WO2019227404A1 - 控制信息的传输方法及装置 - Google Patents

控制信息的传输方法及装置 Download PDF

Info

Publication number
WO2019227404A1
WO2019227404A1 PCT/CN2018/089289 CN2018089289W WO2019227404A1 WO 2019227404 A1 WO2019227404 A1 WO 2019227404A1 CN 2018089289 W CN2018089289 W CN 2018089289W WO 2019227404 A1 WO2019227404 A1 WO 2019227404A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
repeatedly
network device
user equipment
sending
Prior art date
Application number
PCT/CN2018/089289
Other languages
English (en)
French (fr)
Inventor
杨现俊
宋磊
张国玉
张磊
王昕�
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/CN2018/089289 priority Critical patent/WO2019227404A1/zh
Publication of WO2019227404A1 publication Critical patent/WO2019227404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and device for transmitting control information.
  • control channels discussed in 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • Compressed control information Compressed DCI
  • PDCCH repetition control channel repetition
  • URLLC has higher requirements for the reliability of control channels than for data channels.
  • Embodiments of the present invention provide a method and device for transmitting control information.
  • the control information is obtained according to the content of the instruction, which can effectively improve the reliability of control information transmission. Sex.
  • an apparatus for transmitting control information includes: an instruction unit, which is used to indicate to a user equipment whether the first control information is repeatedly transmitted and a manner of repeating the transmission.
  • an apparatus for transmitting control information comprising: a determining unit, configured to determine, according to a received signal, whether the first control information is repeatedly transmitted and a manner of repeated transmission.
  • an apparatus for transmitting control information including: a fourth sending unit, configured to send the second control information repeatedly according to the received first control information And an instruction of a repeated sending manner, sending the second control information to a network device.
  • a control information transmission device includes: a receiving unit configured to receive second control information on a physical resource specified by the first control information; and a second merge A unit configured to combine multiple second control information that is repeatedly sent and then demodulate when the second control information is repeatedly sent; a demodulation unit that is configured to In the case of sending, the second control information is directly demodulated.
  • a network device includes the apparatus according to the first aspect of the embodiments of the present invention.
  • a user equipment is provided, where the user equipment includes the apparatus according to the second aspect of the embodiments of the present invention.
  • a user equipment is provided, where the user equipment includes the apparatus according to the third aspect of the embodiments of the present invention.
  • a network device is provided, and the network device includes the apparatus according to the fourth aspect of the embodiments of the present invention.
  • a communication system including at least one network device according to the fifth aspect of the embodiments of the present invention and the network device according to the sixth aspect of the embodiments of the present invention.
  • User equipment
  • a communication system including the user equipment according to the seventh aspect of the embodiments of the present invention and at least one of the user equipment according to the eighth aspect of the embodiments of the present invention.
  • Network equipment including the user equipment according to the seventh aspect of the embodiments of the present invention and at least one of the user equipment according to the eighth aspect of the embodiments of the present invention.
  • a method for transmitting control information includes: indicating to a user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information.
  • a method for transmitting control information includes: determining, according to a received signal, whether the first control information is repeatedly sent and repeatedly sent.
  • a method for transmitting control information includes: according to an indication of whether the second control information is repeatedly transmitted and a manner of repeatedly transmitting the received first control information. , Sending the second control information to a network device.
  • a method for transmitting control information includes: receiving second control information on a physical resource designated by the first control information; and repeating the second control information.
  • the multiple second control information repeatedly sent is combined and then demodulated; if the second control information is not repeatedly sent, the second control information is directly demodulated.
  • a computer-readable program wherein when the program is executed in a transmission device or network device of control information, the program causes the transmission device or network of control information to The device executes the control information transmission method according to the eleventh or fourteenth aspect of the embodiments of the present invention.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes a control information transmission device or a network device to execute the eleventh aspect of the embodiment of the present invention Or the transmission method of control information according to the fourteenth aspect.
  • a computer-readable program wherein when the program is executed in a transmission device or a user equipment of control information, the program causes the transmission device or a user of the control information
  • the device executes the control information transmission method according to the twelfth aspect or the thirteenth aspect of the embodiment of the present invention.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes a control information transmission device or user equipment to execute the twelfth aspect of the embodiments of the present invention Or the control information transmission method according to the thirteenth aspect.
  • the invention has the beneficial effect that, by indicating to the user equipment whether the control information is repeatedly sent and repeatedly sent, the control information is obtained according to the content of the instruction, which can effectively improve the reliability of control information transmission.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a control information transmission method according to Embodiment 1 of the present invention.
  • FIG. 3 is another schematic diagram of a control information transmission method according to Embodiment 1 of the present invention.
  • FIG. 4 is another schematic diagram of a control information transmission method according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a control information transmission method according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a method for determining step 501 in FIG. 5;
  • FIG. 7 is another schematic diagram of a determination method of step 501 in FIG. 5;
  • FIG. 8 is another schematic diagram of a method for determining step 501 in FIG. 5;
  • Embodiment 9 is another schematic diagram of a control information transmission method according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a control information transmission method according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of a single-link scenario according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of a control information transmission method for the application scenario shown in FIG. 11;
  • FIG. 13 is a schematic diagram of a CoMP scenario according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 13 according to Embodiment 3 of the present invention.
  • FIG. 15 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 13 according to Embodiment 3 of the present invention.
  • FIG. 16 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 13 according to Embodiment 3 of the present invention.
  • FIG. 17 is another schematic diagram of a CoMP scenario according to Embodiment 3 of the present invention.
  • FIG. 18 is a schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 17 according to Embodiment 3 of the present invention.
  • FIG. 19 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 17 according to Embodiment 3 of the present invention.
  • FIG. 20 is a schematic diagram of a scenario of different inter-cell cooperation according to Embodiment 3 of the present invention.
  • FIG. 21 is a schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 20 according to Embodiment 3 of the present invention.
  • FIG. 22 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 20 according to Embodiment 3 of the present invention.
  • FIG. 23 is a schematic diagram of a CA scenario according to Embodiment 3 of the present invention.
  • FIG. 24 is a schematic diagram of a control information transmission method for the application scenario shown in FIG. 23 according to Embodiment 3 of the present invention.
  • FIG. 25 is a schematic diagram of a control information transmission method according to Embodiment 4 of the present invention.
  • 26 is a schematic diagram of a control information transmission method according to Embodiment 5 of the present invention.
  • FIG. 27 is a schematic diagram of a control information transmission method according to Embodiment 6 of the present invention.
  • FIG. 28 is a schematic diagram of a control information transmission apparatus according to Embodiment 7 of the present invention.
  • FIG. 29 is another schematic diagram of a control information transmission apparatus according to Embodiment 7 of the present invention.
  • FIG. 30 is another schematic diagram of a control information transmission apparatus according to Embodiment 7 of the present invention.
  • FIG. 31 is a schematic diagram of a control information transmission apparatus according to Embodiment 8 of the present invention.
  • FIG. 32 is a schematic diagram of a determining unit according to Embodiment 8 of the present invention.
  • FIG. 35 is a schematic diagram of a control information transmission apparatus according to Embodiment 8 of the present invention.
  • FIG. 36 is a schematic diagram of a control information transmission device according to Embodiment 9 of the present invention.
  • FIG. 37 is a schematic diagram of a control information transmission apparatus according to Embodiment 10 of the present invention.
  • FIG. 38 is a schematic structural diagram of a network device according to Embodiment 11 of the present invention.
  • FIG. 39 is a schematic block diagram of a system configuration of a user equipment according to Embodiment 12 of the present invention.
  • FIG. 40 is a schematic block diagram of a system configuration of a user equipment according to Embodiment 13 of the present invention.
  • FIG. 41 is a schematic structural diagram of a network device according to Embodiment 14 of the present invention.
  • first and second are used to distinguish different elements from each other by title, but they do not indicate the spatial arrangement or chronological order of these elements, and these elements should not be used by these terms. Restricted.
  • the term “and / or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • multiple or “multiple” means at least two or at least two.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), and so on.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • communication between devices in a communication system may be performed according to a communication protocol at any stage, for example, it may include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future 5G, New Radio (NR, New Radio), etc., and / or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G, 2.75G
  • 5G New Radio
  • NR, New Radio New Radio
  • Network device refers to, for example, a device in a communication system that connects a user equipment to a communication network and provides services for the user equipment.
  • Network devices may include, but are not limited to, the following devices: base stations (BS, Base), access points (AP, Access Point), transmission and reception points (TRP, Transmission, Reception Point), broadcast transmitters, and mobile management entities (MME, Mobile Management entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), and so on.
  • the base station may include, but is not limited to, Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), and so on. In addition, it may include a remote radio head (RRH, Remote Radio Head). , Remote wireless unit (RRU, Remote Radio Unit), antenna, relay (relay) or low-power node (such as femto, pico, etc.). And the term “base station” may include some or all of their functions, and each base station may provide communication coverage to a particular geographic area.
  • the term "cell” may refer to a base station and / or its coverage area, depending on the context in which the term is used.
  • the term “User Equipment” (UE) or “Terminal Equipment” (TE) refers to a device that accesses a communication network through a network device and receives network services.
  • the user equipment may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and so on.
  • the user equipment may include, but is not limited to, the following devices: Cellular Phone, Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine-type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine-type communication device
  • laptop computer machine-type communication device
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • control information is transmitted through a control channel (CCH, Control Channel).
  • CCH Control Channel
  • the Physical Downlink Control Channel (PDCCH) and the corresponding Physical Uplink Control Channel (PUCCH) are One of the common control channels, which is used to carry scheduling and other control information.
  • PDCCH and PUCCH are used as examples for description, but the embodiment of the present invention is not limited thereto.
  • the user equipment may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to, Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D) terminals, machine-to-machine (M2M) terminals, and so on.
  • MTC Machine Type Communication
  • D2D device-to-device
  • M2M machine-to-machine
  • the serving network device and the cooperative network device are directed to a certain terminal device.
  • a certain network device is a serving network device to one of the terminal devices.
  • it may be a cooperative network device.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention, and schematically illustrates a case where a user equipment and a network device are taken as examples.
  • the communication system 100 may include a first network device 101 and a second network device. 102.
  • the first network device 101, the second network device 102, the third network device 103, and the user equipment may perform an existing service or a service that can be implemented in the future.
  • these services include, but are not limited to: enhanced mobile broadband (eMBB), large-scale machine type communication (mMTC, massive Machine Type Communication), and high-reliability low-latency communication (URLLC, Ultra-Reliable and Low-Low- Latency Communication), and so on.
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC Ultra-Reliable and Low-Low- Latency Communication
  • the first network device 101, the second network device 102, and the third network device 103 constitute a coordinated multipoint (CoMP) with an ideal backhaul link.
  • the second network device 102 and the third network device 103 are connected through an optical fiber.
  • An embodiment of the present invention provides a method for transmitting control information, and the method is applied to a network device side.
  • FIG. 2 is a schematic diagram of a control information transmission method according to Embodiment 1 of the present invention. As shown in Figure 2, the method includes:
  • Step 201 Indicate to the user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information.
  • control information transmission can be effectively improved.
  • the first control information is information sent by the network device to the user equipment for performing downlink control, for example, downlink control information (Downlink Control Information) (DCI).
  • DCI Downlink Control Information
  • the downlink control information is transmitted through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the method is applicable to a single-link system or a multi-link system, and is executed by a network device in the single-link system or at least one network device in the multi-link system.
  • a network device may send the first control information to the user equipment repeatedly or not repeatedly.
  • each of the at least two network devices may send the same first control information to the user equipment, and each network device may send the first control information to the user equipment repeatedly or not.
  • -Control information When indicating to the user equipment whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information, it may be indicated by a master network device among at least two network devices.
  • the manner in which each network device repeatedly sends the first control information may be the same or different.
  • the same repeated transmission method or each network device may The repeated sending method can be instructed by the master network device.
  • the specific indication method is as follows.
  • each network device may be on the same or different time-frequency resources, or on the same frequency and at different times, or at the same time And sending the first control information to the user equipment on different frequencies.
  • each network device does not repeatedly send the first control information to the user equipment.
  • the main network device indicates that the network device does not send repeatedly.
  • each network device does not repeatedly send the first control information to the user equipment.
  • the primary network device instructs the repeated transmission and the indicated repeated transmission.
  • the method is to send repeatedly on different time-frequency resources.
  • each network device does not repeatedly send the first control information to the user equipment.
  • the master network device instructs the repeat transmission and the indicated repeat The transmission is repeated on the same frequency and at different times.
  • each network device does not repeatedly send the first control information to the user equipment.
  • the master network device instructs repeated sending and the indicated repeat The transmission is repeated at the same time and on different frequencies.
  • one of the at least two network devices may also be used as the primary network device to send the first control information to the user equipment, where the primary network device may also repeat or not transmit the first control information.
  • the first control information is repeatedly sent to the user equipment.
  • the first control information may be repeatedly transmitted on different time-frequency resources, that is, the first control information is repeatedly transmitted on different times and on different frequencies.
  • a network device repeatedly sends the first control information at different times and different frequencies.
  • CORESET control resource sets
  • CA carrier aggregation
  • the first control information may also be repeatedly transmitted at the same frequency and at different times.
  • a network device repeatedly sends the first control information at the same frequency and at different times.
  • different network devices may use different symbols or mini-slots to send the first control information on the same frequency.
  • different cells use different symbols or mini-slots on the same frequency to send the first control information.
  • the first control information may also be repeatedly transmitted at the same time and on different frequencies.
  • a network device repeatedly sends the first control information at the same time and on different frequencies.
  • different network devices may send the first control information at a fixed frequency interval at the same time and in the same frequency band.
  • different cells send the first control information at the same time and in different frequency bands.
  • an explicit indication may be used to indicate whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information. For example, whether the first control information is repeatedly sent and the manner in which the first control information is repeatedly sent may be indicated by a first repetition indication parameter in high-level signaling.
  • the high-level signaling may be RRC signaling or MAC-CE signaling
  • the first repetition indication parameter may be a PDCCHRepetitionIndication parameter.
  • the PDCCHRepetitionIndication parameter may be composed of 2 bytes. For example, when the PDCCHRepetitionIndication is 00, it means that the first control information is not repeatedly sent; when the PDCCHRepetitionIndication is 01, it means that the first control information is repeatedly sent on different time-frequency resources; when the PDCCHRepetitionIndication is 10, it means that the first control information is Repeated transmission at the same frequency and different times; when PDCCHRepetitionIndication is 11, it means that the first control information is repeatedly transmitted at the same time and different frequencies.
  • an implicit indication may be used to indicate whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information.
  • the manner in which the first control information is repeatedly transmitted and repeatedly transmitted may also be indicated by a first orthogonal sequence multiplied with a demodulation reference signal (Demodulation Reference Signal, DMRS) of the first control information.
  • the first orthogonal sequence may be an orthogonal cover code (OCC).
  • the DMRS when the DMRS is multiplied with the OCC code [1, 1], it means that the first control information is not transmitted repeatedly; when the DMRS and the OCC code [1, 1-1], it is different that the first control information is different Repeated transmission on the time-frequency resource; when the DMRS is multiplied with the OCC code [1, -1, -1], it means that the first control information is repeatedly transmitted at the same frequency and at different times; 1-1] When multiplied, it means that the first control information is repeatedly transmitted at the same time and on different frequencies.
  • the manner in which the first control information is repeatedly transmitted and repeatedly transmitted may also be indicated by a first repetition indication parameter in a high-level signaling and a second orthogonal sequence multiplied by a demodulation reference signal (DMRS) of the first control information.
  • DMRS demodulation reference signal
  • the high-level signaling may be RRC signaling or MAC-CE signaling
  • the first repetition indication parameter may be a PDCCHRepetitionIndication parameter
  • the second orthogonal sequence may be a ZC (Zadoff-Chu) sequence.
  • the PDCCHRepetitionIndication parameter may be composed of 1 byte. For example, when PDCCHRepetitionIndication is 0, it means that the first control information is not repeatedly sent; when PDCCHRepetitionIndication is 1, it means that the first control information is repeatedly sent.
  • the first control information when the DMRS and ZC sequences When multiplied, it means that the first control information is repeatedly transmitted on different time-frequency resources; when DMRS and ZC sequences When multiplied, it means that the first control information is repeatedly transmitted at the same frequency and at different times; when DMRS and ZC sequences When multiplied, it means that the first control information is repeatedly transmitted at the same time and on different frequencies.
  • the method may further include:
  • Step 202 In the case where the first control information is repeatedly sent, repeatedly send the first control information to the user equipment in the manner of repeated sending instructed to the user equipment;
  • Step 203 If the first control information is not repeatedly sent, send the first control information to the user equipment.
  • FIG. 3 is another schematic diagram of a control information transmission method according to Embodiment 1 of the present invention.
  • the method is used in a multi-link system, which includes a first network device and at least one other network device. As shown in Figure 3, the method includes:
  • Step 301 The first network device indicates to the user equipment whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information.
  • Step 302 In the case where the first control information is repeatedly sent, the first network device and at least one other network device repeatedly send the first control information to the user equipment in a manner of repeated sending instructed to the user equipment;
  • Step 303 When the first control information is not repeatedly sent, the first network device and at least one other network device send the first control information to the user equipment.
  • FIG. 4 is another schematic diagram of a control information transmission method according to Embodiment 1 of the present invention.
  • the method is used in a multi-link system, which includes a first network device and at least one other network device. As shown in Figure 4, the method includes:
  • Step 401 The first network device indicates to the user equipment whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information.
  • Step 402 In the case where the first control information is repeatedly sent, only the first network device repeatedly sends the first control information to the user equipment in a manner of repeated sending instructed to the user equipment;
  • Step 403 In the case where the first control information is not repeatedly sent, only the first network device sends the first control information to the user equipment.
  • the first network device is, for example, a master network device, which may be specified in advance or determined according to a preset condition.
  • This embodiment of the present invention does not limit the manner of determining the master network device.
  • the first network device is a network device capable of maximizing a signal-to-noise ratio of a pre-encoded channel among all network devices in a multi-link system.
  • the first network device is specified by, for example, any one of all network devices, or may be specified by a separately set network device controller.
  • the network device may also send data information to the user equipment, and the user equipment demodulates the received data information according to the obtained control information.
  • control information is obtained according to the content of the instruction, which can effectively improve the reliability of control information transmission.
  • An embodiment of the present invention provides a method for transmitting control information.
  • the method is applied to a user equipment side, and the method corresponds to the method for transmitting control information applied to a network device side in Embodiment 1.
  • FIG. 5 is a schematic diagram of a control information transmission method according to Embodiment 2 of the present invention. As shown in Figure 5, the method includes:
  • Step 501 Determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the received signal.
  • the method of determining whether the first control information is repeatedly transmitted and the manner of repeated transmission according to the received signal in this embodiment is exemplarily described below.
  • FIG. 6 is a schematic diagram of a method for determining step 501 in FIG. 5. As shown in Figure 6, the method includes:
  • Step 601 Determine whether the first control information is repeatedly transmitted and a manner of repeating the first control information according to a first repetition indication parameter in high-level signaling.
  • the high-level signaling may be RRC signaling or MAC-CE signaling
  • the first repetition indication parameter may be a PDCCHRepetitionIndication parameter.
  • the PDCCHRepetitionIndication parameter is composed of 2 bytes.
  • the PDCCHRepetitionIndication when the PDCCHRepetitionIndication is 00, it is determined that the first control information is not repeatedly transmitted; when the PDCCHRepetitionIndication is 01, it is determined that the first control information is repeatedly transmitted on different time-frequency resources; when the PDCCHRepetitionIndication is 10, it is determined that the first control information is Repeated transmission at the same frequency and different times; when the PDCCHRepetitionIndication is 11, it is determined that the first control information is repeatedly transmitted at the same time and different frequencies.
  • FIG. 7 is another schematic diagram of the determination method of step 501 in FIG. 5. As shown in Figure 7, the method includes:
  • Step 701 Calculate the correlation between the received demodulation reference signal and the demodulation reference signal multiplied by the first orthogonal sequence
  • Step 702 Determine the first orthogonal sequence according to the calculated correlation
  • Step 703 Determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the first orthogonal sequence.
  • the first orthogonal sequence may be an orthogonal cover code (OCC).
  • OCC orthogonal cover code
  • the OCC code with the largest calculated correlation coefficient is the OCC code used.
  • the determined OCC is [1, 1, 1 ] It is determined that the first control information is not repeatedly transmitted; when it is determined that the used OCC code is [1-1, -1], it is determined that the first control information is repeatedly transmitted on different time-frequency resources; when the used OCC code is determined When it is [1, -1, -1], it is determined that the first control information is repeatedly transmitted at the same frequency and at different times; when it is determined that the OCC code used is [1, -1, -1, 1], the first control information is determined Repeated transmissions at the same time and on different frequencies.
  • FIG. 8 is another schematic diagram of the determination method of step 501 in FIG. 5. As shown in Figure 8, the method includes:
  • Step 801 Determine whether the first control information is repeatedly sent according to the first repetition indication parameter in the received high-level signaling
  • Step 802 Calculate the correlation between the received demodulation reference signal and the demodulation reference signal multiplied by the second orthogonal sequence in the case where the first control information is repeatedly transmitted;
  • Step 803 Determine a second orthogonal sequence according to the calculated correlation
  • Step 804 Determine a manner of repeatedly sending the first control information according to the second orthogonal sequence.
  • the high-level signaling may be RRC signaling or MAC-CE signaling
  • the first repetition indication parameter may be a PDCCHRepetitionIndication parameter.
  • This PDCCHRepetitionIndication parameter is composed of 1 byte.
  • the PDCCHRepetitionIndication when the PDCCHRepetitionIndication is 0, it is determined that the first control information is not repeatedly sent; when the PDCCHRepetitionIndication is 1, it is determined that the first control information is repeatedly sent.
  • a correlation coefficient between the DMRS received and the DMRS multiplied by different ZC sequences is calculated, wherein the ZC sequence with the largest calculated correlation coefficient is the ZC sequence used, When it is determined that the ZC sequence used is When it is determined that the first control information is repeatedly transmitted on different time-frequency resources; when it is determined that the ZC sequence used is When it is determined that the first control information is repeatedly transmitted at the same frequency and at different times; when it is determined that the ZC sequence used is , It is determined that the first control information is repeatedly transmitted at the same time and on different frequencies.
  • the method may further include:
  • Step 502 if it is determined that the first control information is repeatedly sent according to the received signal, determine a physical resource that may be used for repeatedly sending the first control information according to a predefined rule;
  • Step 503 Combine multiple received signals received on possible physical resources
  • Step 504 Perform blind detection on the first control information in the combined received signal.
  • the predefined rule may be related to a specific application scenario.
  • the first control information is repeatedly sent on different time-frequency resources
  • different network devices use different CORESETs to repeatedly send the first control information
  • in the CA scenario different cells use different CORESET repeatedly sends the first control information.
  • the predefined rule is, for example, that different network devices or cells send the first control information at the same relative position on different CORESETs.
  • the first control information is repeatedly transmitted on different time-frequency resources
  • different network devices use different symbols or mini-slots to send the first control information
  • different cells use different symbols or mini-slots on the same frequency to send the first control information.
  • the predefined rule is, for example, that different network devices or cells send the first control information on adjacent symbols or micro-slots.
  • the first control information is repeatedly sent at the same time and on different frequencies
  • different network devices may send the first control information at a fixed frequency interval at the same time and in the same frequency band
  • different cells send the first control information at the same time and on different frequency bands.
  • the predefined rule is, for example, different network devices or cells send the first control information at a predefined frequency interval.
  • a physical resource that may be used for repeatedly sending the first control information is determined according to a predefined rule.
  • steps 503 and 504 a plurality of received signals received on the possible physical resources are combined, and the first control information is blindly detected in the combined received signals to obtain the first control information.
  • the first control information is blindly detected in the combined received signals to obtain the first control information.
  • the above uses the method of combining the received signals and then performing a blind inspection.
  • FIG. 9 is another schematic diagram of a control information transmission method according to Embodiment 2 of the present invention. As shown in Figure 9, the method includes:
  • Step 901 Determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the received signal.
  • Step 902 In the case where it is determined that the first control information is repeatedly sent according to the received signal, blind detection is sequentially performed on the different physical resources until the first control information is successfully demodulated.
  • the user equipment performs blind detection on the first control information at the first monitoring opportunity. If the detection is successful, the blind detection is stopped; otherwise, the blind detection will be performed on the second monitoring opportunity, and so on, until the first control information is successfully demodulated.
  • the user equipment may also demodulate the received data information according to the obtained control information to obtain data information.
  • An embodiment of the present invention also provides a method for transmitting control information.
  • the method is applied to a user equipment side and a network device side, which corresponds to the method for transmitting control information in Embodiments 1 and 2. Therefore, its specific implementation can refer to the implementation. Examples 1 and 2 will not be repeated here.
  • FIG. 10 is a schematic diagram of a control information transmission method according to Embodiment 3 of the present invention. As shown in FIG. 10, the method includes:
  • Step 1001 the network device indicates to the user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information
  • Step 1002 the network device sends the first control information to the user equipment
  • Step 1003 The user equipment determines whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information according to the received signal.
  • Step 1004 if the user equipment determines that the first control information is repeatedly sent according to the received signal, determine a physical resource that may be used for repeatedly sending the first control information according to a predefined rule;
  • Step 1005 the user equipment combines multiple received signals received on the physical resources that may be used;
  • Step 1006 The user equipment performs blind detection on the first control information in the combined received signal.
  • the first control information is control information sent by the network device to the user equipment, for example, downlink control information (Downlink Control Information) (DCI).
  • DCI Downlink Control Information
  • the downlink control information is transmitted through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • FIG. 11 is a schematic diagram of a single-link scenario according to Embodiment 3 of the present invention.
  • the single-link system 1000 includes a network device 1101 and a user device 1102.
  • the network device 1101 and the user device 1102 can perform an existing service or a service that can be implemented in the future.
  • FIG. 12 is a schematic diagram of a control information transmission method for the application scenario shown in FIG. 11. As shown in Figure 12, the method includes:
  • Step 1201 the network device 1101 indicates to the user equipment 1102 whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information;
  • Step 1202 the network device 1101 sends the first control information to the user equipment 1102;
  • Step 1203 Determine whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information according to the received signal;
  • Step 1204 If the user equipment 1102 determines that the first control information is repeatedly sent according to the received signal, determine a physical resource that may be used for repeatedly sending the first control information according to a predefined rule;
  • Step 1205 The user equipment 1102 combines multiple received signals received on a possible physical resource
  • Step 1206 The user equipment 1102 performs blind detection on the first control information in the combined received signal.
  • FIG. 13 is a schematic diagram of a CoMP scenario according to Embodiment 3 of the present invention.
  • the first network device 1301, the second network device 1302, and the third network device 1303 are multiple network devices that cooperate.
  • the first network device 1301, the second network device 1302, and the third network device 1303 are in the same network. Sending the same first control information and data information to the user equipment 1304 on the time-frequency resources of the user equipment.
  • the number of network devices may be determined according to actual needs.
  • Embodiments of the present invention are not limited to three network devices, and may also be two network devices, or four or more network devices.
  • one of the three network devices is a master network device.
  • the first network device 1301 is a master network device.
  • FIG. 14 is a schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 13 according to Embodiment 3 of the present invention. As shown in Figure 14, the method includes:
  • Step 1401 The first network device 1301 indicates to the user equipment 1304 whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information, where the first control information is instructed not to be repeatedly sent;
  • Step 1402 The first network device 1301, the second network device 1302, and the third network device 1303 use the first beam, the second beam, and the third beam to send the same first control to the user equipment 1304 on the same time-frequency resource. information;
  • Step 1403 the user equipment 1304 determines not to repeatedly send the first control information according to the received signal
  • Step 1404 The user equipment 1304 performs blind detection on the first control information according to the received signal on a time-frequency resource to obtain the first control information.
  • the first network device 1301 may instruct in various manners described in the first embodiment.
  • the PDCCHRepetitionIndication parameter in the RRC signaling or the MAC-CE signaling is used to indicate that the first control information is not repeatedly transmitted, that is, the PDCCHRepetitionIndication parameter is set to 00 or set to 0.
  • the OCC code multiplied by the DMRS of the first control information indicates that the first control information is not repeatedly transmitted, that is, the OCC code [1] is used to multiply the DMRS by the OC code.
  • the user equipment 1304 may be determined in various manners described in the second embodiment.
  • the PDCCHRepetitionIndication parameter in the received RRC signaling or MAC-CE signaling that is, when the PDCCHRepetitionIndication parameter is 00 or 0, it is determined that the first control information is not repeatedly sent.
  • FIG. 15 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 13 according to Embodiment 3 of the present invention. As shown in Figure 15, the method includes:
  • Step 1501 The first network device 1301 indicates to the user equipment 1304 whether to repeatedly send the first control information and a manner of sending repeatedly, where the first network device 1301 is instructed to repeatedly send the first control information on different time-frequency resources;
  • Step 1502 the first network device 1301, the second network device 1302, and the third network device 1303 send the first control information to the user equipment 1304 on different time-frequency resources.
  • the three network devices As a whole, It can be regarded as repeatedly sending the first control information on different time-frequency resources;
  • Step 1503 the user equipment 1304 determines that the first control information is repeatedly sent on different time-frequency resources according to the received signal
  • Step 1504 the user equipment 1304 determines the physical resources that each network device may use to send the first control information according to a predefined rule
  • Step 1505 The user equipment 1304 combines multiple received signals received on the physical resources that may be used;
  • Step 1506 The user equipment 1304 performs blind detection on the first control information in the combined received signal to obtain the first control information.
  • the first network device 1301 may also instruct to repeatedly send the first control information at the same frequency and at different times, or repeatedly send the first control information at the same time and at different frequencies.
  • the first network device 1301, the second network device 1302, and the third network device 1303 send the first control information to the user equipment 1304 at the same frequency and at different times, or the first network device 1301.
  • the second network device 1302 and the third network device 1303 send the first control information to the user equipment 1304 at the same time and different frequencies.
  • the user equipment 1304 determines that the first control information is repeatedly transmitted at the same frequency and different times according to the received signal, or determines that the first control information is repeatedly transmitted at the same time and different frequencies.
  • FIG. 16 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 13 according to Embodiment 3 of the present invention. As shown in Figure 16, the method includes:
  • Step 1601 The first network device 1301 indicates to the user equipment 1304 whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information, where the first control information is instructed to be repeatedly sent;
  • Step 1602 the first network device 1301, the second network device 1302, and the third network device 1303 respectively repeatedly send the first control information to the user equipment 1304;
  • Step 1603 the user equipment 1304 determines, according to the received signal, a method of repeatedly sending the first control information and a method of repeatedly sending the first control information;
  • Step 1604 the user equipment 1304 determines a physical resource that may be used for repeatedly sending the first control information according to a predefined rule
  • Step 1605 the user equipment 1304 combines multiple received signals received on the physical resources that may be used;
  • Step 1606 The user equipment 1304 performs blind detection on the first control information in the combined received signal to obtain the first control information.
  • the first network device 1301 may instruct in various manners described in the first embodiment.
  • the PDCCHRepetitionIndication parameter in the RRC signaling or the MAC-CE signaling is used to instruct the first control information to be repeatedly sent, that is, the PDCCHRepetitionIndication parameter is set to 01, 10, or 11.
  • an OCC code multiplied by the DMRS of the first control information for example, the DMRS of the first control information and the OCC code [1-1, -1], [1-1, -1], or [1 -1 -1] multiply.
  • a PDCCHRepetitionIndication parameter in RRC signaling or MAC-CE signaling and a ZC sequence multiplied by the DMRS of the first control information.
  • the PDCCHRepetitionIndication parameter is set to 1, and the DMRS of the first control information With ZC sequence or Multiply.
  • the first network device 1301 as the master network device indicates to the user whether each network device in the multi-link system repeatedly sends the first control information and the manner of repeatedly sending the first control information, wherein each network device is repeated
  • the way of sending the first control information may be the same or different.
  • the first network device 1301 may indicate the same manner in which the first control information is repeatedly transmitted; and in a case where the manner in which the first control information is repeatedly transmitted by each network device is different
  • the first network device 1301 may indicate a manner of repeatedly sending all the network devices.
  • the user equipment 1304 may determine a manner of repeatedly sending the first control information by using various manners described in Embodiment 2. For example, it is directly determined by the PDCCHRepetitionIndication parameter in the received RRC signaling or MAC-CE signaling. For example, when the PDCCHRepetitionIndication is 01, it is determined that the first control information is repeatedly transmitted on different time-frequency resources; When it is determined that the first control information is repeatedly transmitted at the same frequency and at different times; when the PDCCHRepetitionIndication is 11, it is determined that the first control information is repeatedly transmitted at the same time and at different frequencies.
  • the calculated OCC code with the largest correlation coefficient is [1-1, 1-1]
  • determine that the first control information is in a different Repeated transmission on time-frequency resources
  • determines that the first control information is in a different Repeated transmission on time-frequency resources
  • the calculated OCC code with the largest correlation coefficient is [1, -1, -1]
  • it is determined that the first control information is repeatedly transmitted at the same frequency and at different times
  • the calculated correlation when the OCC code with the largest coefficient is [1-1, -1], it is determined that the first control information is repeatedly transmitted at the same time and on different frequencies.
  • the user equipment 1304 may determine the physical resource that may be used by repeatedly sending the first control information by using various predetermined rules recorded in the second embodiment.
  • the first control information is repeatedly sent on different time-frequency resources
  • different network devices or cells send the first control information at the same relative position on different CORESETs.
  • the first control information is repeatedly transmitted on the same frequency resource at different times
  • different network devices send the first control information on adjacent symbols or mini-slots.
  • the first control information when the first control information is repeatedly transmitted at the same time and on different frequencies, different network devices send the first control information at a predefined frequency interval.
  • FIG. 17 is another schematic diagram of a CoMP scenario according to Embodiment 3 of the present invention.
  • the first network device 1701, the second network device 1702, and the third network device 1703 are multiple network devices that cooperate, and only the first network device 1701 sends the first control information and data information to the user device 1704.
  • the first network device 1701 is a master network device.
  • FIG. 18 is a schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 17 according to Embodiment 3 of the present invention. As shown in FIG. 18, the method includes:
  • Step 1801 The first network device 1801 indicates to the user equipment 1704 whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information, where the first control information is instructed not to be repeatedly sent;
  • Step 1802 the first network device 1701 sends the first control information to the user equipment 1704;
  • Step 1803 The user equipment 1704 determines not to repeatedly send the first control information according to the received signal
  • Step 1804 The user equipment 1704 performs blind detection on the first control information according to the received signal to obtain the first control information.
  • FIG. 19 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 17 according to Embodiment 3 of the present invention. As shown in Figure 19, the method includes:
  • Step 1901 The first network device 1701 indicates to the user equipment 1704 whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information, where the first control information is instructed to be repeatedly transmitted;
  • Step 1902 the first network device 1701 repeatedly sends the first control information to the user equipment 1704;
