WO2019225135A1 - Pll circuit - Google Patents

Pll circuit Download PDF

Info

Publication number
WO2019225135A1
WO2019225135A1 PCT/JP2019/012160 JP2019012160W WO2019225135A1 WO 2019225135 A1 WO2019225135 A1 WO 2019225135A1 JP 2019012160 W JP2019012160 W JP 2019012160W WO 2019225135 A1 WO2019225135 A1 WO 2019225135A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock signal
counter
change amount
pll circuit
frequency
Prior art date
Application number
PCT/JP2019/012160
Other languages
French (fr)
Japanese (ja)
Inventor
康裕 井手
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019225135A1 publication Critical patent/WO2019225135A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/095Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using a lock detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/12Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a scanning signal

Definitions

  • This disclosure relates to a PLL (Phase Locked Loop) circuit.
  • Patent Document 1 monitors the input voltage of the VCO, and Patent Document 2 counts the number of clocks output from the frequency divider.
  • JP-A-9-246962 Japanese Patent Laying-Open No. 2015-133560
  • Patent Document 1 cannot be applied to a case where the range of the voltage input to the VCO is wide, such as when the PLL circuit performs a chirp operation, or a usage pattern in which the voltage fluctuates.
  • the technique of Patent Document 2 is applied only to a PLL circuit of a type that controls so that the phase difference becomes zero because there is a difference in the count value if there is a phase difference between the reference clock and the divided clock. Can not.
  • the present disclosure has been made in view of the above circumstances, and the purpose of the present disclosure is to control so that a predetermined phase difference is applied between the reference clock and the divided clock when the voltage input to the oscillator fluctuates.
  • Another object of the present invention is to provide a PLL circuit capable of detecting an abnormality for the type to be used.
  • the first counter counts the number of clocks of the reference clock signal
  • the first change amount calculator obtains the first change amount per unit time of the count value in the first counter.
  • the second counter counts the number of clocks of the divided clock signal
  • the second change amount calculator obtains a second change amount per unit time of the count value in the second counter.
  • the subtracter obtains the difference between the first change amount and the second change amount
  • the third counter adds the subtraction result of the subtractor. Then, when the value of the third counter exceeds a predetermined value range, the abnormality detection unit detects the unlocked state of the phase synchronization operation.
  • the abnormality detection unit detects that the phase synchronization operation is unlocked when the change amount of the difference between the count values of the reference clock and the frequency-divided clock exceeds a predetermined range. Therefore, abnormality detection can be performed even when the voltage input to the oscillator fluctuates or for a type of PLL circuit that is controlled to give a predetermined phase difference between the reference clock and the divided clock.
  • the first and second change amount calculators are configured by the first and second shift registers, respectively. Then, the selector selects the number of clock shifts in each shift register to obtain the first and second variation amounts.
  • FIG. 1 is a functional block diagram showing the configuration of the PLL circuit in the first embodiment.
  • FIG. 2 is a diagram showing a start sequence of the PLL circuit
  • FIG. 3 is a flowchart showing the circuit operation in the chirp setup.
  • FIG. 4 is a timing chart showing normal operation.
  • FIG. 5 is a timing chart showing the operation at the time of abnormality
  • FIG. 6 is a flowchart showing circuit operation during chirping.
  • FIG. 7 is a timing chart showing the normal operation.
  • FIG. 8 is a timing chart showing the operation at the time of abnormality, FIG.
  • FIG. 9 is a timing chart showing the operation at the time of abnormality when the clock shift number for obtaining the change amount is set large.
  • FIG. 10 is a diagram showing the setting of the output frequency for detecting the abnormality of the VCO in the second embodiment.
  • FIG. 11 is a flowchart showing the circuit operation.
  • FIG. 12 is a functional block diagram showing the configuration of the PLL circuit in the third embodiment.
  • the PLL circuit 1 of this embodiment includes a phase comparator (PFD) 2, a low-pass filter (LPF) 3, a voltage controlled oscillator (VCO) 4, and a frequency divider (/ multiplier) 5.
  • a known configuration to be formed includes a REF counter 6, a DIV counter 7, and an arithmetic unit 8.
  • a reference clock signal REF is input to the phase comparison unit 2 and the REF counter 6.
  • the divided clock signal DIV output from the frequency divider 5 is input to the phase comparison unit 2 and the DIV counter 7.
  • the frequency divider 5 can also output a substantially multiplied clock signal by setting the frequency dividing ratio to an inverse number.
  • the REF counter 6 and the DIV counter 7 count the number of pulses of the reference clock signal REF and the divided clock signal DIV, respectively. These counters 6 and 7 are both up / down counters. The count values of the REF counter 6 and the DIV counter 7 are input to the calculator 8. The REF counter 6 and the DIV counter 7 correspond to first and second counters, respectively.
  • the arithmetic unit 8 includes a shift register 11, two selectors 12 and 13, and a subtractor 14 for each of the reference clock side and the divided clock side, and “R” and “D” are added to the signs of the respective sides. Attached is shown.
  • the shift register 11 is configured by connecting, for example, n registers 15 in series, and sequentially shifts data input in synchronization with the reference clock signal REF.
  • the selectors 12 and 13 receive the count data of the counter 6 or 7 and the output data of each register 15. Then, the subtracter 14 takes the difference between the data value selected by the selector 13 and the data value selected by the selector 12 and outputs the difference to the difference adder 16.
  • the subtraction result of the subtracter 14R is a data difference d_ref obtained by shifting the count value of the REF counter 6 by a predetermined number of clocks in the shift register 11R.
  • the subtraction result of the subtracter 14D is a data difference d_div in which the count value of the DIV counter 7 is shifted by a predetermined number of clocks in the shift register 11D. The same number of shifts is selected on each of the reference clock side and the divided clock side.
  • the shift register 11R, the selectors 12R and 13R, and the subtractor 14R correspond to a first change amount calculator.
  • the shift register 11D, the selectors 12D and 13D, and the subtractor 14D correspond to a second change amount calculator.
  • the difference adder 16 takes the difference between the difference data d_ref and the difference data d_div, and outputs a value s_diff obtained by adding the difference values.
  • the difference adder 16 corresponds to a subtracter and a third counter.
  • the addition data s_diff is input to the comparator 17. If the difference data s_diff is larger than the threshold value UNLOCK_VAL, the comparator 17 changes the lock error detection signal lock_error to high that is an active level.
  • the comparator 17 corresponds to an abnormality detection unit.
