WO2019224943A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2019224943A1
WO2019224943A1 PCT/JP2018/019839 JP2018019839W WO2019224943A1 WO 2019224943 A1 WO2019224943 A1 WO 2019224943A1 JP 2018019839 W JP2018019839 W JP 2018019839W WO 2019224943 A1 WO2019224943 A1 WO 2019224943A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
peripheral surface
rotor
screw compressor
hole
Prior art date
Application number
PCT/JP2018/019839
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 雄二
大嗣 堀内
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2018/019839 priority Critical patent/WO2019224943A1/en
Priority to JP2020520931A priority patent/JP6924902B2/en
Publication of WO2019224943A1 publication Critical patent/WO2019224943A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Definitions

  • the mechanical power for supplying the coolant to the cooling flow path of the screw rotor can be reduced.
  • FIG. 2 is a vertical sectional view taken along line II-II in FIG. It is a perspective view showing the structure of the screw rotor in one Embodiment of this invention. It is a top view showing the structure of the screw rotor in one Embodiment of this invention.
  • FIG. 5 is a radial cross-sectional view taken along line VV in FIG. 4 and represents the structure of the tooth portion and solid portion of the screw rotor according to an embodiment of the present invention.
  • FIG. 5 is a radial cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 1 is a horizontal sectional view showing the structure of the screw compressor in this embodiment
  • FIG. 2 is a vertical sectional view taken along the line II-II in FIG. 2 shows an oil reservoir, a supply nozzle, and the like, but FIG. 1 omits them.
  • the main casing 13 includes a tooth portion 6A of the male rotor 1A and a proximal end portion of the discharge side shaft portion 8A, a tooth portion 6B of the female rotor 1B and a proximal end portion of the discharge side shaft portion 8B, and discharge side bearings 10A and 10B. Storing.
  • the gear chamber 16 of the discharge-side casing 15 accommodates the tip end portion of the discharge-side shaft portion 8A of the male rotor 1A, the tip end-side portion of the discharge-side shaft portion 8B of the female rotor 1B, and the timing gears 12A and 12B.
  • the tooth portion 6A of the male rotor 1A includes a spiral outer peripheral surface 20A, a spiral inner peripheral surface 21A corresponding to the spiral shape of the outer peripheral surface 20A, a suction-side side plate portion 22A that is one side in the axial direction, A discharge-side side plate portion 23A that is the other side in the axial direction. More specifically, the outer peripheral surface 20A of the tooth portion 6A has a plurality of tooth crests (in other words, a portion projecting radially outward) as shown in FIGS. 3 to 7, and these tooth crests extend in the axial direction. It has a shape that extends spirally. As shown in FIG. 5 to FIG.
  • the male rotor 1A includes a solid portion 24A arranged inside the tooth portion 6A.
  • the solid portion 24A has a helical outer peripheral surface 25A corresponding to the helical shape of the inner peripheral surface 21A of the tooth portion 6A.
  • the outer peripheral surface 25A of the solid portion 24A has a plurality of tooth crests (in other words, a radial direction) respectively formed along a plurality of tooth grooves of the inner peripheral surface 21A of the tooth portion 6A as shown in FIG. And the tooth crests are spirally extended in the axial direction.
  • the female rotor 1B includes a plurality of support portions 26B that connect the tooth portion 6B and the solid portion 24B.
  • the plurality of support portions 26B include a plurality of tooth crests (in other words, portions protruding inward in the radial direction) of the inner peripheral surface 21B of the tooth portion 6B and a plurality of outer peripheral surfaces 25B of the solid portion 24B corresponding thereto.
  • the plurality of support portions 31A connect the suction side plate portion 22A of the tooth portion 6A and one end of the solid portion 24A adjacent thereto, and a plurality of guide flow paths are provided between the plurality of support portions 31A.
  • 33A first guide channel
  • the plurality of guide channels 33A guide the oil flowing in from the through hole 28A of the suction side shaft portion 7A to the cooling channel 27A (that is, radially outward).
  • the plurality of support portions 32A connect the discharge side plate portion 23A of the tooth portion 6A and the other end portion of the solid portion 24A adjacent thereto, and a plurality of guide flow paths are provided between the plurality of support portions 32A.
  • 34A (second guide channel) is formed.
  • the plurality of guide channels 34A guide the oil flowing in from the cooling channel 27A to the through hole 29A of the discharge side shaft portion 8A (in other words, radially inward).
  • the suction side shaft portion 7A of the male rotor 1A may have a bearing liquid supply hole 37 for supplying oil from the through hole 28A to the suction side bearing 9A disposed on the outer peripheral side thereof.
  • the discharge side shaft portion 8A may have a bearing liquid supply hole 38 for supplying oil from the through hole 29A to the discharge side bearing 10A disposed on the outer peripheral side thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a screw compressor in which machine power for supplying cooling liquid to a cooling flow passage for a screw rotor is reduced. The male rotor 1A of this screw compressor is provided with: a tooth section 6A having a helically shaped outer peripheral surface 20A and a helically shaped inner peripheral surface 21A; a solid section 24A which is disposed inside the tooth section 6A and which has a helically shaped outer peripheral surface 25A; a suction-side shaft section 7A which has a through-hole 28A communicating with a cooling flow passage 27A formed between the tooth section 6A and the solid section 24A; and a discharge-side shaft section 8A which has a through-hole 29A communicating with the cooling flow passage 27A. The screw compressor is configured so that cooling oil is supplied to the cooling flow passage 27A from an oil holder 17 through the through-hole 28A of the suction-side shaft section 7A, and the cooling oil is discharged to the oil holder 27 from the cooling flow passage 27A through the through-hole 29A of the discharge-side shaft section 8A.

