WO2019225271A1 - 導電性インク - Google Patents

導電性インク Download PDF

Info

Publication number
WO2019225271A1
WO2019225271A1 PCT/JP2019/017388 JP2019017388W WO2019225271A1 WO 2019225271 A1 WO2019225271 A1 WO 2019225271A1 JP 2019017388 W JP2019017388 W JP 2019017388W WO 2019225271 A1 WO2019225271 A1 WO 2019225271A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
group
conductive ink
weight
silver nanoparticles
Prior art date
Application number
PCT/JP2019/017388
Other languages
English (en)
French (fr)
Inventor
中川政俊
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201980034582.6A priority Critical patent/CN112189039A/zh
Priority to JP2020521126A priority patent/JPWO2019225271A1/ja
Priority to KR1020207036419A priority patent/KR20210013108A/ko
Publication of WO2019225271A1 publication Critical patent/WO2019225271A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the present invention relates to a conductive ink used for the purpose of forming printed circuit board wiring and the like.
  • This application claims the priority of Japanese Patent Application No. 2018-099041 for which it applied to Japan on May 23, 2018, and uses the content here.
  • silver nanoparticles can be sintered at low temperature, they are used for forming electrodes, wirings, etc. on plastic substrates. Further, since silver nanoparticles easily aggregate, it is known to impart dispersibility by covering the surface with a protective agent. Then, a conductive ink formed by dispersing silver nanoparticles coated on the surface in a solvent is applied on a substrate to form a wiring pattern-shaped coating film, and the coating film is dried and sintered. A conductive wiring can be formed.
  • the silver nanoparticle protective agent is required to be able to be removed quickly by sintering.
  • alcohol solvents such as methanol and butanol were used as the solvent for dispersing the silver nanoparticles coated on the surface.
  • alcohol solvents easily volatilize, and the solvent volatilizes before application. In some cases, the fluidity is lowered, and it is difficult to apply uniformly.
  • Patent Document 1 silver nanoparticles whose surface is coated with a protective agent containing an amine can be quickly removed even in low-temperature sintering, and the silver nanoparticles are sintered. Thus, good conductivity can be obtained.
  • a low-volatility solvent such as butyl carbitol or hexyl carbitol is used as the solvent, the solvent can be prevented from volatilizing before coating on the substrate, and the screen plate used for screen printing can be controlled. It is described that clogging is suppressed and continuous use is possible.
  • an object of the present invention is to provide a conductive ink that can efficiently form a wiring and an electrode having a thick film and excellent conductivity. Another object of the present invention is to provide a method for manufacturing an electronic device using the conductive ink. Another object of the present invention is to provide a sintered body of the conductive ink. Another object of the present invention is to provide an electronic device comprising the sintered body of the conductive ink.
  • the present inventor obtained a terpene solvent, a glycol ether solvent and / or a glycol ester solvent as a silver nanoparticle having a surface coated with a protective agent containing an amine.
  • a conductive ink obtained by dispersing in a solvent having a vapor pressure at 30 ° C. and a vapor pressure of 0.05 to 15 mmHg of 75% by weight or more of the total amount of the solvent, the solvent has an appropriate volatile property.
  • the present invention has the property of suppressing the thickening before coating and volatilizing quickly after coating), so it can be applied uniformly using an offset printing method or the like, and the obtained coating film (first layer ) Even if a second layer coating film is formed without performing a drying process, the shape of the first layer coating film can be maintained without deformation, and the layers are continuously laminated to a desired thickness. Be able to Was Idashi.
  • the conductive ink can be appropriately thickened without impairing the conductivity and without impairing the transferability, thereby increasing the film thickness per coating layer. It was possible to reduce the number of coating layers to a desired thickness, and it was found that workability could be further improved. The present invention has been completed based on these findings.
  • the present invention provides a conductive ink containing the following surface-modified silver nanoparticles (A) and the following solvent (B).
  • the protective agent in the surface-modified silver nanoparticles (A) is an aliphatic monoamine (1) having a total carbon number of 6 or more, an aliphatic monoamine (2) having a total carbon number of 5 or less, and / or as amines.
  • the conductive ink comprising the aliphatic diamine (3) having a total carbon number of 8 or less is provided.
  • the present invention further provides the conductive ink described above further containing 0.1 to 3.0 parts by weight of the binder resin (C) with respect to 100 parts by weight of the surface-modified silver nanoparticles (A).
  • the present invention also provides the conductive ink further containing 0.1 to 3.0 parts by weight of the siloxane compound (D) with respect to 100 parts by weight of the surface-modified silver nanoparticles (A).
  • the present invention also provides the above conductive ink having a viscosity of 30 to 80 Pa ⁇ s at 25 ° C. and a shear rate of 10 (1 / s).
  • the present invention also provides the above conductive ink which is a conductive ink for offset printing.
  • the present invention also provides an electronic device manufacturing method including a step of applying the conductive ink on a substrate by an offset printing method and a step of sintering.
  • the present invention also provides a sintered body of the conductive ink.
  • the present invention also provides an electronic device comprising a sintered body of the conductive ink on a substrate.
  • the conductive ink of the present invention contains a solvent having appropriate volatility, the conductive ink is excellent in storage stability, and it is possible to stably maintain good coating properties by suppressing composition fluctuations before coating. And after application
  • sintering (even if low-temperature sintering) is performed to obtain a sintered body having excellent conductivity.
  • the conductive ink of the present invention contains a binder resin in a specific range, it is possible to increase the thickness per coating layer by imparting an appropriate viscosity, and to achieve a desired coating thickness. Therefore, workability is further improved. In addition, it is possible to draw a fine line with high accuracy by an offset printing method or the like.
  • the conductive ink of the present invention can be suitably used for the purpose of forming wirings and electrodes on a printed circuit board (particularly a large current substrate).
  • the conductive ink of the present invention contains the following surface-modified silver nanoparticles (A) and the following solvent (B).
  • the conductive ink of the present invention contains a solvent (B) having appropriate volatility, it exhibits fast drying while suppressing composition fluctuations before coating. Therefore, since it can apply
  • the conductive ink of the present invention has an appropriate viscosity, can form a good print pattern, has excellent coating properties, can be thickened per layer, and when wiring is formed by lamination Is preferable in that the number of coating layers to a desired thickness can be reduced, and the viscosity (at 25 ° C., at a shear rate of 10 (1 / s)) is, for example, about 30 to 80 Pa ⁇ s, preferably 30 70 Pa ⁇ s, particularly preferably 35 to 70 Pa ⁇ s.
  • the conductive ink of the present invention When the conductive ink of the present invention has the above viscosity, it can be applied to the substrate with high accuracy by an offset printing method or the like. And, when the conductive ink of the present invention has the above-mentioned viscosity by containing the binder resin (C) described below (particularly, a cellulose resin), it is excellent by sintering (even if it is low-temperature sintering). A sintered body having high conductivity can be obtained.
  • the binder resin (C) described below particularly, a cellulose resin
  • the conductive ink of the present invention is excellent in dispersion stability.
  • a conductive ink having a silver concentration of 65% by weight is stored at 5 ° C., an increase in viscosity can be suppressed in a period of one month or more.
  • the conductive ink of the present invention has the above characteristics, it can be suitably used as a conductive ink for offset printing, and forms wirings and electrodes of a printed circuit board (particularly, a large current substrate) by an offset printing method or the like. It can be used suitably for a use.
  • the surface-modified silver nanoparticles in the present invention have a structure in which the surface of the silver nanoparticles is coated with a protective agent containing an amine. More specifically, the unshared electron pair of amine is electrically coordinated on the surface of the silver nanoparticles.
  • the configuration is as follows. Since the surface-modified silver nanoparticles in the present invention have the above-described configuration, reaggregation between the silver nanoparticles is prevented, and a highly dispersed state can be stably maintained in the conductive ink.
  • the average primary particle diameter of the silver nanoparticle portion of the surface-modified silver nanoparticles is, for example, 0.5 to 100 nm, preferably 0.5 to 80 nm, more preferably 1 to 70 nm, and further preferably 1 to 60 nm.
  • the particle diameter is determined by observation with a scanning electron microscope (SEM).
  • the content of the surface-modified silver nanoparticles (A) is excellent in dispersion stability in that a sintered body having good conductivity can be obtained (that is, maintaining high dispersibility stably over a long period of time). And the increase in viscosity can be suppressed), for example, 60 to 85% by weight of the total amount of the conductive ink, and the upper limit is preferably 80% by weight, particularly preferably 75% by weight.
  • the solvent (B) in the present invention contains a terpene solvent (b-1) and a glycol ether solvent and / or a glycol ester solvent (b-2). Further, the content of the solvent having a vapor pressure of 0.05 to 15 mmHg at 30 ° C. in the total amount of the solvent (B) is 75% by weight or more of the total amount of the solvent.
  • a vapor pressure at 30 ° C. of, for example, 0.05 to 5.0 mmHg is preferable in view of appropriate volatility, and particularly preferably 0.1 to 3. It is 0 mmHg, most preferably 0.5 to 3.0 mmHg, particularly preferably 1.0 to 3.0 mmHg.
  • Examples of the terpene solvent (b-1) include 4- (1′-acetoxy-1′-methyl ester) -cyclohexanol acetate, 1,2,5,6-tetrahydrobenzyl alcohol, 1,2,5. , 6-tetrahydrobenzyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, 4-t-butylcyclohexyl acetate, dihydroterpineol, dihydroterpinyl acetate, dihydroterpinyloxyethanol, terpinylmethyl ether, dihydroterpinyl And methyl ether. These can be used alone or in combination of two or more. Among these, it is preferable to select the type and content as appropriate so as to meet the above conditions.
  • a vapor pressure at 30 ° C. of, for example, 0.05 to 5.0 mmHg is preferable from the viewpoint of having appropriate volatility, in particular. It is preferably 0.1 to 3.0 mmHg, most preferably 0.5 to 3.0 mmHg, and particularly preferably 1.0 to 3.0 mmHg.
  • glycol ether solvent examples include the following formula (b-2-1) R 11 O— (R 13 O) m —R 12 (b-2-1) (Wherein R 11 represents a hydrogen atom, an alkyl group, or an aryl group, R 12 represents an alkyl group or an aryl group, R 13 represents an alkylene group, and m represents an integer of 1 or more)
  • R 11 represents a hydrogen atom, an alkyl group, or an aryl group
  • R 12 represents an alkyl group or an aryl group
  • R 13 represents an alkylene group
  • m represents an integer of 1 or more
  • Examples of the alkyl group in R 11 and R 12 include straight chain or branched chain having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) such as methyl group, ethyl group, propyl group, and isopropyl group.
  • An alkyl group is mentioned.
  • Examples of the aryl group include an aryl group having 6 to 10 carbon atoms (for example, a phenyl group).
  • Examples of the alkylene group in R 13 include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • an alkylene group having 1 to 4 carbon atoms is preferable, an alkylene group having 1 to 3 carbon atoms is particularly preferable, and an alkylene group having 2 to 3 carbon atoms is most preferable.
  • M is an integer of 1 or more, for example, an integer of 1 to 8, preferably an integer of 1 to 3, particularly preferably 1.
  • glycol ether solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol monohexyl ether, Ethylene glycol mono C 1-10 alkyl ethers such as ethylene glycol mono-2-ethylhexyl ether; ethylene glycol mono C 6-10 aryls such as ethylene glycol monophenyl ether and ethylene glycol monobenzyl ether or C 7-16 aralkyl ethers; propylene Glycol monoethyl ether, propylene glycol monopropyl ether, propylene Propylene glycol mono C 1-10 alkyl ethers such as glycol monobutyl ether, ethylene glycol methyl -n- propyl ether, ethylene glycol methyl -n-n
  • glycol ester solvent examples include the following formula (b-2-2) R 14 O— (R 16 O) m ′ —R 15 (b-2-2) (In the formula, R 14 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group, R 15 represents an acyl group, R 16 represents an alkylene group, and m ′ represents an integer of 1 or more.)
  • R 14 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group
  • R 15 represents an acyl group
  • R 16 represents an alkylene group
  • m ′ represents an integer of 1 or more.
  • the glycol ester solvent in the present invention includes a glycol ether ester solvent.
  • the acyl group (RCO— group) in R 14 and R 15 is an acyl group (wherein R is a linear or branched alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms)). Examples thereof include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and a pivaloyl group).
  • alkyl group for R 14 examples include linear or branched alkyl groups having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) such as a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • aryl group examples include an aryl group having 6 to 10 carbon atoms (for example, a phenyl group).
  • Examples of the alkylene group for R 16 include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • an alkylene group having 1 to 4 carbon atoms is preferable, an alkylene group having 1 to 3 carbon atoms is particularly preferable, and an alkylene group having 2 to 3 carbon atoms is most preferable.
  • M ′ is an integer of 1 or more, for example, an integer of 1 to 8, preferably an integer of 1 to 3, particularly preferably 1.
  • glycol ester solvent examples include C 2-3 alkylene glycol C 1-10 alkyl ether C 1- such as ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, and 3-methoxybutyl acetate.
  • di-C 2-3 alkylene glycol C 1-10 alkyl ether C 1-10 alkyl ester such as diethylene glycol-n-butyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol butyl ether acetate, dipropylene glycol methyl ether acetate; propylene glycol Diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate And C 2-3 alkylene glycol di-C 1-10 alkyl ester.
  • These can be used alone or in combination of two or more. Among these, it is preferable to select the type and content as appropriate so as to meet the above conditions.
  • the present invention it is preferable to contain at least a glycol ether solvent as the solvent (b-2) from the viewpoint of suppressing thickening before coating and volatilizing rapidly after coating. It is preferable to contain.
  • the glycol monoether is preferably at least one selected from ethylene glycol mono C 1-10 alkyl ether and propylene glycol mono C 1-10 alkyl ether.
  • the glycol monoether is preferably a C 2-3 alkylene glycol mono C 1-10 alkyl ether such as ethylene glycol mono C 1-10 alkyl ether or propylene glycol mono C 1-10 alkyl ether.
  • the conductive ink of the present invention contains one or more other solvents (for example, ethyl lactate acetate, tetrahydrofurfuryl acetate, tetrahydrofurfuryl alcohol, ethylene glycol, etc.) as the solvent (B).
  • the content of the other solvent is preferably 30% by weight or less, more preferably 20% by weight or less of the total amount of the solvent (B) contained in the conductive ink of the present invention, It is particularly preferably 15% by weight or less, most preferably 10% by weight or less, further preferably 5% by weight or less, and particularly preferably 1% by weight or less.
  • the proportion of the total content of the terpene solvent (b-1), the glycol ether solvent and the glycol ester solvent (b-2) in the total amount of the solvent (B) is, for example, 70 to 100% by weight.
  • the lower limit is preferably 80% by weight, more preferably 85% by weight, particularly preferably 90% by weight, most preferably 95% by weight, particularly preferably 99% by weight.
  • terpene solvent (b-1) contained in solvent (B) total amount when two or more are included
  • content of glycol ether solvent and / or glycol ester solvent (b-2) The ratio [(b-1) / (b-2); weight ratio] of (when two or more are contained) is, for example, 90/10 to 60/40, preferably 85/15 to 65/35, Particularly preferred is 80/20 to 70/30.
  • the content of the terpene solvent (b-1) (when two or more types are contained, the total amount thereof) is, for example, 60 to 90% by weight, preferably 65 to 85% by weight, particularly preferably 70% by weight of the total amount of the solvent (B). ⁇ 80 wt%.
  • the content of the terpene solvent (b-1) (the total amount when two or more are included) is, for example, 5 to 40% by weight, preferably 10 to 35% by weight, particularly preferably 15 to 15% by weight based on the total amount of the conductive ink. 30% by weight.
  • the content of the glycol ether solvent and / or the glycol ester solvent (b-2) (the total amount when two or more are included) is, for example, 10 to 40% by weight, preferably 15 to It is 35% by weight, particularly preferably 20 to 30% by weight.
  • the content of the glycol ether solvent and / or glycol ester solvent (b-2) (the total amount when containing two or more kinds) is, for example, 0.5 to 20% by weight, preferably 1 0.0 to 15% by weight, particularly preferably 3 to 10% by weight.
  • the content of the solvent (B) is, for example, 30 to 70 parts by weight, preferably 35 to 65 parts by weight, particularly preferably 35 to 60 parts by weight, most preferably 100 parts by weight of the surface-modified silver nanoparticles (A). Is 40 to 55 parts by weight.
