WO2019227848A1 - 一种机械法制备壳聚糖及其衍生物纳米纤维的方法 - Google Patents
一种机械法制备壳聚糖及其衍生物纳米纤维的方法 Download PDFInfo
- Publication number
- WO2019227848A1 WO2019227848A1 PCT/CN2018/113231 CN2018113231W WO2019227848A1 WO 2019227848 A1 WO2019227848 A1 WO 2019227848A1 CN 2018113231 W CN2018113231 W CN 2018113231W WO 2019227848 A1 WO2019227848 A1 WO 2019227848A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- chitosan
- nano
- slurry
- homogenizer
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/04—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
- D21B1/12—Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
- D21B1/30—Defibrating by other means
- D21B1/34—Kneading or mixing; Pulpers
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21B—FIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
- D21B1/00—Fibrous raw materials or their mechanical treatment
- D21B1/02—Pretreatment of the raw materials by chemical or physical means
- D21B1/021—Pretreatment of the raw materials by chemical or physical means by chemical means
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C11/00—Regeneration of pulp liquors or effluent waste waters
- D21C11/0007—Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C9/00—After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
- D21C9/001—Modification of pulp properties
- D21C9/007—Modification of pulp properties by mechanical or physical means
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21D—TREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
- D21D1/00—Methods of beating or refining; Beaters of the Hollander type
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/16—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
- D21H11/18—Highly hydrated, swollen or fibrillatable fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/28—Organic non-cellulose fibres from natural polymers
- D21H13/30—Non-cellulose polysaccharides
Definitions
- the invention relates to the field of nanomaterials such as daily chemicals, biomedicine, and the like, and particularly relates to a method for preparing chitosan and its derivative nanofibers by a mechanical method.
- Chitosan is also known as soluble chitin, chitin, chitosan, etc.
- the chemical name is 2-amino- ⁇ -1,4- Dextran is a natural cationic polysaccharide obtained after deacetylation of chitin.
- Chitosan and its derivatives have good biocompatibility, degradability, hygroscopicity, non-toxicity, antibacterial, and It has excellent properties such as fibrous properties, film-forming properties, and certain antibacterial and antitumor properties. It has broad application prospects in the fields of medicine, food, textiles, daily chemicals, and environmental protection.
- Chitosan is widely distributed in nature. It is known as a universal polysaccharide and is a cheap and easily available raw material.
- nano-chitosan materials are mainly made of chitosan nanoparticles by emulsion dripping, emulsification solvent diffusion method, reverse micelle method, polyelectrolyte complexing method, and chitosan nanofibers can also be prepared by freeze-drying.
- Chitosan nanoparticles have been widely used in biomedicine and metal particle composite materials, but due to the limitation of the preparation method, the preparation form can only be spherical particles, and other forms cannot be prepared.
- Sugar has excellent properties, such as large specific surface area, high strength, high crystallinity, and ultra-fine structure.
- the freeze-drying method can prepare nano-chitosan fibers, its manufacturing cost is high, liquid nitrogen needs to be used during processing, and it can only stay in the laboratory stage, and its manufacturing size is difficult to control. Therefore, the present invention proposes a method for preparing nano-chitosan fibers by mechanical method. Based on the principle of papermaking and beating, the method can prepare nano-chitosan fibers on a large scale, reduce the cost of preparing nano-chitosan fibers, and prepare fibrous filaments. Broomed Nano Chitosan Fibers.
- the object of the present invention is to provide a method for preparing chitosan and its derivative nanofibers by a mechanical method.
- This method uses chitosan fiber or chitosan derivative fiber as the main raw material.
- the method uses the basic process of papermaking fiber beating production. It has a simple process, can be continuously produced, and uses chitosan fiber-like raw material as the basic production raw material.
