WO2019227568A1 - 多通道电源管理模块 - Google Patents

多通道电源管理模块 Download PDF

Info

Publication number
WO2019227568A1
WO2019227568A1 PCT/CN2018/094170 CN2018094170W WO2019227568A1 WO 2019227568 A1 WO2019227568 A1 WO 2019227568A1 CN 2018094170 W CN2018094170 W CN 2018094170W WO 2019227568 A1 WO2019227568 A1 WO 2019227568A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
diode chip
voltage
electrode frame
voltage diode
Prior art date
Application number
PCT/CN2018/094170
Other languages
English (en)
French (fr)
Inventor
邰小俊
蔡慧明
Original Assignee
苏州同泰新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州同泰新能源科技有限公司 filed Critical 苏州同泰新能源科技有限公司
Publication of WO2019227568A1 publication Critical patent/WO2019227568A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • H02S40/345Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes with cooling means associated with the electrical connection means, e.g. cooling means associated with or applied to the junction box
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of photovoltaic modules, in particular to a multi-channel power management module.
  • Photovoltaic modules are widely used in solar power generation, and photovoltaic junction boxes are used to interconnect photovoltaic modules with external power modules and output the power of photovoltaic modules to the outside.
  • the Schottky diode assembled in the photovoltaic module junction box acts as a bypass protection device for the photovoltaic module, thereby ensuring the normal operation of the photovoltaic module.
  • Photovoltaic power management module is an important part of solar photovoltaic junction box. It can be used in the junction box of photovoltaic panels of various modules at the same time. It is used to protect the batteries that may be shielded from the energy generated by light modules when the hot spot effect occurs. Consumed by the component.
  • the diode chip in the junction box of the photovoltaic module is connected to the conductor through riveting or crimping or welding or through auxiliary components, and heat is transmitted through the diode pins. In this way, the heat generated on the PN junction of the diode chip is difficult to dissipate, resulting in a high temperature rise of the diode chip and easy damage.
  • the protective bypass function cannot work normally.
  • the object of the present invention is to provide a multi-channel power management module, which has a longer creepage distance, has a component bypass output, and is not prone to thermal damage.
  • a multi-channel power management module includes at least two low-voltage electrode frames, and a low-voltage diode chip is disposed between adjacent low-voltage electrode frames; the low-voltage electrode frame; The upper part is provided with a bus bar lead-out hole, the lower part of the low-voltage electrode frame on the left is provided with a welding portion of a normal current input terminal, and the low-voltage electrode frame on the right is provided with a welding portion of a normal current output terminal; it also includes two high-voltage electrode frames.
  • a high-voltage diode chip is provided between the two high-voltage electrode frames; the high-voltage diode chip is connected to a common negative electrode of the low-voltage diode chip, and the high-voltage electrode frame on the left side is provided with a welding part for the bypass current input end of the component and the high-voltage side on the right side.
  • the electrode frame is provided with a welding portion at the output end of the sampling signal.
  • a control electrode frame is further provided.
  • the control electrode frame is provided with a welding part for the control output end, and the control output end is connected to the normal current input terminal and the component bypass current input terminal through a single-pole double-throw switch, respectively. connection.
  • the welding part of the bypass current input end of the component is directly connected to the welding part of the normal current input end.
  • low-voltage electrode frames there are four low-voltage electrode frames, namely a first low-voltage electrode frame, a second low-voltage electrode frame, a third low-voltage electrode frame, and a fourth low-voltage electrode frame.
  • a first low-voltage diode chip is disposed between the second low-voltage electrode frame, and a second low-voltage diode chip is disposed between the second low-voltage electrode frame and the third low-voltage electrode frame.
  • a third low-voltage diode chip is disposed between the low-voltage electrode frames; the first low-voltage diode chip, the second low-voltage diode chip, and the third low-voltage diode chip are connected in series, and an input terminal of the first low-voltage diode chip is connected to a normal The welding portion of the current input terminal, and the output terminal of the third low-voltage diode chip is connected to the welding portion of the normal current output terminal.
  • a lower portion of the first low-voltage electrode frame is a welding portion at a normal current input end.
  • a lower portion of the fourth low-voltage electrode frame is a welding portion of a normal current output terminal, and a welding portion of a sampling signal output terminal of the high-voltage electrode frame on the right side and a lower portion of the fourth low-voltage electrode frame are normal current output.
  • the welds at the ends are the same weld.
  • the first high-voltage diode chip is connected in parallel to the first low-voltage diode after being connected in series.
  • Chip, second low voltage diode chip, and third low voltage diode chip are connected in parallel to the first low voltage diode chip and second low voltage diode chip in series, and the third high voltage diode chip is connected in series After the second low-voltage diode chip and the third low-voltage diode chip.
  • it further includes a heat-dissipating electrode frame disposed between the welding portion of the normal current input terminal and the welding portion of the component bypass current input terminal.
  • the low voltage diode chip has a P junction and an N junction, and the N junction of the low voltage diode chip is electrically connected to the low voltage electrode frame on the right side, and the P junction of the low voltage diode chip is electrically connected through a jumper wire. Connected to the left low-voltage electrode frame.
  • the high voltage diode chip has a P junction and an N junction, and the N junction of the high voltage diode chip is electrically connected to the high voltage electrode frame located on the right side, and the P junction of the high voltage diode chip is electrically connected through a jumper wire. Connected to the left high-voltage electrode frame.
  • the present invention has the beneficial effects that the multi-channel power management module of the present invention has a longer creepage distance, and also has a function of component bypass output, which has the characteristics of being less prone to thermal damage, further ensuring usability and heat dissipation. Function is good.
  • FIG. 1 is a schematic structural diagram of a multi-channel power management module in Embodiment 1-1 of the present invention.
  • FIG. 2 is an internal schematic diagram of a multi-channel power management module in Embodiment 1-1 of the present invention.
  • FIG. 3 is a schematic diagram of a multi-channel power management module in Embodiment 1-1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a multi-channel power management module in Embodiments 1-2 of the present invention.
  • FIG. 5 is an internal schematic diagram of a multi-channel power management module in Embodiment 1-2 of the present invention.
  • FIG. 6 is a schematic diagram of a multi-channel power management module in Embodiment 1-2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a multi-channel power management module in Embodiments 1-3 of the present invention.
  • FIG. 8 is an internal schematic diagram of a multi-channel power management module in Embodiments 1-3 of the present invention.
  • FIG. 9 is a schematic diagram of a multi-channel power management module in Embodiments 1-3 of the present invention.
  • FIG. 10 is a top view of a smart junction box in the present invention.
  • FIG. 11 is a bottom view of a smart junction box in the present invention.
  • Fig. 12 is a sectional view taken along the line A-A of Fig. 5 in the present invention.
