WO2019225863A1 - 드론을 이용한 항공기 지상유도관제 시스템 및 방법 - Google Patents

드론을 이용한 항공기 지상유도관제 시스템 및 방법 Download PDF

Info

Publication number
WO2019225863A1
WO2019225863A1 PCT/KR2019/004606 KR2019004606W WO2019225863A1 WO 2019225863 A1 WO2019225863 A1 WO 2019225863A1 KR 2019004606 W KR2019004606 W KR 2019004606W WO 2019225863 A1 WO2019225863 A1 WO 2019225863A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
drone
ground
system server
guide
Prior art date
Application number
PCT/KR2019/004606
Other languages
English (en)
French (fr)
Inventor
최병관
Original Assignee
(주)에이티씨시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이티씨시스템 filed Critical (주)에이티씨시스템
Priority to CN201980034769.6A priority Critical patent/CN112189226B/zh
Publication of WO2019225863A1 publication Critical patent/WO2019225863A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • G08G5/065Navigation or guidance aids, e.g. for taxiing or rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Definitions

  • the present invention relates to an aircraft ground guidance control system and method using a drone, and more particularly to an aircraft ground guidance control system and method using a drone for guiding the route of the aircraft without the influence of wind.
  • ASDE Airport Surface Detection Equipment
  • the air traffic service is divided into an access control service, an airfield control service, and a local control service
  • the airfield control service includes a mooring control service.
  • the mooring control service is responsible for ground guidance for aircraft at the airport's mooring station, and is responsible for controlling the movement of the mooring bases of the departure and arrival aircraft.
  • the ground controller performs this task.
  • Airfields such as airports are generally divided into a movement area and a nonmovement area, and the movement area is composed of a maneuvering area and an apron, and the aircraft takes off, lands, and lands. A part of an aerodrome used for guidance.
  • a moor is a designated area of a land airfield where passengers, mail and cargo can be loaded and unloaded, refueled, cycled or serviced.
  • Non-mobile areas are taxiways and main road areas that are not under air traffic control.
  • Airfield control is divided into mooring ramp control and ground control.
  • the mooring control is a control service provided to aircraft moving in the ground mooring area during the airfield control service, which is usually performed together with the mooring control service at the control tower performing the airfield control service.
  • Moor control is the control of ground movement permits and ground operating vehicles and personnel for engine start-up, push back and taxiway entry of aircraft within the moor control area.
  • Taxiway which is the control of the ground controller, it must be transferred to the ground controller.
  • the Ground Controller must hand over control to the Ram Controller before the aircraft leaves the taxiway and enters the moor.
  • control tower obtains the object information of the airport through the radar, specifies the route of the aircraft, and guides the aircraft to the destination through the guidance of the designated route.
  • the object received through the radar has a disadvantage in that it is difficult to quickly grasp the information of the aircraft required by receiving all the information of a plurality of objects that reside on the airport runway in addition to the aircraft.
  • the power loss is large by lighting all the guide lights from the current position of the aircraft to the destination, and when inducing the path of more than one aircraft, many guide lights are turned on at once. There is a problem that the aircraft can leave the path.
  • Patent Documents 1 and 2 are vulnerable to wind due to flying drone characteristics.
  • the drone floating in the air when a side wind or a momentary gust blows, there is a problem that is difficult to maintain their position on the center line of the judo.
  • the aircraft approaching the aerodrome from the air must be landed on the runway by wireless communication between the controller and the pilot.
  • the aircraft guidance system on the ground is detected by the ground surveillance radar and the controller must enter the necessary information for landing and takeoff. There is a hassle to do.
  • the present invention has been made to solve the above-mentioned conventional problems, an object of the present invention to provide an aircraft ground guidance control system and method using a drone to guide the aircraft to operate the controller's control tasks safely and efficiently. There is.
  • the guide drone may include a landing guide drone waiting in an induction path of a high speed escape route, and a takeoff guide drone waiting in a bridge or a spat.
  • the landing guide drone receives the information of the bridge or spat from the system server is characterized in that it drives the aircraft while driving on the taxiway.
  • the landing guide drone is characterized by moving to its original position by flight when the guided mission of the aircraft is finished.
  • the takeoff guide drone receives the takeoff position from the system server, characterized in that it drives the aircraft while driving the taxiway.
  • take-off guide drone is characterized in that when the guided mission of the aircraft is finished to move to the original position by flight.
  • the system server waits on the guideway for the high-speed escape route that leaves the landing guide drone having the driving force off the runway;
  • the periodic position of the landing aircraft is entered into the system server by the flight schedule (flight number and periodic position) provided by the service, and the system server transmits the information of the designated bridge or spat to the waiting landing guide drone to the designated periodic position.
  • Guide the aircraft characterized in that it comprises a.