- Cost Inferior advantage Overcoming the shortcomings of existing products, such as complex operation, single nanochitosan form, and ultra-low temperature environment required for preparation. At the same time, the process technology and equipment are very mature in the papermaking process, and the requirements for raw materials are relatively low. It is beneficial to reduce costs and realize industrial production, and can effectively promote the wide application of nano-chitosan fibers.
- the principle of the present invention is to use chitosan fiber or chitosan derivative fiber as the basic raw material, first pretreat it by moistening, alkali or acid solution, and then grind (beat) the processed fiber raw material After the processed raw materials are subjected to nano-homogenization treatment using a homogenizer, nano-chitosan fibers are obtained.
- the method is simple to operate and can realize continuous production.
- the fibrous nano-chitosan obtained is a new type of nano-chitosan.
- the nano-chitosan fiber prepared by the method has great industrial and medical application value and social benefits. .
- a method for mechanically preparing chitosan and its derivative nanofibers includes the following steps:
- step (3) The fiber slurry obtained in step (2) is put into deionized water, and the fiber slurry is fully degraded and diluted into a turbid liquid with a dehydrator;
- step (3) Suspend the chitosan fiber prepared in step (3)
- the liquid is homogenized in a high-pressure homogenizer, and the nano-chitosan fiber emulsion can be made by repeating the homogenization multiple times.
- step (1 The fiber material used is characterized in that the main raw material is a fibrous raw material and the main component is chitosan, and the fiber morphology is similar to the fiber raw material component that can be used in the papermaking process.
- the fiber material in step (1) is a chitosan fiber or a chitosan derivative fiber material, with a length of 1mm-3mm and a width of 5-30um; the mass concentration of the dilute acid or base is 0.05wt% -10wt%, for example: 1wt% sodium hydroxide solution is used as the pretreatment solution, and the slurry treatment concentration is 3% (Solids weight ratio).
- the grinding treatment in step (2) uses a conventional grinding process in a papermaking process.
- Beating process the grinding equipment is a mechanical processing equipment for fibrillating the fibrous material;
- the mechanical processing equipment is a disc refiner, a conical refiner or a cylindrical refiner in the papermaking process; it also includes an intermittent Beating equipment: trough beater.
- the disintegrator in step (3) is an LW slurry disintegrator, such as a slurry disperser, a high-efficiency disintegrator, and the like; the concentration of the chitosan fiber is 0.01wt% -1wt%, preferably 0.03wt%.
- the homogenizer in step (4) is a high-pressure microjet nano-dispersion device MINI (large machine) and an ultra-high-pressure nano-homogeneizer Nano DeBEE (small machine) and other nano homogenizer equipment.
- the number of times of homogenization in step (4) is 5-40 times, preferably 10 times; the operating temperature is 10 °C -60 °C, preferably 20 °C, the temperature rises too high during the operation, it needs to stop and cool down.
- steps (1) and (2) are not performed.
- Treatment directly perform the step (3) treatment on the dispersed and diluted fiber slurry.
- the present invention has the following advantages and effects:
- the fibrous fibrillated nano-chitosan fiber morphology can be prepared, and the size of the nano-chitosan fiber can be controlled by adjusting the beating conditions and the number of homogenization times.
- a nano-chitosan fiber is prepared by dividing the filament into filaments.
- the single fiber contains branched chains to make the connection between the fibers closer, and the increase in the number of binding sites is beneficial to the composite and modification of the nano-chitosan fiber and other materials.
- the preparation process of the invention is simple, and the nano-chitosan fiber is mainly prepared by a mechanical method without introducing other groups, which is beneficial to the purification of the nano-chitosan fiber, and its biocompatibility is improved for its application in medicine.
- the present invention adopts mature process methods and equipment in the paper industry, which can reduce the production cost, and is expected to carry out large-scale industrial production.
- the subsequent widespread application provides a basis for efficient preparation.
- Figure 1 is a TEM image of the nano-chitosan fiber prepared in Example 1.
- Figure 2 is a TEM image of the nano-chitosan fiber prepared in Example 3.