  • the PLL circuit 1 also includes a control unit (not shown) that performs processing such as setting frequency division ratio data in the frequency divider 5 and outputting a selection control signal to the selectors 12 and 13.
  • the PLL circuit 1 is used, for example, in a radar or the like, and the frequency range to be changed in the chirp operation is, for example, about 76 GHz to 77 GHz.
  • the control unit when the PLL circuit 1 is activated, the control unit first performs calibration and raises the output frequency to an initial value of 76 GHz. When the calibration is completed, the control unit resets the counters 6 and 7 and the calculator 8 and sets how many clock shifts the selectors 12 and 13 take. Then, the output frequency is maintained at an initial value of 76 GHz, and the process shown in FIG. 3 is performed in the inter-chirp setup period.
  • the cycle ratio of the divided clock signal DIV to the reference clock signal REF is “1”.
  • the frequency division ratio is determined by the reference clock signal REF and the oscillation frequency of the voltage controlled oscillator 4, and the ratio between the normal reference clock signal REF and the frequency divided clock signal DIV is 1: 1.
  • the REF counter 6 and the DIV counter 7 respectively count the number of clock pulses of the reference clock signal REF and the divided clock signal DIV (S1), and the count values are sequentially shifted in the shift registers 11R and 11D.
  • the selectors 12 and 13 are set so as to take a difference between the input / output data of each register 15 (1). Accordingly, the values of the output data d_ref and d_div of the subtracters 14R and 14D are “1” (S2). Then, the value of the output data s_diff of the difference adder 17 becomes “0”, and this state continues if the operation of the PLL circuit 1 is normal (S3; NO).
  • the counters 6 and 7 are switched to the down-counting operation from the time when the count value reaches “103”. Accordingly, the values of the subsequent data d_ref and d_div are “ ⁇ 1”.
  • steps S2 and S3 are continued until the inter-chirp setup period ends or a reset is applied (S4; NO).
  • S4; YES the process proceeds to step S1.
  • the period of the divided clock signal is twice that of the reference clock signal regardless of the period ratio of “1”.
  • the count value cnt_div of the DIV counter 7 is incremented every other clock.
  • the value of the output data d_div of the subtractor 14D repeats “1” / “0” alternately.
  • the value of the addition data s_diff is incremented every other clock, and when the value reaches “8” (S3; YES), the comparator 17 changes the lock error detection signal lock_error to the high level. An unlocked state is detected.
  • step S7 instead of step S4, it is determined whether the chirping operation is completed or reset is applied.
  • the operation shifts to a steady frequency operation that maintains the output frequency at the initial value (S5). Thereafter, the chirp operation and the steady frequency operation are alternately performed.
  • FIGS. 7 and 8 are diagrams corresponding to FIGS. 4 and 5 during the chirp operation.
  • the frequency of the frequency-divided clock signal changes, but for the sake of illustration, the frequency in these figures is constant.
  • the signal chirp_on indicating that the operation is in progress is at a high level.
  • the reset is applied.
  • the error detection signal output during the chirp operation is chirp_error.
  • the output data d_ref and d_div of the subtractors 14R and 14D are the differences between the data r10_cnt_ref and r10_cnt_div whose shift numbers are 9th stage and the input data cnt_ref and cnt_div of the register 15 (1), respectively.
  • the case where the selectors 12 and 13 are set as described above is shown.
  • the values of the output data d_ref and d_div of the subtracters 14R and 14D are both decreased by “2”.
  • the difference between them (d_ref ⁇ d_div) remains “0”.
  • the value of the output data d_div changes from “3” to “2” as the count value “100” continues.
  • the difference (d_ref ⁇ d_div) changes to “ ⁇ 1”, and the value of the addition data s_diff is incremented.
  • the value reaches “8” the error detection signal chirp_error output from the comparator 17 becomes high level, and the unlocked state is detected.
  • the number of clocks of the reference clock signal REF is counted by the REF counter 6, and the subtractor 14R obtains the change amount d_ref per unit time of the count value cnt_ref of the REF counter 6.
  • the DIV counter 7 counts the number of clocks of the divided clock signal DIV, and the subtractor 14D obtains a change amount d_div per unit time of the count value cnt_div of the DIV counter 7.
  • the difference adder 16 calculates a difference between the change amounts d_ref and d_div and adds the difference.
  • the comparator 17 detects the unlocked state of the phase synchronization operation when the value s_diff output from the difference adder 16 exceeds a predetermined value range by becoming larger than UNLOCK_VAL.
  • the abnormality detection is performed. It can be carried out.
  • a locked waveform is shown in a state where there is no phase difference between the reference clock and the divided clock. However, even when there is a phase difference, the unlocked state can be similarly detected. .
  • the shift register 11 and the selectors 12 and 13 can select how many clock shift numbers the change amounts d_ref and d_div are to be obtained.
  • the phase synchronization operation is unlocked early. It becomes possible to detect. In this case, when the frequency of the divided clock signal DIV is greatly changed by the chirp operation, the frequency change can be masked so as not to be detected as an unlocked state.
  • the counters 6 and 7 are up / down counters, when the count value overflows and changes to zero, it is not necessary to mask the change in the count value. it can.
  • Step S5 From the state in which the PLL circuit 1 is operating at a steady frequency (S5), the frequency dividing ratio is set in the frequency divider 5 so that the output frequency of the voltage controlled oscillator 4 is lowered (S11). . Then, Steps S1 to S3 are executed, and if “NO” is determined in Step S3, the counters 6 and 7 and the arithmetic unit 8 are reset after elapse of a predetermined time, and then the output frequency of the voltage controlled oscillator 4 is increased. A frequency division ratio is set in the frequency divider 5 (S12).
  • steps S13 to S15 the same processes as in steps S1 to S3 are performed (steps S13 to S15), and if no abnormality is detected (S15; NO), the counters 6 and 7 and the arithmetic unit 8 are reset after the lapse of a predetermined time. Exit.
  • the control unit changes the frequency division ratio of the frequency divider 5 in two stages, and determines whether or not an unlocked state is detected at each frequency division ratio. It was made to judge with. Thereby, it can be confirmed whether or not the function of the voltage controlled oscillator 4 is normal.
  • a PLL circuit 21 according to the third embodiment shown in FIG. 12 has a PLL unit configured by a digital circuit. Instead of the phase comparison unit 2, the LPF 3 and the voltage controlled oscillator 4, a TDC (Time To Digital Converter) 22, digital An arithmetic unit 23 for performing a filter operation and a DCO (Digital Control Oscillator) 24 are provided. Even in this case, the abnormality detection process performed by the calculator 8 is the same.
  • a charge pump circuit may be provided between the phase comparison unit 2 and the LPF 3.
  • the counters 6 and 7 may be constituted by up counters or down counters. You may apply to products other than a radar.
  • the output frequency may be changed in three stages or more.

