WO2018227483A1 - 资源配置方法、确定方法及其装置、通信系统 - Google Patents

资源配置方法、确定方法及其装置、通信系统 Download PDF

Info

Publication number
WO2018227483A1
WO2018227483A1 PCT/CN2017/088471 CN2017088471W WO2018227483A1 WO 2018227483 A1 WO2018227483 A1 WO 2018227483A1 CN 2017088471 W CN2017088471 W CN 2017088471W WO 2018227483 A1 WO2018227483 A1 WO 2018227483A1
Authority
WO
WIPO (PCT)
Prior art keywords
common control
control resource
blocks
block index
related information
Prior art date
Application number
PCT/CN2017/088471
Other languages
English (en)
French (fr)
Inventor
纪鹏宇
史玉龙
周华
Original Assignee
富士通株式会社
纪鹏宇
史玉龙
周华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 纪鹏宇, 史玉龙, 周华 filed Critical 富士通株式会社
Priority to PCT/CN2017/088471 priority Critical patent/WO2018227483A1/zh
Priority to EP17913162.8A priority patent/EP3641465A4/en
Priority to JP2019566941A priority patent/JP6863485B2/ja
Priority to CN201780090675.1A priority patent/CN110622605A/zh
Priority to PCT/CN2017/103702 priority patent/WO2018227814A1/zh
Priority to KR1020197031653A priority patent/KR102278948B1/ko
Publication of WO2018227483A1 publication Critical patent/WO2018227483A1/zh
Priority to US16/505,083 priority patent/US10542455B2/en
Priority to US16/676,747 priority patent/US11277766B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to the field of communications, and in particular, to a resource configuration method, a determining method, a device thereof, and a communication system.
  • the base station sends a synchronization signal block (SS block) in a signal burst set transmission period (such as the SS burst set transmission period), and needs to be used in the initial access process of the user equipment (UE) to the network.
  • the SS blocks sent by different beams are detected by beam sweeping to obtain downlink synchronization.
  • Each SS block may include a primary synchronization signal (PSS) and a secondary synchronization signal (Secondary Synchronization Signal, SSS). ), and / or Physical Broadcast Channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the physical downlink control channel (PDCCH) in the common control resource set (Common CORESET) needs to be detected, and the remaining indicator is obtained according to the detected scheduling unit of the PDCCH.
  • the information about Common CORESET is indicated by the PBCH information.
  • the UE detects the NR-PDCCH in the common search space to obtain the RMSI information in the corresponding Common CORESET. Specifically, by periodically configuring the Common CORESET, the Common corresponding to each SS block/beam CORESET is indicated in the PBCH message in the corresponding SS block.
  • the embodiment of the present invention provides a resource configuration method, a determining method, a device thereof, and a communication system, which can reduce the number of bits required for public control resource set indication information, reduce load, and have low complexity, and Affects the soft merge between the SS burst set and the SS burst set, solving the existing problems.
  • a resource configuration apparatus including:
  • a first configuration unit configured to configure a common control resource set corresponding to the beam used for data transmission into a first set.
  • a resource configuration apparatus including:
  • a second sending unit configured to send related information for determining a location of the first set to the user side, where the first set is a set of common control resource sets corresponding to beams used for transmitting data.
  • a resource determining apparatus including:
  • a first receiving unit configured to receive related information, which is sent by the network side, for determining a location of the first set, where the first set is a set of common control resource sets corresponding to beams used for transmitting data.
  • a resource configuration method including:
  • the common control resource set corresponding to the beam used for data transmission is configured into a first set.
  • a resource configuration method including:
  • the related information for determining the location of the first set is sent to the user side, wherein the first set is a set of common control resource sets corresponding to the beams used to transmit the data.
  • a resource determining method including:
  • the beneficial effects of the embodiments of the present invention are that, according to the embodiment of the present invention, by configuring the common control resource set corresponding to the beam used for data transmission to be a set, the number of bits required for the common control resource set indication information can be reduced. The load is reduced, the complexity is low, and the soft merge between the SS burst set and the SS burst set is not affected, and the existing problems are solved.
  • Embodiment 1 is a flowchart of a resource configuration method in Embodiment 1;
  • Embodiment 2 is a flowchart of a resource configuration method in Embodiment 2;
  • Embodiment 3 is a flowchart of a resource determining method in Embodiment 3;
  • 4A-4B and 5A-5B are schematic diagrams of common control resource collection locations, respectively.
  • FIG. 6 is a schematic structural diagram of a resource configuration apparatus in Embodiment 4.
  • FIG. 7 is a schematic structural diagram of a network device in Embodiment 5.
  • Embodiment 8 is a schematic structural diagram of a resource configuration apparatus in Embodiment 6;
  • FIG. 9 is a schematic structural diagram of a network device in Embodiment 7.
  • FIG. 10 is a schematic structural diagram of a resource determining apparatus in Embodiment 8.
  • FIG. 11 is a schematic structural diagram of a user equipment in Embodiment 9;
  • Figure 12 is a schematic diagram of a communication system in Embodiment 10.
  • Figure 16 is a flow chart showing the data indicating method in the thirteenth embodiment.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising,” “comprising,” “having,” or “an” are used to distinguish different elements from the title, but do not indicate the spatial arrangement or chronological order of the elements, and these elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any communication standard such as Long Term Evolution (LTE), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system may be performed according to any phase of the communication protocol, and may include, for example but not limited to, the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and future. 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • the term "network device” refers to, for example, accessing a terminal device to a communication in a communication system.
  • the network device may include, but is not limited to, a device: a base station (BS, a base station), an access point (AP, an Access Point), a transmission and reception point (TRP), a broadcast transmitter, and a mobility management entity (MME, Mobile). Management Entity), gateway, server, Radio Network Controller (RNC), Base Station Controller (BSC), and so on.
  • BS base station
  • AP access point
  • TRP transmission and reception point
  • MME mobility management entity
  • Management Entity gateway
  • server Radio Network Controller
  • BSC Base Station Controller
  • the base station may include, but is not limited to, a Node B (NodeB or NB), an evolved Node B (eNodeB or eNB), and a 5G base station (gNB), and the like, and may further include a Remote Radio Head (RRH). , Remote Radio Unit (RRU), relay or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • base station may include some or all of their functions, and each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE) or “Terminal Equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives a network service.
  • the user equipment may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, and the like.
  • the user equipment may include, but is not limited to, a cellular phone (Cellular Phone), a personal digital assistant (PDA, Personal Digital Assistant), a wireless modem, a wireless communication device, a handheld device, a machine type communication device, a laptop computer, Cordless phones, smart phones, smart watches, digital cameras, and more.
  • a cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem Wireless Fidelity
  • a wireless communication device a handheld device
  • a machine type communication device a laptop computer
  • Cordless phones smart phones, smart watches, digital cameras, and more.
  • the user equipment may also be a machine or device that performs monitoring or measurement, and may include, but is not limited to, a Machine Type Communication (MTC) terminal, In-vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, and the like.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 1 is a flowchart of a resource configuration method according to the first embodiment, which is applied to a network device side. As shown in Figure 1, the method includes:
  • Step 101 Configure a common control resource set corresponding to the beam used for data transmission to be a first set.
  • each SS burst set has N SS blocks, and each SS block indicates related information for determining the location of the one first set, instead of each SS block individually indicating each common control.
  • the information about the set of resources thereby ensuring that the load information of each SS block is the same, does not affect the soft combining between the SS burst set and the SS burst set, and reduces the number of bits required for the common control resource set indication information, and reduces load.
  • the method may further include:
  • Step 102 Send relevant information for determining the location of the first set to the user side.
  • the user side may determine the location of the first set according to the related information, and further determine a corresponding common control resource set in the first set.
  • the related information includes: a frequency offset of the first set, and further includes a size of each common control resource set, and/or a time domain frequency domain location. Based on the above related information, the user side can determine the exact location of the time domain frequency domain of the set.
  • the related information may be determined by the network side configuration, for example, the size of each common control resource set, and/or the time domain frequency domain location may be pre-configured, and notified to the network side and the user side, or by The network side configures the size of each of the common control resource sets, and/or the time domain frequency domain location, and is included in the related information to be sent to the user side.
  • This embodiment is not limited thereto, for example, through high layer signaling. (Wireless Control Signalling RRC) configuration.
  • the size of each common control resource set, and/or the time domain frequency domain location may be configured as needed, and the configuration of the size of each common control resource set includes a symbol and a control channel element (Control channel element) , CCE) configuration, for example, the size of each common control resource set may be configured as 1 symbol and 16 CCEs, and the time domain frequency domain location of each common control resource set includes the control area of the corresponding time slot
  • the configuration of the symbol and the appearance period, the period may be configured to be equal to an integer multiple of the PBCH period or the PBCH period. For example, in the 5G NR, the PBCH period is 80 ms, and the common control resource set is under control.
  • the period in which the area appears may be configured as an integer multiple of 80ms, for example, 80ms, 160ms, 320ms, etc., and the specific time domain frequency domain location may be configured as M symbols in the corresponding time slot (eg, the first 1, 2, and 3 symbols) It is merely an illustrative description, and the embodiment is not limited thereto. Thereby, the period of the RMSI can be made to be preconfigurable like SIB1 in LTE without increasing complexity.
  • the related information may be sent through the control channel.
  • the related information may be sent by using the PBCH, but the embodiment is not limited thereto.
  • the user side may determine the exact location of the time domain frequency domain of the first set. After determining the location of the first set of the configuration, the user side also needs to determine its own common control in the first set.
  • the resource set for example, the mapping relationship between each common control resource set and the SS block index that the user side can index and configure through the SS block, or the mapping relationship between the indication information of each common control resource set and the SS block index. Determine its own set of common control resources.
  • the method may further include: (not shown)
  • mapping relationship between each common control resource set and the SS block index is configured, or a mapping relationship between the indication information of each common control resource set and the SS block index is configured.
  • each common control resource set may be correspondingly numbered by its own corresponding SS block index (the number indicates an indication indicating each common control resource set)
  • the information may be such that each number index is sequentially arranged in the time domain, or may be sequentially arranged in the frequency domain, or interleaved.
  • This embodiment is not limited thereto, and the following Tables 1 and 2 are respectively different. The illustration of the mapping relationship, but this embodiment is not limited thereto.
  • the common control resource set number may be determined according to the mapping relationship, and then the set of the common control resource is determined in the entire set of the configuration, and the specific determining method is below. It is specifically described in Embodiment 3.
  • the method may further include:
  • Step 103 Send the number of SS blocks actually sent in the SS burst set of each period to the user side.
  • the number of the SS blocks may be sent together with the related information, for example, the number of the SS blocks is sent through the control channel.
  • the number of the SS blocks may be sent through the PBCH, but This embodiment is not intended to be limiting.
  • the user side in order to facilitate the user side to determine its own common control resource set according to the mapping relationship and the detected SS block index, the user side also needs to acquire the SS block actually sent in the SS burst set of each period. Location information, that is, which SS blocks are actually sent.
  • step 103 the location information of the SS block actually transmitted in the SS burst set of each period needs to be sent to the user side, wherein the location information can be sent together with the related information, for example, by using a control channel.
  • the maximum number of SS blocks is 8, and the actual number of SS blocks is 4, for example, the first four SS blocks.
  • the user side can determine the number of SS blocks and the SS block actually sent by detecting the PBCH, and then determine the mapping relationship in time or frequency domain, and determine its own common control according to the determined SS block index and the mapping relationship.
  • FIG. 2 is a flowchart of a resource configuration method according to Embodiment 2, which is applied to a network device side. As shown in Figure 2, the Methods include:
  • Step 201 Send related information for determining a location of the first set to the user side, where the first set is a set of common control resource sets corresponding to beams used for transmitting data.
  • the step 201 may refer to the step 102 of the embodiment 1, and details are not described herein again.
  • the method further includes: (not shown) configuring the common control resource set corresponding to the beam used for data transmission to the first set, and the specific implementation is similar to step 101 in Embodiment 1, I will not repeat them here.
  • the user side may determine the exact location of the time domain frequency domain of the first set. After determining the location of the first set of the configuration, the user side also needs to determine its own common control in the first set.
  • the resource set for example, the mapping relationship between each common control resource set and the SS block index that the user side can index and configure through the SS block, or the mapping relationship between the indication information of each common control resource set and the SS block index.
  • the public control resource set refer to Embodiment 1, and details are not described herein again.
  • the method may further include:
  • Step 202 Send the number of SS blocks that are actually sent in the SS burst set of each period to the user side.
  • Step 202 Send the number of SS blocks that are actually sent in the SS burst set of each period to the user side.
  • the user side in order to facilitate the user side to determine its own common control resource set according to the mapping relationship and the detected SS block index, the user side also needs to acquire the SS block actually sent in the SS burst set of each period. Location information, that is, which SS blocks are actually sent.
  • step 202 the location information of the SS block actually sent in the SS burst set of each period needs to be sent to the user side, where the location information can be sent together with related information, for example, sent through a control channel,
  • the location information can be sent together with related information, for example, sent through a control channel.
  • FIG. 3 is a flowchart of a resource determining method according to Embodiment 3, which is applied to a user equipment side. As shown in FIG. 3, the method includes:
  • Step 301 Receive related information that is sent by the network side to determine a location of the first set, where the first set is a set of common control resource sets corresponding to beams used for transmitting data.
  • the specific implementation manner of the first set and related information sent by the network side may refer to Embodiment 1 or 2, and details are not described herein again.
  • the user side may receive the related information by detecting the SS block.
  • the related information may be indicated by a control channel, and the control channel may be a PBCH, but the embodiment is not limited thereto.
  • the control channel may be a PBCH, but the embodiment is not limited thereto.
  • it can also be indicated by PSS or SSS or DMRS.
  • the method further includes:
  • Step 302 Obtain the number of SS blocks in the SS burst set of each period.
  • the number of SS blocks can be obtained as follows:
  • the number of SS blocks actually sent is used as the number of SS blocks;
  • the maximum number of SS blocks in the SS burst set of each period is determined according to the current working frequency, and the maximum value is used as the SS block number.
  • the user side receives the SS block to obtain the number of SS blocks.
  • the number of SS blocks may be indicated by a control channel, where the control channel may be a PBCH, and when the PBCH is included in the SS block, the user By receiving the SS block, the number of SS blocks is determined according to the indication of the PBCH by detecting the PBCH, but this embodiment is not limited thereto.
  • the user side in order to facilitate the user side to determine its own common control resource set according to the mapping relationship and the detected SS block index, the user side also needs to acquire the SS block actually sent in the SS burst set of each period. Location information, that is, which SS blocks are actually sent.
  • the user side can also receive location information of the SS block in the SS burst set of each period sent by the network side, where the location information can be sent together with related information, for example, by using a control channel.
  • the maximum number of SS blocks in the SS burst set of each period is related to the current working frequency.
  • the working frequency has a certain correspondence with the number of SS blocks.
  • the higher the working frequency the corresponding The maximum number of SS blocks in the working frequency is larger.
  • the maximum number of SS blocks is 4, and when the operating frequency is greater than or equal to 3 GHz and less than 64 GHz, the maximum number of SS blocks is 6.
