JPWO2019224946A1 - Lattice and lead-acid battery - Google Patents

Lattice and lead-acid battery Download PDF

Info

Publication number
JPWO2019224946A1
JPWO2019224946A1 JP2020520934A JP2020520934A JPWO2019224946A1 JP WO2019224946 A1 JPWO2019224946 A1 JP WO2019224946A1 JP 2020520934 A JP2020520934 A JP 2020520934A JP 2020520934 A JP2020520934 A JP 2020520934A JP WO2019224946 A1 JPWO2019224946 A1 JP WO2019224946A1
Authority
JP
Japan
Prior art keywords
holes
lattice body
opening area
lattice
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020520934A
Other languages
Japanese (ja)
Other versions
JP7185981B2 (en
Inventor
田中 伸和
伸和 田中
寺田 正幸
正幸 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2019224946A1 publication Critical patent/JPWO2019224946A1/en
Application granted granted Critical
Publication of JP7185981B2 publication Critical patent/JP7185981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

鉛蓄電池の極板に用いられて鉛を含む格子体であって、互いに平行な第一表面及び第二表面と、前記第一表面及び前記第二表面を貫通する複数の貫通孔と、を備え、前記複数の貫通孔の少なくとも一つにおいて、前記第一表面における開口面積と前記第二表面における開口面積とが異なる、格子体。A lead-containing lattice used for a lead-acid battery electrode, which includes a first surface and a second surface parallel to each other, and a plurality of through holes penetrating the first surface and the second surface. , A lattice body in which the opening area on the first surface and the opening area on the second surface are different in at least one of the plurality of through holes.

Description

本発明は、格子体及び鉛蓄電池に関する。 The present invention relates to a lattice body and a lead storage battery.

鉛蓄電池は、信頼性、価格の安さから産業用、民生用に広く用いられており、特に自動車用鉛蓄電池(いわゆるバッテリー)の需要が多い。 Lead-acid batteries are widely used for industrial and consumer purposes due to their reliability and low price, and there is a particularly large demand for lead-acid batteries for automobiles (so-called batteries).

特許文献1には、正極板及び負極板を備えた鉛蓄電池が記載されている。この鉛蓄電池では、正極板及び負極板のそれぞれは、鉛合金の格子体に活物質が充填されて構成されている。そして、正極板と負極板とがセパレータを介して交互に積層され、正極板及び負極板の集電部が極性毎にストラップに集合溶接され、ストラップにセル間接続部又は極柱が接続されて、極板群が構成されている。 Patent Document 1 describes a lead storage battery including a positive electrode plate and a negative electrode plate. In this lead-acid battery, each of the positive electrode plate and the negative electrode plate is configured by filling a lead alloy lattice with an active material. Then, the positive electrode plate and the negative electrode plate are alternately laminated via the separator, the current collecting portion of the positive electrode plate and the negative electrode plate is collectively welded to the strap for each polarity, and the cell-cell connection portion or the pole column is connected to the strap. , The electrode plate group is composed.

特開2012−230838号公報Japanese Unexamined Patent Publication No. 2012-230838

ところで、近年の自動車は、電装品が増加していることから、電池への負荷が大きくなっている。その結果、電池の放電量が多くなっている。電池の放電量の指標として、放電深度DOD(Depth of Discharge)がある。放電深度DODは、値が大きくなるほど、放電量が多くなることを示している。DODが大きい状況下で電池を充放電すると、正極板において活物質同士の結びつきが弱くなる泥状化(軟化現象)が進行し、徐々に格子体から活物質が脱落していく。しかも、自動車に搭載される鉛蓄電池では、長時間にわたって大きな振動に曝されるため、格子体からの活物質の脱落が顕著となる。格子体から活物質が脱落すると、極板(特に正極板)の寿命が短くなるという問題が発生する。 By the way, in recent years, the load on batteries of automobiles has increased due to the increase in electrical components. As a result, the amount of battery discharge is large. As an index of the discharge amount of the battery, there is a discharge depth DOD (Dept of Discharge). The discharge depth DOD indicates that the larger the value, the larger the discharge amount. When the battery is charged and discharged under a condition where the DOD is large, mud-like formation (softening phenomenon) in which the bonds between the active materials are weakened on the positive electrode plate progresses, and the active materials gradually fall off from the lattice. Moreover, since the lead-acid battery mounted on the automobile is exposed to a large vibration for a long time, the active material is significantly dropped from the lattice body. When the active material falls off from the lattice body, there arises a problem that the life of the electrode plate (particularly the positive electrode plate) is shortened.

そこで、本発明の一側面は、活物質の脱落を抑制することができる格子体及び鉛蓄電池を提供することを課題とする。 Therefore, one aspect of the present invention is to provide a lattice body and a lead storage battery capable of suppressing the falling off of the active material.

本発明の一側面に係る格子体は、鉛蓄電池の極板に用いられて鉛を含む格子体であって、互いに平行な第一表面及び第二表面と、第一表面及び第二表面を貫通する複数の貫通孔と、を備え、複数の貫通孔の少なくとも一つにおいて、第一表面における開口面積と第二表面における開口面積とが異なる。 The lattice body according to one aspect of the present invention is a lattice body containing lead used for the electrode plate of a lead storage battery, and penetrates the first surface and the second surface parallel to each other and the first surface and the second surface. The opening area on the first surface and the opening area on the second surface are different in at least one of the plurality of through holes.

この格子体では、鉛蓄電池の極板に用いられる際は、第一表面、第二表面、及び複数の貫通孔において活物質が保持されるが、第一表面及び第二表面が互いに平行であるため、活物質は第一表面及び第二表面から脱落しやすい。しかしながら、第一表面及び第二表面を貫通する複数の貫通孔の少なくとも一つにおいて、第一表面における開口面積と第二表面における開口面積とが異なるため、活物質は貫通孔から脱落し難くなる。これにより、活物質の脱落を抑制することができる。 In this lattice, when used for the electrode plate of a lead-acid battery, the active material is retained on the first surface, the second surface, and a plurality of through holes, but the first surface and the second surface are parallel to each other. Therefore, the active material easily falls off from the first surface and the second surface. However, in at least one of the plurality of through holes penetrating the first surface and the second surface, the opening area on the first surface and the opening area on the second surface are different, so that the active material is difficult to fall out from the through holes. .. Thereby, the dropout of the active material can be suppressed.