  • Step 1903 the user equipment 1704 determines, according to the received signal, a method of repeatedly sending the first control information and a method of repeatedly sending the first control information;
  • Step 1904 the user equipment 1704 determines a physical resource that may be used for repeatedly sending the first control information according to a predefined rule
  • Step 1905 the user equipment 1704 combines multiple received signals received on a possible physical resource
  • Step 1906 The user equipment 1704 performs blind detection on the first control information in the combined received signal to obtain the first control information.
  • FIG. 20 is a schematic diagram of a scenario of inter-cell cooperation in Embodiment 3 of the present invention.
  • the network device 2000 serves the first cell 2001, the second cell 2002, and the third cell 2003, and the first cell 2001, the second cell 2002, and the third cell 2003 cooperate with each other.
  • the user equipment 2004 is located in any one of the first cell 2001, the second cell 2002, and the third cell 2003.
  • the first cell 2001 is a primary cell.
  • FIG. 21 is a schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 20 according to Embodiment 3 of the present invention. As shown in Figure 21, the method includes:
  • Step 2101 The first cell 2001 indicates to the user equipment 2004 whether the first control information is repeatedly transmitted and a manner of repeating the transmission, where the first control information is instructed not to be repeatedly transmitted;
  • Step 2102 the first cell 2001, the second cell 2002, and the third cell 2003 use the first beam, the second beam, and the third beam to send the same first control information to the user equipment 2004 on the same time-frequency resource;
  • Step 2103 the user equipment 2004 determines not to repeatedly send the first control information according to the received signal
  • Step 2104 The user equipment 2004 performs blind detection on the first control information according to the received signal on a time-frequency resource to obtain the first control information.
  • the first cell 2001 may also indicate to the user equipment that the first control information is repeatedly transmitted on different time-frequency resources, or is repeatedly transmitted on the same frequency and at different times. Or, the transmission is repeated at the same time and on different frequencies.
  • the first cell 2001, the second cell 2002, and the third cell 2003 send the first control information on different time-frequency resources, or the first cell 2001
  • the second cell 2002 and the third cell 2003 send the first control information at the same frequency and different times, or the first cell 2001, the second cell 2002 and the third cell 2003 are at the same time and different frequencies Sending the first control information.
  • the user equipment 2004 determines that the first control information occurs on different time-frequency resources according to the received signal, or determines that the first control information is repeatedly transmitted on the same frequency and at different times, or determines that the first control information is on Repeated transmissions at the same time and on different frequencies.
  • FIG. 22 is another schematic diagram of a method for transmitting control information for the application scenario shown in FIG. 20 according to Embodiment 3 of the present invention. As shown in FIG. 22, the method includes:
  • Step 2201 The first cell 1901 indicates to the user equipment 1904 whether the first control information is repeatedly transmitted and a manner of repeating the transmission, where the first control information is instructed to be repeatedly transmitted;
  • Step 2202 the first cell 2001, the second cell 2002, and the third cell 2003 respectively repeatedly send the first control information to the user equipment 2004;
  • Step 2203 The user equipment 2004 determines, according to the received signal, repeatedly sending the first control information and a manner of repeatedly sending the first control information;
  • Step 2204 The user equipment 2004 determines a physical resource that may be used for repeatedly sending the first control information according to a predefined rule
  • Step 2205 the user equipment 2004 combines multiple received signals received on the physical resources that may be used;
  • Step 2206 The user equipment 2004 performs blind detection on the first control information in the combined received signal to obtain the first control information.
  • FIG. 23 is a schematic diagram of a CA scenario in Embodiment 3 of the present invention.
  • N network devices send first control information and data information to the user equipment 2302 through N carriers 2301-1 to 230-1.
  • N is an integer greater than or equal to 2, and its value can be determined according to actual needs.
  • FIG. 24 is a schematic diagram of a control information transmission method for the application scenario shown in FIG. 23 according to Embodiment 3 of the present invention. As shown in FIG. 24, the method includes:
  • Step 2401 A carrier indicates to the user equipment 2202 whether the first control information is repeatedly transmitted and a manner of repeating the transmission, wherein the first control information is repeatedly transmitted;
  • Step 2402 The N carriers 2301-1 to 230-N send the same first control information to the user equipment 2302 on different time-frequency resources or on different frequencies (carriers) or on different symbols or micro gaps;
  • Step 2403 the user equipment 2302 determines, according to the received signal, a method of repeatedly sending the first control information and a method of repeatedly sending the first control information;
  • Step 2404 the user equipment 2302 determines a physical resource that may be used for repeatedly sending the first control information according to a predefined rule
  • Step 2405 the user equipment 2302 combines multiple received signals received on the physical resources that may be used;
  • Step 2406 The user equipment 2302 performs blind detection on the first control information in the combined received signal to obtain the first control information.
  • the method used on the user equipment side is to combine the received signals and then perform a blind detection. In addition, it may not be performed on each physical resource in order. Blind test until the blind test is successful, for example, the blind test is performed at each monitoring opportunity in turn.
  • the method used on the user equipment side is to combine the received signals and then perform a blind detection. In addition, it may not be performed on each physical resource in order. Blind test until the blind test is successful, for example, the blind test is performed at each monitoring opportunity in turn.
  • control information is obtained according to the content of the instruction, which can effectively improve the reliability of control information transmission.
  • An embodiment of the present invention also provides a method for transmitting control information, and the method is applied to a user equipment side.
  • FIG. 25 is a schematic diagram of a control information transmission method according to Embodiment 4 of the present invention. As shown in Figure 25, the method includes:
  • Step 2501 Send the second control information to the network device according to an indication of whether the second control information is repeatedly sent and a manner of repeatedly sending the received first control information.
  • the first control information is information received from a network device for downlink control, for example, downlink control information (DCI).
  • DCI downlink control information
  • the second control information is information sent to the network device for uplink control, for example, uplink control information (Uplink Control Information) (UCI).
  • uplink control information Uplink Control Information
  • UCI Uplink Control Information
  • uplink control information is transmitted through a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the manner of repeatedly sending the second control information may include: the second control information is repeatedly sent on different time-frequency resources, or the second control information is repeatedly sent on the same frequency and at different times, or , The second control information is repeatedly transmitted at the same time and on different frequencies.
  • the indication of whether the second control information is repeatedly transmitted and the manner of repeating the transmission in the first control information is similar to the indication of whether the first control information is repeatedly transmitted and the manner of repeating the transmission in the first embodiment.
  • the second repetition indication parameter is a PUCCHRepetitionIndication parameter.
  • the PUCCHRepetitionIndication parameter may be composed of 2 bytes. For example, when PUCCHRepetitionIndication is 00, it means that the second control information is not repeatedly sent; when PUCCHRepetitionIndication is 01, it means that the second control information is repeatedly sent on different time-frequency resources; when PUCCHRepetitionIndication is 10, it means that the second control information is Repeated transmission at the same frequency and at different times; when PUCCHRepetitionIndication is 11, it means that the second control information is repeatedly transmitted at the same time and at different frequencies.
  • step 2501 if the first control information is repeatedly sent, the second control information is repeatedly sent to the network device in a manner that the network device repeatedly sends the second control information indicated by the first control information; When the information is not repeatedly sent, the second control information is sent to the network device.
  • step 2501 second control information may be sent to multiple network devices.
  • the network device that sends the first control information and the network device that is the target of the second control information may be the same network device or different network devices.
  • An embodiment of the present invention further provides a method for transmitting control information.
  • the method is applied to a network device side, and the method corresponds to the method for transmitting control information applied to a user device side described in Embodiment 4.
  • FIG. 26 is a schematic diagram of a control information transmission method according to Embodiment 5 of the present invention. As shown in Figure 26, the method includes:
  • Step 2601 Receive the second control information on the physical resource designated by the first control information.
  • Step 2602 In the case where the second control information is repeatedly transmitted, a plurality of the second control information that is repeatedly transmitted are combined and then demodulated;
  • Step 2603 If the second control information is not repeatedly sent, demodulate the second control information directly.
  • the network device side specifies the physical resource used for repeatedly sending or not repeatedly sending the second control information through the first control information, so that the second control information can be received and demodulated directly on the corresponding physical resource.
  • An embodiment of the present invention further provides a method for transmitting control information.
  • the method is applied to a user equipment side and a network device side, which corresponds to the method for transmitting control information in Embodiments 4 and 5. Therefore, its specific implementation can refer to the implementation. Examples 4 and 5 are not repeated here.
  • FIG. 27 is a schematic diagram of a control information transmission method according to Embodiment 6 of the present invention. As shown in Figure 27, the method includes:
  • Step 2701 Send the second control information to the network device according to an indication of whether the second control information is repeatedly sent and a manner of repeatedly sending the received first control information;
  • Step 2702 Receive the second control information on the physical resource designated by the first control information.
  • Step 2703 In the case where the second control information is repeatedly transmitted, a plurality of the second control information that is repeatedly transmitted are combined and then demodulated;
  • Step 2704 if the second control information is not repeatedly sent, directly demodulate the second control information.
  • An embodiment of the present invention further provides an apparatus for transmitting control information, which is applied to a network device side.
  • This device corresponds to the control information transmission method described in Embodiment 1. Therefore, for specific implementation, reference may be made to Embodiment 1, and repeated descriptions are not repeated.
  • FIG. 28 is a schematic diagram of a control information transmission apparatus according to Embodiment 7 of the present invention. As shown in FIG. 28, the device 2800 includes:
  • An indication unit 2801 is configured to indicate to the user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information.
  • the device 2800 may further include:
  • a first sending unit 2802 configured to repeatedly send the first control information to the user equipment in the manner of repeated sending instructed to the user equipment when the first control information is repeatedly sent, In the case of repeated sending, the first control information is sent to the user equipment.
  • FIG. 29 is another schematic diagram of a control information transmission apparatus according to Embodiment 7 of the present invention. As shown in FIG. 29, the device 2900 includes:
  • An instruction unit 2901 which is used to indicate to the user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information
  • a second sending unit 2902 provided in the first network device is configured to send the first control information to the user equipment with at least one other network device.
  • the first network device is, for example, a master network device in a multi-link system, and the first network device and an other network device are instructed to form a multi-link system.
  • the second sending unit 2902 provided in the first network device is on the same or different time-frequency resources with at least one other network device, or on the same frequency and different time, or on the same time Sending the first control information to the user equipment at different times and different frequencies.
  • the second sending unit 2902 and at least one other network device provided in the first network device repeatedly send the first control information to the user device in a repeated sending manner instructed to the user device. .
  • FIG. 30 is another schematic diagram of a control information transmission apparatus according to Embodiment 7 of the present invention. As shown in FIG. 30, the device 3000 includes:
  • An instruction unit 3001 which is used to indicate to the user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information
  • Only the third sending unit 3002 of the first network device sends the first control information to the user equipment, and the first network device and at least one other network device form a multi-link system.
  • the third sending unit 3002 when the first control information is not repeatedly sent, the third sending unit 3002 sends the first control information to the user equipment; when the first control information is repeatedly sent, the third sending unit 3002 Repeat the sending of the first control information to the user equipment in a repeated sending manner instructed to the user equipment.
  • control information is obtained according to the content of the instruction, which can effectively improve the reliability of control information transmission.
  • An embodiment of the present invention further provides an apparatus for transmitting control information, which is applied to a user equipment side.
  • This device corresponds to the control information transmission method described in Embodiment 2. Therefore, for specific implementation, reference may be made to Embodiment 2, and duplicated details are not described again.
  • FIG. 31 is a schematic diagram of a control information transmission apparatus according to Embodiment 8 of the present invention. As shown in FIG. 31, the device 3100 includes:
  • a determining unit 3101 is configured to determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the received signal.
  • FIG. 32 is a schematic diagram of a determining unit according to Embodiment 8 of the present invention. As shown in FIG. 32, the determining unit 3101 includes:
  • a first determining unit 3201 is configured to determine whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information according to a first repetition indication parameter in high-level signaling.
  • FIG. 33 is another schematic diagram of a determining unit according to Embodiment 8 of the present invention. As shown in FIG. 33, the determining unit 3101 includes:
  • a first calculation unit 3301 configured to calculate a correlation between a received demodulation reference signal and a demodulation reference signal multiplied by a first orthogonal sequence
  • a second determining unit 3302 configured to determine the first orthogonal sequence according to the calculated correlation
  • a third determining unit 3303 is configured to determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the first orthogonal sequence.
  • FIG. 34 is another schematic diagram of a determining unit according to Embodiment 8 of the present invention. As shown in FIG. 34, the determining unit 3101 includes:
  • a fourth determining unit 3401 configured to determine whether the first control information is repeatedly sent according to the first repeated indication parameter in the received high-level signaling
  • a second calculation unit 3402 configured to calculate a correlation between the received demodulation reference signal and a demodulation reference signal multiplied by a second orthogonal sequence in a case where the first control information is repeatedly transmitted;
  • a fifth determining unit 3403 configured to determine the second orthogonal sequence according to the calculated correlation
  • a sixth determining unit 3404 is configured to determine a manner of repeatedly sending the first control information according to the second orthogonal sequence.
  • the device 3100 may further include:
  • a seventh determining unit 3102 configured to determine a physical resource that may be used for repeatedly sending the first control information according to a predefined rule if it is determined that the first control information is repeatedly sent according to the received signal;
  • a first combining unit 3103 configured to combine a plurality of received signals received on a possible physical resource
  • the first detection unit 3104 is configured to perform blind detection on the first control information in the combined received signals.
  • FIG. 35 is a schematic diagram of a control information transmission apparatus according to Embodiment 8 of the present invention. As shown in FIG. 35, the device 3500 includes:
  • a determining unit 3501 configured to determine whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information according to the received signal
  • a second detection unit 3502 is configured to perform a blind detection on the different physical resources in sequence in the case that the first control information is repeatedly sent according to the received signal, until the first demodulation is successfully demodulated. Control information.
  • An embodiment of the present invention further provides an apparatus for transmitting control information, which is applied to a user equipment side.
  • This device corresponds to the control information transmission method described in Embodiment 4. Therefore, for specific implementation, reference may be made to Embodiment 4, and repeated descriptions are omitted.
  • FIG. 36 is a schematic diagram of a control information transmission apparatus according to Embodiment 9 of the present invention. As shown in FIG. 36, the device 3600 includes:
  • a fourth sending unit 3601 is configured to send the second control information to the network device according to an instruction on whether the second control information is repeatedly sent and a manner of repeatedly sending the received first control information.
  • the fourth sending unit 3601 when the fourth sending unit 3601 repeatedly sends the second control information, the second control information is repeatedly sent to the network device in a manner of repeatedly sending the second control information indicated by the first control information. information.
  • the fourth sending unit 3601 may also send the second control information to at least two network devices.
  • the at least two network devices are configured as a multi-link system.
  • An embodiment of the present invention further provides an apparatus for transmitting control information, which is applied to a network device side.
  • This device corresponds to the control information transmission method described in Embodiment 5. Therefore, for specific implementation, reference may be made to Embodiment 5, and duplicated details are not described again.
  • FIG. 37 is a schematic diagram of a control information transmission apparatus according to Embodiment 10 of the present invention. As shown in FIG. 37, the device 3700 includes:
  • a receiving unit 3701 configured to receive second control information on a physical resource specified by the first control information
  • a second merging unit 3702 which is configured to combine multiple second control information that is repeatedly sent and then demodulate the second control information if the second control information is repeatedly sent;
  • a demodulation unit 3703 is configured to directly demodulate the second control information if the second control information is not repeatedly transmitted.
  • An embodiment of the present invention further provides a network device.
  • the user equipment includes the apparatus for transmitting control information according to Embodiment 7.
  • FIG. 38 is a schematic structural diagram of a network device according to Embodiment 11 of the present invention.
  • the network device 3800 may include: a processor 3810 and a memory 3820; the memory 3820 is coupled to the processor 3810.
  • the memory 3820 can store various data; in addition, it also stores an information processing program 3830, and executes the program 3830 under the control of the processor 3810 to receive various information sent by the user equipment and send various information to the user equipment .
  • the function of the control information transmission device may be integrated into the processor 3810.
  • the processor 3810 may be configured to indicate to the user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information.
  • control information transmission device may be configured separately from the processor 3810.
  • control information transmission device may be configured as a chip connected to the processor 3810, and the control information transmission may be implemented through the control of the processor 3810. Function of the device.
  • the network device 3800 may further include a transceiver 3840, an antenna 3850, and the like; wherein the functions of the above components are similar to those in the prior art, and details are not described herein again. It is worth noting that the network device 3800 does not necessarily need to include all the components shown in FIG. 38; in addition, the network device 3800 may also include components not shown in FIG. 38, and reference may be made to the prior art.
  • control information is obtained according to the content of the instruction, which can effectively improve the reliability of control information transmission.
  • An embodiment of the present invention further provides user equipment, and the user equipment includes the apparatus for transmitting control information according to Embodiment 8.
  • FIG. 39 is a schematic block diagram of a system configuration of a user equipment according to Embodiment 12 of the present invention.
  • the user equipment 3900 may include a processor 3910 and a memory 3920; the memory 3920 is coupled to the processor 3910. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace the structure to implement telecommunication functions or other functions.
  • the function of the control information transmission device may be integrated into the processor 3910.
  • the processor 3910 may be configured to determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the received signal.
  • control information transmission device may be configured separately from the processor 3910.
  • control information transmission device may be configured as a chip connected to the processor 3910, and the control information transmission may be implemented through control of the processor 3910. Function of the device.
  • the user equipment 3900 may further include a communication module 3930, an input unit 3940, a display 3950, and a power source 3960. It is worth noting that the user equipment 3900 does not have to include all components shown in FIG. 39; in addition, the user equipment 3900 may also include components not shown in FIG. 39, and reference may be made to related technologies.