Description

スクリュー圧縮機Screw compressor
 本発明は、スクリューロータを備えたスクリュー圧縮機に関する。 The present invention relates to a screw compressor provided with a screw rotor.
 スクリュー圧縮機は、例えば雌雄一対のスクリューロータと、スクリューロータを収納するケーシングとを備えており、スクリューロータの歯とケーシングの内壁の間で作動室が形成されている。作動室は、スクリューロータの回転に伴ってスクリューロータの軸方向に移動すると共に、軸方向一方側の吸入ポートを介して気体を吸入する吸入過程、気体を圧縮する圧縮過程、及び軸方向他方側の吐出ポートを介して圧縮気体を吐出する吐出過程を順次行う。作動室の圧縮過程にて圧縮熱が生じるため、スクリューロータ等が加熱されて熱膨張する。そこで、スクリューロータの熱膨張を抑えるため、スクリューロータを冷却する技術が提唱されている(例えば特許文献1参照)。 The screw compressor includes, for example, a pair of male and female screw rotors and a casing that houses the screw rotor, and a working chamber is formed between the teeth of the screw rotor and the inner wall of the casing. The working chamber moves in the axial direction of the screw rotor as the screw rotor rotates, and sucks gas through the suction port on one axial side, compressing process for compressing gas, and the other side in the axial direction The discharge process of discharging the compressed gas through the discharge ports is sequentially performed. Since compression heat is generated in the compression process of the working chamber, the screw rotor and the like are heated and thermally expanded. Therefore, in order to suppress thermal expansion of the screw rotor, a technique for cooling the screw rotor has been proposed (see, for example, Patent Document 1).
 特許文献1に記載のスクリューロータは、螺旋形状の外周面、及びこの外周面の螺旋形状に対応した螺旋形状の内周面を有する歯部を備える。詳しく説明すると、歯部の外周面は、半径方向外側に突出した複数の歯山(言い換えれば、半径方向外側に突出した部分)を有し、これらの歯山が軸方向へ螺旋状に延在する形状となっている。歯部の内周面は、外周面の複数の歯山に沿ってそれぞれ形成された複数の歯溝(言い換えれば、半径方向外側に窪んだ部分)を有し、これらの歯溝が軸方向へ螺旋状に延在する形状となっている。 The screw rotor described in Patent Document 1 includes a tooth portion having a spiral outer peripheral surface and a spiral inner peripheral surface corresponding to the spiral shape of the outer peripheral surface. More specifically, the outer peripheral surface of the tooth portion has a plurality of tooth crests protruding outward in the radial direction (in other words, a portion protruding outward in the radial direction), and these tooth crests spirally extend in the axial direction. It becomes the shape to do. The inner peripheral surface of the tooth portion has a plurality of tooth grooves (in other words, a portion recessed radially outward) formed along a plurality of tooth crests on the outer peripheral surface, and these tooth grooves are in the axial direction. It has a shape that extends spirally.
 特許文献1に記載のスクリューロータは、歯部の内側に形成された冷却流路(中空部)と、歯部の軸方向両外側の側板部に接続され、冷却流路に連通した貫通穴を有する2つの軸部とを更に備えており、軸部の貫通穴を介して冷却流路に冷却液(詳細には、例えば油等)が流通するようになっている。 The screw rotor described in Patent Document 1 is connected to a cooling channel (hollow part) formed inside the tooth part and side plate parts on both outer sides in the axial direction of the tooth part, and has a through hole communicating with the cooling channel. And a cooling liquid (in detail, for example, oil or the like) flows through the cooling passage through the through hole of the shaft part.
特開2006-097604号公報JP 2006-097604 A
 特許文献1に記載の従来技術では、スクリューロータの冷却流路に冷却液を供給するためのポンプが必要であり、その機械動力を軽減する点で改善の余地があった。 The conventional technique described in Patent Document 1 requires a pump for supplying a coolant to the cooling flow path of the screw rotor, and there is room for improvement in terms of reducing the mechanical power.
 本発明は、上記事柄に鑑みてなされたものであり、スクリューロータの冷却流路に冷却液を供給するための機械動力を軽減することを課題の一つとするものである。 The present invention has been made in view of the above, and an object of the present invention is to reduce mechanical power for supplying the coolant to the cooling flow path of the screw rotor.
 上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、スクリューロータと、前記スクリューロータを格納するケーシングとを備え、前記スクリューロータは、螺旋形状の外周面、及び前記外周面の螺旋形状に対応した螺旋形状の内周面を有する歯部と、前記歯部の内側に配置され、前記歯部の内周面の螺旋形状に対応した螺旋形状の外周面を有する中実部と、前記歯部と前記中実部を接続する複数の支持部と、前記歯部の軸方向一方側である吸入側の側板部に接続され、前記歯部と前記中実部との間に形成された冷却流路に連通した貫通穴を有する吸入側の軸部と、前記歯部の軸方向他方側である吐出側の側板部に接続され、前記冷却流路に連通した貫通穴を有する吐出側の軸部とを備えており、液溜まりから前記吸入側の軸部の貫通穴を介して前記冷却流路に冷却液が供給され、前記冷却流路から前記吐出側の軸部の貫通穴を介して前記液溜まりに冷却液が排出されるように構成される。 In order to solve the above problems, the configuration described in the claims is applied. The present invention includes a plurality of means for solving the above-mentioned problems. For example, the present invention includes a screw rotor and a casing for housing the screw rotor, and the screw rotor has a spiral outer periphery. And a tooth portion having a spiral inner peripheral surface corresponding to the spiral shape of the outer peripheral surface, and a spiral outer periphery disposed inside the tooth portion and corresponding to the spiral shape of the inner peripheral surface of the tooth portion A solid portion having a surface; a plurality of support portions connecting the tooth portion and the solid portion; and a suction side plate that is one side in the axial direction of the tooth portion; Connected to the suction-side shaft portion having a through-hole communicating with the cooling flow path formed between the solid portion and the discharge-side side plate portion on the other axial side of the tooth portion, And a discharge-side shaft that has a through-hole that communicates with it. From the cooling channel, the cooling liquid is supplied to the cooling passage through the through-hole in the suction-side shaft portion, and the cooling liquid is discharged from the cooling passage into the liquid reservoir through the through-hole in the discharge-side shaft portion. Configured to be
 本発明によれば、スクリューロータの冷却流路に冷却液を供給するための機械動力を軽減することができる。 According to the present invention, the mechanical power for supplying the coolant to the cooling flow path of the screw rotor can be reduced.
