WO2019224946A1 - Grid body and lead-acid battery - Google Patents

Grid body and lead-acid battery Download PDF

Info

Publication number
WO2019224946A1
WO2019224946A1 PCT/JP2018/019852 JP2018019852W WO2019224946A1 WO 2019224946 A1 WO2019224946 A1 WO 2019224946A1 JP 2018019852 W JP2018019852 W JP 2018019852W WO 2019224946 A1 WO2019224946 A1 WO 2019224946A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
opening area
lattice
lattice body
active material
Prior art date
Application number
PCT/JP2018/019852
Other languages
French (fr)
Japanese (ja)
Inventor
田中 伸和
寺田 正幸
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/019852 priority Critical patent/WO2019224946A1/en
Priority to JP2020520934A priority patent/JP7185981B2/en
Publication of WO2019224946A1 publication Critical patent/WO2019224946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lattice body and a lead storage battery.
  • Lead storage batteries are widely used for industrial and consumer use because of their reliability and low price. In particular, there is a great demand for lead storage batteries for automobiles (so-called batteries).
  • Patent Document 1 describes a lead storage battery including a positive electrode plate and a negative electrode plate.
  • each of the positive electrode plate and the negative electrode plate is configured by filling a lead alloy lattice body with an active material. Then, the positive electrode plate and the negative electrode plate are alternately laminated via the separator, and the current collecting portions of the positive electrode plate and the negative electrode plate are collectively welded to the strap for each polarity, and the inter-cell connection portion or the pole column is connected to the strap.
  • the electrode plate group is configured.
  • the discharge depth DOD indicates that the discharge amount increases as the value increases.
  • an object of one aspect of the present invention is to provide a lattice body and a lead-acid battery that can prevent the active material from falling off.
  • a grid body is a grid body containing lead used for an electrode plate of a lead storage battery, and penetrating through a first surface and a second surface parallel to each other, and a first surface and a second surface.
  • the opening area in the first surface and the opening area in the second surface are different in at least one of the plurality of through holes.
  • the active material when used for the electrode plate of a lead storage battery, the active material is held in the first surface, the second surface, and the plurality of through holes, but the first surface and the second surface are parallel to each other. Therefore, the active material tends to fall off from the first surface and the second surface.
  • the active material in at least one of the plurality of through holes penetrating the first surface and the second surface, since the opening area on the first surface and the opening area on the second surface are different, the active material is less likely to drop out of the through hole. . Thereby, falling off of the active material can be suppressed.
  • the opening area on the first surface and the opening area on the second surface may be different.
  • the opening area on the first surface and the opening area on the second surface are different in all of the plurality of through holes, it is possible to further suppress the falling off of the active material.
  • the opening area on the first surface may be larger than the opening area on the second surface.
  • the lattice body since the opening area on the first surface is larger than the opening area on the second surface in all of the plurality of through holes, the lattice body can be easily formed and the active material can be formed from the first surface side. Filling the active material into the lattice body is improved.
  • the total opening area of the plurality of through holes on the first surface may be larger than the total opening area of the plurality of through holes on the second surface.
  • the active material is less likely to fall out of the through holes as a whole.
  • a recess may be formed on at least one inner wall surface of the plurality of through holes.
  • the active material since the recess is formed in at least one inner wall surface of the plurality of through holes, the active material enters the recess. Thereby, it can further suppress that an active material falls off.
  • Concave portions may be formed on all inner wall surfaces of the plurality of through holes.
  • the active material since the recesses are formed in all the inner wall surfaces of the plurality of through holes, the active material enters the recesses. Thereby, it can further suppress that an active material falls off.
  • At least one of the plurality of through holes may have a first tapered portion that reaches the first surface while expanding, and a second tapered portion that reaches the second surface while expanding.
  • the active material filled in the through holes has a shape spreading on both sides of the first surface and the second surface. That is, the active material has a shape that sandwiches the lattice from both sides of the first surface and the second surface. For this reason, it can further suppress that an active material falls.
  • Each of the plurality of through holes may have a first tapered portion that reaches the first surface while expanding, and a second tapered portion that reaches the second surface while expanding.
  • the active material filled in the through holes has a shape spreading on both sides of the first surface and the second surface. That is, the active material has a shape that sandwiches the lattice from both sides of the first surface and the second surface. For this reason, it can further suppress that an active material falls.
  • any of the above-described lattice bodies is used as at least one of the positive electrode plate and the negative electrode plate.
  • any one of the above-described lattice bodies is used as at least one of the positive electrode plate and the negative electrode plate, so that the active material can be prevented from falling off.
  • the grid body may be a positive electrode grid body used for the positive electrode plate. Thereby, it can suppress efficiently that an active material falls.
  • the active material can be prevented from falling off.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a front view showing a lattice object concerning one embodiment. It is a schematic cross section which shows a part of lattice body shown in FIG. It is a schematic cross section which shows a part of lattice body of a modification. It is a schematic cross section which shows a part of lattice body of a modification. It is a schematic cross section which shows a part of lattice body of a modification.
  • FIG. 1 is a perspective view showing the overall configuration and internal structure of a lead storage battery 1 according to an embodiment.
  • the lead storage battery 1 includes a battery case 2 whose top surface is open and a lid 3 that closes the opening of the battery case 2.
  • the battery case 2 and the lid 3 are made of, for example, polypropylene.
  • the lid 3 is provided with a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.
  • an electrode group 7 Inside the battery case 2, there are an electrode group 7, a positive pole 8 connecting the electrode group 7 to the positive terminal 4, a negative pole (not shown) connecting the electrode group 7 to the negative terminal 5, dilute sulfuric acid, etc.
  • the electrolyte solution is accommodated.
  • FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a positive electrode plate 9, a negative electrode plate 10, and a separator 11 disposed between the positive electrode plate 9 and the negative electrode plate 10.
  • FIG. 3 is a front view showing the positive electrode plate 9 (negative electrode plate 10), and FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • the positive electrode plate 9 includes a positive electrode grid (positive electrode current collector) 12 and a positive electrode active material (positive electrode material) 13.
  • the positive electrode grid body 12 is a grid body of the positive electrode plate 9, and includes a grid portion 12a and an ear portion 12b that is integrated with the grid portion 12a and protrudes from one end of the grid portion 12a.
  • the positive electrode active material 13 is an active material of the positive electrode plate 9 and is held by the positive electrode lattice body 12.
  • the negative electrode plate 10 includes a negative electrode grid (negative electrode current collector) 14 and a negative electrode active material (negative electrode material) 15.
  • the negative electrode lattice body 14 is a lattice body of the negative electrode plate 10, and includes a lattice portion 14a and an ear portion 14b that is integrally formed with the lattice portion 14a and protrudes from one end of the lattice portion 14a.
  • the negative electrode active material 15 is an active material of the negative electrode plate 10 and is held by the negative electrode lattice body 14.
  • the positive electrode grid body 12 and the negative electrode grid body 14 are formed of a lead alloy.
  • the lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead. Specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn) -Ca alloy).
  • the electrode group 7 has a structure in which a plurality of positive electrode plates 9 and negative electrode plates 10 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via separators 11. That is, the positive electrode plate 9 and the negative electrode plate 10 are arranged so that their main surfaces extend in a direction perpendicular to the opening surface of the battery case 2.
  • the ears 12 b of the positive electrode grid bodies 12 of the plurality of positive electrode plates 9 are collectively welded by the positive side strap 16.
  • the ears 14 b of the negative electrode grid bodies 14 in the negative electrode plates 10 are collectively welded by the negative electrode side strap 17.
  • the positive side strap 16 and the negative side strap 17 are connected to the positive terminal 4 and the negative terminal 5 through the positive pole 8 and the negative pole, respectively.
  • the method for manufacturing the lead storage battery 1 includes an electrode plate manufacturing process for obtaining the electrode plates (the positive electrode plate 9 and the negative electrode plate 10) and an assembly process for obtaining the lead storage battery 1 by assembling the components including the electrode plates.
  • the electrode material paste (the negative electrode material paste and the positive electrode material paste) is held in the lattice body (the positive electrode lattice body 12 and the negative electrode lattice body 14) ( After filling, an unformed electrode plate is obtained by aging and drying.
  • the positive electrode material paste is obtained, for example, by adding an additive (reinforcing short fiber, etc.) and water to a raw material of the positive electrode active material (lead powder, red lead (Pb3O4), etc.) and then kneading with dilute sulfuric acid. It is done. After this positive electrode material paste is held (filled) in the positive electrode grid 12, it is aged for 15 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%, and is heated at a temperature of 45 to 80 ° C. for 15 to 15 hours. By drying for 30 hours, an unformed positive electrode plate is obtained.
  • the negative electrode material paste is, for example, dry by adding an additive (carbon material, barium sulfate, reinforcing short fiber, resin having a sulfone group and / or a sulfonate group, etc.) to the raw material of the negative electrode active material (lead powder or the like). After obtaining a mixture by mixing, it is obtained by adding dilute sulfuric acid and water and kneading. After this negative electrode material paste is held (filled) on the current collector, for example, it is aged for 15 to 30 hours in an atmosphere at a temperature of 45 to 65 ° C. and a humidity of 70 to 98 RH%, and then at a temperature of 45 to 60 ° C. for 15 to 30 By drying for a time, an unformed negative electrode plate is obtained.