Abstract

A PLL circuit according to the present disclosure comprises: a divider (5) that divides a reference clock signal and outputs a divided clock signal; a phase comparator (2, 22) that compares the phases of the reference clock signal and the divided clock signal and outputs an error signal corresponding to the phase difference between the two signals; an oscillator (4, 24) that outputs a clock signal having a frequency corresponding to the error signal to the divider; first variation calculators (12R to 14R) that obtain a first variation per unit time in a count value in a first counter (6) that counts the number of clocks of the reference clock signal; second variation calculators (12D to 14D) that obtain a second variation per unit time in a count value in a second counter (7) that counts the number of clocks of the divided clock signal; a subtractor (16) that obtains a difference between the first variation and the second variation; a third counter (16) that adds the subtraction results of the subtractor; and an abnormality detection unit (17) that detects an unlock state of a phase synchronizing operation when the value of the third counter exceeds a predetermined value range.

Description

PLL回路PLL circuit 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年5月21日に出願された日本出願番号2018-97073号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2018-97073 filed on May 21, 2018, the contents of which are incorporated herein by reference.
 本開示は、PLL(Phase Locked Loop)回路に関する。 This disclosure relates to a PLL (Phase Locked Loop) circuit.
 PLL回路の異常を検出する技術として、例えば特許文献1ではVCOの入力電圧を監視し、特許文献2では、分周器より出力されるクロック数をカウントしている。 As a technique for detecting an abnormality in the PLL circuit, for example, Patent Document 1 monitors the input voltage of the VCO, and Patent Document 2 counts the number of clocks output from the frequency divider.
特開平9-246962号公報JP-A-9-246962 特開2015-133560号公報Japanese Patent Laying-Open No. 2015-133560
 しかしながら、特許文献1の技術では、PLL回路がチャープ動作する場合のようにVCOに入力される電圧の範囲が広い場合や、前記電圧が変動する使用形態の場合には適用できない。また、特許文献2の技術では、基準クロックと分周クロックとの間に位相差があるとカウント値に差が発生するため、位相差がゼロになるように制御するタイプのPLL回路にしか適用できない。 However, the technique of Patent Document 1 cannot be applied to a case where the range of the voltage input to the VCO is wide, such as when the PLL circuit performs a chirp operation, or a usage pattern in which the voltage fluctuates. The technique of Patent Document 2 is applied only to a PLL circuit of a type that controls so that the phase difference becomes zero because there is a difference in the count value if there is a phase difference between the reference clock and the divided clock. Can not.
 本開示は上記事情に鑑みてなされたものであり、その目的は、発振器に入力される電圧が変動する場合や、基準クロックと分周クロックとの間に所定の位相差を付与するように制御するタイプについても、異常検出を行うことができるPLL回路を提供することにある。 The present disclosure has been made in view of the above circumstances, and the purpose of the present disclosure is to control so that a predetermined phase difference is applied between the reference clock and the divided clock when the voltage input to the oscillator fluctuates. Another object of the present invention is to provide a PLL circuit capable of detecting an abnormality for the type to be used.
 本開示のPLL回路によれば、第1カウンタにより基準クロック信号のクロック数をカウントし、第1変化量算出器は、第1カウンタにおけるカウント値の単位時間当たりの第1変化量を求める。また、第2カウンタにより分周クロック信号のクロック数をカウントし、第2変化量算出器は、第2カウンタにおけるカウント値の単位時間当たりの第2変化量を求める。減算器は第1変化量と第2変化量との差を求め、第3カウンタは減算器の減算結果を加算する。そして、異常検出部は、第3カウンタの値が所定の値域を超えると、位相同期動作のアンロック状態を検出する。 According to the PLL circuit of the present disclosure, the first counter counts the number of clocks of the reference clock signal, and the first change amount calculator obtains the first change amount per unit time of the count value in the first counter. Further, the second counter counts the number of clocks of the divided clock signal, and the second change amount calculator obtains a second change amount per unit time of the count value in the second counter. The subtracter obtains the difference between the first change amount and the second change amount, and the third counter adds the subtraction result of the subtractor. Then, when the value of the third counter exceeds a predetermined value range, the abnormality detection unit detects the unlocked state of the phase synchronization operation.
 すなわち、異常検出部は、基準クロック,分周クロックそれぞれのカウント値の差の変化量が所定の範囲を超えて変化した際に、位相同期動作がアンロック状態になったことを検出する。したがって、発振器に入力される電圧が変動する場合や、基準クロックと分周クロックとの間に所定の位相差を付与するように制御するタイプのPLL回路についても、異常検出を行うことができる。 That is, the abnormality detection unit detects that the phase synchronization operation is unlocked when the change amount of the difference between the count values of the reference clock and the frequency-divided clock exceeds a predetermined range. Therefore, abnormality detection can be performed even when the voltage input to the oscillator fluctuates or for a type of PLL circuit that is controlled to give a predetermined phase difference between the reference clock and the divided clock.