 なお、上記以外の課題、構成及び効果は、以下の説明により明らかにされる。 In addition, problems, configurations and effects other than the above will be clarified by the following explanation.
本発明の一実施形態におけるスクリュー圧縮機の構造を表す水平断面図である。It is a horizontal sectional view showing the structure of the screw compressor in one embodiment of the present invention. 図1の矢視II-IIによる鉛直断面図である。FIG. 2 is a vertical sectional view taken along line II-II in FIG. 本発明の一実施形態におけるスクリューロータの構造を表す斜視図である。It is a perspective view showing the structure of the screw rotor in one Embodiment of this invention. 本発明の一実施形態におけるスクリューロータの構造を表す上面図である。It is a top view showing the structure of the screw rotor in one Embodiment of this invention. 図4の矢視V-Vによる径方向断面図であり、本発明の一実施形態におけるスクリューロータの歯部及び中実部の構造を表す。FIG. 5 is a radial cross-sectional view taken along line VV in FIG. 4 and represents the structure of the tooth portion and solid portion of the screw rotor according to an embodiment of the present invention. 図4の矢視VI-VIによる径方向断面図であり、本発明の一実施形態におけるスクリューロータの歯部及び支持部の構造を表す。FIG. 5 is a radial cross-sectional view taken along the line VI-VI in FIG. 4 and represents the structure of the tooth portion and the support portion of the screw rotor in one embodiment of the present invention. 図4の矢視VII-VIIによる径方向断面図であり、本発明の一実施形態におけるスクリューロータの歯部及び支持部の構造を表す。FIG. 5 is a radial cross-sectional view taken along arrow VII-VII in FIG. 4 and represents the structure of the tooth portion and the support portion of the screw rotor according to an embodiment of the present invention. 図5に相当する径方向断面図であり、本発明の他の実施形態におけるスクリューロータの歯部、中実部、及び支持部の構造を表す。It is radial direction sectional drawing equivalent to FIG. 5, and represents the structure of the tooth | gear part, solid part, and support part of the screw rotor in other embodiment of this invention. 図6に相当する径方向断面図であり、本発明の他の実施形態におけるスクリューロータの歯部の構造を表す。It is radial direction sectional drawing equivalent to FIG. 6, and represents the structure of the tooth | gear part of the screw rotor in other embodiment of this invention. 図7に相当する径方向断面図であり、本発明の他の実施形態におけるスクリューロータの歯部の構造を表す。It is radial direction sectional drawing equivalent to FIG. 7, and represents the structure of the tooth | gear part of the screw rotor in other embodiment of this invention. 本発明の一変形例におけるスクリュー圧縮機の構造を表す鉛直断面図である。It is a vertical sectional view showing the structure of the screw compressor in one modification of the present invention. 本発明の他の変形例におけるスクリュー圧縮機の構造を表す鉛直断面図である。It is a vertical sectional view showing the structure of the screw compressor in other modifications of the present invention.
 本発明の一実施形態を、図面を参照しつつ説明する。 An embodiment of the present invention will be described with reference to the drawings.
 図1は、本実施形態におけるスクリュー圧縮機の構造を表す水平断面図であり、図2は、図1の矢視II-IIによる鉛直断面図である。なお、図2は油溜まり及び供給ノズル等を示すものの、図1はそれらを省略している。 FIG. 1 is a horizontal sectional view showing the structure of the screw compressor in this embodiment, and FIG. 2 is a vertical sectional view taken along the line II-II in FIG. 2 shows an oil reservoir, a supply nozzle, and the like, but FIG. 1 omits them.
 本実施形態のスクリュー圧縮機は、スクリューロータである雄ロータ1A及び雌ロータ1Bと、雄ロータ1A及び雌ロータ1Bを収納するケーシング2とを備えており、図2で示すように、雄ロータ1A及び雌ロータ1Bの歯とケーシング2の内壁の間で作動室3が形成されている。なお、本実施形態のスクリュー圧縮機は、無給油式(詳細には、作動室3に油を供給しないもの)である。また、雄ロータ1A及び雌ロータ1Bは、それらの軸方向(図1及び図2中左右方向)が水平方向となるように配置されている。 The screw compressor of the present embodiment includes a male rotor 1A and a female rotor 1B that are screw rotors, and a casing 2 that houses the male rotor 1A and the female rotor 1B. As shown in FIG. A working chamber 3 is formed between the teeth of the female rotor 1 </ b> B and the inner wall of the casing 2. In addition, the screw compressor of this embodiment is an oil-free type (specifically, oil that does not supply oil to the working chamber 3). Further, the male rotor 1A and the female rotor 1B are arranged such that their axial directions (left and right directions in FIGS. 1 and 2) are horizontal.
