layer (for example, including a memory layer).
  • the first data line layer (for example, the fourth conductive layer) and the second data line layer (for example, the fifth conductive layer) may include a connection conductive portion connected to the signal line input end, which is not limited in the embodiments of the present disclosure.
  • the materials of the first transparent conductive layer and the second transparent conductive layer include transparent metal oxides such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the transparent conductive layer may be the same layer as the pixel electrode; for example, a conductor
  • the active layer includes polysilicon doped with conductive impurities, an oxide semiconductor (such as IGZO), and the like. It should be noted that the material of each conductive layer depends on the specific situation, which is not limited in the embodiments of the present disclosure.
  • the material of the active layer 111 included in the first transistor T1, the second transistor T2, and the third transistor T3 may include an oxide semiconductor, an organic semiconductor, or a polysilicon semiconductor, for example, an oxide
  • the semiconductor includes a metal oxide semiconductor (such as indium gallium zinc oxide (IGZO)), and the polysilicon semiconductor includes a low-temperature polysilicon semiconductor or a high-temperature polysilicon semiconductor, which is not limited in the embodiments of the present disclosure.
  • IGZO indium gallium zinc oxide
  • the materials for the first, second, and second electrodes 101, 102, and 103 of the first transistor T1 and the first, second, and second electrodes 201, 202, and 203 of the second transistor T2 may include aluminum, aluminum alloy, Copper, copper alloy, or any other suitable material is not limited in the embodiments of the present disclosure.
  • the first connection conductive portion 1 to the fourth connection conductive portion 4 are formed on the base substrate 110.
  • the positions of the conductive parts can be flexibly selected according to the extension distance between the transistors, and the conductive parts connected to each transistor can be prevented from being set on the same layer, thereby simplifying the wiring design of the display panel and improving the signal transmission. accuracy.
  • the material of the base substrate 110 may be a glass substrate, a quartz substrate, a plastic substrate, or a substrate of other suitable materials.
  • the material of the gate insulating layer 112 includes inorganic insulating materials such as SiNx, SiOx, organic insulating materials such as organic resin, or other suitable materials, which are not limited in the embodiments of the present disclosure.
  • top-gate structure transistor As an example, and is not limited thereto.
  • a transistor of any other structure for example, a bottom-gate structure
  • the embodiments of the present disclosure are not limited thereto.
  • the following embodiments are the same and will not be described again.
  • FIG. 5 is a circuit diagram of an implementation example of the shift register unit shown in FIG. 2. As shown in FIG. 5, based on the example shown in FIG. 3, the shift register unit 100 further includes a fourth transistor.
  • the output noise reduction circuit 140 may be implemented as a fourth transistor T4.
  • the gate of the fourth transistor T4 is connected to the second node PD.
  • the first pole of the fourth transistor T4 is connected to the first output terminal OUT1 through the fifth connection conductive portion 5.
  • the second pole of the fourth transistor T4 is connected to the first voltage terminal.
  • VGL is connected to receive the first voltage.
  • the fourth transistor T4 is turned on when the second node PD is at an active level (for example, a high level), thereby electrically connecting the first output terminal OUT1 and the first voltage terminal VGL, so that the first voltage (for example, a low voltage) can be used. (Flat voltage) reduces noise at the first output terminal OUT1.
  • FIG. 6 is a schematic diagram of another example of a shift register unit according to an embodiment of the present disclosure.
  • the shift register unit 100 further includes a control circuit 150, a second signal line input terminal CLK2, and a sixth connection conductive portion 6.
  • the sixth connection conductive portion 6 is configured to connect the control circuit 150 and the second signal line input terminal CLK2, and is disposed at a different layer from the fourth connection conductive portion 4.
  • the fourth connection conductive portion 4 is provided on the fifth conductive layer 15 shown in FIG. 4D
  • the sixth connection conductive portion 6 may be provided on the first data line layer (fourth conductive layer 14) or on the first data line layer (fourth conductive layer 14).
  • the five conductive layers 15 are other layers, so that the connection conductive portions connecting the transistors can be prevented from being disposed on the same layer, thereby simplifying the wiring design of the display panel and improving the signal.
  • the accuracy of the transmission is not limited by the embodiments of the present disclosure.
  • the control circuit 150 is configured to control the level of the second node PD under the control of the level of the first node PU and the second signal, so as to control the output noise reduction circuit 140.
  • the control circuit 150 may be respectively connected to the first voltage terminal VGL, the second voltage terminal VGH, the first node PU, and the second node PD, so as to be controlled by the level of the first node PU and the level of the second signal,
  • the second node PD is electrically connected to the second voltage terminal VGH to control the level of the second node PD, for example, the second node PD is charged so that the second node PD is at a high potential.
  • FIG. 7 is a circuit diagram of an implementation example of the shift register unit shown in FIG. 6. As shown in FIG. 7, based on the example shown in FIG. 5, the shift register unit 100 further includes a fifth transistor T5 and a sixth transistor T6.
  • control circuit 150 may be implemented as a fifth transistor T5 and a sixth transistor T6.
  • the gate of the fifth transistor T5 is configured to be connected to the first node PU
  • the first pole is configured to be connected to the second voltage terminal VGH to receive the second voltage
  • the second pole is configured to be connected to the conductive portion through the first 1 is connected to the first pole of the sixth transistor T6.
  • the gate of the sixth transistor T6 is configured to be connected to receive the second signal through the sixth connection conductive portion 6 and the second signal line input terminal CLK2, and the second electrode is configured to be connected to the second node PD.
  • FIG. 8 is a circuit diagram of another implementation example of the shift register unit shown in FIG. 6. As shown in FIG. 8, based on the example shown in FIG. 5, the shift register unit 100 further includes a fifth transistor T5 and a sixth transistor T6.
  • control circuit 150 may be implemented as a fifth transistor T5 and a sixth transistor T6.
  • the gate of the fifth transistor T5 is configured to be connected through the sixth connection conductive portion 6 and the second signal line input terminal CLK2 to receive the second signal
  • the first electrode is configured to be connected to the second voltage terminal VGH to receive the first signal.
  • the two voltages and the second pole are configured to be connected through the first connection conductive portion 1 and the first pole of the sixth transistor T6.
  • the gate of the sixth transistor T6 is configured to be connected to the first node PU, and the second electrode is configured to be connected to the first voltage terminal VGL of the second node, so that the potential of the second node PD can be controlled, thereby controlling the output noise reduction circuit. 140 performs noise reduction on the first output terminal OUT1.
  • pull-down unit 150 may also be implemented as other circuit structures, which are not limited in the embodiments of the present disclosure.
  • the first voltage terminal VGL for example, maintains a DC low level signal, and this DC low level is referred to as a first voltage
  • the second voltage terminal VGH for example, maintains a DC high level input. Signal, this DC high level is called a second voltage.
  • the following embodiments are the same, and will not be described again.
  • the transistors used in the embodiments of the present disclosure may all be thin film transistors, field effect transistors, or other switching devices with the same characteristics.
  • the thin film transistors are used as an example for description.
  • the source and drain of the transistor used here can be symmetrical in structure, so there can be no difference in structure of the source and drain of the transistor.
  • one pole is directly described as the first pole and the other pole is the second pole.
  • the transistors in the embodiments of the present disclosure are described by taking N-type transistors as an example.
  • the first pole of the transistor may be a drain, and the second pole may be a source.
  • the embodiments of the present disclosure do not deal with this. limit.
  • one or more of the transistors in the shift register unit 100 provided by the embodiment of the present disclosure may also be a P-type transistor.
  • the first pole of the transistor may be a source and the second pole may be a drain.
  • the poles of the transistors of the selected type need to be connected with reference to the poles of the corresponding transistors in the embodiments of the present disclosure. For example, the on-level of the P-type transistor becomes a low level.
  • the embodiments of the present disclosure include, but are not limited to, the shift register unit 100 may also use a P-type transistor and an N-type transistor in a mixed manner.
  • the port polarities of the corresponding transistors in the embodiment may be correspondingly connected.
  • the shift register unit provided by the embodiment of the present disclosure can flexibly select the position of the connection conductive portion according to the extension distance between the transistors, avoiding that the connection conductive portions connected to the transistors are all disposed on the same layer, thereby simplifying the wiring design of the display panel. And improve the accuracy of signal transmission.
  • the circuit structure is, for example, a shift register unit or a partial constituent structure of a shift register unit.
  • the circuit structure includes a substrate (not shown) and a first transistor provided on the substrate T1, second transistor T2, third transistor T3 and storage capacitor C, first output terminal OUT1, first connection conductive portion 1, second connection conductive portion 2, and third connection conductive portion 3.
  • first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion 3 are provided in different layers.
  • the first connection conductive portion 1 is configured to connect a first pole of the first transistor T1 and a first pole of the second transistor T2.
  • the second connection conductive portion 2 is configured to connect the first electrode of the second transistor T2 and the gate of the third transistor T3 and the first electrode of the storage capacitor.
  • the third connection conductive portion 3 is configured to connect the first output terminal OUT1 and the first electrode of the third transistor T3.
  • connection relationship between the various transistors in this example is similar to the connection relationship between the individual transistors of the shift register unit shown in FIG. 3, and is not repeated here.
  • the circuit structure may further include a fourth transistor T4, a first signal line input terminal CLK1, a fourth connection conductive portion 4 and a first Five connected conductive parts 5.
  • the fourth connection conductive portion 4 is configured to connect the second pole of the third transistor T3 and the first signal line input terminal CLK1, and is connected to the first connection conductive portion 1, the second connection conductive portion 2 and the third connection conductive portion 3 In any two or three different layers.
  • the first signal line input terminal may also be the second voltage terminal VGH or the first voltage terminal VGL.
  • the fifth connection conductive portion 5 is configured to connect the first electrode of the third transistor T3 and the first electrode of the fourth transistor T4, and is connected to the first connection conductive portion 1, the second connection conductive portion 2, and the third connection conductive portion. Any two or three different layer settings in 3.
  • connection relationship between the transistors in this example is similar to the connection relationship between the transistors of the shift register unit shown in FIG. 5, which is not repeated here.
  • the circuit structure further includes a five transistor T5, a sixth transistor T6, a second signal line input terminal CLK2, and a sixth connection conductive portion 6.
  • the sixth connection conductive portion 6 is configured to connect the gate of the sixth transistor T6 and the second signal line input terminal CLK2, and is disposed at a different layer from the fourth connection conductive portion 4.
  • the first pole of the fifth transistor T5 is connected to the first pole of the sixth transistor T6 through the first connection conductive portion 1.
  • connection relationship between the transistors in this example is similar to the connection relationship between the transistors of the shift register unit shown in FIG. 7, which is not repeated here.
  • the circuit structure may further include a seventh transistor, a third signal line input terminal, and a seventh connection conductive portion 7.
  • the gate of the seventh transistor T7 is configured to be connected to the first output terminal OUT1 to receive the output signal of the first output terminal
  • the first electrode is configured to be connected to the third signal line input terminal CLK3 through the seventh connection conductive portion 7.
  • the second pole is configured to be connected to the second output terminal OUT2.
  • the seventh connection conductive portion 7 is configured to be provided in a different layer from the fourth connection conductive portion 4.
  • the circuit structure may further include an eighth transistor T8.
  • the gate of the eighth transistor T8 is configured to be connected to the second node PD in the circuit structure through the second connection conductive portion 2, the first pole is configured to be connected to the second output terminal OUT2, and the second pole is configured to Connected to the first voltage terminal VGL to receive the first voltage.
  • the first signal, the second signal, and the third signal mentioned in the embodiments of the present disclosure may all be at least one of a clock signal, a voltage signal, or a current signal, which depends on specific situations.
  • the clock signal may be a first clock signal
  • the voltage signal may be a first voltage (for example, a low voltage) or a second voltage (for example, a high voltage, for example, the first voltage is lower than the second voltage).
  • the first signal is a voltage signal
  • the second signal and the third signal are clock signals.
  • the circuit structure provided in the embodiment of the present disclosure can flexibly select the position of the connection conductive portion according to the extension distance between the transistors, avoiding that the connection conductive portions connected to each transistor are provided on the same layer, thereby simplifying the wiring design of the display panel and Improve the accuracy of signal transmission.
  • FIG. 9A is a schematic diagram of a gate driving circuit according to an embodiment of the present disclosure.
  • the gate driving circuit 10 includes a plurality of cascaded shift register units 100, a first signal line CLKA, and a second signal line CLKB.
  • each shift register unit 100 may adopt the circuit structure shown in FIG. 7 provided in an embodiment of the present disclosure.
  • the gate driving circuit 10 may further include four, six, or eight clock signal lines, and the number of clock signal lines depends on specific circumstances, which is not limited in the embodiments of the present disclosure.
  • each of the shift register units further includes a first signal line input terminal CLK1 and a second signal line input terminal CLK2, and is configured to communicate with the first signal line CLKA or the second signal line CLKB. Connect to receive the first or second signal.