  • the maximum number of SS blocks is 64.
  • the method may further include:
  • Step 303 Determine a location of the first set according to the related information.
  • step 303 the method further includes: determining a size of the first set according to the number of the SS blocks.
  • the size of the first set is equal to the number of SS blocks multiplied by the size of a common control resource set.
  • Step 304 Determine a corresponding common control resource set according to the SS block index, and the mapping relationship between each common control resource set and the SS block index, or the mapping relationship between the indication information of each common control resource set and the SS block index.
  • the SS block index needs to be determined.
  • the specific determining manner may refer to the prior art, for example, by detecting PSS, SSS, PBCH or DMRS in the SS block, so as to obtain PSS, SSS, PBCH or DMRS.
  • the indicated SS block index is not described in detail here.
  • the mapping relationship may be configured by the user side or the mapping relationship configured by the network side. For the specific implementation manner, reference may be made to Embodiment 1, and details are not described herein again. .
  • the user side may detect the PDCCH in the common control resource set, so as to obtain its own RMSI scheduling information, and the specific method may refer to the prior art, for example, the user.
  • the side detects the PDCCH, determines a specific data resource, and receives the data to obtain its own RMSI scheduling information.
  • FIG. 4A-4B and FIG. 5A-5B are schematic diagrams of the location of the common control resource collection in this embodiment.
  • the resource determination method in this embodiment is described below with reference to FIG. 4A-4B and FIG. 5A-5B, and is convenient for understanding.
  • the following is exemplified by the PBCH indicating the related information of the common control set, but the embodiment is not limited thereto.
  • the user equipment in the process of initial access by the user equipment to the network side, the user equipment needs to detect the SS block that is sent by using different beams by means of beam scanning. After the beam scanning is completed, the user equipment can detect that some of the beams are available or better (for example, by setting a detection threshold, that is, if the strength of some beams is detected to be greater than or equal to the set detection threshold. The beam is determined to be available or preferred. For the specific implementation, refer to the prior art. For details, the user equipment detects the PBCH in the SS block, and the frequency offset of the first set can be obtained.
  • the number of SS blocks actually sent in the SS burst set of each period in addition, combined with the size of each common control resource set according to the pre-configuration, and/or the time domain frequency domain location, or each public control acquired through the PBCH
  • the size of the resource set, and/or the time domain frequency domain location may determine the exact location of the first set of the time domain frequency domain and the size of the first set; in addition, by detecting the SS block to obtain the SS block index information, combined with the above mapping Relationship, in the first set, determining its own set of common control resources; for example, as shown in Figures 4A and 4B, determining the frequency Move, and the size of each common control resource set, the time domain frequency domain location, the number of SS blocks, and which SS blocks (for example, the first four) are sent, the position and size of the first set can be determined, and the SS used.
  • the block index is 2 and 3, and the corresponding common control resource set numbers are 2 and 3. After determining the position of the first set, according to the mapping relationship as shown in Table 1, the numbers 2 and 3 can be determined.
  • the set of common control resources it should be noted that the embodiment is not limited to the resource arrangement in FIGS. 4A and 4B.
  • the user equipment in the process of initial access by the user equipment to the network side, the user equipment needs to detect the SS block sent by using different beams by means of beam scanning. After the beam scanning, the user equipment can detect that some of the beams are available or better (can be determined by setting a detection threshold, and the specific implementation manner is as described above, and is not described here again), and the user side detects the SS.
  • the PBCH in the block can obtain the frequency offset of the first set; determine the maximum number of SS blocks in the SS burst set of each period according to the current working frequency; and combine the size of each common control resource set according to the pre-configuration, And/or the time domain frequency domain location, or the size of each common control resource set obtained by the PBCH, and/or the time domain frequency domain location, may determine the exact location of the first set of time domain frequency domains and the first set.
  • detecting the SS block to obtain the SS block index information, combined with the above mapping relationship, in the first set, determining its own common control a source set; for example, as shown in FIGS.
  • the maximum number of SS blocks in the SS burst set of each cycle is 8, and the size of the first set is 8 times of each common control resource, and the frequency offset is determined.
  • the location of the set of the configuration can be determined, and the SS block index used is 2 and 3, and the corresponding common control resource set number is 2 And 3, after determining the location of the entire collection, according to the mapping as shown in Table 1.
  • the common control resource set corresponding to numbers 2 and 3 can be determined. It should be noted that the embodiment is not limited to the resource arrangement in FIGS. 5A and 5B.
  • the fourth embodiment further provides a resource configuration apparatus. Since the principle of solving the problem is similar to the method of Embodiment 1, the specific implementation may refer to the implementation of the method of Embodiment 1, and the description of the same portions is not repeated.
  • FIG. 6 is a schematic diagram of a resource configuration apparatus according to the fourth embodiment. As shown in FIG. 6, the apparatus 600 includes:
  • the first configuration unit 601 is configured to configure a common control resource set corresponding to the beam used for data transmission into a first set.
  • the device may further include:
  • the first sending unit 602 is configured to send the configured related information for determining the location of the set to the user side.
  • the first sending unit 602 sends the related information by using a control channel, and the control channel may be a PBCH, but the embodiment is not limited thereto.
  • the device may further include:
  • a second configuration unit (not shown) for configuring a mapping relationship between each common control resource set and an SS block index, or for configuring a mapping for indicating indication information of each common control resource set and an SS block index relationship.
  • a third configuration unit (not shown) for configuring the related information.
  • the first sending unit 602 is further configured to send, to the user side, the number of SS blocks actually sent in the SS burst set of each period.
  • the first sending unit 602 is further configured to send the location information of the SS block actually sent in the SS burst set of each period to the user side.
  • the specific configuration of the first configuration unit 601 and the first sending unit 602 may be referred to the steps 101 to 103 of Embodiment 1, and details are not described herein again.
  • the embodiment 5 provides a network device.
  • the method for solving the problem is similar to the method of the first embodiment. Therefore, the specific implementation may be implemented by referring to the method in the first embodiment.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • network device 700 can include a central processing unit (CPU) 701 and memory 702; and memory 702 is coupled to central processor 701.
  • the memory 702 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processing unit 701 to transmit related information.
  • the functionality of device 600 can be integrated into central processor 701.
  • the central processing unit 701 can be configured to implement the resource configuration method described in Embodiment 1.
  • the central processing unit 701 can be configured to configure the set of common control resources corresponding to the beams used for data transmission into one set.
  • the central processing unit 701 can also be configured to transmit the configured related information for determining the location of the set to the user side.
  • the central processing unit 701 may be further configured to: configure a mapping relationship between each common control resource set and the SS block index, or configure a mapping relationship for indicating the indication information of each common control resource set and the SS block index.
  • the central processor 701 can also be configured to: configure the related information.
  • the central processing unit 701 may be further configured to: send the number of SS blocks actually sent in the SS burst set of each period to the user side, and may also be configured to send the SS actually sent in the SS burst set of each period to the user side. Block location information.
  • the above device 600 may be configured separately from the central processing unit 701, for example, The function of the device 600 is implemented by the control of the central processing unit 701 by configuring the device 600 as a chip connected to the central processing unit 701, as shown in FIG.
  • the network device 700 may further include: a transceiver 703, an antenna 704, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It should be noted that the network device 700 does not have to include all the components shown in FIG. 7; in addition, the network device 700 may further include components not shown in FIG. 7, and reference may be made to the prior art.
  • the sixth embodiment further provides a resource configuration apparatus. Since the principle of solving the problem is similar to the method of the second embodiment, the specific implementation may refer to the implementation of the method of the second embodiment, and the description of the same portions is not repeated.
  • FIG. 8 is a schematic structural diagram of a resource configuration apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the second sending unit 801 is configured to send related information for determining a location of the first set to the user side, where the first set is a set of common control resource sets corresponding to beams used for transmitting data.
  • the user side may determine the exact location of the time domain frequency domain of the first set. After determining the location of the first set of the configuration, the user side also needs to determine its own common control in the first set.
  • the resource set for example, the mapping relationship between each common control resource set and the SS block index that the user side can index and configure through the SS block, or the mapping relationship between the indication information of each common control resource set and the SS block index.
  • the public control resource set refer to Embodiment 1, and details are not described herein again.
  • the user side in order to determine the set of the common control resources, the user side also needs to obtain the number of SS blocks actually sent in the SS burst set of each period, so as to determine the size of the first set. Therefore, in this embodiment, the second sending unit 801 is further configured to actually send the SS burst set in each cycle. The number of SS blocks is sent to the user side. In addition, the location information of the SS block actually sent in the SS burst set of each period can also be sent to the user side. For a specific implementation manner, refer to step 103 in Embodiment 1, and details are not described herein again.
  • the seventh embodiment provides a network device.
  • the method for solving the problem is similar to the method in the first embodiment. Therefore, the specific implementation may be implemented by referring to the method in the first embodiment.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • network device 900 can include a central processing unit (CPU) 901 and memory 902; and memory 902 is coupled to central processor 901.
  • the memory 902 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processing unit 901 to transmit related information.
  • the functionality of device 800 can be integrated into central processor 901.
  • the central processing unit 901 can be configured to implement the resource configuration method of Embodiment 2.
  • the central processing unit 901 can be configured to: transmit related information for determining a location of the first set to the user side, wherein the first set is a set of common control resource sets corresponding to beams used to transmit data .
  • the device 800 may be configured separately from the central processing unit 901.
  • the device 900 may be configured as a chip connected to the central processing unit 901, such as the unit shown in FIG. Control is implemented to implement the functionality of device 800.
  • the network device 900 may further include: a transceiver 903, an antenna 904, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the network device 900 does not have to include all the components shown in FIG. 9; in addition, the network device 900 may further include components not shown in FIG. 9, and reference may be made to the prior art.
  • the common control resource set corresponding to the beam used for data transmission is known. It is configured as a set, which can reduce the number of bits required for the common control resource set indication information, reduce the load, has low complexity, and does not affect the soft merge between the SS burst set and the SS burst set, and solves the existing problems. .
  • the eighth embodiment further provides a resource determining apparatus. Since the principle of solving the problem is similar to the method of the third embodiment, the specific implementation may refer to the implementation of the method of the third embodiment, and the description of the same portions is not repeated.
  • FIG. 10 is a schematic structural diagram of a resource determining apparatus according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes:
  • the first receiving unit 1001 is configured to receive related information that is sent by the network side to determine a location of the first set, where the first set is a set of common control resource sets corresponding to beams used for transmitting data.
  • the device may further include:
  • a first obtaining unit for configuring a mapping relationship between each common control resource set and an SS block index, or for configuring a mapping for indicating indication information of each common control resource set and an SS block index
  • the relationship is either a mapping relationship between each common control resource set and the SS block index configured on the network side, or a mapping relationship between the indication information indicating the set of each common control resource and the SS block index configured by the network side.
  • the first receiving unit 1001 receives the related information through a control channel, and the control channel is a PBCH.
  • the device may further include:
  • a second obtaining unit (not shown), configured to acquire the number of SS blocks in the SS burst set of each period; wherein, for example, the number of the SS blocks is obtained by:
  • the number of SS blocks actually sent is used as the number of SS blocks;
  • the location information of the SS block actually sent in the SS burst set of each period may also be received when the number of the SS blocks is received.
  • first obtaining unit and the second obtaining unit may refer to Embodiment 3, and details are not described herein again.
  • the device may further include:
  • a first determining unit 1002 configured to determine a location and a size of the first set according to the related information and the number of the SS blocks;
  • a second determining unit 1003 configured to determine, according to an SS block index, a mapping relationship between each common control resource set and an SS block index, or a mapping relationship between the indication information of each common control resource set and the SS block index A collection of public control resources.
  • the specific implementation manners of the first determining unit 1002 and the second determining unit 1003 may refer to Embodiment 3, and details are not described herein again.
  • the apparatus further includes: a third determining unit (not shown), which is used to determine the SS block index, and the specific determining manner may refer to Embodiment 3, and details are not described herein again.
  • a third determining unit (not shown), which is used to determine the SS block index, and the specific determining manner may refer to Embodiment 3, and details are not described herein again.
  • the present embodiment provides a user equipment.
  • the method for solving the problem is similar to the method of the third embodiment. Therefore, the specific implementation may be implemented by referring to the method in the third embodiment.
  • FIG. 11 is a schematic diagram showing the structure of a user equipment according to an embodiment of the present invention.
  • user equipment 1100 can include a central processing unit (CPU) 1101 and a memory 1102; and a memory 1102 coupled to central processing unit 1101.
  • the memory 1102 can store various data; in addition, a program for data processing is stored, and the program is executed under the control of the central processing unit 1101 to receive related information.
  • the functionality of device 1000 can be integrated into central processor 1101.
  • the central processing unit 1101 may be configured to implement the resource determining method described in Embodiment 3.
  • the central processing unit 1101 may be configured to: receive related information sent by the network side for determining a location of the first set, where the first set is a set of common control resources corresponding to beams used for transmitting data. Collection.
  • the central processing unit 1101 may be configured to: configure a mapping relationship between each common control resource set and an SS block index, or configure a mapping relationship for indicating indication information of each common control resource set and an SS block index, or receive a network side.
  • the mapping relationship between the set of the common control resource and the SS block index is configured, or the mapping relationship between the indication information indicating the set of each common control resource and the SS block index configured by the network side is received.
  • the central processing unit 1101 may be configured to: obtain the number of SS blocks in the SS burst set of each period; wherein, the number of the SS blocks is obtained by:
  • the number of SS blocks actually sent in the SS burst set of each period sent by the network side is received, and the number of SS blocks actually sent is used as the number of SS blocks, or the SS burst set in each period is determined according to the current working frequency.
  • the maximum number of blocks, the maximum value is taken as the number of SS blocks.
  • the central processing unit 1101 may be configured to: receive location information of an SS block actually transmitted in an SS burst set of each period transmitted by the network side.
  • the central processing unit 1101 may be configured to: determine a location and a size of the first set according to the related information and the number of SS blocks; according to an SS block index, and a mapping relationship between each common control resource set and an SS block index, Or indicating a mapping relationship between the indication information of each common control resource set and the SS block index to determine a corresponding common control resource set.