  • the movement path of the aircraft is characterized in that the system server automatically provides a route in consideration of the moving aircraft and vehicles detected by the ground detection radar, and provides this information to the landing guide drones inducing.
  • the landing guide drone waiting at the center line of the guideway of the high-speed escape route runs along the yellow solid line of the center line of the taxiway and guides the aircraft to a predetermined bridge or spat.
  • the landing guide drone for guiding the aircraft to the cycle position is further characterized in that it further comprises a step iv) to go to the original position in the flight after the flight to a certain height.
  • the landing guide drone delivers the aircraft arrival signal to the system server
  • the system server is characterized in that it provides the flight information with the flight number to the controller.
  • the take-off guide drone which has completed its mission of guiding the aircraft to the take-off position, further includes the step of waiting for the aircraft to go to its original position by flight after ascending to a certain height.
  • the takeoff guide drone transmits a signal to the system server that the aircraft has arrived at the stop bar of the runway, and the system server provides the controller with the flight number of the aircraft ready for takeoff.
  • the drone is characterized in that it is further provided with a step III) to find the charging position by itself and go to the original standby position after charging.
  • the aircraft ground guidance control system using a drone according to the present invention, it provides an effect of inducing the aircraft to operate the controller's control tasks safely and efficiently.
  • FIG. 1 is a view showing an aircraft ground guidance control system using a drone according to the present invention.
  • FIG. 2 is a view showing the drone and the aircraft of FIG.
  • FIG. 1 is a view showing an aircraft ground guidance control system using a drone according to the present invention
  • Figure 2 is a view showing the drone and the aircraft of FIG.
  • the system server 200 provides information (a flight number) of an aircraft approaching an airfield on a predetermined route for landing.
  • the system server 200 monitors the status of equipment such as navigation safety equipment (ALS, VOR, DME, TACAN, ILS) and meteorological information (AMOS) that interoperate with the system, and immediately transfers information to the controller when an abnormality occurs. Ensure the safety of the aircraft.
  • equipment such as navigation safety equipment (ALS, VOR, DME, TACAN, ILS) and meteorological information (AMOS) that interoperate with the system, and immediately transfers information to the controller when an abnormality occurs. Ensure the safety of the aircraft.
  • the system server 200 is to wait on the guideway of the high-speed escape route to leave the landing guide drone 400 having a driving force off the runway.
  • the cycle position of the landing aircraft inputs the navigation schedule (flight number and cycle position) provided by the service to the system server 200, the system server 200 is a landing guide drone (waiting for the information of a predetermined bridge or spat ( 400) to guide the aircraft to the specified periodic position.
  • the system server 200 is a landing guide drone (waiting for the information of a predetermined bridge or spat ( 400) to guide the aircraft to the specified periodic position.
  • the system server 200 automatically provides a route and provides this information to the landing guide drone 400 is inducing .
  • the landing guide drone 400 waiting at the center line of the induction furnace of the high-speed escape route is difficult to predict due to the characteristics of the airfield and the wind direction is not constant, it is possible to drive the ground. That is, the landing guide drone 400 having ground driving guides the aircraft to a predetermined bridge or spat along the yellow solid line of the guideline.
  • the landing guide drone 400 transmits the aircraft arrival signal to the system server 200, and the system server 200 provides the controller with the flight number and arrival time information.
  • the landing guide drone 400 is finished to guide the aircraft to the cycle position is raised to a certain height after the flight to the original position to wait.
  • the landing guide drone flashes a red lamp.
  • VDGS Visual Docking Guidance Syste
  • the take-off guide drone 500 having the ground driving is separated from the bridge or the spat that is waiting to guide the aircraft to the take-off position received from the system server 200 in all directions of the aircraft.
  • the takeoff guide drone 400 blinks green.
  • the landing guide drone 400 and the takeoff guide drone 500 are provided with information from the system server 200 in the progress direction, speed, and cycle position, and are controlled by the system server 200.
  • the system server 200 receives and analyzes the position information of the aircraft and the vehicle on the runway and the taxiway from the ground monitoring radar 300 and gives a command to safely move.
  • the system server 200 controls the landing guide drone 400 and the takeoff guide drone 500 to safely and efficiently operate the controller's control task.
  • the landing guide drone 400 and the takeoff guide drone 500 to induce takeoff and landing are operated for a given time of battery life, and then find a charging position by itself and go to the original standby position after charging. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 발명의 드론을 이용한 항공기 지상유도관제 시스템은, 항공기를 감지하는 2차 감시 레이더; 항공기의 정보(편명)를 입력받는 시스템 서버; 항공기를 감지하는 지상감시 레이더; 및 항공기의 정보를 상기 시스템 서버에서 전송받아 항공기의 이동위치를 안내하는 지상주행과 비행이 가능한 안내 드론;을 포함하는 것을 특징으로 한다. 이에 따라, 관제사의 관제업무를 안전하고 효율적으로 운영하도록 항공기를 유도하는 효과를 제공한다.