 また、本開示のPLL回路によれば、第1及び第2変化量算出器を、それぞれ第1及び第2シフトレジスタで構成する。そして、セレクタにより、第1及び第2変化量を各シフトレジスタ内における何クロックシフト数の差として得るかを選択する。このように構成すれば、例えば前記差を大きく設定することで、基準クロック信号,分周クロックそれぞれのカウント値の差が僅かであっても、位相同期動作のアンロック状態を早期に検出することができる。またこの場合、チャープ動作により分周クロック信号の周波数を大きく変化させた際に、その周波数変化をアンロック状態として検出しないようにマスクできる。 Further, according to the PLL circuit of the present disclosure, the first and second change amount calculators are configured by the first and second shift registers, respectively. Then, the selector selects the number of clock shifts in each shift register to obtain the first and second variation amounts. With this configuration, for example, by setting the difference to be large, even if the difference between the count values of the reference clock signal and the divided clock is small, the unlocked state of the phase synchronization operation can be detected early. Can do. In this case, when the frequency of the divided clock signal is largely changed by the chirp operation, the frequency change can be masked so as not to be detected as an unlocked state.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態においてPLL回路の構成を示す機能ブロック図であり、 図2は、PLL回路のスタートシーケンスを示す図であり、 図3は、チャープ間セットアップにおける回路動作を示すフローチャートであり、 図4は、正常時の動作を示すタイミングチャートであり、 図5は、異常時の動作を示すタイミングチャートであり、 図6は、チャープ中の回路動作を示すフローチャートであり、 図7は、正常時の動作を示すタイミングチャートであり、 図8は、異常時の動作を示すタイミングチャートであり、 図9は、変化量を求めるクロックシフト数を大きく設定した際に、異常時の動作を示すタイミングチャートであり、 図10は、第2実施形態において、VCOの異常検出を行うための出力周波数の設定を示す図であり、 図11は、回路動作を示すフローチャートであり、 図12は、第3実施形態において、PLL回路の構成を示す機能ブロック図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a functional block diagram showing the configuration of the PLL circuit in the first embodiment. FIG. 2 is a diagram showing a start sequence of the PLL circuit, FIG. 3 is a flowchart showing the circuit operation in the chirp setup. FIG. 4 is a timing chart showing normal operation. FIG. 5 is a timing chart showing the operation at the time of abnormality, FIG. 6 is a flowchart showing circuit operation during chirping. FIG. 7 is a timing chart showing the normal operation. FIG. 8 is a timing chart showing the operation at the time of abnormality, FIG. 9 is a timing chart showing the operation at the time of abnormality when the clock shift number for obtaining the change amount is set large. FIG. 10 is a diagram showing the setting of the output frequency for detecting the abnormality of the VCO in the second embodiment. FIG. 11 is a flowchart showing the circuit operation. FIG. 12 is a functional block diagram showing the configuration of the PLL circuit in the third embodiment.
  (第1実施形態)
 図1に示すように、本実施形態のPLL回路1は、位相比較部(PFD)2,ローパスフィルタ(LPF)3,電圧制御発振器(VCO)4及び分周(/逓倍)器5によりループを形成する周知の構成に、REFカウンタ6,DIVカウンタ7及び演算器8を備えている。位相比較部2及びREFカウンタ6には、基準クロック信号REFが入力されている。分周器5より出力される分周クロック信号DIVは、位相比較部2及びDIVカウンタ7に入力されている。尚、分周器5については、分周比を逆数に設定することにより、実質的に逓倍したクロック信号も出力可能となっている。
(First embodiment)
As shown in FIG. 1, the PLL circuit 1 of this embodiment includes a phase comparator (PFD) 2, a low-pass filter (LPF) 3, a voltage controlled oscillator (VCO) 4, and a frequency divider (/ multiplier) 5. A known configuration to be formed includes a REF counter 6, a DIV counter 7, and an arithmetic unit 8. A reference clock signal REF is input to the phase comparison unit 2 and the REF counter 6. The divided clock signal DIV output from the frequency divider 5 is input to the phase comparison unit 2 and the DIV counter 7. The frequency divider 5 can also output a substantially multiplied clock signal by setting the frequency dividing ratio to an inverse number.
 REFカウンタ6,DIVカウンタ7は、それぞれ基準クロック信号REF,分周クロック信号DIVのパルス数をカウントする。これらのカウンタ6及び7は、何れもアップダウンカウンタである。REFカウンタ6,DIVカウンタ7のカウント値は、演算器8に入力される。REFカウンタ6,DIVカウンタ7は、それぞれ第1,第2カウンタに相当する。 The REF counter 6 and the DIV counter 7 count the number of pulses of the reference clock signal REF and the divided clock signal DIV, respectively. These counters 6 and 7 are both up / down counters. The count values of the REF counter 6 and the DIV counter 7 are input to the calculator 8. The REF counter 6 and the DIV counter 7 correspond to first and second counters, respectively.
 演算器8は、基準クロック側,分周クロック側のそれぞれについて、シフトレジスタ11,2つのセレクタ12及び13,減算器14を備えており、それぞれの側の符号に「R」,「D」を付して示す。シフトレジスタ11は、例えばn個のレジスタ15を直列に接続して構成されており、基準クロック信号REFに同期して入力されているデータを順次シフトさせる。セレクタ12及び13には、カウンタ6又は7のカウントデータと、各レジスタ15の出力データとが入力されている。そして、減算器14において、セレクタ13により選択されたデータ値と、セレクタ12により選択されたデータ値との差分をとり、差分加算器16に出力する。 The arithmetic unit 8 includes a shift register 11, two selectors 12 and 13, and a subtractor 14 for each of the reference clock side and the divided clock side, and “R” and “D” are added to the signs of the respective sides. Attached is shown. The shift register 11 is configured by connecting, for example, n registers 15 in series, and sequentially shifts data input in synchronization with the reference clock signal REF. The selectors 12 and 13 receive the count data of the counter 6 or 7 and the output data of each register 15. Then, the subtracter 14 takes the difference between the data value selected by the selector 13 and the data value selected by the selector 12 and outputs the difference to the difference adder 16.
 減算器14Rの減算結果は、REFカウンタ6のカウント値が、シフトレジスタ11Rにおいて所定クロック数シフトされたデータの差分d_refである。また、減算器14Dの減算結果は、DIVカウンタ7のカウント値が、シフトレジスタ11Dにおいて所定クロック数シフトされたデータの差分d_divである。尚、シフト数は、基準クロック側,分周クロック側のそれぞれで同じ数が選択される。シフトレジスタ11R,セレクタ12R及び13R並びに減算器14Rは第1変化量算出器に相当する。また、シフトレジスタ11D,セレクタ12D及び13D並びに減算器14Dは第2変化量算出器に相当する。 The subtraction result of the subtracter 14R is a data difference d_ref obtained by shifting the count value of the REF counter 6 by a predetermined number of clocks in the shift register 11R. The subtraction result of the subtracter 14D is a data difference d_div in which the count value of the DIV counter 7 is shifted by a predetermined number of clocks in the shift register 11D. The same number of shifts is selected on each of the reference clock side and the divided clock side. The shift register 11R, the selectors 12R and 13R, and the subtractor 14R correspond to a first change amount calculator. The shift register 11D, the selectors 12D and 13D, and the subtractor 14D correspond to a second change amount calculator.
 差分加算器16は、差分データd_refと差分データd_divとの差分をとり、その差分値を加算した値s_diffを出力する。差分加算器16は、減算器及び第3カウンタに相当する。加算データs_diffは、比較器17に入力されている。比較器17は、差分データs_diffが閾値UNLOCK_VALよりも大であれば、ロックエラー検出信号lock_errorをアクティブレベルであるハイに変化させる。比較器17は異常検出部に相当する。 The difference adder 16 takes the difference between the difference data d_ref and the difference data d_div, and outputs a value s_diff obtained by adding the difference values. The difference adder 16 corresponds to a subtracter and a third counter. The addition data s_diff is input to the comparator 17. If the difference data s_diff is larger than the threshold value UNLOCK_VAL, the comparator 17 changes the lock error detection signal lock_error to high that is an active level. The comparator 17 corresponds to an abnormality detection unit.