  • an additive carbon material, barium sulfate, reinforcing short fiber, resin having a sulfone group and / or a sulfonate group, etc.
  • an unformed negative electrode plate and an unformed positive electrode plate are alternately stacked via the separator 11, and the ear portions 12 b of the positive electrode grid 12 are connected (welded or the like) with the positive strap 16.
  • the ears 14 b of the negative electrode grid 14 are connected (welded or the like) by the negative strap 17 to obtain the electrode group 7.
  • This electrode group 7 is arranged in the battery case 2 to produce an unformed battery.
  • an electrolytic solution dilute sulfuric acid or the like
  • a direct current is applied to form a battery case.
  • the lead acid battery 1 is obtained by adjusting the specific gravity of the electrolytic solution after the formation to an appropriate specific gravity.
  • Chemical conversion conditions and specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material.
  • the chemical conversion treatment may be performed by immersing a large number of electrode plates after aging and drying in the electrode plate manufacturing process into a chemical conversion tank (tank conversion).
  • the positive electrode grid body 12 and the negative electrode grid body 14 used for the positive electrode plate 9 and the negative electrode plate 10 of the lead storage battery 1 described above will be described in more detail.
  • the positive electrode lattice body 12 and the negative electrode lattice body 14 have basically the same shape, the positive electrode lattice body 12 and the negative electrode lattice body 14 will be described together as the lattice body 21 below.
  • FIG. 5 is a front view showing a lattice body according to an embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a part of the lattice shown in FIG.
  • the lattice body 21 (the positive electrode lattice body 12 and the negative electrode lattice body 14) is formed integrally with the lattice portion 22 (the lattice portion 12a and the lattice portion 14a) and the lattice portion 22. It has the ear
  • the lattice body 21 corresponds to each of the positive electrode lattice body 12 and the negative electrode lattice body 14
  • the lattice portion 22 corresponds to each of the lattice portion 12a and the lattice portion 14a
  • the ear portion 23 corresponds to the ear portion 12b and the ear portion. This corresponds to each of the parts 14b.
  • the lattice portion 22 is formed in a substantially rectangular thin plate shape, and includes a first surface 22a and a second surface 22b that are parallel to each other, and a plurality of through holes 22c that penetrate the first surface 22a and the second surface 22b. I have. For this reason, when the lattice part 22 is used for the electrode plate (the positive electrode plate 9 and the negative electrode plate 10) of the lead storage battery 1, the active material (the positive electrode active material 13 and the negative electrode active material 15) is the first surface of the lattice part 22. 22a, the second surface 22b, and the plurality of through holes 22c.
  • an active material is not hold
  • FIG. There is no distinction between the first surface 22a and the second surface 22b, and either surface of the lattice portion 22 may be the first surface 22a or the second surface 22b.
  • the number, shape, size, and the like of the through holes 22c formed in the lattice portion 22 are not particularly limited, and are set as appropriate as long as the active material can be appropriately retained.
  • the opening area in the first surface 22a and the opening area in the second surface 22b are different in at least one of the plurality of through holes 22c.
  • the lattice portion 22 may be formed with through holes 22c having the same opening area on the first surface 22a and the opening area on the second surface 22b.
  • either the opening area in the 1st surface 22a and the opening area in the 2nd surface 22b may be large, and any may be small.
  • the opening area on the first surface 22a and the opening area on the second surface 22b are defined as follows.
  • the surface of the first surface 22a is the first reference surface
  • the surface of the second surface 22b is the second reference surface. Since the first surface 22a and the second surface 22b are parallel to each other, the first reference surface and the second reference surface are also parallel to each other.
  • corrugation is made into the 1st reference plane and the 2nd reference plane.
  • the openings of the through holes 22c in the first reference surface and the second reference surface are defined as the openings of the through holes 22c in the first surface 22a and the second surface 22b, and the opening areas are defined as the first surface 22a and the second surface 22b.
  • the active material when used in the electrode plate of the lead storage battery 1, the active material is held in the first surface 22a, the second surface 22b, and the plurality of through holes 22c.
  • the active material tends to fall off from the first surface 22a and the second surface 22b.
  • the opening area of the first surface 22a and the opening area of the second surface 22b are different in at least one of the plurality of through holes 22c penetrating the first surface 22a and the second surface 22b, the active material is a through hole. It becomes difficult to drop off 22c. Thereby, falling off of the active material can be suppressed.
  • the lattice body 21 is used as the positive electrode lattice body 12 and the negative electrode lattice body 14, it is possible to suppress the positive electrode active material 13 and the negative electrode active material 15 from falling off.
  • the opening area on the first surface 22a and the opening area on the second surface 22b may be different.
  • the through-hole 22c in which the opening area on the first surface 22a and the opening area on the second surface 22b are the same is not formed in the lattice portion 22.
  • the through-hole 22c in which the opening area in is smaller than the opening area in the second surface 22b may be mixed.
  • the opening area of the first surface 22a and the opening area of the second surface 22b are different, so that the active material can be further prevented from falling off.
  • the opening area on the first surface 22a may be larger than the opening area on the second surface 22b.
  • the through hole 22c in which the opening area on the first surface 22a is smaller than the opening area on the second surface 22b is not formed in the lattice portion 22.
  • the total opening area of the plurality of through holes 22c on the first surface 22a may be larger than the total opening area of the plurality of through holes 22c on the second surface 22b.
  • the total opening area of the plurality of through holes 22c in the first surface 22a is the sum of the opening areas in the first surface 22a of each through hole 22c, and the total opening area of the plurality of through holes 22c in the second surface 22b.
  • the opening area in the first surface 22a is larger than the opening area in the second surface 22b, and the opening in the first surface 22a.
  • the through-hole 22c whose area is smaller than the opening area in the second surface 22b may be mixed.
  • the active material as a whole becomes the through hole 22c by making the total opening area of the plurality of through holes 22c in the first surface 22a larger than the total opening area of the plurality of through holes 22c in the second surface 22b. It becomes difficult to drop off.
  • the inner wall surfaces of the plurality of through holes 22c may be formed in a straight line, but the lattice of the modification shown in FIG.
  • a recess 22d into which the active material enters may be formed on at least one inner wall surface of the plurality of through holes 22c.
  • recesses 22d may be formed on all inner wall surfaces of the plurality of through holes 22c.
  • the concave portion 22d but also the convex portion may be formed, so that the whole surface may be formed as a concave / convex portion.
  • the number, shape, size, and the like of the recesses 22d are not particularly limited, and can be set as appropriate as long as the active material can enter.
  • the recess 22d is formed on at least one inner wall surface of the plurality of through holes 22c, and further, the recess 22d is formed on all inner wall surfaces of the plurality of through holes 22c. As a result, the active material enters the recess 22d. Thereby, it can further suppress that an active material falls off.
  • the inner wall surfaces of the plurality of through holes 22c may be formed linearly, but the lattice of the modification shown in FIG.
  • at least one of the plurality of through-holes 22c includes a first tapered portion 22e that extends to the first surface 22a, and a second tapered portion 22f that extends to the second surface 22b. It is good also as having.
  • the opening area on the first surface 22a and the opening area on the second surface 22b are increased as the inclination angle ⁇ 1 of the first taper portion 22e and the inclination angle ⁇ 2 of the second taper portion 22f are increased, or the first taper portion 22e.
  • each of the plurality of through holes 22c may have the first tapered portion 22e and the second tapered portion 22f.
  • the through hole 22c is inclined in a direction extending with respect to the first surface 22a and reaches the first surface 22a in a cross section orthogonal to the first surface 22a.
  • the through hole 22c is inclined in a direction extending with respect to the second surface 22b and reaches the second surface 22b in a cross section orthogonal to the second surface 22b.
  • the first taper portion 22e and the second taper portion 22f do not necessarily need to be linear as long as they are tapered as a whole.
  • the shape may be curved or uneven.
  • the active material filled in the through hole 22c is changed to the first surface 22a and the second tapered portion 22f.
  • the shape is widened on both sides of the surface 22b. That is, the active material has a shape that sandwiches the lattice portion 22C of the lattice body 21C from both sides of the first surface 22a and the second surface 22b. For this reason, it can further suppress that an active material falls.
  • the lattice body 21 may be used only as the positive electrode lattice body 12. Thereby, it can suppress efficiently that an active material falls.
  • SYMBOLS 1 Lead acid battery, 2 ... Battery case, 3 ... Lid, 4 ... Positive electrode terminal, 5 ... Negative electrode terminal, 6 ... Liquid stopper, 7 ... Electrode group, 8 ... Positive electrode pillar, 9 ... Positive electrode plate, 10 ... Negative electrode plate, DESCRIPTION OF SYMBOLS 11 ... Separator, 12 ... Positive electrode lattice body, 12a ... Lattice part, 12b ... Ear part, 13 ... Positive electrode active material, 14 ... Negative electrode lattice body, 14a ... Grid part, 14b ... Ear part, 15 ... Negative electrode active material, 16 ... Positive side strap, 17 ...
  • Negative side strap 21, 21A, 21B, 21C ... Lattice, 22, 22A, 22B, 22C ... Lattice, 22a ... First surface, 22b ... Second surface, 22c ... Through hole, 22d ... concave portion, 22e ... first taper portion, 22f ... second taper portion, 23 ... ear portion, ⁇ 1 ... inclination angle of first taper portion, ⁇ 2 ... inclination angle of second taper portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A grid body used as an electrode plate for a lead-acid battery and containing lead, said grid body comprising: a first surface and a second surface parallel to each other; and a plurality of through-holes penetrating through the first surface and the second surface, wherein the opening area of at least one of the plurality of through-holes on the first surface is different from the opening area thereof on the second surface.