Description

드론을 이용한 항공기 지상유도관제 시스템 및 방법
본 발명은 드론을 이용한 항공기 지상유도관제 시스템 및 방법에 관한 것으로, 더욱 상세하게는 바람의 영향 없이 항공기의 경로를 안내하는 드론을 이용한 항공기 지상유도관제 시스템 및 방법에 관한 것이다.
항공기를 이용하는 사람들이 점점 많아짐에 따라 공항의 대규모화, 항공기의 발착회수 증대, 공항 활주로 부근에서 교통의 복잡화 등으로 인하여 관제원의 운용에 의한 항공관제는 점점 곤란하여지고 있으며, 더욱이 야간이나 악천후에 의한 시계불량에서도 공항 지상만을 전담하여 탐지하는 레이더가 절대 필요하게 되었다.
이와 같은 목적에 사용되는 레이더를 공항 지상감시레이더(Airport Surface Detection Equipment: ASDE)라 한다.
한편, 항공교통 업무는 접근 관제 업무, 비행장 관제 업무, 지역 관제 업무로 구분되며, 비행장 관제 업무는 계류장 관제 업무를 포함한다. 계류장 관제 업무는 공항의 계류장에서 항공기에 대한 지상 유도를 담당하는 업무이며, 출발 항공기와 도착 항공기의 계류장 이동을 관제하는 업무이다.
또한, 계류장 관제사가 없는 경우에는 지상 관제사가 이 업무를 수행한다.
공항 등의 비행장은 일반적으로 이동지역(Movement Area)과 비이동지역(Nonmovement Area)으로 나누어지며, 이동지역은 기동지역(Manuvering Area)과 계류장(Apron)으로 구성되며, 항공기의 이륙, 착륙 및 지상 유도용으로 사용되는 비행장 내의 한 부분이다.
관제탑이 있는 공항/헬리포트에서 이동지역으로 진입을 위한 특정 허가는 항공교통관계기관에서 득하여야 한다.
계류장은 승객, 우편물 및 화물을 싣고 내리거나 급유, 주기 또는 정비를 수행할 수 있는 육상 비행장의 지정된 구역이다. 비이동 지역은 항공교통 관제 하에 있지 않은 유도로와 주기장지역이다.
비행장 관제는 계류장 관제(Ramp Control)와 지상 관제(Ground Control)로 나누어진다. 계류장 관제는 비행장 관제 업무 중에 지상 계류장 구역 내에서 이동하는 항공기에게 제공되는 관제 업무로서, 통상 비행장 관제업무를 수행하는 관제탑에서 계류장 관제 업무를 함께 수행한다.
계류장 관제 업무는 계류장 관제권 내 항공기의 엔진 시동(Engine start-up), 후방 견인(Push back), 유도로(Taxiway) 진입을 위한 지상 이동 허가 및 지상 조업 차량, 인원에 대한 통제이며, 계류장 관제사는 항공기가 계류장을 벗어나 지상 관제사의 관제권인 유도로(Taxiway)에 진입하기 이전에 지상 관제사에게 관제권을 이양해야 한다. 마찬가지로 지상 관제사(Ground Controller)는 항공기가 유도로를 벗어나 계류장에 진입하기 이전에 계류장 관제사(Ramp Controller)에게 관제권을 이양해야 한다.
이와 같은 공항은 안전성을 확보하기 위하여 여러 가지 첨단 기술과 장비, 그리고 새로운 운용시스템을 구축하고 있다.
그러나, 항공기는 예상치 못한 기상과 장비의 결함, 관제사와 조종사의 실수등 여러 가지 요인에 의하여 크고 작은 사고가 아직도 빈번하게 일어나고 있다.
따라서, 항공기의 안전성을 확보하기 위하여 2중, 3중으로 시스템을 보완하고 업그레이드함으로써 항공기와 탑승객을 보호하고 공항 내의 교통 흐름을 원활하게 하는 것이 필수적으로 필요하다.