 また、PLL回路1は、分周器5に分周比データを設定したり、セレクタ12及び13に選択制御信号を出力する等の処理を行う図示しない制御部を備えている。PLL回路1は、例えばレーダ等に使用されるもので、チャープ動作において変化させる周波数範囲は、例えば76GHz~77GHz程度である。 The PLL circuit 1 also includes a control unit (not shown) that performs processing such as setting frequency division ratio data in the frequency divider 5 and outputting a selection control signal to the selectors 12 and 13. The PLL circuit 1 is used, for example, in a radar or the like, and the frequency range to be changed in the chirp operation is, for example, about 76 GHz to 77 GHz.
 次に、本実施形態の作用について説明する。図2に示すように、PLL回路1は、起動すると制御部が最初にキャリブレーションを行い、出力周波数を初期値の76GHzまで上昇させる。キャリブレーションが終了すると、制御部はカウンタ6及び7や演算器8をリセットし、セレクタ12及び13において何クロックシフト分の差を取るかを設定する。それから、出力周波数を初期値76GHzに維持し、チャープ間セットアップ期間において図3に示す処理を行う。 Next, the operation of this embodiment will be described. As shown in FIG. 2, when the PLL circuit 1 is activated, the control unit first performs calibration and raises the output frequency to an initial value of 76 GHz. When the calibration is completed, the control unit resets the counters 6 and 7 and the calculator 8 and sets how many clock shifts the selectors 12 and 13 take. Then, the output frequency is maintained at an initial value of 76 GHz, and the process shown in FIG. 3 is performed in the inter-chirp setup period.
 図4に示すように、分周クロック信号DIVの基準クロック信号REFに対する周期比は「1」である。分周比は基準クロック信号REFと電圧制御発振器4の発振周波数で決まり、通常基準クロック信号REFと分周クロック信号DIVとの比は1対1となる。比較器17に設定される閾値UNLOCK_VALは、4ビットのバイナリで「1000」=「8」に設定されている。REFカウンタ6,DIVカウンタ7は、それぞれ基準クロック信号REF,分周クロック信号DIVのクロックパルス数をカウントし(S1)、そのカウント値は、シフトレジスタ11R,11Dにおいて順次シフトされる。 As shown in FIG. 4, the cycle ratio of the divided clock signal DIV to the reference clock signal REF is “1”. The frequency division ratio is determined by the reference clock signal REF and the oscillation frequency of the voltage controlled oscillator 4, and the ratio between the normal reference clock signal REF and the frequency divided clock signal DIV is 1: 1. The threshold value UNLOCK_VAL set in the comparator 17 is 4-bit binary and is set to “1000” = “8”. The REF counter 6 and the DIV counter 7 respectively count the number of clock pulses of the reference clock signal REF and the divided clock signal DIV (S1), and the count values are sequentially shifted in the shift registers 11R and 11D.
 セレクタ12及び13においては、各レジスタ15(1)の出入力データ間の差を取るように設定されている。したがって、減算器14R,14Dの出力データd_ref,d_divの値は「1」となる(S2)。そして、差分加算器17の出力データs_diffの値は「0」となり、PLL回路1の動作が正常であればこの状態が継続する(S3;NO)。尚、カウンタ6及び7は、カウント値が「103」に達した時点からダウンカウント動作に転換する。したがって、それ以降のデータd_ref,d_divの値は「-1」になる。 The selectors 12 and 13 are set so as to take a difference between the input / output data of each register 15 (1). Accordingly, the values of the output data d_ref and d_div of the subtracters 14R and 14D are “1” (S2). Then, the value of the output data s_diff of the difference adder 17 becomes “0”, and this state continues if the operation of the PLL circuit 1 is normal (S3; NO). The counters 6 and 7 are switched to the down-counting operation from the time when the count value reaches “103”. Accordingly, the values of the subsequent data d_ref and d_div are “−1”.
 ステップS2及びS3の処理は、チャープ間セットアップ期間が終了するか、又はリセットがかかるまで(S4;NO)継続される。上記期間が終了するか、又はリセットがかかると(S4;YES)ステップS1に移行する。 The processes in steps S2 and S3 are continued until the inter-chirp setup period ends or a reset is applied (S4; NO). When the above period ends or a reset is applied (S4; YES), the process proceeds to step S1.
 これに対して、図5に示すように、両者の周期比が「1」にも拘らず分周クロック信号の周期が基準クロック信号の2倍になっている場合を想定する。この時、DIVカウンタ7のカウント値cnt_divは、1クロック置きにインクリメントされる。これにより、減算器14Dの出力データd_divの値は「1」/「0」を交互に繰り返す。すると、加算データs_diffの値が1クロック置きにインクリメントされるようになり、その値が「8」に達すると(S3;YES)、比較器17は、ロックエラー検出信号lock_errorをハイレベルに変化させ、アンロック状態が検出される。 On the other hand, as shown in FIG. 5, it is assumed that the period of the divided clock signal is twice that of the reference clock signal regardless of the period ratio of “1”. At this time, the count value cnt_div of the DIV counter 7 is incremented every other clock. Thereby, the value of the output data d_div of the subtractor 14D repeats “1” / “0” alternately. Then, the value of the addition data s_diff is incremented every other clock, and when the value reaches “8” (S3; YES), the comparator 17 changes the lock error detection signal lock_error to the high level. An unlocked state is detected.
 セットアップ期間が終了して、PLL回路1がチャープ動作を開始すると(図6,S6;YES)、セットアップ期間と同様にステップS1~S3を実行する。そして、ステップS4に替わるステップS7では、チャープ動作が終了するか又はリセットがかかったかを判断する。チャープ動作が終了すると(YES)、出力周波数を初期値に維持する定常周波数動作に移行する(S5)。以降は、チャープ動作と定常周波数動作とが交互に行われる。 When the setup period ends and the PLL circuit 1 starts the chirp operation (FIG. 6, S6; YES), steps S1 to S3 are executed in the same manner as in the setup period. In step S7 instead of step S4, it is determined whether the chirping operation is completed or reset is applied. When the chirp operation is completed (YES), the operation shifts to a steady frequency operation that maintains the output frequency at the initial value (S5). Thereafter, the chirp operation and the steady frequency operation are alternately performed.
 図7及び図8は、チャープ動作中における図4及び図5相当図である。チャープ動作中は分周クロック信号の周波数が変化するが、図示の都合上これらの図の周波数は一定で示している。チャープ動作中は、当該動作中であることを示す信号chirp_onがハイレベルになる。チャープ動作が終了して信号chirp_onがローレベルになると、リセットがかかるようになっている。図8に示すように、チャープ動作中に出力されるエラー検出信号は、chirp_errorとなる。 7 and 8 are diagrams corresponding to FIGS. 4 and 5 during the chirp operation. During the chirp operation, the frequency of the frequency-divided clock signal changes, but for the sake of illustration, the frequency in these figures is constant. During the chirp operation, the signal chirp_on indicating that the operation is in progress is at a high level. When the chirp operation ends and the signal chirp_on becomes low level, the reset is applied. As shown in FIG. 8, the error detection signal output during the chirp operation is chirp_error.