Description

格子体及び鉛蓄電池Grid and lead-acid battery
 本発明は、格子体及び鉛蓄電池に関する。 The present invention relates to a lattice body and a lead storage battery.
 鉛蓄電池は、信頼性、価格の安さから産業用、民生用に広く用いられており、特に自動車用鉛蓄電池(いわゆるバッテリー)の需要が多い。 Lead storage batteries are widely used for industrial and consumer use because of their reliability and low price. In particular, there is a great demand for lead storage batteries for automobiles (so-called batteries).
 特許文献1には、正極板及び負極板を備えた鉛蓄電池が記載されている。この鉛蓄電池では、正極板及び負極板のそれぞれは、鉛合金の格子体に活物質が充填されて構成されている。そして、正極板と負極板とがセパレータを介して交互に積層され、正極板及び負極板の集電部が極性毎にストラップに集合溶接され、ストラップにセル間接続部又は極柱が接続されて、極板群が構成されている。 Patent Document 1 describes a lead storage battery including a positive electrode plate and a negative electrode plate. In this lead storage battery, each of the positive electrode plate and the negative electrode plate is configured by filling a lead alloy lattice body with an active material. Then, the positive electrode plate and the negative electrode plate are alternately laminated via the separator, and the current collecting portions of the positive electrode plate and the negative electrode plate are collectively welded to the strap for each polarity, and the inter-cell connection portion or the pole column is connected to the strap. The electrode plate group is configured.
特開2012-230838号公報JP 2012-230838 A
 ところで、近年の自動車は、電装品が増加していることから、電池への負荷が大きくなっている。その結果、電池の放電量が多くなっている。電池の放電量の指標として、放電深度DOD(Depth of Discharge)がある。放電深度DODは、値が大きくなるほど、放電量が多くなることを示している。DODが大きい状況下で電池を充放電すると、正極板において活物質同士の結びつきが弱くなる泥状化(軟化現象)が進行し、徐々に格子体から活物質が脱落していく。しかも、自動車に搭載される鉛蓄電池では、長時間にわたって大きな振動に曝されるため、格子体からの活物質の脱落が顕著となる。格子体から活物質が脱落すると、極板(特に正極板)の寿命が短くなるという問題が発生する。 By the way, in recent automobiles, since the number of electrical components has increased, the load on the battery has increased. As a result, the discharge amount of the battery is increased. As an index of the discharge amount of the battery, there is a discharge depth DOD (Depth of Discharge). The discharge depth DOD indicates that the discharge amount increases as the value increases. When the battery is charged / discharged under a condition where the DOD is large, mudification (softening phenomenon) in which the connection between the active materials weakens in the positive electrode plate, and the active material gradually drops from the lattice. In addition, since lead-acid batteries mounted on automobiles are exposed to large vibrations for a long time, the active material falls off from the lattice body. When the active material falls off from the lattice body, there arises a problem that the life of the electrode plate (particularly the positive electrode plate) is shortened.
 そこで、本発明の一側面は、活物質の脱落を抑制することができる格子体及び鉛蓄電池を提供することを課題とする。 Therefore, an object of one aspect of the present invention is to provide a lattice body and a lead-acid battery that can prevent the active material from falling off.
 本発明の一側面に係る格子体は、鉛蓄電池の極板に用いられて鉛を含む格子体であって、互いに平行な第一表面及び第二表面と、第一表面及び第二表面を貫通する複数の貫通孔と、を備え、複数の貫通孔の少なくとも一つにおいて、第一表面における開口面積と第二表面における開口面積とが異なる。 A grid body according to one aspect of the present invention is a grid body containing lead used for an electrode plate of a lead storage battery, and penetrating through a first surface and a second surface parallel to each other, and a first surface and a second surface. The opening area in the first surface and the opening area in the second surface are different in at least one of the plurality of through holes.
 この格子体では、鉛蓄電池の極板に用いられる際は、第一表面、第二表面、及び複数の貫通孔において活物質が保持されるが、第一表面及び第二表面が互いに平行であるため、活物質は第一表面及び第二表面から脱落しやすい。しかしながら、第一表面及び第二表面を貫通する複数の貫通孔の少なくとも一つにおいて、第一表面における開口面積と第二表面における開口面積とが異なるため、活物質は貫通孔から脱落し難くなる。これにより、活物質の脱落を抑制することができる。 In this grid, when used for the electrode plate of a lead storage battery, the active material is held in the first surface, the second surface, and the plurality of through holes, but the first surface and the second surface are parallel to each other. Therefore, the active material tends to fall off from the first surface and the second surface. However, in at least one of the plurality of through holes penetrating the first surface and the second surface, since the opening area on the first surface and the opening area on the second surface are different, the active material is less likely to drop out of the through hole. . Thereby, falling off of the active material can be suppressed.
 複数の貫通孔の全てにおいて、第一表面における開口面積と第二表面における開口面積とが異なっていてもよい。この格子体では、複数の貫通孔の全てにおいて、第一表面における開口面積と第二表面における開口面積とが異なるため、活物質の脱落を更に抑制することができる。 In all of the plurality of through holes, the opening area on the first surface and the opening area on the second surface may be different. In this lattice body, since the opening area on the first surface and the opening area on the second surface are different in all of the plurality of through holes, it is possible to further suppress the falling off of the active material.
 複数の貫通孔の全てにおいて、第一表面における開口面積が第二表面における開口面積よりも大きくてもよい。この格子体では、複数の貫通孔の全てにおいて、第一表面における開口面積が第二表面における開口面積よりも大きいため、格子体を容易に形成することができるとともに、第一表面側から活物質を充填することで格子体に対する活物質の充填性がよくなる。 In all of the plurality of through holes, the opening area on the first surface may be larger than the opening area on the second surface. In this lattice body, since the opening area on the first surface is larger than the opening area on the second surface in all of the plurality of through holes, the lattice body can be easily formed and the active material can be formed from the first surface side. Filling the active material into the lattice body is improved.
 第一表面における複数の貫通孔の総開口面積が、第二表面における複数の貫通孔の総開口面積よりも大きくてもよい。この格子体では、第一表面における複数の貫通孔の総開口面積が第二表面における複数の貫通孔の総開口面積よりも大きいため、全体として活物質が貫通孔から脱落し難くなる。 The total opening area of the plurality of through holes on the first surface may be larger than the total opening area of the plurality of through holes on the second surface. In this lattice body, since the total opening area of the plurality of through holes on the first surface is larger than the total opening area of the plurality of through holes on the second surface, the active material is less likely to fall out of the through holes as a whole.
 複数の貫通孔の少なくとも一つの内壁面に、凹部が形成されていてもよい。この格子体では、複数の貫通孔の少なくとも一つの内壁面に凹部が形成されているため、活物質が当該凹部に入り込む。これにより、活物質が脱落するのを更に抑制することができる。 A recess may be formed on at least one inner wall surface of the plurality of through holes. In this lattice body, since the recess is formed in at least one inner wall surface of the plurality of through holes, the active material enters the recess. Thereby, it can further suppress that an active material falls off.
 複数の貫通孔の全ての内壁面に、凹部が形成されていてもよい。この格子体では、複数の貫通孔の全ての内壁面に凹部が形成されているため、活物質が当該凹部に入り込む。これにより、活物質が脱落するのを更に抑制することができる。 ) Concave portions may be formed on all inner wall surfaces of the plurality of through holes. In this lattice body, since the recesses are formed in all the inner wall surfaces of the plurality of through holes, the active material enters the recesses. Thereby, it can further suppress that an active material falls off.
 複数の貫通孔の少なくとも一つは、広がりながら第一表面に至る第一テーパ部と、広がりながら第二表面に至る第二テーパ部と、を有してもよい。この格子体では、複数の貫通孔のそれぞれが第一テーパ部及び第二テーパ部を有するため、貫通孔に充填された活物質が、第一表面及び第二表面の両側において広がる形状となる。つまり、活物質が、第一表面及び第二表面の両側から格子体を挟み込む形状となる。このため、活物質が脱落するのを更に抑制することができる。 At least one of the plurality of through holes may have a first tapered portion that reaches the first surface while expanding, and a second tapered portion that reaches the second surface while expanding. In this lattice body, since each of the plurality of through holes has the first tapered portion and the second tapered portion, the active material filled in the through holes has a shape spreading on both sides of the first surface and the second surface. That is, the active material has a shape that sandwiches the lattice from both sides of the first surface and the second surface. For this reason, it can further suppress that an active material falls.