  • the content of the solvent having a vapor pressure of 0.05 to 15 mmHg (preferably 0.1 to 5.0 mmHg) at 30 ° C. in the total amount of the solvent (B) is 75% by weight or more, and good coating properties are obtained. It is preferably 80% by weight or more, more preferably 85% by weight or more, and particularly preferably 90% by weight, because it combines quick drying and facilitates management of the time from the completion of printing of the first layer to the lamination of the second layer. It is preferable to contain only a solvent having a vapor pressure of 0.05 to 15 mmHg at 30 ° C., in particular.
  • the content of the solvent having a vapor pressure at 30 ° C. of 0.05 to 1 mmHg (preferably 0.1 to 1 mmHg) in the total amount of the solvent (B) is, for example, 50 to 80% by weight, preferably 60 to 80% by weight, Particularly preferred is 70 to 80% by weight.
  • the total solvent (B) has a vapor pressure at 30 ° C. of more than 1 mmHg and a solvent content in the range of 15 mmHg (preferably more than 1 mmHg and 5 mmHg), for example, 20 to 50% by weight, preferably 20 to It is 40% by weight, particularly preferably 20 to 30% by weight.
  • the content of the solvent having a vapor pressure at 30 ° C. of less than 0.05 mmHg (preferably less than 0.1 mmHg) in the total amount of the solvent (B) is 25% by weight or less, preferably 20% by weight or less, more preferably Is 10% by weight or less, particularly preferably 5% by weight or less, and most preferably 1% by weight or less. Therefore, after coating, the coating film is quickly dried, and the shape of the coating film is not impaired even if the coating film is laminated on the coating film without sandwiching the drying step.
  • the content of the solvent having a vapor pressure at 30 ° C. of more than 15 mmHg (preferably more than 5 mmHg) in the total amount of the solvent (B) is 25% by weight or less, preferably 20% by weight or less, more preferably 10% by weight.
  • it is particularly preferably 5% by weight or less, most preferably 1% by weight or less. Therefore, composition variation before coating can be suppressed, and storage stability and coating properties are excellent. In addition, transferability from a blanket is also excellent.
  • the conductive ink of the present invention contains additives such as a binder resin, a surface energy adjusting agent, a plasticizer, a leveling agent, an antifoaming agent, and an adhesion imparting agent as necessary. Can do.
  • the conductive ink of the present invention is imparted with an appropriate viscosity and can be thickened per coating layer.
  • the coating layer is laminated to a desired thickness. It is preferable to contain 1 type or 2 types or more of binder resin (C) at the point which can reduce a number and can improve workability
  • binder resin (C) examples include vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin, polyester resin, acrylic resin, and cellulose resin.
  • a cellulose-based resin in terms of being able to impart viscosity without causing a decrease in conductivity.
  • trade names “Etocel std.200”, “Etocel std.” commercially available products such as “300” (manufactured by Dow Chemical Co., Ltd.) can be used.
  • Content of the said binder resin (C) (for example, cellulose resin) can be suitably adjusted so that the viscosity of the electroconductive ink of this invention may become the above-mentioned range, Surface modified silver nanoparticle (A) 100 weight
  • the amount is 0.1 to 3.0 parts by weight.
  • the content of the binder resin (C) (for example, a cellulose-based resin) can be appropriately adjusted so that the viscosity of the conductive ink of the present invention falls within the above-described range. -5.0% by weight.
  • the conductive ink of the present invention further contains one or more siloxane compounds (D) as a surface energy adjusting agent, the conductive ink can be satisfactorily transferred from the blanket to the substrate when used for offset printing. This is preferable.
  • Examples of the siloxane compound (D) include compounds represented by the following formula (d). (Wherein R 21 to R 26 are the same or different and each may have an optionally substituted alkyl group having 1 to 6 carbon atoms or optionally substituted aryl having 6 to 10 carbon atoms) N represents an integer greater than or equal to 1. R 21 and R 24 in the formula may be bonded to each other)
  • alkyl group having 1 to 6 carbon atoms examples include a methyl group.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group.
  • Examples of the substituent that the alkyl group or aryl group may have include an amino group, an epoxy group, a carboxyl group, and a polyether group.
  • the content of the siloxane compound (D) can be adjusted as appropriate so that the viscosity of the conductive ink of the present invention is in the above-described range. .1 to 3.0 parts by weight.
  • the content of the siloxane compound (D) can be appropriately adjusted so that the viscosity of the conductive ink of the present invention is in the above range, and is, for example, 0.5 to 5.0% by weight of the total amount of the conductive ink. .
  • the conductive ink of the present invention includes, for example, a step of mixing a silver compound and a protecting agent containing an amine to form a complex containing the silver compound and an amine (complex forming step), and a step of thermally decomposing the complex. (Thermal decomposition step) and, if necessary, the surface modified silver nanoparticles (A) are produced through a step of washing the reaction product (washing step), and the obtained surface modified silver nanoparticles (A) are used as a solvent. It can be manufactured through a step of mixing (B) (ink preparation step).
  • the silver compound it is preferable to use a compound that is easily decomposed by heating to produce metallic silver.
  • silver compounds include silver carboxylates such as silver formate, silver acetate, silver oxalate, silver malonate, silver benzoate and silver phthalate; silver fluoride, silver chloride, silver bromide and iodide.
  • Silver halides such as silver; silver sulfate, silver nitrate, silver carbonate and the like.
  • the silver content is high, it can be thermally decomposed without a reducing agent, metallic silver is easily generated by decomposition, and impurities derived from the reducing agent are not easily mixed into the ink.
  • Silver oxalate is preferred.
  • the amine is a compound in which at least one hydrogen atom of ammonia is substituted with a hydrocarbon group, and includes a primary amine, a secondary amine, and a tertiary amine.
  • the amine may be a monoamine or a polyvalent amine such as diamine. These can be used alone or in combination of two or more.
  • the amine is represented by the following formula (a-1), in which R 1 , R 2 , and R 3 are the same or different, and a hydrogen atom or a monovalent hydrocarbon group (R 1 , R 2 and R 3 are both hydrogen atoms), and the monoamine (1) having a total carbon number of 6 or more is represented by the following formula (a-1), wherein R 1 , R 2 , R 3 is the same or different and is a hydrogen atom or a monovalent hydrocarbon group (except when R 1 , R 2 , R 3 are all hydrogen atoms), and a monoamine (2 And R 8 in the formula is a divalent hydrocarbon group, and R 4 to R 7 are the same or different and are a hydrogen atom or a monovalent hydrocarbon group. And preferably contains at least one selected from diamines (3) having a total carbon number of 8 or less. In particular, the monoamine (1) and the monoamine ( ) And / or a diamine (3) and preferably contains together.
  • the hydrocarbon group includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group, and among them, an aliphatic hydrocarbon group or an alicyclic hydrocarbon group is preferable.
  • a group hydrocarbon group is preferred.
  • the monoamine (1), monoamine (2), and diamine (3) are preferably aliphatic monoamine (1), aliphatic monoamine (2), and aliphatic diamine (3).
  • the monovalent aliphatic hydrocarbon group includes an alkyl group and an alkenyl group.
  • the monovalent alicyclic hydrocarbon group includes a cycloalkyl group and a cycloalkenyl group.
  • the divalent aliphatic hydrocarbon group includes an alkylene group and an alkenylene group, and the divalent alicyclic hydrocarbon group includes a cycloalkylene group and a cycloalkenylene group.
  • Examples of the monovalent hydrocarbon group in R 1 , R 2 and R 3 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group Alkyl groups having about 1 to 20 carbon atoms such as hexyl group, decyl group, dodecyl group, tetradecyl group, octadecyl group; vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, An alkenyl group having about 2 to 20 carbon atoms such as 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 5-hexenyl group; cyclopropyl group, A cycloalkyl group having
  • Examples of the monovalent hydrocarbon group in R 4 to R 7 include those having 7 or less carbon atoms among the above examples.
  • Examples of the divalent hydrocarbon group for R 8 include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, heptamethylene group and the like.
  • the hydrocarbon group in R 1 to R 8 may be any of various substituents [for example, halogen atom, oxo group, hydroxyl group, substituted oxy group (for example, C 1-4 alkoxy group, C 6-10 aryloxy group, C 7-16 aralkyloxy group, C 1-4 acyloxy group, etc.), carboxyl group, substituted oxycarbonyl group (for example, C 1-4 alkoxycarbonyl group, C 6-10 aryloxycarbonyl group, C 7-16 aralkyloxycarbonyl group) Group, etc.), cyano group, nitro group, sulfo group, heterocyclic group, etc.].
  • the hydroxyl group and carboxyl group may be protected with a protective group commonly used in the field of organic synthesis.
  • Monoamine (1) is a compound having a function of imparting high dispersibility to silver nanoparticles.
  • Primary amines having a linear alkyl group such as decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine; branched alkyl such as isohexylamine, 2-ethylhexylamine, tert-octylamine
  • a primary amine having a cycloalkyl group such as cyclohexylamine; a primary amine having an alkenyl group such as oleylamine; N, N-dipropylamine, N, N-dibutylamine
  • the amino group when the amino group is adsorbed on the surface of the silver nanoparticles, it is possible to secure a distance from other silver nanoparticles, so that the effect of preventing aggregation of the silver nanoparticles is improved.
  • 6 or more carbon atoms (the upper limit of the total carbon number is preferably about 18, more preferably 16 and particularly preferably 12 in terms of availability and ease of removal during sintering).
  • An amine having a linear alkyl group (especially a primary amine) is preferable, and hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine and the like are particularly preferable.
  • the monoamines (1) when an amine having a branched alkyl group (particularly a primary amine) is used, compared to the case of using an amine having a linear alkyl group having the same total carbon number, Due to the steric factor of the branched alkyl group, high dispersibility can be imparted to the silver nanoparticles in a smaller amount. Therefore, at the time of sintering, particularly at the time of low-temperature sintering, the amine can be efficiently removed, which is preferable in that a sintered body having more excellent conductivity can be obtained.
  • the amine having a branched alkyl group is particularly preferably an amine having a branched alkyl group having a total carbon number of 6 to 16 (preferably 6 to 10) such as isohexylamine or 2-ethylhexylamine.
  • amines having a branched alkyl group having a structure branched at the second carbon atom from the nitrogen atom such as 2-ethylhexylamine, are effective.
  • monoamine (2) Since monoamine (2) has a shorter hydrocarbon chain than monoamine (1), it is considered that monoamine (2) itself has a low function of imparting high dispersibility to silver nanoparticles, but is more polar than monoamine (1). Since it has a high coordination ability to silver atoms, it is considered to have an effect of promoting complex formation. In addition, since the hydrocarbon chain is short, even in low-temperature sintering, it can be removed from the surface of the silver nanoparticles in a short time (for example, 30 minutes or less, preferably 20 minutes or less), and a sintered body having excellent conductivity is obtained. can get.
  • a short time for example, 30 minutes or less, preferably 20 minutes or less
  • Examples of the monoamine (2) include linear chains such as ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like.
  • Examples thereof include secondary amines having a total of 2 to 5 carbon atoms having a linear or branched alkyl group such as diethylamine.
  • the monoamine (2) includes, among others, all having linear or branched alkyl groups such as n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like.
  • Primary amines having 2 to 5 carbon atoms are preferred, and in particular 2 to 5 carbon atoms having a linear alkyl group such as n-butylamine (preferably having a total carbon number)
  • the primary amines 4-5) are preferred.
  • the total number of carbon atoms of the diamine (3) is 8 or less (for example, 1 to 8), and is more polar than the monoamine (1) and has a higher coordination ability to silver atoms. .
  • the diamine (3) has an effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition step of the complex, and when the diamine (3) is used, silver nanoparticles can be produced more efficiently. Can do.
  • the surface-modified silver nanoparticles having a configuration coated with a protective agent containing diamine (3) exhibit excellent dispersion stability in a dispersion medium containing a highly polar solvent.
  • the diamine (3) since the diamine (3) has a short hydrocarbon chain, it can be removed from the surface of the silver nanoparticles in a short time (for example, 30 minutes or less, preferably 20 minutes or less) even in low-temperature sintering. An excellent sintered body can be obtained.
  • diamine (3) examples include ethylenediamine, 1,3-propanediamine, 2,2-dimethyl-1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6- R 4 to R 7 in the formula (a-2) such as hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,5-diamino-2-methylpentane are hydrogen atoms; Diamine wherein 8 is a linear or branched alkylene group; N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-dimethyl-1,3-propanediamine, N, N′— Diethyl-1,3-propanediamine, N, N′-dimethyl-1,4-butanediamine, N, N′-diethyl-1,4-butanediamine, N, N′-dimethyl-1,6-hexanedi Expression such as Min (a-2)
  • R 4 and R 5 in the formula (a-2) are the same or different and are linear or branched alkyl groups
  • R 6 and R 7 are hydrogen atoms
  • R 8 is Diamine which is a linear or branched alkylene group
  • R 4 and R 5 in formula (a-2) are linear alkyl groups
  • R 6 and R 7 are hydrogen atoms
  • R 4 and R 5 are the same or different and are linear or branched alkyl groups
  • R 6 and R 7 are hydrogen atoms, that is, diamines, that is, primary amino groups
  • the diamine having a tertiary amino group is a complex formed because the primary amino group has a high coordination ability to silver atoms, but the tertiary amino group has a poor coordination ability to silver atoms. Is prevented from becoming excessively complicated, which enables thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition process of the complex.
  • a diamine having a total carbon number of 6 or less (for example, 1 to 6) is preferable, and a total carbon number of 5 or less (for example, 1 to 5) is preferable because it can be removed from the surface of the silver nanoparticles in a short time in low-temperature sintering. ) Is more preferred.
  • the use ratio thereof is not particularly limited, but the total amount of the amine [monoamine (1) + Monoamine (2) + diamine (3); 100 mol%] is preferably in the following range.
  • Content of monoamine (1) For example, 5 to 65 mol% (the lower limit is preferably 10 mol%, particularly preferably 15 mol%.
  • the upper limit is preferably 50 mol%, particularly preferably 40 mol%. Most preferably 35 mol%)
  • Total content of monoamine (2) and diamine (3) for example 35 to 95 mol% (the lower limit is preferably 50 mol%, particularly preferably 60 mol%, most preferably 65 mol%.
  • the upper limit is , Preferably 90 mol%, particularly preferably 85 mol%)
  • each content of monoamine (2) and diamine (3) is amine total amount [monoamine (1) + monoamine (2) + diamine (3); Based on [100 mol%], the following range is preferable.
  • Monoamine (2) For example, 5 to 70 mol% (the lower limit is preferably 10 mol%, particularly preferably 15 mol%, and the upper limit is preferably 65 mol%, particularly preferably 60 mol%)
  • Diamine (3) For example, 5 to 50 mol% (the lower limit is preferably 10 mol%, and the upper limit is preferably 45 mol%, particularly preferably 40 mol%)
  • the surface-modified silver nanoparticles having a structure coated with a protective agent containing diamine (3) exhibit excellent dispersion stability in a dispersion medium containing a highly polar solvent.
  • the amount of monoamine (1) used can be reduced depending on the proportion of use. In the case of sintering at a low temperature for a short time, these amines are easily removed from the surface of the silver nanoparticles, and the silver nanoparticles can be sufficiently sintered.
  • the amine used as a protective agent in the present invention may contain other amines in addition to the above monoamine (1), monoamine (2), and diamine (3), but in all amines contained in the protective agent.
  • the proportion of the total content of the monoamine (1), monoamine (2) and diamine (3) is preferably, for example, 60 to 100% by weight, and the lower limit is particularly preferably 80% by weight, most preferably 90% by weight. is there. That is, the content of other amines is preferably 60% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the amount of the amine [especially monoamine (1) + monoamine (2) + diamine (3)] used is not particularly limited, but it is preferably about 1 to 50 moles per mole of silver atoms of the starting silver compound.
  • the amount is preferably 2 to 50 mol, particularly preferably 6 to 50 mol, in that surface-modified silver nanoparticles can be obtained substantially in the absence of a solvent.
  • the amount of the amine used is less than the above range, a silver compound that is not converted into a complex tends to remain in the complex formation process, and in the subsequent pyrolysis process, the uniformity of the silver nanoparticles is impaired, and the particles are enlarged. It is not preferable because the silver compound may remain without being thermally decomposed.