  • the processor 3910 is sometimes also called a controller or an operation control, and may include a microprocessor or other processor device and / or logic device.
  • the processor 3910 receives input and controls various components of the user equipment 3900. operating.
  • the memory 3920 may be, for example, one or more of a buffer, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • Various data can be stored, in addition, programs for executing related information can be stored.
  • the processor 3910 may execute the program stored in the memory 3920 to implement information storage or processing.
  • the functions of other components are similar to the existing ones, and are not repeated here.
  • the components of the user equipment 3900 may be implemented by dedicated hardware, firmware, software, or a combination thereof without departing from the scope of the present invention.
  • An embodiment of the present invention further provides user equipment.
  • the network device includes the apparatus for transmitting control information according to Embodiment 9.
  • FIG. 40 is a schematic block diagram of a system configuration of a user equipment according to Embodiment 13 of the present invention.
  • the user equipment 4000 may include a processor 4010 and a memory 4020; the memory 4020 is coupled to the processor 4010. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace the structure to implement telecommunication functions or other functions.
  • the function of the control information transmission device may be integrated into the processor 4010.
  • the processor 4010 may be configured to send the second control information to the network device according to an indication of whether the second control information is repeatedly sent and a manner of repeatedly sending the received first control information.
  • control information transmission device may be configured separately from the processor 4010.
  • control information transmission device may be configured as a chip connected to the processor 4010, and the control information transmission may be implemented through control of the processor 4010. Function of the device.
  • the user equipment 4000 may further include a communication module 4030, an input unit 4040, a display 4050, and a power source 4060. It is worth noting that the user equipment 4000 does not necessarily include all the components shown in FIG. 40; in addition, the user equipment 4000 may also include components not shown in FIG. 40, and reference may be made to related technologies.
  • the processor 4010 is sometimes also called a controller or an operation control, and may include a microprocessor or other processor device and / or a logic device.
  • the processor 4010 receives input and controls various components of the user equipment 4000. operating.
  • the memory 4020 may be, for example, one or more of a buffer, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • Various data can be stored, in addition, programs for executing related information can be stored.
  • the processor 4010 can execute the program stored in the memory 4020 to implement information storage or processing.
  • the functions of other components are similar to the existing ones, and are not repeated here.
  • the components of the user equipment 4000 may be implemented by dedicated hardware, firmware, software, or a combination thereof without departing from the scope of the present invention.
  • An embodiment of the present invention further provides a network device, and the network device includes the apparatus for transmitting control information according to the tenth embodiment.
  • FIG. 41 is a schematic structural diagram of a network device according to Embodiment 14 of the present invention.
  • the network device 4100 may include: a processor 4110 and a memory 4120; the memory 4120 is coupled to the processor 4110.
  • the memory 4120 can store various data; in addition, it also stores an information processing program 4130, and executes the program 4130 under the control of the processor 4110 to receive various information sent by the user equipment and send various information to the user equipment. .
  • the function of the control information transmission device may be integrated into the processor 4110.
  • the processor 4110 may be configured to: receive the second control information on the physical resource specified by the first control information; and in the case where the second control information is repeatedly sent, a plurality of second control information to be repeatedly sent Demodulate after the combining; if the second control information is not repeatedly transmitted, directly demodulate the second control information.
  • control information transmission device may be configured separately from the processor 4110.
  • control information transmission device may be configured as a chip connected to the processor 4110, and the control information transmission may be implemented through control of the processor 4110. Function of the device.
  • the network device 4100 may further include a transceiver 4140, an antenna 4150, and the like; wherein the functions of the foregoing components are similar to those in the prior art, and details are not described herein again. It is worth noting that the network device 4100 does not have to include all components shown in FIG. 41; in addition, the network device 4100 may also include components not shown in FIG. 41, and reference may be made to the prior art.
  • An embodiment of the present invention further provides a communication system, including at least one network device according to Embodiment 11 and a user equipment according to Embodiment 12.
  • the communication system is a multi-link system, and the structure of the communication system can refer to various scenarios shown in FIG. 1, FIG. 13, FIG. 17, FIG. 20, and FIG. 23.
  • the communication system is a single link system, and its structure can refer to the scenario shown in FIG. 11.
  • the structure and function of the network device are the same as those described in Embodiment 11, and the structure and functions of the user equipment are the same as those described in Embodiment 12, and are not described here again.
  • An embodiment of the present invention further provides a communication system, including the user equipment according to embodiment 13 and at least one network device according to embodiment 14.
  • the communication system is a multi-link system, and the structure of the communication system can refer to various scenarios shown in FIG. 1, FIG. 13, FIG. 17, FIG. 20, and FIG. 23.
  • the communication system is a single link system, and its structure can refer to the scenario shown in FIG. 11.
  • the structure and function of the network device are the same as those described in the fourteenth embodiment, and the structure and functions of the user equipment are the same as those described in the thirteenth embodiment, and details are not described herein again.
  • the manner in which the downlink control information sent by the network device indicates whether the uplink control information is repeatedly sent and repeatedly sent can effectively improve the reliability of control information transmission.
  • Embodiments of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • Embodiments of the present invention relate to such a computer-readable program.
  • the logic component can implement the device or constituent component described above, or the logic component can implement each of the components described above. Methods or steps.
  • Embodiments of the present invention also relate to a storage medium for storing the above programs, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method / apparatus described in combination with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and / or one or more combinations of the functional block diagrams shown in FIG. 28 may correspond to each software module of a computer program flow or to each hardware module.
  • These software modules can respectively correspond to the steps shown in FIG. 2.
  • These hardware modules can be implemented by using a field programmable gate array (FPGA) to cure these software modules.
  • FPGA field programmable gate array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor so that the processor can read information from and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • a general-purpose processor for example, a digital signal processor for performing the functions described in the present invention (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • One or more of the functional blocks and / or one or more combinations of the functional blocks described with reference to FIG. 28 may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, A processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a control information transmission device the device includes:
  • An instruction unit configured to indicate to the user equipment whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information.
  • the manner of repeatedly sending the first control information includes: repeatedly sending the first control information on different time-frequency resources, or repeatedly sending the first control information on the same frequency and at different times, or The first control information is repeatedly transmitted at the same time and on different frequencies.
  • first control information is repeatedly sent and repeatedly sent is indicated in one of the following ways: indicated by a first repeat instruction parameter in high-level signaling, and a demodulation reference signal with the first control information (DMRS) a first orthogonal sequence multiplied, and a second orthogonal sequence multiplied by a first repeat indication parameter in high-level signaling and a demodulation reference signal (DMRS) of the first control information give instructions.
  • DMRS demodulation reference signal with the first control information
  • DMRS demodulation reference signal with the first control information
  • the first control information is repeatedly sent and how to send it repeatedly is indicated in one of the following ways: it is indicated by the PDCCHRepetitionIndication parameter in RRC signaling or MAC-CE signaling, and The orthogonal coverage code (OCC) multiplied by the reference signal, and indicated by the PDCCHRepetitionIndication in RRC signaling or MAC-CE signaling, and the ZC sequence multiplied by the demodulation reference signal of the first control information .
  • OCC orthogonal coverage code
  • Supplementary note 5 The device according to any one of supplementary notes 1-4, wherein the device further comprises:
  • a first sending unit configured to repeatedly send the first control information to the user equipment in a repeated sending manner instructed to the user equipment when the first control information is repeatedly sent, and When the first control information is not repeatedly sent, the first control information is sent to the user equipment.
  • Supplementary note 6 The device according to any one of supplementary notes 1-4, wherein the device further comprises:
  • a second sending unit provided in the first network device is configured to send the first control information to the user equipment with at least one other network device.
  • Appendix 7 The device according to Appendix 6, wherein:
  • the second sending unit provided in the first network device is on the same or different time-frequency resources with at least one other network device, or on the same frequency and at different times, or at the same time and at different times. Frequencyly, sending the first control information to the user equipment.
  • Appendix 8 The device according to Appendix 6, wherein:
  • the second sending unit provided in the first network device and at least one other network device repeatedly send the first control information to the user equipment in a repeated sending manner instructed to the user equipment.
  • Supplementary note 9 The device according to any one of supplementary notes 1-4, wherein the device further comprises:
  • a third sending unit provided in the first network device,
  • Only the third sending unit of the first network device sends the first control information to the user equipment, and the first network device and at least one other network device form a multi-link system.
  • the third sending unit of the first network device sends the first control information to the user equipment.
  • the third sending unit of the first network device repeatedly sends the first control information to the user equipment in a manner of repeated sending instructed to the user equipment. Control information.
  • a control information transmission device the device includes:
  • a determining unit configured to determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the received signal.
  • Supplementary note 13 The apparatus according to supplementary note 12, wherein the determining unit includes:
  • the first determining unit is configured to determine whether the first control information is repeatedly sent and a manner of repeatedly sending the first control information according to a first repetition indication parameter in high-level signaling.
  • Supplementary note 14 The device according to supplementary note 12, wherein the determining unit includes:
  • a first calculation unit configured to calculate a correlation between a received demodulation reference signal and a demodulation reference signal multiplied by a first orthogonal sequence
  • a second determining unit configured to determine the first orthogonal sequence according to the calculated correlation
  • a third determining unit configured to determine whether the first control information is repeatedly transmitted and a manner of repeatedly transmitting the first control information according to the first orthogonal sequence.
  • Supplementary note 15 The apparatus according to supplementary note 12, wherein the determining unit includes:
  • a fourth determining unit configured to determine whether the first control information is repeatedly sent according to the first repeated indication parameter in the received high-level signaling
  • a second calculation unit configured to calculate a correlation between the received demodulation reference signal and a demodulation reference signal multiplied by a second orthogonal sequence in a case where the first control information is repeatedly transmitted;
  • a fifth determining unit configured to determine the second orthogonal sequence according to the calculated correlation
  • a sixth determining unit is configured to determine a manner of repeatedly sending the first control information according to the second orthogonal sequence.
  • Supplementary note 16 The device according to any one of supplementary notes 12-15, wherein the device further comprises:
  • a seventh determining unit configured to determine, according to a received signal, that the first control information is repeatedly sent, and determine a physical resource that may be used to repeatedly send the first control information according to a predefined rule
  • a first combining unit configured to combine multiple received signals received on the possibly used physical resources
  • a first detection unit configured to perform blind detection on the first control information in the combined received signal.
  • Supplementary note 17 The device according to any one of supplementary notes 12-15, wherein the device further comprises:
  • a second detection unit configured to perform a blind detection on the first control information sequentially on different physical resources in a case where the first control information is repeatedly sent according to a received signal, until the demodulation is successfully performed; Up to the first control information.
  • a control information transmission device comprising:
  • a fourth sending unit configured to send the second control information to the network device according to an indication of whether the second control information is repeatedly sent and a manner of repeatedly sending the received first control information.
  • Supplementary note 19 The device according to supplementary note 18, wherein
  • the manner of repeatedly sending the second control information includes: repeatedly sending the second control information on different time-frequency resources, or repeatedly sending the second control information on the same frequency and at different times, or The second control information is repeatedly transmitted at the same time and on different frequencies.
  • Supplementary note 20 The device according to supplementary note 18 or 19, wherein:
  • Whether the second control information is repeatedly sent and the manner in which the second control information is repeatedly sent is indicated by a second repeat indication parameter in the first control information.
  • Appendix 21 The device according to Appendix 20, wherein:
  • Whether the second control information is repeated and sent repeatedly is indicated by a PUCCHRepetitionIndication parameter in the first control information.
  • Supplementary note 22 The device according to any one of supplementary notes 18-21, wherein:
  • the fourth sending unit When the fourth sending unit repeatedly sends the second control information, the fourth sending unit repeatedly sends the second control information to a network device in a manner of repeatedly sending the second control information indicated by the first control information.
  • Supplementary note 23 The device according to any one of supplementary notes 18-21, wherein:
  • the fourth sending unit sends the second control information to at least two network devices.
  • a control information transmission device including:
  • a receiving unit configured to receive second control information on a physical resource designated by the first control information
  • a second merging unit configured to: after the second control information is repeatedly transmitted, merge the multiple second control information that is repeatedly transmitted and then demodulate;
  • a demodulation unit is configured to directly demodulate the second control information if the second control information is not repeatedly sent.
  • Supplementary note 25 A network device including the apparatus according to any one of supplementary notes 1-11.
  • Supplementary note 26 A user equipment comprising the apparatus according to any one of supplementary notes 12-17.
  • Supplementary note 27 A user equipment comprising the device according to any one of supplementary notes 18-23.
  • Supplementary note 28 A network device comprising the apparatus according to supplementary note 24.
  • Appendix 29 A communication system including at least one network device according to Appendix 25 and a user equipment according to Appendix 26.
  • Appendix 30 A communication system including the user equipment according to Appendix 27 and at least one network device according to Appendix 28.
  • Appendix 31 A method for transmitting control information, the method comprising:
  • a method for indicating to the user equipment whether the first control information is repeatedly transmitted and repeatedly transmitted is repeatedly transmitted and repeatedly transmitted.
  • Supplementary note 32 The method according to supplementary note 31, wherein
  • the manner of repeatedly sending the first control information includes: repeatedly sending the first control information on different time-frequency resources, or repeatedly sending the first control information on the same frequency and at different times, or The first control information is repeatedly transmitted at the same time and on different frequencies.
  • Appendix 33 The method according to Appendix 31, wherein:
  • first control information is repeatedly sent and repeatedly sent is indicated in one of the following ways: indicated by a first repeat instruction parameter in high-level signaling, and a demodulation reference signal with the first control information (DMRS) a first orthogonal sequence multiplied, and a second orthogonal sequence multiplied by a first repeat indication parameter in high-level signaling and a demodulation reference signal (DMRS) of the first control information give instructions.
  • DMRS demodulation reference signal with the first control information
  • DMRS demodulation reference signal with the first control information
  • Supplementary note 34 The method according to supplementary note 33, wherein
  • the first control information is repeatedly sent and how to send it repeatedly is indicated in one of the following ways: it is indicated by the PDCCHRepetitionIndication parameter in RRC signaling or MAC-CE signaling, and The orthogonal coverage code (OCC) multiplied by the reference signal, and indicated by the PDCCHRepetitionIndication in RRC signaling or MAC-CE signaling, and the ZC sequence multiplied by the demodulation reference signal of the first control information. .
  • OCC orthogonal coverage code
  • Supplement 35 The method according to any one of Supplements 31-34, wherein the method further comprises:
  • the first control information is sent to the user equipment.
  • Supplement 36 The method according to any one of Supplements 31-34, wherein the method further comprises:
  • the first network device and at least one other network device send the first control information to the user equipment.
  • Appendix 37 The method according to Appendix 36, wherein:
  • Appendix 38 The method according to Appendix 36, wherein:
  • the first network device and at least one other network device respectively repeatedly send the first control information to the user equipment in a manner of repeated sending instructed to the user equipment.
  • Supplementary note 39 The method according to any one of supplementary notes 31-34, wherein the method further comprises:
  • Only the first network device sends the first control information to the user equipment, and the first network device and at least one other network device form a multi-link system.
  • Appendix 40 The method according to Appendix 39, wherein:
  • the first network device When the first control information is not repeatedly sent, the first network device sends the first control information to the user equipment.
  • Appendix 41 The method according to Appendix 39, wherein:
  • the first network device In the case where the first control information is repeatedly sent, the first network device repeatedly sends the first control information to the user equipment in a manner of repeated sending indicated to the user equipment.
  • Appendix 42 A method for transmitting control information, the method including:
  • Supplementary note 43 The method according to supplementary note 42, wherein the manner of determining whether the first control information is repeatedly sent and repeatedly sent according to the received signal includes:
  • Supplementary note 44 The method according to supplementary note 42, wherein the manner of determining whether the first control information is repeatedly sent and repeatedly sent according to the received signal includes:
  • a manner of determining whether the first control information is repeatedly transmitted and repeatedly transmitted according to the first orthogonal sequence is repeatedly transmitted and repeatedly transmitted according to the first orthogonal sequence.
  • Supplement 45 The method according to Supplement 42, wherein the manner of determining whether the first control information is repeatedly sent and repeatedly sent according to the received signal includes:
  • Supplementary note 46 The method according to any one of supplementary notes 42-45, wherein the method further comprises:
  • Supplementary note 47 The method according to any one of supplementary notes 42-45, wherein the method further comprises:
  • the first control information is blindly detected in sequence on different physical resources until the first control information is successfully demodulated.
  • Appendix 48 A method for transmitting control information, the method including:
  • Appendix 49 The method according to Appendix 48, wherein:
  • the manner of repeatedly sending the second control information includes: repeatedly sending the second control information on different time-frequency resources, or repeatedly sending the second control information on the same frequency and at different times, or The second control information is repeatedly transmitted at the same time and on different frequencies.
  • Supplementary note 50 The method according to supplementary note 48 or 49, wherein:
  • Whether the second control information is repeatedly sent and the manner in which the second control information is repeatedly sent is indicated by a second repeat indication parameter in the first control information.
  • Supplementary note 51 The method according to supplementary note 50, wherein
  • Whether the second control information is repeated and sent repeatedly is indicated by a PUCCHRepetitionIndication parameter in the first control information.
  • Supplementary note 52 The method according to any one of supplementary notes 48-51, wherein:
  • the second control information is repeatedly sent to the network device in a manner that the second control information is repeatedly sent as indicated by the first control information.
  • Supplementary note 53 The method according to any one of supplementary notes 48-51, wherein
  • Supplementary note 54 A method for transmitting control information, the method comprising:
  • the second control information is directly demodulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种控制信息的传输方法及装置。通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。