또한, 기존의 공항 활주로 상에 항공기가 이륙 및 착륙할 경우, 관제탑에서 레이더를 통해 공항의 물체 정보를 획득하여 항공기의 경로를 지정하고, 상기 지정된 경로의 유도등을 통해 항공기를 목적지까지 유도하였다.
그러나, 레이더를 통해 수신되는 물체는 항공기 외에 공항 활주로 상에 상주되는 다수의 물체 정보를 모두 수신함에 따라 필요로 하는 항공기의 정보를 빠르게 파악하기 힘든 단점이 있다.
또한, 유도등을 사용하여 항공기의 경로를 유도할 때, 항공기의 현재위치부터 목적지까지 모든 유도등을 점등함에 따라 전력손실이 크며, 하나 이상의 항공기의 경로를 유도할 경우에는 많은 유도등이 한 번에 점등되어 항공기가 경로를 이탈할 수 있는 문제점이 발생한다.
이와 같은 전술한 문제점을 개선하도록 본 발명의 출원인은 하기 특허문헌 1과 2와 같이 드론을 통해 항공기를 유도하는 "지상유도관제 시스템"을 출원하였다.
그러나, 특허문헌 1과 2의 특허는 비행하는 드론 특성상 바람의 취약하다.
즉, 측풍이나 순간적인 돌풍이 불면 공중에 떠있는 드론은 유도로 중심선에서 자기위치를 유지하기가 상당히 어려운 문제점이 있다.
뿐만 아니라, 공중에서 비행장에 접근하는 항공기는 관제사와 조종사 간에 무선통신으로 활주로에 항공기가 착륙을 하는데 지상에 있는 항공기 유도시스템은 지상감시 레이더에 감지가 되고 관제사가 착륙과 이륙에 필요한 정보를 입력하여야만 하는 번거로움이 있다.
이는 첨단시스템을 운영하면서 관제사의 업무량을 줄이고 안전하고 효율적인 관제업무를 하는데 부적합하다.
따라서, 항공기를 유도하는 보다 복합적이고 개선된 형태의 드론을 이용한 항공기 지상유도관제 시스템 및 방법의 개발이 요구되고 있는 실정이다.
본 발명은 전술한 종래의 제반 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 관제사의 관제업무를 안전하고 효율적으로 운영하도록 항공기를 유도하는 드론을 이용한 항공기 지상유도관제 시스템 및 방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 드론을 이용한 항공기 지상유도관제 시스템은, 항공기를 감지하는 2차 감시 레이더; 항공기의 정보(편명)를 입력받는 시스템 서버; 항공기를 감지하는 지상감시 레이더; 및 항공기의 정보를 상기 시스템 서버에서 전송받아 항공기의 이동위치를 안내하는 지상주행과 비행이 가능한 안내 드론;을 포함하는 것을 특징으로 한다.
또한, 상기 안내 드론은, 고속탈출로의 유도로에서 대기하는 착륙안내드론과, 브릿지나 스파트에서 대기하는 이륙안내드론으로 구성된 것을 특징으로 한다.
또한, 상기 착륙안내드론은 상기 시스템 서버로부터 브릿지나 스파트의 정보를 전달받아 유도로를 주행하며 항공기를 유도하는 것을 특징으로 한다.
또한, 상기 착륙안내드론은 항공기의 유도임무가 마무리되면 비행으로 원위치로 이동하는 것을 특징으로 한다.
또한, 상기 이륙안내드론은 상기 시스템 서버로부터 이륙위치를 전달받아 유도로를 주행하며 항공기를 유도하는 것을 특징으로 한다.
또한, 상기 이륙안내드론은 항공기의 유도임무가 마무리되면 비행으로 원위치로 이동하는 것을 특징으로 한다.
본 발명에 따른 항공기 지상유도관제 방법에 있어서,
Ⅰ) 항공기의 착륙을 지상주행이 가능한 드론을 통해 유도하는 단계; 및
Ⅱ) 항공기의 이륙을 지상주행이 가능한 드론을 통해 유도하는 단계;를 포함하는 것을 특징으로 한다.
또한, 상기 Ⅰ)단계는,
i) 2차 감시레이더에서 착륙을 목적으로 정해진 항로로 비행장에 접근하는 항공기의 정보(편명)를 시스템 서버에 제공하는 단계;