  • the reaction between the amine and the silver compound is preferably performed in the presence of a solvent.
  • the solvent examples include alcohol solvents having 3 or more carbon atoms [eg, n-propanol (boiling point: 97 ° C.), isopropanol (boiling point: 82 ° C.), n-butanol (boiling point: 117 ° C.), isobutanol (boiling point: 107.89 ° C), sec-butanol (boiling point: 99.5 ° C), tert-butanol (boiling point: 82.45 ° C), n-pentanol (boiling point: 136 ° C), n-hexanol (boiling point: 156 ° C) , N-octanol (boiling point: 194 ° C.), 2-octanol (boiling point: 174 ° C.), etc.] can be used alone or in combination.
  • an alcohol solvent having 4 to 6 carbon atoms is preferable from the viewpoint of being able to set a high temperature for the subsequent thermal decomposition step of the complex and convenience in post-treatment of the resulting surface-modified silver nanoparticles.
  • N-butanol and n-hexanol are preferred.
  • the amount of the solvent used is, for example, 120 parts by weight or more, preferably 130 parts by weight or more, more preferably 150 parts by weight or more with respect to 100 parts by weight of the silver compound.
  • the upper limit of the amount of solvent used is, for example, 1000 parts by weight, preferably 800 parts by weight, particularly preferably 500 parts by weight.
  • one or more aliphatic monocarboxylic acids may be used as a protective agent.
  • an aliphatic monocarboxylic acid there is a tendency that the stability of the silver nanoparticles, particularly the stability in the state dispersed in the solvent (B), is improved.
  • Examples of the aliphatic monocarboxylic acid include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, Saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as heptadecanoic acid, octadecanoic acid, nonadecanoic acid and icosanoic acid; unsaturated aliphatics having 8 or more carbon atoms such as oleic acid, elaidic acid, linoleic acid, palmitoleic acid and eicosenoic acid A monocarboxylic acid is mentioned.
  • saturated or unsaturated aliphatic monocarboxylic acids having 8 to 18 carbon atoms are preferable.
  • the carboxyl group of the aliphatic monocarboxylic acid is adsorbed on the surface of the silver nanoparticle, the saturated or unsaturated aliphatic hydrocarbon chain having 8 to 18 carbon atoms becomes sterically hindered, thereby causing a difference with other silver nanoparticles.
  • interval can be ensured and the effect
  • the aliphatic monocarboxylic acid is also preferable because it is easily available and can be easily removed during sintering.
  • the amount of the aliphatic monocarboxylic acid to be used is, for example, about 0.05 to 10 mol, preferably 0.1 to 5 mol, particularly preferably 0.5 to 2 mol, per 1 mol of silver atoms in the silver compound. It is. When the amount of the aliphatic monocarboxylic acid used is less than the above range, the stability improving effect is hardly obtained. On the other hand, even if the aliphatic monocarboxylic acid is used excessively, the dispersion stability improving effect is saturated, but it tends to be difficult to remove by low-temperature sintering.
  • the reaction between the amine-containing protective agent and the silver compound is preferably performed at room temperature (5 to 40 ° C.). Since the reaction is accompanied by heat generation due to the coordination reaction of the amine to the silver compound, the reaction may be performed while appropriately cooling so as to be within the above temperature range.
  • the reaction time between the amine-containing protective agent and the silver compound is, for example, about 30 minutes to 3 hours. Thereby, a silver-amine complex is obtained.
  • the thermal decomposition step is a step of thermally decomposing the silver-amine complex obtained through the complex formation step to form surface-modified silver nanoparticles.
  • the silver compound is thermally decomposed to produce a silver atom while maintaining the coordinate bond of the amine to the silver atom, and then the silver atom coordinated with the amine aggregates. It is considered that silver nanoparticles coated with an amine protective film are formed.
  • the thermal decomposition is preferably performed in the presence of a solvent, and the above-mentioned alcohol solvent can be suitably used as the solvent.
  • the thermal decomposition temperature may be any temperature at which surface-modified silver nanoparticles are formed.
  • the silver-amine complex is a silver oxalate-amine complex, for example, about 80 to 120 ° C., preferably 95 to 115. ° C, particularly preferably 100 to 110 ° C. From the viewpoint of preventing detachment of the surface modification portion of the surface-modified silver nanoparticles, it is preferable to carry out at a temperature as low as possible within the above temperature range.
  • the thermal decomposition time is, for example, about 10 minutes to 5 hours.
  • the thermal decomposition of the silver-amine complex is preferably performed in an air atmosphere or an inert gas atmosphere such as argon.
  • decantation is preferably performed in order to remove it.
  • the surface-modified silver nanoparticles after completion of decantation can be subjected to the ink preparation process described later in a wet state without drying and solidifying, and re-aggregation of the silver nanoparticles can be suppressed. It is preferable at the point which can maintain the high dispersibility of a silver nanoparticle.
  • the cleaning solvent used in decantation is mixed into the conductive ink of the present invention. Therefore, it is preferable to use a solvent that does not impair the characteristics of the conductive ink of the present invention as the cleaning solvent (the cleaning solvent used in the final round when cleaning twice or more). It is preferable to use a solvent and / or a glycol ester solvent (b-2).
  • Decantation is performed, for example, by a method in which the surface-modified silver nanoparticles in a suspended state are washed with a washing solvent, precipitated by centrifugation, and the supernatant is removed.
  • the content of the cleaning solvent in the total amount of the surface-modified silver nanoparticles in a wet state obtained by decantation is, for example, about 5 to 15% by weight. Accordingly, the proportion of the surface-modified silver nanoparticles in the total amount of the surface-modified silver nanoparticles in the wet state is, for example, about 85 to 95% by weight.
  • the ink preparation step is carried out by using the surface-modified silver nanoparticles (A) obtained through the above steps (preferably, the surface-modified silver that has been wetted with a glycol ether solvent and / or a glycol ester solvent (b-2).
  • the nanoparticle (A)), a solvent (B) containing at least a terpene solvent (b-1), and an additive as necessary are mixed to obtain the conductive ink of the present invention.
  • generally known mixing equipment such as a self-revolving stirring deaerator, a homogenizer, a planetary mixer, a three-roll mill, and a bead mill can be used. Each component may be mixed simultaneously or sequentially.
  • the method for producing an electronic device of the present invention includes a step of applying the conductive ink on a substrate by an offset printing method and a step of sintering.
  • the thick film is formed by laminating a coating film having a wiring pattern shape.
  • a conductive ink having a quick drying property is used. Therefore, the coating film after coating on the substrate is quickly evaporated by the solvent without drying. Therefore, after forming the first coating film, the shape of the wiring pattern of the first layer does not collapse even if the second layer is applied without performing the drying process.
  • a film wiring can be formed.
  • the conductive ink has an appropriate viscosity
  • a thick film (per layer) can be formed. Therefore, even if the number of coating layers is reduced, thick film wiring can be formed, wiring can be formed with excellent workability, and an electronic device including the wiring can be manufactured.
  • the sintering temperature is, for example, 130 ° C. or less (the lower limit of the sintering temperature is 60 ° C., for example). 100 ° C. is more preferable in that it can be sintered in a short time), and particularly preferably 120 ° C. or less.
  • the sintering time is, for example, 0.5 to 3 hours, preferably 0.5 to 2 hours, particularly preferably 0.5 to 1 hour.
  • the silver nanoparticles are sufficiently sintered even at low temperature sintering (especially, low temperature and short time sintering).
  • a sintered body having excellent conductivity that is, having a volume resistivity of, for example, 15 ⁇ ⁇ cm or less, preferably 10 ⁇ ⁇ cm or less, particularly preferably 8 ⁇ ⁇ cm or less, and most preferably 6 ⁇ ⁇ cm or less.
  • the volume resistivity of a sintered compact can be measured by the method as described in an Example.
  • the conductive ink of the present invention is used, as a substrate, in addition to a heat-resistant plastic substrate such as a glass substrate and a polyimide film, a polyethylene terephthalate (PET) film, a polyethylene
  • PET polyethylene terephthalate
  • a general-purpose plastic substrate having low heat resistance such as a polyester film such as a naphthalate (PEN) film or a polyolefin film such as polypropylene can also be suitably used.
  • Examples of the electronic device obtained by the method for manufacturing an electronic device of the present invention include a liquid crystal display, an organic EL display, a field emission display (FED), an IC card, an IC tag, a solar cell, an LED element, an organic transistor, and a capacitor (capacitor). ), Electronic paper, flexible battery, flexible sensor, membrane switch, touch panel, EMI shield, industrial robot, electric vehicle, hybrid car, and the like.
  • the sintered body of the present invention is a sintered body of the conductive ink.
  • the sintered body of the present invention has excellent conductivity, and the volume resistivity is, for example, 15 ⁇ ⁇ cm or less, preferably 10 ⁇ ⁇ cm or less, particularly preferably 8 ⁇ ⁇ cm or less, and most preferably 6 ⁇ ⁇ cm or less.
  • the sintered body of the present invention is excellent in conductivity as described above. Therefore, a printed circuit board (particularly a large current substrate) provided with wirings and electrodes formed of the sintered body of the present invention and an electronic device provided with the printed circuit board are excellent in electrical characteristics.
  • Preparation Example 1 (Preparation of surface-modified silver nanoparticles) Silver oxalate (molecular weight: 303.78) was obtained from silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.). Into a 500 mL flask was charged 40.0 g (0.1317 mol) of the silver oxalate, and 60 g of n-butanol was added thereto to prepare an n-butanol slurry of silver oxalate.
  • the suspension was heated at 110 ° C. for 1 hour to thermally decompose the silver oxalate-amine complex to obtain a suspension containing dark blue surface-modified silver nanoparticles.
  • the obtained suspension is cooled, 120 g of methanol (a reagent manufactured by Wako Pure Chemical Industries, Ltd., special grade) is added thereto and stirred, and then the surface-modified silver nanoparticles are precipitated by centrifugation, Removed. Next, 120 g of propylene glycol monobutyl ether was added and stirred, and then the surface-modified silver nanoparticles were precipitated by centrifugation, and the supernatant was removed. In this way, moist surface-modified silver nanoparticles containing propylene glycol monobutyl ether were obtained.
  • methanol a reagent manufactured by Wako Pure Chemical Industries, Ltd., special grade
  • the content of the surface-modified silver nanoparticles was 90% by weight in the total amount (100% by weight) of the surface-modified silver nanoparticles in a wet state. That is, 10 wt% of propylene glycol monobutyl ether was contained in the surface-modified silver nanoparticles in a wet state.
  • the surface-modified silver nanoparticles in the wet state were observed using a scanning electron microscope (JSM-6700F, manufactured by JEOL Ltd.), and the particle diameters of 10 silver nanoparticles arbitrarily selected in the SEM photograph were determined. The average value was determined as the average particle size.
  • the average particle diameter (primary particle diameter) of the silver nanoparticle portion in the surface-modified silver nanoparticles was 50 nm.
  • Example 1 (Preparation of silver ink) Dihydroterpineol (16.62 g), EC300 (0.86 g), and BYK302 (0.78 g) were added, and the mixture was stirred in an oil bath for 3 hours (100 rpm ⁇ 3 hrs). Liquid A was prepared by stirring and kneading (2 minutes ⁇ 3 times) with Mazerustar KKK2508).
  • liquid A was added to 30 g of wet-modified surface-modified silver nanoparticles (containing 10% by weight of propylene glycol monobutyl ether) obtained in Preparation Example 1, and a rotating and rotating kneading machine (manufactured by Kurashiki Boseki Co., Ltd., Mazerustar) KKK2508) and kneading (2 minutes ⁇ 3 times) to obtain a black gray silver ink.
  • a rotating and rotating kneading machine manufactured by Kurashiki Boseki Co., Ltd., Mazerustar KKK2508
  • Examples 2-3 and Comparative Examples 1-2 A silver ink was obtained in the same manner as in Example 1 except that the formulation was changed as described in Table 1 below (unit: parts by weight).
  • the printability (transferability to a base material and continuous printability) of the silver ink obtained in Examples and Comparative Examples and the conductivity of the sintered body were evaluated by the following methods.
  • the silver ink obtained by the Example and the comparative example was apply
  • the obtained coating film was quickly sintered using a blast drying furnace under the conditions of 120 ° C. and 30 minutes to obtain a silver sintered film having a thickness of 5 ⁇ m.
  • the volume resistivity of the obtained silver sintered film was measured using a four-terminal method (Loresta GP MCP-T610).
  • Surface-modified silver nanoparticles Silver microparticles using the surface-modified silver nanoparticles obtained in the preparation example: Average particle diameter (laser analysis) 1.5 to 3.0 ⁇ m, trade name “Sylbest TC-505C” ) Dihydroterpineol manufactured by Tokuru Honten: vapor pressure 0.43 mmHg at 30 ° C, manufactured by Nippon Terpene Chemical Co., Ltd.
  • 1,6-HDDA 1,6-hexanediol diacetate, vapor pressure 0.0004 mmHg at 30 ° C
  • Hexyl carbitol vapor pressure at 30 ° C 0.003 mmHg
  • Turpineol C Vapor pressure at 30 ° C 0.018mmHg
  • Butyl carbitol 0.034 mmHg vapor pressure at 30 ° C
  • Propylene glycol monobutyl ether vapor pressure at 30 ° C.
  • Ethylene glycol monobutyl ether acetate vapor pressure at 30 ° C of 1.222 mmHg Butanol: 9.58 mmHg vapor pressure at 30 ° C
  • Solvain AL vinyl chloride / vinyl acetate / vinyl alcohol (93/2/5; wt%) copolymer resin, manufactured by Nissin Chemical Industry Co., Ltd.
  • EC300 ethyl cellulose resin, trade name “Etocel std.300”, Dow Chemical Company BYK302: Polyether-modified polydimethylsiloxane, manufactured by Big Chemie Japan Co., Ltd.
  • the protective agent is an aliphatic monoamine (1) having a total carbon number of 6 or more, an aliphatic monoamine (2) having a total carbon number of 5 or less, and / or an aliphatic diamine (3) having a total carbon number of 8 or less.
  • the terpene solvent (b-1) is 4- (1′-acetoxy-1′-methyl ester) -cyclohexanol acetate, 1,2,5,6-tetrahydrobenzyl alcohol, 1,2,5, 6-tetrahydrobenzyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, 4-t-butylcyclohexyl acetate, dihydroterpineol, dihydroterpinyl acetate, dihydroterpinyloxyethanol, terpinyl methyl ether, and dihydroterpinyl
  • the conductive ink according to any one of [1] to [5], which is at least one solvent selected from methyl ether.
  • the vapor pressure of the glycol ether solvent and / or glycol ester solvent (b-2) at 30 ° C. is 0.05 to 5.0 mmHg, according to any one of [1] to [6] Conductive ink.
  • the glycol ether solvent and / or glycol ester solvent (b-2) is represented by the following formula (b-2-1): R 11 O— (R 13 O) m —R 12 (b-2-1) (Wherein R 11 represents a hydrogen atom or a C 1-5 alkyl group, R 12 represents a C 1-5 alkyl group, R 13 represents a C 2-3 alkylene group, m is an integer of 1 to 3) Indicate)
  • the conductive ink according to any one of [1] to [7], which contains at least a compound represented by: [10]
  • the glycol ether solvent and / or glycol ester solvent (b-2) is at least one selected from ethylene glycol mono C 1-10 alkyl ether and propylene glycol mono C 1-10 alkyl ether.
  • the glycol ether solvent and / or glycol ester solvent (b-2) is a C 2-3 alkylene glycol mono C 1-10 alkyl ether.
  • the content of ethyl lactate acetate, tetrahydrofurfuryl acetate, tetrahydrofurfuryl alcohol, and ethylene glycol (the total amount when containing two or more) is 30% by weight or less of the total amount of the solvent (B). ]
  • the proportion of the total content of the terpene solvent (b-1), the glycol ether solvent and the glycol ester solvent (b-2) in the total amount of the solvent (B) is 70% by weight or more.
  • the ratio of the content of the terpene solvent (b-1) to the content of the glycol ether solvent and / or the glycol ester solvent (b-2) is 90/10 to 60/40.
  • the binder resin (C) is further contained in an amount of 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the surface-modified silver nanoparticles (A), and any one of [1] to [23] The conductive ink described in 1. [25] The conductive ink according to any one of [1] to [23], further containing 0.5 to 5.0% by weight of the binder resin (C) based on the total amount of the conductive ink. [26] The conductive ink according to [24] or [25], wherein the binder resin (C) is a cellulose resin.
  • a sintered body having a volume resistivity of 15 ⁇ ⁇ cm or less can be obtained by heating at a temperature of 120 ° C. or lower for 0.5 to 1 hour, and any one of [1] to [30] The conductive ink described.
  • [33] The conductive ink according to any one of [1] to [32], which is a conductive ink for offset printing.
  • [34] Use of the conductive ink according to any one of [1] to [33] as a conductive ink for offset printing.
  • a method for manufacturing an electronic device comprising a step of applying the conductive ink according to any one of [1] to [33] onto a substrate by an offset printing method and a step of sintering.
  • [37] The sintered body of conductive ink according to [36], wherein the volume resistivity is 15 ⁇ ⁇ cm or less.
  • An electronic device comprising a conductive ink sintered body according to any one of [1] to [33] on a substrate.
  • the conductive ink of the present invention can be suitably used for the purpose of forming wiring and electrodes on a printed board.