  • the central processor 1101 can be configured to determine the SS block index.
  • the foregoing apparatus 1000 may be configured separately from the central processing unit 1101.
  • the apparatus 1100 may be configured as a chip connected to the central processing unit 1101, such as the unit shown in FIG. 11, through the central processing unit 1101. Controls to implement the functionality of device 1100.
  • the user equipment 1100 may further include a communication module 1103, an input unit 1104, a display 1106, an audio processor 1105, an antenna 1107, a power source 1108, and the like.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1100 does not have to include all the components shown in FIG. 11; in addition, the user equipment 1100 may further include components not shown in FIG. 11, and reference may be made to the prior art.
  • the embodiment 10 provides a communication system.
  • FIG. 12 is a schematic diagram showing the structure of a communication system in the tenth embodiment.
  • the communication system 1200 includes a network device 1201 and a user equipment 1202.
  • the specific implementation of the network device 1201 may be the network device 500 or 600 in the embodiment 5 or 6.
  • the specific implementation manner of the user device 1202 may refer to the user equipment 900 in the embodiment 9, and the content thereof is incorporated herein. I will not repeat them here.
  • FIG. 13 is a flowchart of a method for configuring and determining a resource in the embodiment 12. As shown in FIG. 13, the method includes:
  • Step 1301 The network device configures a common control resource set corresponding to the beam used for data transmission into a first set.
  • Step 1302 The network device sends an SS block to the user equipment.
  • the PBCH in the SS block indicates related information used to determine the location of the first set
  • the SS block (for example, PBCH) may also indicate the number of SS blocks actually sent in the SS burst set of each period, and may also indicate the location information of the SS block actually sent in the SS burst set of each period.
  • Step 1303 The UE receives the SS block, detects the PBCH, determines the related information, and the number of SS blocks, and determines an SS block index.
  • Step 1304 determining a location of the first set according to the related information, and determining a size of the first set according to the number of SS blocks;
  • Step 1305 Determine, according to the SS block index, the determined mapping relationship between each common control resource set and the SS block index, or the mapping relationship between the indication information of each common control resource set and the SS block index.
  • Step 1306 Detecting a PDCCH in its corresponding common control resource set, and acquiring its RMSI scheduling signal interest.
  • the method may further include: (not shown)
  • the network device or the user equipment configures a mapping relationship between each common control resource set and the SS block index, or configures a mapping relationship indicating the indication information of each common control resource set and the SS block index;
  • the network device notifies the mapping relationship between the public control resource set and the SS block index, or the mapping information indicating the indication information of each common control resource set and the SS block index, and notifies the user equipment.
  • the method may further include: (not shown)
  • the network device configures this related information.
  • the method includes:
  • Step 1401 The network device configures a common control resource set corresponding to the beam used for data transmission into a first set.
  • Step 1402 the network device sends an SS block to the user equipment
  • the PBCH in the SS block indicates related information used to determine the location of the first set
  • Step 1403 The UE receives the SS block, detects the PBCH, determines the related information, and determines an SS block index.
  • Step 1404 the UE determines the number of SS blocks according to the current working frequency.
  • step 1403 and step 1404 is not limited.
  • Step 1405 determining a location of the first set according to the related information, and determining a size of the first set according to the number of SS blocks;
  • Step 1406 Determine, according to the SS block index, a mapping relationship between each common control resource set and the SS block index, or a mapping relationship between the indication information of each common control resource set and the SS block index, determine the corresponding common control resource set. ;
  • Step 1407 Detect a PDCCH in its corresponding common control resource set, and obtain its RMSI scheduling information.
  • the method may further include: (not shown)
  • the network device or the user equipment configures a mapping relationship between each common control resource set and the SS block index, or configures a mapping relationship indicating the indication information of each common control resource set and the SS block index;
  • the network device notifies the mapping relationship between the public control resource set and the SS block index, or the mapping information indicating the indication information of each common control resource set and the SS block index, and notifies the user equipment.
  • the method may further include: (not shown) the network device configuring the related information.
  • the Buffer Status Report (BSR) in the next generation communication system needs to contain at least two formats. One is a short cache status report (short BSR), and the other is a variable length buffer status report (Variable BSR).
  • a 3-bit field is required to indicate the logical channel group identification (LCG ID) corresponding to the buffer status, and a buffer size field (Buffer Size) is required to specifically indicate the logical channel group.
  • LCG ID logical channel group identification
  • Buffer Size buffer size field
  • buffer size information of 2 to 8 logical channel groups may be included.
  • the LCG ID field is extended from 2 bits to 3 bits.
  • the data format length of the short BSR is an integer multiple of 8 bits, that is, the byte alignment rule is satisfied, and the buffer size field cannot be used again.
  • the result of multiplexing the MAC layer logical channel data may affect the length of the BSR (the logical channel group whose buffer state is empty after data multiplexing does not need to report the buffer status), thereby affecting The currently available physical resource size needs to be further adjusted for logical channel data multiplexing. Can affect the length of the BSR. Such an operation will increase the complexity of the processing at the transmitting end, thereby increasing the processing delay.
  • FIG. 15 is a schematic diagram of the data indication method in the embodiment 11. As shown in FIG. 15, the method includes:
  • the cache status report includes at least one cache size information, where the cache size information indicates a buffer size corresponding to a logical channel or a logical channel group.
  • the cache size information is a 5-bit field.
  • the byte alignment rule can be satisfied, and the data format length of the short BSR is guaranteed to be an integer multiple of 8 bits.
  • Each value of the cache size information field corresponds to a value range of a cache size.
  • the buffer size information is a 5-bit field
  • the value is 32, and each value corresponds to a value range of a buffer size.
  • the maximum size of the cache size information that can be represented by the cache size information is 150 kbytes.
  • the value of the cache size corresponding to each value is as follows:
  • the maximum size of the cache size information that can be represented by the cache size is 3000 kbytes.
  • the value of the cache size corresponding to each value is as follows:
  • the byte alignment rule can be satisfied, and the data format length of the short BSR is guaranteed to be an integer multiple of 8 bits.
  • the embodiment 12 also provides a data indicating device. Since the principle of solving the problem is similar to the method of the embodiment 11, the specific implementation may refer to the implementation of the method of the embodiment 11, and the description of the same portions will not be repeated.
  • the data indicating device includes (not shown):
  • a first processing unit configured to include at least one cache size information in the cache status report, where the cache size information indicates a buffer size corresponding to a logical channel or a logical channel group.
  • the cache size information is a 5-bit field.
  • the byte alignment rule can be satisfied, and the data grid of the short BSR is guaranteed.
  • the length of the equation is an integer multiple of 8 bits.
  • Each value of the cache size information field corresponds to a value range of a cache size.
  • the buffer size information is a 5-bit field
  • the value is 32, and each value corresponds to a value range of a buffer size.
  • the embodiment of the present invention further provides a user equipment.
  • the method for solving the problem is similar to the method of the embodiment 11. Therefore, the specific implementation may be implemented by referring to the method of the embodiment 11.
  • the configuration of the user equipment in this embodiment is the same as that of the user equipment in FIG. 11 , except that the functions of the central processing unit are different.
  • the central processing unit may be configured to implement the embodiment 11
  • the data indicates the method.
  • the central processor may be configured to include at least one cache size information in the cache status report, the cache size information indicating a cache size corresponding to a logical channel or a logical channel group.
  • the cache size information is a 5-bit field.
  • Each value of the cache size information field corresponds to a value range of a cache size.
  • the byte alignment rule can be satisfied, and the data format length of the short BSR is guaranteed to be an integer multiple of 8 bits.
  • FIG. 16 is a schematic diagram of the data indication method in the embodiment 13. As shown in FIG. 16, the method includes:
  • Step 1601 The variable length buffer status report includes buffer size information of the logical channel group whose buffer size is greater than zero when the buffer status report is triggered or before the logical channel data is multiplexed.
  • variable length buffer status report includes buffer size information of a logical channel group whose buffer size is greater than zero before logical channel data multiplexing and whose buffer size is equal to zero after logical channel data multiplexing.
  • the user side after obtaining the current data transmission resource, the user side has a total of N logical channel groups, wherein the cache size of the M logical channel groups is greater than zero, and the buffer sizes of the other N-M logical channel groups are equal to zero. Then, the variable BSR includes cache size information of the M logical channel groups.
  • the cached data in the P logical channels of the M logical channel groups are all multiplexed, that is, the buffer size is equal to zero, and the P logic may be included in the variable BSR.
  • the buffer size information of the channel may further include buffer size information of the MP logical channel groups whose buffer size is greater than zero.
  • the complexity of the processing at the transmitting end can be reduced, and the processing delay can be reduced.
  • the embodiment 14 also provides a data indicating device. Since the principle of solving the problem is similar to the method of the embodiment 13, the specific implementation may refer to the implementation of the method of the embodiment 13, and the same portions are not repeated.
  • the data indicating device includes (not shown):
  • a second processing unit configured to include, in the variable length buffer status report, cache size information of the logical channel group whose buffer size is greater than zero when the buffer status report is triggered or before the logical channel data is multiplexed.
  • a third processing unit configured to include, in the variable length buffer status report, buffer size information of the logical channel group whose buffer size is greater than zero before the logical channel data multiplexing, and the buffer size is equal to zero after the logical channel data is multiplexed.
  • the embodiment of the present invention further provides a user equipment.
  • the method for solving the problem is similar to the method of the embodiment 13. Therefore, the specific implementation may be implemented by referring to the method of the embodiment 13.
  • the configuration of the user equipment in this embodiment is the same as that of the user equipment in FIG. 11 , except that the functions of the central processing unit are different.
  • the central processing unit may be configured to implement the embodiment 13
  • the data indicates the method.
  • the central processing unit may be configured to: the variable length buffer status report includes buffer size information of the logical channel group whose buffer size is greater than zero when the buffer status report is triggered or before the logical channel data is multiplexed.
  • the variable length buffer status report includes the buffer size greater than zero before logical channel data multiplexing, in logic The buffer size information of the logical channel group whose buffer size is equal to zero after channel data multiplexing.
  • the complexity of the processing at the transmitting end can be reduced, and the processing delay can be reduced.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a resource configuration device or a network device to execute the resource configuration method described in Embodiment 1 or 2.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a resource configuration device or a network device, the program causes the resource configuration device or the network device to perform the method described in Embodiment 1 or 2 Resource configuration method.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the resource determining apparatus or the user equipment to perform the resource determining method described in Embodiment 3.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the resource determining apparatus or user equipment to perform the resource determination described in Embodiment 3 when the program is executed in a resource determining apparatus or a user equipment method.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the data indicating device or the user equipment to execute the data indicating method described in Embodiment 11 or 13.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes the data indicating device or user equipment to perform the embodiment described in Embodiment 11 or 13 when the program is executed in a data indicating device or a user device Data indication method.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • Each processing method in each device described in connection with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional blocks shown in Figures 6-11 and/or one or more combinations of functional blocks may correspond to various software modules of a computer program flow, or to individual hardware modules.
  • These software modules may correspond to the respective steps shown in Figures 1-3, 13-16, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described with respect to Figures 6-11 and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to Figures 6-11 and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.
  • a data indicating method wherein the method comprises:
  • the cache status report includes at least one cache size information indicating a cache size corresponding to a logical channel or a logical channel group.
  • each value of the cache size information field corresponds to a value range of a cache size.
  • Supplementary note 4 is a data indicating method, wherein the method comprises:
  • variable length buffer status report includes buffer size information of the logical channel group whose buffer size is greater than zero when the buffer status report is triggered or before the logical channel data is multiplexed.
  • Supplementary note 5 is a data indicating method, wherein the method comprises:
  • Variable-length buffer status report includes buffer size greater than zero before logical channel data multiplexing, in logic The buffer size information of the logical channel group whose buffer size is equal to zero after channel data multiplexing.
  • Appendix 6 a resource configuration method, including:
  • the common control resource set corresponding to the beam used for data transmission is configured into a first set.
  • Information related to determining the location of the first set is sent to the user side.
  • the related information comprises: a frequency offset of the first set; or, comprising: a frequency offset of the first set, and each common control The size of the resource collection, and/or the time domain frequency domain location.
  • the mapping relationship between each common control resource set and the SS block index is configured, or is used to configure a mapping relationship between the indication information for indicating each common control resource set and the SS block index.
  • control channel is a PBCH.
  • the number of SS blocks actually sent in the SS burst set for each cycle is sent to the user side.
  • Appendix 14 a resource configuration method, comprising:
  • Correlating information for determining a location of the first set is sent to the user side, wherein the first set is a set of common control resource sets corresponding to beams used to transmit data.
  • the related information comprises: a frequency offset of the first set; or, comprising: a frequency offset of the first set, and each common control The size of the resource collection, and/or the time domain frequency domain location.
  • the common control resource set corresponding to the beam used for data transmission is configured as the first set.
  • Appendix 17 a method for determining resources, comprising:
  • the related information comprises: the first set a frequency offset; or comprising: a frequency offset of the first set, and a size of each common control resource set, and/or a time domain frequency domain location.
  • mapping relationship between each common control resource set and the SS block index configured on the network side is received, or the mapping relationship between the indication information indicating the set of each common control resource and the SS block index configured by the network side is received.
  • control channel is a PBCH.
  • the maximum value is the number of SS blocks.
  • the corresponding common control resource set is determined according to the SS block index, and the mapping relationship between each common control resource set and the SS block index, or the mapping relationship indicating the indication information of each common control resource set and the SS block index.
  • the SS block index is determined.
  • Supplementary note 25 is a data indicating device, wherein the device comprises:
  • a first processing unit configured to include at least one cache size information in the cache status report, where the cache size information indicates a buffer size corresponding to a logical channel or a logical channel group.
  • each value pair of the cache size information field Should be a range of values for the size of the cache.
  • Supplementary note 28 is a data indicating device, wherein the device comprises:
  • a second processing unit configured to include, in the variable length buffer status report, cache size information of the logical channel group whose buffer size is greater than zero when the buffer status report is triggered or before the logical channel data is multiplexed.
  • Supplementary note 29 is a data indicating device, wherein the device comprises:
  • a third processing unit configured to include, in the variable length buffer status report, buffer size information of the logical channel group whose buffer size is greater than zero before the logical channel data multiplexing, and the buffer size is equal to zero after the logical channel data is multiplexed.