 複数の貫通孔のそれぞれは、広がりながら第一表面に至る第一テーパ部と、広がりながら第二表面に至る第二テーパ部と、を有してもよい。この格子体では、複数の貫通孔のそれぞれが第一テーパ部及び第二テーパ部を有するため、貫通孔に充填された活物質が、第一表面及び第二表面の両側において広がる形状となる。つまり、活物質が、第一表面及び第二表面の両側から格子体を挟み込む形状となる。このため、活物質が脱落するのを更に抑制することができる。 Each of the plurality of through holes may have a first tapered portion that reaches the first surface while expanding, and a second tapered portion that reaches the second surface while expanding. In this lattice body, since each of the plurality of through holes has the first tapered portion and the second tapered portion, the active material filled in the through holes has a shape spreading on both sides of the first surface and the second surface. That is, the active material has a shape that sandwiches the lattice from both sides of the first surface and the second surface. For this reason, it can further suppress that an active material falls.
 本発明の一側面に係る鉛蓄電池は、正極板及び負極板の少なくとも一方の格子体として、上記の何れかの格子体が用いられていている。この鉛蓄電池では、正極板及び負極板の少なくとも一方の格子体として上記の何れかの格子体が用いられるため、活物質が脱落するのを抑制することができる。 In the lead storage battery according to one aspect of the present invention, any of the above-described lattice bodies is used as at least one of the positive electrode plate and the negative electrode plate. In this lead storage battery, any one of the above-described lattice bodies is used as at least one of the positive electrode plate and the negative electrode plate, so that the active material can be prevented from falling off.
 ところで、正極格子体では、充放電を繰り返していくことで活物質同士の結びつきが弱くなる泥状化(軟化現象)が進行していく。このため、格子体は、正極板に用いられる正極格子体であってもよい。これにより、活物質が脱落するのを効率的に抑制することができる。 By the way, in the positive electrode grid, mudification (softening phenomenon) in which the connection between the active materials is weakened by repeated charging and discharging progresses. For this reason, the grid body may be a positive electrode grid body used for the positive electrode plate. Thereby, it can suppress efficiently that an active material falls.
 本発明によれば、活物質の脱落を抑制することができる。 According to the present invention, the active material can be prevented from falling off.
一実施形態に係る鉛蓄電池の全体構造及び内部構造を示す斜視図である。It is a perspective view showing the whole lead-acid battery structure and internal structure concerning one embodiment. 図1に示した鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead acid battery shown in FIG. 正極板(負極板)を示す正面図である。It is a front view which shows a positive electrode plate (negative electrode plate). 図3のIV-IV線における断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 一実施形態に係る格子体を示す正面図である。It is a front view showing a lattice object concerning one embodiment. 図5に示した格子体の一部を示す模式断面図である。It is a schematic cross section which shows a part of lattice body shown in FIG. 変形例の格子体の一部を示す模式断面図である。It is a schematic cross section which shows a part of lattice body of a modification. 変形例の格子体の一部を示す模式断面図である。It is a schematic cross section which shows a part of lattice body of a modification. 変形例の格子体の一部を示す模式断面図である。It is a schematic cross section which shows a part of lattice body of a modification.
 以下、図面を参照して、本発明の一側面に係る鉛蓄電池の好適な実施形態について詳細に説明する。なお、全図中、同一又は相当部分には同一符号を付すこととする。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, preferred embodiments of a lead storage battery according to one aspect of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In addition, “A or B” may include either one of A and B, or may include both.
<鉛蓄電池>
 図1は、一実施形態に係る鉛蓄電池1の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、正極端子4と、負極端子5と、蓋3に設けられた注液口を閉塞する液口栓6と、が設けられている。
<Lead battery>
FIG. 1 is a perspective view showing the overall configuration and internal structure of a lead storage battery 1 according to an embodiment. As shown in FIG. 1, the lead storage battery 1 includes a battery case 2 whose top surface is open and a lid 3 that closes the opening of the battery case 2. The battery case 2 and the lid 3 are made of, for example, polypropylene. The lid 3 is provided with a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3.
 電槽2の内部には、電極群7と、電極群7を正極端子4に接続する正極柱8と、電極群7を負極端子5に接続する負極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Inside the battery case 2, there are an electrode group 7, a positive pole 8 connecting the electrode group 7 to the positive terminal 4, a negative pole (not shown) connecting the electrode group 7 to the negative terminal 5, dilute sulfuric acid, etc. The electrolyte solution is accommodated.
 図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、正極板9と、負極板10と、正極板9と負極板10との間に配置されたセパレータ11と、を備えている。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a positive electrode plate 9, a negative electrode plate 10, and a separator 11 disposed between the positive electrode plate 9 and the negative electrode plate 10.
 図3は、正極板9(負極板10)を示す正面図であり、図4は、図3のIV-IV線における断面図である。図3及び図4に示すように、正極板9は、正極格子体(正極集電体)12と、正極活物質(正極材)13と、を有している。正極格子体12は、正極板9の格子体であり、格子部12aと、格子部12aと一体で構成され、格子部12aの一端から突出した耳部12bと、を有している。正極活物質13は、正極板9の活物質であり、正極格子体12に保持されている。負極板10は、負極格子体(負極集電体)14と、負極活物質(負極材)15と、を有している。負極格子体14は、負極板10の格子体であり、格子部14aと、格子部14aと一体で構成され、格子部14aの一端から突出した耳部14bと、を有している。負極活物質15は、負極板10の活物質であり、負極格子体14に保持されている。正極格子体12及び負極格子体14は、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb-Sn-Ca系合金)である。 FIG. 3 is a front view showing the positive electrode plate 9 (negative electrode plate 10), and FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. As shown in FIGS. 3 and 4, the positive electrode plate 9 includes a positive electrode grid (positive electrode current collector) 12 and a positive electrode active material (positive electrode material) 13. The positive electrode grid body 12 is a grid body of the positive electrode plate 9, and includes a grid portion 12a and an ear portion 12b that is integrated with the grid portion 12a and protrudes from one end of the grid portion 12a. The positive electrode active material 13 is an active material of the positive electrode plate 9 and is held by the positive electrode lattice body 12. The negative electrode plate 10 includes a negative electrode grid (negative electrode current collector) 14 and a negative electrode active material (negative electrode material) 15. The negative electrode lattice body 14 is a lattice body of the negative electrode plate 10, and includes a lattice portion 14a and an ear portion 14b that is integrally formed with the lattice portion 14a and protrudes from one end of the lattice portion 14a. The negative electrode active material 15 is an active material of the negative electrode plate 10 and is held by the negative electrode lattice body 14. The positive electrode grid body 12 and the negative electrode grid body 14 are formed of a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead. Specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn) -Ca alloy).