  • the first signal line CLKA is connected to the first signal line input terminal CLK1 of the 2m-1 (m is an integer greater than 0) stage shift register unit
  • the second signal line CLKB is connected to the second signal line CLKB of the 2m-1 stage shift register unit.
  • the two signal line input terminals CLK2 are connected, the second signal line CLKB is connected to the first signal line input terminal CLK1 of the 2m-stage shift register unit, and the first signal line CLKA and the 2m (m is an integer greater than 0) stage are shifted
  • the second signal line input terminal CLK2 of the register unit is connected.
  • Embodiments of the present disclosure include but are not limited thereto.
  • OUT1_m shown in FIG. 9A represents the first output terminal of the m-th stage shift register unit
  • OUT1_m + 1 represents the first output terminal of the m + 1-stage shift register unit
  • OUT1_m + 2 represents the first The first output terminal of the m + 2 stage shift register unit.
  • the reference numerals in the following embodiments are similar to this and will not be described again.
  • the reset terminal RST of the shift register unit of the other stages is connected to the first output terminal OUT1 of the next-stage shift register unit.
  • the input terminals INPUT of the other stages of the shift register unit are connected to the first output terminal OUT1 of the previous-stage shift register unit.
  • the input terminal INPUT of the first stage shift register unit may be configured to receive the trigger signal STV
  • the reset terminal RST of the last stage shift register unit may be configured to receive the reset signal RESET, the trigger signal STV, and the reset signal. RESET is not shown in FIG. 9A.
  • the gate driving circuit 10 may further include a timing controller 300.
  • the timing controller 300 may be configured to be connected to the first signal line CLKA and the second signal line CLKB to provide the first signal or the second signal to each shift register unit 100.
  • the timing controller 300 may be further configured to provide a trigger signal STV and a reset signal RESET.
  • the signal timing provided on the first clock signal line CLKA and the second clock signal line CLKB may use the signal timing shown in FIG. 11A to implement the function of the gate driving circuit 10 outputting the gate scan signal line by line.
  • one shift register unit B is a shift register unit at the next stage of another shift register unit A.
  • the gate scan signal output by the shift register unit B is The gate scan signal is later than the output from the shift register unit A.
  • one shift register unit B is a shift register unit above the other shift register unit A.
  • the gate scan signal output by the shift register unit B is earlier in timing than the output of the shift register unit A. Gate scan signal.
  • An embodiment of the present disclosure further provides a gate driving circuit 10.
  • the gate driving circuit 10 further includes a second output circuit 200, a third signal line input terminal CLK3, and a seventh connection conductive portion (not shown in the figure).
  • a connection block diagram of the shift register unit 100 and the second output circuit 200 is shown in FIG. 10A.
  • the third signal line input terminal CLK3 may provide a third clock signal or a first voltage VGL or a second voltage VGH.
  • the second output circuit 200 is configured to output a third signal to the second output terminal OUT2 under the control of the level output from the first output terminal OUT1.
  • the second output circuit 200 is connected to the first output terminal OUT1, the second output terminal OUT2, and the third signal line input terminal CLK3, so as to be controlled at the second output terminal under the control of the effective level output from the first output terminal OUT1.
  • OUT2 outputs a third signal.
  • the shift register unit 100 includes a fourth connection conductive portion 4
  • the seventh connection conductive portion 7 connects the third signal line input terminal CLK3 and the second output circuit 200, and is configured to be connected to the fourth connection conductive portion. 4 different layer settings.
  • the seventh connection conductive portion 7 may be provided on the first data line layer (the fourth conductive layer 14) or in addition to the fifth conductive layer.
  • the layers other than the layer 15 can prevent the connecting conductive parts connecting the transistors from being disposed on the same layer, thereby simplifying the wiring design of the display panel and improving the accuracy of signal transmission. There are no restrictions.
  • the second output circuit 200 may also be connected to the second node of the shift register unit 100 through the second connection conductive portion 2.
  • FIG. 10B shows a circuit configuration diagram of an example of the gate driving circuit shown in FIG. 10A.
  • the gate driving circuit 10 further includes a seventh transistor, a third signal line input terminal, and a seventh Connected to the conductive portion 7.
  • the second output circuit 200 can be implemented as a seventh transistor T7.
  • the gate of the seventh transistor T7 is configured to be connected to the first output terminal OUT1 to receive the output signal of the shift register unit 100, and the first electrode is configured to connect the conductive portion 7 and the third signal line input terminal through a seventh connection CLK3 is connected to receive the third signal, and the second pole is configured to be connected to the second output terminal OUT2.
  • the second output circuit 200 may further include an eighth transistor T8.
  • the gate of the eighth transistor T8 is configured to be connected to the second node PD (ie, the second pole of the sixth transistor T6) in the shift register unit 100 through the second connection conductive portion 2, and the first pole is configured as Connected to the second output terminal OUT2, and the second pole is configured to be connected to the first voltage terminal VGL to receive the first voltage.
  • the gate driving circuit provided by the embodiment of the present disclosure is not limited to the cascade connection shown in FIG. 9B, and the gate driving circuit can also perform upper and lower stages through the second output terminal OUT2 of the second output circuit.
  • the following embodiments are the same, and will not be described again.
  • the second output circuit 200 may further include other circuits such as a gate line, a data line, or a pixel circuit connected to the gate driving circuit to implement different functions, and the other circuit structure may also be implemented by using the present disclosure.
  • the connection modes provided by the examples are not limited in the embodiments of the present disclosure.
  • the gate driving circuit 10 further includes a third signal line CLKC.
  • the third signal line CLKC is connected to a third signal line input terminal CLK3 of the second output circuit 200.
  • the timing controller 300 of the gate driving circuit 10 may be further configured to be connected to a third signal line CLKC to provide a third signal to the second output circuit 200.
  • the signals provided by the first signal line CLKA, the second signal line CLKB, and the third signal line CLKC may use the timing shown in FIG. 11A to implement the gate driving circuit 10 to output the gate scan line by line. The function of the signal.
  • OUT2_m shown in FIG. 9B represents the second output terminal of the m-th stage output control circuit
  • OUT2_m + 1 represents the second output terminal of the m + 1th stage output control circuit
  • OUT2_m + 2 represents the m + 2 stage output A second output of the control circuit.
  • An embodiment of the present disclosure further provides a gate driving circuit 10.
  • the gate driving circuit 10 is similar to the gate driving circuit shown in FIG. 9B, except that the first signal provided by the first signal line CLKA is a DC high level (e.g. Second voltage).
  • the first signal line input terminal CLK1 of the shift register unit 100 at each stage is connected to the first signal line CLKA.
  • the second signal line CLKB is connected to the second signal line input terminal CLK2 of the 2m-1 (m is an integer greater than 0) stage shift register unit, and the third signal line CLKC and the 2m-1 stage shift register unit
  • the third signal line input terminal CLKC is connected
  • the second signal line CLKB is connected to the third signal line input terminal CLKC of the 2m-stage shift register unit
  • the third signal line CLKC is connected to the 2m (m is an integer greater than 0) stage
  • the second signal line input terminal CLK2 of the shift register unit is connected, and the embodiments of the present disclosure include but are not limited thereto.
  • the signals provided by the first signal line CLKA, the second signal line CLKB, and the third signal line CLKC may use the timing shown in FIG. 11B to implement the gate driving circuit 10 to output the gate scan line by line.
  • the function of the signal may be used to implement the gate driving circuit 10 to output the gate scan line by line.
  • the working principle of the gate driving circuit 10 shown in FIG. 9B is described below with reference to the signal timing diagram shown in FIG. 11A.
  • the effective output level is high and the invalid output level is low. Level; and the first signal transmitted by the first signal line CLKA and the second signal transmitted by the second signal line CLKB are complementary to each other (for example, their phases are opposite to each other), and the third signal transmitted by the third signal line CLKC and the first signal line
  • the first signal transmitted by CLKA is the same in the first phase P1.
  • the gate driving circuit 10 can perform the following operations, respectively.
  • the first signal and the second signal may also overlap slightly in timing.
  • the first signal line CLKA provides a high-level signal and the third signal line CLKC provides a high-level signal. Since the first signal line input terminal CLK1 and the first signal line of the m-th shift register unit 100 CLKA is connected, so at this stage, the first signal line input terminal CLK1 of the m-th stage shift register unit 100 inputs a high-level signal; and because the first node PU of the m-th stage shift register unit 100 is high, Under the control of the high level of the first node PU, the high level input from the first signal line input terminal CLK1 is output to the first output terminal OUT1_m of the m-th shift register unit 100.
  • the second output circuit 200 is turned on under the control of the high level provided by the first output terminal OUT1_m, so that the second output terminal OUT2_m outputs the high level provided by the third signal line CLKC.
  • the level of the potential in the signal timing diagram shown in FIG. 11A is only schematic and does not represent the true potential value or relative proportion.
  • the high-level signal corresponds to the N-type.
  • the transistor is an on signal, and the low-level signal corresponds to the N-type transistor being an off signal.
  • the second signal line CLKB provides a high-level signal
  • the third signal line CLKC provides a high-level signal. Since the first signal line input terminal CLK1 and the second The signal line CLKB is connected, so at this stage, the first signal line input terminal CLK1 of the m + 1 stage shift register unit 100 inputs a high-level signal; and because the first node PU of the m + 1 stage shift register unit 100 Is high level, so under the control of the high level of the first node PU, the high level input from the first signal line input terminal CLK1 is output to the first output terminal OUT1_m + of the m + 1 stage shift register unit 100 1. At the same time, the second output circuit 200 is turned on under the control of the high level provided by the first output terminal OUT1_m + 1, so that the second output terminal OUT2_m + 2 outputs the high level provided by the third signal line CLKC.
  • the operating principle of the gate driving circuit 10 shown in FIG. 9C is similar to the operating principle of the gate driving circuit 10 shown in FIG. 9B, and is not repeated here.
  • Another embodiment of the present disclosure also provides a driving circuit including a plurality of cascaded circuit structures.
  • the circuit structure may adopt an example shown in FIG. 7 or FIG. 10B.
  • the circuit structure may further include a seventh transistor, a third signal line input terminal CLK3 and a seventh connection conductive portion 7.
  • the gate of the seventh transistor T7 is configured to be connected to the first output terminal OUT1 to receive the output signal of the first output terminal
  • the first electrode is configured to be connected to the third signal line input terminal CLK3 through the seventh connection conductive portion 7.
  • the second pole is configured to be connected to the second output terminal OUT2.
  • the seventh connection conductive portion 7 is configured to be provided in a different layer from the fourth connection conductive portion 4.
  • the circuit structure may further include an eighth transistor T8.
  • the gate of the eighth transistor T8 is configured to be connected to the second node PD in the circuit structure through the second connection conductive portion 2, the first pole is configured to be connected to the second output terminal OUT2, and the second pole is configured to Connected to the first voltage terminal VGL to receive the first voltage.
  • the driving circuit cascades between upper and lower stages through the first output terminal OUT1.
  • the driving circuit can pass the first The two output terminals OUT2 are cascaded between upper and lower stages.
  • the driving circuit is not limited to driving the shift register unit, and may also drive local area circuits other than the shift register unit.
  • the driving circuit is not limited to providing a voltage to the gate line.
  • at least one of the first light-emitting control line and the second light-emitting control line in the OLED pixel circuit may be driven to provide a first light-emitting control signal and / Or a second light emission control signal.
  • the pixel circuit is, for example, an 8T2C pixel circuit.
  • the driving circuit may also provide a light emission control signal to two adjacent rows of pixels through the second output terminal OUT2.
  • the display device 1000 includes a gate driving circuit 10 or a driving circuit provided by an embodiment of the present disclosure.
  • the display device 1000 includes a pixel array including a plurality of pixel units 30.
  • the display device 1000 may further include a data driving circuit 20.
  • the data driving circuit 20 is used to provide a data signal to the pixel array;
  • the gate driving circuit 10 is used to provide a gate scanning signal to the pixel array.
  • the data driving circuit 20 is electrically connected to the pixel unit 30 through a data line 21.
  • the gate driving circuit 10 may be specifically implemented as a GOA circuit, which is directly fabricated on the array substrate of the display device and is electrically connected to the pixel unit 30 through the gate line 11.
  • the gate driving circuit 10 or the driving circuit provided by the embodiment of the present disclosure included in the display device 1000 can be freely and flexibly arranged on the array substrate, for example, at least one side of the flexible array substrate, for example, both sides Side, or four sides.
  • the display device 1000 may be: a liquid crystal panel, a liquid crystal television, a display, an OLED panel, an OLED television, an electronic paper display device, a mobile phone, a tablet computer, a notebook computer, a digital photo frame, a navigator And any other product or part with display capabilities.
  • the display device 1000 may further include other conventional components such as a display panel, which is not limited in the embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Shift Register Type Memory (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种移位寄存器单元(100)、电路结构、栅极驱动电路(10)、驱动电路及显示装置(1000)。移位寄存器单元(100)包括衬底基板和设置在衬底基板上的输入电路(110)、复位电路(120)和第一输出电路(130)、第一输出端(OUT1)、连接输入电路(110)和复位电路(120)的第一连接导电部(1)、连接复位电路(120)和第一输出电路(130)的第二连接导电部(2)以及连接第一输出电路(130)和第一输出端(OUT1)的第三连接导电部(3)。输入电路(110)被配置为对第一节点(PU)的电平进行控制;复位电路(120)被配置为对第一节点(PU)进行复位;第一输出电路(130)被配置为将第一信号输出至第一输出端(OUT1);第一连接导电部(1)、第二连接导电部(2)以及第三连接导电部(3)中的任意两个或三个异层设置。移位寄存器单元(100)可以避免各连接导电部均设置在同一层,从而可以简化显示面板的走线设计。