 作動室3は、雄ロータ1A及び雌ロータ1Bの回転に伴ってそれらの軸方向一方側(図2中左側)から他方側(図2中右側)へ移動すると共に、軸方向一方側の吸入ポート4(開口)を介して空気(気体)を吸入する吸入過程、空気を圧縮する圧縮過程、軸方向他方側の吐出ポート5(開口)を介して圧縮空気を吐出する吐出過程を順次行う。 The working chamber 3 moves from one axial direction side (left side in FIG. 2) to the other side (right side in FIG. 2) as the male rotor 1A and female rotor 1B rotate, and the suction port on one axial direction side. An intake process for sucking air (gas) through 4 (opening), a compression process for compressing air, and a discharge process for discharging compressed air through the discharge port 5 (opening) on the other side in the axial direction are sequentially performed.
 雄ロータ1Aは、歯部6Aと、歯部6Aの軸方向一方側(吸入側)に接続された吸入側軸部7Aと、歯部6Aの軸方向他方側(吐出側)に接続された吐出側軸部8Aとを備える。雄ロータ1Aは、吸入側軸部7Aの外周側に配置された吸入側軸受9Aと、吐出側軸部8Aの外周側に配置された複数の吐出側軸受10Aによって回転可能に支持されている。 The male rotor 1A includes a tooth portion 6A, a suction side shaft portion 7A connected to one axial side (suction side) of the tooth portion 6A, and a discharge connected to the other axial side (discharge side) of the tooth portion 6A. A side shaft portion 8A. The male rotor 1A is rotatably supported by a suction side bearing 9A disposed on the outer peripheral side of the suction side shaft portion 7A and a plurality of discharge side bearings 10A disposed on the outer peripheral side of the discharge side shaft portion 8A.
 雌ロータ1Bは、歯部6Bと、歯部6Bの軸方向一方側(吸入側)に接続された吸入側軸部7Bと、歯部6Bの軸方向他方側(吐出側)に接続された吐出側軸部8Bとを備える。雌ロータ1Bは、吸入側軸部7Bの外周側に配置された吸入側軸受9Bと、吐出側軸部8Bの外周側に配置された複数の吐出側軸受10Bによって回転可能に支持されている。 The female rotor 1B includes a tooth portion 6B, a suction side shaft portion 7B connected to one axial side (suction side) of the tooth portion 6B, and a discharge connected to the other axial side (discharge side) of the tooth portion 6B. Side shaft portion 8B. The female rotor 1B is rotatably supported by a suction side bearing 9B disposed on the outer peripheral side of the suction side shaft portion 7B and a plurality of discharge side bearings 10B disposed on the outer peripheral side of the discharge side shaft portion 8B.
 雄ロータ1Aの吸入側軸部7Aの先端側部分は、ケーシング2より突出すると共に、ピニオンギヤ11が設けられている。ピニオンギヤ11は、図示しないものの、例えばギヤ機構及びベルト機構を介してモータの回転軸に接続されている。ピニオンギヤ11、ギヤ機構、及びベルト機構を介してモータの回転力が雄ロータ1Aに伝達されることにより、雄ロータ1Aが回転する。 The tip end portion of the suction side shaft portion 7A of the male rotor 1A protrudes from the casing 2 and is provided with a pinion gear 11. Although not shown, the pinion gear 11 is connected to the rotating shaft of the motor via, for example, a gear mechanism and a belt mechanism. When the rotational force of the motor is transmitted to the male rotor 1A through the pinion gear 11, the gear mechanism, and the belt mechanism, the male rotor 1A rotates.
 雄ロータ1Aの吐出側軸部8A及び雌ロータ1Bの吐出側軸部8Bにはタイミングギヤ12A,12Bがそれぞれ設けられ、タイミングギヤ12A,12Bが互いに噛み合わされている。タイミングギヤ12A,12Bを介して雄ロータ1Aの回転力が雌ロータ1Bに伝達されることにより、雌ロータ1Bが回転する。これにより、雄ロータ1A及び雌ロータ1Bは、互いに非接触で噛み合うように回転する。 Timing gears 12A and 12B are provided on the discharge side shaft portion 8A of the male rotor 1A and the discharge side shaft portion 8B of the female rotor 1B, respectively, and the timing gears 12A and 12B are engaged with each other. When the rotational force of the male rotor 1A is transmitted to the female rotor 1B via the timing gears 12A and 12B, the female rotor 1B rotates. Thereby, the male rotor 1A and the female rotor 1B rotate so as to mesh with each other in a non-contact manner.
 ケーシング2は、メインケーシング13と、メインケーシング13の軸方向一方側(吸入側)に接続された吸入側ケーシング14と、メインケーシング13の軸方向他方側(吐出側)に接続された吐出側ケーシング15とで構成されている。吸入側ケーシング14は、雄ロータ1Aの吸入側軸部7A、雌ロータ1Bの吸入側軸部7B、並びに吸入側軸受9A,9Bを収納する。メインケーシング13は、雄ロータ1Aの歯部6A及び吐出側軸部8Aの基端側部分、雌ロータ1Bの歯部6B及び吐出側軸部8Bの基端側部分、並びに吐出側軸受10A,10Bを収納する。吐出側ケーシング15のギヤ室16は、雄ロータ1Aの吐出側軸部8Aの先端側部分、雌ロータ1Bの吐出側軸部8Bの先端側部分、並びにタイミングギヤ12A,12Bを収納する。 The casing 2 includes a main casing 13, a suction side casing 14 connected to one axial side (suction side) of the main casing 13, and a discharge side casing connected to the other axial side (discharge side) of the main casing 13. 15. The suction side casing 14 houses the suction side shaft portion 7A of the male rotor 1A, the suction side shaft portion 7B of the female rotor 1B, and the suction side bearings 9A and 9B. The main casing 13 includes a tooth portion 6A of the male rotor 1A and a proximal end portion of the discharge side shaft portion 8A, a tooth portion 6B of the female rotor 1B and a proximal end portion of the discharge side shaft portion 8B, and discharge side bearings 10A and 10B. Storing. The gear chamber 16 of the discharge-side casing 15 accommodates the tip end portion of the discharge-side shaft portion 8A of the male rotor 1A, the tip end-side portion of the discharge-side shaft portion 8B of the female rotor 1B, and the timing gears 12A and 12B.