- FIG. 3 is a TEM image of the nano-chitosan fiber prepared in Example 5.
- FIG. 1 is an example 1 TEM images of nano-chitosan fibers (where a, b, and c correspond to different magnifications), as shown in Figure 1 It can be seen that, in the projected electron microscope image of the treated chitosan fiber, the nano-chitosan fiber diameter reaches the nanometer level.
- the homogenized fiber turbidity solution is poured into a homogenizer and homogenized. After 20 times of homogenization, a nano-chitosan fiber emulsion can be obtained, as shown in Figure 2 The diameter of the nano-chitosan fiber also reached the nanometer level.
- the slurry suspension is put into a dehydration machine to dissolve so that the fibers are uniformly dispersed in water. Pour the homogeneously dispersed fiber turbidity into a homogenizer and homogenize. After 20 times of homogenization, a nano-chitosan fiber emulsion can be obtained, as shown in Figure 3, The diameter of the nano-chitosan fiber also reached the nanometer level.
- the slurry suspension is put into a dehydration machine to dissolve so that the fibers are uniformly dispersed in water.
- the homogenized fiber turbid liquid is poured into a homogenizer and homogenized. After homogenizing 30 times, a nano-chitosan fiber emulsion can be obtained. The diameter of the nano-chitosan fiber also reached the nanometer level.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Paper (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
本发明公开了一种机械法制备壳聚糖及其衍生物纳米纤维的方法。该方法首先将适当长度的壳聚糖纤维或壳聚糖衍生物纤维材料(简称壳聚糖纤维)加入水或适当浓度的碱液或酸液中进行预处理,然后将处理后的纤维进行磨解处理(优选制浆造纸过程中的打浆设备),得到微米级壳聚糖纤维,最后将微米级壳聚糖纤维高压均质,即可制得纳米壳聚糖纤维。经电镜图可知,制得的壳聚糖纤维达到纳米级别。该方法操作简单,便于开展工业化生产,制备出的新形态的纳米壳聚糖纤维,在生物医疗、日用化工及特种材料方面具有广阔的应用前景
Description
技术领域
本发明涉及日化、生物医学等纳米材料领域,具体涉及一种机械法制备壳聚糖及其衍生物纳米纤维的方法。
背景技术
壳聚糖( Chitosan )又称可溶性甲壳质、甲壳胺、几丁聚糖等,化学名为 2- 氨基 - β
-1,4-