  • FIG. 13 is an exploded view of a smart junction box with a multi-channel power management module in the present invention.
  • a multi-channel power management module includes at least two low-voltage electrode frames 11, and a low-voltage diode chip 12 is disposed between adjacent low-voltage electrode frames 11; There are bus-belt lead-out holes 13, a welding portion of the normal current input terminal 14 is provided at the lower portion of the low-voltage electrode frame 11 on the left side, and a welding portion of a normal current output terminal 15 is provided on the right-side low-voltage electrode frame 11; A high-voltage electrode frame 16 is provided with a high-voltage diode chip 17 between the two high-voltage electrode frames 16; the high-voltage diode chip 17 and the low-voltage diode chip 12 are connected to a common negative electrode, and the high-voltage electrode frame 16 on the left side is provided with a component bypass current The welding portion of the input terminal 18 and the high-voltage electrode frame 16 on the right side are provided with a welding portion of the sampling signal output terminal 15.
  • FIGS. 1 to 3 it further includes a control electrode frame 19, which is provided with a welding part of the control output terminal 110, and the control output terminal 110 passes through
  • the single-pole double-throw switch 111 is respectively connected to the normal current input terminal 14 and the component bypass current input terminal 18.
  • low-voltage electrode frames 11 there are four low-voltage electrode frames 11, namely a first low-voltage electrode frame 113, a second low-voltage electrode frame 114, a third low-voltage electrode frame 115, and a fourth low-voltage electrode frame 116.
  • a first low-voltage diode chip 117 is provided between the frame 113 and the second low-voltage electrode frame 114
  • a second low-voltage diode chip 118 is provided between the second low-voltage electrode frame 114 and the third low-voltage electrode frame 115.
  • a third low-voltage diode chip 119 is disposed between the third low-voltage electrode frame 115 and the fourth low-voltage electrode frame 116; the first low-voltage diode chip 117, the second low-voltage diode chip 118, and the third low-voltage diode chip 119 are connected in series, where The input terminal of the first low-voltage diode chip 117 is connected to the welding portion of the normal current input terminal 14, and the output terminal of the third low-voltage diode chip 119 is connected to the welding portion of the normal current output terminal 15.
  • a lower portion of the first low-voltage electrode frame 113 is a welding portion of the normal current input terminal 14.
  • a lower portion of the fourth low-voltage electrode frame 116 is a welding portion of the normal current output terminal 15, and a welding portion of the sampling signal output terminal 15 of the high-voltage electrode frame 16 on the right side and a lower portion of the fourth low-voltage electrode frame 116 Since the welding portion of the normal current output terminal 15 is the same welding portion, here the normal current output terminal 15 and the sampling signal output terminal 15 both use the reference number 15 in the illustration.
  • it further includes a heat-dissipating electrode frame 112 disposed between the welding portion of the normal current input terminal 14 and the welding portion of the component bypass current input terminal 18, which can further increase the heat dissipation effect and prevent damage.
  • each frame is a flat copper sheet, which replaces the original bulky riveting and can reduce consumables.
  • the low-voltage diode chip 12 has a P-junction and an N-junction, and the N-junction of the low-voltage diode chip 12 is electrically connected to the low-voltage electrode frame 11 on the right side, and the P-junction of the low-voltage diode chip 12 is connected through a jumper wire. 120 is electrically connected to the low-voltage electrode frame 11 on the left.
  • the high-voltage diode chip 17 has a P-junction and an N-junction, and the N-junction of the high-voltage diode chip 17 is electrically connected to the high-voltage electrode frame 16 located on the right side, and the P-junction of the high-voltage diode chip 17 is connected through a jumper wire. 120 is electrically connected to the left high-voltage electrode frame 16.
  • the diode chip connection method adopting this structure not only generates less heat, dissipates heat better, and is not easy to melt and cause thermal damage.
  • the jumper 120 is made of metal copper.
  • an epoxy resin layer 121 is packaged outside the low-voltage diode chip 12, the high-voltage diode chip 17, and the jumper 120, which has good plastic sealing performance and long service life.
  • a first battery 122 is connected in parallel on the first low-voltage diode chip 117
  • a second battery 123 is connected in parallel on the second low-voltage diode chip 118
  • a third low-voltage diode chip 119 is connected in parallel
  • the third battery 124 when the first battery 122, the second battery 123, and the third battery 124 all work normally, the first low voltage diode chip 117, the second low voltage diode chip 118, and the third low voltage diode chip 119 are all non-conducting.
  • the output terminal 110 after control is connected to the normal current input terminal 14 through a single-pole double-throw switch 111.
  • the high-voltage diode chip 17 is not conductive, and the sampling device 125 connected between the control output terminal 110 and the normal current output terminal 15 works normally.
  • the first low voltage diode chip 117 is turned on, and the second low voltage diode chip 118 and the third low voltage diode chip 119 are not turned on.
  • the terminal 110 is connected to the normal current input terminal 14 through a single-pole double-throw switch 111.
  • the high-voltage diode chip 17 is not conductive, and is connected to the output terminal 110 and the normal current output terminal 15 after control.
  • the sampling device 125 between them works normally; when the first battery 122, the second battery 123 are damaged, and the third battery 124 works normally, the first low voltage diode chip 117, the second low voltage diode chip 118 are turned on, and the third low voltage diode chip is turned on.
  • the output terminal 110 after control is connected to the normal current input terminal 14 through a single-pole double-throw switch 111, and the high-voltage diode chip 17 is not conductive, and is connected to the sampling device between the control output terminal 110 and the normal current output terminal 15 125 works normally; when the first battery 122, the second battery 123, and the third battery 124 are damaged, the first low voltage diode chip 117, the second low voltage diode chip 118, and the third low voltage diode chip 119 are all turned on, and output after control
  • the terminal 110 is connected to the component bypass input terminal 18 through the single-pole double-throw switch 111, the high-voltage diode chip 17 is turned on, and the sampling device 125 connected between the controlled output terminal 110 and the sampling signal output terminal 15 works normally.
  • the invention sets the function of component bypass output to further ensure the usability.
  • the difference from the embodiment 1-1 lies in that the welding portion of the component bypass current input terminal 18 and the welding portion of the normal current input terminal 14 are directly Connected.
  • This embodiment is simple in structure on the basis of Embodiment 1-1, reduces costs, and has a long service life.
  • the first low voltage diode chip 117, the second low voltage diode chip 118, and the third low voltage diode chip 119 are all non-conductive, and the high voltage The diode chip 17 is not conducting; when the first battery 122 is damaged and the second battery 123 and the third battery 124 are working normally, the first low voltage diode chip 117 is turned on, and the second low voltage diode chip 118 and the third low voltage diode chip 119 are turned on.
  • the first low voltage diode chip 117 and the second low voltage diode chip 118 are turned on.
  • the three low-voltage diode chips 119 are not conducting, and the high-voltage diode chip 17 is not conducting; when the first battery 122, the second battery 123, and the third battery 124 are all damaged, the high-voltage diode chip 17 is turned on, and the further first low-voltage diode chip 117.