Description

移位寄存器单元、电路结构、栅极驱动电路、驱动电路及显示装置
本申请要求于2018年5月28日递交的中国专利申请第201820809711.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种移位寄存器单元、电路结构、栅极驱动电路、驱动电路及显示装置。
背景技术
在显示技术领域,例如显示面板的像素阵列通常包括多行栅线和与之交错的多列数据线。对栅线的驱动可以通过贴附的集成驱动电路实现。近几年随着薄膜晶体管工艺的不断提高,也可以将栅极驱动电路直接集成在薄膜晶体管阵列基板上构成GOA(Gate driver On Array)来对栅线进行驱动。例如,可以采用由多个级联的移位寄存器单元构成的GOA电路为像素阵列的多行栅线提供开关态电压信号,从而控制多行栅线依序打开。
发明内容
本公开至少一实施例提供一种移位寄存器单元,可以根据晶体管相互之间的距离灵活地选取连接导电部的位置,避免连接各晶体管的连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性。
本公开至少一个实施例提供一种移位寄存器单元,包括衬底基板和设置在所述衬底基板上的输入电路、复位电路和第一输出电路、第一输出端、连接所述输入电路和所述复位电路的第一连接导电部、连接所述复位电路和所述第一输出电路的第二连接导电部以及连接所述第一输出电路和所述第一输出端的第三连接导电部。所述输入电路被配置为响应于输入信号对第一节点的电平进行控制;所述复位电路被配置为响应于复位信号对所述第一节点进行复位;所述第一输出电路被配置为在所述第一节点的电平的 控制下,将第一信号输出至所述第一输出端;所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
例如,本公开一实施例提供的移位寄存器单元,还包括第一信号线输入端和第四连接导电部。所述第四连接导电部连接所述第一输出电路和所述第一信号线输入端,且被配置为与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
例如,本公开一实施例提供的移位寄存器单元,还包括输出降噪电路以及第五连接导电部。所述输出降噪电路被配置为在第二节点的电平的控制下,对所述第一输出端进行降噪;所述第五连接导电部连接所述输出降噪电路和所述第一输出电路,且被配置为与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
例如,本公开一实施例提供的移位寄存器单元,还包括控制电路、第二信号线输入端以及第六连接导电部。所述控制电路被配置为在所述第一节点的电平和/或第二信号的控制下,对所述第二节点的电平进行控制;所述第六连接导电部被配置为连接所述控制电路和所述第二信号线输入端,且与所述第四连接导电部异层设置。
例如,在本公开一实施例提供的移位寄存器单元中,所述第一连接导电部的长度小于所述第二连接导电部的长度;或者,所述第一信号包括时钟信号、电压信号、电流信号中的至少之一;或者,所述第二信号包括时钟信号、电压信号、电流信号中的至少之一。
本公开至少一个实施例还提供一种电路结构,包括衬底基板和设置在所述衬底基板上的第一晶体管、第二晶体管、第三晶体管和存储电容、第一输出端、第一连接导电部、第二连接导电部以及第三连接导电部。所述第一连接导电部被配置为连接所述第一晶体管的第一极和所述第二晶体管的第一极;所述第二连接导电部被配置为连接所述第二晶体管的第一极和所述第三晶体管的栅极以及所述存储电容的第一极;所述第三连接导电部被配置为连接所述第一输出端和所述第三晶体管的第一极;所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
例如,本公开一实施例提供的电路结构,还包括第四晶体管、第一信号线输入端、第四连接导电部和第五连接导电部。所述第四连接导电部被 配置为连接所述第三晶体管的第二极和所述第一信号线输入端,且与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置;所述第五连接导电部被配置为连接所述第三晶体管的第一极和所述第四晶体管的第一极,且与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
例如,本公开一实施例提供的电路结构,还包括第五晶体管、第六晶体管、第二信号线输入端和第六连接导电部。所述第五晶体管的第一极通过所述第一连接导电部与所述第六晶体管的第一极连接;所述第六连接导电部被配置为连接所述第六晶体管的栅极和所述第二信号线输入端,且与所述第四连接导电部异层设置。
例如,在本公开一实施例提供的电路结构中,所述第三晶体管的第一极与所述第二连接导电部同层设置;或者,所述第一连接导电部与所述第一晶体管的半导体层材料相同。
例如,本公开一实施例提供的电路结构,还包括第七晶体管、第三信号线输入端和第七连接导电部。所述第七晶体管的栅极被配置为与所述第一输出端连接以接收所述电路结构的输出信号,所述第七晶体管的第一极被配置为通过所述第七连接导电部与所述第三信号线输入端连接以接收第三信号,所述第七晶体管的第二极被配置为与第二输出端连接;在所述电路结构包括第四连接导电部的情况下,所述第七连接导电部被配置为与所述第四连接导电部异层设置。
例如,本公开一实施例提供的电路结构,还包括第八晶体管;所述第八晶体管的栅极被配置为通过所述第二连接导电部与第二节点连接,所述第八晶体管的第一极被配置为与所述第二输出端连接,所述第八晶体管的第二极被配置为与第一电压端连接以接收第一电压。
本公开至少一个实施例提供一种栅极驱动电路,包括多个级联的本公开任一实施例提供的移位寄存器单元。
例如,在本公开一实施例提供的栅极驱动电路中,所述栅极驱动电路还包括第二输出电路、第三信号线输入端和第七连接导电部。所述第二输出电路被配置为在所述第一输出端输出的电平的控制下,将第三信号输出至第二输出端;在所述移位寄存器单元包括第四连接导电部的情况下,所述第七连接导电部被配置为连接所述第三信号线输入端和所述第二输出电 路,且与所述第四连接导电部异层设置。
本公开至少一个实施例还提供一种驱动电路,包括多个级联的本公开任一实施例提供的电路结构。
本公开至少一个实施例提供一种显示装置,包括本公开任一实施例提供的栅极驱动电路或驱动电路,所述栅极驱动电路或所述驱动电路设置在阵列基板的四个侧边。
例如,本公开一实施例提供的显示装置,还包括第一导电层、第二导电层、第三导电层、第四导电层、第五导电层以及第六导电层,所述第一导电层与有源层材质相同,所述第二导电层与第一栅线层材质相同,所述第三导电层与第二栅线层材质相同,所述第四导电层与第一数据线层材质相同,所述第五导电层与第二数据线层材质相同,所述第六导电层与像素电极的材质相同。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的一种移位寄存器单元的一个示例的示意图;
图2为本公开实施例提供的一种移位寄存器单元的另一个示例的示意图;
图3为图1中所示的移位寄存器单元的一种实现示例的电路示意图;
图4A为沿着图3中的A1-A2线剖取的阵列基板的一个示例的剖面结构示意图;
图4B为沿着图3中的C1-C2线剖取的阵列基板的剖面结构示意图;
图4C为沿着图3中的D1-D2线剖取的阵列基板的剖面结构示意图;
图4D为本公开实施例提供的各个连接导电部所在的导电层的剖面结构示意图;
图5为图2中所示的移位寄存器单元的一种实现示例的电路示意图;
图6为本公开实施例提供的一种移位寄存器单元的又一个示例的示意图;
图7为图6中所示的移位寄存器单元的一种实现示例的电路示意图;
图8为图6中所示的移位寄存器单元的另一种实现示例的电路示意图;
图9A为本公开实施例提供的一种栅极驱动电路的一个示例的示意图;
图9B为本公开实施例提供的一种栅极驱动电路的另一个示例的示意图;
图9C为本公开实施例提供的一种栅极驱动电路的又一个示例的示意图;
图10A为图9B或图9C中所示的一种栅极驱动电路的示意框图;
图10B为图10A中所示的栅极驱动电路的一种实现示例的电路示意图;
图11A为对应于图9B中所示的栅极驱动电路工作时的信号时序图;
图11B为对应于图9C中所示的栅极驱动电路工作时的信号时序图;以及
图12为本公开实施例提供的一种显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面,将参照附图详细描述本公开的各个实施例。需要说明的是,在附图中,将相同的附图标记赋予基本上具有相同或类似结构和功能的组成部分,并且将省略关于它们的重复描述。
在显示面板技术中,为了实现低成本和窄边框,可以采用GOA(Gate driver On Array)技术,即将栅极驱动电路通过薄膜晶体管工艺集成在显示面板上,从而可以实现窄边框和降低装配成本等优势。由于GOA中的薄膜晶 体管(Thin Film Transistor,TFT)的数量较多,且多个TFT相互之间一般通过采用相同材料的连接导电部连接,例如多个连接导电部由同一金属层形成,因此,在显示面板有限的布局空间内,这样的连接方式容易导致各个TFT之间的连接关系复杂化。另外,由于各个TFT之间的连接导电部的间距较小,可能对TFT之间的信号的传输造成影响。
本公开至少一实施例提供一种移位寄存器单元,包括衬底基板和设置在衬底基板上的输入电路、复位电路和第一输出电路、第一输出端、连接输入电路和复位电路的第一连接导电部、连接复位电路和第一输出电路的第二连接导电部以及连接第一输出电路和第一输出端的第三连接导电部。输入电路被配置为响应于输入信号对第一节点的电平进行控制;复位电路被配置为响应于复位信号对第一节点进行复位;第一输出电路被配置为在第一节点的电平的控制下,将第一信号输出至第一输出端;第一连接导电部、第二连接导电部以及第三连接导电部中的任意两个或三个异层设置。本公开至少一实施例还提供了一种电路结构、栅极驱动电路和显示装置。
本公开实施例提供的移位寄存器单元可以根据晶体管之间的距离灵活地选取连接导电部的位置,避免连接各晶体管的多个连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性。
下面,将参考附图详细地说明本公开的实施例。应当说明的是,不同的附图中相同的附图标记将用于指代已描述的相同的元件。
图1为本公开一实施例提供的一种移位寄存器单元的一个示例的示意框图。如图1所示,该移位寄存器单元100包括衬底基板(图1中未示出)和设置在衬底基板上的输入电路110、复位电路120、第一输出电路130以及第一输出端OUT1。例如,该移位寄存器单元100作为栅极驱动电路的组成单元形成在显示装置的阵列基板上。该阵列基板包括上述衬底基板,具有阵列区域(显示区域)和周边区域。该栅极驱动电路形成在阵列基板的周边区域中,而像素电路形成在阵列基板的阵列区域中。该像素电路可以包括至少一个晶体管,例如开关晶体管,例如还可以包括驱动晶体管等部件。例如,阵列区域的薄膜晶体管和周边区域的薄膜晶体管可以通过半导体制备工艺得到。
如图1所示,该移位寄存器单元100还包括连接输入电路110和复位电路120的第一连接导电部1、连接复位电路120和第一输出电路130的第二 连接导电部2以及连接第一输出电路130和第一输出端OUT1的第三连接导电部3。例如,第三连接导电部3可以与阵列基板位于阵列区域中的栅线形成为一体,或者,第三连接导电部3可以通过过孔、连接线等与阵列基板位于阵列区域中的栅线电连接。
例如,该第一连接导电部1、第二连接导电部2以及第三连接导电部3设置在衬底基板上,且其中的任意两个或三个异层设置。例如,第一连接导电部1和第二连接导电部2异层设置,而第三连接导电部3可以与第一连接导电部1和第二连接导电部2中任一个同层或异层设置。又例如,第一连接导电部1、第二连接导电部2、第三连接导电部3都分别设置在不同层,本公开的实施例对此不作限制。
本公开的实施例不限定第一连接导电部1、第二连接导电部2以及第三连接导电部3的连接数量和连接方式。例如,第一连接导电部1表示输入电路110与复位电路120之间存在至少一个第一连接导电部1进行电性连接,并不局限连接数量和方式;也就是说,至少有1个输入电路110的元件(例如,输入电路110的其中1个晶体管的第一极)与复位电路120(例如,复位电路120的其中1个晶体管的第二极)之间存在至少一个第一连接导电部1,以使得输入电路110和复位电路120电性连接。以下各实施例的连接导电部与此相同,不再赘述。
例如,第一连接导电部的长度小于第二连接导电部的长度。例如,该长度表示连接导电部的起始端至终点端的延伸距离,或者表示该电路内部晶体管元件连接处的过孔之间的延伸距离,从而可以根据晶体管之间的延伸距离灵活地选取连接导电部的位置。该延伸距离取决于连接导电部的形状(例如线型、S型等),而非两端之间的直线距离。