ii) 항공기가 지상감시레이더에 감지가 되면 시스템 서버는 구동력을 겸비한 착륙안내드론을 활주로에서 이탈하는 고속탈출로의 유도로 상에 대기하는 단계;
iii) 착륙하는 항공기의 주기위치는 항무에서 제공하는 항행일정표(편명과 주기위치)를 시스템 서버에 입력하고, 시스템 서버는 정해진 브릿지나 스파트의 정보를 대기중인 착륙안내드론으로 전송하여 정해진 주기위치로 항공기를 유도하는 단계;를 포함하는 것을 특징으로 한다.
또한, 항공기의 이동경로는 지상감지레이더가 감지한 이동중인 항공기와 차량을 고려하여 시스템 서버가 자동으로 경로를 제공하고 이 정보를 유도중인 착륙안내드론에게 제공하는 것을 특징으로 한다.
또한, 고속탈출로의 유도로중심선에 대기중인 착륙안내드론은 유도로 중심선의 황색실선을 따라서 지상주행을 하며 항공기를 정해진 브릿지나 스파트로 유도하는 것을 특징으로 한다.
또한, 상기 iii) 단계 후, 항공기를 주기위치로 안내하는 임무가 끝난 착륙안내드론은 일정한 높이로 상승 후 비행으로 원래의 위치로 가서 대기하는 iv) 단계를 더 포함하는 것을 특징으로 한다.
또한, 상기 iii) 단계 후, 착륙안내드론은 항공기 도착신호를 시스템 서버에 전달하고, 시스템 서버는 관제사에게 편명과 함께 도착시간 정보를 제공하는 것을 특징으로 한다.
또한, 상기 Ⅱ) 단계는,
i) 항공기가 토잉카에 의해 이동하는 단계;
ii) 이륙안내드론이 대기중이던 브릿지나 스파트를 이탈하여 항공기의 전방향에서 시스템 서버로부터 전송받은 이륙위치로 항공기를 유도하는 단계;
iii) 항공기를 이륙위치로 안내하는 임무가 끝난 이륙안내드론은 일정한 높이로 상승 후 비행으로 원래의 위치로 가서 대기하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 상기 ii) 단계 후, 이륙안내드론은 항공기가 활주로의 스톱바에 도착했다는 신호를 시스템 서버에 송신하고 시스템 서버는 관제사에게 편명과 함께 이륙 준비가 된 항공기의 정보를 제공하는 것을 특징으로 한다.
또한, 상기 드론은 스스로 충전 위치를 찾아서 충전 후 본래의 대기위치로 가서 대기하는 Ⅲ) 단계가 더 구비된 것을 특징으로 한다.
본 발명에 따른 드론을 이용한 항공기 지상유도관제 시스템에 따르면, 관제사의 관제업무를 안전하고 효율적으로 운영하도록 항공기를 유도하는 효과를 제공한다.
도 1은 본 발명에 따른 드론을 이용한 항공기 지상유도관제 시스템을 도시한 도면이다.
도 2는 도 1의 드론과 항공기를 도시한 도면이다.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명에 따른 드론을 이용한 항공기 지상유도관제 시스템을 도시한 도면이며, 도 2는 도 1의 드론과 항공기를 도시한 도면이다.
도 1 내지 도 에 도시한 바와 같이, 드론을 이용한 항공기 지상유도관제 시스템을 항공기 착륙 유도와 이륙 유도로 구분하여 설명한다.
항공기 착륙 유도
먼저, 2차 감시레이더(100, SSR:Secondary Surveillance Radar)에서 착륙을 목적으로 정해진 항로로 비행장에 접근하는 항공기의 정보(편명)를 시스템 서버(200)에 제공한다.
이때, 시스템 서버(200)는 시스템과 연동하는 항행안전장비(ALS, VOR, DME, TACAN, ILS)와 기상정보(AMOS) 등의 장비상태를 감시하며 이상발생시 즉시 관제사에게 정보를 전달하여 접근하는 항공기의 안전에 만전을 기하도록 한다.