Abstract

厚膜で、導電性に優れた配線や電極を効率よく形成することができる、導電性インクを提供する。 本発明の導電性インクは、下記表面修飾銀ナノ粒子(A)及び下記溶剤(B)を含有する。 表面修飾銀ナノ粒子(A):アミンを含む保護剤で表面が被覆された構成を有する銀ナノ粒子 溶剤(B):テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)とを含有し、且つ30℃における蒸気圧が0.05~15mmHgの溶剤の含有量が溶剤全量の75重量%以上である

Description

導電性インク
 本発明は、プリント基板の配線等を形成する用途に用いられる導電性インクに関する。本願は、2018年5月23日に日本に出願した、特願2018-099041号の優先権を主張し、その内容をここに援用する。
 銀ナノ粒子は低温焼結が可能であるため、プラスチック基板上に電極や配線等を形成する用途に用いられている。また、銀ナノ粒子は、凝集し易いため保護剤でその表面を被覆することによって分散性を付与することが知られている。そして、表面が被覆された銀ナノ粒子を溶剤中に分散させてなる導電性インクを基板上に塗布して配線パターン形状の塗膜を形成し、その塗膜を乾燥させて焼結することで、導電性を有する配線が形成できる。
 そのため、銀ナノ粒子の保護剤には、焼結により速やかに除去できることが求められる。
 また、表面が被覆された銀ナノ粒子を分散させる溶剤としては、メタノールやブタノール等のアルコール系溶剤が使用されていたが、アルコール系溶剤は揮発しやすく、塗布前に前記溶剤が揮発することにより流動性が低下して、均一に塗布することが困難となる場合があった。
 特許文献1には、アミンを含む保護剤で表面が被覆された銀ナノ粒子は、低温焼結でも速やかに保護剤が除去され、銀ナノ粒子が焼結するため、良好な導電性が得られること、溶剤としてブチルカルビトールやヘキシルカルビトール等の揮発性が低い溶剤を使用すれば、基板上に塗布する前に溶剤が揮発するのを抑制することができ、スクリーン印刷に使用するスクリーン版の目詰まりを抑制して、連続使用が可能となることが記載されている。
国際公開第2016/132649号
 近年、産業用ロボット、電気自動車、ハイブリッドカー等の大電流が必要とされる分野においては、配線の厚みを数十μm~数mmまで厚くすることが求められている。解決方法として、導電性インクの塗膜を何層も積層することにより、厚膜の配線を形成することが考えられる。
 塗膜を積層して配線を形成する場合、導電性インクを塗布して1層目を形成し、これを乾燥させた後、2層目の塗膜を積層する工程を所望の厚みとなるまで繰り返すことが必要となるが、導電性インクが極端に揮発性が低い溶剤を含有する場合、乾燥に時間がかかり、作業性が著しく低下することが問題である。また、乾燥が不十分であると、2層目の塗膜を積層することにより1層目の塗膜が変形する場合がある。一方、素速く乾燥し過ぎると、内部に溶剤を含んだ状態で表面の膜化が進行して、その後の焼結によっても溶剤の一部が除去できなくなり、得られる焼結体の面抵抗が大きくなることにより、導電性が低下する場合があることが分かった。
 従って、本発明の目的は、厚膜で、導電性に優れた配線や電極を効率よく形成することができる導電性インクを提供することにある。
 本発明の他の目的は、前記導電性インクを用いる電子デバイスの製造方法を提供することにある。
 本発明の他の目的は、前記導電性インクの焼結体を提供することにある。
 本発明の他の目的は、前記導電性インクの焼結体を備えた電子デバイスを提供することにある。
 本発明者は上記課題を解決するため鋭意検討した結果、アミンを含む保護剤で表面が被覆された構成を有する銀ナノ粒子を、テルペン系溶剤と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤とを含有し、30℃における蒸気圧が0.05~15mmHgの溶剤の含有量が溶剤全量の75重量%以上である溶剤に分散させて得られる導電性インクは、前記溶剤が適度な揮発性(すなわち、塗布前の増粘を抑制し、塗布後は速やかに揮発する性質)を有するため、オフセット印刷法等を用いて、均一に塗布することができ、得られた塗膜(1層目)に乾燥処理を行うことなく続いて2層目の塗膜を形成しても、1層目の塗膜が変形することなく形状を保持することができ、所望の厚みまで連続して積層することができることを見いだした。
 また、バインダー樹脂を特定の範囲で添加すると、導電性を損なうことなく、且つ転写性を損なうことなく導電性インクを適度に増粘することができ、それによって塗膜1層当たりの厚膜化が可能であり、所望の厚みまでの塗膜の積層数を低減することができるので、より一層作業性を向上できることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、下記表面修飾銀ナノ粒子(A)及び下記溶剤(B)を含有する導電性インクを提供する。
表面修飾銀ナノ粒子(A):アミンを含む保護剤で表面が被覆された構成を有する銀ナノ粒子
溶剤(B):テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)とを含有し、且つ30℃における蒸気圧が0.05~15mmHgの溶剤の含有量が溶剤全量の75重量%以上である
 本発明は、また、表面修飾銀ナノ粒子(A)における保護剤が、アミンとして、総炭素数6以上の脂肪族モノアミン(1)と、総炭素数5以下の脂肪族モノアミン(2)及び/又は総炭素数8以下の脂肪族ジアミン(3)とを含む前記の導電性インクを提供する。
 本発明は、また、更に、バインダー樹脂(C)を、表面修飾銀ナノ粒子(A)100重量部に対して0.1~3.0重量部含有する前記の導電性インクを提供する。
 本発明は、また、更に、シロキサン化合物(D)を、表面修飾銀ナノ粒子(A)100重量部に対して0.1~3.0重量部含有する前記の導電性インクを提供する。
 本発明は、また、25℃、せん断速度10(1/s)における粘度が30~80Pa・sである前記の導電性インクを提供する。
 本発明は、また、オフセット印刷用導電性インクである前記の導電性インクを提供する。
 本発明は、また、前記の導電性インクを、オフセット印刷法により基板上に塗布する工程、及び焼結する工程を含む電子デバイスの製造方法を提供する。
 本発明は、また、前記の導電性インクの焼結体を提供する。
 本発明は、また、基板上に、前記の導電性インクの焼結体を備えた電子デバイスを提供する。
 本発明の導電性インクは適度な揮発性を有する溶剤を含有するため保存安定性に優れ、塗布前の組成変動を抑制して良好な塗布性を安定的に維持することができる。そして、塗布後は速やかに乾燥する。そのため、1層目塗膜上に2層目塗膜を続けざまに積層しても塗膜のパターン形状が損なわれることがない。導電性インクを塗布した後は、焼結することにより(低温焼結であっても)、優れた導電性を有する焼結体が得られる。
 特に、本発明の導電性インクがバインダー樹脂を特定の範囲で含有する場合、適度な粘度が付与されることにより、塗膜1層当たりの厚膜化が可能となり、所望の厚みまでの塗膜の積層数を低減することができるので、より一層作業性が向上する。また、オフセット印刷法等により、細線を高精度に描画することが可能となる。
 従って、本発明の導電性インクは、プリント基板(特に、大電流基板)の配線や電極を形成する用途に好適に使用することができる。
 [導電性インク]
 本発明の導電性インクは、下記表面修飾銀ナノ粒子(A)及び下記溶剤(B)を含有する。
表面修飾銀ナノ粒子(A):アミンを含む保護剤で表面が被覆された構成を有する銀ナノ粒子
溶剤(B):テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)とを含有し、且つ30℃における蒸気圧が0.05~15mmHgの溶剤の含有量が溶剤全量の75重量%以上である
 本発明の導電性インクは、適度な揮発性を有する溶剤(B)を含有するため、塗布前の組成変動を抑制しつつ速乾性を示す。そのため、均一に塗布することができ、塗布後は速やかに乾燥するため、連続して塗膜を積層しても形状が損なわれることがない。
 本発明の導電性インクは適度な粘度を有することが、良好な印刷パターンを形成することができる点、塗布性に優れ且つ1層当たりの厚膜化が可能となり、積層により配線を形成する場合において、所望の厚みまでの塗膜の積層数を低減することができる点で好ましく、粘度(25℃、せん断速度10(1/s)における)は、例えば30~80Pa・s程度、好ましくは30~70Pa・s、特に好ましくは35~70Pa・sである。
 本発明の導電性インクが前記粘度を備える場合、オフセット印刷法等により基板に精度良く塗布することができる。そして、本発明の導電性インクが後述のバインダー樹脂(C)(特に、セルロース系樹脂)を含有することにより前記粘度を備える場合、焼結することにより(低温焼結であっても)、優れた導電性を有する焼結体が得られる。
 更に、本発明の導電性インクは分散安定性に優れ、例えば銀濃度65重量%の導電性インクを5℃で保管した場合、1ヶ月間以上の期間において粘度の上昇を抑制することができる。
 本発明の導電性インクは上記特性を備えるため、オフセット印刷用導電性インクとして好適に使用することができ、オフセット印刷法等により、プリント基板(特に、大電流基板)の配線や電極を形成する用途に好適に使用することができる。
 (表面修飾銀ナノ粒子(A))
 本発明における表面修飾銀ナノ粒子は、銀ナノ粒子の表面が、アミンを含む保護剤で被覆された構成、より詳細には、銀ナノ粒子表面にアミンの非共有電子対が電気的に配位した構成を有する。本発明における表面修飾銀ナノ粒子は、前記構成を有することにより銀ナノ粒子相互間の再凝集が防止され、導電性インク中において、高分散した状態を安定的に維持することができる。
 表面修飾銀ナノ粒子の銀ナノ粒子部分の平均一次粒子径は、例えば0.5~100nm、好ましくは0.5~80nm、より好ましくは1~70nm、さらに好ましくは1~60nmである。尚、粒子径は、走査型電子顕微鏡(SEM)観察により求められる。
 表面修飾銀ナノ粒子(A)の含有量は、良好な導電性を有する焼結体が得られる点、及び分散安定性に優れる(すなわち、高分散性を長期に亘って安定的に維持することができ、粘度の上昇を抑制することができる)点において、導電性インク全量の、例えば60~85重量%であり、上限は、好ましくは80重量%、特に好ましくは75重量%である。
 (溶剤(B))
 本発明における溶剤(B)は、テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)とを含有する。また、溶剤(B)全量における、30℃における蒸気圧が0.05~15mmHgの溶剤の含有量は、溶剤全量の75重量%以上である。
 前記テルペン系溶剤(b-1)としては、30℃における蒸気圧が例えば0.05~5.0mmHgであることが、適度な揮発性を有する点で好ましく、特に好ましくは0.1~3.0mmHg、最も好ましくは0.5~3.0mmHg、とりわけ好ましくは1.0~3.0mmHgである。
 前記テルペン系溶剤(b-1)としては、例えば、4-(1’-アセトキシ-1’-メチルエステル)-シクロヘキサノールアセテート、1,2,5,6-テトラヒドロベンジルアルコール、1,2,5,6-テトラヒドロベンジルアセテート、シクロヘキシルアセテート、2-メチルシクロヘキシルアセテート、4-t-ブチルシクロヘキシルアセテート、ジヒドロターピネオール、ジヒドロターピニルアセテート、ジヒドロターピニルオキシエタノール、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中から、上記条件に合致するように、その種類及び含有量を適宜選択することが好ましい。
 前記グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)としては、30℃における蒸気圧が例えば0.05~5.0mmHgであることが、適度な揮発性を有する点で好ましく、特に好ましくは0.1~3.0mmHg、最も好ましくは0.5~3.0mmHg、とりわけ好ましくは1.0~3.0mmHgである。
 前記グリコールエーテル系溶剤としては、例えば、下記式(b-2-1)
  R11O-(R13O)m-R12   (b-2-1)
(式中、R11は水素原子、アルキル基、又はアリール基を示し、R12はアルキル基、又はアリール基を示し、R13はアルキレン基を示す。mは1以上の整数を示す)
で表される化合物が挙げられる。
 前記R11、R12におけるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~10(好ましくは、炭素数1~5)の直鎖状又は分岐鎖状アルキル基が挙げられる。アリール基としては、例えば、炭素数6~10のアリール基(例えば、フェニル基等)が挙げられる。
 前記R13におけるアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。本発明においては、なかでも、炭素数1~4のアルキレン基が好ましく、特に好ましくは炭素数1~3のアルキレン基、最も好ましくは炭素数2~3のアルキレン基である。
 mは1以上の整数であり、例えば1~8の整数、好ましくは1~3の整数、特に好ましくは1である。
 前記グリコールエーテル系溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル等のエチレングリコールモノC1-10アルキルエーテル;エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル等のエチレングリコールモノC6-10アリール若しくはC7-16アラルキルエーテル;プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノC1-10アルキルエーテル;エチレングリコールメチル-n-プロピルエーテル、エチレングリコールメチル-n-ブチルエーテル、エチレングリコールメチルイソアミルエーテル等のエチレングリコールジC1-10アルキルエーテル;プロピレングリコールメチル-n-プロピルエーテル、プロピレングリコールメチル-n-ブチルエーテル、プロピレングリコールメチルイソアミルエーテル等のプロピレングリコールジC1-10アルキルエーテル;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノイソプロピルエーテル等のジエチレングリコールモノC1-10アルキルエーテル;ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノベンジルエーテル等のジエチレングリコールモノC6-10アリール若しくはC7-16アラルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールメチル-n-ブチルエーテル等のジエチレングリコールジC1-10アルキルエーテル;ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールメチル-イソペンチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールメチルシクロペンチルエーテル等のジプロピレングリコールジC1-10アルキルエーテル;トリエチレングリコールメチル-n-ブチルエーテル等のトリエチレングリコールジC1-10アルキルエーテル;トリプロピレングリコールメチル-n-プロピルエーテル、トリプロピレングリコールジメチルエーテル等のトリプロピレングリコールジC1-10アルキルエーテル等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中から、上記条件に合致するように、その種類及び含有量を適宜選択することが好ましい。
 前記グリコールエステル系溶剤としては、例えば、下記式(b-2-2)
  R14O-(R16O)m'-R15   (b-2-2)
(式中、R14は水素原子、アルキル基、アリール基、又はアシル基を示し、R15はアシル基を示し、R16はアルキレン基を示す。m’は1以上の整数を示す)
で表される化合物が挙げられる。すなわち、本発明におけるグリコールエステル系溶剤にはグリコールエーテルエステル系溶剤も含まれる。
 前記R14、R15におけるアシル基(RCO-基)としては、前記Rが炭素数1~10(好ましくは、炭素数1~5)の直鎖状又は分岐鎖状アルキル基であるアシル基(例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基等)が挙げられる。