  • the second low-voltage diode chip 118 and the third low-voltage diode chip 119 are not conductive.
  • embodiment 1-3 As a preferred embodiment 1-3, as shown in FIGS. 7 to 9, the difference from embodiment 1-2 is that there are three high-voltage diode chips 17, namely a first high-voltage diode chip 171 and a second high-voltage diode.
  • Chip 172, a third high-voltage diode chip 173, and the first high-voltage diode chip 173 is connected in parallel to the first low-voltage diode chip 117, the second low-voltage diode chip 118, and the third low-voltage diode chip 119 after being connected in series;
  • the diode chip 171 is connected in parallel to the first low-voltage diode chip 117 and the second low-voltage diode chip 118 in series, and the third high-voltage diode chip 172 is connected in parallel to the second low-voltage diode chip 118 and the third low-voltage diode chip 119 in series.
  • the temperature rise effect based on Embodiment 1-2 is better.
  • the first low voltage diode chip 117, the second low voltage diode chip 118, and the third low voltage diode chip 119 are all non-conductive.
  • One high-voltage diode chip 171 is not conducting, the second high-voltage diode chip 172 is not conducting, and the third high-voltage diode chip 173 is not conducting; when the first battery 122 is damaged and the second battery 123 and the third battery 124 are working normally, The first low voltage diode chip 117 is turned on, the second low voltage diode chip 118 and the third low voltage diode chip 119 are not conductive, the first high voltage diode chip 171 is not conductive, the second high voltage diode chip 172 is not conductive, and the third high voltage The diode chip 173 is not conducting; when the first battery 122 and the second battery 123 are damaged and the third battery 124 is working normally, the first high voltage diode chip 171 is conducting, the second high voltage diode chip 172 is not conducting, and the third high voltage is high.
  • the tube chip 173 is not conducting, further the first low-voltage diode chip 117 is not conducting, the second low-voltage diode chip 118 is not conducting, and the third low-voltage diode chip 119 is not conducting; when the first When the battery 122, the second battery 123, and the third battery 124 are all damaged, the first high voltage diode chip 171 and the second high voltage diode chip 172 are all non-conductive, the third high voltage diode chip 173 is conductive, and the first low voltage diode chip is further 117.
  • the second low-voltage diode chip 118 and the third low-voltage diode chip 119 are all non-conductive.
  • the first high-voltage diode chip 171 is non-conductive.
  • the second high voltage diode chip 172 is turned on, the third high voltage diode chip 173 is not turned on, and the first low voltage diode chip 117, the second low voltage diode chip 118, and the third low voltage diode chip 119 are not turned on.
  • a smart junction box includes a box cover 21, a box body 22, and a box bottom 23.
  • the box bottom 23 is disposed on the bottom of the box body 22 and forms a glue cavity with the box body 22.
  • the box cover 21 is disposed on the top of the box body 22; a rubber stopper 24 is provided in the middle of the box bottom 23, and the box bottom 23 is divided into an upper part and a lower part; the upper part of the box bottom 23 is provided with a convex shape
  • a plurality of grooves 26 are defined in the busbar guide opening 25 of the busbar; a glue filling port 27 is provided at a lower portion of the box bottom 23 and is located at a middle position of the bottom end.
  • two sides of the middle portion of the box bottom 23 are provided with glue observation holes 28 to facilitate observation during the glue injection.
  • a cable fastening receiving portion 29 is provided on both sides of the middle portion of the box body 22, and the cable fastening receiving portion 29 corresponds to the glue observation hole 28.
  • Block 3 sets the cable 4 in the smart junction box.
  • the inner end of the cable 4 is connected to the multi-channel power management module 1.
  • the outer end extends outside the smart junction box.
  • the glue stopper portion 24 is a wavy convex strip, which is located above the glue observation hole 28.
  • a first clamping member 210 is provided on the upper portion of the box bottom 23 for clamping the multi-channel power management module 1.
  • the lower part of the box bottom 23 is provided with a second clamping member 211 for clamping the PCB board 2.
  • the smart junction box of this embodiment is integrally sealed, has a small volume, and is easier to pass through the glue.
  • the photovoltaic cables 4 between different junction boxes are easily connected.
  • a smart junction box with a multi-channel power management module As shown in Figures 1 to 13, a smart junction box with a multi-channel power management module,
  • the multi-channel power management module 1 and the PCB board 2 are arranged in the junction box body; two sides of the junction box body are respectively provided through the pressing block 3 A cable 4, wherein the inner end of the cable 4 is connected to the multi-channel power management module 1 and the outer end extends outward from the junction box body;
  • the multi-channel power management module 1 includes at least two low-voltage electrode frames 11, and a low-voltage diode chip 12 is disposed between the adjacent low-voltage electrode frames 11.
  • the lower part of the low-voltage electrode frame 11 on the left is provided with a welding portion of the normal current input terminal 14, and the low-voltage electrode frame 11 on the right is provided with a welding portion of the normal current output terminal 15;
  • the multi-channel power management module 1 further includes two A high-voltage electrode frame 16 is provided with a high-voltage diode chip 17 between the two high-voltage electrode frames 16;
  • the high-voltage diode chip 17 and the low-voltage diode chip 12 are connected to a common negative electrode, and the high-voltage electrode frame 16 on the left side is provided with a component bypass current
  • the welding portion of the input terminal 18 is located on the right side of the high-voltage electrode frame 16 and is provided with the sampling signal output terminal 15;
  • the multi-channel power management module 1 further includes a control electrode frame
  • the junction box body includes a box cover 21, a box body 22, and a box bottom 23.
  • the box bottom 23 is disposed on the bottom of the box body 22 and forms a glue cavity with the box body 22.
  • the box cover 21 is disposed on the box body.
  • the top of 22; a glue stop 24 is provided in the middle of the box bottom 23, and the box bottom 23 is divided into an upper part that houses the multi-channel power management module 1 and a lower part that houses the PCB board 2; the upper part of the box bottom 23 is provided
  • the bus-belt guide opening 25 is provided with a plurality of grooves 26.
  • the lower part of the box bottom 23 is provided with a glue filling port 27 located at the bottom. The middle position of the end.
  • the multi-channel power management module 1 in Embodiment 1 is adopted, and the intelligent junction box in Embodiment 2 is used as the junction box body of this embodiment.
  • the embodiment The multi-channel power management module 1 in 1 is connected to the upper part of the box bottom 23 through the first card 210, the PCB board 2 is connected to the upper part of the box bottom 23 through the second card 211, and then the box 22 and the box The bottom 23 is connected and filled for the first time through the glue filling port 27.
  • the glue stop 24 prevents glue from passing to the upper part of the smart junction box.
  • the glue observation hole 28 is used to observe the state of the glue when the solar bus It is introduced from the bus bar guide port 25 and is connected to the low-voltage electrode frame 11 from the bus bar lead-out hole 13 of the multi-channel power management module 1 to perform the second glue injection.
  • a boss-like shape is provided on the upper part of the box bottom 23
  • the bus belt guide opening 25 is provided with a plurality of grooves 26 on the bus belt guide opening 25, so that the filling can be easily passed out. After the filling is completed, the box body 22 is covered with the box cover 21 for overall sealing.