다음, 항공기가 지상감시레이더(300)에 감지가 되면 시스템 서버(200)는 구동력을 겸비한 착륙안내드론(400)을 활주로에서 이탈하는 고속탈출로의 유도로상에 대기하도록 한다.
그리고, 착륙하는 항공기의 주기위치는 항무에서 제공하는 항행일정표(편명과 주기위치)를 시스템 서버(200)에 입력하고, 시스템 서버(200)는 정해진 브릿지나 스파트의 정보를 대기중인 착륙안내드론(400)으로 전송하여 정해진 주기위치로 항공기를 유도한다.
이때, 항공기의 이동경로는 지상감지레이더(300)가 감지한 이동중인 항공기와 차량을 고려하여 시스템 서버(200)가 자동으로 경로를 제공하고 이 정보를 유도중인 착륙안내드론(400)에게 제공한다.
또한, 고속탈출로의 유도로중심선에 대기중인 착륙안내드론(400)은 비행장 특성상 풍향과 풍속이 일정하지않고 예측하기가 어려운 점이 있어서 지상주행이 가능하다. 즉, 지상주행을 겸비한 착륙안내드론(400)이 유도로 중심선의 황색실선을 따라서 항공기를 정해진 브릿지나 스파트로 유도한다.
다음, 착륙안내드론(400)은 항공기 도착신호를 시스템 서버(200)에 전달하고, 시스템 서버(200)는 관제사에게 편명과 함께 도착시간 정보를 제공한다.
그리고, 항공기를 주기위치로 안내하는 임무가 끝난 착륙안내드론(400)은 일정한 높이로 상승 후 비행으로 원래의 위치로 가서 대기한다.
상기 착륙안내드론은 적색의 램프를 점멸한다.
항공기 이륙 유도
먼저, 이륙하는 항공기는 VDGS(Visual Docking Guidance Syste)로부터 항공기가 이륙을 위하여 브릿지에서 이탈하고 있다는 정보를 제공받는다.
다음, 항공기와 토잉카와 분리가 되면 지상주행을 겸비한 이륙안내드론(500)이 대기중이던 브릿지나 스파트를 이탈하여 항공기의 전방향에서 시스템 서버(200)로부터 전송받은 이륙위치로 항공기를 유도한다.
그리고,항공기가 활주로의 스톱바에 도착했다는 신호를 시스템 서버에 송신하고 시스템 서버는 관제사에게 편명과 함께 이륙 준비가 된 항공기의 정보를 제공하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
그리고, 이륙위치로 항공기를 유도하면 일정한 높이로 상승 후 비행하여 원위치로 돌아가서 대기한다.
상기 이륙안내드론(400)은 녹색을 점멸한다.
착륙 유도 및 이륙 유도 공통사항
착륙안내드론(400)과 이륙안내드론(500)은 진행방향과 속도 및 주기위치를 시스템 서버(200)로부터 정보를 제공받고 시스템 서버(200)의 통제를 받는다.
이때, 지상감시레이더(300)로부터 활주로와 유도로 상의 항공기와 차량의 위치정보를 시스템 서버(200)가 받아 분석하고 명령을 내려 안전하게 이동하도록 한다.
즉, 시스템 서버(200)가 착륙안내드론(400)과 이륙안내드론(500)을 제어하여 관제사의 관제업무를 안전하고 효율적으로 운영한다.
또한, 이륙과 착륙을 유도하기 위한 착륙안내드론(400)과 이륙안내드론(500)은 배터리의 수명이 주어진 시간만큼 운영을 하고 이후에는 스스로 충전 위치를 찾아서 충전 후 본래의 대기위치로 가서 대기한다.
이상, 본 발명의 바람직한 실시 예에 대하여 상세히 설명하였으나, 본 발명의 기술적 범위는 전술한 실시 예에 한정되지 않고 특허청구범위에 의하여 해석되어야 할 것이다. 이때, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 고려해야 할 것이다.