 電極群7は、複数の正極板9と負極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、正極板9及び負極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の正極板9における各正極格子体12が有する耳部12b同士は、正極側ストラップ16で集合溶接されている。同様に、複数の負極板10における各負極格子体14が有する耳部14b同士は、負極側ストラップ17で集合溶接されている。正極側ストラップ16及び負極側ストラップ17は、それぞれ、正極柱8及び負極柱を介して正極端子4及び負極端子5に接続されている。 The electrode group 7 has a structure in which a plurality of positive electrode plates 9 and negative electrode plates 10 are alternately stacked in a direction substantially parallel to the opening surface of the battery case 2 via separators 11. That is, the positive electrode plate 9 and the negative electrode plate 10 are arranged so that their main surfaces extend in a direction perpendicular to the opening surface of the battery case 2. In the electrode group 7, the ears 12 b of the positive electrode grid bodies 12 of the plurality of positive electrode plates 9 are collectively welded by the positive side strap 16. Similarly, the ears 14 b of the negative electrode grid bodies 14 in the negative electrode plates 10 are collectively welded by the negative electrode side strap 17. The positive side strap 16 and the negative side strap 17 are connected to the positive terminal 4 and the negative terminal 5 through the positive pole 8 and the negative pole, respectively.
 続いて、鉛蓄電池1の製造方法について説明する。鉛蓄電池1の製造方法は、電極板(正極板9及び負極板10)を得る電極板製造工程と、電極板を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備えている。 Then, the manufacturing method of the lead acid battery 1 is demonstrated. The method for manufacturing the lead storage battery 1 includes an electrode plate manufacturing process for obtaining the electrode plates (the positive electrode plate 9 and the negative electrode plate 10) and an assembly process for obtaining the lead storage battery 1 by assembling the components including the electrode plates.
 電極板製造工程では、例えば、正極板9及び負極板10のそれぞれについて、電極材ペースト(負極材ペースト及び正極材ペースト)を格子体(正極格子体12及び負極格子体14)に保持させた(充填した)後に、熟成及び乾燥を行うことにより未化成の電極板を得る。 In the electrode plate manufacturing process, for example, for each of the positive electrode plate 9 and the negative electrode plate 10, the electrode material paste (the negative electrode material paste and the positive electrode material paste) is held in the lattice body (the positive electrode lattice body 12 and the negative electrode lattice body 14) ( After filling, an unformed electrode plate is obtained by aging and drying.
 正極材ペーストは、例えば、正極活物質の原料(鉛粉、鉛丹(Pb3O4)等)に添加剤(補強用短繊維等)及び水を加え、次いで、希硫酸を加えて混練することにより得られる。この正極材ペーストを正極格子体12に保持させた(充填した)後に、例えば、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間熟成し、温度45~80℃で15~30時間乾燥することにより、未化成の正極板が得られる。 The positive electrode material paste is obtained, for example, by adding an additive (reinforcing short fiber, etc.) and water to a raw material of the positive electrode active material (lead powder, red lead (Pb3O4), etc.) and then kneading with dilute sulfuric acid. It is done. After this positive electrode material paste is held (filled) in the positive electrode grid 12, it is aged for 15 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%, and is heated at a temperature of 45 to 80 ° C. for 15 to 15 hours. By drying for 30 hours, an unformed positive electrode plate is obtained.
 負極材ペーストは、例えば、負極活物質の原料(鉛粉等)に添加剤(炭素材料、硫酸バリウム、補強用短繊維、スルホン基及び/又はスルホン酸塩基を有する樹脂等)を添加して乾式混合することにより混合物を得た後、希硫酸及び水を加えて混練することにより得られる。この負極材ペーストを集電体に保持させた(充填した)後に、例えば、温度45~65℃、湿度70~98RH%の雰囲気で15~30時間熟成し、温度45~60℃で15~30時間乾燥することにより、未化成の負極板が得られる。 The negative electrode material paste is, for example, dry by adding an additive (carbon material, barium sulfate, reinforcing short fiber, resin having a sulfone group and / or a sulfonate group, etc.) to the raw material of the negative electrode active material (lead powder or the like). After obtaining a mixture by mixing, it is obtained by adding dilute sulfuric acid and water and kneading. After this negative electrode material paste is held (filled) on the current collector, for example, it is aged for 15 to 30 hours in an atmosphere at a temperature of 45 to 65 ° C. and a humidity of 70 to 98 RH%, and then at a temperature of 45 to 60 ° C. for 15 to 30 By drying for a time, an unformed negative electrode plate is obtained.
 組立工程では、例えば、未化成の負極板及び未化成の正極板を、セパレータ11を介して交互に積層し、正極格子体12の耳部12b同士を正極側ストラップ16で連結(溶接等)させるとともに、負極格子体14の耳部14b同士を負極側ストラップ17で連結(溶接等)させて、電極群7を得る。この電極群7を電槽2内に配置して未化成の電池を作製する。次に、未化成の電池に電解液(希硫酸等)を注入した後、直流電流を通電して電槽化成する。化成後の電解液の比重を適切な比重に調整して鉛蓄電池1が得られる。 In the assembling process, for example, an unformed negative electrode plate and an unformed positive electrode plate are alternately stacked via the separator 11, and the ear portions 12 b of the positive electrode grid 12 are connected (welded or the like) with the positive strap 16. At the same time, the ears 14 b of the negative electrode grid 14 are connected (welded or the like) by the negative strap 17 to obtain the electrode group 7. This electrode group 7 is arranged in the battery case 2 to produce an unformed battery. Next, after injecting an electrolytic solution (dilute sulfuric acid or the like) into an unformed battery, a direct current is applied to form a battery case. The lead acid battery 1 is obtained by adjusting the specific gravity of the electrolytic solution after the formation to an appropriate specific gravity.
 化成条件及び硫酸の比重は、電極活物質の性状に応じて調整することができる。化成処理は、組立工程後に実施される代わりに、電極板製造工程における熟成及び乾燥後の多数の電極板をまとめて化成槽に浸漬して実施されてもよい(タンク化成)。 Chemical conversion conditions and specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. Instead of being performed after the assembly process, the chemical conversion treatment may be performed by immersing a large number of electrode plates after aging and drying in the electrode plate manufacturing process into a chemical conversion tank (tank conversion).
<格子体>
 続いて、上述した鉛蓄電池1の正極板9及び負極板10に用いられる正極格子体12及び負極格子体14について、より詳細に説明する。なお、本実施形態において、正極格子体12と負極格子体14とは基本的に同じ形状であるため、以下では、正極格子体12及び負極格子体14を格子体21として併せて説明する。
<Lattice>
Next, the positive electrode grid body 12 and the negative electrode grid body 14 used for the positive electrode plate 9 and the negative electrode plate 10 of the lead storage battery 1 described above will be described in more detail. In the present embodiment, since the positive electrode lattice body 12 and the negative electrode lattice body 14 have basically the same shape, the positive electrode lattice body 12 and the negative electrode lattice body 14 will be described together as the lattice body 21 below.
 図5は、一実施形態に係る格子体を示す正面図である。図6は、図5に示した格子体の一部を示す概略断面図である。図3~図6に示すように、格子体21(正極格子体12及び負極格子体14)は、格子部22(格子部12a及び格子部14a)と、格子部22と一体で形成され、格子部22の一端から突出した耳部23(耳部12b及び耳部14b)とを有している。なお、格子体21は、正極格子体12及び負極格子体14のそれぞれに対応し、格子部22は、格子部12a及び格子部14aのそれぞれに対応し、耳部23は、耳部12b及び耳部14bのそれぞれに対応する。 FIG. 5 is a front view showing a lattice body according to an embodiment. FIG. 6 is a schematic cross-sectional view showing a part of the lattice shown in FIG. As shown in FIGS. 3 to 6, the lattice body 21 (the positive electrode lattice body 12 and the negative electrode lattice body 14) is formed integrally with the lattice portion 22 (the lattice portion 12a and the lattice portion 14a) and the lattice portion 22. It has the ear | edge part 23 (ear part 12b and the ear | edge part 14b) which protruded from the end of the part 22. FIG. Note that the lattice body 21 corresponds to each of the positive electrode lattice body 12 and the negative electrode lattice body 14, the lattice portion 22 corresponds to each of the lattice portion 12a and the lattice portion 14a, and the ear portion 23 corresponds to the ear portion 12b and the ear portion. This corresponds to each of the parts 14b.