 前記R14におけるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~10(好ましくは1~5)の直鎖状又は分岐鎖状アルキル基が挙げられる。アリール基としては、例えば、炭素数6~10のアリール基(例えば、フェニル基等)が挙げられる。
 前記R16におけるアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。本発明においては、なかでも、炭素数1~4のアルキレン基が好ましく、特に好ましくは炭素数1~3のアルキレン基、最も好ましくは炭素数2~3のアルキレン基である。
 m’は1以上の整数であり、例えば1~8の整数、好ましくは1~3の整数、特に好ましくは1である。
 前記グリコールエステル系溶剤としては、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のC2-3アルキレングリコールC1-10アルキルエーテルC1-10アルキルエステル;ジエチレングリコール-n-ブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート等のジC2-3アルキレングリコールC1-10アルキルエーテルC1-10アルキルエステル;プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート等のC2-3アルキレングリコールジC1-10アルキルエステル等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中から、上記条件に合致するように、その種類及び含有量を適宜選択することが好ましい。
 本発明においては、溶剤(b-2)としてグリコールエーテル系溶剤を少なくとも含有することが、塗布前の増粘を抑制し、塗布後は速やかに揮発する点で好ましく、特に、グリコールモノエーテルを少なくとも含有することが好ましい。
 前記グリコールモノエーテルとしては、エチレングリコールモノC1-10アルキルエーテル及びプロピレングリコールモノC1-10アルキルエーテルから選択される少なくとも1種が好ましい。
 前記グリコールモノエーテルとしては、エチレングリコールモノC1-10アルキルエーテル、プロピレングリコールモノC1-10アルキルエーテル等の、C2-3アルキレングリコールモノC1-10アルキルエーテルが好ましい。
 本発明の導電性インクは、溶剤(B)として、上記以外にも他の溶剤(例えば、乳酸エチルアセテート、テトラヒドロフルフリルアセテート、テトラヒドロフルフリルアルコール、エチレングリコール等)を1種又は2種以上含有していても良いが、他の溶剤の含有量は、本発明の導電性インクに含まれる溶剤(B)全量の、例えば30重量%以下であることが好ましく、より好ましくは20重量%以下、特に好ましくは15重量%以下、最も好ましくは10重量%以下、更に好ましく5重量%以下、とりわけ好ましくは1重量%以下である。他の溶剤の含有量が上記範囲を上回り、揮発性が高すぎる溶剤を多く含有する場合は塗布装置の目詰まりが生じ易くなる傾向がある。一方、揮発性が低すぎる溶剤を多く含有する場合は、速乾性が損なわれ、塗布後に乾燥させるために加熱等の処理を施すことが必要となり、作業性が低下する傾向がある。
 従って、溶剤(B)全量における、テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及びグリコールエステル系溶剤(b-2)の合計含有量の占める割合は、例えば70~100重量%であり、下限は、好ましくは80重量%、更に好ましくは85重量%、特に好ましくは90重量%、最も好ましく95重量%、とりわけ好ましくは99重量%である。
 溶剤(B)に含まれるテルペン系溶剤(b-1)の含有量(2種以上含有する場合はその総量)と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)の含有量(2種以上含有する場合はその総量)の比[(b-1)/(b-2);重量比]は、例えば90/10~60/40、好ましくは85/15~65/35、特に好ましくは80/20~70/30である。
 テルペン系溶剤(b-1)の含有量(2種以上含有する場合はその総量)は、溶剤(B)全量の、例えば60~90重量%、好ましくは65~85重量%、特に好ましくは70~80重量%である。
 テルペン系溶剤(b-1)の含有量(2種以上含有する場合はその総量)は、導電性インク全量の、例えば5~40重量%、好ましくは10~35重量%、特に好ましくは15~30重量%である。
 グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)の含有量(2種以上含有する場合はその総量)は、溶剤(B)全量の、例えば10~40重量%、好ましくは15~35重量%、特に好ましくは20~30重量%である。
 グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)の含有量(2種以上含有する場合はその総量)は、導電性インク全量の、例えば0.5~20重量%、好ましくは1.0~15重量%、特に好ましくは3~10重量%である。
 溶剤(B)の含有量は、表面修飾銀ナノ粒子(A)100重量部に対して、例えば30~70重量部、好ましくは35~65重量部、特に好ましくは35~60重量部、最も好ましくは40~55重量部である。
 また、溶剤(B)全量における、30℃における蒸気圧が0.05~15mmHg(好ましくは、0.1~5.0mmHg)の溶剤の含有量は75重量%以上であり、良好な塗布性と速乾性とを兼ね備え、1層目の印刷完了から2層目を積層するまでの時間の管理が容易となる点で、好ましくは80重量%以上、更に好ましくは85重量%以上、特に好ましくは90重量%以上、最も好ましくは95重量%以上であり、とりわけ、実質的に30℃における蒸気圧が0.05~15mmHgの溶剤のみを含有していることが好ましい。
 溶剤(B)全量における、30℃における蒸気圧が0.05~1mmHg(好ましくは、0.1~1mmHg)の溶剤の含有量は、例えば50~80重量%、好ましくは60~80重量%、特に好ましくは70~80重量%である。
 溶剤(B)全量における、30℃における蒸気圧が1mmHgを超え、15mmHgの範囲(好ましくは、1mmHgを超え、5mmHgの範囲)の溶剤の含有量は、例えば20~50重量%、好ましくは20~40重量%、特に好ましくは20~30重量%である。
 従って、溶剤(B)全量における、30℃における蒸気圧が0.05mmHg未満(好ましくは、0.1mmHg未満)の溶剤の含有量は25重量%以下であり、好ましくは20重量%以下、更に好ましくは10重量%以下、特に好ましくは5重量%以下、最も好ましくは1重量%以下である。そのため、塗布後は速やかに乾燥し、乾燥工程を挟むことなく、塗膜上に塗膜を積層しても塗膜の形状が損なわれることがない。
 また、溶剤(B)全量における、30℃における蒸気圧が15mmHg超(好ましくは、5mmHg超)の溶剤の含有量は25重量%以下であり、好ましくは20重量%以下、更に好ましくは10重量%以下、特に好ましくは5重量%以下、最も好ましくは1重量%以下である。そのため、塗布前の組成変動を抑制することができ、保存安定性及び塗布性に優れる。また、ブランケットからの転写性にも優れる。
 (その他の成分)
 本発明の導電性インクは、上記成分以外にも、例えば、バインダー樹脂、表面エネルギー調整剤、可塑剤、レベリング剤、消泡剤、密着性付与剤等の添加剤を必要に応じて含有することができる。
 本発明の導電性インクは、なかでも、適度な粘度が付与され、塗膜1層当たりの厚膜化が可能であり、積層により配線を形成する場合において、所望の厚みまでの塗膜の積層数を低減して、作業性を向上することができる点で、バインダー樹脂(C)を1種又は2種以上含有することが好ましい。
 バインダー樹脂(C)としては、例えば、塩化ビニル-酢酸ビニル共重合体樹脂、ポリビニルブチラール樹脂、ポリエステル系樹脂、アクリル系樹脂、セルロース系樹脂等が挙げられる。
 本発明においては、なかでもセルロース系樹脂を使用することが、導電性の低下を引き起こすことなく粘度を付与することができる点で好ましく、例えば、商品名「エトセルstd.200」、「エトセルstd.300」(以上、ダウケミカル社製)等の市販品を使用することができる。
 前記バインダー樹脂(C)(例えば、セルロース系樹脂)の含有量は、本発明の導電性インクの粘度が上述の範囲となるよう適宜調整することができ、表面修飾銀ナノ粒子(A)100重量部に対して、例えば0.1~3.0重量部である。
 前記バインダー樹脂(C)(例えば、セルロース系樹脂)の含有量は、本発明の導電性インクの粘度が上述の範囲となるよう適宜調整することができ、導電性インク全量の、例えば0.5~5.0重量%である。
 本発明の導電性インクは、更に、表面エネルギー調整剤としてシロキサン化合物(D)を1種又は2種以上含有することが、オフセット印刷に用いる際に導電性インクがブランケットから基材へ良好に転写される点で好ましい。
 前記シロキサン化合物(D)としては、下記式(d)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R21~R26は、同一又は異なって、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数6~10のアリール基を示す。nは1以上の整数を示す。式中のR21とR24は互いに結合していても良い)
 前記炭素数1~6のアルキル基としては、例えば、メチル基等が挙げられる。
 前記炭素数6~10のアリール基としては、例えば、フェニル基等が挙げられる。
 前記アルキル基やアリール基が有していてもよい置換基としては、例えば、アミノ基、エポキシ基、カルボキシル基、ポリエーテル基等が挙げられる。
 本発明では、例えば、商品名「BYK-302」、「BYK-307」(以上、ポリエーテル変性ポリジメチルシロキサン、ビックケミー・ジャパン(株)製)等の市販品を使用することができる。
 前記シロキサン化合物(D)の含有量は、本発明の導電性インクの粘度が上述の範囲となるよう適宜調整することができ、表面修飾銀ナノ粒子(A)100重量部に対して、例えば0.1~3.0重量部である。
 前記シロキサン化合物(D)の含有量は、本発明の導電性インクの粘度が上述の範囲となるよう適宜調整することができ、導電性インク全量の例えば0.5~5.0重量%である。
 (導電性インクの製造方法)
 本発明の導電性インクは、例えば、銀化合物と、アミンを含む保護剤とを混合して、前記銀化合物とアミンを含む錯体を生成させる工程(錯体生成工程)、前記錯体を熱分解させる工程(熱分解工程)、及び、必要に応じて反応生成物を洗浄する工程(洗浄工程)を経て表面修飾銀ナノ粒子(A)を製造し、得られた表面修飾銀ナノ粒子(A)を溶剤(B)とを混合する工程(インクの調製工程)を経て製造することができる。
 (錯体生成工程)
 前記銀化合物としては、加熱により容易に分解して、金属銀を生成する化合物を使用することが好ましい。このような銀化合物としては、例えば、ギ酸銀、酢酸銀、シュウ酸銀、マロン酸銀、安息香酸銀、フタル酸銀等のカルボン酸銀;フッ化銀、塩化銀、臭化銀、ヨウ化銀等のハロゲン化銀;硫酸銀、硝酸銀、炭酸銀等が挙げられる。本発明においては、なかでも、銀含有率が高く、且つ、還元剤無しに熱分解することができ、分解により容易に金属銀を生成し、インクに還元剤由来の不純物が混入しにくい点で、シュウ酸銀が好ましい。
 前記アミンはアンモニアの少なくとも1つの水素原子が炭化水素基で置換された化合物であり、第一級アミン、第二級アミン、及び第三級アミンが含まれる。また、前記アミンはモノアミンであっても、ジアミン等の多価アミンであってもよい。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記アミンとしては、なかでも、下記式(a-1)で表され、式中のR1、R2、R3が同一又は異なって、水素原子又は1価の炭化水素基(R1、R2、R3が共に水素原子である場合は除く)であり、総炭素数が6以上であるモノアミン(1)、下記式(a-1)で表され、式中のR1、R2、R3が同一又は異なって、水素原子又は1価の炭化水素基(R1、R2、R3が共に水素原子である場合は除く)であり、総炭素数が5以下であるモノアミン(2)、及び下記式(a-2)で表され、式中のR8が2価の炭化水素基であり、R4~R7は同一又は異なって、水素原子又は1価の炭化水素基であり、総炭素数が8以下であるジアミン(3)から選択される少なくとも1種を含有することが好ましく、特に、前記モノアミン(1)と、モノアミン(2)及び/又はジアミン(3)とを併せて含有することが好ましい。
Figure JPOXMLDOC01-appb-C000002
 前記炭化水素基には、脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基が含まれるが、なかでも脂肪族炭化水素基又は脂環式炭化水素基が好ましく、特に脂肪族炭化水素基が好ましい。従って、上記モノアミン(1)、モノアミン(2)、ジアミン(3)としては、脂肪族モノアミン(1)、脂肪族モノアミン(2)、脂肪族ジアミン(3)が好ましい。
 また、1価の脂肪族炭化水素基には、アルキル基及びアルケニル基が含まれる。1価の脂環式炭化水素基には、シクロアルキル基及びシクロアルケニル基が含まれる。更に、2価の脂肪族炭化水素基には、アルキレン基及びアルケニレン基が含まれ、2価の脂環式炭化水素基には、シクロアルキレン基及びシクロアルケニレン基が含まれる。
 R1、R2、R3における1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基等の炭素数1~20程度のアルキル基;ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等の炭素数2~20程度のアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の炭素数3~20程度のシクロアルキル基;シクロペンテニル基、シクロへキセニル基等の炭素数3~20程度のシクロアルケニル基等が挙げられる。
 R4~R7における1価の炭化水素基としては、上記例示のうち、炭素数7以下のものが挙げられる。
 R8における2価の炭化水素基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘプタメチレン基等の炭素数1~8のアルキレン基;ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8のアルケニレン基等が挙げられる。
 上記R1~R8における炭化水素基は、種々の置換基[例えば、ハロゲン原子、オキソ基、ヒドロキシル基、置換オキシ基(例えば、C1-4アルコキシ基、C6-10アリールオキシ基、C7-16アラルキルオキシ基、C1-4アシルオキシ基等)、カルボキシル基、置換オキシカルボニル基(例えば、C1-4アルコキシカルボニル基、C6-10アリールオキシカルボニル基、C7-16アラルキルオキシカルボニル基等)、シアノ基、ニトロ基、スルホ基、複素環式基等]を有していてもよい。前記ヒドロキシル基やカルボキシル基は有機合成の分野で慣用の保護基で保護されていてもよい。
 モノアミン(1)は、銀ナノ粒子に高分散性を付与する機能を有する化合物であり、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の直鎖状アルキル基を有する第一級アミン;イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の分岐鎖状アルキル基を有する第一級アミン;シクロヘキシルアミン等のシクロアルキル基を有する第一級アミン;オレイルアミン等のアルケニル基を有する第一級アミン等;N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N-プロピル-N-ブチルアミン等の直鎖状アルキル基を有する第二級アミン;N,N-ジイソヘキシルアミン、N,N-ジ(2-エチルヘキシル)アミン等の分岐鎖状アルキル基を有する第二級アミン;トリブチルアミン、トリヘキシルアミン等の直鎖状アルキル基を有する第三級アミン;トリイソヘキシルアミン、トリ(2-エチルヘキシル)アミン等の分岐鎖状アルキル基を有する第三級アミン等が挙げられる。