Abstract

本发明公开了一种多通道电源管理模块,包括至少两个低压电极框架,相邻的低压电极框架之间设置有低压二极管芯片;所述低压电极框架的上部开设有汇流带引出孔,位于左侧的低压电极框架的下部设有正常电流输入端的焊接部,位于右侧的低压电极框架设有正常电流输出端的焊接部;还包括两个高压电极框架,两个高压电极框架之间设置有高压二极管芯片;位于左侧的高压电极框架设有组件旁路电流输入端的焊接部,位于右侧的高压电极框架设有采样信号输出端的焊接部;还包括一控制电极框架,该控制电极框架设有一控制后输出端的焊接部。本发明的多通道电源管理模块爬电距离加长,还具有组件旁路输出的功能,具有不易出现热损坏的特点,进一步保障了使用性,散热功能好。

Description

多通道电源管理模块 技术领域
本发明涉及光伏组件技术领域,尤其涉及了一种多通道电源管理模块。
背景技术
太阳能是一种可再生资源,光伏组件被大量应用于太阳能发电,而光伏接线盒用于实现光伏组件与外部电源组件的互联,将光伏组件的电力输出到外部。当光伏组件内部电池出现隐裂或者被阴影遮挡产生热斑效应时,光伏组件接线盒组装的肖特基二极管充当光伏组件的旁路保护装置,从而保证了光伏组件的正常运转。
光伏电源管理模块是太阳能光伏接线盒中的一个重要部件,可同时用于各种组件的光伏面板的接线盒中,用以在出现热斑效应时保护光照组件所产生的能量可能被遮蔽的电池组件所消耗。通常,该光伏组件接线盒中的二极管芯片通过铆接或压接或焊接或通过辅助元件插接在导电体上,且通过二极管的管脚传散热。这样,该二极管芯片的PN结上产生的热量难以散掉,导致二极管芯片温升较高,容易损坏,而且现有的技术中二极管芯片损坏后,保护性的旁路作用就不能正常工作了。
发明内容
针对现有技术存在的不足,本发明的目的就在于提供了一种多通道电源管理模块,爬电距离加长,具有组件旁路输出,具有不易出现热损坏的特点。
为了实现上述目的,本发明采用的技术方案是这样的:一种多通道电源管理模块,包括至少两个低压电极框架,相邻的低压电极框架之间设置有低压二极管芯片;所述低压电极框架的上部开设有汇流带引出孔,位于左侧的低压电极框架的下部设有正常电流输入端的焊接部,位于右侧的低压电极框架设有正常电流输出端的焊接部;还包括两个高压电极框架,两个高压电极框架之间设置有高压二极管芯片;所述高压二极管芯片与低压二极管芯片共负极连接,位于左侧的高压电极框架设有组件旁路电流输入端的焊接部,位于右侧的高压电极框架设有采样信号输出端的焊接部。
作为一种优选方案,还包括一控制电极框架,该控制电极框架设有一控制后输出端的焊接部,所述控制后输出端通过单刀双掷开关分别与正常电流输入端、组件旁路电流输入端连接。
作为一种优选方案,所述组件旁路电流输入端的焊接部与正常电流输入端的焊接部直接相连。
作为一种优选方案,所述低压电极框架有4个,分别为第一低压电极框架、第二低压电极框架、第三低压电极框架以及第四低压电极框架,在所述第一低压电极框架、第二低压电极框架之间设置有第一低压二极管芯片,在所述第二低压电极框架、第三低压电极框架之间设置有第二低压二极管芯片,在所述第三低压电极框架与第四低压电极框架之间设置有第三低压二极管芯片;所述第一低压二极管芯片、第二低压二极管芯片、第三低压二极管芯片串联连接,其中,所述第一低压二极管芯片的输入端连接于正常电流输入端的焊接部,第三低压二极管芯片的输出端连接于正常电流输出端的焊接部。
作为一种优选方案,所述第一低压电极框架的下部为正常电流输入端的焊接部。
作为一种优选方案,所述第四低压电极框架的下部为正常电流输出端的焊接部,其中位于右侧的高压电极框架的采样信号输出端的焊接部与第四低压电极框架的下部为正常电流输出端的焊接部为同一焊接部。
作为一种优选方案,所述高压二极管芯片有三个,分别为第一高压二极管芯片、第二高压二极管芯片、第三高压二极管芯片,所述第一高压二极管芯片并联于串联后的第一低压二极管芯片、第二低压二极管芯片、第三低压二极管芯片上;所述第二高压二极管芯片并联于串联后的第一低压二极管芯片、第二低压二极管芯片上,所述第三高压二极管芯片并联于串联后的第二低压二极管芯片、第三低压二极管芯片上。
作为一种优选方案,还包括一散热电极框架,设置于正常电流输入端的焊接部与组件旁路电流输入端的焊接部之间。
作为一种优选方案,所述低压二极管芯片具有P结与N结,且该低压二极管芯片的N结电连接该位于右侧的低压电极框架上,同时该低压二极管芯片的P结通过跳线电连接于左侧的低压电极框架上。
作为一种优选方案,所述高压二极管芯片具有P结与N结,且该高压二极管芯片的N结电连接该位于右侧的高压电极框架上,同时该高压二极管芯片的P结通过跳线电连接于左侧的高压电极框架上。
与现有技术相比,本发明的有益效果:本发明的多通道电源管理模块爬电距离加长,还具有组件旁路输出的功能,具有不易出现热损坏的特点,进一步保障了使用性,散热功能好。
附图说明
图1是本发明中实施例1-1中多通道电源管理模块的结构示意图;
图2是本发明中实施例1-1中多通道电源管理模块的内部示意图;
图3是本发明中实施例1-1中多通道电源管理模块的原理图;
图4是本发明中实施例1-2中多通道电源管理模块的结构示意图;
图5是本发明中实施例1-2中多通道电源管理模块的内部示意图;
图6是本发明中实施例1-2中多通道电源管理模块的原理图;
图7是本发明中实施例1-3中多通道电源管理模块的结构示意图;
图8是本发明中实施例1-3中多通道电源管理模块的内部示意图;
图9是本发明中实施例1-3中多通道电源管理模块的原理图;
图10是本发明中智能接线盒的俯视图;
图11是本发明中智能接线盒的仰视图;
图12是本发明中图5的A-A向剖视图;
图13是本发明中带有多通道电源管理模块的智能接线盒的爆炸图。
具体实施方式
下面结合具体实施例对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1:
如图1~3所示,一种多通道电源管理模块,包括至少两个低压电极框架11,相邻的低压电极框架11之间设置有低压二极管芯片12;所述低压电极框架11的上部开设有汇流带引出孔13,位于左侧的低压电极框架11的下部设有正常电流输入端14的焊接部,位于右侧的低压电极框架11设有正常电流输出端15的焊接部;还包括两个高压电极框架16,两个高压电极框架16之间设置有高压二极管芯片17;所述高压二极管芯片17与低压二极管芯片12共负极连接,位于左侧的高压电极框架16设有组件旁路电流输入端18的焊接部,位于右侧的高压电极框架16设有采样信号输出端15的焊接部。
作为一种优选实施例1-1,如图1~3所示,还包括一控制电极框架19,该控制电极框架19设有一控制后输出端110的焊接部,所述控制后输出端110通过单刀双掷开关111分别与正常电流输入端14、组件旁路电流输入端18连接。
具体的,所述低压电极框架11有4个,分别为第一低压电极框架113、第二低压电极框架114、第三低压电极框架115以及第四低压电极框架116,在所述第一低压电极框架113、第二低压电极框架114之间设置有第一低压二极管芯片117,在所述第二低压电极框架114、第三低压电极框架115之间设置有第二低压二极管芯片118,在所述第三低压电极框架115与第四低压电极框架116之间设置有第三低压二极管芯片119;所述第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119串联连接,其中,所述第一低压二极管 芯片117的输入端连接于正常电流输入端14的焊接部,第三低压二极管芯片119的输出端连接于正常电流输出端15的焊接部。
具体的,所述第一低压电极框架113的下部为正常电流输入端14的焊接部。
具体的,所述第四低压电极框架116的下部为正常电流输出端15的焊接部,其中位于右侧的高压电极框架16的采样信号输出端15的焊接部与第四低压电极框架116的下部为正常电流输出端15的焊接部为同一焊接部,因此这里正常电流输出端15与采样信号输出端15在图示中均采用标注号15。
具体的,还包括一散热电极框架112,设置于正常电流输入端14的焊接部与组件旁路电流输入端18的焊接部之间,能够进一步的增大散热功效,防止损坏。
更为具体的,各个框架的焊接部均为一扁平状的铜片,代替原先的体积大的铆接,能够减少耗材。
具体的,所述低压二极管芯片12具有P结与N结,且该低压二极管芯片12的N结电连接该位于右侧的低压电极框架11上,同时该低压二极管芯片12的P结通过跳线120电连接于左侧的低压电极框架11上。
具体的,所述高压二极管芯片17具有P结与N结,且该高压二极管芯片17的N结电连接该位于右侧的高压电极框架16上,同时该高压二极管芯片17的P结通过跳线120电连接于左侧的高压电极框架16上。
采用此结构的二极管芯片连接方式,不仅产生的热量较小,散热较好,且不易融化出现热损坏的现象;其中跳线120为金属铜制成,。
具体的,所述低压二极管芯片12、高压二极管芯片17、跳线120的外部封装有环氧树脂层121,塑封性能好,使用寿命长。
具体实施时,在本实施例中,在第一低压二极管芯片117上并联有第一电池122、在第二低压二极管芯片118上并联有第二电池123、在第三低压二极管芯片119上并联有第三电池124,当第一电池122、第二电池123、第三电池124均正常工作时,第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119均不导通,控制后输出端110通过单刀双掷开关111与正常电流输入端14连接,高压二极管芯片17不导通,连接于控制后输出端110与正常电流输出端15之间的采样设备125正常工作;当第一电池122损坏,第二电池123、第三电池124均正常工作时,第一低压二极管芯片117导通,第二低压二极管芯片118、第三低压二极管芯片119均不导通,控制后输出端110通过单刀双掷开关111与正常电 流输入端14连接,高压二极管芯片17不导通,连接于控制后输出端110与正常电流输出端15之间的采样设备125正常工作;当第一电池122、第二电池123损坏,第三电池124正常工作时,第一低压二极管芯片117、第二低压二极管芯片118导通,第三低压二极管芯片119不导通,控制后输出端110通过单刀双掷开关111与正常电流输入端14连接,高压二极管芯片17不导通,连接于控制后输出端110与正常电流输出端15之间的采样设备125正常工作;当第一电池122、第二电池123、第三电池124均损坏时,第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119均导通,控制后输出端110通过单刀双掷开关111与组件旁路输入端18连接,高压二极管芯片17导通,连接于控制后输出端110与采样信号输出端15之间的采样设备125正常工作。本发明设置了组件旁路输出的功能,进一步保障了使用性。
作为一种优选实施例1-2,如图4~6所示,与实施例1-1的区别在于:所述组件旁路电流输入端18的焊接部与正常电流输入端14的焊接部直接相连。本实施例在实施例1-1的基础上结构简单,减少成本,使用寿命长。
具体实施时,当第一电池122、第二电池123、第三电池124均正常工作时,第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119均不导通,高压二极管芯片17不导通;当第一电池122损坏,第二电池123、第三电池124均正常工作时,第一低压二极管芯片117导通,第二低压二极管芯片118、第三低压二极管芯片119均不导通,高压二极管芯片17不导通;当第一电池122、第二电池123损坏,第三电池124正常工作时,第一低压二极管芯片117、第二低压二极管芯片118导通,第三低压二极管芯片119不导通,高压二极管芯片17不导通;当第一电池122、第二电池123、第三电池124均损坏时,高压二极管芯片17导通,进一步的第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119均不导通。