该输入电路110被配置为响应于输入信号对第一节点(图1中未示出,可参见图3)的电平进行控制,例如对第一节点进行充电。例如,第一节点为第一连接导电部1和第二连接导电部2的汇合点,既属于第一连接导电部1又属于第二连接导电部2,且并非表示实际存在的部件。例如,该输入电路110可以与输入端INPUT和第一连接导电部1(即第一节点)分别连接,被配置为将输入电路110接收的电压信号传输到第一节点。具体的,可以被配置为在输入端INPUT输入的信号的控制下使第一节点和输入端INPUT电连接或者和另外提供的高电压端电连接,从而可以使输入端INPUT输入的 高电平信号,或输入电路110的高电压端输入的高电平信号对第一节点进行充电,以提高第一节点的电平,从而使得该第一节点的电平可以控制第一输出电路130导通。该复位电路120被配置为响应于复位信号对第一节点进行复位。例如,该复位电路120可以被配置为和复位端RST、第一连接导电部1(即第一节点)以及第二连接导电部2(即第一节点)分别连接,从而可以在复位端RST输入的复位信号的控制下,使得第一节点被施加低电平信号或与低电压端电连接,该低电压端例如为第一电压端VGL或参考电压端,从而可以对第一节点进行下拉复位。本公开的实施例以N型晶体管为例进行说明,需要说明的是,本公开的实施例不限于此,也可以采用P型或混合N型和P型晶体管的电路结构,只须将相应晶体管的开启电平变为低电平即可。
需要说明的是,在本公开的实施例中,对一个节点(例如第一节点PU或第二节点PD)的电平进行控制,包括对该节点进行充电以拉高该节点的电平,或者对该节点进行放电以拉低该节点的电平。对一个节点进行充电表示例如将该节点与一个高电平的电压信号电连接,从而利用该高电平的电压信号以拉高该节点的电平;对一个节点进行放电表示例如将该节点与一个低电平的电压信号电连接,从而利用该低电平的电压信号以拉低该节点的电平。例如,在一些实施例中,可以设置一个与该节点电连接的电容,对该节点进行充电或放电即表示对与该节点电连接的电容进行充电或放电。
另外,需要说明的是,在本公开的实施例中,高电平和低电平是相对而言的。高电平表示一个较高的电压范围(例如,高电平可以采用5V、10V或其他合适的电压),且多个高电平可以相同也可以不同。类似地,低电平表示一个较低的电压范围(例如,低电平可以采用0V、-5V、-10V或其他合适的电压),且多个低电平可以相同也可以不同。例如,高电平的最小值比低电平的最大值大。
该第一输出电路130被配置为在第一节点的电平的控制下,将第一信号输出至第一输出端OUT1,例如,该第一信号可以包括第一时钟信号或其他电压信号(例如高电平信号)。例如,该第一输出电路130可以被配置为和第二连接导电部2(即第一节点)、第三连接导电部3(即第一输出端OUT1)以及第一信号线输入端CLK1分别连接,从而可以在第一节点的电平的控制下,将第一信号线输入端CLK1输入的第一时钟信号或其他输入至该第一输出电路130的电压信号输出至第一输出端OUT1,以作为该移位寄存器单元 100的输出信号,该输出信号输入至与第一输出电路130相连的其他电路结构(例如,第二输出电路,将在后面对该第二输出电路进行详细地介绍)。例如,该第一输出电路130可以被配置为在第一节点的电平的控制下导通,使第一信号线输入端CLK1和第一输出端OUT1电连接,从而可以将第一信号线输入端CLK1输入的第一信号输出至第一输出端OUT1,以作为该移位寄存单元的输出信号。需要说明的是,第一信号可以包括时钟信号、电压信号或电流信号中的至少之一,其视具体情况而定,本公开的实施例对此不作限制。例如,该时钟信号可以是第一时钟信号,该电压信号可以是第一电压(例如,低电压),也可以是第二电压(例如,高电压,例如,该第一电压低于第二电压),或者其他参考电压。
图2为本公开一实施例提供的一种移位寄存器单元的另一个示例的示意图。如图2所示,在图1中所示的示例的基础上,该移位寄存器100还可以包括第四连接导电部4。第四连接导电部4被配置为连接第一输出电路130和第一信号线输入端CLK1,且与第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个异层设置。例如,第四连接导电部4与第一连接导电部1和第二连接导电部2均不设置在同一层。
例如,如图2所示,在图1所示的示例的基础上,该移位寄存器100还可以包括输出降噪电路140以及第五连接导电部5。例如,该第五连接导电部5被配置为连接输出降噪电路140和第一输出电路130,且与第一连接导电部1、第二连接导电部2以及第三连接导电部3中的至少两个异层设置。例如,第五连接导电部5与第一连接导电部1和第二连接导电部2均不设置在同一层。
例如,输出降噪电路140被配置为在第二节点PD的电平的控制下,对第一输出端OUT1进行降噪。例如,该输出降噪电路140可以被配置为在第二节点PD的电平的控制下,使第一输出端OUT1和第一电压端VGL电连接,从而对第一输出端OUT1进行下拉降噪。例如,该第二节点PD可以与信号线输入端或其他可以产生控制输出降噪单元140的电平的电路连接,本公开的实施例对此不作限制。第二节点例如,该输出降噪电路140还可以被配置为在第二节点PD的电平的控制下,使第一输出端OUT1和第一电压端VGL或者其他固定电压信号中至少两个电连接,从而对第一输出端OUT1进行下拉降噪。
图3为图1中所示的移位寄存器单元的一种实现示例的电路示意图。在下面的说明中以各晶体管为N型晶体管为例进行说明,但并不构成对本公开实施例的限制,各晶体管还可以是P型管。N型晶体管可以采用氧化物作为薄膜晶体管的有源层,例如,采用氧化铟镓锌(IGZO)作为薄膜晶体管的有源层,也可以采用多晶硅(例如低温多晶硅LTPS或高温多晶硅HTPS)或非晶硅(例如氢化非晶硅)作为薄膜晶体管的有源层。其中,采用氧化铟镓锌(IGZO)的有源层可以有效减小晶体管的尺寸以及防止漏电流。
如图3所示,该移位寄存器单元100包括第一晶体管T1至第三晶体管T3以及存储电容C。
输入电路110可以实现为第一晶体管T1。第一晶体管T1的栅极和第一极彼此电连接,且被配置为都和输入端INPUT连接以接收输入信号,第二极被配置为通过第一连接导电部1和第一节点PU(即第二晶体管的第一极)连接,从而当第一晶体管T1在输入端INPUT接收到的导通信号(高电平信号)的控制下导通时,使用该导通信号以对第一节点PU进行充电,从而使得第一节点PU处于高电平。可以理解的是,第一晶体管T1的栅极或第一极均可以被配置为连接时钟信号、第二电压端VGH或者其他固定电压信号的至少一种信号或其组合,例如,第一晶体管T1的栅极连接第一信号端CLK1以接收时钟信号,第一晶体管T1的第一极连接第二电压端VGH以接收第二电压。此外,在其他各个晶体管的连接关系中,当一个晶体管的第一极和另一个晶体管的第一极连接时,都可以采用第一连接导电部的不同部分(需要说明的是,这些不同部分根据需要彼此独立或彼此电连接)进行连接,例如,图7中所示的第五晶体管T5的第一极和第六晶体管T6的第一极可以采用第一连接导电部1连接,且其余各个连接导电部也可以这样,以下实施例与此相同,不再赘述。
复位电路120可以实现为第二晶体管T2。第二晶体管T2的栅极被配置为和复位端RST连接以接收复位信号,第一极被配置为通过第一连接导电部1和第一节点PU连接,第二极被配置为和第一电压端VGL连接以接收第一电压。第二晶体管T2在复位信号的控制下导通时,可以将第一节点PU和第一电压端VGL电连接,从而可以利用第一电压(例如为低电平电压)对第一节点PU进行复位,使得第一节点PU的电位下降至低电平。
输出电路130可以实现为第三晶体管T3。第三晶体管T3的栅极被配置 为通过第二连接导电部2和第一节点PU连接,第一极被配置为和第一信号线输入端CLK1连接以接收第一信号,第二极被配置为通过第三连接导电部3和第一输出端OUT1连接。
存储电容C可以作为输出电路130的一部分。当然,存储电容C也可以是该移位寄存器单元100的独立元件;或存储电容C与其他元件构成该移位寄存器单元100组成部分。例如,存储电容C的第二极被配置为通过第三连接导电部3和第一输出端OUT1连接,第一极被配置为和第三晶体管T3的栅极连接。或者,存储电容C的第一极被配置为与第二连接导电部2连接,第二极与时钟信号端连接。例如,存储电容C的第一极为透明导电层,第二极为第一数据线层或栅线层,本公开的实施例对此不作限制。例如,在另一示例中,第三晶体管T3的第一极被配置为通过第四连接导电部4和第一信号线输入端CLK1连接以接收第一信号。例如,在其他各个晶体管的连接关系中,当一个晶体管的第一或第二极和另一个晶体管的栅极连接时,都可以采用第二连接导电部2的不同部分(需要说明的是,这些不同部分根据需要彼此独立或彼此电连接)进行连接,例如,图10B中所示的第六晶体管T6的第二极和第四晶体管T4的栅极可以采用第二连接导电部2连接,以及第六晶体管T6的第二极和第八晶体管T8的栅极可以采用第二连接导电部2连接。
图4A为沿着图3中的A1-A2线剖取的该移位寄存器单元所在的阵列基板的一个示例的剖面结构示意图。如图4A所示,沿着图3中的A1-A2线方向,第一晶体管T1包括第一极101、第二极102、栅极103、有源层111等结构。第二晶体管T2包括第一极201、第二极202、栅极203、有源层111等结构。
例如,第一晶体管T1的第一极101和第二晶体管T2的第一极201通过第一连接导电部1连接。例如,第一连接导电部1的起始端为第一晶体管T1的第一极(例如漏极)对应的区域,第一连接导电部1的终点端为第二晶体管T2的第一极(例如源极)对应的区域。如图4A所示,第一连接导电部1包括第一晶体管T1的第一极101(例如漏极)和第二晶体管T2的第一极201(例如源极),即第一连接导电部1与第一晶体管T1的第一极101和第二晶体管T2的第一极201一体形成。需要说明的是,第一晶体管T1的第一极101(例如漏极)和第二晶体管T2的第一极201(例如源极)也可以单独形 成,然后分别与第一连接导电部1通过过孔、搭接、或一体形成等方式电连接,本公开的实施例对此不作限制。第一极101与第一晶体管T1的有源层例如彼此搭接而建立电连接;类似地,第一极201与第二晶体管T2的有源层例如彼此搭接而建立电连接。例如,第一连接导电部1包括第一晶体管T1和第二晶体管T2之间的有源层导体化部分。
如图4A所示,沿着图3中的A1-A2线方向,还包括与第一连接导电部1连接的第二连接导电部2。如图4A所示,第一连接导电部1与第二连接导电部2异层设置。如图4A所示,第一连接导电部1与第一晶体管T1和第二晶体管T2的有源层11同层,第二连接导电部2形成在第二钝化层1132上且通过第二钝化层1132、第一钝化层1131以及栅绝缘层112中的过孔电连接到第一连接导电部1上。例如,该第一连接导电部1位于图4D中所示的第一导电层11,第二连接导电部2位于图4D中所示的第四导电层14,栅绝缘层112对应于图4D中的第一绝缘层21,第一钝化层1131对应于图4D中的第二绝缘层22,第二钝化层1132对应于图4D中的第三绝缘层23。例如,如图4A所示,该第二连接导电部2的一端(例如起始端)形成在第一晶体管T1和第二晶体管T2的栅极之间。例如,第二连接导电部2与第三晶体管T3(图中未示出)的栅极电连接或彼此一体形成,本公开的实施例对此不作限制。
图4B为沿着图3中的C1-C2线剖取的阵列基板的剖面结构示意图。如图4B所示,沿着图3中的C1-C2线方向,第三晶体管T3包括第一极301、第二极302、栅极303、有源层111等结构。例如,第三晶体管的栅极303和第一晶体管的栅极103以及第二晶体管的栅极203异层设置,例如,第三晶体管的栅极303形成在第一钝化层1131上。如图4B所示,第三晶体管T3的第一极301和第二极303为单独形成的电极,例如,第三晶体管T3的第一极301和第二极302形成在第二钝化层1132上,且通过第二钝化层1132、第一钝化层1131以及栅绝缘层112上的过孔与有源层连接。例如,第一晶体管T1的宽长比小于第三晶体管T3,例如,第三晶体管T3的宽长比为第一晶体管T1的宽长的3-50倍,例如,第一晶体管T1的宽长比为0.6-1.2,第三晶体管T3的宽长比为3-30。例如,第三晶体管T3的第一极(例如漏极)与第二连接导电部2(如图2中所示)设置在同一层。
如图4B所示,还包括第三连接导电部3。例如,第三晶体管T3的第一 极301与该第三连接导电部3电连接,且通过该第三连接导电部3与第一输出端OUT1连接。需要说明的是,第三晶体管T3的第一极301与该第三连接导电部3也可以一体形成,由此二者可以形成为同一层,本公开的实施例对此不作限制。
例如,如图4B所示,第三连接导电部3形成在第三钝化层1133上,且通过过孔与第三晶体管T3的第一极301连接。由于第三晶体管T3的第一极(例如漏极)与第二连接导电部2设置在同一层,所以,第三连接导电部3与第二连接导电部2异层设置,同时与第一连接导电部1异层,从而可以避免连接各晶体管的连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性。需要说明的是,只要满足第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个异层设置即可,本公开的实施例对此不作限制。
如图4B所示,在一个示例中,还可以包括第四连接导电部4。例如,该第四连接导电部4形成在第三钝化层1133上,且通过过孔与第三晶体管T3的第二极302连接,该第四连接导电部4与第一信号线输入端CLK1连接以接收第一信号。需要说明的是,第三晶体管T3的第二极302与该第四连接导电部4也可以一体形成,本公开的实施例对此不作限制。例如,在该示例中,第三连接导电部3与第四连接导电部4设置在同一层,且和第一连接导电部1以及第二连接导电部2异层设置。需要说明的是,该第四连接导电部4只要满足与第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个异层设置即可,本公开的实施例对此不作限制。可以理解的是,第二连接导电部2与第一晶体管的栅极103之间也可以包括一层钝化层,例如,仅包括第一钝化层1131或第二钝化层1132。