複数の貫通孔の全てにおいて、第一表面における開口面積と第二表面における開口面積とが異なっていてもよい。この格子体では、複数の貫通孔の全てにおいて、第一表面における開口面積と第二表面における開口面積とが異なるため、活物質の脱落を更に抑制することができる。 In all of the plurality of through holes, the opening area on the first surface and the opening area on the second surface may be different. In this lattice body, since the opening area on the first surface and the opening area on the second surface are different in all of the plurality of through holes, the shedding of the active material can be further suppressed.

複数の貫通孔の全てにおいて、第一表面における開口面積が第二表面における開口面積よりも大きくてもよい。この格子体では、複数の貫通孔の全てにおいて、第一表面における開口面積が第二表面における開口面積よりも大きいため、格子体を容易に形成することができるとともに、第一表面側から活物質を充填することで格子体に対する活物質の充填性がよくなる。 In all of the plurality of through holes, the opening area on the first surface may be larger than the opening area on the second surface. In this lattice body, since the opening area on the first surface is larger than the opening area on the second surface in all of the plurality of through holes, the lattice body can be easily formed and the active material can be formed from the first surface side. By filling the mixture, the filling property of the active material with respect to the lattice body is improved.

第一表面における複数の貫通孔の総開口面積が、第二表面における複数の貫通孔の総開口面積よりも大きくてもよい。この格子体では、第一表面における複数の貫通孔の総開口面積が第二表面における複数の貫通孔の総開口面積よりも大きいため、全体として活物質が貫通孔から脱落し難くなる。 The total opening area of the plurality of through holes on the first surface may be larger than the total opening area of the plurality of through holes on the second surface. In this lattice body, since the total opening area of the plurality of through holes on the first surface is larger than the total opening area of the plurality of through holes on the second surface, it is difficult for the active material to fall out of the through holes as a whole.

複数の貫通孔の少なくとも一つの内壁面に、凹部が形成されていてもよい。この格子体では、複数の貫通孔の少なくとも一つの内壁面に凹部が形成されているため、活物質が当該凹部に入り込む。これにより、活物質が脱落するのを更に抑制することができる。 A recess may be formed in at least one inner wall surface of the plurality of through holes. In this lattice body, since a recess is formed in at least one inner wall surface of the plurality of through holes, the active material enters the recess. As a result, it is possible to further suppress the active material from falling off.

複数の貫通孔の全ての内壁面に、凹部が形成されていてもよい。この格子体では、複数の貫通孔の全ての内壁面に凹部が形成されているため、活物質が当該凹部に入り込む。これにより、活物質が脱落するのを更に抑制することができる。 Recesses may be formed on all inner wall surfaces of the plurality of through holes. In this lattice body, since recesses are formed on all the inner wall surfaces of the plurality of through holes, the active material enters the recesses. As a result, it is possible to further suppress the active material from falling off.

複数の貫通孔の少なくとも一つは、広がりながら第一表面に至る第一テーパ部と、広がりながら第二表面に至る第二テーパ部と、を有してもよい。この格子体では、複数の貫通孔のそれぞれが第一テーパ部及び第二テーパ部を有するため、貫通孔に充填された活物質が、第一表面及び第二表面の両側において広がる形状となる。つまり、活物質が、第一表面及び第二表面の両側から格子体を挟み込む形状となる。このため、活物質が脱落するのを更に抑制することができる。 At least one of the plurality of through holes may have a first tapered portion that extends to the first surface and a second tapered portion that expands to reach the second surface. In this lattice body, since each of the plurality of through holes has a first tapered portion and a second tapered portion, the active material filled in the through holes has a shape that spreads on both sides of the first surface and the second surface. That is, the active material has a shape that sandwiches the lattice body from both sides of the first surface and the second surface. Therefore, it is possible to further suppress the active material from falling off.

複数の貫通孔のそれぞれは、広がりながら第一表面に至る第一テーパ部と、広がりながら第二表面に至る第二テーパ部と、を有してもよい。この格子体では、複数の貫通孔のそれぞれが第一テーパ部及び第二テーパ部を有するため、貫通孔に充填された活物質が、第一表面及び第二表面の両側において広がる形状となる。つまり、活物質が、第一表面及び第二表面の両側から格子体を挟み込む形状となる。このため、活物質が脱落するのを更に抑制することができる。 Each of the plurality of through holes may have a first tapered portion that extends to the first surface and a second tapered portion that expands to reach the second surface. In this lattice body, since each of the plurality of through holes has a first tapered portion and a second tapered portion, the active material filled in the through holes has a shape that spreads on both sides of the first surface and the second surface. That is, the active material has a shape that sandwiches the lattice body from both sides of the first surface and the second surface. Therefore, it is possible to further suppress the active material from falling off.

本発明の一側面に係る鉛蓄電池は、正極板及び負極板の少なくとも一方の格子体として、上記の何れかの格子体が用いられていている。この鉛蓄電池では、正極板及び負極板の少なくとも一方の格子体として上記の何れかの格子体が用いられるため、活物質が脱落するのを抑制することができる。 In the lead storage battery according to one aspect of the present invention, any of the above grids is used as at least one of the grids of the positive electrode plate and the negative electrode plate. In this lead-acid battery, since any of the above lattices is used as at least one of the positive electrode plate and the negative electrode plate, it is possible to prevent the active material from falling off.

ところで、正極格子体では、充放電を繰り返していくことで活物質同士の結びつきが弱くなる泥状化(軟化現象)が進行していく。このため、格子体は、正極板に用いられる正極格子体であってもよい。これにより、活物質が脱落するのを効率的に抑制することができる。 By the way, in the positive electrode lattice, mudification (softening phenomenon) in which the bonds between active materials are weakened by repeating charging and discharging progresses. Therefore, the lattice body may be a positive electrode lattice body used for the positive electrode plate. As a result, it is possible to efficiently prevent the active material from falling off.

本発明によれば、活物質の脱落を抑制することができる。 According to the present invention, it is possible to suppress the dropout of the active material.

一実施形態に係る鉛蓄電池の全体構造及び内部構造を示す斜視図である。It is a perspective view which shows the whole structure and the internal structure of the lead storage battery which concerns on one Embodiment. 図1に示した鉛蓄電池の電極群を示す斜視図である。It is a perspective view which shows the electrode group of the lead storage battery shown in FIG. 正極板(負極板)を示す正面図である。It is a front view which shows the positive electrode plate (negative electrode plate). 図3のIV−IV線における断面図である。FIG. 3 is a cross-sectional view taken along the line IV-IV of FIG. 一実施形態に係る格子体を示す正面図である。It is a front view which shows the lattice body which concerns on one Embodiment. 図5に示した格子体の一部を示す模式断面図である。It is a schematic cross-sectional view which shows a part of the lattice body shown in FIG. 変形例の格子体の一部を示す模式断面図である。It is a schematic cross-sectional view which shows a part of the lattice body of the modification. 変形例の格子体の一部を示す模式断面図である。It is a schematic cross-sectional view which shows a part of the lattice body of the modification. 変形例の格子体の一部を示す模式断面図である。It is a schematic cross-sectional view which shows a part of the lattice body of the modification.