葡聚糖,它是甲壳素脱乙酰基后而得到的一种天然阳离子多糖,壳聚糖及其衍生物具有良好的生物相容性、可降解性、吸湿性、无毒性、抗菌性、成纤性、成膜性及一定的抗菌和抗肿瘤等优异特性,在医药、食品、纺织、日化、环保等领域具有广阔的应用前景。壳聚糖在自然界的分布广泛,有万能多糖的美称,是一种廉价易得的原料。目前纳米壳聚糖材料主要是应用乳剂液滴发、乳化溶剂扩散法、反向胶束法、聚电解质络合的方法制作壳聚糖纳米粒子,也有用冷冻干燥的方法制备壳聚糖纳米纤维。壳聚糖纳米粒子在生物医疗、与金属粒子复合材料方面得到广泛应用,但源于制备方法的限制其制备形态只能是类球形的颗粒,不能制备出其它形态,而纤维形态的纳米壳聚糖又拥有优异的性能,如较大的比表面积、高强度、高结晶度、超精细结构等。冷冻干燥的方法虽然可以制备纳米壳聚糖纤维,但是其制造成本高,处理过程中需要使用液氮,只能停留在实验室阶段,而且其制造尺寸难以控制。所以本发明提出一种机械法制备纳米壳聚糖纤维的方法,本方法基于造纸打浆的原理可以大规模制备纳米壳聚糖纤维,降低纳米壳聚糖纤维制备的成本,同时制备纤维状分丝帚化的纳米壳聚糖纤维。
发明内容
针对目前纳米壳聚糖材料制备方法上存在的缺点和不足,本发明的目的在于提供了一种机械法制备壳聚糖及其衍生物纳米纤维的方法。该方法采用壳聚糖纤维或壳聚糖衍生物纤维作为主要原料,该方法采用造纸纤维打浆生产的基本工艺,具有工艺简单、可连续生产、采用壳聚糖纤维状原料作为基本生产原料、成本低等优点
,
克服目前已有产品操作复杂、纳米壳聚糖形态单一、制备需要超低温环境等缺点;同时,造纸打浆生产过程中工艺技术和设备非常成熟,对原料要求相对较低,参与介质多数可以重复利用,有利于降低成本,实现工业化生产,可有效推动纳米壳聚糖纤维的广泛应用。
本发明的原理是利用壳聚糖纤维或壳聚糖衍生物纤维作为基本原料,首先通过润涨、碱或酸溶液对其进行预处理,再对处理后的纤维原料进行磨(打)浆处理,处理后的原料利用均质机进行纳米均质化处理得到纳米壳聚糖纤维。该方法操作简单、可实现连续化生产,制得纤维状纳米壳聚糖是一种新型的纳米壳聚糖形态,本方法制备出的纳米壳聚糖纤维极具工业、医疗应用价值和社会效益。
本发明的目的通过以下技术方案得以实现。
一种机械法制备壳聚糖及其衍生物纳米纤维的方法,包括如下步骤:
( 1 )将壳聚糖纤维或壳聚糖衍生物纤维材料切断成合适的长度( 30mm
以下),然后采用清水(要求较高条件下可采用去离子水)、稀酸或稀碱对纤维材料进行预处理,使纤维发生润胀,有利于后续处理过程;
( 2 )将步骤( 1
)处理完成后的纤维材料进行磨解处理,根据需要对纤维进行切断、分丝帚化和细纤维化等,得纤维浆料;
( 3 )将步骤( 2 )所得纤维浆料放入去离子水中,并用疏解机充分疏解稀释成浊液 ;
( 4 )将步骤( 3 )制备的壳聚糖纤维悬浮 浊
液放入高压均质机中均质,多次重复均质便可制成纳米壳聚糖纤维乳液。
优选的,步骤( 1
)所采用的纤维材料特征为:主体原料为纤维状原料,主体成分为壳聚糖,其纤维形态类似于可用于造纸过程中的纤维原料组分。
进一步优选的,步骤( 1 )所述纤维材料为壳聚糖纤维或壳聚糖衍生物纤维材料,长度 1mm-3mm ,宽度
5-30um ;所述稀酸或稀碱的质量浓度为 0.05wt%-10wt% ,例如:采用 1wt% 的氢氧化钠溶液作为预处理液,浆液处理浓度为 3%
(固形物重量比)。
优选的,步骤( 2 )中的磨解处理采用的是造纸过程中的常规磨 /
打浆工艺处理方法;所述磨解设备是将纤维材料细纤维化的机械处理设备;所述机械处理设备是造纸过程中的盘磨机、锥形磨浆机或圆柱磨浆机;还包括间歇打浆设备:槽式打浆机。
优选的,步骤( 3 )所述疏解机为 LW 浆料疏解机 浆料疏解机、高效疏解机等疏解机设备;壳聚糖纤维浓度为
0.01wt%-1wt% ,优选为 0.03wt% 。
优选的,步骤( 4 )所述均质机为高压微射流纳米分散设备 MINI (大机)、超高压纳米均质机 Nano
DeBEE (小机)等纳米均质机设备。
优选的,步骤( 4 )所述均质次数为 5 次 -40 次,优选为 10 次;操作温度为 10 ℃ -60
℃,优选为 20 ℃ ,操作过程中升温过高,需停机降温。
优选的,纤维材料剪切后尺度为 1mm 以下时,不经过步骤( 1 )、步骤( 2
)处理,直接将分散稀释后的纤维浆料进行步骤( 3 ) 处理。
相对于现有技术,本发明具有以下优点和效果:
1. 与纳米壳聚糖颗粒和冷冻法得到的纳米壳聚糖纤维相比
,本发明可以制备出纤维状分丝帚化的纳米壳聚糖纤维形态,通过调控打浆条件、均质次数可以控制纳米壳聚糖纤维的尺寸。
2. 与纳米壳聚糖颗粒和冷冻法得到的纳米壳聚糖纤维相比
,本发明制备分丝帚化的纳米壳聚糖纤维,单根纤维含有支链使纤维之间的连接更加紧密,结合位点增多有利于纳米壳聚糖纤维与其它材料复合、改性。
3. 与纳米壳聚糖颗粒和冷冻法得到的纳米壳聚糖纤维相比 ,
本发明的制备工艺简单,主要采用机械方法制备纳米壳聚糖纤维可以不引入其它基团,有利于纳米壳聚糖纤维的纯化,提高其生物适性利于其在医药方面的应用。
4.
