WO2019227126A1 - Procédé et appareil de commande et de manipulation d'écoulement multiphase dans la microfluidique à l'aide d'intelligence artificielle - Google Patents

Procédé et appareil de commande et de manipulation d'écoulement multiphase dans la microfluidique à l'aide d'intelligence artificielle Download PDF

Info

Publication number
WO2019227126A1
WO2019227126A1 PCT/AU2019/050220 AU2019050220W WO2019227126A1 WO 2019227126 A1 WO2019227126 A1 WO 2019227126A1 AU 2019050220 W AU2019050220 W AU 2019050220W WO 2019227126 A1 WO2019227126 A1 WO 2019227126A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplets
droplet
bubbles
sorting
parameters
Prior art date
Application number
PCT/AU2019/050220
Other languages
English (en)
Other versions
WO2019227126A9 (fr
Inventor
Nam-Trung Nguyen
Yongsheng Gao
Jun Zhou
Say Hwa TAN
Original Assignee
AI Fluidics Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2018901863A external-priority patent/AU2018901863A0/en
Application filed by AI Fluidics Pty Ltd filed Critical AI Fluidics Pty Ltd
Priority to AU2019277193A priority Critical patent/AU2019277193A1/en
Priority to CN201980009308.3A priority patent/CN112566721A/zh
Publication of WO2019227126A1 publication Critical patent/WO2019227126A1/fr
Publication of WO2019227126A9 publication Critical patent/WO2019227126A9/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/753Transform-based matching, e.g. Hough transform

Definitions

  • a general disadvantage of conventional droplet sorting systems based on electric actuation is that the biological samples have to be labelled with fluorescence dyes.
  • the labelling practice can be time consuming and not very desirable as dyes are not compatible with all cells types and cell behaviour may be affected during live cell imaging. In certain cases, the labelling of cells with fluorescence can only be done with dead cells.
  • the controller may include an artificial intelligence controller incorporating, for example, a machine learning classifier.
  • the controller may include a pressure-driven flow controller or a syringe pump.
  • the controller is configured to control the microfluidic device so that the microfluidic device generates a mono-disperse emulsion of the micro droplets or bubbles.
  • the sensor may include an optical system.
  • the optical system may acquire information such as sizes, shapes, colours of a gas, liquid or solid phase in a fluid flow of the micro droplets or bubbles.
  • the parameters may include any one or more of:
  • the step of controlling may include a training phase involving building a model using training data from a feedback sensor.
  • the training phase may involve determining a training region on a pressure characteristic of a generator performing the step of generating.
  • the training region is between parallel flow and stable region transition lines.
  • the training phase may involve querying in a serpentine manner against a training boundary.
  • Figure 6 shows a comparison between detected droplet area against user input expected droplet area, where two separate experiments (a & b) were carried out to compare the results with separate training sessions and parameters optimization;
  • the microfluidic generator 102 is a microfluidic flow-focusing device fabricated in polydimethylsiloxane (PDMS, Dow Corning) using standard photolithography and soft lithography procedures.
  • the controller 108 is configured to control the microfluidic device 102 so that the microfluidic device 102 generates a mono-disperse emulsion of the microfluidic droplets 104.
  • FIG. 1 Another factor that influences the performance of the predictor 107 is the selection of kernels.
  • a nonlinear Gaussian kernel is used. This is selected after comparison with both linear kernel and nonlinear kernels including polynomial and Gaussian kernels. Experimental results show that the Gaussian kernel is the best one out of all options.
  • predictions can be made by applying the model to unseen testing samples and calculating the required oil and water pressures given desired droplet size with the separation distance fixed.
  • Figure 4 shows the 3D diagram 400 illustrating the droplet areas at different P1 and P2 obtained from the training data.
  • Figure 12 shows a flow regime diagram 1200 obtained to determine the range for droplet generation.
  • the lower blue line 1202 gives the pressure values at stable interface (blue bordered inset 1204) before transitioning into droplet generation (green bordered inset 1206).
  • the red line 1208 depicts the pressure values for onset of parallel flow (red bordered inset 1210). Scale bars in Figure 12 represent dimensions of 100 um.
  • the black squares points are the pressure combinations used for subsequent study of spacer oil influence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Software Systems (AREA)
  • Clinical Laboratory Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Networks Using Active Elements (AREA)

Abstract

La présente invention concerne un système de commande de gouttes ou de bulles microfluidiques. Le système comprend un générateur microfluidique pour générer les micro-gouttelettes ou bulles. Un capteur de rétroaction est prévu pour détecter un ou plusieurs paramètres de rétroaction des micro-gouttelettes ou des bulles générées. Un dispositif de commande est prévu pour commander le générateur microfluidique à l'aide des paramètres de rétroaction détectés.
PCT/AU2019/050220 2018-05-28 2019-03-12 Procédé et appareil de commande et de manipulation d'écoulement multiphase dans la microfluidique à l'aide d'intelligence artificielle WO2019227126A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019277193A AU2019277193A1 (en) 2018-05-28 2019-03-12 Method and apparatus for controlling and manipulation of multi-phase flow in microfluidics using artificial intelligence
CN201980009308.3A CN112566721A (zh) 2018-05-28 2019-03-12 利用人工智能控制并操纵微流体中多相流的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2018901863 2018-05-28
AU2018901863A AU2018901863A0 (en) 2018-05-28 Method and appratus for controlling and manipulation of multi-phase flow in microfluidics using artificial intelligence

Publications (2)

Publication Number Publication Date
WO2019227126A1 true WO2019227126A1 (fr) 2019-12-05
WO2019227126A9 WO2019227126A9 (fr) 2020-06-25