以下、図面を参照して、本発明の一側面に係る鉛蓄電池の好適な実施形態について詳細に説明する。なお、全図中、同一又は相当部分には同一符号を付すこととする。また、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, preferred embodiments of the lead-acid battery according to one aspect of the present invention will be described in detail with reference to the drawings. In all the drawings, the same or corresponding parts are designated by the same reference numerals. In addition, the numerical range indicated by using "~" indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. Further, "A or B" may include either A or B, and may include both.

<鉛蓄電池>
図1は、一実施形態に係る鉛蓄電池1の全体構成及び内部構造を示す斜視図である。図1に示すように、鉛蓄電池1は、上面が開口している電槽2と、電槽2の開口を閉じる蓋3とを備えている。電槽2及び蓋3は、例えばポリプロピレンで形成されている。蓋3には、正極端子4と、負極端子5と、蓋3に設けられた注液口を閉塞する液口栓6と、が設けられている。
<Lead-acid battery>
FIG. 1 is a perspective view showing the overall configuration and internal structure of the lead-acid battery 1 according to the embodiment. As shown in FIG. 1, the lead-acid battery 1 includes an electric tank 2 having an open upper surface and a lid 3 that closes the opening of the electric tank 2. The battery case 2 and the lid 3 are made of polypropylene, for example. The lid 3 is provided with a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 for closing the liquid injection port provided in the lid 3.

電槽2の内部には、電極群7と、電極群7を正極端子4に接続する正極柱8と、電極群7を負極端子5に接続する負極柱(図示せず)と、希硫酸等の電解液とが収容されている。 Inside the battery case 2, an electrode group 7, a positive electrode column 8 connecting the electrode group 7 to the positive electrode terminal 4, a negative electrode column (not shown) connecting the electrode group 7 to the negative electrode terminal 5, dilute sulfuric acid, etc. Electrolyte and is stored.

図2は、電極群7を示す斜視図である。図2に示すように、電極群7は、正極板9と、負極板10と、正極板9と負極板10との間に配置されたセパレータ11と、を備えている。 FIG. 2 is a perspective view showing the electrode group 7. As shown in FIG. 2, the electrode group 7 includes a positive electrode plate 9, a negative electrode plate 10, and a separator 11 arranged between the positive electrode plate 9 and the negative electrode plate 10.

図3は、正極板9(負極板10)を示す正面図であり、図4は、図3のIV−IV線における断面図である。図3及び図4に示すように、正極板9は、正極格子体(正極集電体)12と、正極活物質(正極材)13と、を有している。正極格子体12は、正極板9の格子体であり、格子部12aと、格子部12aと一体で構成され、格子部12aの一端から突出した耳部12bと、を有している。正極活物質13は、正極板9の活物質であり、正極格子体12に保持されている。負極板10は、負極格子体(負極集電体)14と、負極活物質(負極材)15と、を有している。負極格子体14は、負極板10の格子体であり、格子部14aと、格子部14aと一体で構成され、格子部14aの一端から突出した耳部14bと、を有している。負極活物質15は、負極板10の活物質であり、負極格子体14に保持されている。正極格子体12及び負極格子体14は、鉛合金で形成されている。鉛合金は、鉛に加えて、スズ、カルシウム、アンチモン、セレン、銀、ビスマス等を含有する合金であってよく、具体的には、例えば、鉛、スズ及びカルシウムを含有する合金(Pb−Sn−Ca系合金)である。 FIG. 3 is a front view showing the positive electrode plate 9 (negative electrode plate 10), and FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. As shown in FIGS. 3 and 4, the positive electrode plate 9 has a positive electrode lattice body (positive electrode current collector) 12 and a positive electrode active material (positive electrode material) 13. The positive electrode lattice body 12 is a lattice body of the positive electrode plate 9, and has a lattice portion 12a and an ear portion 12b that is integrally formed with the lattice portion 12a and protrudes from one end of the lattice portion 12a. The positive electrode active material 13 is an active material of the positive electrode plate 9, and is held by the positive electrode lattice body 12. The negative electrode plate 10 has a negative electrode lattice body (negative electrode current collector) 14 and a negative electrode active material (negative electrode material) 15. The negative electrode lattice body 14 is a lattice body of the negative electrode plate 10, and has a lattice portion 14a and an ear portion 14b that is integrally formed with the lattice portion 14a and protrudes from one end of the lattice portion 14a. The negative electrode active material 15 is an active material of the negative electrode plate 10 and is held by the negative electrode lattice body 14. The positive electrode lattice body 12 and the negative electrode lattice body 14 are made of a lead alloy. The lead alloy may be an alloy containing tin, calcium, antimony, selenium, silver, bismuth and the like in addition to lead. Specifically, for example, an alloy containing lead, tin and calcium (Pb-Sn). -Ca-based alloy).

電極群7は、複数の正極板9と負極板10とが、セパレータ11を介して、電槽2の開口面と略平行方向に交互に積層された構造を有している。すなわち、正極板9及び負極板10は、それらの主面が電槽2の開口面と垂直方向に広がるように配置されている。電極群7において、複数の正極板9における各正極格子体12が有する耳部12b同士は、正極側ストラップ16で集合溶接されている。同様に、複数の負極板10における各負極格子体14が有する耳部14b同士は、負極側ストラップ17で集合溶接されている。正極側ストラップ16及び負極側ストラップ17は、それぞれ、正極柱8及び負極柱を介して正極端子4及び負極端子5に接続されている。 The electrode group 7 has a structure in which a plurality of positive electrode plates 9 and negative electrode plates 10 are alternately laminated in a direction substantially parallel to the opening surface of the battery case 2 via a separator 11. That is, the positive electrode plate 9 and the negative electrode plate 10 are arranged so that their main surfaces extend in the direction perpendicular to the opening surface of the battery case 2. In the electrode group 7, the ears 12b of each of the positive electrode lattices 12 of the plurality of positive electrode plates 9 are collectively welded by the positive electrode side strap 16. Similarly, the ears 14b of each of the negative electrode lattices 14 of the plurality of negative electrode plates 10 are collectively welded by the negative electrode side strap 17. The positive electrode side strap 16 and the negative electrode side strap 17 are connected to the positive electrode terminal 4 and the negative electrode terminal 5 via the positive electrode column 8 and the negative electrode column, respectively.