 上記モノアミン(1)のなかでも、アミノ基が銀ナノ粒子表面に吸着した際に他の銀ナノ粒子との間隔を確保できるため、銀ナノ粒子同士の凝集を防ぐ作用が向上する点で、総炭素数6以上(総炭素数の上限は、入手のし易さ、及び焼結時における除去のし易さの点で、18程度が好ましく、更に好ましくは16、特に好ましくは12である)の直鎖状アルキル基を有するアミン(特に、第一級アミン)が好ましく、とりわけ、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等が好ましい。
 また、上記モノアミン(1)のなかでも、分岐鎖状アルキル基を有するアミン(特に、第一級アミン)を用いると、同じ総炭素数の直鎖状アルキル基を有するアミンを用いる場合に比べ、分岐鎖状アルキル基の立体的因子により、より少ない量で、銀ナノ粒子に高分散性を付与することができる。そのため、焼結時において、特に低温焼結時において、前記アミンを効率よく除去することができ、より導電性に優れた焼結体が得られる点で好ましい。
 上記分岐鎖状アルキル基を有するアミンとしては、特に、イソヘキシルアミン、2-エチルヘキシルアミン等の総炭素数6~16(好ましくは6~10)の分枝鎖状アルキル基を有するアミンが好ましく、とりわけ、立体的因子の観点から、2-エチルヘキシルアミン等の、窒素原子から2番目の炭素原子において枝分かれしている構造を有する分岐鎖状アルキル基を有するアミンが有効である。
 モノアミン(2)は、モノアミン(1)に比べると炭化水素鎖が短いので、それ自体は銀ナノ粒子に高分散性を付与する機能は低いと考えられるが、前記モノアミン(1)より極性が高く銀原子への配位能が高いため、錯体形成促進効果を有すると考えられる。また、炭化水素鎖が短いため、低温焼結においても、短時間(例えば30分間以下、好ましくは20分間以下)で銀ナノ粒子表面から除去することができ、導電性に優れた焼結体が得られる。
 モノアミン(2)としては、例えば、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の、直鎖状又は分岐鎖状アルキル基を有する総炭素数2~5の第一級アミン;N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン、N,N-ジメチルアミン、N,N-ジエチルアミン等の、直鎖状又は分岐鎖状アルキル基を有する総炭素数2~5の第二級アミン等が挙げられる。
 モノアミン(2)としては、なかでも、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の直鎖状又は分岐鎖状アルキル基を有する総炭素数2~5(好ましくは、総炭素数4~5)の第一級アミンが好ましく、とりわけn-ブチルアミン等の直鎖状アルキル基を有する総炭素数2~5(好ましくは、総炭素数4~5)の第一級アミンが好ましい。
 ジアミン(3)の総炭素数は8以下(例えば、1~8)であり、前記モノアミン(1)より極性が高く銀原子への配位能が高いため、錯体形成促進効果を有すると考えられる。また、前記ジアミン(3)は、錯体の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、ジアミン(3)を使用すると銀ナノ粒子製造をより効率的に行うことができる。さらに、ジアミン(3)を含む保護剤で被覆された構成を有する表面修飾銀ナノ粒子は、極性の高い溶剤を含む分散媒体中において優れた分散安定性を発揮する。さらに、前記ジアミン(3)は、炭化水素鎖が短いため、低温焼結においても、短時間(例えば30分間以下、好ましくは20分間以下)で銀ナノ粒子表面から除去することができ、導電性に優れた焼結体が得られる。
 前記ジアミン(3)としては、例えば、エチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,5-ジアミノ-2-メチルペンタン等の、式(a-2)中のR4~R7が水素原子であり、R8が直鎖状又は分岐鎖状アルキレン基であるジアミン;N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、N,N’-ジエチル-1,4-ブタンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン等の式(a-2)中のR4、R6が同一又は異なって直鎖状又は分岐鎖状アルキル基であり、R5、R7が水素原子であり、R8が直鎖状又は分岐鎖状アルキレン基であるジアミン;N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン等の式(a-2)中のR4、R5が同一又は異なって直鎖状又は分岐鎖状アルキル基であり、R6、R7が水素原子であり、R8が直鎖状又は分岐鎖状アルキレン基であるジアミン等が挙げられる。
 これらのなかでも、前記式(a-2)中のR4、R5が同一又は異なって直鎖状又は分岐鎖状アルキル基であり、R6、R7が水素原子であり、R8が直鎖状又は分岐鎖状アルキレン基であるジアミン[特に、式(a-2)中のR4、R5が直鎖状アルキル基であり、R6、R7が水素原子であり、R8が直鎖状アルキレン基であるジアミン]が好ましい。
 式(a-2)中のR4、R5が同一又は異なって直鎖状又は分岐鎖状アルキル基であり、R6、R7が水素原子であるジアミン、すなわち第一級アミノ基と第三級アミノ基を有するジアミンは、前記第一級アミノ基は銀原子に対して高い配位能を有するが、前記第三級アミノ基は銀原子に対する配位能に乏しいため、形成される錯体が過剰に複雑化することが防止され、それにより、錯体の熱分解工程において、より低温且つ短時間での熱分解が可能となる。これらのなかでも、低温焼結において短時間で銀ナノ粒子表面から除去できる点から、総炭素数6以下(例えば、1~6)のジアミンが好ましく、総炭素数5以下(例えば、1~5)のジアミンがより好ましい。
 本発明におけるアミンとして、モノアミン(1)と、モノアミン(2)及び/又はジアミン(3)とを併せて含有する場合において、これらの使用割合は、特に限定されないが、アミン全量[モノアミン(1)+モノアミン(2)+ジアミン(3);100モル%]を基準として、下記範囲であることが好ましい。
 モノアミン(1)の含有量:例えば5~65モル%(下限は、好ましくは10モル%、特に好ましくは15モル%である。また、上限は、好ましくは50モル%、特に好ましくは40モル%、最も好ましくは35モル%である)
 モノアミン(2)とジアミン(3)の合計含有量:例えば35~95モル%(下限は、好ましくは50モル%、特に好ましくは60モル%、最も好ましくは65モル%である。また、上限は、好ましくは90モル%、特に好ましくは85モル%である)
 さらに、モノアミン(2)とジアミン(3)を共に使用する場合、モノアミン(2)とジアミン(3)の各含有量は、アミン全量[モノアミン(1)+モノアミン(2)+ジアミン(3);100モル%]を基準として、下記範囲であることが好ましい。
 モノアミン(2):例えば5~70モル%(下限は、好ましくは10モル%、特に好ましくは15モル%である。また、上限は、好ましくは65モル%、特に好ましくは60モル%である)
 ジアミン(3):例えば5~50モル%(下限は、好ましくは10モル%である。また、上限は、好ましくは45モル%、特に好ましくは40モル%である)
 モノアミン(1)を上記範囲で含有することにより、銀ナノ粒子の分散安定性が得られる。モノアミン(1)の含有量が上記範囲を下回ると、銀ナノ粒子の分散安定性が得られにくくなる傾向がある。一方、モノアミン(1)の含有量が上記範囲を上回ると、低温焼結によってアミンが除去されにくくなる傾向がある。
 前記モノアミン(2)を上記範囲で含有することにより、錯体形成促進効果が得られやすい。また、低温且つ短時間での焼結が可能となり、更に、焼結時にジアミン(3)が銀ナノ粒子表面から除去されやすくなる。
 前記ジアミン(3)を上記範囲で含有することにより、錯体形成促進効果及び錯体の熱分解促進効果が得られやすい。また、ジアミン(3)を含む保護剤で被覆された構成を有する表面修飾銀ナノ粒子は、極性の高い溶剤を含む分散媒体中において優れた分散安定性を発揮する。
 本発明においては、銀原子への配位能が高いモノアミン(2)及び/又はジアミン(3)を用いると、それらの使用割合に応じて、モノアミン(1)の使用量を減量することができ、低温短時間での焼結の場合において、これらアミンが銀ナノ粒子表面から除去されやすくなり、銀ナノ粒子の焼結を十分に進行させることができるようになる。
 本発明において保護剤として使用するアミンには上記モノアミン(1)、モノアミン(2)、及びジアミン(3)以外にも他のアミンを含有していても良いが、保護剤に含まれる全アミンにおける上記モノアミン(1)、モノアミン(2)、及びジアミン(3)の合計含有量の占める割合は、例えば60~100重量%が好ましく、下限は特に好ましくは80重量%、最も好ましくは90重量%である。すなわち、他のアミンの含有量は、60重量%以下が好ましく、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。
 前記アミン[特に、モノアミン(1)+モノアミン(2)+ジアミン(3)]の使用量は特に限定されないが、原料の前記銀化合物の銀原子1モルに対して、1~50モル程度が好ましく、実質的に無溶剤中において表面修飾銀ナノ粒子が得られる点で、2~50モルが好ましく、特に好ましくは6~50モルである。前記アミンの使用量が上記範囲を下回ると、錯体の生成工程において、錯体に変換されない銀化合物が残存しやすくなり、その後の熱分解工程において、銀ナノ粒子の均一性が損なわれ、粒子の肥大化が起こったり、熱分解せずに銀化合物が残存する場合があるため好ましくない。
 アミンと銀化合物との反応は溶剤の存在下で行うことが好ましい。
 前記溶剤としては、例えば、炭素数3以上のアルコール溶剤[例えば、n-プロパノール(沸点:97℃)、イソプロパノール(沸点:82℃)、n-ブタノール(沸点:117℃)、イソブタノール(沸点:107.89℃)、sec-ブタノール(沸点:99.5℃)、tert-ブタノール(沸点:82.45℃)、n-ペンタノール(沸点:136℃)、n-ヘキサノール(沸点:156℃)、n-オクタノール(沸点:194℃)、2-オクタノール(沸点:174℃)等]を1種又は2種以上使用することができる。これらのなかでも、後に行われる錯体の熱分解工程の温度を高く設定できること、得られる表面修飾銀ナノ粒子の後処理での利便性の点で、炭素数4~6のアルコール溶剤が好ましく、特に、n-ブタノール、n-ヘキサノールが好ましい。
 また、溶剤の使用量は、銀化合物100重量部に対して、例えば120重量部以上、好ましくは130重量部以上、より好ましくは150重量部以上である。尚、溶剤の使用量の上限は、例えば1000重量部、好ましくは800重量部、特に好ましくは500重量部である。
 本発明においては、銀ナノ粒子の分散性をさらに向上させることを目的に、保護剤として、更に、脂肪族モノカルボン酸を1種又は2種以上使用しても良い。脂肪族モノカルボン酸を使用することにより、銀ナノ粒子の安定性、特に溶剤(B)に分散された状態での安定性が向上する傾向がある。
 前記脂肪族モノカルボン酸としては、例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸、エイコセン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
 これらのなかでも、炭素数8~18の飽和又は不飽和の脂肪族モノカルボン(特に、オクタン酸、オレイン酸等)が好ましい。前記脂肪族モノカルボン酸のカルボキシル基が銀ナノ粒子表面に吸着した際に、炭素数8~18の飽和又は不飽和の脂肪族炭化水素鎖が立体障害となることにより他の銀ナノ粒子との間隔を確保することができ、銀ナノ粒子同士の凝集を防ぐ作用が向上する。また、前記脂肪族モノカルボン酸は入手し易く、焼結時には除去し易い点でも好ましい。
 前記脂肪族モノカルボン酸の使用量としては、銀化合物の銀原子1モルに対して、例えば0.05~10モル程度、好ましくは0.1~5モル、特に好ましくは0.5~2モルである。前記脂肪族モノカルボン酸の使用量が、上記範囲を下回ると、安定性向上効果が得られにくい。一方、前記脂肪族モノカルボン酸を過剰に使用しても分散安定性向上効果は飽和する一方で、低温焼結で除去することが困難となる傾向がある。
 アミンを含む保護剤と銀化合物との反応は、常温(5~40℃)で行うことが好ましい。前記反応には、銀化合物へのアミンの配位反応による発熱を伴うため、上記温度範囲となるように、適宜冷却しつつ行ってもよい。
 アミンを含む保護剤と銀化合物との反応時間は、例えば30分~3時間程度である。これにより、銀-アミン錯体が得られる。
 (熱分解工程)
 熱分解工程は、錯体生成工程を経て得られた銀-アミン錯体を熱分解させて、表面修飾銀ナノ粒子を形成する工程である。銀-アミン錯体を加熱することにより、銀原子に対するアミンの配位結合を維持したままで銀化合物が熱分解して銀原子を生成し、次に、アミンが配位した銀原子が凝集して、アミン保護膜で被覆された銀ナノ粒子が形成されると考えられる。
 前記熱分解は、溶剤の存在下で行うことが好ましく、溶剤としては上述のアルコール溶剤を好適に使用することができる。また、熱分解温度は、表面修飾銀ナノ粒子が生成する温度であればよく、銀-アミン錯体がシュウ酸銀-アミン錯体である場合には、例えば80~120℃程度、好ましくは95~115℃、特に好ましくは100~110℃である。表面修飾銀ナノ粒子の表面修飾部の脱離を防止する観点から、前記温度範囲内のなるべく低温で行うことが好ましい。熱分解時間は、例えば10分~5時間程度である。
 また、銀-アミン錯体の熱分解は、空気雰囲気下や、アルゴン等の不活性ガス雰囲気下で行うことが好ましい。
 (洗浄工程)
 銀-アミン錯体の熱分解反応終了後、過剰の保護剤(例えば、アミン)が存在する場合は、これを除去するために、デカンテーションを行うことが好ましい。また、デカンテーション終了後の表面修飾銀ナノ粒子は、乾燥・固化することなく、湿潤状態のままで後述のインクの調製工程へ供することが、銀ナノ粒子の再凝集を抑制することができ、銀ナノ粒子の高分散性を維持することができる点で好ましい。
 表面修飾銀ナノ粒子の乾燥・固化を行わない場合は、デカンテーションにおいて使用する洗浄溶剤が本発明の導電性インクに混入することは避けられない。そのため、洗浄溶剤(2回以上繰り返して洗浄する場合は、最終回において使用する洗浄溶剤)としては、本発明の導電性インクの特性を損なわない溶剤を使用することが好ましく、特に、上記グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)を使用することが好ましい。
 デカンテーションは、例えば、懸濁状態の表面修飾銀ナノ粒子を洗浄溶剤で洗浄し、遠心分離により沈降させ、上澄み液を除去する方法により行われる。
 デカンテーションを行って得られる湿潤状態の表面修飾銀ナノ粒子全量における洗浄溶剤の含有割合は、例えば5~15重量%程度である。従って、湿潤状態の表面修飾銀ナノ粒子全量における表面修飾銀ナノ粒子の占める割合は、例えば85~95重量%程度である。
 (インクの調製工程)
 インクの調製工程は、上記工程を経て得られた表面修飾銀ナノ粒子(A)(好ましくは、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)で湿潤状態とされた表面修飾銀ナノ粒子(A))と、少なくともテルペン系溶剤(b-1)を含む溶剤(B)と、必要に応じて添加剤とを混合して、本発明の導電性インクを得る工程である。前記混合には、例えば、自公転式撹拌脱泡装置、ホモジナイザー、プラネタリーミキサー、3本ロールミル、ビーズミル等の一般的に知られる混合用機器を使用することができる。また、各成分は同時に混合してもよいし、逐次混合してもよい。
 [電子デバイスの製造方法]
 本発明の電子デバイスの製造方法は、上記導電性インクを、オフセット印刷法により基板上に塗布する工程、及び焼結する工程を含む。
 電子デバイスが、大電流基板を備える電子デバイスである場合、導電性インクを用いて厚膜の配線を形成する必要があるが、その場合は、配線パターン形状の塗膜を積層することにより厚膜化することができる。本発明の電子デバイスの製造方法では速乾性を有する導電性インクを使用するため、基板上に塗布した後の塗膜は乾燥処理を施さずとも溶剤が速やかに揮発して乾燥する。そのため、1層目の塗膜を形成した後は、乾燥処理を行うことなく続いて2層目を塗布しても1層目の配線パターンの形状が崩れることがなく、優れた作業性で厚膜の配線を形成することができる。