Abstract

一种资源配置方法、确定方法及其装置、通信系统。其中,该资源配置装置,包括:第一配置单元,其用于将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合。由此,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。

Description

资源配置方法、确定方法及其装置、通信系统 技术领域
本发明涉及通信领域,特别涉及一种资源配置方法、确定方法及其装置、通信系统。
背景技术
在未来无线通信系统,例如5G、新无线(New Radio,NR)系统中,支持的工作频点范围以及带宽较大,在较高的工作频点上,采用波束(beam)对数据进行发送,能够获得发送增益。基站以信号突发集合发送周期(如SS burst set发送周期)为周期来发送同步信号块(SS block),在用户设备(user equipment,UE)对网络进行初始接入过程中,需要对采用了不同波束发送的SS block通过波束扫描(beam sweeping)的方式进行检测,获得下行同步,其中,每个SS block可包含主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS),和/或物理广播信道(Physical Broadcast Channel,PBCH)。UE通过检测SS block来确认其在SS burst set内的位置,即SS block在SS burst set中的索引,以支持UE侧的帧定时。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在UE侧进行波束扫描后,需要检测公共控制资源集合(Common control resource set,Common CORESET)中的公共物理下行信道(Physical Downlink Control Channel,PDCCH),根据检测到的PDCCH的调度指示单元来获得剩余的最小系统信息(Remaining Minimum System Information,RMSI)。
在目前的讨论中,Common CORESET的相关信息由PBCH信息来指示。UE在对应的Common CORESET中检测公共搜索空间中的NR-PDCCH以获得RMSI信息,具体的,通过周期性的配置Common CORESET,每个SS block/beam对应的Common  CORESET在对应的SS block中的PBCH消息中进行指示。
由于每个SS block中的PBCH需要指示其本身对应的波束的Common CORESET,而每个Common CORESET所使用的时频资源信息不同,导致了PBCH负载内容不相同,所以不能在同一个的SS burst set中的PBCH之间进行软合并。
为了解决上述问题,本发明实施例提供一种资源配置方法、确定方法及其装置、通信系统,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
根据本实施例的第一方面,提供了一种资源配置装置,包括:
第一配置单元,其用于将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合。
根据本实施例的第二方面,提供了一种资源配置装置,包括:
第二发送单元,其用于将用于确定第一集合的位置的相关信息发送至用户侧,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
根据本实施例的第三方面,提供了一种资源确定装置,包括:
第一接收单元,其用于接收网络侧发送的用于确定第一集合的位置的相关信息,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
根据本实施例的第四方面,提供了一种资源配置方法,包括:
将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合。
根据本实施例的第五方面,提供了一种资源配置方法,包括:
将用于确定第一集合的位置的相关信息发送至用户侧,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
根据本实施例的第六方面,提供了一种资源确定方法,包括:
接收网络侧发送的用于确定第一集合的位置的相关信息,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
本发明实施例的有益效果在于,根据本发明实施例,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原 理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
在附图中:
图1是实施例1中资源配置方法流程图;
图2是实施例2中资源配置方法流程图;
图3是实施例3中资源确定方法流程图;
图4A-4B和图5A-5B分别是公共控制资源集合位置示意图
图6是实施例4中资源配置装置结构示意图;
图7是实施例5中网络设备结构示意图;
图8是实施例6中资源配置装置结构示意图;
图9是实施例7中网络设备结构示意图;
图10是实施例8中资源确定装置结构示意图;
图11是实施例9中用户设备结构示意图;
图12是实施例10中通信系统示意图;
图13是实施例10中资源配置和确定方法流程图;
图14是实施例10中资源配置和确定方法流程图;
图15是实施例11中数据指示方法流程图;
图16是实施例13中数据指示方法流程图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本发明的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信 网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。用户设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,用户设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,用户设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
下面结合附图对本发明实施例进行说明。
实施例1
图1是本实施例1的资源配置方法流程图,应用于网络设备侧。如图1所示,该方法包括:
步骤101,将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
在本实施例中,每个SS burst set中具有N个SS block,每个SS block均指示用于确定该一个第一集合的位置的相关信息,而非每个SS block单独指示每个公共控制资源集合的相关信息,由此,保证每个SS block的负载信息均相同,不影响SS burst set内和SS burst set间的软合并,减小公共控制资源集合指示信息所需的比特数,降低负载。
在本实施例中,该方法还可以包括:
步骤102,将用于确定该第一集合的位置的相关信息发送至用户侧。
由此,用户侧可以根据该相关信息确定该第一集合的位置,并在该第一集合中进一步确定其对应的公共控制资源集合。
在本实施例中,该相关信息包括:该第一集合的频率偏移,此外,还可以包括每个公共控制资源集合的大小、和/或时域频域位置。根据上述相关信息,用户侧可以确定该集合的时域频域的确切位置。
在本实施例中,该相关信息可以通过网络侧配置确定,例如该每个公共控制资源集合的大小、和/或时域频域位置可以预配置,并通知网络侧和用户侧,也可以由网络侧配置该每个公共控制资源集合的大小、和/或时域频域位置,并包含在该相关信息中向用户侧发送,本实施例并不以此作为限制,例如可以通过高层信令(无线控制信令RRC)配置。
在本实施例中,该每个公共控制资源集合的大小、和/或时域频域位置可以根据需要配置,该每个公共控制资源集合的大小的配置包括符号和控制信道单元(Control channel element,CCE)的配置,例如,可以将该每个公共控制资源集合的大小配置为1个符号和16个CCE,该每个公共控制资源集合的时域频域位置包括对应时隙的控制区域中符号和出现周期的配置,该周期可以配置为等于PBCH周期或PBCH周期的整数倍,例如,在5G NR中,PBCH周期为80ms,该公共控制资源集合在控制 区域出现的周期可以配置为80ms的整数倍,例如,80ms,160ms,320ms等,且具体时域频域位置可以配置为在对应时隙中的M个符号(例如前1,2,3个符号),此处仅为示例型的说明,本实施例并不以此作为限制。由此,能够使得RMSI的周期可以类似于LTE中SIB1那样可以进行预配置,而不增加复杂度。
在本实施例中,可以通过控制信道来发送该相关信息,例如在PBCH通过SS block发送时,可以通过该PBCH来发送该相关信息,但本实施例并不以此作为限制。
根据上述相关信息,用户侧可以确定该第一集合的时域频域的确切位置,在确定该配置的第一集合的位置后,用户侧还需要在该第一集合中确定其自身的公共控制资源集合,例如,用户侧可以通过SS block索引和配置的每个公共控制资源集合和SS block索引的映射关系,或者用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系来确定其自身的公共控制资源集合。
因此,在本实施例中,该方法还可以包括:(未图示)
配置每个公共控制资源集合和SS block索引的映射关系,或者配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
在本实施例中,为了便于配置,在该第一集合中,每个公共控制资源集合均可以由其自身对应的SS block索引进行相应的编号(该编号表示指示每个公共控制资源集合的指示信息),该映射关系可以是各个编号索引在时域上依次排列,也可以是在频域上依次排列,或者交织排列,本实施例并不以此作为限制,下表1和2分别是不同映射关系的示意,但本实施例并不以此作为限制。
表1
SS block索引 公共控制资源集合编号
0 0
1 1
2 2
3 3
L L
表2
SS block索引 公共控制资源集合编号
0 1
1 3
2 5
3 7
L P
如表1,2所示,在用户侧确定SS block索引后,可以根据该映射关系确定公共控制资源集合编号,进而在配置的整个集合中确定其自身的公共控制资源集合,具体确定方法将在下述实施例3中具体说明。
在本实施例中,为了确定该自身的公共控制资源集合,用户侧还需要获取每个周期的SS burst set中实际发送的SS block数量,以便确定该整个集合的大小。因此,在本实施例中,该方法还可以包括:
步骤103,向用户侧发送每个周期的SS burst set中实际发送的SS block数量。
在本实施例中,该SS block数量可以与该相关信息一起发送,例如通过控制信道来发送该SS block数量,例如在PBCH通过SS block发送时,可以通过该PBCH来发送该SS block数量,但本实施例并不以此作为限制。
在本实施例中,为了便于用户侧根据映射关系以及检测到的SS block索引,确定其自身的的公共控制资源集合,用户侧还需要获取每个周期的SS burst set中实际发送的SS block的位置信息,即具体实际发送哪些SS block。
因此,在步骤103中,还需要向用户侧发送每个周期的SS burst set中实际发送的SS block的位置信息,其中,该位置信息可以与相关信息一起发送,例如通过控制信道来发送。
例如,在一个SS burst set中,SS block数量的最大值为8,实际发送的是4个,例如前四个SS block,此时,不仅需要通过控制信道(PBCH)指示实际发送的SS block数量4个,还需要具体指示发送的是前四个SS block。由此,用户侧通过检测PBCH,可以确定SS block数量,以及实际发送的SS block,进而确定时或频域的映射关系,根据确定的SS block索引和该映射关系,确定其自身的的公共控制资源集合。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例2
图2是本实施例2的资源配置方法流程图,应用于网络设备侧。如图2所示,该 方法包括:
步骤201,将用于确定第一集合的位置的相关信息发送至用户侧,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
在本实施例中,该相关信息的具体实施方式可以参考实施例1,该步骤201可以参考实施例1步骤102,此处不再赘述。
在本实施例中,该方法还包括:(未图示)将进行数据发送所使用的波束对应的公共控制资源集合配置成该第一集合,其具体实施方式与实施例1中步骤101类似,此处不再赘述。
根据上述相关信息,用户侧可以确定该第一集合的时域频域的确切位置,在确定该配置的第一集合的位置后,用户侧还需要在该第一集合中确定其自身的公共控制资源集合,例如,用户侧可以通过SS block索引和配置的每个公共控制资源集合和SS block索引的映射关系,或者用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系来确定其自身的公共控制资源集合,其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,为了确定该自身的公共控制资源集合,用户侧还需要获取每个周期的SS burst set中实际发送的SS block数量,以便确定该第一集合的大小。因此,在本实施例中,该方法还可以包括:
步骤202,将每个周期的SS burst set中实际发送的SS block数量发送至用户侧,其具体实施方式可以参考实施例1步骤103,此处不再赘述。
在本实施例中,为了便于用户侧根据映射关系以及检测到的SS block索引,确定其自身的的公共控制资源集合,用户侧还需要获取每个周期的SS burst set中实际发送的SS block的位置信息,即具体实际发送哪些SS block。
因此,在步骤202中,还需要向用户侧发送每个周期的SS burst set中实际发送的SS block的位置信息,其中,该位置信息可以与相关信息一起发送,例如通过控制信道来发送,其具体实施方式可以参考实施例1步骤103,此处不再赘述。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例3
图3是本实施例3的资源确定方法流程图,应用于用户设备侧。如图3所示,该方法包括:
步骤301,接收网络侧发送的用于确定第一集合的位置的相关信息,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
在本实施例中,该第一集合和该网络侧发送的相关信息的具体实施方式可以参考实施例1或2,此处不再赘述。
在本实施例中,该用户侧可以通过检测SS block来接收该相关信息,例如,该相关信息可以通过控制信道来指示,该控制信道可以是PBCH,但本实施例并不以此作为限制,例如,也可以通过PSS或SSS或DMRS来指示。
在本实施例中,为了确定该第一集合大小,该方法还包括:
步骤302,获取每个周期的SS burst set中SS block数量;其中,可以通过如下方式获取该SS block数量:
接收网络侧发送的每个周期的SS burst set中实际发送的SS block数量;将该实际发送的SS block数量作为该SS block数量;
或者,根据当前工作频率确定每个周期的SS burst set中SS block数量最大值,将该最大值作为该SS block数量。
在一个实施方式中,该用户侧接收该SS block,以便获取该SS block数量,例如,该SS block数量可以通过控制信道来指示,该控制信道可以是PBCH,在SS block中包含PBCH时,用户通过接收SS block,通过检测PBCH,根据PBCH的指示,确定SS block数量,但本实施例并不以此作为限制。
在该实施方式中,为了便于用户侧根据映射关系以及检测到的SS block索引,确定其自身的的公共控制资源集合,用户侧还需要获取每个周期的SS burst set中实际发送的SS block的位置信息,即具体实际发送哪些SS block。
因此,用户侧还可以接收网络侧发送的每个周期的SS burst set中SS block的位置信息,其中,该位置信息可以与相关信息一起发送,例如通过控制信道来发送。
在一个实施方式中,每个周期的SS burst set中SS block数量最大值与当前工作频率有关,例如工作频点与SS block数量存在一定的对应关系,例如工作频点越高,对应的在该工作频点的SS block数量的最大值越大,例如在工作频点小于3GHz时,SS block数量最大值为4,在工作频点大于等于3GHz且小于64GHz时,SS block数量最大值为6,在工作频点大于等于64GHz时,SS block数量最大值为64。
在本实施例中,该方法还可以包括:
步骤303,根据该相关信息确定该第一集合的位置;
其中,在步骤303中,还可以包括:根据该SS block数量确定该第一集合的大小。
其中,该第一集合的大小等于SS block数量乘以一个公共控制资源集合的大小。
步骤304,根据SS block索引,以及每个公共控制资源集合和SS block索引的映射关系,或者指示每个公共控制资源集合的指示信息和SS block索引的映射关系确定其对应的公共控制资源集合。
其中,在步骤304前,还需要确定该SS block索引,其具体确定方式可以参考现有技术,例如通过检测SS block中的PSS,SSS,PBCH或DMRS,以便获取由PSS,SSS,PBCH或DMRS指示的SS block索引,此处不再具体赘述,另外,上述映射关系可以由用户侧配置,也可以接收网络侧配置的该映射关系,其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,在确定其自身的公共控制资源集合后,用户侧可以在该公共控制资源集合中检测PDCCH,以便获取自身的RMSI调度信息,其具体方法可以参考现有技术,例如,用户侧通过检测PDCCH,确定具体的数据资源,并接收数据,获取自身的RMSI调度信息。
图4A-4B和图5A-5B是本实施例中该公共控制资源集合位置的示意图,以下结合附图4A-4B和图5A-5B对本实施例中资源确定方法进行说明,并且,为了便于理解,以下以由PBCH来指示公共控制集合的相关信息来举例说明,但本实施例并不以此作为限制。
如图4A和4B所示,在本实施例中,在用户设备对网络侧进行初始接入的过程中,用户设备需要对采用了不同波束发送的SS block通过波束扫描的方式进行检测, 在完成了波束扫描后,用户设备可以检测到其中某些波束是可用或者较优的(例如可以通过设定检测门限来判断,即如果检测到某些波束的强度大小大于等于设定的检测门限,则该波束即确定为可用的或者较优的,其具体实施方式可以参考现有技术,此处不再赘述,用户设备检测SS block中的PBCH,可以获得该第一集合的频率偏移以及每个周期的SS burst set中实际发送的SS block数量,另外,再结合根据预先配置的每个公共控制资源集合的大小、和/或时域频域位置,或者通过PBCH获取的每个公共控制资源集合的大小、和/或时域频域位置,可以确定该第一集合的时域频域确切位置以及该第一集合的大小;另外,通过检测SS block获取SS block索引信息,结合上述映射关系,在该第一集合中,确定其自身的公共控制资源集合;例如,如图4A和4B所示,在确定该频率偏移,以及每个公共控制资源集合的大小、时域频域位置,SS block数量以及具体发送哪些SS block(例如前四个)后,即可确定该第一集合的位置和大小,使用的SS block索引是2和3,其各自对应的公共控制资源集合编号为2和3,在确定该第一集合的位置后,根据如表1所示的映射关系,即可以确定编号为2和3对应的公共控制资源集合,需要说明的是,本实施例并不限制于图4A和4B中的资源排列方式。
如图5A和5B所示,在本实施例中,在用户设备对网络侧进行初始接入的过程中,用户设备需要对采用了不同波束发送的SS block通过波束扫描的方式进行检测,在完成了波束扫描后,用户设备可以检测到其中某些波束是可用或者较优的(可以通过设定检测门限来判断,其具体实施方式如前所述,此处不再赘述),用户侧检测SS block中的PBCH,可以获得该第一集合的频率偏移;根据当前工作频率确定每个周期的SS burst set中SS block数量最大值;再结合根据预先配置的每个公共控制资源集合的大小、和/或时域频域位置,或者通过PBCH获取的每个公共控制资源集合的大小、和/或时域频域位置,可以确定该第一集合的时域频域确切位置以及该第一集合的大小;另外,通过检测SS block获取SS block索引信息,结合上述映射关系,在该第一集合中,确定其自身的公共控制资源集合;例如,如图5A和5B所示,每个周期的SS burst set中SS block数量最大值为8,该第一集合的大小为每个公共控制资源的8倍,在确定该频率偏移,以及每个公共控制资源集合的大小、时域频域位置后,即可确定该配置的集合的位置,使用的SS block索引是2和3,其各自对应的公共控制资源集合编号为2和3,在确定整个集合的位置后,根据如表1所示的映射关 系,即可以确定编号为2和3对应的公共控制资源集合,需要说明的是,本实施例并不限制于图5A和5B中的资源排列方式。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例4
本实施例4还提供一种资源配置装置。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参考实施例1的方法的实施,内容相同之处不再重复说明。
图6是本实施例4的资源配置装置示意图。如图6所示,装置600包括:
第一配置单元601,其用于将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合。
在本实施例中,该装置还可以包括:
第一发送单元602,其用于将配置的用于确定所述集合的位置的相关信息发送至用户侧。
其中,该相关信息的具体实施方式可以参考实施例1,此处不再赘述。
其中,第一发送单元602通过控制信道发送该相关信息,该控制信道可以是PBCH,但本实施例并不以此作为限制。
在本实施例中,该装置还可以包括:
第二配置单元(未图示),其用于配置每个公共控制资源集合和SS block索引的映射关系,或者用于配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
第三配置单元(未图示),其用于配置该相关信息。
在本实施例中,第一发送单元602还用于向用户侧发送每个周期的SS burst set中实际发送的SS block数量。
其中,第一发送单元602还用于向用户侧发送每个周期的SS burst set中实际发送的SS block的位置信息。
在本实施例中,第一配置单元601,第一发送单元602的具体实施方式可以参考实施例1步骤101~103,此处不再赘述。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例5
本实施例5提供一种网络设备,由于该设备解决问题的原理于实施例1的方法类似,因此其具体的实施可以参考实施例1的方法实施,内容相同之处不再重复说明。
图7是本发明实施例的网络设备构成示意图。如图7所示,网络设备700可以包括:中央处理器(CPU)701和存储器702;存储器702耦合到中央处理器701。其中该存储器702可存储各种数据;此外还存储数据处理的程序,并且在中央处理器701的控制下执行该程序,以发送相关信息。
在一个实施方式中,装置600的功能可以被集成到中央处理器701中。其中,中央处理器701可以被配置为实现实施例1所述的资源配置方法。
例如,中央处理器701可以被配置为:将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合。
中央处理器701还可以被配置为:将配置的用于确定该集合的位置的相关信息发送至用户侧。
中央处理器701还可以被配置为:配置每个公共控制资源集合和SS block索引的映射关系,或者配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
中央处理器701还可以被配置为:配置该相关信息。
中央处理器701还可以被配置为:向用户侧发送每个周期的SS burst set中实际发送的SS block数量,还可以被配置为向用户侧发送每个周期的SS burst set中实际发送的SS block的位置信息。
另外,该中央处理器701的其他配置方式可以参考实施例1或2,此处不再赘述。
在另一个实施方式中,上述装置600可以与中央处理器701分开配置,例如,可 以将装置600配置为与中央处理器701连接的芯片,如图7所示的单元,通过中央处理器701的控制来实现装置600的功能。
此外,如图7所示,网络设备700还可以包括:收发机703和天线704等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备700也并不是必须要包括图7中所示的所有部件;此外,网络设备700还可以包括图7中没有示出的部件,可以参考现有技术。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例6
本实施例6还提供一种资源配置装置。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参考实施例2的方法的实施,内容相同之处不再重复说明。
图8是本发明实施例的资源配置装置构成示意图,如图8所示,该装置包括:
第二发送单元801,其用于将用于确定第一集合的位置的相关信息发送至用户侧,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
其中,该相关信息的具体实施方式可以参考实施例1,第二发送单元801的具体实施方式可以参考实施例2中步骤201,此处不再赘述。
根据上述相关信息,用户侧可以确定该第一集合的时域频域的确切位置,在确定该配置的第一集合的位置后,用户侧还需要在该第一集合中确定其自身的公共控制资源集合,例如,用户侧可以通过SS block索引和配置的每个公共控制资源集合和SS block索引的映射关系,或者用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系来确定其自身的公共控制资源集合,其具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,为了确定该自身的公共控制资源集合,用户侧还需要获取每个周期的SS burst set中实际发送的SS block数量,以便确定该第一集合的大小。因此,在本实施例中,该第二发送单元801还用于将每个周期的SS burst set中实际发送的 SS block数量发送至用户侧,另外,还可以向用户侧发送每个周期的SS burst set中实际发送的SS block的位置信息。其具体实施方式可以参考实施例1步骤103,此处不再赘述。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例7