 また、図9は、減算器14R,14Dの出力データd_ref,d_divが、それぞれシフト数が9段目となるデータr10_cnt_ref,r10_cnt_divと、レジスタ15(1)の入力データcnt_ref,cnt_divとの差分となるようにセレクタ12及び13を設定した場合を示す。 In FIG. 9, the output data d_ref and d_div of the subtractors 14R and 14D are the differences between the data r10_cnt_ref and r10_cnt_div whose shift numbers are 9th stage and the input data cnt_ref and cnt_div of the register 15 (1), respectively. The case where the selectors 12 and 13 are set as described above is shown.
 カウンタ6及び7がダウンカウント動作に転換した以降に、減算器14R,14Dの出力データd_ref,d_divの値は共に「2」ずつ減少している。そして、それらの差(d_ref-d_div)は「0」を維持している。この状態で、分周クロック信号DIVが1パルスだけ欠落すると、出力データd_divの値は、上記のカウント値「100」が連続することで「3」から「2」に変化する。これにより、差(d_ref-d_div)は「-1」に変化し、加算データs_diffの値がインクリメントされるようになる。その値が「8」に達すると、比較器17が出力するエラー検出信号chirp_errorがハイレベルになり、アンロック状態が検出される。 After the counters 6 and 7 are switched to the down-count operation, the values of the output data d_ref and d_div of the subtracters 14R and 14D are both decreased by “2”. The difference between them (d_ref−d_div) remains “0”. In this state, when only one pulse of the divided clock signal DIV is lost, the value of the output data d_div changes from “3” to “2” as the count value “100” continues. As a result, the difference (d_ref−d_div) changes to “−1”, and the value of the addition data s_diff is incremented. When the value reaches “8”, the error detection signal chirp_error output from the comparator 17 becomes high level, and the unlocked state is detected.
 以上のように本実施形態によれば、REFカウンタ6により基準クロック信号REFのクロック数をカウントし、減算器14Rは、REFカウンタ6のカウント値cnt_refの単位時間当たりの変化量d_refを求める。また、DIVカウンタ7により分周クロック信号DIVのクロック数をカウントし、減算器14Dは、DIVカウンタ7のカウント値cnt_divの単位時間当たりの変化量d_divを求める。差分加算器16は、変化量d_ref,d_divの差を求め、その差を加算する。そして、比較器17は、差分加算器16が出力する値s_diffがUNLOCK_VALよりも大きくなることで所定の値域を超えると、位相同期動作のアンロック状態を検出する。 As described above, according to the present embodiment, the number of clocks of the reference clock signal REF is counted by the REF counter 6, and the subtractor 14R obtains the change amount d_ref per unit time of the count value cnt_ref of the REF counter 6. Further, the DIV counter 7 counts the number of clocks of the divided clock signal DIV, and the subtractor 14D obtains a change amount d_div per unit time of the count value cnt_div of the DIV counter 7. The difference adder 16 calculates a difference between the change amounts d_ref and d_div and adds the difference. Then, the comparator 17 detects the unlocked state of the phase synchronization operation when the value s_diff output from the difference adder 16 exceeds a predetermined value range by becoming larger than UNLOCK_VAL.
 これにより、電圧制御発振器4に入力される電圧が変動する場合や、基準クロックと分周クロックとの間に所定の位相差を付与するように制御するタイプのPLL回路1についても、異常検出を行うことができる。尚、本実施形態では図示の都合上、基準クロックと分周クロックとの間の位相差が無い状態でロックした波形を示しているが、位相差がある場合でもアンロック状態を同様に検出できる。 As a result, even when the voltage input to the voltage controlled oscillator 4 fluctuates, or when the PLL circuit 1 is controlled to give a predetermined phase difference between the reference clock and the divided clock, the abnormality detection is performed. It can be carried out. In the present embodiment, for convenience of illustration, a locked waveform is shown in a state where there is no phase difference between the reference clock and the divided clock. However, even when there is a phase difference, the unlocked state can be similarly detected. .
 また、シフトレジスタ11,セレクタ12及び13によって、変化量d_ref,d_divを何クロックシフト数の差として得るかを選択可能とした。これにより、シフト数の差を大きく設定することで、基準クロック信号REF,分周クロック信号DIVそれぞれのカウント値d_ref,d_divの差が僅かであっても、位相同期動作のアンロック状態を早期に検出することが可能になる。またこの場合、チャープ動作により分周クロック信号DIVの周波数を大きく変化させた際に、その周波数変化をアンロック状態として検出しないようにマスクできる。 In addition, the shift register 11 and the selectors 12 and 13 can select how many clock shift numbers the change amounts d_ref and d_div are to be obtained. As a result, by setting a large difference in the number of shifts, even if the difference between the count values d_ref and d_div of the reference clock signal REF and the divided clock signal DIV is slight, the phase synchronization operation is unlocked early. It becomes possible to detect. In this case, when the frequency of the divided clock signal DIV is greatly changed by the chirp operation, the frequency change can be masked so as not to be detected as an unlocked state.
 また、カウンタ6及び7をアップダウンカウンタとすることで、カウント値がオーバーフローしてゼロに変化する際に、そのカウント値の変化をマスクする処理が不要となるので、PLL回路1を小型に構成できる。 In addition, since the counters 6 and 7 are up / down counters, when the count value overflows and changes to zero, it is not necessary to mask the change in the count value. it can.
  (第2実施形態)
 以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。第2実施形態では、第1実施形態で説明した異常検出機能を用いて、電圧制御発振器4の機能が正常か否かを確認する。そのため、図10に示すように、PLL回路1の出力周波数を低くした場合と、高くした場合とのそれぞれについて、アンロック状態が検出されるか否かを判定する。尚、この機能を確認する処理は、PLL回路1をテストモードに切り替えて行う。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts are described. In the second embodiment, whether or not the function of the voltage controlled oscillator 4 is normal is confirmed using the abnormality detection function described in the first embodiment. Therefore, as shown in FIG. 10, it is determined whether or not the unlocked state is detected for each of the case where the output frequency of the PLL circuit 1 is lowered and the case where the output frequency is raised. The process for confirming this function is performed by switching the PLL circuit 1 to the test mode.