与纳米壳聚糖颗粒和冷冻法得到的纳米壳聚糖纤维相比,本发明采用造纸工业中成熟的工艺方法和设备,可降低生产成本,有望进行大规模工业生产,为纳米壳聚糖纤维之后的广泛应用提供高效的制备基础。
附图说明
图 1 为 实例 1 制得的纳米壳聚糖纤维的 TEM 图。
图 2 为实例 3 制得的纳米壳聚糖纤维的 TEM 图。
图 3 为实施例 5 制得的纳米壳聚糖纤维的 TEM 图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。
实施例 1
首先将 30 克壳聚糖纤维切断成 1mm-3mm 的长度,放入去离子水中充分吸水润涨 8
小时,之后将浆料倒入滤网中揉搓去水,将去水后的浆料静置平衡水分 2 个小时,测量平衡水分后浆料的含水量,调节浆料干度为 10wt% ,采用 PFI
磨浆机对其进行 50000 转打浆处理,将打浆好的浆料纤维放入去离子水中,分散成浓度为 0.3wt%
的浆料悬浮液,将悬浮液放入疏解机中疏解使纤维均匀分散在水中。将分散均匀后的纤维浊液倒入均质机中均质,均质 5 次后便可得到纳米壳聚糖纤维乳液。图 1 为 实例
1 纳米壳聚糖纤维 TEM 图(其中 a 、 b 、 c 对应不同的放大比例),由 图 1
可知,经过处理的壳聚糖纤维的投射电镜图片中,纳米壳聚糖纤维直径达到了纳米级别。
实施例 2
首先将 30 克壳聚糖衍生物纤维切断成 30mm 的长度,放入 10wt% 碱性溶液中浸泡 1h
,之后将浆料倒入滤网中用水冲洗多次至洗液成弱碱性,挤压去水,将去水后的浆料静置平衡水分 2 个小时,测量平衡水分后浆料的含水量,调节浆料干度为 10wt%
,采用 PFI 磨浆机对其进行 80000 转打浆处理,将打浆好的浆料纤维放入去离子水中,分散成浓度为 0.01wt%
的浆料悬浮液,将悬浮液放入疏解机中疏解使纤维均匀分散在水中。将分散均匀后的纤维浊液倒入均质机中均质,均质 40
次后便可得到纳米壳聚糖纤维乳液,纳米壳聚糖纤维的直径同样达到了纳米级别。
实施例 3
首先将 30 克壳聚糖纤维切断成 3mm-5mm 的长度,放入 0.05wt% 酸性溶液中浸泡 0.5h
,之后将浆料倒入滤网中用水冲洗多次至洗液成弱酸性,挤压去水,将去水后的浆料静置平衡水分 2 个小时,测量平衡水分后浆料的含水量,调节浆料干度为 10wt%
,采用圆柱磨浆机对其进行 50000 转打浆处理,将打浆好的浆料纤维放入去离子水中,分散成浓度为 1wt%
的浆料悬浮液,将悬浮液放入疏解机中疏解使纤维均匀分散在水中。将分散均匀后的纤维浊液倒入均质机中均质,均质 20 次后便可得到纳米壳聚糖纤维乳液,如图 2
,纳米壳聚糖纤维的直径同样达到了纳米级别。
实施例 4
首先将 30 克壳聚糖纤维切断成 10mm-15mm 的长度,放入 0.1wt% 酸性溶液中浸泡 0.5h
,之后将浆料倒入滤网中用水冲洗多次至洗液成弱酸性,挤压去水,将去水后的浆料静置平衡水分 2 个小时,测量平衡水分后浆料的含水量,调节浆料干度为 10wt%
,采用 圆柱磨浆机 对其进行 80000 转打浆处理,将打浆好的浆料纤维放入去离子水中,分散成浓度为 0.5wt%
的浆料悬浮液,将悬浮液放入疏解机中疏解使纤维均匀分散在水中。将分散均匀后的纤维浊液倒入均质机中均质,均质 25 次后便可得到纳米壳聚糖纤维乳液,
纳米壳聚糖纤维的直径同样达到了纳米级别。
实施例 5
首先将 30 克壳聚糖纤维切断成 15mm-20mm 的长度,放入 5wt% 碱性溶液中浸泡 2h
,之后将浆料倒入滤网中用水冲洗多次至洗液成弱碱性,挤压去水,将去水后的浆料静置平衡水分 2 个小时,测量平衡水分后浆料的含水量,调节浆料干度为 10wt%
,采用 锥形磨浆机 对其进行 100000 转打浆处理,将打浆好的浆料纤维放入去离子水中,分散成浓度为 0.1wt%
的浆料悬浮液,将悬浮液放入疏解机中疏解使纤维均匀分散在水中。将分散均匀后的纤维浊液倒入均质机中均质,均质 20 次后便可得到纳米壳聚糖纤维乳液,如图 3 ,
纳米壳聚糖纤维的直径同样达到了纳米级别。
实施例 6
首先将 30 克壳聚糖纤维切断成 3mm-5mm 的长度,放入去离子水中充分吸水润涨 8