图4C为沿着图3中的D1-D2线剖取的阵列基板的剖面结构示意图。如图4C所示,沿着图3中的D1-D2线方向,第二连接导电部2和第三连接导电部3构成存储电容C。如图4C所示,在第二连接导电部2上形成第三钝化层1133,在第三钝化层1133上形成第三连接导电部3。例如,用于该第一钝化层1131、第二钝化层1132以及第三钝化层1133的材料包括SiNx、SiOx、SiNxOy等无机绝缘材料,有机树脂等有机绝缘材料或其它适合的材料,本公开的实施例对此不作限定。
需要说明的是,以下各实施例中晶体管和连接导电部在阵列基板上的剖 面图与图4A-图4C中所示的晶体管和连接导电部类似,在此不再赘述。
例如,如图4D所示,该阵列基板从下往上依次包括多个层结构,包括但不限于第一导电层11、第一绝缘层21、第二导电层12、第二绝缘层22、第三导电层13、第三绝缘层23、第四导电层14、第四绝缘层24、第五导电层15、第五绝缘层25、第六导电层16等。例如,第一导电层11与有源层材质相同,第二导电层12与第一栅线层材质相同,第三导电层13与第二栅线层材质相同,第四导电层14与第一数据线层材质相同,第五导电层15与第二数据线层材质相同,第六导电层16与像素电极的材质相同。例如,位于不同层但又相互连接的导电层之间可以通过过孔(图中未示出)电连接。当然,第一导电层11下方还可以包括其他结构。上述的各个导电层包括至少部分导电结构即可。
参考图4A、图4B、图4C和图4D所示,第一连接导电部1位于第一导电层11,例如,第一连接导电部1与第一晶体管的半导体层采用相同材料。例如,将该半导体层的部分结构进行导体化后形成第一连接导电部1。例如,该半导体层可以为有源层的导体化部分。第一晶体管T1的栅极103和第二晶体管T2的栅极203位于第二导电层12或第三导电层13,第三晶体管T3的栅极303位于第三导电层13或第二导电层12,第二连接导电部2位于第四导电层14,第三连接导电部3位于第五导电层15,第四连接导电部4也位于第五导电层15。需要说明的是,本公开的实施例包括但不限于此,只要满足第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个不在同一导电层,以及第四连接导电部4与第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个设置在不同的导电层即可,本公开的实施例对此不作限制。例如,第一导电层11至第六导电层16的材料包括铝、铝合金、铜、铜合金或其他任意适合的材料,本公开的实施例对此不作限定。需要说明的是,导电层和绝缘层的层数可以视具体情况而定,本公开的实施例对此不作限定。
参考图4A、图4B、图4C和图4D所示,栅绝缘层112位于第一绝缘层21,第一钝化层1131位于第二绝缘层22,第二钝化层1132位于第三绝缘层23,第三钝化层1133位于第四绝缘层24。
例如,该第一导电层11可以包括导体化的有源层,第二导电层12可以为各晶体管的栅极所在的层,第三导电层13可以为第一透明导电层(例如, 包括存储电容C的第一极或第三晶体管T3的栅极),第四导电层14为第一数据线层,第五导电层15为第二数据线层,第六导电层16为第二透明导电层。例如,第一数据线层(例如第四导电层)和第二数据线层(例如第五导电层)可以包括与信号线输入端连接的连接导电部,本公开的实施例对此不作限制。例如,第一透明导电层和第二透明导电层的材料包括铟锡氧化物(ITO)或铟锌氧化物(IZO)等透明金属氧化物,透明导电层可以与像素电极同层;例如,导体化的有源层包括掺杂导电杂质的多晶硅、氧化物半导体(例如IGZO)等。需要说明的是,各个导电层的材料视具体情况而定,本公开的实施例对此不作限制。
例如,如图4A和图4B所示,第一晶体管T1、第二晶体管T2和第三晶体管T3包括的有源层111的材料可以包括氧化物半导体、有机半导体或多晶硅半导体等,例如,氧化物半导体包括金属氧化物半导体(例如氧化铟镓锌(IGZO)),多晶硅半导体包括低温多晶硅半导体或者高温多晶硅半导体等,本公开的实施例对此不作限定。
例如,用于第一晶体管T1的第一极101、第二极102和栅极103以及第二晶体管T2的第一极201、第二极202和栅极203的材料可以包括铝、铝合金、铜、铜合金或其他任意适合的材料,本公开的实施例对此不作限定。
例如,如图4A和图4B所示,衬底基板110以及层叠在衬底基板110上的栅绝缘层112,第一连接导电部1至第四连接导电部4形成在衬底基板110上的不同层中,从而可以根据晶体管之间的延伸距离灵活地选取连接导电部的位置,避免连接各晶体管的连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性。
衬底基板110的材质可以是玻璃基板、石英基板、塑料基板或其他适合材料的基板。例如,该栅绝缘层112的材料包括SiNx、SiOx等无机绝缘材料、有机树脂等有机绝缘材料或其它适合的材料,本公开的实施例对此不作限定。
需要说明的是,上述实施例是以顶栅结构的晶体管为例进行说明的,不限于此,其他任意结构(例如底栅结构)的晶体管也可以适用,本公开的实施例对此不作限制。以下实施例与此相同,不再赘述。
图5为图2中所示的移位寄存器单元的一种实现示例的电路示意图。如图5所示,在图3所示的示例的基础上,该移位寄存器单元100还包括第四 晶体管。
例如,输出降噪电路140可以实现为第四晶体管T4。第四晶体管T4的栅极和第二节点PD连接,第四晶体管T4的第一极通过第五连接导电部5和第一输出端OUT1连接,第四晶体管T4的第二极和第一电压端VGL连接以接收第一电压。第四晶体管T4在第二节点PD处于有效电平(例如高电平)时导通,从而将第一输出端OUT1和第一电压端VGL电连接,从而可以利用第一电压(例如为低电平电压)对第一输出端OUT1降噪。
图6为本公开一实施例提供的一种移位寄存器单元的又一个示例的示意图。如图6所示,在图2所示的示例的基础上,该移位寄存器单元100还包括控制电路150、第二信号线输入端CLK2以及第六连接导电部6。例如,第六连接导电部6被配置为连接控制电路150和第二信号线输入端CLK2,且与第四连接导电部4异层设置。例如,若第四连接导电部4设置在图4D中所示的第五导电层15,那么第六连接导电部6可以设置在第一数据线层(第四导电层14)或者设置在除第五导电层15(即第四连接导电部4)所在层之外的其他各层,从而可以避免连接各晶体管的连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性,本公开的实施例对此不作限制。
该控制电路150被配置为在第一节点PU的电平和第二信号的控制下,对第二节点PD的电平进行控制,从而实现对输出降噪电路140的控制。例如,该控制电路150可以分别连接第一电压端VGL、第二电压端VGH、第一节点PU、第二节点PD,以在第一节点PU的电平和第二信号的电平的控制下,使第二节点PD和第二电压端VGH电连接,从而对第二节点PD的电平进行控制,例如对第二节点PD进行充电,使得第二节点PD处于高电位。
图7为图6中所示的移位寄存器单元的一种实现示例的电路示意图。如图7所示,在图5所示的示例的基础上,该移位寄存器单元100还包括第五晶体管T5和第六晶体管T6。
例如,该控制电路150可以实现为第五晶体管T5和第六晶体管T6。例如,第五晶体管T5的栅极被配置为和第一节点PU连接,第一极被配置为和第二电压端VGH连接以接收第二电压,第二极被配置为通过第一连接导电部1和第六晶体管T6的第一极连接。第六晶体管T6的栅极被配置为通过第六连接导电部6和第二信号线输入端CLK2连接以接收第二信号,第二极被 配置为和第二节点PD连接。
图8为图6中所示的移位寄存器单元的另一种实现示例的电路示意图。如图8所示,在图5所示的示例的基础上,该移位寄存器单元100还包括第五晶体管T5和第六晶体管T6。
例如,该控制电路150可以实现为第五晶体管T5和第六晶体管T6。例如,第五晶体管T5的栅极被配置为通过第六连接导电部6和第二信号线输入端CLK2连接以接收第二信号,第一极被配置为和第二电压端VGH连接以接收第二电压,第二极被配置为通过第一连接导电部1和第六晶体管T6的第一极连接。第六晶体管T6的栅极被配置为和第一节点PU连接,第二极被配置为和第二节点第一电压端VGL连接,从而可以控制第二节点PD的电位,从而控制输出降噪电路140对第一输出端OUT1进行降噪。
需要说明的是,下拉单元150还可以实现为其它电路结构,本公开的实施例对此不作限制。
需要说明的是,本公开的实施例中的第一电压端VGL例如保持输入直流低电平信号,将该直流低电平称为第一电压;第二电压端VGH例如保持输入直流高电平信号,将该直流高电平称为第二电压。以下各实施例与此相同,不再赘述。
需要说明的是,本公开的实施例中采用的晶体管均可以为薄膜晶体管、场效应晶体管或其他特性相同的开关器件,本公开的实施例中均以薄膜晶体管为例进行说明。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管除栅极之外的两极,直接描述了其中一极为第一极,另一极为第二极。
另外,在本公开的实施例中的晶体管均以N型晶体管为例进行说明,此时,晶体管的第一极可以是漏极,第二极可以是源极,本公开的实施例对此不作限制。例如,本公开的实施例提供的移位寄存器单元100中的一个或多个晶体管也可以采用P型晶体管,此时,晶体管的第一极可以是源极,第二极可以是漏极,只需将选定类型的晶体管的各极参照本公开的实施例中的相应晶体管的各极相应连接即可。例如,P型晶体管的开启电平变为低电平。需要说明的是,本公开的实施例包括但不限于此,移位寄存器单元100也可以混合采用P型晶体管和N型晶体管,只需同时将选定类型的晶体管的各端 的极性按照本公开的实施例中的相应晶体管的端口极性相应连接即可。
本公开实施例提供的移位寄存器单元可以根据晶体管之间的延伸距离灵活地选取连接导电部的位置,避免连接各晶体管的连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性。
本公开一实施例还提供一种电路结构。该电路结构例如为移位寄存器单元或移位寄存器单元的部分组成结构,如图3所示,该电路结构包括衬底基板(图中未示出)和设置在衬底基板上的第一晶体管T1、第二晶体管T2、第三晶体管T3和存储电容C、第一输出端OUT1、第一连接导电部1、第二连接导电部2以及第三连接导电部3。例如,第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个异层设置。
该第一连接导电部1被配置为连接第一晶体管T1的第一极和第二晶体管T2的第一极。
该第二连接导电部2被配置为连接第二晶体管T2的第一极和第三晶体管T3的栅极以及所述存储电容的第一极。
该第三连接导电部3被配置为连接第一输出端OUT1和第三晶体管T3的第一极。
例如,该示例中各个晶体管之间的连接关系与图3中所示的移位寄存器单元的各个晶体管的连接关系类似,在此不再赘述。
在另一个示例中,如图5所示,在图3所示的示例的基础上,该电路结构还可以包括第四晶体管T4、第一信号线输入端CLK1、第四连接导电部4和第五连接导电部5。
该第四连接导电部4被配置为连接第三晶体管T3的第二极和第一信号线输入端CLK1,且与第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个异层设置。当然,第一信号线输入端还可以为第二电压端VGH或第一电压端VGL。
该第五连接导电部5被配置为连接第三晶体管T3的第一极和第四晶体管T4的第一极,且与第一连接导电部1、第二连接导电部2以及第三连接导电部3中的任意两个或三个异层设置。
例如,该示例中各个晶体管之间的连接关系与图5中所示的移位寄存器单元的各个晶体管的连接关系类似,在此不再赘述。
在又一个示例中,例如,在图5所示的示例的基础上,该电路结构还包 括五晶体管T5、第六晶体管T6、第二信号线输入端CLK2和第六连接导电部6。该第六连接导电部6被配置为连接第六晶体管T6的栅极和第二信号线输入端CLK2,且与第四连接导电部4异层设置。
例如,第五晶体管T5的第一极通过第一连接导电部1与第六晶体管T6的第一极连接。
例如,该示例中各个晶体管之间的连接关系与图7中所示的移位寄存器单元的各个晶体管的连接关系类似,在此不再赘述。
例如,如图10B所示,在图7所示的电路结构的基础上,该电路结构还可以包括第七晶体管、第三信号线输入端和第七连接导电部7。例如,第七晶体管T7的栅极被配置为与第一输出端OUT1连接以接收第一输出端的输出信号,第一极被配置为通过第七连接导电部7与第三信号线输入端CLK3连接以接收第三信号,第二极被配置为与第二输出端OUT2连接。例如,在电路结构包括第四连接导电部4的情况下,第七连接导电部7被配置为与第四连接导电部4异层设置。
例如,在另一个示例中,该电路结构还可以进一步包括第八晶体管T8。例如,第八晶体管T8的栅极被配置为通过第二连接导电部2与电路结构中的第二节点PD连接,第一极被配置为与第二输出端OUT2连接,第二极被配置为与第一电压端VGL连接以接收第一电压。
可以理解的是,本公开实施例中提及的第一信号、第二信号、第三信号均可以为时钟信号、电压信号或电流信号中的至少之一,其视具体情况而定,本公开的实施例对此不作限制。例如,该时钟信号可以是第一时钟信号,该电压信号可以是第一电压(例如,低电压),也可以是第二电压(例如,高电压,例如,该第一电压低于第二电压),或者其他参考电压。例如,第一信号为电压信号、第二信号和第三信号为时钟信号。