 図11に示すように、PLL回路1が定常周波数で動作している状態から(S5)、電圧制御発振器4の出力周波数が低くなるように分周器5に分周比を設定する(S11)。それから、ステップS1~S3を実行し、ステップS3で「NO」と判断すると、予め規定した時間の経過後にカウンタ6及び7や演算器8をリセットしてから、電圧制御発振器4の出力周波数が高くなるように分周器5に分周比を設定する(S12)。そして、ステップS1~S3と同様の処理を行い(ステップS13~S15)、異常が検出されなければ(S15;NO)予め規定した時間の経過後にカウンタ6及び7や演算器8をリセットして処理を終了する。 As shown in FIG. 11, from the state in which the PLL circuit 1 is operating at a steady frequency (S5), the frequency dividing ratio is set in the frequency divider 5 so that the output frequency of the voltage controlled oscillator 4 is lowered (S11). . Then, Steps S1 to S3 are executed, and if “NO” is determined in Step S3, the counters 6 and 7 and the arithmetic unit 8 are reset after elapse of a predetermined time, and then the output frequency of the voltage controlled oscillator 4 is increased. A frequency division ratio is set in the frequency divider 5 (S12). Then, the same processes as in steps S1 to S3 are performed (steps S13 to S15), and if no abnormality is detected (S15; NO), the counters 6 and 7 and the arithmetic unit 8 are reset after the lapse of a predetermined time. Exit.
 以上のように第2実施形態によれば、制御部は、分周器5の分周比を2段階に変化させ、各分周比においてアンロック状態が検出されるか否かを演算部8で判定させるようにした。これにより、電圧制御発振器4の機能が正常か否かを確認できる。 As described above, according to the second embodiment, the control unit changes the frequency division ratio of the frequency divider 5 in two stages, and determines whether or not an unlocked state is detected at each frequency division ratio. It was made to judge with. Thereby, it can be confirmed whether or not the function of the voltage controlled oscillator 4 is normal.
  (第3実施形態)
 図12に示す第3実施形態のPLL回路21は、PLL部をデジタル回路で構成したもので、位相比較部2,LPF3及び電圧制御発振器4に替えて、TDC(Time To Digital Converter)22,デジタルフィルタ演算を行う演算器23及びDCO(Digital Control Oscillator)24を備えている。この場合でも、演算器8で行われる異常検出処理は同様である。
(Third embodiment)
A PLL circuit 21 according to the third embodiment shown in FIG. 12 has a PLL unit configured by a digital circuit. Instead of the phase comparison unit 2, the LPF 3 and the voltage controlled oscillator 4, a TDC (Time To Digital Converter) 22, digital An arithmetic unit 23 for performing a filter operation and a DCO (Digital Control Oscillator) 24 are provided. Even in this case, the abnormality detection process performed by the calculator 8 is the same.
  (その他の実施形態)
 位相比較部2とLPF3との間に、チャージポンプ回路を備えていても良い。
 カウンタ6及び7を、アップカウンタ,又はダウンカウンタで構成しても良い。
 レーダ以外の製品に適用しても良い。
 第2実施形態において、出力周波数を3段階以上に変化させても良い。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
A charge pump circuit may be provided between the phase comparison unit 2 and the LPF 3.
The counters 6 and 7 may be constituted by up counters or down counters.
You may apply to products other than a radar.
In the second embodiment, the output frequency may be changed in three stages or more.
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  基準クロック信号を分周して分周クロック信号を出力する分周器(5)と、
     前記基準クロック信号と前記分周クロック信号との位相を比較して、両者の位相差に応じた誤差信号を出力する位相比較部(2,22)と、
     前記誤差信号に応じた周波数のクロック信号を前記分周器に出力する発振器と(4,24)、
     前記基準クロック信号のクロック数をカウントする第1カウンタ(6)と、
     この第1カウンタにおけるカウント値の単位時間当たりの第1変化量を求める第1変化量算出器(12R~14R)と、
     前記分周クロック信号のクロック数をカウントする第2カウンタ(7)と、
     この第2カウンタにおけるカウント値の単位時間当たりの第2変化量を求める第2変化量算出器(12D~14D)と、
     前記第1変化量と前記第2変化量との差を求める減算器(16)と、
     この減算器の減算結果を加算する第3カウンタ(16)と、
     この第3カウンタの値が所定の値域を超えると、前記位相同期動作のアンロック状態を検出する異常検出部(17)とを備えるPLL回路。
    A frequency divider (5) for dividing the reference clock signal and outputting the divided clock signal;
    A phase comparator (2, 22) for comparing the phases of the reference clock signal and the divided clock signal and outputting an error signal corresponding to the phase difference between the two;
    An oscillator for outputting a clock signal having a frequency according to the error signal to the frequency divider (4, 24);
    A first counter (6) for counting the number of clocks of the reference clock signal;
    A first change amount calculator (12R to 14R) for obtaining a first change amount per unit time of the count value in the first counter;
    A second counter (7) for counting the number of clocks of the divided clock signal;
    A second change amount calculator (12D to 14D) for obtaining a second change amount per unit time of the count value in the second counter;
    A subtractor (16) for obtaining a difference between the first change amount and the second change amount;
    A third counter (16) for adding the subtraction results of the subtractor;
    A PLL circuit comprising: an abnormality detection unit (17) for detecting an unlocked state of the phase synchronization operation when the value of the third counter exceeds a predetermined value range.
  2.  前記第1変化量算出器及び前記第2変化量算出器は、それぞれ第1シフトレジスタ(11R)及び第2シフトレジスタ(11D)を備え、
     前記第1変化量及び前記第2変化量を、各シフトレジスタ内における何クロックシフト数の差として得るかを選択するセレクタを備える請求項1記載のPLL回路。
    The first change amount calculator and the second change amount calculator each include a first shift register (11R) and a second shift register (11D),
    The PLL circuit according to claim 1, further comprising: a selector that selects how many clock shifts in each shift register to obtain the first change amount and the second change amount.
  3.  前記分周器は、分周比が設定可能であり、
     前記分周比を2段階以上に変化させ、各分周比において前記アンロック状態が検出されるか否かを前記異常検出部に判定させる制御部を備える請求項1又は2記載のPLL回路。
    The frequency divider can set a frequency division ratio,
    3. The PLL circuit according to claim 1, further comprising a control unit that changes the frequency division ratio in two or more stages and causes the abnormality detection unit to determine whether or not the unlocked state is detected at each frequency division ratio.
  4.  前記第1及び第2カウンタに、アップダウンカウンタを用いる請求項1から3の何れか一項に記載のPLL回路。 The PLL circuit according to any one of claims 1 to 3, wherein an up / down counter is used for the first and second counters.
PCT/JP2019/012160 2018-05-21 2019-03-22 Pll circuit WO2019225135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097073A JP2019204998A (en) 2018-05-21 2018-05-21 PLL circuit
JP2018-097073 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225135A1 true WO2019225135A1 (en) 2019-11-28