小时,之后将浆料倒入滤网中揉搓去水,将去水后的浆料静置平衡水分 2 个小时,测量平衡水分后浆料的含水量,调节浆料干度为 10wt% ,采用 锥形磨浆机
对其进行 100000 转打浆处理,将打浆好的浆料纤维放入去离子水中,分散成浓度为 0.03wt%
的浆料悬浮液,将悬浮液放入疏解机中疏解使纤维均匀分散在水中。将分散均匀后的纤维浊液倒入均质机中均质,均质 10 次后便可得到纳米壳聚糖纤维乳液,
纳米壳聚糖纤维的直径同样达到了纳米级别。
实施例 7
将 1 克长度在 1mm 以下的壳聚糖纤维放入去离子水中分散成浓度为 0.03wt%
的浆料悬浮液,将悬浮液放入疏解机中疏解使纤维均匀分散在水中。将分散均匀后的纤维浊液倒入均质机中均质,均质 30 次后便可得到纳米壳聚糖纤维乳液 ,
纳米壳聚糖纤维的直径同样达到了纳米级别。
Claims (10)
- 一种机械法制备壳聚糖及其衍生物纳米纤维的方法,其特征在于,包括如下步骤:( 1 )将纤维材料剪切,然后采用去离子水浸泡或用稀碱、稀酸对纤维材料进行预处理,所述纤维材料为壳聚糖纤维或壳聚糖衍生物纤维;( 2 )将步骤( 1 )预处理完成后的纤维材料采用磨解设备进行初步的机械处理,能得到微米尺度的纤维浆料;( 3 )将步骤( 2 )所得微米尺度的纤维浆料放入去离子水中,用疏解机疏解稀释成纤维浊液;( 4 )将步骤( 3 )制备的纤维浊液放入高压均质机中均质,制成纳米壳聚糖纤维乳液。
- 根据权利要求 1 所述的方法,其特征在于,步骤( 1 )所述纤维材料剪切后纤维长度在 30mm 以下;稀酸或稀碱的质量浓度为 0.05wt%-10wt% 。
- 根据权利要求 1 所述的方法,其特征在于,步骤( 2 )所述磨解设备是将纤维材料细纤维化的机械处理设备。
- 根据权利要求 3 所述的方法,其特征在于,所述机械处理设备是造纸过程中的 连续打浆 设备,即盘磨机、锥形磨浆机或圆柱磨浆机。
- 根据权利要求 3 所述的方法,其特征在于,所述机械处理设备还包括间歇打浆设备,即槽式打浆机。
- 根据权利要求 1 所述的方法,其特征在于,步骤( 3 )所述纤维浊液质量浓度为 0.01wt%-1wt% 。
- 根据权利要求 1 所述的方法,其特征在于,步骤( 4 )所述 高压均质机为 纳米均质机设备。
- 根据权利要求 7 所述的方法,其特征在于,所述纳米均质机设备为高压微射流纳米分散设备 MINI 或超高压纳米均质机 Nano DeBEE 。
- 根据权利要求 1 所述的方法,其特征在于,纤维材料剪切后尺度为 1mm 以下时,纤维用水分散后不需经过步骤( 1 )、步骤( 2 )处理,直接进行步骤( 3 ) 处理 。
- 根据权利要求 1 所述的方法,其特征在于,步骤( 4 )所述均质次数为 5 次 -40 次;操作温度为 10 ℃ -60 ℃ 。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/049,970 US20210238800A1 (en) | 2018-05-31 | 2018-10-31 | Method for preparing chitosan and derivative nanofiber thereof by mechanical means |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810551929.1 | 2018-05-31 | ||
CN201810551929.1A CN108547011A (zh) | 2018-05-31 | 2018-05-31 | 一种机械法制备壳聚糖及其衍生物纳米纤维的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019227848A1 true WO2019227848A1 (zh) | 2019-12-05 |
Family
ID=63511688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/113231 WO2019227848A1 (zh) | 2018-05-31 | 2018-10-31 | 一种机械法制备壳聚糖及其衍生物纳米纤维的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210238800A1 (zh) |