 ピニオンギヤ11及び上述のギヤ機構は、ギヤケーシングに収納されており、ギヤケーシングの下部には油溜まり17(液溜まり)が形成されている。油溜まり17の油は、図示しない油供給系統(詳細には、例えばオイルポンプ、オイルフィルタ、及び配管等で構成されたもの)を介して軸受9A,9B,10A,10B、ピニオンギヤ11、ギヤ機構、及びタイミングギヤ12A,12B等に供給される。吐出側軸受10A,10B及びタイミングギヤ12A,12Bを潤滑した油は、吐出側ケーシング15のギヤ室16及び排出管18を経由して油溜まり17に回収される。 The pinion gear 11 and the above-described gear mechanism are housed in a gear casing, and an oil reservoir 17 (liquid reservoir) is formed in the lower portion of the gear casing. The oil in the oil sump 17 is supplied to the bearings 9A, 9B, 10A, 10B, the pinion gear 11 and the gear mechanism via an oil supply system (not shown) (specifically, an oil pump, an oil filter, a pipe, etc.). , And timing gears 12A, 12B and the like. The oil that has lubricated the discharge- side bearings 10A and 10B and the timing gears 12A and 12B is collected in the oil reservoir 17 via the gear chamber 16 and the discharge pipe 18 of the discharge-side casing 15.
 次に、本実施形態のスクリューロータの構造について説明する。図3及び図4は、本実施形態におけるスクリューロータの構造を表す斜視図及び上面図である。図5は、図4の矢視V-Vによる径方向断面図であり、図6は、図4の矢視VI-VIによる径方向断面図であり、図7は、図4の矢視VII-VIIによる径方向断面図である。 Next, the structure of the screw rotor of this embodiment will be described. 3 and 4 are a perspective view and a top view showing the structure of the screw rotor in the present embodiment. 5 is a radial sectional view taken along the arrow VV in FIG. 4, FIG. 6 is a radial sectional view taken along the arrow VI-VI in FIG. 4, and FIG. 7 is a sectional view taken along the arrow VII in FIG. It is radial direction sectional drawing by -VII.
 まず、雄ロータ1Aの構造について説明する。雄ロータ1Aの歯部6Aは、螺旋形状の外周面20Aと、この外周面20Aの螺旋形状に対応した螺旋形状の内周面21Aと、軸方向一方側である吸入側の側板部22Aと、軸方向他方側である吐出側の側板部23Aとを有する。詳しく説明すると、歯部6Aの外周面20Aは、図3~図7で示すように複数の歯山(言い換えれば、半径方向外側に突出した部分)を有し、これらの歯山が軸方向へ螺旋状に延在する形状となっている。歯部6Aの内周面21Aは、図5~図7で示すように外周面20Aの複数の歯山に沿ってそれぞれ形成された複数の歯溝(言い換えれば、半径方向外側に窪んだ部分)を有し、これらの歯溝が軸方向へ螺旋状に延在する形状となっている。 First, the structure of the male rotor 1A will be described. The tooth portion 6A of the male rotor 1A includes a spiral outer peripheral surface 20A, a spiral inner peripheral surface 21A corresponding to the spiral shape of the outer peripheral surface 20A, a suction-side side plate portion 22A that is one side in the axial direction, A discharge-side side plate portion 23A that is the other side in the axial direction. More specifically, the outer peripheral surface 20A of the tooth portion 6A has a plurality of tooth crests (in other words, a portion projecting radially outward) as shown in FIGS. 3 to 7, and these tooth crests extend in the axial direction. It has a shape that extends spirally. As shown in FIG. 5 to FIG. 7, the inner peripheral surface 21A of the tooth portion 6A has a plurality of tooth grooves formed along a plurality of tooth crests of the outer peripheral surface 20A (in other words, a portion recessed radially outward). These tooth spaces are spirally extended in the axial direction.
 雄ロータ1Aは、歯部6Aの内側に配置された中実部24Aを備えており、中実部24Aは、歯部6Aの内周面21Aの螺旋形状に対応した螺旋形状の外周面25Aを有する。詳しく説明すると、中実部24Aの外周面25Aは、図5で示すように歯部6Aの内周面21Aの複数の歯溝に沿ってそれぞれ形成された複数の歯山(言い換えれば、半径方向外側に突出した部分)を有し、これらの歯山が軸方向へ螺旋状に延在する形状となっている。 The male rotor 1A includes a solid portion 24A arranged inside the tooth portion 6A. The solid portion 24A has a helical outer peripheral surface 25A corresponding to the helical shape of the inner peripheral surface 21A of the tooth portion 6A. Have. More specifically, the outer peripheral surface 25A of the solid portion 24A has a plurality of tooth crests (in other words, a radial direction) respectively formed along a plurality of tooth grooves of the inner peripheral surface 21A of the tooth portion 6A as shown in FIG. And the tooth crests are spirally extended in the axial direction.