Claims (15)

  1. 항공기를 감지하는 2차 감시 레이더;
    항공기의 정보(편명)를 입력받는 시스템 서버;
    항공기를 감지하는 지상감시 레이더; 및
    항공기의 정보를 상기 시스템 서버에서 전송받아 항공기의 이동위치를 안내하는 지상주행과 비행이 가능한 안내 드론;을 포함하는 것을 특징으로 하는 항공기 지상유도관제 시스템.
  2. 제 1항에 있어서,
    상기 안내 드론은,
    고속탈출로의 유도로에서 대기하는 착륙안내드론과, 브릿지나 스파트에서 대기하는 이륙안내드론으로 구성된 것을 특징으로 하는 항공기 지상유도관제 시스템.
  3. 제 2항에 있어서,
    상기 착륙안내드론은 상기 시스템 서버로부터 브릿지나 스파트의 정보를 전달받아 유도로를 주행하며 항공기를 유도하는 것을 특징으로 하는 항공기 지상유도관제 시스템.
  4. 제 3항에 있어서,
    상기 착륙안내드론은 항공기의 유도임무가 마무리되면 비행으로 원위치로 이동하는 것을 특징으로 하는 항공기 지상유도관제 시스템.
  5. 제 2항에 있어서,
    상기 이륙안내드론은 상기 시스템 서버로부터 이륙위치를 전달받아 유도로를 주행하며 항공기를 유도하는 것을 특징으로 하는 항공기 지상유도관제 시스템.
  6. 제 5항에 있어서,
    상기 이륙안내드론은 항공기의 유도임무가 마무리되면 비행으로 원위치로 이동하는 것을 특징으로 하는 항공기 지상유도관제 시스템.
  7. 항공기의 경로를 안내하는 항공기 지상유도관제 방법에 있어서,
    Ⅰ) 항공기의 착륙을 지상주행이 가능한 드론을 통해 유도하는 단계; 및
    Ⅱ) 항공기의 이륙을 지상주행이 가능한 드론을 통해 유도하는 단계;를 포함하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  8. 제 7항에 있어서,
    상기 Ⅰ)단계는,
    i) 2차 감시레이더에서 착륙을 목적으로 정해진 항로로 비행장에 접근하는 항공기의 정보(편명)를 시스템 서버에 제공하는 단계;
    ii) 항공기가 지상감시레이더에 감지가 되면 시스템 서버는 구동력을 겸비한 착륙안내드론을 활주로에서 이탈하는 고속탈출로의 유도로 상에 대기하는 단계;
    iii) 착륙하는 항공기의 주기위치는 항무에서 제공하는 항행일정표(편명과 주기위치)를 시스템 서버에 입력하고, 시스템 서버는 정해진 브릿지나 스파트의 정보를 대기중인 착륙안내드론으로 전송하여 정해진 주기위치로 항공기를 유도하는 단계;를 포함하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  9. 제 8항에 있어서,
    항공기의 이동경로는 지상감지레이더가 감지한 이동중인 항공기와 차량을 고려하여 시스템 서버가 자동으로 경로를 제공하고 이 정보를 유도중인 착륙안내드론에게 제공하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  10. 제 9항에 있어서,
    고속탈출로의 유도로중심선에 대기중인 착륙안내드론은 유도로 중심선의 황색실선을 따라서 지상주행을 하며 항공기를 정해진 브릿지나 스파트로 유도하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  11. 제 8항에 있어서,
    상기 iii) 단계 후, 항공기를 주기위치로 안내하는 임무가 끝난 착륙안내드론은 일정한 높이로 상승 후 비행으로 원래의 위치로 가서 대기하는 iv) 단계를 더 포함하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  12. 제 8항에 있어서,
    상기 iii) 단계 후, 착륙안내드론은 항공기 도착신호를 시스템 서버에 전달하고, 시스템 서버는 관제사에게 편명과 함께 도착시간 정보를 제공하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  13. 제 7항에 있어서,
    상기 Ⅱ) 단계는,
    i) 항공기가 토잉카에 의해 이동하는 단계;
    ii) 이륙안내드론이 대기중이던 브릿지나 스파트를 이탈하여 항공기의 전방향에서 시스템 서버로부터 전송받은 이륙위치로 항공기를 유도하는 단계;
    iii) 항공기를 이륙위치로 안내하는 임무가 끝난 이륙안내드론은 일정한 높이로 상승 후 비행으로 원래의 위치로 가서 대기하는 단계를 더 포함하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  14. 제 13항에 있어서,
    상기 ii) 단계 후, 이륙안내드론은 항공기가 활주로의 스톱바에 도착했다는 신호를 시스템 서버에 송신하고 시스템 서버는 관제사에게 편명과 함께 이륙 준비가 된 항공기의 정보를 제공하는 것을 특징으로 하는 항공기의 지상유도관제 방법.
  15. 제 8항에 있어서,
    상기 드론은 스스로 충전 위치를 찾아서 충전 후 본래의 대기위치로 가서 대기하는 Ⅲ) 단계가 더 구비된 것을 특징으로 하는 항공기의 지상유도관제 방법.
PCT/KR2019/004606 2018-05-25 2019-04-17 드론을 이용한 항공기 지상유도관제 시스템 및 방법 WO2019225863A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980034769.6A CN112189226B (zh) 2018-05-25 2019-04-17 利用无人机的航空器地面引导管制系统及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180059709A KR101971524B1 (ko) 2018-05-25 2018-05-25 드론을 이용한 항공기 지상유도관제 시스템 및 방법
KR10-2018-0059709 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019225863A1 true WO2019225863A1 (ko) 2019-11-28