 格子部22は、略矩形の薄板状に形成されており、互いに平行な第一表面22a及び第二表面22bと、第一表面22a及び第二表面22bを貫通する複数の貫通孔22cと、を備えている。このため、格子部22が鉛蓄電池1の極板(正極板9及び負極板10)に用いられる際は、活物質(正極活物質13及び負極活物質15)は、格子部22の第一表面22a、第二表面22b、及び複数の貫通孔22cに保持される。なお、格子部22の上部(第一表面22a及び第二表面22bの上部)には、活物質が保持されない。第一表面22aと第二表面22bとの区別はなく、格子部22のどちらの面が第一表面22aであってもよく第二表面22bであってもよい。格子部22に形成される貫通孔22cの数、形状、大きさ等は、特に限定されるものではなく、活物質を適切に保持できる範囲で、適宜設定される。 The lattice portion 22 is formed in a substantially rectangular thin plate shape, and includes a first surface 22a and a second surface 22b that are parallel to each other, and a plurality of through holes 22c that penetrate the first surface 22a and the second surface 22b. I have. For this reason, when the lattice part 22 is used for the electrode plate (the positive electrode plate 9 and the negative electrode plate 10) of the lead storage battery 1, the active material (the positive electrode active material 13 and the negative electrode active material 15) is the first surface of the lattice part 22. 22a, the second surface 22b, and the plurality of through holes 22c. In addition, an active material is not hold | maintained at the upper part (upper part of the 1st surface 22a and the 2nd surface 22b) of the grating | lattice part 22. FIG. There is no distinction between the first surface 22a and the second surface 22b, and either surface of the lattice portion 22 may be the first surface 22a or the second surface 22b. The number, shape, size, and the like of the through holes 22c formed in the lattice portion 22 are not particularly limited, and are set as appropriate as long as the active material can be appropriately retained.
 格子部22では、複数の貫通孔22cの少なくとも一つにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なっている。この場合、格子部22には、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが同じになる貫通孔22cが形成されていてもよい。また、第一表面22aにおける開口面積と第二表面22bにおける開口面積とは、何れが大きくてもよく、何れが小さくてもよい。 In the lattice part 22, the opening area in the first surface 22a and the opening area in the second surface 22b are different in at least one of the plurality of through holes 22c. In this case, the lattice portion 22 may be formed with through holes 22c having the same opening area on the first surface 22a and the opening area on the second surface 22b. Moreover, either the opening area in the 1st surface 22a and the opening area in the 2nd surface 22b may be large, and any may be small.
 ここで、第一表面22aにおける開口面積及び第二表面22bにおける開口面積は、以下のように規定される。第一表面22aの面を第一基準面とし、第二表面22bの面を第二基準面とする。第一表面22aと第二表面22bとは互いに平行であることから、第一基準面と第二基準面とも互いに平行となる。なお、製造誤差等により第一表面22a及び第二表面22bに多少の凹凸が形成されている場合は、当該凹凸を除いた面を第一基準面及び第二基準面とする。そして、第一基準面及び第二基準面における貫通孔22cの開口を、第一表面22a及び第二表面22bにおける貫通孔22cの開口とし、この開口面積を、第一表面22a及び第二表面22bにおける開口面積とする。 Here, the opening area on the first surface 22a and the opening area on the second surface 22b are defined as follows. The surface of the first surface 22a is the first reference surface, and the surface of the second surface 22b is the second reference surface. Since the first surface 22a and the second surface 22b are parallel to each other, the first reference surface and the second reference surface are also parallel to each other. In addition, when some unevenness | corrugation is formed in the 1st surface 22a and the 2nd surface 22b by manufacturing error etc., the surface except the said unevenness | corrugation is made into the 1st reference plane and the 2nd reference plane. The openings of the through holes 22c in the first reference surface and the second reference surface are defined as the openings of the through holes 22c in the first surface 22a and the second surface 22b, and the opening areas are defined as the first surface 22a and the second surface 22b. The opening area at.
 以上説明したように、本実施形態に係る格子体21では、鉛蓄電池1の極板に用いられる際は、第一表面22a、第二表面22b、及び複数の貫通孔22cにおいて活物質が保持されるが、第一表面22a及び第二表面22bが互いに平行であるため、活物質は第一表面22a及び第二表面22bから脱落しやすい。しかしながら、第一表面22a及び第二表面22bを貫通する複数の貫通孔22cの少なくとも一つにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なるため、活物質は貫通孔22cから脱落し難くなる。これにより、活物質の脱落を抑制することができる。 As described above, in the lattice body 21 according to the present embodiment, when used in the electrode plate of the lead storage battery 1, the active material is held in the first surface 22a, the second surface 22b, and the plurality of through holes 22c. However, since the first surface 22a and the second surface 22b are parallel to each other, the active material tends to fall off from the first surface 22a and the second surface 22b. However, since the opening area of the first surface 22a and the opening area of the second surface 22b are different in at least one of the plurality of through holes 22c penetrating the first surface 22a and the second surface 22b, the active material is a through hole. It becomes difficult to drop off 22c. Thereby, falling off of the active material can be suppressed.
 また、本実施形態に係る鉛蓄電池1では、正極格子体12及び負極格子体14として格子体21が用いられるため、正極活物質13及び負極活物質15が脱落するのを抑制することができる。 In addition, in the lead storage battery 1 according to the present embodiment, since the lattice body 21 is used as the positive electrode lattice body 12 and the negative electrode lattice body 14, it is possible to suppress the positive electrode active material 13 and the negative electrode active material 15 from falling off.
 本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限り適宜変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なっていてもよい。この場合、格子部22には、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが同じとなる貫通孔22cは形成されない。また、図7に示す変形例の格子体21Aの格子部22Bのように、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きくなっている貫通孔22cと、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも小さくなっている貫通孔22cと、が混在していてもよい。このように、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なるものとすることで、活物質の脱落を更に抑制することができる。 For example, in all of the plurality of through holes 22c, the opening area on the first surface 22a and the opening area on the second surface 22b may be different. In this case, the through-hole 22c in which the opening area on the first surface 22a and the opening area on the second surface 22b are the same is not formed in the lattice portion 22. Further, like the lattice portion 22B of the lattice body 21A of the modified example shown in FIG. 7, the through hole 22c in which the opening area on the first surface 22a is larger than the opening area on the second surface 22b, and the first surface 22a The through-hole 22c in which the opening area in is smaller than the opening area in the second surface 22b may be mixed. Thus, in all of the plurality of through holes 22c, the opening area of the first surface 22a and the opening area of the second surface 22b are different, so that the active material can be further prevented from falling off.
 また、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きくてもよい。この場合、格子部22には、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも小さくなる貫通孔22cは形成されない。このように、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きいものとすることで、格子体21を容易に形成することができるとともに、第一表面22a側から活物質を充填することで格子体21に対する活物質の充填性がよくなる。 Further, in all of the plurality of through holes 22c, the opening area on the first surface 22a may be larger than the opening area on the second surface 22b. In this case, the through hole 22c in which the opening area on the first surface 22a is smaller than the opening area on the second surface 22b is not formed in the lattice portion 22. Thus, in all of the plurality of through holes 22c, by making the opening area on the first surface 22a larger than the opening area on the second surface 22b, the lattice body 21 can be easily formed, By filling the active material from the first surface 22a side, the filling property of the active material into the lattice body 21 is improved.