Description

控制信息的传输方法及装置 技术领域
本发明涉及通信领域,尤其涉及一种控制信息的传输方法及装置。
背景技术
高可靠低延时通信(Ultra Reliable and Low Latency Communication,URLLC)的要求是在1ms的用户面延时下,一个32字节的数据包的可靠性应达到99.999%。为了达到上述要求,已经提出了利用多链路(multi-link)技术提高数据信道的可靠性。
目前,3GPP(第3代合作伙伴计划,3rd Generation Partnership Project)讨论的提高控制信道可靠性的方法均是针对单链路(single-link)的情况,例如,较高的聚合度(higher aggregation level)、压缩的控制信息(compact DCI),以及控制信道的重复(PDCCH repetition)等。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,URLLC对控制信道的可靠性要求比对数据信道的可靠性要求更高。但是,目前还没有提出如何提高URLLC控制信道的可靠性的有效方法。此外,当对控制信息进行重复发送时,关于网络设备如何通知用户设备控制信息是否重复以及如何重复的问题尚未得到充分解决。
本发明实施例提供一种控制信息的传输方法及装置,通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。
根据本发明实施例的第一方面,提供一种控制信息的传输装置,所述装置包括:指示单元,其用于向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
根据本发明实施例的第二方面,提供一种控制信息的传输装置,所述装置包括: 确定单元,其用于根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
根据本发明实施例的第三方面,提供一种控制信息的传输装置,所述装置包括:第四发送单元,其用于根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送所述第二控制信息。
根据本发明实施例的第四方面,提供一种控制信息的传输装置,所述装置包括:接收单元,其用于在通过第一控制信息指定的物理资源上接收第二控制信息;第二合并单元,其用于在所述第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;解调单元,其用于在所述第二控制信息没有重复发送的情况下,直接对所述第二控制信息进行解调。
根据本发明实施例的第五方面,提供一种网络设备,所述网络设备包括根据本发明实施例的第一方面所述的装置。
根据本发明实施例的第六方面,提供一种用户设备,所述用户设备包括根据本发明实施例的第二方面所述的装置。
根据本发明实施例的第七方面,提供一种用户设备,所述用户设备包括根据本发明实施例的第三方面所述的装置。
根据本发明实施例的第八方面,提供一种网络设备,所述网络设备包括根据本发明实施例的第四方面所述的装置。
根据本发明实施例的第九方面,提供一种通信系统,所述通信系统包括至少一个根据本发明实施例的第五方面所述的网络设备以及根据本发明实施例的第六方面所述的用户设备。
根据本发明实施例的第十方面,提供一种通信系统,所述通信系统包括根据本发明实施例的第七方面所述的用户设备以及至少一个根据本发明实施例的第八方面所述的网络设备。
根据本发明实施例的第十一方面,提供一种控制信息的传输方法,所述方法包括:向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
根据本发明实施例的第十二方面,提供一种控制信息的传输方法,所述方法包括:根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
根据本发明实施例的第十三方面,提供一种控制信息的传输方法,所述方法包括:根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方 式的指示,向网络设备发送所述第二控制信息。
根据本发明实施例的第十四方面,提供一种控制信息的传输方法,所述方法包括:在通过第一控制信息指定的物理资源上接收第二控制信息;在所述第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;在所述第二控制信息没有重复发送的情况下,直接对所述第二控制信息进行解调。
根据本发明实施例的第十五方面,提供一种计算机可读程序,其中当在控制信息的传输装置或网络设备中执行所述程序时,所述程序使得所述控制信息的传输装置或网络设备执行本发明实施例的第十一方面或第十四方面所述的控制信息的传输方法。
根据本发明实施例的第十六方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得控制信息的传输装置或网络设备执行本发明实施例的第十一方面或第十四方面所述的控制信息的传输方法。
根据本发明实施例的第十七方面,提供一种计算机可读程序,其中当在控制信息的传输装置或用户设备中执行所述程序时,所述程序使得所述控制信息的传输装置或用户设备执行本发明实施例的第十二方面或第十三方面所述的控制信息的传输方法。
根据本发明实施例的第十八方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得控制信息的传输装置或用户设备执行本发明实施例的第十二方面或第十三方面所述的控制信息的传输方法。
本发明的有益效果在于:通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明实施例的通信系统的一示意图;
图2是本发明实施例1的控制信息的传输方法的一示意图;
图3是本发明实施例1的控制信息的传输方法的另一示意图;
图4是本发明实施例1的控制信息的传输方法的又一示意图;
图5是本发明实施例2的控制信息的传输方法的一示意图;
图6是图5的步骤501的确定方法的一示意图;
图7是图5的步骤501的确定方法的另一示意图;
图8是图5的步骤501的确定方法的又一示意图;
图9是本发明实施例2的控制信息的传输方法的另一示意图;
图10是本发明实施例3的控制信息的传输方法的一示意图;
图11是本发明实施例3的单链路场景的一示意图;
图12是针对图11所示的应用场景的的控制信息的传输方法的一示意图;
图13是本发明实施例3的CoMP场景的一示意图;
图14是本发明实施例3的针对图13所示的应用场景的控制信息的传输方法的一示意图;
图15是本发明实施例3的针对图13所示的应用场景的控制信息的传输方法的另一示意图;
图16是本发明实施例3的针对图13所示的应用场景的控制信息的传输方法的又一示意图;
图17是本发明实施例3的CoMP场景的另一示意图;
图18是本发明实施例3的针对图17所示的应用场景的控制信息的传输方法的一示意图;
图19是本发明实施例3的针对图17所示的应用场景的控制信息的传输方法的另一示意图;
图20是本发明实施例3的不同小区间协作的场景的一示意图;
图21是本发明实施例3的针对图20所示的应用场景的控制信息的传输方法的一示意图;
图22是本发明实施例3的针对图20所示的应用场景的控制信息的传输方法的另一示意图;
图23是本发明实施例3的CA场景的一示意图;
图24是本发明实施例3的针对图23所示的应用场景的控制信息的传输方法的一示意图;
图25是本发明实施例4的控制信息的传输方法的一示意图;
图26是本发明实施例5的控制信息的传输方法的一示意图;
图27是本发明实施例6的控制信息的传输方法的一示意图;
图28是本发明实施例7的控制信息的传输装置的一示意图;
图29是本发明实施例7的控制信息的传输装置的另一示意图;
图30是本发明实施例7的控制信息的传输装置的又一示意图;
图31是本发明实施例8的控制信息的传输装置的一示意图;
图32是本发明实施例8的确定单元的一示意图;
图33是本发明实施例8的确定单元的另一示意图;
图34是本发明实施例8的确定单元的另一示意图;
图35是本发明实施例8的控制信息的传输装置的一示意图;
图36是本发明实施例9的控制信息的传输装置的一示意图;
图37是本发明实施例10的控制信息的传输装置的一示意图;
图38是本发明实施例11的网络设备的一构成示意图;
图39是本发明实施例12的用户设备的系统构成的一示意框图;
图40是本发明实施例13的用户设备的系统构成的一示意框图;
图41是本发明实施例14的网络设备的一构成示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原 则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等可以包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本实施例中,“多个”或“多种”指的是至少两个或至少两种。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将用户设备接入通信网络并为该用户设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio  Head)、远端无线单元(RRU,Remote Radio Unit)、天线、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。用户设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,用户设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
在本发明实施例中,控制信息通过控制信道(CCH,Control Channel)传送,其中,物理下行控制信道(PDCCH,Physical Downlink Control Channel)以及相应的物理上行控制信道(PUCCH,Physical Uplink Control Channel)是常见的控制信道之一,其用于承载调度以及其他控制信息。本发明实施例中以PDCCH和PUCCH为例进行说明,但本发明实施例不限于此。
再例如,在物联网(IoT,Internet of Things)等场景下,用户设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在本发明实施例中,服务网络设备和协作网络设备是针对某个终端设备而言的,例如,当通信系统中包括多个终端设备时,某个网络设备对于其中一个终端设备是服务网络设备,对于其他终端设备可能是协作网络设备。
以下通过示例对本发明实施例的场景进行说明,但本发明实施例不限于此。
图1是本发明实施例的通信系统的一示意图,示意性说明了以用户设备和网络设备为例的情况,如图1所示,通信系统100可以包括第一网络设备101、第二网络设备102、第三网络设备103和用户设备104。
在本发明实施例中,第一网络设备101、第二网络设备102、第三网络设备103 和用户设备之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
例如,第一网络设备101、第二网络设备102和第三网络设备103构成具有理想回传(ideal backhaul)链路的协作多点传输(Coordinated Multi Point,CoMP),第一网络设备101、第二网络设备102和第三网络设备103之间通过光纤连接。
实施例1
本发明实施例提供一种控制信息的传输方法,该方法应用于网络设备侧。
图2是本发明实施例1的控制信息的传输方法的一示意图。如图2所示,该方法包括:
步骤201:向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
这样,通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。
在本实施例中,第一控制信息是网络设备向用户设备发送的用于进行下行控制的信息,例如,下行控制信息(Downlink Control Information,DCI)。
例如,下行控制信息通过物理下行控制信道(PDCCH)进行传输。
在本实施例中,该方法适用于单链路系统或多链路系统,由单链路系统中的网络设备或者多链路系统中的至少一个网络设备执行。
例如,对于单链路系统来说,一个网络设备可以重复或不重复的向用户设备发送第一控制信息。
例如,对于多链路系统来说,至少两个网络设备中的各个网络设备可以都向用户设备发送相同的第一控制信息,对于各个网络设备,都可以重复或不重复的向用户设备发送第一控制信息。在向用户设备指示第一控制信息是否重复发送以及重复发送的方式时,可以由至少两个网络设备中的主网络设备进行指示。
在本实施例中,当多个网络设备都重复发送第一控制信息时,各个网络设备重复发送第一控制信息的方式可以相同,也可以不同,该相同的重复发送的方式或者各个网络设备各自的重复发送的方式可以由主网络设备进行指示。
在本实施例中,在各个网络设备各自不重复发送第一控制信息的情况下,具体的 指示方式如下。
在各个网络设备各自不重复的向用户设备发送第一控制信息的情况下,各个网络设备可以在相同或不同的时频资源上,或者在相同的频率且不同的时间上,或者在相同的时间且不同的频率上向用户设备发送该第一控制信息。
例如,各个网络设备各自不重复的向用户设备发送第一控制信息,在各个网络设备分别在相同的时频资源上发送第一控制信息的情况下,主网络设备指示的是不重复发送。
例如,各个网络设备各自不重复的向用户设备发送第一控制信息,在各个网络设备在不同的时频资源上发送第一控制信息的情况下,主网络设备指示重复发送且指示的重复发送的方式是在不同的时频资源上重复发送。
例如,各个网络设备各自不重复的向用户设备发送第一控制信息,在各个网络设备在相同的频率且不同的时间上发送第一控制信息的情况下,主网络设备指示重复发送且指示的重复发送的方式是在相同的频率且不同的时间上重复发送。
例如,各个网络设备各自不重复的向用户设备发送第一控制信息,在各个网络设备在相同的时间且不同的频率上发送第一控制信息的情况下,主网络设备指示重复发送且指示的重复发送的方式是在相同的时间且不同的频率上重复发送。例如,对于多链路系统来说,也可以由至少两个网络设备中的一个网络设备作为主网络设备向用户设备发送该第一控制信息,其中,对于该主网络设备,也可以重复或不重复的向用户设备发送第一控制信息。
以下对第一控制信息重复发送的情况进行示例性的说明。
在本实施例中,第一控制信息可以在不同的时频资源上重复发送,也就是说,第一控制信息在不同的时间以及不同的频率上进行重复发送。
例如,在单链路的场景下,一个网络设备在不同的时间以及不同的频率上重复发送该第一控制信息。
例如,在具有理想回传链路的CoMP场景下,不同的网络设备可以使用不同的控制资源集合(control resource set,CORESET)发送该第一控制信息。
又例如,在载波聚合(carrier aggregation,CA)场景下,不同小区(carrier)使用不同的CORESET发送该第一控制信息。
在本实施例中,第一控制信息也可以在相同的频率且不同的时间上重复发送。
例如,在单链路的场景下,一个网络设备在相同的频率且不同的时间上重复发送该第一控制信息。
例如,在具有理想回传链路的CoMP场景下,不同的网络设备可以在相同的频率上使用不同的符号或微时隙(mini-slot)发送该第一控制信息。
又例如,在载波聚合场景下,不同小区在相同的频率上使用不同的符号或微时隙(mini-slot)发送该第一控制信息。
在本实施例中,第一控制信息还可以在相同的时间且不同的频率上重复发送。
例如,在单链路的场景下,一个网络设备在相同的时间且不同的频率上重复发送该第一控制信息。
例如,在具有理想回传链路的CoMP场景下,不同的网络设备可以在相同的时间且同一频段内以固定的频率间隔发送该第一控制信息。
又例如,在载波聚合场景下,不同小区在相同的时间且不同的频段上发送该第一控制信息。
在本实施例中,可以通过显式指示的方式来指示第一控制信息是否重复发送以及重复发送的方式。例如,可以通过高层信令中的第一重复指示参数指示第一控制信息是否重复发送以及重复发送的方式。例如,该高层信令可以是RRC信令或MAC-CE信令,该第一重复指示参数可以是PDCCHRepetitionIndication参数。
例如,PDCCHRepetitionIndication参数可以由2个字节构成。例如,当PDCCHRepetitionIndication为00时,表示第一控制信息不重复发送;当PDCCHRepetitionIndication为01时,表示第一控制信息在不同的时频资源上重复发送;当PDCCHRepetitionIndication为10时,表示第一控制信息在相同的频率且不同的时间上重复发送;当PDCCHRepetitionIndication为11时,表示第一控制信息在相同的时间且不同的频率上重复发送。
在本实施例中,可以通过隐式指示的方式来指示第一控制信息是否重复发送以及重复发送的方式。例如,也可以通过与第一控制信息的解调参考信号(Demodulation Reference Signal,DMRS)相乘的第一正交序列指示第一控制信息是否重复发送以及重复发送的方式。例如,该第一正交序列可以是正交覆盖码(Orthogonal Cover Code,OCC)。
例如,当DMRS与OCC码[1 1 1 1]相乘时,表示第一控制信息不重复发送;当 DMRS与OCC码[1 -1 1 -1]相乘时,表示第一控制信息在不同的时频资源上重复发送;当DMRS与OCC码[1 1 -1 -1]相乘时,表示第一控制信息在相同的频率且不同的时间上重复发送;当DMRS与OCC码[1 -1 -1 1]相乘时,表示第一控制信息在相同的时间且不同的频率上重复发送。
在本实施例中,还可以通过显式指示和隐式指示相结合的方式来指示第一控制信息是否重复发送以及重复发送的方式。例如,还可以通过高层信令中的第一重复指示参数以及与第一控制信息的解调参考信号(DMRS)相乘的第二正交序列指示第一控制信息是否重复发送以及重复发送的方式。例如,该高层信令可以是RRC信令或MAC-CE信令,该第一重复指示参数可以是PDCCHRepetitionIndication参数,该第二正交序列可以是ZC(Zadoff-Chu)序列。
例如,PDCCHRepetitionIndication参数可以由1个字节构成。例如,当PDCCHRepetitionIndication为0时,表示第一控制信息不重复发送;当PDCCHRepetitionIndication为1时,表示第一控制信息重复发送。
在第一控制信息重复发送的情况下,当DMRS与ZC序列
Figure PCTCN2018089289-appb-000001
相乘时,表示第一控制信息在不同的时频资源上重复发送;当DMRS与ZC序列
Figure PCTCN2018089289-appb-000002
相乘时,表示第一控制信息在相同的频率且不同的时间上重复发送;当DMRS与ZC序列
Figure PCTCN2018089289-appb-000003
相乘时,表示第一控制信息在相同的时间且不同的频率上重复发送。
在本实施例中,该方法还可以包括:
步骤202:在第一控制信息重复发送的情况下,按照向该用户设备指示的重复发送的方式,向该用户设备重复发送该第一控制信息;
步骤203:在第一控制信息不重复发送的情况下,向该用户设备发送该第一控制信息。
图3是本发明实施例1的控制信息的传输方法的另一示意图。该方法用于多链路系统,该多链路系统包括第一网络设备以及至少一个其他网络设备。如图3所示,该方法包括:
步骤301:第一网络设备向用户设备指示第一控制信息是否重复发送以及重复发送的方式;
步骤302:在第一控制信息重复发送的情况下,第一网络设备和至少一个其他网络设备按照向该用户设备指示的重复发送的方式,向该用户设备重复发送该第一控制信息;
步骤303:在第一控制信息不重复发送的情况下,第一网络设备和至少一个其他网络设备向该用户设备发送该第一控制信息。
图4是本发明实施例1的控制信息的传输方法的又一示意图。该方法用于多链路系统,该多链路系统包括第一网络设备以及至少一个其他网络设备。如图4所示,该方法包括:
步骤401:第一网络设备向用户设备指示第一控制信息是否重复发送以及重复发送的方式;
步骤402:在第一控制信息重复发送的情况下,仅由第一网络设备按照向该用户设备指示的重复发送的方式,向该用户设备重复发送该第一控制信息;
步骤403:在第一控制信息不重复发送的情况下,仅由第一网络设备向该用户设备发送该第一控制信息。
在本实施例中,该第一网络设备例如是主网络设备,其可以是预先指定的或者按照预设条件确定的,本发明实施例不对主网络设备的确定方式进行限制。
例如,该第一网络设备是在多链路系统的所有网络设备中能够使得预编码后信道的信噪比最大的网络设备。
在本实施例中,该第一网络设备例如是所有网络设备中的任一个网络设备指定的,也可以是单独设置的网络设备控制器指定的。
在本实施例中,网络设备还可以向用户设备发送数据信息,用户设备根据获得的控制信息对接收到的数据信息进行解调。
由上述实施例可知,通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例2
本发明实施例提供一种控制信息的传输方法,该方法应用于用户设备侧,该方法对应于实施例1的应用于网络设备侧的控制信息的传输方法。
图5是本发明实施例2的控制信息的传输方法的一示意图。如图5所示,该方法包括:
步骤501:根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
以下对本实施例的根据接收信号确定第一控制信息是否重复发送以及重复发送的方式的方法进行示例性的说明。
图6是图5的步骤501的确定方法的一示意图。如图6所示,该方法包括:
步骤601:根据高层信令中的第一重复指示参数,确定所述第一控制信息是否重复发送以及重复发送的方式。
在本实施例中,该高层信令可以是RRC信令或MAC-CE信令,该第一重复指示参数可以是PDCCHRepetitionIndication参数。该PDCCHRepetitionIndication参数由2个字节构成。
例如,当PDCCHRepetitionIndication为00时,确定第一控制信息不重复发送;当PDCCHRepetitionIndication为01时,确定第一控制信息在不同的时频资源上重复发送;当PDCCHRepetitionIndication为10时,确定第一控制信息在相同的频率且不同的时间上重复发送;当PDCCHRepetitionIndication为11时,确定第一控制信息在相同的时间且不同的频率上重复发送。
图7是图5的步骤501的确定方法的另一示意图。如图7所示,该方法包括:
步骤701:计算接收到的解调参考信号和与第一正交序列相乘的解调参考信号之间的相关性;
步骤702:根据计算出的相关性确定该第一正交序列;以及
步骤703:根据该第一正交序列确定该第一控制信息是否重复发送以及重复发送的方式。
在本实施例中,该第一正交序列可以是正交覆盖码(Orthogonal Cover Code,OCC)。
例如,计算接收到的DMRS与乘以不同OCC码的DMRS之间的相关系数,其中,计算出的相关系数最大的OCC码即为所使用的OCC码,当确定的OCC为[1 1 1 1]时,确定第一控制信息不重复发送;当确定使用的OCC码为[1 -1 1 -1]时,确定第一控制信息在不同的时频资源上重复发送;当确定使用的OCC码为[1 1 -1 -1]时,确定第一控制信息在相同的频率且不同的时间上重复发送;当确定使用的OCC码为[1 -1 -1 1]时,确定第一控制信息在相同的时间且不同的频率上重复发送。
图8是图5的步骤501的确定方法的又一示意图。如图8所示,该方法包括:
步骤801:根据接收到的高层信令中第一重复指示参数,确定第一控制信息是否 重复发送;
步骤802:在判断第一控制信息重复发送的情况下,计算接收到的解调参考信号和与第二正交序列相乘的解调参考信号之间的相关性;
步骤803:根据计算出的相关性确定第二正交序列;以及
步骤804:根据第二正交序列,确定第一控制信息重复发送的方式。
在本实施例中,该高层信令可以是RRC信令或MAC-CE信令,该第一重复指示参数可以是PDCCHRepetitionIndication参数。该PDCCHRepetitionIndication参数由1个字节构成。
例如,当PDCCHRepetitionIndication为0时,确定第一控制信息不重复发送;当PDCCHRepetitionIndication为1时,确定第一控制信息重复发送。
在判断第一控制信息重复发送的情况下,计算接收到的DMRS与乘以不同ZC序列的DMRS之间的相关系数,其中,计算出的相关系数最大的ZC序列即为所使用的ZC序列,当确定使用的ZC序列为
Figure PCTCN2018089289-appb-000004
时,确定第一控制信息在不同的时频资源上重复发送;当确定使用的ZC序列为
Figure PCTCN2018089289-appb-000005
时,确定第一控制信息在相同的频率且不同的时间上重复发送;当确定使用的ZC序列为
Figure PCTCN2018089289-appb-000006
Figure PCTCN2018089289-appb-000007
时,确定第一控制信息在相同的时间且不同的频率上重复发送。
在本实施例中,如图5所示,该方法还可以包括:
步骤502:在根据接收信号确定第一控制信息重复发送的情况下,根据预定义的规则确定重复发送所述第一控制信息可能使用的物理资源;
步骤503:将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤504:在合并后的接收信号中对该第一控制信息进行盲检。
这样,通过在合并后的接收信号中盲检控制信息,能够进一步提高控制信息传输的可靠性。
在本实施例中,该预定义的规则可以和具体的应用场景有关。
对于第一控制信息在不同的时频资源上重复发送的情况,例如,在CoMP场景下,不同的网络设备分别使用不同的CORESET重复发送第一控制信息;在CA场景下,不同小区分别使用不同的CORESET重复发送第一控制信息。该预定义的规则例如是,不同的网络设备或小区在不同CORESET上的相对起始位置相同处发送第一控 制信息。
对于第一控制信息在不同的时频资源上重复发送的情况,例如,在CoMP场景下,不同的网络设备分别使用不同的符号或微时隙(mini-slot)发送该第一控制信息;在CA场景下,不同小区在相同的频率上使用不同的符号或微时隙(mini-slot)发送该第一控制信息。该预定义的规则例如是,不同的网络设备或小区在相邻的符号或微时隙上发送该第一控制信息。
对于第一控制信息在相同的时间且不同的频率上重复发送的情况,例如,在CoMP场景下,不同的网络设备可以在相同的时间且同一频段内以固定的频率间隔发送该第一控制信息;在CA场景下,不同小区在相同的时间且不同的频段上发送该第一控制信息。该预定义的规则例如是,不同的网络设备或小区以预定义的频率间隔发送该第一控制信息。