 雄ロータ1Aは、歯部6Aと中実部24Aを接続する複数の支持部26Aを備える。複数の支持部26Aは、歯部6Aの内周面21Aの複数の歯山(言い換えれば、半径方向内側に突出した部分)の頂部分とそれらに対応した中実部24Aの外周面25Aの複数の歯溝(言い換えれば、半径方向内側に窪んだ部分)の底部分をそれぞれ接続すると共に、中実部24Aの軸方向全体に亘って(若しくは軸方向の複数個所に)螺旋状に延在する。 The male rotor 1A includes a plurality of support portions 26A that connect the tooth portion 6A and the solid portion 24A. The plurality of support portions 26A include a plurality of tooth portions (in other words, portions protruding inward in the radial direction) of the inner peripheral surface 21A of the tooth portion 6A and a plurality of outer peripheral surfaces 25A of the solid portion 24A corresponding thereto. Are connected to the bottom portions of the tooth grooves (in other words, the portions recessed inward in the radial direction) and extend spirally over the entire axial direction of the solid portion 24A (or at a plurality of axial positions). .
 雄ロータ1Aの歯部6Aと中実部24Aの間には冷却流路27Aが形成されている。雄ロータ1Aの吸入側軸部7Aは、歯部6Aの吸入側側板部22Aに接続されると共に、冷却流路27Aに連通した貫通穴28Aを有する。雄ロータ1Aの吐出側軸部8Aは、歯部6Aの吐出側側板部23Aに接続されると共に、冷却流路27Aに連通した貫通穴29Aを有する。そして、上述の図2で示すように、油溜まり17から雄ロータ1Aの吸入側軸部7Aの貫通穴28Aに油を供給するための供給ノズル30が設けられている。これにより、油溜まり17から供給ノズル30及び吸入側軸部7Aの貫通穴28Aを介して冷却流路27Aに油(冷却液)が供給される。また、上述の図2で示すように、雄ロータ1Aの冷却流路27Aから吐出側軸部8Aの貫通穴29Aを介して吐出側ケーシング15のギヤ室16に油が排出され、この油が排出管18を経由して油溜まり17に回収される。 A cooling flow path 27A is formed between the tooth portion 6A and the solid portion 24A of the male rotor 1A. The suction side shaft portion 7A of the male rotor 1A is connected to the suction side plate portion 22A of the tooth portion 6A and has a through hole 28A communicating with the cooling flow path 27A. The discharge-side shaft portion 8A of the male rotor 1A is connected to the discharge-side plate portion 23A of the tooth portion 6A and has a through hole 29A communicating with the cooling flow path 27A. As shown in FIG. 2 described above, a supply nozzle 30 for supplying oil from the oil reservoir 17 to the through hole 28A of the suction side shaft portion 7A of the male rotor 1A is provided. Thus, oil (coolant) is supplied from the oil reservoir 17 to the cooling flow path 27A through the supply nozzle 30 and the through hole 28A of the suction side shaft portion 7A. Further, as shown in FIG. 2 described above, oil is discharged from the cooling flow path 27A of the male rotor 1A to the gear chamber 16 of the discharge side casing 15 through the through hole 29A of the discharge side shaft portion 8A. It is collected in the oil sump 17 via the pipe 18.
 なお、供給ノズル30は、雄ロータ1Aとは独立して設けられており、雄ロータ1Aが回転した場合でも油溜まり17から雄ロータ1Aへ油を供給できるようになっている。また、供給ノズル30と雄ロータ1Aの間にシールが設けられ、供給する油が漏れないようになっている。 The supply nozzle 30 is provided independently of the male rotor 1A, and can supply oil from the oil reservoir 17 to the male rotor 1A even when the male rotor 1A rotates. Further, a seal is provided between the supply nozzle 30 and the male rotor 1A so that the supplied oil does not leak.
 次に、雌ロータ1Bの構造について説明する。雌ロータ1Bの歯部6Bは、螺旋形状の外周面20Bと、この外周面20Bの螺旋形状に対応した螺旋形状の内周面21Bと、軸方向一方側である吸入側の側板部22Bと、軸方向他方側である吐出側の側板部23Bとを有する。詳しく説明すると、歯部6Bの外周面20Bは、図3~図7で示すように複数の歯山(言い換えれば、半径方向外側に突出した部分)を有し、これらの歯山が軸方向へ螺旋状に延在する形状となっている。歯部6Bの内周面21Bは、図5~図7で示すように外周面20Bの複数の歯山に沿ってそれぞれ形成された複数の歯溝(言い換えれば、半径方向外側に窪んだ部分)を有し、これらの歯溝が軸方向へ螺旋状に延在する形状となっている。 Next, the structure of the female rotor 1B will be described. The tooth portion 6B of the female rotor 1B includes a helical outer peripheral surface 20B, a helical inner peripheral surface 21B corresponding to the helical shape of the outer peripheral surface 20B, a suction-side side plate portion 22B that is one side in the axial direction, And a discharge-side side plate portion 23B which is the other side in the axial direction. More specifically, the outer peripheral surface 20B of the tooth portion 6B has a plurality of tooth crests (in other words, a portion projecting radially outward) as shown in FIGS. 3 to 7, and these tooth crests extend in the axial direction. It has a shape that extends spirally. As shown in FIGS. 5 to 7, the inner peripheral surface 21B of the tooth portion 6B has a plurality of tooth grooves formed along the plurality of tooth crests of the outer peripheral surface 20B (in other words, a portion recessed outward in the radial direction). These tooth spaces are spirally extended in the axial direction.