 また、前記導電性インクが適度な粘度を有する場合は、厚膜の塗膜(1層当たり)を形成することができる。そのため、塗膜の積層数を低減しても、厚膜の配線を形成することができ、優れた作業性で配線を形成し、当該配線を備えた電子デバイスを製造することができる。
 本発明の電子デバイスの製造方法では上記導電性インクを使用するため、低温で焼結が可能であり、焼結温度は、例えば130℃以下(焼結温度の下限は、例えば60℃である。短時間で焼結可能な点で100℃がより好ましい)、特に好ましくは120℃以下である。焼結時間は、例えば0.5~3時間、好ましくは0.5~2時間、特に好ましくは0.5~1時間である。
 本発明の導電性インクを使用すれば、低温焼結(特に、低温で短時間の焼結)でも、銀ナノ粒子の焼結が十分に進行する。その結果、優れた導電性を有する、すなわち、体積抵抗率が例えば15μΩ・cm以下、好ましくは10μΩ・cm以下、特に好ましくは8μΩ・cm以下、最も好ましくは6μΩ・cm以下である焼結体が得られる。尚、焼結体の体積抵抗率は実施例に記載の方法で測定できる。
 本発明の導電性インクを使用すれば上記の通り低温焼結が可能であるので、基板としては、ガラス基板、ポリイミド系フィルム等の耐熱性プラスチック基板の他に、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板も好適に用いることができる。
 本発明の電子デバイスの製造方法により得られる電子デバイスには、例えば、液晶ディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)、ICカード、ICタグ、太陽電池、LED素子、有機トランジスタ、コンデンサー(キャパシタ)、電子ペーパー、フレキシブル電池、フレキシブルセンサ、メンブレンスイッチ、タッチパネル、EMIシールド、産業用ロボット、電気自動車、ハイブリッドカー等が含まれる。
 [焼結体]
 本発明の焼結体は、上記導電性インクの焼結体である。本発明の焼結体は優れた導電性を有し、体積抵抗率は例えば15μΩ・cm以下、好ましくは10μΩ・cm以下、特に好ましくは8μΩ・cm以下、最も好ましくは6μΩ・cm以下である。
 本発明の焼結体は上記の通り導電性に優れる。そのため、本発明の焼結体によって形成された配線や電極を備えたプリント基板(特に、大電流基板)や、前記プリント基板を備えた電子デバイスは、電気特性に優れる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 調製例1(表面修飾銀ナノ粒子の調製)
 硝酸銀(和光純薬工業(株)製)とシュウ酸二水和物(和光純薬工業(株)製)から、シュウ酸銀(分子量:303.78)を得た。
 500mLフラスコに前記シュウ酸銀40.0g(0.1317モル)を仕込み、これに、60gのn-ブタノールを添加し、シュウ酸銀のn-ブタノールスラリーを調製した。
 得られたスラリーに、30℃で、n-ブチルアミン(分子量:73.14、東京化成工業(株)製試薬)115.58g(1.5802モル)、2-エチルヘキシルアミン(分子量:129.25、和光純薬工業(株)製試薬)51.06g(0.3950モル)、及びn-オクチルアミン(分子量:129.25、東京化成工業(株)製試薬)17.02g(0.1317モル)のアミン混合液を滴下した。
 滴下後、30℃で1時間撹拌して、シュウ酸銀とアミンの錯形成反応を進行させた。
 シュウ酸銀-アミン錯体の形成後に、110℃にて1時間加熱して、シュウ酸銀-アミン錯体を熱分解させて、濃青色の、表面修飾銀ナノ粒子を含む懸濁液を得た。
 得られた懸濁液を冷却し、これにメタノール(和光純薬工業(株)製試薬、特級)120gを加えて撹拌し、その後、遠心分離により表面修飾銀ナノ粒子を沈降させ、上澄み液を除去した。次に、プロピレングリコールモノブチルエーテル120gを加えて撹拌し、その後、遠心分離により表面修飾銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、プロピレングリコールモノブチルエーテルを含む湿った状態の表面修飾銀ナノ粒子を得た。SII社製TG/DTA6300を用いた熱天秤の測定結果から、湿潤状態の表面修飾銀ナノ粒子全量(100重量%)において表面修飾銀ナノ粒子の含有量は90重量%であった。すなわち、湿潤状態の表面修飾銀ナノ粒子に、プロピレングリコールモノブチルエーテルが10重量%含まれていた。
 また、湿潤状態の表面修飾銀ナノ粒子について、走査型電子顕微鏡(日本電子社製、JSM-6700F)を用いて観察し、SEM写真において任意に選ばれた10個の銀ナノ粒子の粒子径を求め、それらの平均値を平均粒子径とした。表面修飾銀ナノ粒子における銀ナノ粒子部分の平均粒子径(1次粒子径)は50nmであった。
 実施例1(銀インクの調製)
 ジヒドロターピネオール(16.62g)、EC300(0.86g)、及びBYK302(0.78g)を加えて、オイルバスで3時間撹拌(100rpm×3hrs)し、その後、自転公転式混練機(倉敷紡績(株)製、マゼルスターKKK2508)で撹拌混練(2分間×3回)して液Aを調製した。
 調製例1で得られた湿潤状態の表面修飾銀ナノ粒子(プロピレングリコールモノブチルエーテルを10重量%含む)30gに液Aを11.54g加え、自転公転式混練機(倉敷紡績(株)製、マゼルスターKKK2508)で撹拌(2分間×3回)混練して、黒灰色の銀インクを得た。
 実施例2~3、比較例1~2
 下記表1に記載(単位:重量部)の通りに処方を変更した以外は実施例1と同様に行って銀インクを得た。
 実施例及び比較例で得られた銀インクの印刷性(基材への転写性、及び連続印刷性)、及び焼結体の導電性について下記方法により評価した。
(基材への転写性評価)
 シリコーンブランケットを装着したグラビアオフセット小型印刷装置(商品名「Kプリンティングルーファー」、松尾産業(株)製)を用い、25℃において、実施例及び比較例で得られた銀インクをPETフィルム上に1層印刷し、下記基準で評価した。
 ○:印字精度良好
 ×:印字精度不良(ブランケットからの転写不良等による)
(連続印刷性評価)
 シリコーンブランケットを装着したグラビアオフセット小型印刷装置(商品名「Kプリンティングルーファー」、松尾産業(株)製)を用い、25℃において、実施例及び比較例で得られた銀インクをPETフィルム上に3層積層印刷し、下記基準で評価した。
 ○:印字精度良好
 ×:印字精度不良(2層目以上の積層により下層に崩れが生じた等による)
(焼結体の導電性評価)
 実施例及び比較例で得られた銀インクをソーダガラス板上に塗布して塗膜を形成した。
 得られた塗膜を、送風乾燥炉を使用して、120℃、30分の条件で、速やかに焼結して、5μm厚みの銀焼結膜を得た。得られた銀焼結膜の体積抵抗率を、4端子法(ロレスタGP MCP-T610)を用いて測定した。
Figure JPOXMLDOC01-appb-T000003
 表中の各成分を以下に説明する。
 表面修飾銀ナノ粒子:調製例で得られた表面修飾銀ナノ粒子を使用した
 銀マイクロ粒子:平均粒子径(レーザー解析)1.5~3.0μm、商品名「シルベストTC-505C」、(株)徳力本店製
 ジヒドロターピネオール:30℃における蒸気圧0.43mmHg、日本テルペン化学(株)製
 1,6-HDDA:1,6-ヘキサンジオールジアセテート、30℃における蒸気圧0.0004mmHg
 ヘキシルカルビトール:30℃における蒸気圧0.003mmHg
 ターピネオールC:30℃における蒸気圧0.018mmHg
 ブチルカルビトール:30℃における蒸気圧0.034mmHg
 プロピレングリコールモノブチルエーテル:30℃における蒸気圧1.476mmHg
 エチレングリコールモノブチルエーテルアセテート:30℃における蒸気圧1.222mmHg
 ブタノール:30℃における蒸気圧9.58mmHg
 ソルバインAL:塩化ビニル/酢酸ビニル/ビニルアルコール(93/2/5;重量%)共重合樹脂、日信化学工業(株)製
 EC300:エチルセルロース樹脂、商品名「エトセルstd.300」、ダウケミカル社製
 BYK302:ポリエーテル変性ポリジメチルシロキサン、ビックケミー・ジャパン(株)製
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1] 下記表面修飾銀ナノ粒子(A)及び下記溶剤(B)を含有する導電性インク。
表面修飾銀ナノ粒子(A):アミンを含む保護剤で表面が被覆された構成を有する銀ナノ粒子
溶剤(B):テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)とを含有し、且つ30℃における蒸気圧が0.05~15mmHgの溶剤の含有量が溶剤全量の75重量%以上である
[2] 表面修飾銀ナノ粒子(A)における保護剤が、アミンとして、総炭素数6以上の脂肪族モノアミン(1)と、総炭素数5以下の脂肪族モノアミン(2)及び/又は総炭素数8以下の脂肪族ジアミン(3)とを含む、[1]に記載の導電性インク。
[3] 表面修飾銀ナノ粒子(A)における銀ナノ粒子部分の平均一次粒子径が0.5~100nmである、[1]又は[2]に記載の導電性インク。
[4] 表面修飾銀ナノ粒子(A)の含有量が、導電性インク全量の60~85重量%である、[1]~[3]の何れか1つに記載の導電性インク。
[5] テルペン系溶剤(b-1)の30℃における蒸気圧が0.05~5.0mmHgである、[1]~[4]の何れか1つに記載の導電性インク。
[6] テルペン系溶剤(b-1)が、4-(1’-アセトキシ-1’-メチルエステル)-シクロヘキサノールアセテート、1,2,5,6-テトラヒドロベンジルアルコール、1,2,5,6-テトラヒドロベンジルアセテート、シクロヘキシルアセテート、2-メチルシクロヘキシルアセテート、4-t-ブチルシクロヘキシルアセテート、ジヒドロターピネオール、ジヒドロターピニルアセテート、ジヒドロターピニルオキシエタノール、ターピニルメチルエーテル、及びジヒドロターピニルメチルエーテルから選択される少なくとも1種の溶剤である、[1]~[5]の何れか1つに記載の導電性インク。
[7] グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)の30℃における蒸気圧が0.05~5.0mmHgである、[1]~[6]の何れか1つに記載の導電性インク。
[8] グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)が、グリコールエーテル系溶剤を少なくとも含有する、[1]~[7]の何れか1つに記載の導電性インク。
[9] グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)が、下記式(b-2-1)
  R11O-(R13O)m-R12   (b-2-1)
(式中、R11は水素原子又はC1-5アルキル基を示し、R12はC1-5アルキル基を示し、R13はC2-3アルキレン基を示す。mは1~3の整数を示す)
で表される化合物を少なくとも含有する、[1]~[7]の何れか1つに記載の導電性インク。
[10] グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)が、エチレングリコールモノC1-10アルキルエーテル及びプロピレングリコールモノC1-10アルキルエーテルから選択される少なくとも1種である、[1]~[7]の何れか1つに記載の導電性インク。
[11] グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)が、C2-3アルキレングリコールモノC1-10アルキルエーテルである、[1]~[7]の何れか1つに記載の導電性インク。
[12] 乳酸エチルアセテート、テトラヒドロフルフリルアセテート、テトラヒドロフルフリルアルコール、及びエチレングリコールの含有量(2種以上含有する場合はその総量)が溶剤(B)全量の30重量%以下である、[1]~[11]の何れか1つに記載の導電性インク。
[13] 溶剤(B)全量における、テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及びグリコールエステル系溶剤(b-2)の合計含有量の占める割合が70重量%以上である、[1]~[12]の何れか1つに記載の導電性インク。
[14] テルペン系溶剤(b-1)の含有量と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)の含有量の比が90/10~60/40である、[1]~[13]の何れか1つに記載の導電性インク。
[15] テルペン系溶剤(b-1)の含有量が、溶剤(B)全量の60~90重量%である、[1]~[14]の何れか1つに記載の導電性インク。
[16] テルペン系溶剤(b-1)の含有量が、導電性インク全量の5~40重量%である、[1]~[15]の何れか1つに記載の導電性インク。
[17] グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)の含有量が、溶剤(B)全量の10~40重量%である、[1]~[16]の何れか1つに記載の導電性インク。
[18] グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)の含有量が、導電性インク全量の0.5~20重量%である、[1]~[17]の何れか1つに記載の導電性インク。
[19] 溶剤(B)の含有量が表面修飾銀ナノ粒子(A)100重量部に対して30~70重量部である、[1]~[18]の何れか1つに記載の導電性インク。
[20] 溶剤(B)全量における、30℃における蒸気圧が0.1~1mmHgの溶剤の含有量が50~80重量%である、[1]~[19]の何れか1つに記載の導電性インク。
[21] 溶剤(B)全量における、30℃における蒸気圧が1mmHgを超え、5mmHgの範囲の溶剤の含有量が20~50重量%である、[1]~[20]の何れか1つに記載の導電性インク。
[22] 溶剤(B)全量における、30℃における蒸気圧が0.1mmHg未満の溶剤の含有量が25重量%以下である、[1]~[21]の何れか1つに記載の導電性インク。
[23] 溶剤(B)全量における、30℃における蒸気圧が5mmHg超の溶剤の含有量が25重量%以下である、[1]~[22]の何れか1つに記載の導電性インク。
[24] 更に、バインダー樹脂(C)を、表面修飾銀ナノ粒子(A)100重量部に対して0.1~3.0重量部含有する、[1]~[23]の何れか1つに記載の導電性インク。
[25] 更に、バインダー樹脂(C)を、導電性インク全量の0.5~5.0重量%含有する、[1]~[23]の何れか1つに記載の導電性インク。
[26] バインダー樹脂(C)がセルロース系樹脂である、[24]又は[25]に記載の導電性インク。
[27] 更に、シロキサン化合物(D)を、表面修飾銀ナノ粒子(A)100重量部に対して0.1~3.0重量部含有する、[1]~[26]の何れか1つに記載の導電性インク。
[28] 更に、シロキサン化合物(D)を、導電性インク全量の0.5~5.0重量%含有する、[1]~[26]の何れか1つに記載の導電性インク。
[29] シロキサン化合物(D)が式(d)で表される化合物である、[27]又は[28]に記載の導電性インク。
[30] 25℃、せん断速度10(1/s)における粘度が30~80Pa・sである、[1]~[29]の何れか1つに記載の導電性インク。
[31] 焼結体の体積抵抗率が15μΩ・cm以下である、[1]~[30]の何れか1つに記載の導電性インク。
[32] 120℃以下の温度で0.5~1時間加熱することで、体積抵抗率が15μΩ・cm以下である焼結体が得られる、[1]~[30]の何れか1つに記載の導電性インク。
[33] オフセット印刷用導電性インクである、[1]~[32]の何れか1つに記載の導電性インク。
[34] [1]~[33]の何れか1つに記載の導電性インクのオフセット印刷用導電性インクとしての使用。
[35] [1]~[33]の何れか1つに記載の導電性インクを、オフセット印刷法により基板上に塗布する工程、及び焼結する工程を含む電子デバイスの製造方法。
[36] [1]~[33]の何れか1つに記載の導電性インクの焼結体。
[37] 体積抵抗率が15μΩ・cm以下である、[36]に記載の導電性インクの焼結体。
[37] 基板上に、[1]~[33]の何れか1つに記載の導電性インクの焼結体を備えた電子デバイス。
 本発明の導電性インクは、プリント基板の配線や電極を形成する用途に好適に使用することができる。