Family

ID=68696591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2019/050220 WO2019227126A1 (fr) 2018-05-28 2019-03-12 Procédé et appareil de commande et de manipulation d'écoulement multiphase dans la microfluidique à l'aide d'intelligence artificielle

Country Status (3)

Country Link
CN (1) CN112566721A (fr)
AU (2) AU2019101835A4 (fr)
WO (1) WO2019227126A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112070711A (zh) * 2020-06-04 2020-12-11 清华大学 一种微液滴图像检测法中微液滴的分析方法
WO2022197921A1 (fr) * 2021-03-18 2022-09-22 Brown University Prédiction de la vélocimétrie à l'aide de modèles d'apprentissage automatique
NL1043994B1 (en) * 2021-04-14 2022-10-25 Digi Bio B V A method for identifying the best therapeutics producing candidates using a digital microfuidics based lab-on-a-chip platform

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023086963A1 (fr) * 2021-11-12 2023-05-19 Raven Industries, Inc. Détermination de caractéristiques de gouttelettes
CN114505105B (zh) * 2022-01-13 2022-11-11 电子科技大学 一种基于内存计算的微流控芯片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192286A1 (fr) * 2016-05-02 2017-11-09 Purdue Research Foundation Systèmes et procédés de production de produit chimique
WO2018051242A1 (fr) * 2016-09-14 2018-03-22 Ecole Polytechnique Federale De Lausanne (Epfl) Dispositif destiné à des études à haut débit de cellules uniques

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500694B (zh) * 2006-05-09 2012-07-18 先进液体逻辑公司 液滴操纵系统
EP2411148B1 (fr) * 2009-03-23 2018-02-21 Raindance Technologies, Inc. Manipulation de gouttelettes microfluidiques
CN104736725A (zh) * 2012-08-13 2015-06-24 加利福尼亚大学董事会 用于检测生物组分的方法和系统
CN111508489B (zh) * 2017-12-19 2022-10-18 深圳市欧瑞博科技股份有限公司 语音识别方法、装置、计算机设备和存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192286A1 (fr) * 2016-05-02 2017-11-09 Purdue Research Foundation Systèmes et procédés de production de produit chimique
WO2018051242A1 (fr) * 2016-09-14 2018-03-22 Ecole Polytechnique Federale De Lausanne (Epfl) Dispositif destiné à des études à haut débit de cellules uniques

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRAWFORD, DEBBIE F. ET AL.: "Image-based closed-loop feedback for highly mono- dispersed microdroplet production", SCIENTIFIC REPORTS, 2017, pages 1 - 9, XP055658514 *
WEN ZENG ET AL.: "Closed-Loop Pressure Feedback Control of a Pressure-Driven Microdroplet Generator", 9TH FPNI PH.D. SYMPOSIUM ON FLUID POWER FLORIANOPOLIS, 26 October 2016 (2016-10-26), SC, Brazil, pages 7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112070711A (zh) * 2020-06-04 2020-12-11 清华大学 一种微液滴图像检测法中微液滴的分析方法
WO2022197921A1 (fr) * 2021-03-18 2022-09-22 Brown University Prédiction de la vélocimétrie à l'aide de modèles d'apprentissage automatique
NL1043994B1 (en) * 2021-04-14 2022-10-25 Digi Bio B V A method for identifying the best therapeutics producing candidates using a digital microfuidics based lab-on-a-chip platform

Also Published As

Publication number Publication date
AU2019101835A4 (en) 2022-11-24
WO2019227126A9 (fr) 2020-06-25
CN112566721A (zh) 2021-03-26
AU2019277193A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
AU2019101835A4 (en) Method and apparatus for controlling and manipulation of multi-phase flow in microfluidics using artificial intelligence
JP7221444B2 (ja) マイクロ流体デバイスによる微小物体の自動検出及び再配置
US20210209752A1 (en) Automated detection and characterization of micro-objects in microfluidic devices
Dressler et al. Reinforcement learning for dynamic microfluidic control
US20210302452A1 (en) Automated control of microfluidic devices based on machine learning
Zheng et al. Exploiting machine learning for bestowing intelligence to microfluidics
Srikanth et al. Droplet based microfluidics integrated with machine learning
JP7437393B2 (ja) 粒子分析器のための適応ソーティング
US11440007B2 (en) Electrical sensing, tracking, and actuation of droplets
Bernard et al. The multiclass ROC front method for cost-sensitive classification
US20120091059A1 (en) Passive chip-based droplet sorting
Ramírez et al. Applications of Artificial Intelligence Models for Computational Flow Dynamics and Droplet Microfluidics
Gardner et al. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets
Durve et al. DropTrack—Automatic droplet tracking with YOLOv5 and DeepSORT for microfluidic applications
Hosseini et al. Automatic detection and counting of retina cell nuclei using deep learning
US11169074B2 (en) Method of optimizing microparticle suction condition and microparticle separation device
Michaels et al. Artificial intelligence algorithms enable automated characterization of the positive and negative dielectrophoretic ranges of applied frequency
Hu et al. Explainable AI models for predicting drop coalescence in microfluidics device
KR20190131572A (ko) 표적 셀의 감지 및 분리를 위한 마이크로팍스
Mao et al. Dynamic video recognition for cell-encapsulating microfluidic droplets
Sbalzarini Analysis, modeling, and simulation of diffusion processes in cell biology
Baskaran et al. Classification of chemically modified red blood cells in microflow using machine learning video analysis
US20230191413A1 (en) Method and apparatus for measuring phase transition characteristics of macromolecules
Lokanathan et al. Artificial neural network-based predictions of surface electrocoalescence of water droplets in hydrocarbon media
Tang An AI-driven image-based feedback system for real-time droplet manipulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019277193

Country of ref document: AU

Date of ref document: 20190312

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812305

Country of ref document: EP

Kind code of ref document: A1