本实施例7提供一种网络设备,由于该设备解决问题的原理于实施例1的方法类似,因此其具体的实施可以参考实施例1的方法实施,内容相同之处不再重复说明。
图9是本发明实施例的网络设备构成示意图。如图9所示,网络设备900可以包括:中央处理器(CPU)901和存储器902;存储器902耦合到中央处理器901。其中该存储器902可存储各种数据;此外还存储数据处理的程序,并且在中央处理器901的控制下执行该程序,以发送相关信息。
在一个实施方式中,装置800的功能可以被集成到中央处理器901中。其中,中央处理器901可以被配置为实现实施例2的资源配置方法。
例如,中央处理器901可以被配置为:将用于确定第一集合的位置的相关信息发送至用户侧,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
另外,该中央处理器901的其他配置方式可以参考实施例2,此处不再赘述。
在另一个实施方式中,上述装置800可以与中央处理器901分开配置,例如,可以将装置900配置为与中央处理器901连接的芯片,如图9所示的单元,通过中央处理器901的控制来实现装置800的功能。
此外,如图9所示,网络设备900还可以包括:收发机903和天线904等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备900也并不是必须要包括图9中所示的所有部件;此外,网络设备900还可以包括图9中没有示出的部件,可以参考现有技术。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合 配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例8
本实施例8还提供一种资源确定装置。由于该装置解决问题的原理与实施例3的方法类似,因此其具体的实施可以参考实施例3的方法的实施,内容相同之处不再重复说明。
图10是本发明实施例的资源确定装置构成示意图,如图10所示,该装置包括:
第一接收单元1001,其用于接收网络侧发送的用于确定第一集合的位置的相关信息,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
在本实施例中,该相关信息的具体实施方式可以参考实施例1,此处不再赘述。
在本实施例中,该装置还可以包括:
第一获取单元(未图示),其用于配置每个公共控制资源集合和SS block索引的映射关系,或者用于配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系,或者接收网络侧配置的每个公共控制资源集合和SS block索引的映射关系,或者接收网络侧配置的指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
在本实施例中,第一接收单元1001通过控制信道接收该相关信息,该控制信道是PBCH。
在本实施例中,该装置还可以包括:
第二获取单元(未图示),其用于获取每个周期的SS burst set中SS block数量;其中,例如通过如下方式获取该SS block数量:
接收网络侧发送的每个周期的SS burst set中实际发送的SS block数量;将该实际发送的SS block数量作为该SS block数量;
其中,在接收该SS block数量时,还可以接收每个周期的SS burst set中实际发送的SS block的位置信息。
或者,根据当前工作频率确定每个周期的SS burst set中SS block数量最大值作 为该SS block数量。
其中,第一获取单元和第二获取单元具体实施方式可以参考实施例3,此处不再赘述。
在本实施例中,该装置还可以包括:
第一确定单元1002,其用于根据该相关信息和该SS block数量确定该第一集合的位置和大小;
第二确定单元1003,其用于根据SS block索引,以及每个公共控制资源集合和SS block索引的映射关系,或者指示每个公共控制资源集合的指示信息和SS block索引的映射关系确定其对应的公共控制资源集合。
在本实施例中,该第一确定单元1002,第二确定单元1003的具体实施方式可以参考实施例3,此处不再赘述。
在本实施例中,该装置还包括:第三确定单元(未图示),其用于确定该SS block索引,其具体确定方式可以参考实施例3,此处不再赘述。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例9
本实施例9提供一种用户设备,由于该设备解决问题的原理于实施例3的方法类似,因此其具体的实施可以参考实施例3的方法实施,内容相同之处不再重复说明。
图11是本发明实施例的用户设备构成示意图。如图11所示,用户设备1100可以包括:中央处理器(CPU)1101和存储器1102;存储器1102耦合到中央处理器1101。其中该存储器1102可存储各种数据;此外还存储数据处理的程序,并且在中央处理器1101的控制下执行该程序,以接收相关信息。
在一个实施方式中,装置1000的功能可以被集成到中央处理器1101中。其中,中央处理器1101可以被配置为实现实施例3所述的资源确定方法。
中央处理器1101可以被配置为:接收网络侧发送的用于确定第一集合的位置的相关信息,其中,该第一集合是发送数据所使用的波束对应的公共控制资源集合组成 的集合。
中央处理器1101可以被配置为:配置每个公共控制资源集合和SS block索引的映射关系,或者配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系,或者接收网络侧配置的每个公共控制资源集合和SS block索引的映射关系,或者接收网络侧配置的指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
中央处理器1101可以被配置为:获取每个周期的SS burst set中SS block数量;其中,通过如下方式获取该SS block数量:
接收网络侧发送的每个周期的SS burst set中实际发送的SS block数量,将该实际发送的SS block数量作为该SS block数量,或者,根据当前工作频率确定每个周期的SS burst set中SS block数量的最大值,将该最大值作为该SS block数量。
中央处理器1101可以被配置为:接收网络侧发送的每个周期的SS burst set中实际发送的SS block的位置信息。
中央处理器1101可以被配置为:根据该相关信息和所述SS block数量确定所述第一集合的位置和大小;根据SS block索引,以及每个公共控制资源集合和SS block索引的映射关系,或者指示每个公共控制资源集合的指示信息和SS block索引的映射关系确定其对应的公共控制资源集合。
中央处理器1101可以被配置为:确定所述SS block索引。
另外,该中央处理器1101的其他配置方式可以参考实施例3,此处不再赘述。
在另一个实施方式中,上述装置1000可以与中央处理器1101分开配置,例如,可以将装置1100配置为与中央处理器1101连接的芯片,如图11所示的单元,通过中央处理器1101的控制来实现装置1100的功能。
此外,如图11所示,用户设备1100还可以包括通信模块1103、输入单元1104、显示器1106、音频处理器1105、天线1107和电源1108等。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1100也并不是必须要包括图11中所示的所有部件;此外,用户设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复 杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
实施例10
本实施例10提供一种通信系统。
图12是本实施例10中通信系统构成示意图,如图12所示,该通信系统1200包括网络设备1201和用户设备1202。
其中,该网络设备1201的具体实施方式可以实施例5或6中的网络设备500或600,该用户设备1202的具体实施方式可以参考实施例9中的用户设备900,将其内容合并于此,此处不再赘述。
图13是本实施例12中资源配置和确定方法流程图,如图13所示,该方法包括:
步骤1301,网络设备将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合;
步骤1302,网络设备向用户设备发送SS block;
其中,通过该SS block中的PBCH指示用于确定该第一集合的位置的相关信息;
该相关信息可以参考实施例1,此处不再赘述。
其中,还可以通过SS block(例如PBCH)指示每个周期的SS burst set中实际发送的SS block数量,还可以指示每个周期的SS burst set中实际发送的SS block的位置信息。
步骤1303,UE接收该SS block,检测PBCH,确定该相关信息以及SS block数量,并确定SS block索引;
另外,还可以确定实际发送了哪些SS block,以便确定映射关系。
步骤1304,根据该相关信息确定该第一集合的位置,根据SS block数量确定该第一集合的大小;
步骤1305,根据该SS block索引,以及确定的每个公共控制资源集合和SS block索引的映射关系,或者指示每个公共控制资源集合的指示信息和SS block索引的映射关系确定其对应的公共控制资源集合;
步骤1304-1305具体实施方式可以参考实施例3步骤303-304,此处不再赘述。
步骤1306,在其对应的公共控制资源集合中检测PDCCH,获取其RMSI调度信 息。
在本实施例中,在步骤1301前,该方法还可以包括:(未图示)
网络设备或用户设备配置每个公共控制资源集合和SS block索引的映射关系,或者配置指示每个公共控制资源集合的指示信息和SS block索引的映射关系;
或者网络设备配置每个公共控制资源集合和SS block索引的映射关系,或者配置指示每个公共控制资源集合的指示信息和SS block索引的映射关系后,通知用户设备。
在本实施例中,在步骤1301前,该方法还可以包括:(未图示)
网络设备配置该相关信息。
其具体实施方式可以参考实施例1,此处不再赘述。
图14是本实施例12中资源配置和确定方法流程图,与图13中的方法不同之处在于,SS block的数量不是由网络设备通过SS block通知用户设备,而是由用户设备根据当前工作频率确定每个周期的SS burst set中SS block数量最大值,将该最大值作为该SS block数量,如图14所示,该方法包括:
步骤1401,网络设备将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合;
步骤1402,网络设备向用户设备发送SS block;
其中,通过该SS block中的PBCH指示用于确定该第一集合的位置的相关信息;
该相关信息可以参考实施例1,此处不再赘述。
步骤1403,UE接收该SS block,检测PBCH,确定该相关信息,并确定SS block索引;
步骤1404,UE根据当前工作频率确定SS block数量;
其中,不限定步骤1403和步骤1404的执行顺序。
步骤1405,根据该相关信息确定该第一集合的位置,根据SS block数量确定该第一集合的大小;
步骤1406,根据该SS block索引,以及每个公共控制资源集合和SS block索引的映射关系,或者指示每个公共控制资源集合的指示信息和SS block索引的映射关系确定其对应的公共控制资源集合;
步骤1405-1406具体实施方式可以参考实施例3步骤303-304,此处不再赘述。
步骤1407,在其对应的公共控制资源集合中检测PDCCH,获取其RMSI调度信息。
在本实施例中,在步骤1401前,该方法还可以包括:(未图示)
网络设备或用户设备配置每个公共控制资源集合和SS block索引的映射关系,或者配置指示每个公共控制资源集合的指示信息和SS block索引的映射关系;
或者网络设备配置每个公共控制资源集合和SS block索引的映射关系,或者配置指示每个公共控制资源集合的指示信息和SS block索引的映射关系后,通知用户设备。
在本实施例中,在步骤1401前,该方法还可以包括:(未图示)网络设备配置该相关信息。
其具体实施方式可以参考实施例1,此处不再赘述。
由上述实施例可知,通过将进行数据发送所使用的波束对应的公共控制资源集合配置成一个集合,能够减小公共控制资源集合指示信息所需的比特数,降低负载,复杂度低,且不会影响SS burst set内和SS burst set间的软合并,解决了目前存在的问题。
下一代通信系统中的缓存状态报告(Buffer Status Report,BSR)至少需要包含两种格式。一种是短的缓存状态报告(short BSR),一种是可变长度的缓存状态报告(Variable BSR)。
在short BSR的格式中需要一个3比特的字段指示该缓存状态所对应的逻辑信道组的标识(Logical channel group identification,LCG ID),还需要一个缓存大小字段(Buffer Size)具体指示该逻辑信道组内的缓存大小的取值范围。在可变长度的BSR的格式中,可以包含2个到8个逻辑信道组的缓存大小信息。