Claims (9)

  1.  下記表面修飾銀ナノ粒子(A)及び下記溶剤(B)を含有する導電性インク。
    表面修飾銀ナノ粒子(A):アミンを含む保護剤で表面が被覆された構成を有する銀ナノ粒子
    溶剤(B):テルペン系溶剤(b-1)と、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤(b-2)とを含有し、且つ30℃における蒸気圧が0.05~15mmHgの溶剤の含有量が溶剤全量の75重量%以上である
  2.  表面修飾銀ナノ粒子(A)における保護剤が、アミンとして、総炭素数6以上の脂肪族モノアミン(1)と、総炭素数5以下の脂肪族モノアミン(2)及び/又は総炭素数8以下の脂肪族ジアミン(3)とを含む、請求項1に記載の導電性インク。
  3.  更に、バインダー樹脂(C)を、表面修飾銀ナノ粒子(A)100重量部に対して0.1~3.0重量部含有する、請求項1又は2に記載の導電性インク。
  4.  更に、シロキサン化合物(D)を、表面修飾銀ナノ粒子(A)100重量部に対して0.1~3.0重量部含有する、請求項1~3の何れか1項に記載の導電性インク。
  5.  25℃、せん断速度10(1/s)における粘度が30~80Pa・sである、請求項1~4の何れか1項に記載の導電性インク。
  6.  オフセット印刷用導電性インクである、請求項1~5の何れか1項に記載の導電性インク。
  7.  請求項1~6の何れか1項に記載の導電性インクを、オフセット印刷法により基板上に塗布する工程、及び焼結する工程を含む電子デバイスの製造方法。
  8.  請求項1~6の何れか1項に記載の導電性インクの焼結体。
  9.  基板上に、請求項1~6の何れか1項に記載の導電性インクの焼結体を備えた電子デバイス。
PCT/JP2019/017388 2018-05-23 2019-04-24 導電性インク WO2019225271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980034582.6A CN112189039A (zh) 2018-05-23 2019-04-24 导电性油墨
JP2020521126A JPWO2019225271A1 (ja) 2018-05-23 2019-04-24 導電性インク
KR1020207036419A KR20210013108A (ko) 2018-05-23 2019-04-24 도전성 잉크

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-099041 2018-05-23
JP2018099041 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225271A1 true WO2019225271A1 (ja) 2019-11-28

Family

ID=68616358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017388 WO2019225271A1 (ja) 2018-05-23 2019-04-24 導電性インク

Country Status (5)

Country Link
JP (1) JPWO2019225271A1 (ja)
KR (1) KR20210013108A (ja)
CN (1) CN112189039A (ja)
TW (1) TW202003725A (ja)
WO (1) WO2019225271A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867797A (zh) * 2019-12-11 2022-08-05 吉尼斯油墨公司 基于银纳米粒子的油墨
WO2023017747A1 (ja) * 2021-08-10 2023-02-16 株式会社ダイセル 導電性インク

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009838A1 (ja) * 2020-07-08 2022-01-13 株式会社ダイセル 導電性インク

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129738A1 (ja) * 2007-03-30 2008-10-30 Sony Corporation パターン形成方法および電子素子の製造方法
JP2010055807A (ja) * 2008-08-26 2010-03-11 Sumitomo Rubber Ind Ltd 導電性ペーストとそれを用いた導電機能部材の製造方法
WO2015151941A1 (ja) * 2014-04-01 2015-10-08 株式会社ダイセル 凹版オフセット印刷用銀ナノ粒子含有インク及びその製造方法
WO2016132649A1 (ja) * 2015-02-19 2016-08-25 株式会社ダイセル 銀粒子塗料組成物
JP2017031470A (ja) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 接合材及び接合体の製造方法
WO2017175661A1 (ja) * 2016-04-04 2017-10-12 株式会社ダイセル スクリーン印刷用インク

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132649A (ja) * 2015-01-21 2016-07-25 大日本住友製薬株式会社 新規イミダゾピリジン誘導体およびその医薬用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129738A1 (ja) * 2007-03-30 2008-10-30 Sony Corporation パターン形成方法および電子素子の製造方法
JP2010055807A (ja) * 2008-08-26 2010-03-11 Sumitomo Rubber Ind Ltd 導電性ペーストとそれを用いた導電機能部材の製造方法
WO2015151941A1 (ja) * 2014-04-01 2015-10-08 株式会社ダイセル 凹版オフセット印刷用銀ナノ粒子含有インク及びその製造方法
WO2016132649A1 (ja) * 2015-02-19 2016-08-25 株式会社ダイセル 銀粒子塗料組成物
JP2017031470A (ja) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 接合材及び接合体の製造方法
WO2017175661A1 (ja) * 2016-04-04 2017-10-12 株式会社ダイセル スクリーン印刷用インク

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867797A (zh) * 2019-12-11 2022-08-05 吉尼斯油墨公司 基于银纳米粒子的油墨
WO2023017747A1 (ja) * 2021-08-10 2023-02-16 株式会社ダイセル 導電性インク

Also Published As

Publication number Publication date
KR20210013108A (ko) 2021-02-03
CN112189039A (zh) 2021-01-05
TW202003725A (zh) 2020-01-16
JPWO2019225271A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
KR102237717B1 (ko) 스크린 인쇄용 잉크
JP6666846B2 (ja) 銀粒子塗料組成物
JP6664373B2 (ja) 銀粒子塗料組成物
JP6532862B2 (ja) 凹版オフセット印刷用銀ナノ粒子含有インク及びその製造方法
JP2013142173A (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
WO2019225271A1 (ja) 導電性インク
JP6564385B2 (ja) 銀粒子塗料組成物
WO2023017747A1 (ja) 導電性インク
JP2023177614A (ja) 導電性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207036419

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19807579

Country of ref document: EP

Kind code of ref document: A1