在步骤502中,根据预定义的规则确定了重复发送该第一控制信息可能使用的物理资源。
在步骤503和504中,将在可能使用的物理资源上接收的多个接收信号进行合并,在合并后的接收信号中对该第一控制信息进行盲检,从而获得该第一控制信息。具体的盲检方法可以参考现有技术,此处不再赘述。
以上使用的是将接收信号合并后再盲检的方法,另外,也可以不进行合并,依次在各个物理资源上进行盲检,直到盲检成功为止。
图9是本发明实施例2的控制信息的传输方法的另一示意图。如图9所示,该方法包括:
步骤901:根据接收信号确定第一控制信息是否重复发送以及重复发送的方式;
步骤902:在根据接收信号确定第一控制信息重复发送的情况下,在不同的物理资源上依次对该第一控制信息进行盲检,直到成功解调出该第一控制信息为止。
例如,当不同的网络设备或小区在不同的符号或微时隙上发送该第一控制信息时,用户设备在第一个监测机会(monitoring occasion)上对第一控制信息进行盲检,如果盲检成功,则停止盲检;否则将在第二个监测机会上进行盲检,以此类推,直到成功解调出该第一控制信息为止。
在本实施例中,用户设备还可以根据获得的控制信息对接收到的数据信息进行解调,获得数据信息。
由上述实施例可知,通过根据接收信号确定第一控制信息是否重复发送以及重复发送的方式,从而根据确定的结果获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例3
本发明实施例还提供了一种控制信息的传输方法,该方法应用于用户设备侧和网络设备侧,其对应于实施例1和2的控制信息的传输方法,因此其具体的实施可以参照实施例1和2,重复之处不再赘述。
图10是本发明实施例3的控制信息的传输方法的一示意图。如图10所示,该方法包括:
步骤1001:网络设备向用户设备指示第一控制信息是否重复发送以及重复发送的方式;
步骤1002:网络设备向该用户设备发送该第一控制信息;
步骤1003:用户设备根据接收信号确定该第一控制信息是否重复发送以及重复发送的方式;
步骤1004:用户设备在根据接收信号确定该第一控制信息重复发送的情况下,根据预定义的规则确定重复发送该第一控制信息可能使用的物理资源;
步骤1005:用户设备将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤1006:用户设备在合并后的接收信号中对该第一控制信息进行盲检。
在本实施例中,第一控制信息是网络设备向用户设备发送的控制信息,例如,下行控制信息(Downlink Control Information,DCI)。
例如,下行控制信息通过物理下行控制信道(PDCCH)进行传输。
以下,针对各个应用场景,对本实施例的方法进行具体的说明。
首先,针对单链路系统的场景进行说明。图11是本发明实施例3的单链路场景的一示意图。如图11所示,单链路系统1000包括网络设备1101和用户设备1102,网络设备1101和用户设备1102之间可以进行现有的业务或者未来可实施的业务。
图12是针对图11所示的应用场景的的控制信息的传输方法的一示意图。如图12所示,该方法包括:
步骤1201:网络设备1101向用户设备1102指示第一控制信息是否重复发送以及重复发送的方式;
步骤1202:网络设备1101向用户设备1102发送该第一控制信息;
步骤1203:根据接收信号确定该第一控制信息是否重复发送以及重复发送的方式;
步骤1204:用户设备1102在根据接收信号确定该第一控制信息重复发送的情况下,根据预定义的规则确定重复发送该第一控制信息可能使用的物理资源;
步骤1205:用户设备1102将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤1206:用户设备1102在合并后的接收信号中对该第一控制信息进行盲检。
接着,针对具有理想回传链路的CoMP场景进行说明。图13是本发明实施例3的CoMP场景的一示意图。如图13所示,第一网络设备1301、第二网络设备1302和第三网络设备1303是协作的多个网络设备,第一网络设备1301、第二网络设备1302和第三网络设备1303在相同的时频资源上向用户设备1304发送相同的第一控制信息和数据信息。
在本实施例中,网络设备的个数可以根据实际需要而确定,本发明实施例不限于三个网络设备,其也可以是两个网络设备,或者四个或四个以上的网络设备。
在本实施例中,这三个网络设备中的一个是主网络设备,例如,第一网络设备1301是主网络设备。
图14是本发明实施例3的针对图13所示的应用场景的控制信息的传输方法的一示意图。如图14所示,该方法包括:
步骤1401:第一网络设备1301向用户设备1304指示第一控制信息是否重复发送以及重复发送的方式,其中,指示第一控制信息不重复发送;
步骤1402:第一网络设备1301、第二网络设备1302和第三网络设备1303在相同的时频资源上分别使用第一波束、第二波束和第三波束向用户设备1304发送相同的第一控制信息;
步骤1403:用户设备1304根据接收信号,确定不重复发送第一控制信息;
步骤1404:用户设备1304在一个时频资源上根据接收信号对第一控制信息进行盲检,获得该第一控制信息。
在步骤1401中,第一网络设备1301可以通过实施例1中记载的各种方式进行指示。
例如,通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数指示第一控制信息不重复发送,即,将PDCCHRepetitionIndication参数置为00或者置为0。
例如,通过与第一控制信息的DMRS相乘的OCC码指示第一控制信息不重复发送,即,使用OCC码[1 1 1 1]与DMRS相乘。
在步骤1403中,用户设备1304可以通过实施例2记载的各种方式进行确定。
例如,直接通过接收到的RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数进行确定,即,PDCCHRepetitionIndication参数为00或0时,确定第一控制信息不重复发送。
例如,计算接收到的DMRS与乘以不同OCC码的DMRS之间的相关系数,计算出的相关系数最大的OCC码为[1 1 1 1],则确定第一控制信息不重复发送。
图15是本发明实施例3的针对图13所示的应用场景的控制信息的传输方法的另一示意图。如图15所示,该方法包括:
步骤1501:第一网络设备1301向用户设备1304指示是否重复发送第一控制信息以及重复发送的方式,其中,指示在不同的时频资源上重复发送第一控制信息;
步骤1502:第一网络设备1301、第二网络设备1302和第三网络设备1303在不同的时频资源上向用户设备1304发送第一控制信息,此处,对于上述三个网络设备整体而言,可以看作是在不同的时频资源上重复发送第一控制信息;
步骤1503:用户设备1304根据接收信号,确定第一控制信息在不同的时频资源上重复发送;
步骤1504:用户设备1304根据预定义的规则确定各个网络设备发送第一控制信息可能使用的物理资源;
步骤1505:用户设备1304将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤1506:用户设备1304在合并后的接收信号中对第一控制信息进行盲检,获得该第一控制信息。
在步骤1501中,第一网络设备1301还可以指示在相同的频率且不同的时间上重复发送第一控制信息,或者,在相同的时间且不同的频率上重复发送第一控制信息。此时,在步骤1502中,第一网络设备1301、第二网络设备1302和第三网络设备1303 在相同的频率且不同的时间上向用户设备1304发送第一控制信息,或者,第一网络设备1301、第二网络设备1302和第三网络设备1303在相同的时间且不同的频率上向用户设备1304发送第一控制信息。相应的,在步骤1503中,用户设备1304根据接收信号确定第一控制信息在相同的频率且不同的时间上重复发送,或者,确定第一控制信息在相同的时间且不同的频率上重复发送。
图16是本发明实施例3的针对图13所示的应用场景的控制信息的传输方法的又一示意图。如图16所示,该方法包括:
步骤1601:第一网络设备1301向用户设备1304指示第一控制信息是否重复发送以及重复发送的方式,其中,指示第一控制信息重复发送;
步骤1602:第一网络设备1301、第二网络设备1302和第三网络设备1303分别向用户设备1304重复发送第一控制信息;
步骤1603:用户设备1304根据接收信号,确定重复发送第一控制信息以及重复发送的方式;
步骤1604:用户设备1304根据预定义的规则确定重复发送第一控制信息可能使用的物理资源;
步骤1605:用户设备1304将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤1606:用户设备1304在合并后的接收信号中对第一控制信息进行盲检,获得该第一控制信息。
在步骤1601中,第一网络设备1301可以通过实施例1中记载的各种方式进行指示。
例如,通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数指示第一控制信息重复发送,即,将PDCCHRepetitionIndication参数置为01、10或11,
例如,通过与第一控制信息的DMRS相乘的OCC码来指示,例如,将第一控制信息的DMRS与OCC码[1 -1 1 -1]、[1 1 -1 -1]或[1 -1 -1 1]相乘。
又例如,通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数以及与第一控制信息的DMRS相乘的ZC序列来指示,例如,将PDCCHRepetitionIndication参数置为1,并将第一控制信息的DMRS与ZC序列
Figure PCTCN2018089289-appb-000008
Figure PCTCN2018089289-appb-000009
Figure PCTCN2018089289-appb-000010
相乘。
在步骤1601中,作为主网络设备的第一网络设备1301向用户指示多链路系统中的各个网络设备是否重复发送第一控制信息以及重复发送第一控制信息的方式,其中,各个网络设备重复发送第一控制信息的方式可以相同,也可以不同。
从而,在各个网络设备重复发送第一控制信息的方式相同的情况下,第一网络设备1301可以指示该相同的重复发送的方式;在各个网络设备重复发送第一控制信息的方式不同的情况下,第一网络设备1301可以指示所有网络设备各自的重复发送的方式。
在步骤1603中,用户设备1304可以通过实施例2中记载的各种方式确定第一控制信息重复发送的方式。例如,直接通过接收到的RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数进行确定,例如,当PDCCHRepetitionIndication为01时,确定第一控制信息在不同的时频资源上重复发送;当PDCCHRepetitionIndication为10时,确定第一控制信息在相同的频率且不同的时间上重复发送;当PDCCHRepetitionIndication为11时,确定第一控制信息在相同的时间且不同的频率上重复发送。
例如,计算接收到的DMRS与乘以不同OCC码的DMRS之间的相关系数,当计算出的相关系数最大的OCC码为[1 -1 1 -1]时,确定第一控制信息在不同的时频资源上重复发送;当计算出的相关系数最大的OCC码为[1 1 -1 -1]时,确定第一控制信息在相同的频率且不同的时间上重复发送;当计算出的相关系数最大的OCC码为[1 -1 -1 1]时,确定第一控制信息在相同的时间且不同的频率上重复发送。
例如,首先通过接收到的RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数确定第一控制信息重复发送,即,该PDCCHRepetitionIndication参数为1;然后,计算接收到的DMRS和与ZC序列相乘的DMRS之间的相关系数,当计算出的相关系数最大的ZC序列为
Figure PCTCN2018089289-appb-000011
Figure PCTCN2018089289-appb-000012
时,确定第一控制信息在不同的时频资源上重复发送;当计算出的相关系数最大的ZC序列为
Figure PCTCN2018089289-appb-000013
时,确定第一控制信息在相同的频率且不同的时间上重复发送;当计算出的相关系数最大的ZC序列为
Figure PCTCN2018089289-appb-000014
时,确定第一控制信息在相同的时间且不同的频率上重复发送。
在步骤1604中,用户设备1304可以通过实施例2中记载的各种预定的规则确定 重复发送第一控制信息可能使用的物理资源。
例如,对于第一控制信息在不同的时频资源上重复发送的情况,不同的网络设备或小区在不同CORESET上的相对起始位置相同处发送第一控制信息。
例如,对于第一控制信息在不同的时间,相同的频率资源上重复发送的情况,不同的网络设备在相邻的符号或微时隙上发送该第一控制信息。
例如,对于第一控制信息在相同的时间且不同的频率上重复发送的情况,不同的网络设备以预定义的频率间隔发送该第一控制信息。
图17是本发明实施例3的CoMP场景的另一示意图。如图17所示,第一网络设备1701、第二网络设备1702和第三网络设备1703是协作的多个网络设备,仅由第一网络设备1701向用户设备1704发送第一控制信息和数据信息。其中,第一网络设备1701是主网络设备。
图18是本发明实施例3的针对图17所示的应用场景的控制信息的传输方法的一示意图。如图18所示,该方法包括:
步骤1801:第一网络设备1801向用户设备1704指示第一控制信息是否重复发送以及重复发送的方式,其中,指示第一控制信息不重复发送;
步骤1802:第一网络设备1701向用户设备1704发送第一控制信息;
步骤1803:用户设备1704根据接收信号,确定不重复发送第一控制信息;
步骤1804:用户设备1704根据接收信号对第一控制信息进行盲检,获得该第一控制信息。
在本实施例中,上述各个步骤的实施可以参考图14中的各个步骤,此处不再赘述。
图19是本发明实施例3的针对图17所示的应用场景的控制信息的传输方法的另一示意图。如图19所示,该方法包括:
步骤1901:第一网络设备1701向用户设备1704指示第一控制信息是否重复发送以及重复发送的方式,其中,指示第一控制信息重复发送;
步骤1902:第一网络设备1701向用户设备1704重复发送第一控制信息;
步骤1903:用户设备1704根据接收信号,确定重复发送第一控制信息以及重复发送的方式;
步骤1904:用户设备1704根据预定义的规则确定重复发送第一控制信息可能使 用的物理资源;
步骤1905:用户设备1704将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤1906:用户设备1704在合并后的接收信号中对第一控制信息进行盲检,获得该第一控制信息。
在本实施例中,上述各个步骤的实施可以参考图16中的各个步骤,此处不再赘述。
图20是本发明实施例3的不同小区间协作的场景的一示意图。如图20所示,网络设备2000服务第一小区2001、第二小区2002以及第三小区2003,第一小区2001、第二小区2002以及第三小区2003相互协作。用户设备2004位于第一小区2001、第二小区2002以及第三小区2003的任一个小区中。其中,第一小区2001是主小区。
图21是本发明实施例3的针对图20所示的应用场景的控制信息的传输方法的一示意图。如图21所示,该方法包括:
步骤2101:第一小区2001向用户设备2004指示第一控制信息是否重复发送以及重复发送的方式,其中,指示第一控制信息不重复发送;
步骤2102:第一小区2001、第二小区2002以及第三小区2003在相同的时频资源上分别使用第一波束、第二波束和第三波束向用户设备2004发送相同的第一控制信息;
步骤2103:用户设备2004根据接收信号,确定不重复发送第一控制信息;
步骤2104:用户设备2004在一个时频资源上根据接收信号对第一控制信息进行盲检,获得该第一控制信息。
在本实施例中,上述各个步骤的实施可以参考图14中的各个步骤,此处不再赘述。
在本实施例中,与图15类似的,第一小区2001也可以向用户设备指示第一控制信息在不同的时频资源上重复发送,或者,在相同的频率且不同的时间上重复发送,或者,在相同的时间且不同的频率上重复发送,此时,第一小区2001、第二小区2002以及第三小区2003在不同的时频资源上发送第一控制信息,或者,第一小区2001、第二小区2002以及第三小区2003在相同的频率且不同的时间上发送第一控制信息,或者,第一小区2001、第二小区2002以及第三小区2003在相同的时间且不同的频 率上发送第一控制信息。相应的,用户设备2004根据接收信号确定第一控制信息在不同的时频资源上发生,或者,确定第一控制信息在相同的频率且不同的时间上重复发送,或者,确定第一控制信息在相同的时间且不同的频率上重复发送。
图22是本发明实施例3的针对图20所示的应用场景的控制信息的传输方法的另一示意图。如图22所示,该方法包括:
步骤2201:第一小区1901向用户设备1904指示第一控制信息是否重复发送以及重复发送的方式,其中,指示第一控制信息重复发送;
步骤2202:第一小区2001、第二小区2002以及第三小区2003分别向用户设备2004重复发送第一控制信息;
步骤2203:用户设备2004根据接收信号,确定重复发送第一控制信息以及重复发送的方式;
步骤2204:用户设备2004根据预定义的规则确定重复发送第一控制信息可能使用的物理资源;
步骤2205:用户设备2004将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤2206:用户设备2004在合并后的接收信号中对第一控制信息进行盲检,获得该第一控制信息。
在本实施例中,上述各个步骤的实施可以参考图16中的各个步骤,此处不再赘述。
图23是本发明实施例3的CA场景的一示意图。如图23所示,N个网络设备通过N个载波(carrier)2301-1~N,向用户设备2302发送第一控制信息和数据信息。
在本实施例中,N为大于或等于2的整数,其数值可以根据实际需要而确定。
图24是本发明实施例3的针对图23所示的应用场景的控制信息的传输方法的一示意图。如图24所示,该方法包括:
步骤2401:一个载波向用户设备2202指示第一控制信息是否重复发送以及重复发送的方式,其中,指示第一控制信息重复发送;
步骤2402:N个载波2301-1~N在不同的时频资源上或者在不同的频率(carrier)上或者在不同的符号或微间隙上向用户设备2302发送相同的第一控制信息;
步骤2403:用户设备2302根据接收信号,确定重复发送第一控制信息以及重复 发送的方式;
步骤2404:用户设备2302根据预定义的规则确定重复发送第一控制信息可能使用的物理资源;
步骤2405:用户设备2302将在可能使用的物理资源上接收的多个接收信号进行合并;
步骤2406:用户设备2302在合并后的接收信号中对第一控制信息进行盲检,获得该第一控制信息。
在本实施例中,上述各个步骤的实施可以参考图15和图16中的各个步骤,此处不再赘述。
在本实施例中,针对第一控制信息重复发送的情况,以上在用户设备侧使用的是将接收信号合并后再盲检的方法,另外,也可以不进行合并,依次在各个物理资源上进行盲检,直到盲检成功为止,例如,依次在各个监测机会进行盲检。具体的方法可以参考实施例2中的记载,此处不再赘述。
由上述实施例可知,通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例4
本发明实施例还提供了一种控制信息的传输方法,该方法应用于用户设备侧。
图25是本发明实施例4的控制信息的传输方法的一示意图。如图25所示,该方法包括:
步骤2501:根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送该第二控制信息。
在本实施例中,第一控制信息是从网络设备接收到的用于下行控制的信息,例如,下行控制信息(DCI)。
在本实施例中,第二控制信息是向网络设备发送的用于上行控制的信息,例如,上行控制信息(Uplink Control Information,UCI)。
例如,上行控制信息通过物理上行控制信道(PUCCH)进行传输。
在本实施例中,第二控制信息重复发送的方式可以包括:第二控制信息在不同的时频资源上重复发送,或者,第二控制信息在相同的频率且不同的时间上重复发送,或者,第二控制信息在相同的时间且不同的频率上重复发送。
在本实施例中,第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示与实施例1中记载的关于第一控制信息是否重复发送以及重复发送的方式的指示类似。
例如,第二控制信息是否重复发送以及重复发送的方式通过第一控制信息中的第二重复指示参数指示。
例如,该第二重复指示参数是PUCCHRepetitionIndication参数。
例如,PUCCHRepetitionIndication参数可以由2个字节构成。例如,当PUCCHRepetitionIndication为00时,表示第二控制信息不重复发送;当PUCCHRepetitionIndication为01时,表示第二控制信息在不同的时频资源上重复发送;当PUCCHRepetitionIndication为10时,表示第二控制信息在相同的频率且不同的时间上重复发送;当PUCCHRepetitionIndication为11时,表示第二控制信息在相同的时间且不同的频率上重复发送。
在步骤2501中,在第一控制信息重复发送的情况下,按照网络设备通过第一控制信息指示的第二控制信息重复发送的方式,向网络设备重复发送该第二控制信息;在第一控制信息不重复发送的情况下,向网络设备发送该第二控制信息。
在本实施例中,对于多链路系统,在步骤2501中,可以向多个网络设备发送第二控制信息。
在本实施例中,发送第一控制信息的网络设备与作为第二控制信息的发送对象的网络设备可以是相同的网络设备,也可以是不同的网络设备。
由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
实施例5
本发明实施例还提供了一种控制信息的传输方法,该方法应用于网络设备侧,该方法对应于实施例4记载的应用于用户设备侧的控制信息的传输方法。
图26是本发明实施例5的控制信息的传输方法的一示意图。如图26所示,该方法包括:
步骤2601:在通过第一控制信息指定的物理资源上接收第二控制信息;
步骤2602:在第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;
步骤2603:在第二控制信息没有重复发送的情况下,直接对第二控制信息进行解调。
在本实施例中,网络设备侧通过第一控制信息指定了重复发送或者不重复发送第二控制信息使用的物理资源,从而能够直接在相应的物理资源上接收并解调第二控制信息。
由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
实施例6
本发明实施例还提供了一种控制信息的传输方法,该方法应用于用户设备侧和网络设备侧,其对应于实施例4和5的控制信息的传输方法,因此其具体的实施可以参照实施例4和5,重复之处不再赘述。
图27是本发明实施例6的控制信息的传输方法的一示意图。如图27所示,该方法包括:
步骤2701:根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送该第二控制信息;
步骤2702:在通过第一控制信息指定的物理资源上接收第二控制信息;
步骤2703:在第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;
步骤2704:在第二控制信息没有重复发送的情况下,直接对第二控制信息进行解调。
在本实施例中,上述各个步骤的具体实施可以参照实施例4和5中的记载,此处不再赘述。
由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
实施例7
本发明实施例还提供一种控制信息的传输装置,其应用于网络设备侧。该装置对应于实施例1所述的控制信息的传输方法,因此其具体的实施可以参照实施例1,重复之处不再赘述。
图28是本发明实施例7的控制信息的传输装置的一示意图。如图28所示,装置 2800包括:
指示单元2801,其用于向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
在本实施例中,该装置2800还可以包括:
第一发送单元2802,其用于在第一控制信息重复发送的情况下,按照向该用户设备指示的重复发送的方式,向该用户设备重复发送该第一控制信息,在第一控制信息不重复发送的情况下,向该用户设备发送该第一控制信息。
图29是本发明实施例7的控制信息的传输装置的另一示意图。如图29所示,装置2900包括:
指示单元2901,其用于向用户设备指示第一控制信息是否重复发送以及重复发送的方式;
设置于第一网络设备的第二发送单元2902,其用于与至少一个其他网络设备向该用户设备发送该第一控制信息。
在本实施例中,该第一网络设备例如是多链路系统中的主网络设备,该第一网络设备与指示一个其他网络设备构成多链路系统。
在本实施例中,设置于该第一网络设备的该第二发送单元2902与至少一个其他网络设备在相同或不同的时频资源上,或者在相同的频率且不同的时间上,或者在相同的时间且不同的频率上,向该用户设备发送该第一控制信息。
在本实施例中,设置于该第一网络设备的该第二发送单元2902与至少一个其他网络设备按照向该用户设备指示的重复发送的方式,向该用户设备分别重复发送该第一控制信息。
图30是本发明实施例7的控制信息的传输装置的又一示意图。如图30所示,装置3000包括:
指示单元3001,其用于向用户设备指示第一控制信息是否重复发送以及重复发送的方式;
设置于第一网络设备的第三发送单元3002,
仅由该第一网络设备的第三发送单元3002向该用户设备发送该第一控制信息,该第一网络设备与至少一个其他网络设备构成多链路系统。
在本实施例中,在该第一控制信息不重复发送的情况下,第三发送单元3002向 该用户设备发送该第一控制信息;在第一控制信息重复发送的情况下,第三发送单元3002按照向该用户设备指示的重复发送的方式,向该用户设备重复发送该第一控制信息。
由上述实施例可知,通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例8
本发明实施例还提供一种控制信息的传输装置,其应用于用户设备侧。该装置对应于实施例2所述的控制信息的传输方法,因此其具体的实施可以参照实施例2,重复之处不再赘述。
图31是本发明实施例8的控制信息的传输装置的一示意图。如图31所示,装置3100包括:
确定单元3101,其用于根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
图32是本发明实施例8的确定单元的一示意图。如图32所示,确定单元3101包括:
第一确定单元3201,其用于根据高层信令中的第一重复指示参数,确定第一控制信息是否重复发送以及重复发送的方式。
图33是本发明实施例8的确定单元的另一示意图。如图33所示,确定单元3101包括:
第一计算单元3301,其用于计算接收到的解调参考信号和与第一正交序列相乘的解调参考信号之间的相关性;
第二确定单元3302,其用于根据计算出的相关性确定该第一正交序列;以及
第三确定单元3303,其用于根据该第一正交序列确定该第一控制信息是否重复发送以及重复发送的方式。
图34是本发明实施例8的确定单元的另一示意图。如图34所示,确定单元3101包括:
第四确定单元3401,其用于根据接收到的高层信令中第一重复指示参数,确定该第一控制信息是否重复发送;
第二计算单元3402,其用于在判断该第一控制信息重复发送的情况下,计算接收 到的解调参考信号和与第二正交序列相乘的解调参考信号之间的相关性;
第五确定单元3403,其用于根据计算出的相关性确定该第二正交序列;以及
第六确定单元3404,其用于根据该第二正交序列,确定该第一控制信息重复发送的方式。
在本实施例中,该装置3100还可以包括:
第七确定单元3102,其用于在根据接收信号确定该第一控制信息重复发送的情况下,根据预定义的规则确定重复发送该第一控制信息可能使用的物理资源;
第一合并单元3103,其用于将在可能使用的物理资源上接收的多个接收信号进行合并;
第一检测单元3104,其用于在合并后的接收信号中对该第一控制信息进行盲检。
图35是本发明实施例8的控制信息的传输装置的一示意图。如图35所示,装置3500包括:
确定单元3501,其用于根据接收信号确定第一控制信息是否重复发送以及重复发送的方式;
第二检测单元3502,其用于在根据接收信号确定该第一控制信息重复发送的情况下,在不同的物理资源上依次对该第一控制信息进行盲检,直到成功解调出该第一控制信息为止。
由上述实施例可知,通过根据接收信号确定第一控制信息是否重复发送以及重复发送的方式,从而根据确定的结果获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例9
本发明实施例还提供一种控制信息的传输装置,其应用于用户设备侧。该装置对应于实施例4所述的控制信息的传输方法,因此其具体的实施可以参照实施例4,重复之处不再赘述。
图36是本发明实施例9的控制信息的传输装置的一示意图。如图36所示,装置3600包括:
第四发送单元3601,其用于根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送该第二控制信息。
在本实施例中,该第四发送单元3601在重复发送所述第二控制信息的情况下, 按照第一控制信息指示的第二控制信息重复发送的方式,向网络设备重复发送该第二控制信息。
在本实施例中,该第四发送单元3601也可以向至少两个网络设备发送该第二控制信息。
在本实施例中,该至少两个网络设备构成为多链路系统。
由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
实施例10
本发明实施例还提供一种控制信息的传输装置,其应用于网络设备侧。该装置对应于实施例5所述的控制信息的传输方法,因此其具体的实施可以参照实施例5,重复之处不再赘述。
图37是本发明实施例10的控制信息的传输装置的一示意图。如图37所示,装置3700包括:
接收单元3701,其用于在通过第一控制信息指定的物理资源上接收第二控制信息;
第二合并单元3702,其用于在该第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;
解调单元3703,其用于在该第二控制信息没有重复发送的情况下,直接对该第二控制信息进行解调。
由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
实施例11
本发明实施例还提供一种网络设备,该用户设备包括如实施例7所述的控制信息的传输装置。
图38是本发明实施例11的网络设备的一构成示意图。如图38所示,网络设备3800可以包括:处理器(processor)3810和存储器3820;存储器3820耦合到处理器3810。其中该存储器3820可存储各种数据;此外还存储信息处理的程序3830,并且在处理器3810的控制下执行该程序3830,以接收用户设备发送的各种信息、并且向用户设备发送各种信息。
在一个实施方式中,控制信息的传输装置的功能可以被集成到处理器3810中。其中,处理器3810可以被配置为:向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
在另一个实施方式中,控制信息的传输装置可以与处理器3810分开配置,例如可以将控制信息的传输装置配置为与处理器3810连接的芯片,通过处理器3810的控制来实现控制信息的传输装置的功能。
此外,如图38所示,网络设备3800还可以包括:收发机3840和天线3850等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备3800也并不是必须要包括图38中所示的所有部件;此外,网络设备3800还可以包括图38中没有示出的部件,可以参考现有技术。
由上述实施例可知,通过向用户设备指示控制信息是否重复发送以及重复发送的方式,从而根据该指示的内容获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例12
本发明实施例还提供一种用户设备,该用户设备包括如实施例8所述的控制信息的传输装置。
图39是本发明实施例12的用户设备的系统构成的一示意框图。如图39所示,该用户设备3900可以包括处理器3910和存储器3920;存储器3920耦合到处理器3910。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,控制信息的传输装置的功能可以被集成到处理器3910中。其中,处理器3910可以被配置为:根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
在另一个实施方式中,控制信息的传输装置可以与处理器3910分开配置,例如可以将控制信息的传输装置配置为与处理器3910连接的芯片,通过处理器3910的控制来实现控制信息的传输装置的功能。
如图39所示,该用户设备3900还可以包括:通信模块3930、输入单元3940、显示器3950、电源3960。值得注意的是,用户设备3900也并不是必须要包括图39中所示的所有部件;此外,用户设备3900还可以包括图39中没有示出的部件,可以参考相关技术。
如图39所示,处理器3910有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器3910接收输入并控制用户设备3900的各个部件的操作。
其中,存储器3920,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器3910可执行该存储器3920存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。用户设备3900的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,通过根据接收信号确定第一控制信息是否重复发送以及重复发送的方式,从而根据确定的结果获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例13
本发明实施例还提供一种用户设备,该网络设备包括如实施例9所述的控制信息的传输装置。
图40是本发明实施例13的用户设备的系统构成的一示意框图。如图40所示,该用户设备4000可以包括处理器4010和存储器4020;存储器4020耦合到处理器4010。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,控制信息的传输装置的功能可以被集成到处理器4010中。其中,处理器4010可以被配置为:根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送所述第二控制信息。
在另一个实施方式中,控制信息的传输装置可以与处理器4010分开配置,例如可以将控制信息的传输装置配置为与处理器4010连接的芯片,通过处理器4010的控制来实现控制信息的传输装置的功能。
如图40所示,该用户设备4000还可以包括:通信模块4030、输入单元4040、显示器4050、电源4060。值得注意的是,用户设备4000也并不是必须要包括图40中所示的所有部件;此外,用户设备4000还可以包括图40中没有示出的部件,可以参考相关技术。
如图40所示,处理器4010有时也称为控制器或操作控件,可以包括微处理器或 其他处理器装置和/或逻辑装置,该处理器4010接收输入并控制用户设备4000的各个部件的操作。
其中,存储器4020,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器4010可执行该存储器4020存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。用户设备4000的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
实施例14
本发明实施例还提供一种网络设备,该网络设备包括如实施例10所述的控制信息的传输装置。
图41是本发明实施例14的网络设备的一构成示意图。如图41所示,网络设备4100可以包括:处理器(processor)4110和存储器4120;存储器4120耦合到处理器4110。其中该存储器4120可存储各种数据;此外还存储信息处理的程序4130,并且在处理器4110的控制下执行该程序4130,以接收用户设备发送的各种信息、并且向用户设备发送各种信息。
在一个实施方式中,控制信息的传输装置的功能可以被集成到处理器4110中。其中,处理器4110可以被配置为:在通过第一控制信息指定的物理资源上接收第二控制信息;在所述第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;在所述第二控制信息没有重复发送的情况下,直接对所述第二控制信息进行解调。
在另一个实施方式中,控制信息的传输装置可以与处理器4110分开配置,例如可以将控制信息的传输装置配置为与处理器4110连接的芯片,通过处理器4110的控制来实现控制信息的传输装置的功能。
此外,如图41所示,网络设备4100还可以包括:收发机4140和天线4150等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备4100也并不是必须要包括图41中所示的所有部件;此外,网络设备4100还可以包括图41中没有示出的部件,可以参考现有技术。
由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
实施例15
本发明实施例还提供一种通信系统,包括至少一个如实施例11所述的网络设备以及如实施例12所述的用户设备。
例如,该通信系统为多链路系统,该通信系统的结构可以参照图1、图13、图17、图20、图23所示的各种场景。
例如,该通信系统为单链路系统,其结构可以参照图11所示的场景。
在本实施例中,网络设备的结构和功能与实施例11中的记载相同,用户设备的结构和功能与实施例12中的记载相同,此处不再赘述。
由上述实施例可知,通过根据接收信号确定第一控制信息是否重复发送以及重复发送的方式,从而根据确定的结果获取控制信息,能够有效的提高控制信息传输的可靠性。
实施例16
本发明实施例还提供一种通信系统,包括如实施例13所述的用户设备以及至少一个如实施例14所述的网络设备。
例如,该通信系统为多链路系统,该通信系统的结构可以参照图1、图13、图17、图20、图23所示的各种场景。
例如,该通信系统为单链路系统,其结构可以参照图11所示的场景。
在本实施例中,网络设备的结构和功能与实施例14中的记载相同,用户设备的结构和功能与实施例13中的记载相同,此处不再赘述。
由上述实施例可知,由上述实施例可知,通过网络设备发送的下行控制信息来指示上行控制信息是否重复发送以及重复发送的方式,能够有效的提高控制信息传输的可靠性。
本发明实施例以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明实施例涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明实施例还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图28中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图2所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图28中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图28描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种控制信息的传输装置,所述装置包括:
指示单元,其用于向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
附记2、根据附记1所述的装置,其中,
所述第一控制信息重复发送的方式包括:所述第一控制信息在不同的时频资源上重复发送,或者,所述第一控制信息在相同的频率且不同的时间上重复发送,或者,所述第一控制信息在相同的时间且不同的频率上重复发送。
附记3、根据附记1所述的装置,其中,
所述第一控制信息是否重复发送以及重复发送的方式通过以下的一种方式进行指示:通过高层信令中的第一重复指示参数进行指示,通过与所述第一控制信息的解调参考信号(DMRS)相乘的第一正交序列进行指示,以及通过高层信令中的第一重复指示参数以及与所述第一控制信息的解调参考信号(DMRS)相乘的第二正交序列进行指示。
附记4、根据附记3所述的装置,其中,
所述第一控制信息是否重复发送以及重复发送的方式通过以下的一种方式进行指示:通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数进行指示,通过与所述第一控制信息的解调参考信号相乘的正交覆盖码(OCC)进行指示,以及通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication以及与所述第一控制信息的解调参考信号相乘的ZC序列进行指示。
附记5、根据附记1-4中的任一项所述的装置,其中,所述装置还包括:
第一发送单元,其用于在所述第一控制信息重复发送的情况下,按照向所述用户设备指示的重复发送的方式,向所述用户设备重复发送所述第一控制信息,在所述第一控制信息不重复发送的情况下,向所述用户设备发送所述第一控制信息。
附记6、根据附记1-4中的任一项所述的装置,其中,所述装置还包括:
设置于第一网络设备的第二发送单元,其用于与至少一个其他网络设备向所述用户设备发送所述第一控制信息。
附记7、根据附记6所述的装置,其中,
设置于所述第一网络设备的所述第二发送单元与至少一个其他网络设备在相同或不同的时频资源上,或者在相同的频率且不同的时间上,或者在相同的时间且不同的频率上,向所述用户设备发送所述第一控制信息。
附记8、根据附记6所述的装置,其中,
设置于所述第一网络设备的所述第二发送单元与至少一个其他网络设备按照向所述用户设备指示的重复发送的方式,向所述用户设备分别重复发送所述第一控制信 息。
附记9、根据附记1-4中的任一项所述的装置,其中,所述装置还包括:
设置于第一网络设备的第三发送单元,
仅由所述第一网络设备的所述第三发送单元向所述用户设备发送所述第一控制信息,所述第一网络设备与至少一个其他网络设备构成多链路系统。
附记10、根据附记9所述的装置,其中,
在所述第一控制信息不重复发送的情况下,所述第一网络设备的所述第三发送单元向所述用户设备发送所述第一控制信息。
附记11、根据附记9所述的装置,其中,
在所述第一控制信息重复发送的情况下,所述第一网络设备的所述第三发送单元按照向所述用户设备指示的重复发送的方式,向所述用户设备重复发送所述第一控制信息。
附记12、一种控制信息的传输装置,所述装置包括:
确定单元,其用于根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
附记13、根据附记12所述的装置,其中,所述确定单元包括:
第一确定单元,其用于根据高层信令中的第一重复指示参数,确定所述第一控制信息是否重复发送以及重复发送的方式。
附记14、根据附记12所述的装置,其中,所述确定单元包括:
第一计算单元,其用于计算接收到的解调参考信号和与第一正交序列相乘的解调参考信号之间的相关性;
第二确定单元,其用于根据计算出的相关性确定所述第一正交序列;以及
第三确定单元,其用于根据所述第一正交序列确定所述第一控制信息是否重复发送以及重复发送的方式。
附记15、根据附记12所述的装置,其中,所述确定单元包括:
第四确定单元,其用于根据接收到的高层信令中第一重复指示参数,确定所述第一控制信息是否重复发送;
第二计算单元,其用于在判断所述第一控制信息重复发送的情况下,计算接收到的解调参考信号和与第二正交序列相乘的解调参考信号之间的相关性;
第五确定单元,其用于根据计算出的相关性确定所述第二正交序列;以及
第六确定单元,其用于根据所述第二正交序列,确定所述第一控制信息重复发送的方式。
附记16、根据附记12-15中的任一项所述的装置,其中,所述装置还包括:
第七确定单元,其用于在根据接收信号确定所述第一控制信息重复发送的情况下,根据预定义的规则确定重复发送所述第一控制信息可能使用的物理资源;
第一合并单元,其用于将在所述可能使用的物理资源上接收的多个接收信号进行合并;
第一检测单元,其用于在合并后的接收信号中对所述第一控制信息进行盲检。
附记17、根据附记12-15中的任一项所述的装置,其中,所述装置还包括:
第二检测单元,其用于在根据接收信号确定所述第一控制信息重复发送的情况下,在不同的物理资源上依次对所述第一控制信息进行盲检,直到成功解调出所述第一控制信息为止。
附记18、一种控制信息的传输装置,所述装置包括:
第四发送单元,其用于根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送所述第二控制信息。
附记19、根据附记18所述的装置,其中,
所述第二控制信息重复发送的方式包括:所述第二控制信息在不同的时频资源上重复发送,或者,所述第二控制信息在相同的频率且不同的时间上重复发送,或者,所述第二控制信息在相同的时间且不同的频率上重复发送。
附记20、根据附记18或19所述的装置,其中,
所述第二控制信息是否重复发送以及重复发送的方式通过第一控制信息中的第二重复指示参数指示。
附记21、根据附记20所述的装置,其中,
所述第二控制信息是否重复方式以及重复发送的方式通过第一控制信息中的PUCCHRepetitionIndication参数进行指示。
附记22、根据附记18-21中的任一项所述的装置,其中,
所述第四发送单元在重复发送所述第二控制信息的情况下,按照第一控制信息指示的所述第二控制信息重复发送的方式,向网络设备重复发送所述第二控制信息。
附记23、根据附记18-21中的任一项所述的装置,其中,
所述第四发送单元向至少两个网络设备发送所述第二控制信息。
附记24、一种控制信息的传输装置,所述装置包括:
接收单元,其用于在通过第一控制信息指定的物理资源上接收第二控制信息;
第二合并单元,其用于在所述第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;
解调单元,其用于在所述第二控制信息没有重复发送的情况下,直接对所述第二控制信息进行解调。
附记25、一种网络设备,所述网络设备包括根据附记1-11中的任一项所述的装置。
附记26、一种用户设备,所述用户设备包括根据附记12-17中的任一项所述的装置。
附记27、一种用户设备,所述用户设备包括根据附记18-23中的任一项所述的装置。
附记28、一种网络设备,所述网络设备包括根据附记24所述的装置。
附记29、一种通信系统,所述通信系统包括至少一个根据附记25所述的网络设备以及根据附记26所述的用户设备。
附记30、一种通信系统,所述通信系统包括根据附记27所述的用户设备以及至少一个根据附记28所述的网络设备。
附记31、一种控制信息的传输方法,所述方法包括:
向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
附记32、根据附记31所述的方法,其中,
所述第一控制信息重复发送的方式包括:所述第一控制信息在不同的时频资源上重复发送,或者,所述第一控制信息在相同的频率且不同的时间上重复发送,或者,所述第一控制信息在相同的时间且不同的频率上重复发送。
附记33、根据附记31所述的方法,其中,
所述第一控制信息是否重复发送以及重复发送的方式通过以下的一种方式进行指示:通过高层信令中的第一重复指示参数进行指示,通过与所述第一控制信息的解调参考信号(DMRS)相乘的第一正交序列进行指示,以及通过高层信令中的第一重 复指示参数以及与所述第一控制信息的解调参考信号(DMRS)相乘的第二正交序列进行指示。
附记34、根据附记33所述的方法,其中,
所述第一控制信息是否重复发送以及重复发送的方式通过以下的一种方式进行指示:通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数进行指示,通过与所述第一控制信息的解调参考信号相乘的正交覆盖码(OCC)进行指示,以及通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication以及与所述第一控制信息的解调参考信号相乘的ZC序列进行指示。
附记35、根据附记31-34中的任一项所述的方法,其中,所述方法还包括:
在所述第一控制信息重复发送的情况下,按照向所述用户设备指示的重复发送的方式,向所述用户设备重复发送所述第一控制信息;
在所述第一控制信息不重复发送的情况下,向所述用户设备发送所述第一控制信息。
附记36、根据附记31-34中的任一项所述的方法,其中,所述方法还包括:
第一网络设备与至少一个其他网络设备向所述用户设备发送所述第一控制信息。
附记37、根据附记36所述的方法,其中,
第一网络设备与至少一个其他网络设备在相同或不同的时频资源上,或者在相同的频率且不同的时间上,或者在相同的时间且不同的频率上,向所述用户设备发送所述第一控制信息。
附记38、根据附记36所述的方法,其中,
所述第一网络设备与至少一个其他网络设备按照向所述用户设备指示的重复发送的方式,向所述用户设备分别重复发送所述第一控制信息。
附记39、根据附记31-34中的任一项所述的方法,其中,所述方法还包括:
仅由第一网络设备向所述用户设备发送所述第一控制信息,所述第一网络设备与至少一个其他网络设备构成多链路系统。
附记40、根据附记39所述的方法,其中,
在所述第一控制信息不重复发送的情况下,所述第一网络设备向所述用户设备发送所述第一控制信息。
附记41、根据附记39所述的方法,其中,
在所述第一控制信息重复发送的情况下,所述第一网络设备按照向所述用户设备指示的重复发送的方式,向所述用户设备重复发送所述第一控制信息。
附记42、一种控制信息的传输方法,所述方法包括:
根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
附记43、根据附记42所述的方法,其中,所述根据接收信号确定第一控制信息是否重复发送以及重复发送的方式,包括:
根据高层信令中的第一重复指示参数,确定所述第一控制信息是否重复发送以及重复发送的方式。
附记44、根据附记42所述的方法,其中,所述根据接收信号确定第一控制信息是否重复发送以及重复发送的方式,包括:
计算接收到的解调参考信号和与第一正交序列相乘的解调参考信号之间的相关性;
根据计算出的相关性确定所述第一正交序列;以及
根据所述第一正交序列确定所述第一控制信息是否重复发送以及重复发送的方式。
附记45、根据附记42所述的方法,其中,所述根据接收信号确定第一控制信息是否重复发送以及重复发送的方式,包括:
根据接收到的高层信令中第一重复指示参数,确定所述第一控制信息是否重复发送;
在判断所述第一控制信息重复发送的情况下,计算接收到的解调参考信号和与第二正交序列相乘的解调参考信号之间的相关性;
根据计算出的相关性确定所述第二正交序列;以及
根据所述第二正交序列,确定所述第一控制信息重复发送的方式。
附记46、根据附记42-45中的任一项所述的方法,其中,所述方法还包括:
在根据接收信号确定所述第一控制信息重复发送的情况下,根据预定义的规则确定重复发送所述第一控制信息可能使用的物理资源;
将在所述可能使用的物理资源上接收的多个接收信号进行合并;
在合并后的接收信号中对所述第一控制信息进行盲检。
附记47、根据附记42-45中的任一项所述的方法,其中,所述方法还包括:
在根据接收信号确定所述第一控制信息重复发送的情况下,在不同的物理资源上依次对所述第一控制信息进行盲检,直到成功解调出所述第一控制信息为止。
附记48、一种控制信息的传输方法,所述方法包括:
根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送所述第二控制信息。
附记49、根据附记48所述的方法,其中,
所述第二控制信息重复发送的方式包括:所述第二控制信息在不同的时频资源上重复发送,或者,所述第二控制信息在相同的频率且不同的时间上重复发送,或者,所述第二控制信息在相同的时间且不同的频率上重复发送。
附记50、根据附记48或49所述的方法,其中,
所述第二控制信息是否重复发送以及重复发送的方式通过第一控制信息中的第二重复指示参数指示。
附记51、根据附记50所述的方法,其中,
所述第二控制信息是否重复方式以及重复发送的方式通过第一控制信息中的PUCCHRepetitionIndication参数进行指示。
附记52、根据附记48-51中的任一项所述的方法,其中,
在重复发送所述第二控制信息的情况下,按照第一控制信息指示的所述第二控制信息重复发送的方式,向网络设备重复发送所述第二控制信息。
附记53、根据附记48-51中的任一项所述的方法,其中,
向至少两个网络设备发送所述第二控制信息。
附记54、一种控制信息的传输方法,所述方法包括:
在通过第一控制信息指定的物理资源上接收第二控制信息;
在所述第二控制信息重复发送的情况下,将重复发送的多个第二控制信息合并后再解调;
在所述第二控制信息没有重复发送的情况下,直接对所述第二控制信息进行解调。