続いて、鉛蓄電池1の製造方法について説明する。鉛蓄電池1の製造方法は、電極板(正極板9及び負極板10)を得る電極板製造工程と、電極板を含む構成部材を組み立てて鉛蓄電池1を得る組立工程とを備えている。 Subsequently, a method for manufacturing the lead storage battery 1 will be described. The method for manufacturing the lead-acid battery 1 includes an electrode plate manufacturing step for obtaining the electrode plates (positive electrode plate 9 and the negative electrode plate 10) and an assembly step for assembling the constituent members including the electrode plates to obtain the lead-acid battery 1.

電極板製造工程では、例えば、正極板9及び負極板10のそれぞれについて、電極材ペースト(負極材ペースト及び正極材ペースト)を格子体(正極格子体12及び負極格子体14)に保持させた(充填した)後に、熟成及び乾燥を行うことにより未化成の電極板を得る。 In the electrode plate manufacturing process, for example, for each of the positive electrode plate 9 and the negative electrode plate 10, the electrode material paste (negative electrode material paste and positive electrode material paste) was held by the lattice bodies (positive electrode material lattice body 12 and negative electrode material lattice body 14) ( After (filling), aging and drying are performed to obtain an unchemical electrode plate.

正極材ペーストは、例えば、正極活物質の原料(鉛粉、鉛丹(Pb3O4)等)に添加剤(補強用短繊維等)及び水を加え、次いで、希硫酸を加えて混練することにより得られる。この正極材ペーストを正極格子体12に保持させた(充填した)後に、例えば、温度35〜85℃、湿度50〜98RH%の雰囲気で15〜60時間熟成し、温度45〜80℃で15〜30時間乾燥することにより、未化成の正極板が得られる。 The positive electrode material paste can be obtained, for example, by adding an additive (reinforcing short fibers, etc.) and water to a raw material (lead powder, lead tan (Pb3O4), etc.) of the positive electrode active material, and then adding dilute sulfuric acid and kneading. Be done. After the positive electrode material paste is held (filled) in the positive electrode lattice body 12, it is aged for 15 to 60 hours in an atmosphere of, for example, a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%, and 15 to 80 ° C. at a temperature of 45 to 80 ° C. By drying for 30 hours, an unchemical positive electrode plate is obtained.

負極材ペーストは、例えば、負極活物質の原料(鉛粉等)に添加剤(炭素材料、硫酸バリウム、補強用短繊維、スルホン基及び/又はスルホン酸塩基を有する樹脂等)を添加して乾式混合することにより混合物を得た後、希硫酸及び水を加えて混練することにより得られる。この負極材ペーストを集電体に保持させた(充填した)後に、例えば、温度45〜65℃、湿度70〜98RH%の雰囲気で15〜30時間熟成し、温度45〜60℃で15〜30時間乾燥することにより、未化成の負極板が得られる。 The negative electrode material paste is a dry type, for example, by adding an additive (carbon material, barium sulfate, reinforcing short fibers, a resin having a sulfonic acid group and / or a sulfonic acid base, etc.) to a raw material (lead powder, etc.) of the negative electrode active material. After obtaining a mixture by mixing, it is obtained by adding dilute sulfuric acid and water and kneading. After the negative electrode material paste is held (filled) in the current collector, it is aged for 15 to 30 hours in an atmosphere of, for example, a temperature of 45 to 65 ° C. and a humidity of 70 to 98 RH%, and aged at a temperature of 45 to 60 ° C. for 15 to 30. By drying for a time, an unchemical negative electrode plate is obtained.

組立工程では、例えば、未化成の負極板及び未化成の正極板を、セパレータ11を介して交互に積層し、正極格子体12の耳部12b同士を正極側ストラップ16で連結(溶接等)させるとともに、負極格子体14の耳部14b同士を負極側ストラップ17で連結(溶接等)させて、電極群7を得る。この電極群7を電槽2内に配置して未化成の電池を作製する。次に、未化成の電池に電解液(希硫酸等)を注入した後、直流電流を通電して電槽化成する。化成後の電解液の比重を適切な比重に調整して鉛蓄電池1が得られる。 In the assembly process, for example, the unchemical negative electrode plate and the unchemical positive electrode plate are alternately laminated via the separator 11, and the ear portions 12b of the positive electrode lattice body 12 are connected (welded, etc.) by the positive electrode side strap 16. At the same time, the ear portions 14b of the negative electrode lattice body 14 are connected (welded or the like) with the negative electrode side strap 17 to obtain the electrode group 7. The electrode group 7 is arranged in the battery case 2 to produce a non-chemical battery. Next, after injecting an electrolytic solution (dilute sulfuric acid or the like) into a non-chemical battery, a direct current is applied to form an electric tank. The lead storage battery 1 can be obtained by adjusting the specific gravity of the electrolytic solution after chemical conversion to an appropriate specific density.

化成条件及び硫酸の比重は、電極活物質の性状に応じて調整することができる。化成処理は、組立工程後に実施される代わりに、電極板製造工程における熟成及び乾燥後の多数の電極板をまとめて化成槽に浸漬して実施されてもよい(タンク化成)。 The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. Instead of being carried out after the assembly step, the chemical conversion treatment may be carried out by immersing a large number of electrode plates after aging and drying in the electrode plate manufacturing step together in a chemical conversion tank (tank chemical conversion).

<格子体>
続いて、上述した鉛蓄電池1の正極板9及び負極板10に用いられる正極格子体12及び負極格子体14について、より詳細に説明する。なお、本実施形態において、正極格子体12と負極格子体14とは基本的に同じ形状であるため、以下では、正極格子体12及び負極格子体14を格子体21として併せて説明する。
<Lattice body>
Subsequently, the positive electrode lattice body 12 and the negative electrode lattice body 14 used for the positive electrode plate 9 and the negative electrode plate 10 of the lead storage battery 1 described above will be described in more detail. Since the positive electrode lattice body 12 and the negative electrode lattice body 14 have basically the same shape in the present embodiment, the positive electrode lattice body 12 and the negative electrode lattice body 14 will be described together as the lattice body 21 below.