本公开实施例中提供的电路结构可以根据晶体管之间的延伸距离灵活地选取连接导电部的位置,避免连接各晶体管的连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性。
图9A为本公开一实施例提供的一种栅极驱动电路的示意图。如图9A所示,该栅极驱动电路10包括多个级联的移位寄存器单元100、第一信号线CLKA和第二信号线CLKB。例如,每个移位寄存器单元100可以采用本公开一实施例中提供的如图7所示的电路结构。需要说明的是,该栅极驱动电 路10还可以包括四条、六条或八条等更多条时钟信号线,时钟信号线的条数视具体情况而定,本公开的实施例对此不作限定。
例如,如图9A所示,该移位寄存器单元的每个还包括第一信号线输入端CLK1和第二信号线输入端CLK2,且被配置为和第一信号线CLKA或第二信号线CLKB连接以接收第一信号或第二信号。第一信号线CLKA和第2m-1(m为大于0的整数)级移位寄存器单元的第一信号线输入端CLK1连接,第二信号线CLKB和第2m-1级移位寄存器单元的第二信号线输入端CLK2连接,第二信号线CLKB和第2m级移位寄存器单元的第一信号线输入端CLK1连接,第一信号线CLKA和第2m(m为大于0的整数)级移位寄存器单元的第二信号线输入端CLK2连接,本公开的实施例包括但不限于此。
需要说明的是,图9A中所示的OUT1_m表示第m级移位寄存器单元的第一输出端,OUT1_m+1表示第m+1级移位寄存器单元的第一输出端,OUT1_m+2表示第m+2级移位寄存器单元的第一输出端。以下各实施例中的附图标记与此类似,不再赘述。
例如,如图9A所示,除最后一级移位寄存器单元外,其余各级移位寄存器单元的复位端RST和下一级移位寄存器单元的第一输出端OUT1连接。除第一级移位寄存器单元100外,其余各级移位寄存器单元的输入端INPUT和上一级移位寄存器单元的第一输出端OUT1连接。
例如,第一级移位寄存器单元的输入端INPUT可以被被配置为接收触发信号STV,最后一级移位寄存器单元的复位端RST可以被被配置为接收复位信号RESET,触发信号STV和复位信号RESET在图9A中未示出。
例如,如图9A所示,该栅极驱动电路10还可以包括时序控制器300。例如,该时序控制器300可以被被配置为和第一信号线CLKA以及第二信号线CLKB连接,以向各移位寄存器单元100提供第一信号或第二信号。例如,时序控制器300还可以被被配置为提供触发信号STV以及复位信号RESET。
例如,第一时钟信号线CLKA和第二时钟信号线CLKB上提供的信号时序可以采用图11A中所示的信号时序,以实现栅极驱动电路10逐行输出栅极扫描信号的功能。
需要说明的是,在本公开的实施例中,一个移位寄存器单元B是另一个移位寄存器单元A的下一级移位寄存器单元表示:移位寄存器单元B输出的 栅极扫描信号在时序上晚于移位寄存器单元A输出的栅极扫描信号。相应地,一个移位寄存器单元B是另一个移位寄存器单元A的上一级移位寄存器单元表示:移位寄存器单元B输出的栅极扫描信号在时序上早于移位寄存器单元A输出的栅极扫描信号。以下各实施例与此相同,不再赘述。
本公开一实施例还提供一种栅极驱动电路10。如图9B所示,在图9A所示的示例的基础上,该栅极驱动电路10还包括第二输出电路200、第三信号线输入端CLK3和第七连接导电部(图中未示出)。例如,移位寄存器单元100与第二输出电路200的连接框图如图10A所示。例如,该第三信号线输入端CLK3可以提供第三时钟信号或第一电压VGL或第二电压VGH。
如图10A所示,第二输出电路200被配置为在第一输出端OUT1输出的电平的控制下,将第三信号输出至第二输出端OUT2。例如,第二输出电路200与第一输出端OUT1、第二输出端OUT2以及第三信号线输入端CLK3连接,以在第一输出端OUT1输出的有效电平的控制下,在第二输出端OUT2输出第三信号。例如,在移位寄存器单元100包括第四连接导电部4的情况下,第七连接导电部7连接第三信号线输入端CLK3和第二输出电路200,且被配置为与第四连接导电部4异层设置。例如,若第四连接导电部4设置在图4D中所示的第五导电层15,那么第七连接导电部7可以设置在第一数据线层(第四导电层14)或者除第五导电层15所在层之外的其他各层,从而可以避免连接各晶体管的连接导电部均设置在同一层,从而可以简化显示面板的走线设计以及提高信号传输的准确性,本公开的实施例对此不作限制。
例如,在另一个示例中,第二输出电路200还可以通过第二连接导电部2与移位寄存器单元100的第二节点连接。
图10B示出了图10A中所示的栅极驱动电路的一个示例的电路结构图。如图10B所示,在一个示例中,在图7所示的移位寄存器单元的电路结构的基础上,该栅极驱动电路10还包括:第七晶体管、第三信号线输入端和第七连接导电部7。
该第二输出电路200可以实现为第七晶体管T7。例如,第七晶体管T7的栅极被配置为与第一输出端OUT1连接以接收移位寄存器单元100的输出信号,第一极被配置为通过第七连接导电部7与第三信号线输入端CLK3连接以接收第三信号,第二极被配置为与第二输出端OUT2连接。
例如,在另一个示例中,该第二输出电路200还可以进一步包括第八晶体管T8。例如,第八晶体管T8的栅极被配置为通过第二连接导电部2与移位寄存器单元100中的第二节点PD(即第六晶体管T6的第二极)连接,第一极被配置为与第二输出端OUT2连接,第二极被配置为与第一电压端VGL连接以接收第一电压。
需要说明的是,本公开的实施例提供的栅极驱动电路不限于图9B中所示的级联方式,该栅极驱动电路还可以通过第二输出电路的第二输出端OUT2进行上下级之间的级联,以下实施例与此相同,不再赘述。
需要说明的是,该第二输出电路200还可以包括栅线、数据线或与该栅极驱动电路连接的像素电路等其他电路以实现不同的功能,且该其他电路结构也可以采用本公开实施例提供的连接方式,本公开的实施例对此不作限制。
例如,如图9B所示,该栅极驱动电路10还包括第三信号线CLKC。例如,该第三信号线CLKC与第二输出电路200的第三信号线输入端CLK3连接。
例如,如图9B所示,该栅极驱动电路10的时序控制器300还可以被被配置为和第三信号线CLKC连接,以向第二输出电路200提供第三信号。例如,在该示例中,第一信号线CLKA、第二信号线CLKB以及第三信号线CLKC提供的信号可以采用如图11A所示的时序,以实现栅极驱动电路10逐行输出栅极扫描信号的功能。
例如,图9B中所示的OUT2_m表示第m级输出控制电路的第二输出端,OUT2_m+1表示第m+1级输出控制电路的第二输出端,OUT2_m+2表示第m+2级输出控制电路的第二输出端。
本公开一实施例还提供一种栅极驱动电路10。如图9C所示,该栅极驱动电路10与图9B中所示的栅极驱动电路类似,区别在于:第一信号线CLKA提供的第一信号为直流高电平(例如第二电压端提供的第二电压)。
例如,如图9C所示,各级移位寄存器单元100的第一信号线输入端CLK1与第一信号线CLKA连接。例如,第二信号线CLKB和第2m-1(m为大于0的整数)级移位寄存器单元的第二信号线输入端CLK2连接,第三信号线CLKC和第2m-1级移位寄存器单元的第三信号线输入端CLKC连接,第二信号线CLKB和第2m级移位寄存器单元的第三信号线输入端CLKC连接, 第三信号线CLKC和第2m(m为大于0的整数)级移位寄存器单元的第二信号线输入端CLK2连接,本公开的实施例包括但不限于此。
例如,在该示例中,第一信号线CLKA、第二信号线CLKB以及第三信号线CLKC提供的信号可以采用如图11B所示的时序,以实现栅极驱动电路10逐行输出栅极扫描信号的功能。
下面结合图11A所示的信号时序图,对图9B中所示的栅极驱动电路10的工作原理进行说明,在图11A中,有效输出电平为高电平,而无效输出电平为低电平;且第一信号线CLKA传输的第一信号和第二信号线CLKB传输的第二信号彼此互补(例如,彼此相位相反),第三信号线CLKC传输的第三信号与第一信号线CLKA传输的第一信号在第一阶段P1相同。在图11A所示的第一阶段P1和第二阶段P2中,该栅极驱动电路10可以分别进行如下操作。当然,第一信号和第二信号也可以在时序上略有重叠。
在第一阶段P1,第一信号线CLKA提供高电平信号,第三信号线CLKC提供高电平信号,由于第m级移位寄存器单元100的第一信号线输入端CLK1和第一信号线CLKA连接,所以在此阶段第m级移位寄存器单元100的第一信号线输入端CLK1输入高电平信号;又由于第m级移位寄存器单元100的第一节点PU为高电平,所以在第一节点PU高电平的控制下,第一信号线输入端CLK1输入的高电平输出至第m级移位寄存器单元100的第一输出端OUT1_m。同时,第二输出电路200在第一输出端OUT1_m提供的高电平的控制下导通,从而,第二输出端OUT2_m输出第三信号线CLKC提供的高电平。在此阶段,需要说明的是,图11A中所示的信号时序图的电位的高低仅是示意性的,不代表真实电位值或相对比例,对应于上述示例,高电平信号对应于N型晶体管为导通信号,而低电平信号对应于N型晶体管为截止信号。
在第二阶段P2,第二信号线CLKB提供高电平信号,第三信号线CLKC提供高电平信号,由于第m+1级移位寄存器单元100的第一信号线输入端CLK1和第二信号线CLKB连接,所以在此阶段第m+1级移位寄存器单元100的第一信号线输入端CLK1输入高电平信号;又由于第m+1级移位寄存器单元100的第一节点PU为高电平,所以在第一节点PU的高电平的控制下,第一信号线输入端CLK1输入的高电平输出至第m+1级移位寄存器单元100的第一输出端OUT1_m+1。同时,第二输出电路200在第一输出端 OUT1_m+1提供的高电平的控制下导通,从而,第二输出端OUT2_m+2输出第三信号线CLKC提供的高电平。
图9C中所示的栅极驱动电路10的工作原理图9B中所示的栅极驱动电路10的工作原理类似,在此不再赘述。
本公开另一实施例还提供一种驱动电路,该驱动电路包括多个级联的电路结构,该电路结构例如可以采用如图7或图10B所示的示例。
例如,如图10B所示,在图7所示的电路结构的基础上,该电路结构还可以包括第七晶体管、第三信号线输入端CLK3和第七连接导电部7。例如,第七晶体管T7的栅极被配置为与第一输出端OUT1连接以接收第一输出端的输出信号,第一极被配置为通过第七连接导电部7与第三信号线输入端CLK3连接以接收第三信号,第二极被配置为与第二输出端OUT2连接。例如,在电路结构包括第四连接导电部4的情况下,第七连接导电部7被配置为与第四连接导电部4异层设置。
例如,在另一个示例中,该电路结构还可以进一步包括第八晶体管T8。例如,第八晶体管T8的栅极被配置为通过第二连接导电部2与电路结构中的第二节点PD连接,第一极被配置为与第二输出端OUT2连接,第二极被配置为与第一电压端VGL连接以接收第一电压。
例如,在图7所示的电路结构的基础上,该驱动电路通过第一输出端OUT1进行上下级之间的级联;在图10B所示的电路结构的基础上,该驱动电路可以通过第二输出端OUT2进行上下级之间的级联。
需要说明的是,该驱动电路不限于驱动移位寄存器单元,还可以驱动移位寄存器单元以外的局部区域电路。另外,该驱动电路不限于对栅线提供电压,例如,还可以驱动OLED像素电路中的第一发光控制线和第二发光控制线的至少之一,以用于提供第一发光控制信号和/或第二发光控制信号等。该像素电路例如为8T2C的像素电路。
例如,该驱动电路还可以通过第二输出端OUT2对相邻两行像素提供发光控制信号。
本公开的实施例提供的驱动电路的技术效果可以参考上述实施例中关于移位寄存器单元100的相应描述,这里不再赘述。
本公开的实施例还提供一种显示装置1000,如图12所示,该显示装置1000包括本公开实施例提供的栅极驱动电路10或驱动电路。该显示装置 1000包括由多个像素单元30构成的像素阵列。例如,该显示装置1000还可以包括数据驱动电路20。数据驱动电路20用于提供数据信号给像素阵列;栅极驱动电路10用于提供栅极扫描信号给像素阵列。数据驱动电路20通过数据线21与像素单元30电连接。例如,栅极驱动电路10可以具体实现为GOA电路,该GOA电路直接制备在该显示装置的阵列基板上,且通过栅线11与像素单元30电连接。
例如,该显示装置1000包括的本公开实施例提供的栅极驱动电路10或驱动电路可以自由灵活的设置在阵列基板上,例如,设置在柔性阵列基板上的至少一个侧边,例如,两侧边,或四个侧边。
需要说明的是,本公开的实施例提供的显示装置1000可以为:液晶面板、液晶电视、显示器、OLED面板、OLED电视、电子纸显示装置、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置1000还可以包括显示面板等其他常规部件,本公开的实施例对此不作限定。
本公开的实施例提供的显示装置1000的技术效果可以参考上述实施例中关于栅极驱动电路10的相应描述,这里不再赘述。
需要说明的是,为表示清楚、简洁,并没有给出该显示装置1000的全部结构。为实现显示装置的必要功能,本领域技术人员可以根据具体应用场景进行设置其他未示出的结构,本发明的实施例对此不做限制。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (16)