Claims (20)

  1. 一种控制信息的传输装置,所述装置包括:
    指示单元,其用于向用户设备指示第一控制信息是否重复发送以及重复发送的方式。
  2. 根据权利要求1所述的装置,其中,
    所述第一控制信息重复发送的方式包括:所述第一控制信息在不同的时频资源上重复发送,或者,所述第一控制信息在相同的频率且不同的时间上重复发送,或者,所述第一控制信息在相同的时间且不同的频率上重复发送。
  3. 根据权利要求1所述的装置,其中,
    所述第一控制信息是否重复发送以及重复发送的方式通过以下的一种方式进行指示:通过高层信令中的第一重复指示参数进行指示,通过与所述第一控制信息的解调参考信号(DMRS)相乘的第一正交序列进行指示,以及通过高层信令中的第一重复指示参数以及与所述第一控制信息的解调参考信号(DMRS)相乘的第二正交序列进行指示。
  4. 根据权利要求3所述的装置,其中,
    所述第一控制信息是否重复发送以及重复发送的方式通过以下的一种方式进行指示:通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication参数进行指示,通过与所述第一控制信息的解调参考信号相乘的正交覆盖码(OCC)进行指示,以及通过RRC信令或MAC-CE信令中的PDCCHRepetitionIndication以及与所述第一控制信息的解调参考信号相乘的ZC序列进行指示。
  5. 根据权利要求1-4中的任一项所述的装置,其中,所述装置还包括:
    第一发送单元,其用于在所述第一控制信息重复发送的情况下,按照向所述用户设备指示的重复发送的方式,向所述用户设备重复发送所述第一控制信息,在所述第一控制信息不重复发送的情况下,向所述用户设备发送所述第一控制信息。
  6. 根据权利要求1-4中的任一项所述的装置,其中,所述装置还包括:
    设置于第一网络设备的第二发送单元,其用于与至少一个其他网络设备向所述用户设备发送所述第一控制信息。
  7. 根据权利要求6所述的装置,其中,
    设置于所述第一网络设备的所述第二发送单元与至少一个其他网络设备在相同或不同的时频资源上,或者在相同的频率且不同的时间上,或者在相同的时间且不同的频率上,向所述用户设备发送所述第一控制信息。
  8. 根据权利要求6所述的装置,其中,
    设置于所述第一网络设备的所述第二发送单元与至少一个其他网络设备按照向所述用户设备指示的重复发送的方式,向所述用户设备分别重复发送所述第一控制信息。
  9. 根据权利要求1-4中的任一项所述的装置,其中,所述装置还包括:
    设置于第一网络设备的第三发送单元,
    仅由所述第一网络设备的所述第三发送单元向所述用户设备发送所述第一控制信息,所述第一网络设备与至少一个其他网络设备构成多链路系统。
  10. 根据权利要求9所述的装置,其中,
    在所述第一控制信息不重复发送的情况下,所述第一网络设备的所述第三发送单元向所述用户设备发送所述第一控制信息。
  11. 根据权利要求9所述的装置,其中,
    在所述第一控制信息重复发送的情况下,所述第一网络设备的所述第三发送单元按照向所述用户设备指示的重复发送的方式,向所述用户设备重复发送所述第一控制信息。
  12. 一种控制信息的传输装置,所述装置包括:
    确定单元,其用于根据接收信号确定第一控制信息是否重复发送以及重复发送的方式。
  13. 根据权利要求12所述的装置,其中,所述确定单元包括:
    第一确定单元,其用于根据高层信令中的第一重复指示参数,确定所述第一控制信息是否重复发送以及重复发送的方式。
  14. 根据权利要求12所述的装置,其中,所述确定单元包括:
    第一计算单元,其用于计算接收到的解调参考信号和与第一正交序列相乘的解调参考信号之间的相关性;
    第二确定单元,其用于根据计算出的相关性确定所述第一正交序列;以及
    第三确定单元,其用于根据所述第一正交序列确定所述第一控制信息是否重复发 送以及重复发送的方式。
  15. 根据权利要求12所述的装置,其中,所述确定单元包括:
    第四确定单元,其用于根据接收到的高层信令中第一重复指示参数,确定所述第一控制信息是否重复发送;
    第二计算单元,其用于在判断所述第一控制信息重复发送的情况下,计算接收到的解调参考信号和与第二正交序列相乘的解调参考信号之间的相关性;
    第五确定单元,其用于根据计算出的相关性确定所述第二正交序列;以及
    第六确定单元,其用于根据所述第二正交序列,确定所述第一控制信息重复发送的方式。
  16. 根据权利要求12-15中的任一项所述的装置,其中,所述装置还包括:
    第七确定单元,其用于在根据接收信号确定所述第一控制信息重复发送的情况下,根据预定义的规则确定重复发送所述第一控制信息可能使用的物理资源;
    第一合并单元,其用于将在所述可能使用的物理资源上接收的多个接收信号进行合并;
    第一检测单元,其用于在合并后的接收信号中对所述第一控制信息进行盲检。
  17. 根据权利要求12-15中的任一项所述的装置,其中,所述装置还包括:
    第二检测单元,其用于在根据接收信号确定所述第一控制信息重复发送的情况下,在不同的物理资源上依次对所述第一控制信息进行盲检,直到成功解调出所述第一控制信息为止。
  18. 一种控制信息的传输装置,所述装置包括:
    第四发送单元,其用于根据接收到的第一控制信息中的关于第二控制信息是否重复发送以及重复发送的方式的指示,向网络设备发送所述第二控制信息。
  19. 根据权利要求18所述的装置,其中,
    所述第二控制信息重复发送的方式包括:所述第二控制信息在不同的时频资源上重复发送,或者,所述第二控制信息在相同的频率且不同的时间上重复发送,或者,所述第二控制信息在相同的时间且不同的频率上重复发送。
  20. 根据权利要求18或19所述的装置,其中,
    所述第二控制信息是否重复发送以及重复发送的方式通过第一控制信息中的第二重复指示参数指示。
PCT/CN2018/089289 2018-05-31 2018-05-31 控制信息的传输方法及装置 WO2019227404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089289 WO2019227404A1 (zh) 2018-05-31 2018-05-31 控制信息的传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089289 WO2019227404A1 (zh) 2018-05-31 2018-05-31 控制信息的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2019227404A1 true WO2019227404A1 (zh) 2019-12-05

Family

ID=68696811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089289 WO2019227404A1 (zh) 2018-05-31 2018-05-31 控制信息的传输方法及装置

Country Status (1)

Country Link
WO (1) WO2019227404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4106445A4 (en) * 2020-02-14 2023-07-12 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR TRANSMITTING CONTROL INFORMATION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312444A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 指示信息的发送和接收方法及装置
CN107359966A (zh) * 2017-05-31 2017-11-17 上海华为技术有限公司 一种信号的发射方法及通信设备
CN107666682A (zh) * 2016-07-27 2018-02-06 中兴通讯股份有限公司 通信信道的传输方法及装置、系统
CN107872896A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种控制信息的传输方法及装置
US20180145800A1 (en) * 2016-11-24 2018-05-24 Samsung Electronics Co., Ltd. Method of reducing power consumption in user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312444A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 指示信息的发送和接收方法及装置
CN107666682A (zh) * 2016-07-27 2018-02-06 中兴通讯股份有限公司 通信信道的传输方法及装置、系统
CN107872896A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种控制信息的传输方法及装置
US20180145800A1 (en) * 2016-11-24 2018-05-24 Samsung Electronics Co., Ltd. Method of reducing power consumption in user equipment
CN107359966A (zh) * 2017-05-31 2017-11-17 上海华为技术有限公司 一种信号的发射方法及通信设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4106445A4 (en) * 2020-02-14 2023-07-12 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR TRANSMITTING CONTROL INFORMATION

Similar Documents

Publication Publication Date Title
TWI695642B (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
EP3605932A1 (en) Beam management method, terminal device, and network device
WO2018201475A1 (zh) 信息指示方法、检测方法及其装置、通信系统
CN113273115B (zh) 信息发送和接收方法以及装置
CN111034287B (zh) 资源配置方法、确定方法及其装置、通信系统
KR20200089266A (ko) 신호 반복 충돌들에 대한 우선순위 규칙
CN112335305B (zh) 下行信号的监听和发送方法、参数配置方法以及装置
CN110710311B (zh) 波束失败事件的触发条件的配置方法、装置和通信系统
US10827480B2 (en) Method for transmitting control information, user equipment, and network device
WO2018227483A1 (zh) 资源配置方法、确定方法及其装置、通信系统
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信系统
US20240089747A1 (en) Base station, terminal apparatus, method, program, and recording medium
WO2020029258A1 (zh) 信息发送和接收方法以及装置
CN113273259B (zh) 数据传输方法及装置
CN111434071B (zh) 信号接收装置及方法、通信系统
KR20200031111A (ko) 짧은 지속기간들에서의 업링크 ack/nack 및 sr
CN114208300B (zh) 两步随机接入中接收和发送随机接入响应的方法及装置
CN116941206A (zh) 测量方法以及装置
WO2019227404A1 (zh) 控制信息的传输方法及装置
CN114642036A (zh) 一种状态转换方法及装置、通信设备
WO2020029299A1 (zh) 数据中断指示方法及其装置、通信系统
US20240097851A1 (en) Defining prs & srs association to improve multi-rtt positioning in processing capability constrained scenarios
CN116018771B (zh) 上行数据的发送方法、装置和系统
WO2022027510A1 (zh) 资源指示和资源选择方法以及装置
US12133286B2 (en) Method and apparatus for identifying user equipment capability in sidelink transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920997

Country of ref document: EP

Kind code of ref document: A1