図5は、一実施形態に係る格子体を示す正面図である。図6は、図5に示した格子体の一部を示す概略断面図である。図3〜図6に示すように、格子体21(正極格子体12及び負極格子体14)は、格子部22(格子部12a及び格子部14a)と、格子部22と一体で形成され、格子部22の一端から突出した耳部23(耳部12b及び耳部14b)とを有している。なお、格子体21は、正極格子体12及び負極格子体14のそれぞれに対応し、格子部22は、格子部12a及び格子部14aのそれぞれに対応し、耳部23は、耳部12b及び耳部14bのそれぞれに対応する。 FIG. 5 is a front view showing a lattice body according to an embodiment. FIG. 6 is a schematic cross-sectional view showing a part of the lattice body shown in FIG. As shown in FIGS. 3 to 6, the lattice body 21 (positive electrode lattice body 12 and negative electrode lattice body 14) is formed integrally with the lattice portion 22 (lattice portion 12a and lattice portion 14a) and the lattice portion 22, and is a lattice. It has an ear portion 23 (ear portion 12b and ear portion 14b) protruding from one end of the portion 22. The lattice body 21 corresponds to each of the positive electrode lattice body 12 and the negative electrode lattice body 14, the lattice portion 22 corresponds to each of the lattice portion 12a and the lattice portion 14a, and the selvage portion 23 corresponds to the selvage portion 12b and the ear. Corresponds to each of the parts 14b.

格子部22は、略矩形の薄板状に形成されており、互いに平行な第一表面22a及び第二表面22bと、第一表面22a及び第二表面22bを貫通する複数の貫通孔22cと、を備えている。このため、格子部22が鉛蓄電池1の極板(正極板9及び負極板10)に用いられる際は、活物質(正極活物質13及び負極活物質15)は、格子部22の第一表面22a、第二表面22b、及び複数の貫通孔22cに保持される。なお、格子部22の上部(第一表面22a及び第二表面22bの上部)には、活物質が保持されない。第一表面22aと第二表面22bとの区別はなく、格子部22のどちらの面が第一表面22aであってもよく第二表面22bであってもよい。格子部22に形成される貫通孔22cの数、形状、大きさ等は、特に限定されるものではなく、活物質を適切に保持できる範囲で、適宜設定される。 The lattice portion 22 is formed in a substantially rectangular thin plate shape, and has a first surface 22a and a second surface 22b parallel to each other, and a plurality of through holes 22c penetrating the first surface 22a and the second surface 22b. I have. Therefore, when the lattice portion 22 is used for the electrode plates (positive electrode plate 9 and negative electrode plate 10) of the lead-acid battery 1, the active material (positive electrode active material 13 and negative electrode active material 15) is the first surface of the lattice portion 22. It is held in 22a, a second surface 22b, and a plurality of through holes 22c. The active material is not retained on the upper part of the lattice portion 22 (the upper part of the first surface 22a and the second surface 22b). There is no distinction between the first surface 22a and the second surface 22b, and either surface of the lattice portion 22 may be the first surface 22a or the second surface 22b. The number, shape, size, etc. of the through holes 22c formed in the lattice portion 22 are not particularly limited, and are appropriately set as long as the active material can be appropriately held.

格子部22では、複数の貫通孔22cの少なくとも一つにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なっている。この場合、格子部22には、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが同じになる貫通孔22cが形成されていてもよい。また、第一表面22aにおける開口面積と第二表面22bにおける開口面積とは、何れが大きくてもよく、何れが小さくてもよい。 In the lattice portion 22, the opening area on the first surface 22a and the opening area on the second surface 22b are different in at least one of the plurality of through holes 22c. In this case, the lattice portion 22 may be formed with a through hole 22c in which the opening area on the first surface 22a and the opening area on the second surface 22b are the same. Further, the opening area on the first surface 22a and the opening area on the second surface 22b may be either large or small.

ここで、第一表面22aにおける開口面積及び第二表面22bにおける開口面積は、以下のように規定される。第一表面22aの面を第一基準面とし、第二表面22bの面を第二基準面とする。第一表面22aと第二表面22bとは互いに平行であることから、第一基準面と第二基準面とも互いに平行となる。なお、製造誤差等により第一表面22a及び第二表面22bに多少の凹凸が形成されている場合は、当該凹凸を除いた面を第一基準面及び第二基準面とする。そして、第一基準面及び第二基準面における貫通孔22cの開口を、第一表面22a及び第二表面22bにおける貫通孔22cの開口とし、この開口面積を、第一表面22a及び第二表面22bにおける開口面積とする。 Here, the opening area on the first surface 22a and the opening area on the second surface 22b are defined as follows. The surface of the first surface 22a is designated as the first reference plane, and the surface of the second surface 22b is designated as the second reference plane. Since the first surface 22a and the second surface 22b are parallel to each other, the first reference plane and the second reference plane are also parallel to each other. If some irregularities are formed on the first surface 22a and the second surface 22b due to manufacturing errors or the like, the surfaces excluding the irregularities are designated as the first reference plane and the second reference plane. Then, the opening of the through hole 22c on the first reference surface and the second reference surface is the opening of the through hole 22c on the first surface 22a and the second surface 22b, and this opening area is defined as the first surface 22a and the second surface 22b. The opening area in.

以上説明したように、本実施形態に係る格子体21では、鉛蓄電池1の極板に用いられる際は、第一表面22a、第二表面22b、及び複数の貫通孔22cにおいて活物質が保持されるが、第一表面22a及び第二表面22bが互いに平行であるため、活物質は第一表面22a及び第二表面22bから脱落しやすい。しかしながら、第一表面22a及び第二表面22bを貫通する複数の貫通孔22cの少なくとも一つにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なるため、活物質は貫通孔22cから脱落し難くなる。これにより、活物質の脱落を抑制することができる。 As described above, in the lattice body 21 according to the present embodiment, when used for the electrode plate of the lead storage battery 1, the active material is retained in the first surface 22a, the second surface 22b, and the plurality of through holes 22c. However, since the first surface 22a and the second surface 22b are parallel to each other, the active material easily falls off from the first surface 22a and the second surface 22b. However, in at least one of the plurality of through holes 22c penetrating the first surface 22a and the second surface 22b, the opening area in the first surface 22a and the opening area in the second surface 22b are different, so that the active material is a through hole. It becomes difficult to drop out from 22c. Thereby, the dropout of the active material can be suppressed.

また、本実施形態に係る鉛蓄電池1では、正極格子体12及び負極格子体14として格子体21が用いられるため、正極活物質13及び負極活物質15が脱落するのを抑制することができる。 Further, in the lead-acid battery 1 according to the present embodiment, since the lattice body 21 is used as the positive electrode lattice body 12 and the negative electrode lattice body 14, it is possible to prevent the positive electrode active material 13 and the negative electrode active material 15 from falling off.