作为一种优选实施例1-3,如图7~9所示,与实施例1-2的区别在于:所述高压二极管芯片17有三个,分别为第一高压二极管芯片171、第二高压二极管芯片172、第三高压二极管芯片173,所述第一高压二极管芯片173并联于串联后的第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119上;所述第二高压二极管芯片171并联于串联后的第一低压二极管芯片117、第二低压二极管芯片118上,所述第三高压二极管芯片172并联于串联后的第二低压二极管芯片118、第三低压二极管芯片119上。本实施例在实施例1-2 的基础上的温升效果更好。
具体实施时,当第一电池122、第二电池123、第三电池124均正常工作时,第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119均不导通,第一高压二极管芯片171不导通、第二高压二极管芯片172不导通、第三高压二极管芯片173不导通;当第一电池122损坏,第二电池123、第三电池124均正常工作时,第一低压二极管芯片117导通,第二低压二极管芯片118、第三低压二极管芯片119均不导通,第一高压二极管芯片171不导通、第二高压二极管芯片172不导通、第三高压二极管芯片173不导通;当第一电池122、第二电池123损坏,第三电池124正常工作时,第一高压二极管芯片171导通、第二高压二极管芯片172不导通、第三高压高级管芯片173不导通,进一步的第一低压二极管芯片117不导通、第二低压二极管芯片118不导通、第三低压二极管芯片119不导通;当第一电池122、第二电池123、第三电池124均损坏时,第一高压二极管芯片171、第二高压二极管芯片172均不导通,第三高压二极管芯片173导通,进一步的第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119均不导通;当第一电池122正常工作,第二电池123、第三电池124均损坏时,第一高压二极管芯片171不导通,第二高压二极管芯片172导通,第三高压二极管芯片173不导通,进一步的第一低压二极管芯片117、第二低压二极管芯片118、第三低压二极管芯片119均不导通。
实施例2:
如图10~13所示,一种智能接线盒,包括盒盖21、盒体22、盒底23,所述盒底23设置于盒体22的底部并与盒体22形成一灌胶腔,所述盒盖21设置于盒体22的顶部;所述盒底23的中部设置有止胶部24,并将盒底23分隔成上部与下部;所述盒底23的上部设置有凸台状的汇流带引导口25,该汇流带引导口25上开设有多个凹槽26;所述盒底23的下部设置有灌胶口27,位于底端的中间位置。
具体的,所述盒底23的中部的两侧开设有灌胶观察孔28,方便在灌胶时进行观察。
具体的,所述盒体22的中部两侧设置有线缆紧固容纳部29,该线缆紧固容纳部29与灌胶观察孔28相对应,在线缆紧固容纳部29中通过压块3将线缆4设置于智能接线盒中,该线缆4的内端连接于多通道电源管理模块1、外端延伸在该智能接线盒的外部。
具体的,所述止胶部24为一呈波浪状的凸条,位于灌胶观察孔28的上方位置,在对智能接线盒第一次灌胶时,防止胶水通过至智能接线盒的上部。
具体的,所述盒底23的上部设置有第一卡件210,用于卡接多通道电源管理模块1。
具体的,所述盒底23的下部设置有第二卡件211,用于卡接PCB板2。
本实施例的智能接线盒整体密封,体积小,灌胶更容易通过,不同接线盒之间的光伏线缆4连接方便。
实施例3:
如图1~13所示,一种带有多通道电源管理模块的智能接线盒,
包括接线盒本体、多通道电源管理模块1、PCB板2,所述多通道电源管理模块1与PCB板2设置于接线盒本体内;所述接线盒本体的两侧通过压块3分别设置有线缆4,该线缆4的内端连接于多通道电源管理模块1上、外端向外延伸于接线盒本体外部;
所述多通道电源管理模块1包括至少两个低压电极框架11,相邻的低压电极框架11之间设置有低压二极管芯片12;所述低压电极框架11的上部开设有汇流带引出孔13,位于左侧的低压电极框架11的下部设有正常电流输入端14的焊接部,位于右侧的低压电极框架11设有正常电流输出端15的焊接部;所述多通道电源管理模块1还包括两个高压电极框架16,两个高压电极框架16之间设置有高压二极管芯片17;所述高压二极管芯片17与低压二极管芯片12共负极连接,位于左侧的高压电极框架16设有组件旁路电流输入端18的焊接部,位于右侧的高压电极框架16设有采样信号输出端15的焊接部;所述多通道电源管理模块1还包括一控制电极框架19,该控制电极框架19设有一控制后输出端110的焊接部,所述控制后输出端110通过单刀双掷开关111分别与正常电流输入端14、组件旁路电流输入端18连接;
所述接线盒本体包括盒盖21、盒体22、盒底23,所述盒底23设置于盒体22的底部并与盒体22形成一灌胶腔,所述盒盖21设置于盒体22的顶部;所述盒底23的中部设置有止胶部24,并将盒底23分隔成容纳多通道电源管理模块1的上部与容纳PCB板2的下部;所述盒底23的上部设置有与汇流带引出孔13匹配的凸台状的汇流带引导口25,该汇流带引导口25上开设有多个凹槽26;所述盒底23的下部设置有灌胶口27,位于底端的中间位置。
在本实施例中,采用实施例1中的多通道电源管理模块1,采用实施例2中的智能接线盒为本实施例的接线盒本体,具体实施时,在本实施例中,将实施例1中的多通道电源管理模块1通过第一卡件210卡接于盒底23的上部,将PCB板2通过第二卡件211卡接于盒底23的上部,再将盒体22与盒底23连接并通过灌胶口27第一次灌胶,其中止胶部24防止胶水通过至智能接线盒的上部,所述灌胶观察孔28用于观察灌胶时的状态,当太阳能汇流带从汇流带引导口25引入,并从多通道电源管理模块1的汇流带引出孔13引出连接至低压电极框架11上就进行第二次灌胶,在盒底23的上部设置有凸台状的汇流带引导口25,且该汇流 带引导口25上开设有多个凹槽26,灌胶更容易通出,灌胶结束后,在盒体22上盖上盒盖21,进行整体的密封。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