考虑到下一代通信系统中,LCG ID字段由2比特扩展到3比特,为了保证short BSR的数据格式长度是8比特的整数倍,即满足字节对齐规则,其缓存大小字段无法再使用LTE系统中的6比特表示。
此外,由于引入了可变长度的BSR格式,MAC层逻辑信道数据复用的结果可能影响到BSR的长度(数据复用后缓存状态为空的逻辑信道组不需要报告缓存状态),进而影响到当前可用的物理资源大小,需要进一步调整逻辑信道数据复用,又一次可 能影响到BSR的长度。这样的操作会导致发送端处理的复杂度增加,进而增大处理时延。
实施例11
本实施例11提出了一种数据指示方法,图15是本实施例11的数据指示方法示意图,如图15所示,该方法包括:
步骤1501,缓存状态报告中包含至少一个缓存大小信息,所述缓存大小信息指示一个逻辑信道或逻辑信道组所对应的缓存大小。其中,所述缓存大小信息是一个5比特的字段。
由此,在下一代通信系统中,能够满足字节对齐规则,保证short BSR的数据格式长度是8比特的整数倍。
其中,该缓存大小信息字段的每个取值对应一个缓存大小的取值范围。
在本实施例中,由于该缓存大小信息是一个5比特的字段,其取值为32个,每一个取值都对应一个缓存大小的取值范围。
在一个实施方式中,该缓存大小信息可表示的最大缓存为150k字节,每一个取值对应的缓存大小取值范围如下表3所示:
表3
Figure PCTCN2017088471-appb-000001
在一个实施方式中,该缓存大小信息可表示的最大缓存为3000k字节,每一个取值对应的缓存大小取值范围如下表4所示:
表4
Figure PCTCN2017088471-appb-000002
由此,在下一代通信系统中,能够满足字节对齐规则,保证short BSR的数据格式长度是8比特的整数倍。
实施例12
本实施例12还提供一种数据指示装置。由于该装置解决问题的原理与实施例11的方法类似,因此其具体的实施可以参考实施例11的方法的实施,内容相同之处不再重复说明。
在本实施例中,该数据指示装置包括(未图示):
第一处理单元,其用于在缓存状态报告中包含至少一个缓存大小信息,所述缓存大小信息指示一个逻辑信道或逻辑信道组所对应的缓存大小。其中,所述缓存大小信息是一个5比特的字段。
由此,在下一代通信系统中,能够满足字节对齐规则,保证short BSR的数据格 式长度是8比特的整数倍。
其中,该缓存大小信息字段的每个取值对应一个缓存大小的取值范围。
在本实施例中,由于该缓存大小信息是一个5比特的字段,其取值为32个,每一个取值都对应一个缓存大小的取值范围。其具体实施方式可以参考实施例11,此处不再赘述。
本实施例还提供一种用户设备,由于该设备解决问题的原理于实施例11的方法类似,因此其具体的实施可以参考实施例11的方法实施,内容相同之处不再重复说明。
本实施例中的用户设备构成与图11中的用户设备相同,不同之处在于,该中央处理器配置的功能不同,在本实施例中,中央处理器可以被配置为实现实施例11所述的数据指示方法。
中央处理器可以被配置为:在缓存状态报告中包含至少一个缓存大小信息,所述缓存大小信息指示一个逻辑信道或逻辑信道组所对应的缓存大小。其中,所述缓存大小信息是一个5比特的字段。
其中,该缓存大小信息字段的每个取值对应一个缓存大小的取值范围。
由此,在下一代通信系统中,能够满足字节对齐规则,保证short BSR的数据格式长度是8比特的整数倍。
实施例13
本实施例13提出了一种数据指示方法,图16是本实施例13的数据指示方法示意图,如图16所示,该方法包括:
步骤1601,可变长度的缓存状态报告中包含在所述缓存状态报告触发时或者逻辑信道数据复用前,缓存大小大于零的逻辑信道组的缓存大小信息。
或者,
可变长度的缓存状态报告中包括在逻辑信道数据复用前缓存大小大于零、在逻辑信道数据复用后缓存大小等于零的逻辑信道组的缓存大小信息。
在本实施例中,用户侧在获得当前数据传输的资源后,共存在N个逻辑信道组,其中M个逻辑信道组的缓存大小大于零,其他N-M个逻辑信道组的缓存大小等于零, 则该可变的BSR中包含其中M个逻辑信道组的缓存大小信息。
在本次逻辑信道数据复用后,M个逻辑信道组中的P个逻辑信道中的缓存数据全部完成复用,即缓存大小等于零,在该次可变的BSR中,可包含该P个逻辑信道的缓存大小信息,此外还可以包含缓存大小大于零的M-P个逻辑信道组的缓存大小信息。
由此,在下一代通信系统中,能够降低发送端处理的复杂度,降低处理时延。
实施例14
本实施例14还提供一种数据指示装置。由于该装置解决问题的原理与实施例13的方法类似,因此其具体的实施可以参考实施例13的方法的实施,内容相同之处不再重复说明。
在本实施例中,该数据指示装置包括(未图示):
第二处理单元,其用于在可变长度的缓存状态报告中包含在所述缓存状态报告触发时或者逻辑信道数据复用前,缓存大小大于零的逻辑信道组的缓存大小信息。
或者,
第三处理单元,其用于在可变长度的缓存状态报告中包括在逻辑信道数据复用前缓存大小大于零、在逻辑信道数据复用后缓存大小等于零的逻辑信道组的缓存大小信息。
其中,第二处理单元和第三处理单元的具体实施方式可以参考实施例13,此处不再赘述。
本实施例还提供一种用户设备,由于该设备解决问题的原理于实施例13的方法类似,因此其具体的实施可以参考实施例13的方法实施,内容相同之处不再重复说明。
本实施例中的用户设备构成与图11中的用户设备相同,不同之处在于,该中央处理器配置的功能不同,在本实施例中,中央处理器可以被配置为实现实施例13所述的数据指示方法。
中央处理器可以被配置为:可变长度的缓存状态报告中包含在所述缓存状态报告触发时或者逻辑信道数据复用前,缓存大小大于零的逻辑信道组的缓存大小信息。或者,可变长度的缓存状态报告中包括在逻辑信道数据复用前缓存大小大于零、在逻辑 信道数据复用后缓存大小等于零的逻辑信道组的缓存大小信息。
由此,在下一代通信系统中,能够降低发送端处理的复杂度,降低处理时延。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得资源配置装置或网络设备执行实施例1或2所述的资源配置方法。
本发明实施例还提供一种计算机可读程序,其中当在资源配置装置或网络设备中执行所述程序时,所述程序使得所述资源配置装置或网络设备执行实施例1或2所述的资源配置方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得资源确定装置或用户设备执行实施例3所述的资源确定方法。
本发明实施例还提供一种计算机可读程序,其中当在资源确定装置或用户设备中执行所述程序时,所述程序使得所述资源确定装置或用户设备执行实施例3所述的资源确定方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得数据指示装置或用户设备执行实施例11或13所述的数据指示方法。
本发明实施例还提供一种计算机可读程序,其中当在数据指示装置或用户设备中执行所述程序时,所述程序使得所述数据指示装置或用户设备执行实施例11或13所述的数据指示方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的在各装置中的各处理方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图6-11中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图1-3,13-16所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(例如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图6-11描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图6-11描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
附记1、一种数据指示方法,其中,所述方法包括:
缓存状态报告中包含至少一个缓存大小信息,所述缓存大小信息指示一个逻辑信道或逻辑信道组所对应的缓存大小。
附记2、根据附记1所述的方法,其中,所述缓存大小信息是一个5比特的字段。
附记3、根据附记2所述的方法,其中,所述缓存大小信息字段的每个取值对应一个缓存大小的取值范围。
附记4、一种数据指示方法,其中,所述方法包括:
可变长度的缓存状态报告中包含在所述缓存状态报告触发时或者逻辑信道数据复用前,缓存大小大于零的逻辑信道组的缓存大小信息。
附记5、一种数据指示方法,其中,所述方法包括:
可变长度的缓存状态报告中包括在逻辑信道数据复用前缓存大小大于零、在逻辑 信道数据复用后缓存大小等于零的逻辑信道组的缓存大小信息。
附记6、一种资源配置方法,包括:
将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合。
附记7、根据附记6所述的方法,其中,所述方法还包括:
将用于确定所述第一集合的位置的相关信息发送至用户侧。
附记8、根据附记7所述的方法,其中,所述相关信息包括:所述第一集合的频率偏移;或者,包括:所述第一集合的频率偏移、以及每个公共控制资源集合的大小、和/或时域频域位置。
附记9、根据附记6所述的方法,其中,所述方法还包括:
配置每个公共控制资源集合和SS block索引的映射关系,或者用于配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
附记10、根据附记8所述的方法,其中,所述方法还包括:
配置所述相关信息。
附记11、根据附记7所述的方法,其中,通过控制信道发送所述相关信息。
附记12、根据附记25所述的方法,其中,所述控制信道是PBCH。
附记13、根据附记7所述的方法,其中,所述方法还包括:
向用户侧发送每个周期的SS burst set中实际发送的SS block数量。
附记14、一种资源配置方法,包括:
将用于确定第一集合的位置的相关信息发送至用户侧,其中,所述第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
附记15、根据附记14所述的方法,其中,所述相关信息包括:所述第一集合的频率偏移;或者,包括:所述第一集合的频率偏移、以及每个公共控制资源集合的大小、和/或时域频域位置。
附记16、根据附记14所述的方法,其中,所述方法还包括:
将进行数据发送所使用的波束对应的公共控制资源集合配置成所述第一集合。
附记17、一种资源确定方法,包括:
接收网络侧发送的用于确定第一集合的位置的相关信息,其中,所述第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
附记18、根据附记17所述的方法,其中,所述相关信息包括:所述第一集合的 频率偏移;或者,包括:所述第一集合的频率偏移、以及每个公共控制资源集合的大小、和/或时域频域位置。
附记19、根据附记17所述的方法,其中,所述方法还包括:
配置每个公共控制资源集合和SS block索引的映射关系,或者用于配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系;
或者,接收网络侧配置的每个公共控制资源集合和SS block索引的映射关系,或者接收网络侧配置的指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
附记20、根据附记17所述的方法,其中,通过控制信道接收所述相关信息。
附记21、根据附记20所述的方法,其中,所述控制信道是PBCH。
附记22、根据附记17所述的方法,其中,所述方法还包括:
获取每个周期的SS burst set中SS block数量;其中,通过如下方式获取所述SS block数量:
接收网络侧发送的每个周期的SS burst set中实际发送的SS block数量作为所述SS block数量,或者,根据当前工作频率确定每个周期的SS burst set中SS block数量最大值,将所述最大值作为所述SS block数量。
附记23、根据附记22所述的方法,其中,所述方法还包括:
根据所述相关信息和所述SS block数量确定所述第一集合的位置和大小;
根据SS block索引,以及每个公共控制资源集合和SS block索引的映射关系,或者指示每个公共控制资源集合的指示信息和SS block索引的映射关系确定其对应的公共控制资源集合。
附记24、根据附记23所述的方法,其中,所述方法还包括:
确定所述SS block索引。
附记25、一种数据指示装置,其中,所述装置包括:
第一处理单元,其用于在缓存状态报告中包含至少一个缓存大小信息,所述缓存大小信息指示一个逻辑信道或逻辑信道组所对应的缓存大小。
附记26、根据附记25所述的装置,其中,所述缓存大小信息是一个5比特的字段。
附记27、根据附记26所述的装置,其中,所述缓存大小信息字段的每个取值对 应一个缓存大小的取值范围。
附记28、一种数据指示装置,其中,所述装置包括:
第二处理单元,其用于在可变长度的缓存状态报告中包含在所述缓存状态报告触发时或者逻辑信道数据复用前,缓存大小大于零的逻辑信道组的缓存大小信息。
附记29、一种数据指示装置,其中,所述装置包括:
第三处理单元,其用于在可变长度的缓存状态报告中包括在逻辑信道数据复用前缓存大小大于零、在逻辑信道数据复用后缓存大小等于零的逻辑信道组的缓存大小信息。