Family

ID=66285273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004606 WO2019225863A1 (ko) 2018-05-25 2019-04-17 드론을 이용한 항공기 지상유도관제 시스템 및 방법

Country Status (3)

Country Link
KR (1) KR101971524B1 (ko)
CN (1) CN112189226B (ko)
WO (1) WO2019225863A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917948A (zh) * 2021-12-15 2022-01-11 北京航空航天大学 一种低可视环境无人机地基辅助降落方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047271B1 (ko) * 2019-05-21 2019-11-21 최병관 로봇 드론을 이용한 비행장 조류 스트라이크 시스템
CN115564147B (zh) * 2022-11-30 2023-07-14 北京华翼助航技术开发有限公司 机坪管理方法、系统和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139447A (ko) * 2011-06-17 2012-12-27 한국공항공사 레이더 정보 제공 시스템
KR20160090483A (ko) * 2015-01-22 2016-08-01 엘에스산전 주식회사 항공등화제어 및 지상유도관제 시스템
KR101650905B1 (ko) * 2016-04-04 2016-08-24 선진조명 주식회사 드론을 이용한 항공기 지상유도관제 시스템 및 방법
KR101656280B1 (ko) * 2016-04-05 2016-09-09 선진조명 주식회사 드론을 이용한 첨단 항공기 지상유도관제 시스템 및 방법
KR20160136594A (ko) * 2015-05-20 2016-11-30 주식회사 케이엠씨로보틱스 주행과 비행이 가능한 하이브리드 무인항공기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9409644B2 (en) * 2014-07-16 2016-08-09 Ford Global Technologies, Llc Automotive drone deployment system
CH710646B1 (it) * 2015-01-23 2019-02-28 Paradox Eng Sa Sistema di guida di un drone.
CN105957405B (zh) * 2016-06-01 2019-11-05 北京瀚科科技集团有限公司 通用航空器飞行状态自动广播监视系统及监视方法
US10170011B2 (en) * 2016-07-26 2019-01-01 International Business Machines Corporation Guide drones for airplanes on the ground
CN207051742U (zh) * 2017-05-02 2018-02-27 毕雪松 带有可分离底盘的无人机系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120139447A (ko) * 2011-06-17 2012-12-27 한국공항공사 레이더 정보 제공 시스템
KR20160090483A (ko) * 2015-01-22 2016-08-01 엘에스산전 주식회사 항공등화제어 및 지상유도관제 시스템
KR20160136594A (ko) * 2015-05-20 2016-11-30 주식회사 케이엠씨로보틱스 주행과 비행이 가능한 하이브리드 무인항공기
KR101650905B1 (ko) * 2016-04-04 2016-08-24 선진조명 주식회사 드론을 이용한 항공기 지상유도관제 시스템 및 방법
KR101656280B1 (ko) * 2016-04-05 2016-09-09 선진조명 주식회사 드론을 이용한 첨단 항공기 지상유도관제 시스템 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917948A (zh) * 2021-12-15 2022-01-11 北京航空航天大学 一种低可视环境无人机地基辅助降落方法
CN113917948B (zh) * 2021-12-15 2022-07-26 北京航空航天大学 一种低可视环境无人机地基辅助降落方法

Also Published As

Publication number Publication date
KR101971524B1 (ko) 2019-04-23
CN112189226B (zh) 2023-04-04
CN112189226A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2019225863A1 (ko) 드론을 이용한 항공기 지상유도관제 시스템 및 방법
CN111613095B (zh) 面向商用飞机远程驾驶系统的起飞前场面运行控制方法
KR101650905B1 (ko) 드론을 이용한 항공기 지상유도관제 시스템 및 방법
KR100351343B1 (ko) 공항지상교통안내및제어시스템
KR101656280B1 (ko) 드론을 이용한 첨단 항공기 지상유도관제 시스템 및 방법
WO2022220461A1 (ko) 지능형 첨단 항공기 지상유도관제 시스템 및 방법
CN111806716B (zh) 与飞机对接的飞机牵引车
US20180181125A1 (en) On-ground vehicle collision avoidance utilizing unmanned aerial vehicles
CN102264599A (zh) 在地面移动飞行器的方法
CN102264600A (zh) 在机场区域内移动用于操作飞行器的机器的方法
CN101274668A (zh) 拯救在飞行中出了故障的飞机的安全降落系统和方法
US11858656B2 (en) Airport parking system for electric taxi driven aircraft
CS154192A3 (en) Signal shield on landing runways and taxiways of airports
CN111813141A (zh) 远程操控无人航空器的飞行任务控制系统和方法
US11858659B2 (en) Integrated pushback guidance system and method
US20020145079A1 (en) Convertible dual taxilane
KR101885605B1 (ko) 활주로 신호등 제어 장치 및 방법
GB2606257A (en) Increasing aircraft parking capacity at airports
JP2001307300A (ja) スポット管理システム
CN209506119U (zh) 一种用于机场的智能化牵引系统
CN111792052B (zh) 能在地面上行驶的飞机、飞机在地面上行驶的系统和方法
Kazda et al. Aircraft Ground Handling
CN109573085A (zh) 一种轨道式飞机起降系统
CN109292107A (zh) 一种用于机场的智能化牵引系统及牵引方法
CN115564147B (zh) 机坪管理方法、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806483

Country of ref document: EP

Kind code of ref document: A1