CN (1) | CN108547011A (zh) |
WO (1) | WO2019227848A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110093683B (zh) * | 2019-05-08 | 2020-09-04 | 北京理工大学 | 一种壳聚糖纳米纤维的制备方法 |
CN110205859B (zh) * | 2019-05-25 | 2021-10-26 | 华南理工大学 | 一种纳米几丁质增强纤维复合纸及其制备方法 |
CN114210714B (zh) * | 2021-11-05 | 2022-11-22 | 新疆冠农果茸股份有限公司 | 一种可提高废弃秸秆利用的厌氧发酵方法 |
CN116065262B (zh) * | 2023-01-07 | 2024-04-05 | 华南理工大学 | 一种高压处理制备环境友好纳米纤维的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103408805A (zh) * | 2013-07-23 | 2013-11-27 | 华南理工大学 | 纳米纤维素纤维增强的半纤维素膜及其制备方法 |
CN104761648A (zh) * | 2015-04-15 | 2015-07-08 | 桂林理工大学 | 一种纳米纤维素的低能耗制备方法 |
CN107653723A (zh) * | 2017-09-11 | 2018-02-02 | 天津科技大学 | 一种可实现化学机械浆微纤丝化并用于增强纸张物理强度的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106265580B (zh) * | 2015-05-18 | 2020-09-08 | 中国科学院上海药物研究所 | Somcl-9112固体分散体、其制备方法及包含其的somcl-9112固体制剂 |
-
2018
- 2018-05-31 CN CN201810551929.1A patent/CN108547011A/zh active Pending
- 2018-10-31 WO PCT/CN2018/113231 patent/WO2019227848A1/zh active Application Filing
- 2018-10-31 US US17/049,970 patent/US20210238800A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103408805A (zh) * | 2013-07-23 | 2013-11-27 | 华南理工大学 | 纳米纤维素纤维增强的半纤维素膜及其制备方法 |
CN104761648A (zh) * | 2015-04-15 | 2015-07-08 | 桂林理工大学 | 一种纳米纤维素的低能耗制备方法 |
CN107653723A (zh) * | 2017-09-11 | 2018-02-02 | 天津科技大学 | 一种可实现化学机械浆微纤丝化并用于增强纸张物理强度的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108547011A (zh) | 2018-09-18 |
US20210238800A1 (en) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019227848A1 (zh) | 一种机械法制备壳聚糖及其衍生物纳米纤维的方法 | |
JP6521266B2 (ja) | 微細繊維状セルロース凝集物、微細繊維状セルロース凝集物の製造方法及び微細繊維状セルロース分散液の再製造方法 | |
EP2853635B1 (en) | Method for producing fine fiber, fine fiber, non-woven fabric, and fine fibrous cellulose | |