 雌ロータ1Bは、歯部6Bの内側に配置された中実部24Bを備えており、中実部24Bは、歯部6Bの内周面21Bの螺旋形状に対応した螺旋形状の外周面25Bを有する。詳しく説明すると、中実部24Bの外周面25Bは、図5で示すように歯部6Bの内周面21Bの複数の歯溝に沿ってそれぞれ形成された複数の歯山(言い換えれば、半径方向外側に突出した部分)を有し、これらの歯山が軸方向へ螺旋状に延在する形状となっている。 The female rotor 1B includes a solid portion 24B disposed inside the tooth portion 6B. The solid portion 24B has a helical outer peripheral surface 25B corresponding to the helical shape of the inner peripheral surface 21B of the tooth portion 6B. Have. More specifically, the outer peripheral surface 25B of the solid portion 24B has a plurality of tooth crests (in other words, a radial direction) formed along a plurality of tooth grooves on the inner peripheral surface 21B of the tooth portion 6B as shown in FIG. And the tooth crests are spirally extended in the axial direction.
 雌ロータ1Bは、歯部6Bと中実部24Bを接続する複数の支持部26Bを備える。複数の支持部26Bは、歯部6Bの内周面21Bの複数の歯山(言い換えれば、半径方向内側に突出した部分)の頂部分とそれらに対応した中実部24Bの外周面25Bの複数の歯溝(言い換えれば、半径方向内側に窪んだ部分)の底部分をそれぞれ接続すると共に、中実部24B(若しくは歯部6B)の軸方向全体に亘って(若しくは軸方向の複数個所に)螺旋状に延在する。 The female rotor 1B includes a plurality of support portions 26B that connect the tooth portion 6B and the solid portion 24B. The plurality of support portions 26B include a plurality of tooth crests (in other words, portions protruding inward in the radial direction) of the inner peripheral surface 21B of the tooth portion 6B and a plurality of outer peripheral surfaces 25B of the solid portion 24B corresponding thereto. Are connected to the bottom portions of the tooth grooves (in other words, the portions recessed inward in the radial direction) and over the entire axial direction of the solid portion 24B (or the tooth portion 6B) (or at a plurality of axial positions). Extends in a spiral.
 雌ロータ1Bの歯部6Bと中実部24Bの間には冷却流路27Bが形成されて雌ロータ1Bの吸入側軸部7Bは、歯部6Bの吸入側側板部22Bに接続されると共に、冷却流路27Bに連通した貫通穴28Bを有する。雌ロータ1Bの吐出側軸部8Bは、歯部6Bの吐出側側板部23Bに接続されると共に、冷却流路27Bに連通した貫通穴29Bを有する。そして、図示しないものの、油溜まり17から雌ロータ1Bの吸入側軸部7Bの貫通穴28Bに油を供給する供給ノズル30が設けられている。すなわち、油溜まり17から供給ノズル30及び吸入側軸部7Bの貫通穴28Bを介して冷却流路27Bに油(冷却液)が供給される。また、雌ロータ1Bの冷却流路27Bから吐出側軸部8Bの貫通穴29Bを介して吐出側ケーシング15のギヤ室16に油が排出され、この油が排出管18を経由して油溜まり17に回収される。 A cooling flow path 27B is formed between the tooth portion 6B and the solid portion 24B of the female rotor 1B, and the suction side shaft portion 7B of the female rotor 1B is connected to the suction side plate portion 22B of the tooth portion 6B. A through hole 28B communicating with the cooling flow path 27B is provided. The discharge-side shaft portion 8B of the female rotor 1B is connected to the discharge-side plate portion 23B of the tooth portion 6B and has a through hole 29B communicating with the cooling flow path 27B. Although not shown, a supply nozzle 30 for supplying oil from the oil reservoir 17 to the through hole 28B of the suction side shaft portion 7B of the female rotor 1B is provided. That is, oil (coolant) is supplied from the oil reservoir 17 to the cooling flow path 27B through the supply nozzle 30 and the through hole 28B of the suction side shaft portion 7B. Further, oil is discharged from the cooling flow path 27B of the female rotor 1B to the gear chamber 16 of the discharge side casing 15 through the through hole 29B of the discharge side shaft portion 8B, and this oil is stored in the oil reservoir 17 via the discharge pipe 18. To be recovered.
 なお、供給ノズル30は、雌ロータ1Bとは独立して設けられており、雌ロータ1Bが回転した場合でも油溜まり17から雌ロータ1Bへ油を供給できるようになっている。また、供給ノズル30と雌ロータ1Bの間にはシールが設けられ、供給する油が漏れないようになっている。 The supply nozzle 30 is provided independently of the female rotor 1B, and can supply oil from the oil reservoir 17 to the female rotor 1B even when the female rotor 1B rotates. Further, a seal is provided between the supply nozzle 30 and the female rotor 1B so that the supplied oil does not leak.
 以上のように、本実施形態の雄ロータ1Aでは、歯部6Aの内側に中実部24Aを設けており、歯部6Aの螺旋形状の内周面21Aと中実部24Aの螺旋形状の外周面25Aの間で冷却流路27Aを形成する。この冷却流路27Aの構造により、雄ロータ1Aの回転によって冷却流路27A内の油に生じる遠心力を、軸方向一方側(吸入側)から軸方向他方側(吐出側)への押出し力に変換することができる。そして、中実部24Aを設けない場合や、歯部6Aの内周面21A及び中実部24Aの外周面25Aのうちの一方を螺旋形状にしない場合と比べ、軸方向一方側(吸入側)から軸方向他方側(吐出側)への押出し力を高めることができる。 As described above, in the male rotor 1A of the present embodiment, the solid portion 24A is provided inside the tooth portion 6A, and the spiral inner periphery 21A of the tooth portion 6A and the spiral outer periphery of the solid portion 24A. A cooling channel 27A is formed between the surfaces 25A. Due to the structure of the cooling flow path 27A, the centrifugal force generated in the oil in the cooling flow path 27A by the rotation of the male rotor 1A is changed to the pushing force from the one axial side (suction side) to the other axial direction (discharge side). Can be converted. Then, compared to the case where the solid portion 24A is not provided or one of the inner peripheral surface 21A of the tooth portion 6A and the outer peripheral surface 25A of the solid portion 24A is not formed in a spiral shape, one side in the axial direction (suction side). To the other side (discharge side) in the axial direction can be increased.