  1. 一种多通道电源管理模块,其特征在于:包括至少两个低压电极框架,相邻的低压电极框架之间设置有低压二极管芯片;所述低压电极框架的上部开设有汇流带引出孔,位于左侧的低压电极框架的下部设有正常电流输入端的焊接部,位于右侧的低压电极框架设有正常电流输出端的焊接部;还包括两个高压电极框架,两个高压电极框架之间设置有高压二极管芯片;所述高压二极管芯片与低压二极管芯片共负极连接,位于左侧的高压电极框架设有组件旁路电流输入端的焊接部,位于右侧的高压电极框架设有采样信号输出端的焊接部。
  2. 根据权利要求1所述的一种多通道电源管理模块,其特征在于:还包括一控制电极框架,该控制电极框架设有一控制后输出端的焊接部,所述控制后输出端通过单刀双掷开关分别与正常电流输入端、组件旁路电流输入端连接。
  3. 根据权利要求1所述的一种多通道电源管理模块,其特征在于:所述组件旁路电流输入端的焊接部与正常电流输入端的焊接部直接相连。
  4. 根据权利要求1~3所述的一种多通道电源管理模块,其特征在于:所述低压电极框架有4个,分别为第一低压电极框架、第二低压电极框架、第三低压电极框架以及第四低压电极框架,在所述第一低压电极框架、第二低压电极框架之间设置有第一低压二极管芯片,在所述第二低压电极框架、第三低压电极框架之间设置有第二低压二极管芯片,在所述第三低压电极框架与第四低压电极框架之间设置有第三低压二极管芯片;所述第一低压二极管芯片、第二低压二极管芯片、第三低压二极管芯片串联连接,其中,所述第一低压二极管芯片的输入端连接于正常电流输入端的焊接部,第三低压二极管芯片的输出端连接于正常电流输出端的焊接部。
  5. 根据权利要求4所述的一种多通道电源管理模块,其特征在于:所述第一低压电极框架的下部为正常电流输入端的焊接部。
  6. 根据权利要求4所述的一种多通道电源管理模块,其特征在于:所述第四低压电极框架的下部为正常电流输出端的焊接部,其中位于右侧的高压电极框架的采样信号输出端的焊接部与第四低压电极框架的下部为正常电流输出端的焊接部为同一焊接部。
  7. 根据权利要求4所述的一种多通道电源管理模块,其特征在于:所述高压二极管芯片有三个,分别为第一高压二极管芯片、第二高压二极管芯片、第三高压二极管芯片,所述第一高压二极管芯片并联于串联后的第一低压二极管芯片、第二低压二极管芯片、第三低压二极管 芯片上;所述第二高压二极管芯片并联于串联后的第一低压二极管芯片、第二低压二极管芯片上,所述第三高压二极管芯片并联于串联后的第二低压二极管芯片、第三低压二极管芯片上。
  8. 根据权利要求1所述的一种多通道电源管理模块,其特征在于:还包括一散热电极框架,设置于正常电流输入端的焊接部与组件旁路电流输入端的焊接部之间。
  9. 根据权利要求1所述的一种多通道电源管理模块,其特征在于:所述低压二极管芯片具有P结与N结,且该低压二极管芯片的N结电连接该位于右侧的低压电极框架上,同时该低压二极管芯片的P结通过跳线电连接于左侧的低压电极框架上。
  10. 根据权利要求9所述的一种多通道电源管理模块,其特征在于:所述高压二极管芯片具有P结与N结,且该高压二极管芯片的N结电连接该位于右侧的高压电极框架上,同时该高压二极管芯片的P结通过跳线电连接于左侧的高压电极框架上。
PCT/CN2018/094170 2018-05-31 2018-07-03 多通道电源管理模块 WO2019227568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810545668.2 2018-05-31
CN201810545668.2A CN108599713B (zh) 2018-05-31 2018-05-31 多通道电源管理模块