Claims (19)

  1. 一种资源配置装置,包括:
    第一配置单元,其用于将进行数据发送所使用的波束对应的公共控制资源集合配置成一个第一集合。
  2. 根据权利要求1所述的装置,其中,所述装置还包括:
    第一发送单元,其用于将用于确定所述第一集合的位置的相关信息发送至用户侧。
  3. 根据权利要求2所述的装置,其中,所述相关信息包括:所述第一集合的频率偏移;或者,包括:所述第一集合的频率偏移、以及每个公共控制资源集合的大小、和/或时域频域位置。
  4. 根据权利要求1所述的装置,其中,所述装置还包括:
    第二配置单元,其用于配置每个公共控制资源集合和SS block索引的映射关系,或者用于配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
  5. 根据权利要求3所述的装置,其中,所述装置还包括:
    第三配置单元,其用于配置所述相关信息。
  6. 根据权利要求2所述的装置,其中所述第一发送单元通过控制信道发送所述相关信息。
  7. 根据权利要求6所述的装置,其中,所述控制信道是PBCH。
  8. 根据权利要求2所述的装置,其中,所述第一发送单元还用于向用户侧发送每个周期的SS burst set中实际发送的SS block数量。
  9. 一种资源配置装置,包括:
    第二发送单元,其用于将用于确定第一集合的位置的相关信息发送至用户侧,其中,所述第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
  10. 根据权利要求9所述的装置,其中,所述相关信息包括:所述第一集合的频率偏移;或者,包括:所述第一集合的频率偏移、以及每个公共控制资源集合的大小、和/或时域频域位置。
  11. 根据权利要求9所述的装置,其中,所述装置还包括:
    第四配置单元,其用于将进行数据发送所使用的波束对应的公共控制资源集合配 置成所述第一集合。
  12. 一种资源确定装置,包括:
    第一接收单元,其用于接收网络侧发送的用于确定第一集合的位置的相关信息,其中,所述第一集合是发送数据所使用的波束对应的公共控制资源集合组成的集合。
  13. 根据权利要求12所述的装置,其中,所述相关信息包括:所述第一集合的频率偏移;或者,包括:所述第一集合的频率偏移、以及每个公共控制资源集合的大小、和/或时域频域位置。
  14. 根据权利要求12所述的装置,其中,所述装置还包括:
    第一获取单元,其用于配置每个公共控制资源集合和SS block索引的映射关系,或者用于配置用于指示每个公共控制资源集合的指示信息和SS block索引的映射关系,或者接收网络侧配置的每个公共控制资源集合和SS block索引的映射关系,或者接收网络侧配置的指示每个公共控制资源集合的指示信息和SS block索引的映射关系。
  15. 根据权利要求12所述的装置,其中所述第一接收单元通过控制信道接收所述相关信息。
  16. 根据权利要求15所述的装置,其中,所述控制信道是PBCH。
  17. 根据权利要求12所述的装置,其中,所述装置还包括:
    第二获取单元,其用于获取每个周期的SS burst set中SS block数量;其中,所述第二获取单元通过如下方式获取所述SS block数量:
    接收网络侧发送的每个周期的SS burst set中实际发送的SS block数量作为所述SS block数量,或者,根据当前工作频率确定每个周期的SS burst set中SS block数量最大值,将所述最大值作为所述SS block数量。
  18. 根据权利要求17所述的装置,其中,所述装置还包括:
    第一确定单元,其用于根据所述相关信息和所述SS block数量确定所述第一集合的位置和大小;
    第二确定单元,其用于根据SS block索引,以及每个公共控制资源集合和SS block索引的映射关系,或者指示每个公共控制资源集合的指示信息和SS block索引的映射关系确定其对应的公共控制资源集合。
  19. 根据权利要求18所述的装置,其中,所述装置还包括:
    第三确定单元,其用于确定所述SS block索引。
PCT/CN2017/088471 2017-06-15 2017-06-15 资源配置方法、确定方法及其装置、通信系统 WO2018227483A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2017/088471 WO2018227483A1 (zh) 2017-06-15 2017-06-15 资源配置方法、确定方法及其装置、通信系统
EP17913162.8A EP3641465A4 (en) 2017-06-15 2017-09-27 DATA INDICATION PROCESS AND DEVICE, AND COMMUNICATION SYSTEM
JP2019566941A JP6863485B2 (ja) 2017-06-15 2017-09-27 データ指示方法、装置及び通信システム
CN201780090675.1A CN110622605A (zh) 2017-06-15 2017-09-27 数据指示方法、装置、通信系统
PCT/CN2017/103702 WO2018227814A1 (zh) 2017-06-15 2017-09-27 数据指示方法、装置、通信系统
KR1020197031653A KR102278948B1 (ko) 2017-06-15 2017-09-27 데이터 표시 방법, 디바이스 및 통신 시스템
US16/505,083 US10542455B2 (en) 2017-06-15 2019-07-08 Data indication method and apparatus and communication system
US16/676,747 US11277766B2 (en) 2017-06-15 2019-11-07 Data indication method and apparatus and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/088471 WO2018227483A1 (zh) 2017-06-15 2017-06-15 资源配置方法、确定方法及其装置、通信系统

Publications (1)

Publication Number Publication Date
WO2018227483A1 true WO2018227483A1 (zh) 2018-12-20

Family

ID=64658995

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/088471 WO2018227483A1 (zh) 2017-06-15 2017-06-15 资源配置方法、确定方法及其装置、通信系统
PCT/CN2017/103702 WO2018227814A1 (zh) 2017-06-15 2017-09-27 数据指示方法、装置、通信系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103702 WO2018227814A1 (zh) 2017-06-15 2017-09-27 数据指示方法、装置、通信系统

Country Status (6)

Country Link
US (2) US10542455B2 (zh)
EP (1) EP3641465A4 (zh)
JP (1) JP6863485B2 (zh)
KR (1) KR102278948B1 (zh)
CN (1) CN110622605A (zh)
WO (2) WO2018227483A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281493A1 (en) * 2017-06-16 2019-09-12 Huawei Technologies Co., Ltd. Method for sending buffer status report and user equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102342692B1 (ko) * 2017-09-28 2021-12-24 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 무선 통신을 위한 방법 및 장치
KR102475870B1 (ko) * 2017-11-10 2022-12-08 삼성전자주식회사 무선 통신 시스템에서 데이터 처리 방법 및 장치
CN113273279A (zh) * 2019-01-14 2021-08-17 联想(北京)有限公司 用于利用缓冲区状态报告进行通信的装置和方法
JP2024502372A (ja) * 2021-01-13 2024-01-18 富士通株式会社 バッファ状態レポートの方法、バッファ状態レポートの構成方法及び装置
CN117099398A (zh) * 2021-01-14 2023-11-21 瑞典爱立信有限公司 用于处理缓冲器状态报告的网络节点和方法
CN114945198A (zh) * 2022-05-19 2022-08-26 维沃移动通信有限公司 调度请求方法、装置、电子设备及可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007808A (zh) * 2008-04-14 2011-04-06 高通股份有限公司 毫微微小区的控制资源的分配以避免与宏小区的干扰
CN106793059A (zh) * 2017-01-10 2017-05-31 北京小米移动软件有限公司 发送、获取同步信息块的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547435B (zh) * 2008-03-25 2010-12-08 大唐移动通信设备有限公司 一种缓存状态上报的方法和装置
CN101932019B (zh) * 2009-06-19 2015-06-03 中兴通讯股份有限公司 一种实现上报缓冲区状态报告的方法、终端及网络系统
RU2539231C2 (ru) * 2010-06-22 2015-01-20 ЗетТиИ Корпорейшн Способ и система сообщения индекса буфера размера
EP2940956B1 (en) * 2013-01-30 2021-05-19 Huawei Technologies Co., Ltd. Uplink transmission method, base station, and user equipment
EP3051736B1 (en) * 2015-01-30 2020-04-29 Panasonic Intellectual Property Corporation of America Prioritization in the logical channel prioritization procedure for sidelink logical channels in ProSe direct communications
ES2951761T3 (es) * 2015-05-14 2023-10-24 Ntt Docomo Inc Terminal de usuario y método
CN106535246B (zh) * 2015-09-11 2021-03-16 中兴通讯股份有限公司 一种缓冲区状态报告的上报方法、装置及系统
CN106714078A (zh) * 2015-11-17 2017-05-24 北京信威通信技术股份有限公司 基于基站控制的d2d通信方法、装置和系统
US10863380B2 (en) * 2017-03-16 2020-12-08 Ofinno, Llc Buffer status reporting procedure in a wireless device and wireless network
US10764775B2 (en) * 2017-03-24 2020-09-01 Qualcomm Incorporated Techniques for buffer status report and scheduling request in new radio
US20180368166A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. User equipment and method to support data preprocessing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007808A (zh) * 2008-04-14 2011-04-06 高通股份有限公司 毫微微小区的控制资源的分配以避免与宏小区的干扰
CN106793059A (zh) * 2017-01-10 2017-05-31 北京小米移动软件有限公司 发送、获取同步信息块的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Soft-combining for PBCH", R1-1708158, 3GPP TSG RAN WG1 MEETING #89, 19 May 2017 (2017-05-19), Hangzhou, China, XP051263160 *
SONY: "Discussion on SS Block Time Index Indication", R1-1708253, 3GPP TSG RAN WG1 MEETING #89, 19 May 2017 (2017-05-19), Hangzhou, China, XP051262330 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281493A1 (en) * 2017-06-16 2019-09-12 Huawei Technologies Co., Ltd. Method for sending buffer status report and user equipment
US10887790B2 (en) * 2017-06-16 2021-01-05 Huawei Technologies Co., Ltd. Method for sending buffer status report and user equipment

Also Published As

Publication number Publication date
US10542455B2 (en) 2020-01-21
EP3641465A4 (en) 2021-03-03
JP6863485B2 (ja) 2021-04-21
JP2020523835A (ja) 2020-08-06
CN110622605A (zh) 2019-12-27
EP3641465A1 (en) 2020-04-22
US11277766B2 (en) 2022-03-15
KR102278948B1 (ko) 2021-07-19
KR20190132459A (ko) 2019-11-27
US20190335357A1 (en) 2019-10-31
US20200077295A1 (en) 2020-03-05
WO2018227814A1 (zh) 2018-12-20

Similar Documents

Publication Publication Date Title
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
CN108810922B (zh) 一种通信方法及终端、基站
WO2018227483A1 (zh) 资源配置方法、确定方法及其装置、通信系统
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
WO2018201475A1 (zh) 信息指示方法、检测方法及其装置、通信系统
WO2019157663A1 (zh) 参考信号资源的发送位置的指示方法、装置及通信系统
CN111034287B (zh) 资源配置方法、确定方法及其装置、通信系统
JP6532932B2 (ja) ユーザ端末、無線基地局及び無線通信方法
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
EP3711252A1 (en) Compressed table-based configuration of remaining minimum system information coreset in a new radio physical broadcast channel
WO2019095232A1 (zh) 资源指示方法、装置及通信系统
WO2018120065A1 (zh) 动态时分双工的设置装置、方法以及通信系统
WO2019157665A1 (zh) 业务接收或发送方法以及装置、通信系统
WO2019028861A1 (zh) 波束失败事件的触发条件的配置方法、装置和通信系统
WO2020215922A1 (zh) 直流分量的频域位置的确定方法及装置、存储介质、终端、基站
WO2019028867A1 (zh) 干扰测量配置方法、干扰测量方法、装置和通信系统
US20210006383A1 (en) Resource scheduling method and apparatus, data transmission method and apparatus and communication system
WO2018107457A1 (zh) 数据复用装置、方法以及通信系统
WO2019028760A1 (zh) 资源指示和接收方法、装置及通信系统
CN106664683B (zh) 一种数据传输方法及装置
WO2020029297A1 (zh) 下行控制信息的发送方法、接收方法、装置和通信系统
WO2021063175A1 (zh) 一种波束切换的方法、装置及通信设备
WO2018227585A1 (zh) 测量同步信号块的方法和设备
WO2019227404A1 (zh) 控制信息的传输方法及装置
WO2018170890A1 (zh) 系统信息指示方法及其装置、通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913618

Country of ref document: EP

Kind code of ref document: A1