本発明は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限り適宜変更が可能である。 The present invention is not limited to the above embodiment, and can be appropriately modified as long as it does not deviate from the gist of the present invention.

例えば、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なっていてもよい。この場合、格子部22には、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが同じとなる貫通孔22cは形成されない。また、図7に示す変形例の格子体21Aの格子部22Bのように、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きくなっている貫通孔22cと、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも小さくなっている貫通孔22cと、が混在していてもよい。このように、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積と第二表面22bにおける開口面積とが異なるものとすることで、活物質の脱落を更に抑制することができる。 For example, in all of the plurality of through holes 22c, the opening area on the first surface 22a and the opening area on the second surface 22b may be different. In this case, the lattice portion 22 is not formed with a through hole 22c in which the opening area on the first surface 22a and the opening area on the second surface 22b are the same. Further, as in the lattice portion 22B of the lattice body 21A of the modified example shown in FIG. 7, the through hole 22c in which the opening area on the first surface 22a is larger than the opening area on the second surface 22b and the first surface 22a The through hole 22c in which the opening area in the second surface 22b is smaller than the opening area in the second surface 22b may be mixed. As described above, by setting the opening area on the first surface 22a and the opening area on the second surface 22b to be different in all of the plurality of through holes 22c, it is possible to further suppress the dropping of the active material.

また、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きくてもよい。この場合、格子部22には、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも小さくなる貫通孔22cは形成されない。このように、複数の貫通孔22cの全てにおいて、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きいものとすることで、格子体21を容易に形成することができるとともに、第一表面22a側から活物質を充填することで格子体21に対する活物質の充填性がよくなる。 Further, in all of the plurality of through holes 22c, the opening area on the first surface 22a may be larger than the opening area on the second surface 22b. In this case, the lattice portion 22 is not formed with a through hole 22c in which the opening area on the first surface 22a is smaller than the opening area on the second surface 22b. As described above, by setting the opening area on the first surface 22a to be larger than the opening area on the second surface 22b in all of the plurality of through holes 22c, the lattice body 21 can be easily formed and the lattice body 21 can be formed. By filling the active material from the side of the first surface 22a, the filling property of the active material with respect to the lattice body 21 is improved.

また、第一表面22aにおける複数の貫通孔22cの総開口面積は、第二表面22bにおける複数の貫通孔22cの総開口面積よりも大きくてもよい。第一表面22aにおける複数の貫通孔22cの総開口面積とは、各貫通孔22cの第一表面22aにおける開口面積の総和であり、第二表面22bにおける複数の貫通孔22cの総開口面積とは、各貫通孔22cの第二表面22bにおける開口面積の総和である。この場合、図7に示す格子体21Aの格子部22Aのように、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも大きくなっている貫通孔22cと、第一表面22aにおける開口面積が第二表面22bにおける開口面積よりも小さくなっている貫通孔22cと、が混在していてもよい。このように、第一表面22aにおける複数の貫通孔22cの総開口面積が第二表面22bにおける複数の貫通孔22cの総開口面積よりも大きいものとすることで、全体として活物質が貫通孔22cから脱落し難くなる。 Further, the total opening area of the plurality of through holes 22c on the first surface 22a may be larger than the total opening area of the plurality of through holes 22c on the second surface 22b. The total opening area of the plurality of through holes 22c on the first surface 22a is the total opening area of the first surface 22a of each through hole 22c, and the total opening area of the plurality of through holes 22c on the second surface 22b is , The sum of the opening areas of the second surface 22b of each through hole 22c. In this case, as in the lattice portion 22A of the lattice body 21A shown in FIG. 7, the through hole 22c in which the opening area on the first surface 22a is larger than the opening area on the second surface 22b and the opening on the first surface 22a. Through holes 22c whose area is smaller than the opening area on the second surface 22b may be mixed. As described above, by setting the total opening area of the plurality of through holes 22c on the first surface 22a to be larger than the total opening area of the plurality of through holes 22c on the second surface 22b, the active material as a whole becomes the through holes 22c. It becomes difficult to drop out from.

また、第一表面22a及び第二表面22bと直交する方向の断面において、複数の貫通孔22cのそれぞれの内壁面は、直線状に形成されていてもよいが、図8に示す変形例の格子体21Bの格子部22Bのように、複数の貫通孔22cの少なくとも一つの内壁面に、活物質が入り込む凹部22dが形成されていてもよい。この場合、複数の貫通孔22cの全ての内壁面に、凹部22dが形成されていてもよい。また、凹部22dだけでなく、凸部も形成されることで、全体として凹凸に形成されていてもよい。凹部22dの数、形状、大きさ等は、特に限定されるものではなく、活物質が入り込むことができる範囲で、適宜設定することができる。このように、複数の貫通孔22cの少なくとも一つの内壁面に凹部22dが形成されているものとすることで、更には、複数の貫通孔22cの全ての内壁面に、凹部22dが形成されていているものとすることで、活物質が当該凹部22dに入り込む。これにより、活物質が脱落するのを更に抑制することができる。 Further, in the cross section in the direction orthogonal to the first surface 22a and the second surface 22b, the inner wall surface of each of the plurality of through holes 22c may be formed in a straight line, but the lattice of the modified example shown in FIG. Like the lattice portion 22B of the body 21B, a recess 22d into which the active material enters may be formed on at least one inner wall surface of the plurality of through holes 22c. In this case, recesses 22d may be formed on all inner wall surfaces of the plurality of through holes 22c. Further, not only the concave portion 22d but also the convex portion may be formed so that the convex portion may be formed as a whole. The number, shape, size, etc. of the recesses 22d are not particularly limited, and can be appropriately set as long as the active material can enter. As described above, by assuming that the recesses 22d are formed on at least one inner wall surface of the plurality of through holes 22c, further, the recesses 22d are formed on all the inner wall surfaces of the plurality of through holes 22c. By assuming that, the active material enters the recess 22d. As a result, it is possible to further suppress the active material from falling off.