 また、第一表面22aにおける複数の貫通孔22cの総開口面積は、第二表面22bにおける複数の貫通孔22cの総開口面積よりも大きくてもよい。第一表面22aにおける複数の貫通孔22cの総開口面積とは、各貫通孔22cの第一表面22aにおける開口面積の総和であり、第二表面22bにおける複数の貫通孔22cの総開口面積とは、各貫通孔22cの第二表面22bにおける開口面積の総和である。この場合、図7に示す格子体21Aの格子部22Aのように、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きくなっている貫通孔22cと、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも小さくなっている貫通孔22cと、が混在していてもよい。このように、第一表面22aにおける複数の貫通孔22cの総開口面積が第二表面22bにおける複数の貫通孔22cの総開口面積よりも大きいものとすることで、全体として活物質が貫通孔22cから脱落し難くなる。 Further, the total opening area of the plurality of through holes 22c on the first surface 22a may be larger than the total opening area of the plurality of through holes 22c on the second surface 22b. The total opening area of the plurality of through holes 22c in the first surface 22a is the sum of the opening areas in the first surface 22a of each through hole 22c, and the total opening area of the plurality of through holes 22c in the second surface 22b. The sum of the opening areas on the second surface 22b of each through hole 22c. In this case, as in the lattice portion 22A of the lattice body 21A shown in FIG. 7, the opening area in the first surface 22a is larger than the opening area in the second surface 22b, and the opening in the first surface 22a. The through-hole 22c whose area is smaller than the opening area in the second surface 22b may be mixed. Thus, the active material as a whole becomes the through hole 22c by making the total opening area of the plurality of through holes 22c in the first surface 22a larger than the total opening area of the plurality of through holes 22c in the second surface 22b. It becomes difficult to drop off.
 また、第一表面22a及び第二表面22bと直交する方向の断面において、複数の貫通孔22cのそれぞれの内壁面は、直線状に形成されていてもよいが、図8に示す変形例の格子体21Bの格子部22Bのように、複数の貫通孔22cの少なくとも一つの内壁面に、活物質が入り込む凹部22dが形成されていてもよい。この場合、複数の貫通孔22cの全ての内壁面に、凹部22dが形成されていてもよい。また、凹部22dだけでなく、凸部も形成されることで、全体として凹凸に形成されていてもよい。凹部22dの数、形状、大きさ等は、特に限定されるものではなく、活物質が入り込むことができる範囲で、適宜設定することができる。このように、複数の貫通孔22cの少なくとも一つの内壁面に凹部22dが形成されているものとすることで、更には、複数の貫通孔22cの全ての内壁面に、凹部22dが形成されていているものとすることで、活物質が当該凹部22dに入り込む。これにより、活物質が脱落するのを更に抑制することができる。 Further, in the cross section in the direction perpendicular to the first surface 22a and the second surface 22b, the inner wall surfaces of the plurality of through holes 22c may be formed in a straight line, but the lattice of the modification shown in FIG. As in the lattice portion 22B of the body 21B, a recess 22d into which the active material enters may be formed on at least one inner wall surface of the plurality of through holes 22c. In this case, recesses 22d may be formed on all inner wall surfaces of the plurality of through holes 22c. Further, not only the concave portion 22d but also the convex portion may be formed, so that the whole surface may be formed as a concave / convex portion. The number, shape, size, and the like of the recesses 22d are not particularly limited, and can be set as appropriate as long as the active material can enter. As described above, the recess 22d is formed on at least one inner wall surface of the plurality of through holes 22c, and further, the recess 22d is formed on all inner wall surfaces of the plurality of through holes 22c. As a result, the active material enters the recess 22d. Thereby, it can further suppress that an active material falls off.
 また、第一表面22a及び第二表面22bと直交する方向の断面において、複数の貫通孔22cのそれぞれの内壁面は、直線状に形成されていてもよいが、図9に示す変形例の格子体21Cの格子部22Cのように、複数の貫通孔22cの少なくとも一つは、広がりながら第一表面22aに至る第一テーパ部22eと、広がりながら第二表面22bに至る第二テーパ部22fと、を有するものとしてもよい。なお、第一表面22aにおける開口面積及び第二表面22bにおける開口面積は、第一テーパ部22eの傾斜角度θ1及び第二テーパ部22fの傾斜角度θ2を大きくするほど、又は、第一テーパ部22e及び第二テーパ部22fを大きくするほど、大きくなる。 Further, in the cross section in the direction orthogonal to the first surface 22a and the second surface 22b, the inner wall surfaces of the plurality of through holes 22c may be formed linearly, but the lattice of the modification shown in FIG. Like the lattice portion 22C of the body 21C, at least one of the plurality of through-holes 22c includes a first tapered portion 22e that extends to the first surface 22a, and a second tapered portion 22f that extends to the second surface 22b. It is good also as having. The opening area on the first surface 22a and the opening area on the second surface 22b are increased as the inclination angle θ1 of the first taper portion 22e and the inclination angle θ2 of the second taper portion 22f are increased, or the first taper portion 22e. The larger the second taper portion 22f, the larger the size.
 この場合、複数の貫通孔22cのそれぞれが、つまり、複数の貫通孔22cの全てが、第一テーパ部22e及び第二テーパ部22fを有するものとしてもよい。第一テーパ部22eでは、貫通孔22cは、第一表面22aと直交する断面において、第一表面22aに対して広がる方向に傾斜して第一表面22aに至っている。同様に、第二テーパ部22fでは、貫通孔22cは、第二表面22bと直交する断面において、第二表面22bに対して広がる方向に傾斜して第二表面22bに至っている。また、第一表面22a及び第二表面22bと直交する方向の断面において、第一テーパ部22e及び第二テーパ部22fは、全体としてテーパ形状になっていれば、必ずしも直線状である必要はなく、曲線状であってもよく、凹凸状であってもよい。このように、複数の貫通孔22cの少なくとも一つが第一テーパ部22e及び第二テーパ部22fを有するものとすることで、貫通孔22cに充填された活物質が、第一表面22a及び第二表面22bの両側において広がる形状となる。つまり、活物質が、第一表面22a及び第二表面22bの両側から格子体21Cの格子部22Cを挟み込む形状となる。このため、活物質が脱落するのを更に抑制することができる。 In this case, each of the plurality of through holes 22c, that is, all of the plurality of through holes 22c may have the first tapered portion 22e and the second tapered portion 22f. In the first taper portion 22e, the through hole 22c is inclined in a direction extending with respect to the first surface 22a and reaches the first surface 22a in a cross section orthogonal to the first surface 22a. Similarly, in the second tapered portion 22f, the through hole 22c is inclined in a direction extending with respect to the second surface 22b and reaches the second surface 22b in a cross section orthogonal to the second surface 22b. In addition, in the cross section in the direction orthogonal to the first surface 22a and the second surface 22b, the first taper portion 22e and the second taper portion 22f do not necessarily need to be linear as long as they are tapered as a whole. The shape may be curved or uneven. As described above, when at least one of the plurality of through holes 22c has the first tapered portion 22e and the second tapered portion 22f, the active material filled in the through hole 22c is changed to the first surface 22a and the second tapered portion 22f. The shape is widened on both sides of the surface 22b. That is, the active material has a shape that sandwiches the lattice portion 22C of the lattice body 21C from both sides of the first surface 22a and the second surface 22b. For this reason, it can further suppress that an active material falls.
 ところで、正極格子体では、充放電を繰り返していくことで活物質同士の結びつきが弱くなる泥状化(軟化現象)が進行していくが、負極格子体14では、このような泥状化が発生しない。このため、正極格子体12としてのみ格子体21が用いられるものとしてもよい。これにより、活物質が脱落するのを効率的に抑制することができる。 By the way, in the positive electrode grid body, mudification (softening phenomenon) in which the connection between the active materials is weakened by repeating charge and discharge progresses. Does not occur. For this reason, the lattice body 21 may be used only as the positive electrode lattice body 12. Thereby, it can suppress efficiently that an active material falls.
 1…鉛蓄電池、2…電槽、3…蓋、4…正極端子、5…負極端子、6…液口栓、7…電極群、8…正極柱、9…正極板、10…負極板、11…セパレータ、12…正極格子体、12a…格子部、12b…耳部、13…正極活物質、14…負極格子体、14a…格子部、14b…耳部、15…負極活物質、16…正極側ストラップ、17…負極側ストラップ、21,21A,21B,21C…格子体、22,22A,22B,22C…格子部、22a…第一表面、22b…第二表面、22c…貫通孔、22d…凹部、22e…第一テーパ部、22f…第二テーパ部、23…耳部、θ1…第一テーパ部の傾斜角度、θ2…第二テーパ部の傾斜角度。
 