Family

ID=68616703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012160 WO2019225135A1 (en) 2018-05-21 2019-03-22 Pll circuit

Country Status (2)

Country Link
JP (1) JP2019204998A (en)
WO (1) WO2019225135A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795061A (en) * 1993-07-12 1995-04-07 Motorola Inc Lock detecting circuit
JPH0897717A (en) * 1994-09-27 1996-04-12 Fujitsu Ltd Lock detection circuit for phase locked loop
JP2002314409A (en) * 2001-04-10 2002-10-25 Nec Corp Lock detection circuit
JP2009239526A (en) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Phase synchronization circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795061A (en) * 1993-07-12 1995-04-07 Motorola Inc Lock detecting circuit
JPH0897717A (en) * 1994-09-27 1996-04-12 Fujitsu Ltd Lock detection circuit for phase locked loop
JP2002314409A (en) * 2001-04-10 2002-10-25 Nec Corp Lock detection circuit
JP2009239526A (en) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Phase synchronization circuit

Also Published As

Publication number Publication date
JP2019204998A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US6456164B1 (en) Sigma delta fractional-N frequency divider with improved noise and spur performance
US7557623B2 (en) Circuit arrangement, in particular phase-locked loop, as well as corresponding method
US8437441B2 (en) Phase locked loop capable of fast locking
JP2010166392A (en) Digital phase locked-loop circuit
US6819153B2 (en) Semiconductor device for clock signals synchronization accuracy
JP5206682B2 (en) Phase comparator and phase locked loop
JP5643839B2 (en) Accumulator-type fractional N-PLL synthesizer and control method thereof
JP2021141401A (en) Phase correcting device, distance measuring device, and phase fluctuation detecting device
JP4015254B2 (en) Lock detection circuit and PLL frequency synthesizer
US4878231A (en) N-PI phase/frequency detector
US20060067454A1 (en) Circuit arrangement and method for determining a frequency drift in a phase locked loop
KR20100108757A (en) Clock generator with minimum long term jitter
WO2019225135A1 (en) Pll circuit
US20040027181A1 (en) Clock multiplying PLL circuit
WO2020012557A1 (en) Phase-locked loop circuit
US7095353B2 (en) Frequency to digital conversion
US7733152B2 (en) Control signal generating circuit enabling value of period of a generated clock signal to be set as the period of a reference signal multiplied or divided by an arbitrary real number
TWI530102B (en) Digital phase-locked loop and phase-frequency detector module thereof
JP4718388B2 (en) Frequency comparison circuit, PLL frequency synthesizer test circuit, and test method therefor
JP2001021596A (en) Comparator of binary signal and pll circuit using it
WO2019008672A1 (en) Pll circuit
KR101327100B1 (en) Frequency divider, phase locked loop circuit thereof and method for controlling phase locked loop circuit
JPH03216025A (en) Parallel/serial converter
JP4718387B2 (en) Frequency comparison circuit, PLL frequency synthesizer test circuit, and test method therefor
KR100522204B1 (en) The apparatus of reducing lock-up time in phase locked loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808246

Country of ref document: EP

Kind code of ref document: A1