また、第一表面22a及び第二表面22bと直交する方向の断面において、複数の貫通孔22cのそれぞれの内壁面は、直線状に形成されていてもよいが、図9に示す変形例の格子体21Cの格子部22Cのように、複数の貫通孔22cの少なくとも一つは、広がりながら第一表面22aに至る第一テーパ部22eと、広がりながら第二表面22bに至る第二テーパ部22fと、を有するものとしてもよい。なお、第一表面22aにおける開口面積及び第二表面22bにおける開口面積は、第一テーパ部22eの傾斜角度θ1及び第二テーパ部22fの傾斜角度θ2を大きくするほど、又は、第一テーパ部22e及び第二テーパ部22fを大きくするほど、大きくなる。 Further, in the cross section in the direction orthogonal to the first surface 22a and the second surface 22b, the inner wall surface of each of the plurality of through holes 22c may be formed in a straight line, but the lattice of the modified example shown in FIG. Like the lattice portion 22C of the body 21C, at least one of the plurality of through holes 22c includes a first tapered portion 22e that expands to reach the first surface 22a and a second tapered portion 22f that expands to reach the second surface 22b. , And may have. The opening area of the first surface 22a and the opening area of the second surface 22b are such that the inclination angle θ1 of the first tapered portion 22e and the inclination angle θ2 of the second tapered portion 22f are increased, or the first tapered portion 22e. And the larger the second tapered portion 22f, the larger the size.

この場合、複数の貫通孔22cのそれぞれが、つまり、複数の貫通孔22cの全てが、第一テーパ部22e及び第二テーパ部22fを有するものとしてもよい。第一テーパ部22eでは、貫通孔22cは、第一表面22aと直交する断面において、第一表面22aに対して広がる方向に傾斜して第一表面22aに至っている。同様に、第二テーパ部22fでは、貫通孔22cは、第二表面22bと直交する断面において、第二表面22bに対して広がる方向に傾斜して第二表面22bに至っている。また、第一表面22a及び第二表面22bと直交する方向の断面において、第一テーパ部22e及び第二テーパ部22fは、全体としてテーパ形状になっていれば、必ずしも直線状である必要はなく、曲線状であってもよく、凹凸状であってもよい。このように、複数の貫通孔22cの少なくとも一つが第一テーパ部22e及び第二テーパ部22fを有するものとすることで、貫通孔22cに充填された活物質が、第一表面22a及び第二表面22bの両側において広がる形状となる。つまり、活物質が、第一表面22a及び第二表面22bの両側から格子体21Cの格子部22Cを挟み込む形状となる。このため、活物質が脱落するのを更に抑制することができる。 In this case, each of the plurality of through holes 22c, that is, all of the plurality of through holes 22c may have the first tapered portion 22e and the second tapered portion 22f. In the first tapered portion 22e, the through hole 22c is inclined in a direction extending with respect to the first surface 22a in a cross section orthogonal to the first surface 22a to reach the first surface 22a. Similarly, in the second tapered portion 22f, the through hole 22c is inclined in a direction extending with respect to the second surface 22b in a cross section orthogonal to the second surface 22b to reach the second surface 22b. Further, in the cross section in the direction orthogonal to the first surface 22a and the second surface 22b, the first tapered portion 22e and the second tapered portion 22f do not necessarily have to be linear as long as they have a tapered shape as a whole. , It may be curved or uneven. As described above, by assuming that at least one of the plurality of through holes 22c has the first tapered portion 22e and the second tapered portion 22f, the active material filled in the through holes 22c becomes the first surface 22a and the second. It has a shape that spreads on both sides of the surface 22b. That is, the active material has a shape in which the lattice portion 22C of the lattice body 21C is sandwiched from both sides of the first surface 22a and the second surface 22b. Therefore, it is possible to further suppress the active material from falling off.

ところで、正極格子体では、充放電を繰り返していくことで活物質同士の結びつきが弱くなる泥状化(軟化現象)が進行していくが、負極格子体14では、このような泥状化が発生しない。このため、正極格子体12としてのみ格子体21が用いられるものとしてもよい。これにより、活物質が脱落するのを効率的に抑制することができる。 By the way, in the positive electrode lattice body, mudification (softening phenomenon) in which the bonds between the active materials are weakened progresses by repeating charging and discharging, but in the negative electrode lattice body 14, such mudification occurs. Does not occur. Therefore, the lattice body 21 may be used only as the positive electrode lattice body 12. As a result, it is possible to efficiently prevent the active material from falling off.

1…鉛蓄電池、2…電槽、3…蓋、4…正極端子、5…負極端子、6…液口栓、7…電極群、8…正極柱、9…正極板、10…負極板、11…セパレータ、12…正極格子体、12a…格子部、12b…耳部、13…正極活物質、14…負極格子体、14a…格子部、14b…耳部、15…負極活物質、16…正極側ストラップ、17…負極側ストラップ、21,21A,21B,21C…格子体、22,22A,22B,22C…格子部、22a…第一表面、22b…第二表面、22c…貫通孔、22d…凹部、22e…第一テーパ部、22f…第二テーパ部、23…耳部、θ1…第一テーパ部の傾斜角度、θ2…第二テーパ部の傾斜角度。
1 ... Lead storage battery, 2 ... Electrode tank, 3 ... Lid, 4 ... Positive terminal, 5 ... Negative terminal, 6 ... Liquid spout, 7 ... Electrode group, 8 ... Positive column, 9 ... Positive plate, 10 ... Negative plate, 11 ... Separator, 12 ... Positive electrode lattice, 12a ... Lattice part, 12b ... Ear part, 13 ... Positive electrode active material, 14 ... Negative electrode lattice body, 14a ... Lattice part, 14b ... Ear part, 15 ... Negative electrode active material, 16 ... Positive electrode side strap, 17 ... Negative electrode side strap, 21,21A, 21B, 21C ... Lattice body, 22, 22A, 22B, 22C ... Lattice portion, 22a ... First surface, 22b ... Second surface, 22c ... Through hole, 22d ... concave, 22e ... first tapered portion, 22f ... second tapered portion, 23 ... ear portion, θ1 ... tilt angle of the first tapered portion, θ2 ... tilt angle of the second tapered portion.