Publications (1)

Publication Number Publication Date
WO2019227568A1 true WO2019227568A1 (zh) 2019-12-05

Family

ID=63630490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094170 WO2019227568A1 (zh) 2018-05-31 2018-07-03 多通道电源管理模块

Country Status (2)

Country Link
CN (1) CN108599713B (zh)
WO (1) WO2019227568A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208916A (zh) * 2012-01-11 2013-07-17 太阳能安吉科技有限公司 光伏组件
CN104052391A (zh) * 2013-03-15 2014-09-17 索兰托半导体公司 光伏旁路和输出开关
CN204794891U (zh) * 2015-07-30 2015-11-18 苏州同泰新能源科技有限公司 具有旁路集成模块的光伏接线盒
CN106130469A (zh) * 2016-08-31 2016-11-16 济南晶恒电子有限责任公司 包封体分段式光伏旁路二极管模块
CN107425808A (zh) * 2017-06-07 2017-12-01 江苏通灵电器股份有限公司 一种应用于光伏发电的快速关断系统
WO2018054835A1 (de) * 2016-09-23 2018-03-29 Sma Solar Technology Ag Solarmodul, photovoltaikanlage und verfahren zur spannungsbegrenzung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208337498U (zh) * 2018-05-31 2019-01-04 苏州同泰新能源科技有限公司 多通道电源管理模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208916A (zh) * 2012-01-11 2013-07-17 太阳能安吉科技有限公司 光伏组件
CN104052391A (zh) * 2013-03-15 2014-09-17 索兰托半导体公司 光伏旁路和输出开关
CN204794891U (zh) * 2015-07-30 2015-11-18 苏州同泰新能源科技有限公司 具有旁路集成模块的光伏接线盒
CN106130469A (zh) * 2016-08-31 2016-11-16 济南晶恒电子有限责任公司 包封体分段式光伏旁路二极管模块
WO2018054835A1 (de) * 2016-09-23 2018-03-29 Sma Solar Technology Ag Solarmodul, photovoltaikanlage und verfahren zur spannungsbegrenzung
CN107425808A (zh) * 2017-06-07 2017-12-01 江苏通灵电器股份有限公司 一种应用于光伏发电的快速关断系统

Also Published As

Publication number Publication date
CN108599713A (zh) 2018-09-28
CN108599713B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
JP3852710B1 (ja) 太陽電池モジュール用端子ボックス
JP2000315808A (ja) 太陽電池を備えた電力発生のための回路装置
CN216288418U (zh) 改进的轴式二极管及应用其的旁路模块和光伏组件接线盒
CN213125974U (zh) 一种光伏接线盒及光伏组件
CN103413852A (zh) 卡焊端子结构的太阳能接线盒
KR102164005B1 (ko) 인쇄 회로 기판용 커넥터 및 인쇄 회로 기판과 커넥터를 포함한 전지 시스템
EP3166222B1 (en) Photovoltaic junction box
CN208190600U (zh) 智能接线盒
KR102459621B1 (ko) 배터리 팩
JP2021513194A (ja) バッテリーモジュール、該バッテリーモジュールを含むバッテリーパック及び該バッテリーパックを含む自動車
CN204013385U (zh) 一种器件化的光伏接线盒旁路二极管电路模块
WO2019227568A1 (zh) 多通道电源管理模块
WO2019227567A1 (zh) 带有微型电源管理模块的超窄光伏接线盒
CN208337498U (zh) 多通道电源管理模块
WO2019227566A1 (zh) 带有多通道电源管理模块的智能接线盒
KR20210041284A (ko) 전지 모듈 및 이를 포함하는 전지팩
CN205430164U (zh) 光伏接线盒和二极管
CN112259517A (zh) 光伏组件旁路元件焊片及旁路保护元件模块及接线盒
CN112563355A (zh) 具有光伏保护二极管超薄模片的太阳能组件
CN208337497U (zh) 带有多通道电源管理模块的智能接线盒
WO2019227569A1 (zh) 微型电源管理模块
CN211907418U (zh) 一种小型光伏大电流模组二极管
CN109194281B (zh) 一种热能对流散热型光伏组件
CN213212157U (zh) 光伏组件旁路元件焊片及旁路保护元件模块及接线盒
CN220896647U (zh) 一种大电流太阳能光伏组件接线盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920652

Country of ref document: EP

Kind code of ref document: A1