  1. 一种移位寄存器单元,包括:衬底基板和设置在所述衬底基板上的输入电路、复位电路和第一输出电路、第一输出端、连接所述输入电路和所述复位电路的第一连接导电部、连接所述复位电路和所述第一输出电路的第二连接导电部以及连接所述第一输出电路和所述第一输出端的第三连接导电部;其中,
    所述输入电路被配置为响应于输入信号对第一节点的电平进行控制;
    所述复位电路被配置为响应于复位信号对所述第一节点进行复位;
    所述第一输出电路被配置为在所述第一节点的电平的控制下,将第一信号输出至所述第一输出端;
    所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
  2. 根据权利要求1所述的移位寄存器单元,还包括第一信号线输入端和第四连接导电部;其中,
    所述第四连接导电部连接所述第一输出电路和所述第一信号线输入端,且被配置为与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
  3. 根据权利要求2所述的移位寄存器单元,还包括输出降噪电路以及第五连接导电部;其中,
    所述输出降噪电路被配置为在第二节点的电平的控制下,对所述第一输出端进行降噪;
    所述第五连接导电部连接所述输出降噪电路和所述第一输出电路,且被配置为与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
  4. 根据权利要求3所述的移位寄存器单元,还包括控制电路、第二信号线输入端以及第六连接导电部;
    所述控制电路被配置为在所述第一节点的电平和/或第二信号的控制下,对所述第二节点的电平进行控制;
    所述第六连接导电部被配置为连接所述控制电路和所述第二信号线输入端,且与所述第四连接导电部异层设置。
  5. 根据权利要求1-4任一所述的移位寄存器单元,其中,所述第一连接导电部的长度小于所述第二连接导电部的长度;或者,所述第一信号包括时钟信号、电压信号、电流信号中的至少之一。
  6. 一种电路结构,包括衬底基板和设置在所述衬底基板上的第一晶体管、第二晶体管、第三晶体管和存储电容、第一输出端、第一连接导电部、第二连接导电部以及第三连接导电部;其中,
    所述第一连接导电部被配置为连接所述第一晶体管的第一极和所述第二晶体管的第一极;
    所述第二连接导电部被配置为连接所述第二晶体管的第一极和所述第三晶体管的栅极以及所述存储电容的第一极;
    所述第三连接导电部被配置为连接所述第一输出端和所述第三晶体管的第一极;
    所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
  7. 根据权利要求6所述的电路结构,还包括第四晶体管、第一信号线输入端、第四连接导电部和第五连接导电部;其中,
    所述第四连接导电部被配置为连接所述第三晶体管的第二极和所述第一信号线输入端,且与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置;
    所述第五连接导电部被配置为连接所述第三晶体管的第一极和所述第四晶体管的第一极,且与所述第一连接导电部、所述第二连接导电部以及所述第三连接导电部中的任意两个或三个异层设置。
  8. 根据权利要求7所述的电路结构,还包括第五晶体管、第六晶体管、第二信号线输入端和第六连接导电部;其中,
    所述第五晶体管的第一极通过所述第一连接导电部与所述第六晶体管的第一极连接;
    所述第六连接导电部被配置为连接所述第六晶体管的栅极和所述第二信号线输入端,且与所述第四连接导电部异层设置。
  9. 根据权利要求6-8任一所述的电路结构,其中,所述第三晶体管的第一极与所述第二连接导电部同层设置;或者,所述第一连接导电部与所述第一晶体管的半导体层材料相同。
  10. 根据权利要求9所述的电路结构,还包括第七晶体管、第三信号线输入端和第七连接导电部;其中,
    所述第七晶体管的栅极被配置为与所述第一输出端连接以接收所述第一输出端的输出信号,所述第七晶体管的第一极被配置为通过所述第七连接导电部与所述第三信号线输入端连接以接收第三信号,所述第七晶体管的第二极被配置为与第二输出端连接;
    在所述电路结构包括第四连接导电部的情况下,所述第七连接导电部被配置为与所述第四连接导电部异层设置。
  11. 根据权利要求10所述的电路结构,还包括第八晶体管;
    所述第八晶体管的栅极被配置为通过所述第二连接导电部与第二节点连接,所述第八晶体管的第一极被配置为与所述第二输出端连接,所述第八晶体管的第二极被配置为与第一电压端连接以接收第一电压。
  12. 一种栅极驱动电路,包括多个级联的如权利要求1-5任一所述的移位寄存器单元。
  13. 根据权利要求12所述的栅极驱动电路,其中,所述栅极驱动电路还包括第二输出电路、第三信号线输入端和第七连接导电部;
    所述第二输出电路被配置为在所述第一输出端输出的电平的控制下,将第三信号输出至第二输出端;
    在所述移位寄存器单元包括第四连接导电部的情况下,所述第七连接导电部被配置为连接所述第三信号线输入端和所述第二输出电路,且与所述第四连接导电部异层设置。
  14. 一种驱动电路,包括多个级联的如权利要求6-11任一所述的电路结构。
  15. 一种显示装置,包括权利要求12或13所述的栅极驱动电路或包括权利要求14所述的驱动电路,所述栅极驱动电路或所述驱动电路设置在阵列基板的四个侧边。
  16. 根据权利要求15所述的显示装置,还包括第一导电层、第二导电层、第三导电层、第四导电层、第五导电层以及第六导电层,所述第一导电层与有源层材质相同,所述第二导电层与第一栅线层材质相同,所述第三导电层与第二栅线层材质相同,所述第四导电层与第一数据线层材质相同,所述第五导电层与第二数据线层材质相同,所述第六导电层与像素 电极的材质相同。
PCT/CN2019/070895 2018-05-28 2019-01-08 移位寄存器单元、电路结构、栅极驱动电路、驱动电路及显示装置 WO2019227939A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019570504A JP7303127B2 (ja) 2018-05-28 2019-01-08 シフトレジスタユニット、回路構造、ゲート駆動回路、駆動回路及び表示装置
KR1020197037441A KR102314548B1 (ko) 2018-05-28 2019-01-08 시프트 레지스터 유닛, 회로 구조체, 게이트 구동 회로, 구동 회로 및 디스플레이 디바이스
EP19732243.1A EP3806078A4 (en) 2018-05-28 2019-01-08 SLIDER REGISTER UNIT, SWITCHING STRUCTURE, GATE DRIVER CIRCUIT, DRIVER CIRCUIT AND DISPLAY DEVICE
US16/475,513 US11488513B2 (en) 2018-05-28 2019-01-08 Shift register unit, circuit structure, gate drive circuit, drive circuit and display device
US17/807,908 US11705048B2 (en) 2018-05-28 2022-06-21 Shift register unit, circuit structure, gate drive circuit, drive circuit and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820809711.7 2018-05-28
CN201820809711.7U CN208141792U (zh) 2018-05-28 2018-05-28 移位寄存器单元、电路结构、驱动电路及显示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/475,513 A-371-Of-International US11488513B2 (en) 2018-05-28 2019-01-08 Shift register unit, circuit structure, gate drive circuit, drive circuit and display device
US17/807,908 Continuation US11705048B2 (en) 2018-05-28 2022-06-21 Shift register unit, circuit structure, gate drive circuit, drive circuit and display device