Claims (10)

鉛蓄電池の極板に用いられて鉛を含む格子体であって、
互いに平行な第一表面及び第二表面と、
前記第一表面及び前記第二表面を貫通する複数の貫通孔と、を備え、
前記複数の貫通孔の少なくとも一つにおいて、前記第一表面における開口面積と前記第二表面における開口面積とが異なる、
格子体。
A grid body containing lead used for the electrode plate of lead-acid batteries.
With the first and second surfaces parallel to each other,
The first surface and a plurality of through holes penetrating the second surface are provided.
In at least one of the plurality of through holes, the opening area on the first surface and the opening area on the second surface are different.
Lattice body.
前記複数の貫通孔の全てにおいて、前記第一表面における開口面積と前記第二表面における開口面積とが異なる、
請求項1に記載の格子体。
In all of the plurality of through holes, the opening area on the first surface and the opening area on the second surface are different.
The lattice body according to claim 1.
前記複数の貫通孔の全てにおいて、前記第一表面における開口面積が前記第二表面における開口面積よりも大きい、
請求項1又は2に記載の格子体。
In all of the plurality of through holes, the opening area on the first surface is larger than the opening area on the second surface.
The lattice body according to claim 1 or 2.
前記第一表面における前記複数の貫通孔の総開口面積が、前記第二表面における前記複数の貫通孔の総開口面積よりも大きい、
請求項1〜3の何れか一項に記載の格子体。
The total opening area of the plurality of through holes on the first surface is larger than the total opening area of the plurality of through holes on the second surface.
The lattice body according to any one of claims 1 to 3.
前記複数の貫通孔の少なくとも一つの内壁面に、凹部が形成されている、
請求項1〜4の何れか一項に記載の格子体。
A recess is formed in at least one inner wall surface of the plurality of through holes.
The lattice body according to any one of claims 1 to 4.
前記複数の貫通孔の全ての内壁面に、凹部が形成されている、
請求項1〜4の何れか一項に記載の格子体。
Recesses are formed on all inner wall surfaces of the plurality of through holes.
The lattice body according to any one of claims 1 to 4.
前記複数の貫通孔の少なくとも一つは、広がりながら前記第一表面に至る第一テーパ部と、広がりながら前記第二表面に至る第二テーパ部と、を有する、
請求項1〜6の何れか一項に記載の格子体。
At least one of the plurality of through holes has a first tapered portion that extends to the first surface and a second tapered portion that expands to reach the second surface.
The lattice body according to any one of claims 1 to 6.
前記複数の貫通孔のそれぞれは、広がりながら前記第一表面に至る第一テーパ部と、広がりながら前記第二表面に至る第二テーパ部と、を有する、
請求項1〜6の何れか一項に記載の格子体。
Each of the plurality of through holes has a first tapered portion that extends to reach the first surface and a second tapered portion that expands to reach the second surface.
The lattice body according to any one of claims 1 to 6.
正極板及び負極板の少なくとも一方の格子体として、請求項1〜8の何れか一項に記載された格子体が用いられている、
鉛蓄電池。
The lattice body according to any one of claims 1 to 8 is used as at least one lattice body of the positive electrode plate and the negative electrode plate.
Lead-acid battery.
前記格子体は、正極板に用いられる正極格子体である、
請求項9に記載の鉛蓄電池。
The lattice body is a positive electrode lattice body used for a positive electrode plate.
The lead storage battery according to claim 9.
JP2020520934A 2018-05-23 2018-05-23 Grids and lead-acid batteries Active JP7185981B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019852 WO2019224946A1 (en) 2018-05-23 2018-05-23 Grid body and lead-acid battery

Publications (2)

Publication Number Publication Date
JPWO2019224946A1 true JPWO2019224946A1 (en) 2021-05-27
JP7185981B2 JP7185981B2 (en) 2022-12-08

Family

ID=68616760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020520934A Active JP7185981B2 (en) 2018-05-23 2018-05-23 Grids and lead-acid batteries

Country Status (2)

Country Link
JP (1) JP7185981B2 (en)
WO (1) WO2019224946A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162358A (en) * 1990-10-24 1992-06-05 Shin Kobe Electric Mach Co Ltd Lattice unit for lead-acid battery plate and manufacture thereof
JPH08315826A (en) * 1995-04-28 1996-11-29 Wirtz Mfg Co Inc Casting lattice for battery and its method and equipment formanufacture
JPH10275618A (en) * 1997-03-31 1998-10-13 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery
JP2001266895A (en) * 2000-03-23 2001-09-28 Shin Kobe Electric Mach Co Ltd Continuous casting grid for lead-acid battery and its manufacturing method
JP2002075379A (en) * 2000-08-24 2002-03-15 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2010073588A1 (en) * 2008-12-22 2010-07-01 新神戸電機株式会社 Lattice plate for lead storage battery, pole plate and lead storage battery provided with this pole plate
JP4892651B1 (en) * 2010-10-18 2012-03-07 新神戸電機株式会社 Lead acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162358A (en) * 1990-10-24 1992-06-05 Shin Kobe Electric Mach Co Ltd Lattice unit for lead-acid battery plate and manufacture thereof
JPH08315826A (en) * 1995-04-28 1996-11-29 Wirtz Mfg Co Inc Casting lattice for battery and its method and equipment formanufacture
JPH10275618A (en) * 1997-03-31 1998-10-13 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery
JP2001266895A (en) * 2000-03-23 2001-09-28 Shin Kobe Electric Mach Co Ltd Continuous casting grid for lead-acid battery and its manufacturing method
JP2002075379A (en) * 2000-08-24 2002-03-15 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2010073588A1 (en) * 2008-12-22 2010-07-01 新神戸電機株式会社 Lattice plate for lead storage battery, pole plate and lead storage battery provided with this pole plate
JP4892651B1 (en) * 2010-10-18 2012-03-07 新神戸電機株式会社 Lead acid battery

Also Published As

Publication number Publication date
JP7185981B2 (en) 2022-12-08
WO2019224946A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US9728772B2 (en) Flooded lead-acid battery and method of making the same
JP6665465B2 (en) Lead storage battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP6977770B2 (en) Liquid lead-acid battery
CN111279539A (en) Lead-acid battery
CN111279540A (en) Lead-acid battery
CN108780874B (en) Lead-acid battery
JP7375457B2 (en) lead acid battery
JP6388094B1 (en) Lead acid battery
JP6592215B1 (en) Lead acid battery
WO2019225620A1 (en) Lead storage battery
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
CN111279541A (en) Lead-acid battery
CN111279543A (en) Lead-acid battery
JPWO2019224946A1 (en) Lattice and lead-acid battery
JP6318852B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2000340252A (en) Lead-acid battery and its manufacture
JP6730406B2 (en) Lead acid battery
JP2019079778A (en) Lead acid battery
JP6677436B1 (en) Lead storage battery
JP6870266B2 (en) Lead-acid battery
JP6497460B2 (en) Lead acid battery
JP2021086729A (en) Method for manufacturing positive electrode plate for lead acid battery
JP2021061235A (en) Positive electrode plate, lead acid battery, and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE

Effective date: 20210421

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE

Effective date: 20210421

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221124

R150 Certificate of patent or registration of utility model

Ref document number: 7185981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150