DESCRIPTION OF SYMBOLS 1 ... Lead acid battery, 2 ... Battery case, 3 ... Lid, 4 ... Positive electrode terminal, 5 ... Negative electrode terminal, 6 ... Liquid stopper, 7 ... Electrode group, 8 ... Positive electrode pillar, 9 ... Positive electrode plate, 10 ... Negative electrode plate, DESCRIPTION OF SYMBOLS 11 ... Separator, 12 ... Positive electrode lattice body, 12a ... Lattice part, 12b ... Ear part, 13 ... Positive electrode active material, 14 ... Negative electrode lattice body, 14a ... Grid part, 14b ... Ear part, 15 ... Negative electrode active material, 16 ... Positive side strap, 17 ... Negative side strap, 21, 21A, 21B, 21C ... Lattice, 22, 22A, 22B, 22C ... Lattice, 22a ... First surface, 22b ... Second surface, 22c ... Through hole, 22d ... concave portion, 22e ... first taper portion, 22f ... second taper portion, 23 ... ear portion, θ1 ... inclination angle of first taper portion, θ2 ... inclination angle of second taper portion.

Claims (10)

  1.  鉛蓄電池の極板に用いられて鉛を含む格子体であって、
     互いに平行な第一表面及び第二表面と、
     前記第一表面及び前記第二表面を貫通する複数の貫通孔と、を備え、
     前記複数の貫通孔の少なくとも一つにおいて、前記第一表面における開口面積と前記第二表面における開口面積とが異なる、
    格子体。
    A grid containing lead used in the electrode plate of a lead-acid battery,
    A first surface and a second surface parallel to each other;
    A plurality of through holes penetrating the first surface and the second surface,
    In at least one of the plurality of through holes, the opening area on the first surface is different from the opening area on the second surface.
    Lattice body.
  2.  前記複数の貫通孔の全てにおいて、前記第一表面における開口面積と前記第二表面における開口面積とが異なる、
    請求項1に記載の格子体。
    In all of the plurality of through holes, the opening area on the first surface and the opening area on the second surface are different.
    The lattice body according to claim 1.
  3.  前記複数の貫通孔の全てにおいて、前記第一表面における開口面積が前記第二表面における開口面積よりも大きい、
    請求項1又は2に記載の格子体。
    In all of the plurality of through holes, the opening area on the first surface is larger than the opening area on the second surface,
    The lattice body according to claim 1 or 2.
  4.  前記第一表面における前記複数の貫通孔の総開口面積が、前記第二表面における前記複数の貫通孔の総開口面積よりも大きい、
    請求項1~3の何れか一項に記載の格子体。
    A total opening area of the plurality of through holes in the first surface is larger than a total opening area of the plurality of through holes in the second surface;
    The lattice body according to any one of claims 1 to 3.
  5.  前記複数の貫通孔の少なくとも一つの内壁面に、凹部が形成されている、
    請求項1~4の何れか一項に記載の格子体。
    A recess is formed in at least one inner wall surface of the plurality of through holes.
    The lattice body according to any one of claims 1 to 4.
  6.  前記複数の貫通孔の全ての内壁面に、凹部が形成されている、
    請求項1~4の何れか一項に記載の格子体。
    Recesses are formed on all inner wall surfaces of the plurality of through holes.
    The lattice body according to any one of claims 1 to 4.
  7.  前記複数の貫通孔の少なくとも一つは、広がりながら前記第一表面に至る第一テーパ部と、広がりながら前記第二表面に至る第二テーパ部と、を有する、
    請求項1~6の何れか一項に記載の格子体。
    At least one of the plurality of through holes has a first tapered portion that extends to the first surface and a second tapered portion that extends to the second surface,
    The lattice body according to any one of claims 1 to 6.
  8.  前記複数の貫通孔のそれぞれは、広がりながら前記第一表面に至る第一テーパ部と、広がりながら前記第二表面に至る第二テーパ部と、を有する、
    請求項1~6の何れか一項に記載の格子体。
    Each of the plurality of through holes has a first tapered portion that reaches the first surface while expanding, and a second tapered portion that reaches the second surface while expanding.
    The lattice body according to any one of claims 1 to 6.
  9.  正極板及び負極板の少なくとも一方の格子体として、請求項1~8の何れか一項に記載された格子体が用いられている、
    鉛蓄電池。
    The lattice body according to any one of claims 1 to 8 is used as the lattice body of at least one of the positive electrode plate and the negative electrode plate.
    Lead acid battery.
  10.  前記格子体は、正極板に用いられる正極格子体である、
    請求項9に記載の鉛蓄電池。
     
    The lattice body is a positive electrode lattice body used for a positive electrode plate.
    The lead acid battery according to claim 9.
PCT/JP2018/019852 2018-05-23 2018-05-23 Grid body and lead-acid battery WO2019224946A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/019852 WO2019224946A1 (en) 2018-05-23 2018-05-23 Grid body and lead-acid battery
JP2020520934A JP7185981B2 (en) 2018-05-23 2018-05-23 Grids and lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019852 WO2019224946A1 (en) 2018-05-23 2018-05-23 Grid body and lead-acid battery

Publications (1)

Publication Number Publication Date
WO2019224946A1 true WO2019224946A1 (en) 2019-11-28

Family

ID=68616760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019852 WO2019224946A1 (en) 2018-05-23 2018-05-23 Grid body and lead-acid battery

Country Status (2)

Country Link
JP (1) JP7185981B2 (en)
WO (1) WO2019224946A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162358A (en) * 1990-10-24 1992-06-05 Shin Kobe Electric Mach Co Ltd Lattice unit for lead-acid battery plate and manufacture thereof
JPH08315826A (en) * 1995-04-28 1996-11-29 Wirtz Mfg Co Inc Casting lattice for battery and its method and equipment formanufacture
JPH10275618A (en) * 1997-03-31 1998-10-13 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery
JP2001266895A (en) * 2000-03-23 2001-09-28 Shin Kobe Electric Mach Co Ltd Continuous casting grid for lead-acid battery and its manufacturing method
JP2002075379A (en) * 2000-08-24 2002-03-15 Shin Kobe Electric Mach Co Ltd Lead-acid battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895192B2 (en) 2008-12-22 2014-11-25 Shin-Kobe Electric Machinery Co., Ltd. Grid plate for lead acid storage battery, plate, and lead acid storage battery provided with same plate
CN102640334B (en) 2010-10-18 2014-09-17 新神户电机株式会社 Lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162358A (en) * 1990-10-24 1992-06-05 Shin Kobe Electric Mach Co Ltd Lattice unit for lead-acid battery plate and manufacture thereof
JPH08315826A (en) * 1995-04-28 1996-11-29 Wirtz Mfg Co Inc Casting lattice for battery and its method and equipment formanufacture
JPH10275618A (en) * 1997-03-31 1998-10-13 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery
JP2001266895A (en) * 2000-03-23 2001-09-28 Shin Kobe Electric Mach Co Ltd Continuous casting grid for lead-acid battery and its manufacturing method
JP2002075379A (en) * 2000-08-24 2002-03-15 Shin Kobe Electric Mach Co Ltd Lead-acid battery

Also Published As

Publication number Publication date
JPWO2019224946A1 (en) 2021-05-27
JP7185981B2 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
EP2684244B1 (en) Energy storage devices comprising carbon-based additives and methods of making thereof
EP2768046B1 (en) Flooded lead-acid battery with electrodes comprising a pasting substrate
JP6665465B2 (en) Lead storage battery
CN111279540A (en) Lead-acid battery
CN106575798B (en) Lead-acid accumulator
WO2017159299A1 (en) Lead storage battery
EP3780243A1 (en) Lead acid storage battery
WO2019225620A1 (en) Lead storage battery
US20170222214A1 (en) Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery
JP7375457B2 (en) lead acid battery
WO2019224946A1 (en) Grid body and lead-acid battery
JP2020167079A (en) Lead-acid battery
CN111279543A (en) Lead-acid battery
CN111279541A (en) Lead-acid battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JPH0412453A (en) Lead-acid battery
CN210744085U (en) Lead-acid battery
JP7220371B2 (en) Electrode plates, grids and lead-acid batteries
JP7291678B2 (en) lead acid battery
JP7372914B2 (en) lead acid battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
WO2023210636A1 (en) Lead-acid battery
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
WO2022030056A1 (en) Liquid lead storage battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919859

Country of ref document: EP

Kind code of ref document: A1