US11084886B2 (en) | Material comprising ultrafine cellulose fibers | |
CN110205862B (zh) | 一种芳纶纳米纤维自增强芳纶云母纸的制备方法 | |
CN102220718B (zh) | 一种高压破碎低温冷却制备纳米纤维素的方法 | |
EP3505563A1 (en) | Fibrous cellulose-containing material and method for producing fibrous cellulose-containing material | |
CN101187092A (zh) | 多离子海藻酸盐海洋纤维及其制备方法 | |
CN103321085B (zh) | 一种高物理强度绝缘性间位芳纶纸及其制备方法和应用 | |
KR20190112317A (ko) | 섬유상 셀룰로오스, 섬유상 셀룰로오스 함유 조성물, 섬유상 셀룰로오스 분산액 및 섬유상 셀룰로오스의 제조 방법 | |
JP6418212B2 (ja) | 微細繊維状セルロース含有物 | |
WO2017134334A1 (en) | A process for producing microfibrillated cellulose and a product thereof | |
CN112048797B (zh) | 一种阻燃纱线及其生产工艺 | |
CN109970875A (zh) | 一种纤维素纳米纤维及其制备方法 | |
WO2020258827A1 (zh) | 一种水溶液可再分散型纤维素纳米纤丝的制备方法 | |
CN103966891B (zh) | 一种纤维浆粕的制备方法及其制备的纤维浆粕 | |
EP3872184A1 (en) | Fine fibrous cellulose-containing composition and method for manufacturing same | |
Sun et al. | High lignin-containing nanocelluloses prepared via TEMPO-mediated oxidation and polyethylenimine functionalization for antioxidant and antibacterial applications | |
Lv et al. | Tuning the properties of pineapple peel cellulose nanofibrils by TEMPO-mediated oxidation and ball milling | |
CN115029808A (zh) | 一种纤维素纳米材料及其连续制备方法 | |
CN108774289B (zh) | 高羧基含量几丁质纳米纤维分散液的制备方法、高羧基含量几丁质纳米纤维分散液和应用 | |
CN108409869A (zh) | 一种羧甲基化纤维素纳米纤丝及其制备方法 | |
CN113583270A (zh) | 一种高导电和高导热的细菌纤维素/石墨烯复合纸及其制备方法 | |
He et al. | Nanofibrillation of a bleached acacia pulp by grinding with carboxymethylation pretreatment | |
KR20220024760A (ko) | 해조류 유래 천연 복합 재료 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18920941 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07.05.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18920941 Country of ref document: EP Kind code of ref document: A1 |