Publications (1)

Publication Number Publication Date
WO2019227939A1 true WO2019227939A1 (zh) 2019-12-05

Family

ID=64314545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070895 WO2019227939A1 (zh) 2018-05-28 2019-01-08 移位寄存器单元、电路结构、栅极驱动电路、驱动电路及显示装置

Country Status (6)

Country Link
US (2) US11488513B2 (zh)
EP (1) EP3806078A4 (zh)
JP (1) JP7303127B2 (zh)
KR (1) KR102314548B1 (zh)
CN (1) CN208141792U (zh)
WO (1) WO2019227939A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208141792U (zh) * 2018-05-28 2018-11-23 北京京东方技术开发有限公司 移位寄存器单元、电路结构、驱动电路及显示装置
CN115398527B (zh) * 2021-03-24 2023-08-04 京东方科技集团股份有限公司 显示基板和显示装置
CN117095714A (zh) * 2022-05-13 2023-11-21 长鑫存储技术有限公司 驱动电路及其驱动方法、存储器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012873A1 (en) * 2003-07-15 2005-01-20 Myung-Jae Park Array substrate, method of manufacturing the same and display apparatus having the same
CN103578433A (zh) * 2012-07-24 2014-02-12 北京京东方光电科技有限公司 一种栅极驱动电路、方法及液晶显示器
CN103632642A (zh) * 2012-08-22 2014-03-12 三星显示有限公司 栅极驱动电路及具有该栅极驱动电路的显示装置
CN107170404A (zh) * 2017-05-19 2017-09-15 友达光电股份有限公司 驱动电路及显示面板
CN107978293A (zh) * 2018-01-03 2018-05-01 惠科股份有限公司 一种曲面显示面板及曲面显示面板的制作方法
CN208141792U (zh) * 2018-05-28 2018-11-23 北京京东方技术开发有限公司 移位寄存器单元、电路结构、驱动电路及显示装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060003968A (ko) * 2004-07-05 2006-01-12 삼성전자주식회사 어레이 기판과 이를 갖는 표시 장치와, 이의 구동장치 및방법
JP5164383B2 (ja) 2006-01-07 2013-03-21 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
KR101471553B1 (ko) 2008-08-14 2014-12-10 삼성디스플레이 주식회사 게이트 구동 회로 및 이를 갖는 표시 장치
KR101619380B1 (ko) * 2009-05-14 2016-05-11 삼성디스플레이 주식회사 식각액 조성물 및 이를 이용한 어레이 기판의 제조방법
KR101330421B1 (ko) * 2009-12-08 2013-11-15 엘지디스플레이 주식회사 게이트 인 패널 구조의 액정표시장치
KR20130094209A (ko) * 2010-04-28 2013-08-23 샤프 가부시키가이샤 시프트 레지스터 및 표시 장치
KR101769400B1 (ko) * 2010-09-08 2017-08-31 삼성디스플레이 주식회사 게이트 구동 장치 및 이를 포함하는 표시 장치
CN102467891B (zh) 2010-10-29 2013-10-09 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动装置及液晶显示器
KR101854825B1 (ko) * 2011-01-10 2018-05-08 삼성디스플레이 주식회사 유기 발광 표시 장치
JP5682385B2 (ja) * 2011-03-10 2015-03-11 セイコーエプソン株式会社 電気光学装置および電子機器
CN102654986A (zh) * 2011-11-25 2012-09-05 京东方科技集团股份有限公司 移位寄存器的级、栅极驱动器、阵列基板以及显示装置
EP2840566B1 (en) * 2012-04-20 2017-06-14 Sharp Kabushiki Kaisha Display device
CN103236419B (zh) * 2013-04-26 2014-12-17 京东方科技集团股份有限公司 阵列基板的制备方法、阵列基板以及显示装置
KR102089074B1 (ko) * 2013-11-07 2020-03-13 엘지디스플레이 주식회사 표시패널용 어레이 기판 및 그 제조방법
KR102397388B1 (ko) 2014-07-24 2022-05-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 모듈 및 전자 기기
KR102360787B1 (ko) * 2015-06-30 2022-02-10 엘지디스플레이 주식회사 내장형 게이트 드라이버 및 그를 이용한 표시 장치
KR102367246B1 (ko) * 2015-07-27 2022-02-25 삼성디스플레이 주식회사 표시 장치
WO2017033952A1 (ja) * 2015-08-26 2017-03-02 シャープ株式会社 表示装置
CN106710541A (zh) * 2015-11-17 2017-05-24 南京瀚宇彩欣科技有限责任公司 液晶显示装置
US10395612B2 (en) * 2015-12-03 2019-08-27 Innolux Corporation Driver circuit
US10067586B2 (en) 2015-12-28 2018-09-04 Lg Display Co., Ltd. Display device with bypass line
KR102465003B1 (ko) * 2016-01-04 2022-11-10 삼성디스플레이 주식회사 표시장치
KR20170092726A (ko) * 2016-02-03 2017-08-14 삼성디스플레이 주식회사 표시장치
JP6312947B1 (ja) * 2016-07-20 2018-04-18 三菱電機株式会社 シフトレジスタ回路および表示パネル
KR20180050464A (ko) * 2016-11-04 2018-05-15 삼성디스플레이 주식회사 표시 장치
JP7110116B2 (ja) * 2017-01-16 2022-08-01 株式会社半導体エネルギー研究所 半導体装置
WO2018138603A1 (en) * 2017-01-26 2018-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
CN108806573B (zh) * 2017-04-27 2021-11-23 乐金显示有限公司 显示装置
KR102497283B1 (ko) * 2017-08-17 2023-02-08 삼성디스플레이 주식회사 디스플레이 장치
KR102426607B1 (ko) * 2017-08-28 2022-07-28 삼성디스플레이 주식회사 표시 장치
KR102341412B1 (ko) * 2017-08-29 2021-12-22 삼성디스플레이 주식회사 표시 장치
CN109427817B (zh) * 2017-08-30 2020-09-15 瀚宇彩晶股份有限公司 薄膜晶体管基板以及显示器
CN107611142B (zh) * 2017-09-11 2020-06-09 上海天马有机发光显示技术有限公司 显示面板及显示装置
WO2019053549A1 (en) * 2017-09-15 2019-03-21 Semiconductor Energy Laboratory Co., Ltd. DISPLAY DEVICE AND ELECTRONIC DEVICE
KR102352312B1 (ko) * 2017-09-29 2022-01-19 삼성디스플레이 주식회사 표시 장치
KR102414940B1 (ko) * 2017-10-31 2022-06-29 엘지디스플레이 주식회사 표시 장치 및 그의 제조방법
US10886327B2 (en) * 2017-12-14 2021-01-05 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
KR102453711B1 (ko) * 2017-12-19 2022-10-11 엘지디스플레이 주식회사 표시 장치
KR102538000B1 (ko) * 2018-03-29 2023-05-31 삼성디스플레이 주식회사 디스플레이 장치
KR20200077197A (ko) 2018-12-20 2020-06-30 엘지디스플레이 주식회사 게이트 구동부를 포함한 전계발광 표시장치
KR102636564B1 (ko) * 2018-12-20 2024-02-15 엘지디스플레이 주식회사 표시장치
CN109686333A (zh) * 2019-02-01 2019-04-26 京东方科技集团股份有限公司 栅极驱动电路及其驱动方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012873A1 (en) * 2003-07-15 2005-01-20 Myung-Jae Park Array substrate, method of manufacturing the same and display apparatus having the same
CN103578433A (zh) * 2012-07-24 2014-02-12 北京京东方光电科技有限公司 一种栅极驱动电路、方法及液晶显示器
CN103632642A (zh) * 2012-08-22 2014-03-12 三星显示有限公司 栅极驱动电路及具有该栅极驱动电路的显示装置
CN107170404A (zh) * 2017-05-19 2017-09-15 友达光电股份有限公司 驱动电路及显示面板
CN107978293A (zh) * 2018-01-03 2018-05-01 惠科股份有限公司 一种曲面显示面板及曲面显示面板的制作方法
CN208141792U (zh) * 2018-05-28 2018-11-23 北京京东方技术开发有限公司 移位寄存器单元、电路结构、驱动电路及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806078A4

Also Published As

Publication number Publication date
US20210335195A1 (en) 2021-10-28
KR20200004424A (ko) 2020-01-13
US11705048B2 (en) 2023-07-18
US20220319391A1 (en) 2022-10-06
JP2021524980A (ja) 2021-09-16
JP7303127B2 (ja) 2023-07-04
EP3806078A4 (en) 2022-03-02
CN208141792U (zh) 2018-11-23
KR102314548B1 (ko) 2021-10-19
EP3806078A1 (en) 2021-04-14
US11488513B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US11876099B2 (en) Displays with silicon and semiconducting oxide thin-film transistors
US9129927B2 (en) Organic light-emitting diode displays with semiconducting-oxide and silicon thin-film transistors
WO2020015569A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
US11404007B2 (en) Display substrate having a scan driving circuit with a plurality of shift registers and manufacturing method thereof
WO2019056795A1 (zh) 移位寄存器单元、驱动装置、显示装置以及驱动方法
US20190088190A1 (en) Shift register, driving method thereof, gate driving circuit and display device
US11705048B2 (en) Shift register unit, circuit structure, gate drive circuit, drive circuit and display device
CN114220400B (zh) 具有栅极驱动器的显示装置
US11094389B2 (en) Shift register unit and driving method, gate driving circuit, and display device
CN114220401B (zh) 具有栅极驱动器的显示装置
US10971102B2 (en) Shift register unit and driving method, gate driving circuit, and display device
CN113506534B (zh) 显示面板
US11908430B2 (en) Display substrate and display device
US11900884B2 (en) Display substrate having a scan driving circuit with a plurality of shift registers and manufacturing method thereof, display device
CN114255701B (zh) 移位寄存器单元及驱动方法、驱动电路和显示装置
WO2021081703A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197037441

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019570504

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019732243

Country of ref document: EP

Effective date: 20210111