 同様に、本実施形態の雌ロータ1Bでは、歯部6Bの内側に中実部24Bを設けており、歯部6Bの螺旋形状の内周面21Bと中実部24Bの螺旋形状の外周面25Bの間で冷却流路27Bを形成する。この冷却流路27Bの構造により、雌ロータ1Bの回転によって冷却流路27B内の油に生じる遠心力を、軸方向一方側(吸入側)から軸方向他方側(吐出側)への押出し力に変換することができる。そして、中実部24Bを設けない場合や、歯部6Bの内周面21B及び中実部24Bの外周面25Bのうちの一方を螺旋形状にしない場合と比べ、軸方向一方側(吸入側)から軸方向他方側(吐出側)への押出し力を高めることができる。 Similarly, in the female rotor 1B of the present embodiment, the solid portion 24B is provided inside the tooth portion 6B, and the helical inner peripheral surface 21B of the tooth portion 6B and the helical outer peripheral surface 25B of the solid portion 24B are provided. The cooling flow path 27B is formed between the two. Due to the structure of the cooling flow path 27B, the centrifugal force generated in the oil in the cooling flow path 27B due to the rotation of the female rotor 1B is changed to the pushing force from one axial side (suction side) to the other axial direction (discharge side). Can be converted. Then, compared to the case where the solid portion 24B is not provided or one of the inner peripheral surface 21B of the tooth portion 6B and the outer peripheral surface 25B of the solid portion 24B is not spiraled, one side in the axial direction (suction side). To the other side (discharge side) in the axial direction can be increased.
 したがって、本実施形態では、雄ロータ1Aの冷却流路27A及び雌ロータ1Bの冷却流路27Bに油(冷却液)を供給するためのポンプを不要とし、その機械動力を削減することができる。 Therefore, in this embodiment, a pump for supplying oil (coolant) to the cooling flow path 27A of the male rotor 1A and the cooling flow path 27B of the female rotor 1B is unnecessary, and the mechanical power can be reduced.
 また、本実施形態の雄ロータ1Aでは、中実部24Aを設けない場合と比べ、冷却流路27Aの体積に対する歯部6Aの内周面21Aの面積の割合を高めることができるので、歯部6Aの冷却効率を高めることができる。同様に、本実施形態の雌ロータ1Bでは、中実部24Bを設けない場合と比べ、冷却流路27Bの体積に対する歯部6Bの内周面21Bの面積の割合を高めることができるので、歯部6Bの冷却効率を高めることができる。したがって、雄ロータ1A及び雌ロータ1Bの温度上昇を抑制して、雄ロータ1A及び雌ロータ1Bの熱膨張を抑制することができる。その結果、雄ロータ1Aと雌ロータ1Bの間の隙間や、ロータ1A,1Bとケーシング2の間の隙間を縮小することができ、圧縮性能を向上させることができる。 Further, in the male rotor 1A of the present embodiment, since the ratio of the area of the inner peripheral surface 21A of the tooth portion 6A to the volume of the cooling flow path 27A can be increased as compared with the case where the solid portion 24A is not provided, the tooth portion The cooling efficiency of 6A can be increased. Similarly, in the female rotor 1B of the present embodiment, the ratio of the area of the inner peripheral surface 21B of the tooth portion 6B to the volume of the cooling flow path 27B can be increased as compared with the case where the solid portion 24B is not provided. The cooling efficiency of the part 6B can be increased. Therefore, the temperature increase of the male rotor 1A and the female rotor 1B can be suppressed, and the thermal expansion of the male rotor 1A and the female rotor 1B can be suppressed. As a result, the gap between the male rotor 1A and the female rotor 1B and the gap between the rotors 1A, 1B and the casing 2 can be reduced, and the compression performance can be improved.
 本発明の他の実施形態を、図8~図10を用いて説明する。図8~10は、上述の図5~図7に相当する径方向断面図である。なお、本実施形態において、上記一実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。 Another embodiment of the present invention will be described with reference to FIGS. 8 to 10 are radial cross-sectional views corresponding to FIGS. 5 to 7 described above. Note that in this embodiment, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 本実施形態の雄ロータ1Aは、上記一実施形態と同様、歯部6A、吸入側軸部7A、吐出側軸部8A、中実部24A、及び冷却流路27Aを備える。本実施形態の雄ロータ1Aは、上記一実施形態の支持部26Aに代えて、複数の支持部31A,32Aを備える。 The male rotor 1A of the present embodiment includes a tooth portion 6A, a suction side shaft portion 7A, a discharge side shaft portion 8A, a solid portion 24A, and a cooling flow path 27A, as in the above embodiment. The male rotor 1A of the present embodiment includes a plurality of support portions 31A and 32A instead of the support portion 26A of the above-described embodiment.
 複数の支持部31Aは、歯部6Aの吸入側側板部22Aとこれに隣り合う中実部24Aの一方側端部を接続しており、複数の支持部31Aの間には複数の案内流路33A(第1案内流路)が形成されている。複数の案内流路33Aは、吸入側軸部7Aの貫通穴28Aから流入した油を冷却流路27Aへ(すなわち、半径方向外側へ)案内する。 The plurality of support portions 31A connect the suction side plate portion 22A of the tooth portion 6A and one end of the solid portion 24A adjacent thereto, and a plurality of guide flow paths are provided between the plurality of support portions 31A. 33A (first guide channel) is formed. The plurality of guide channels 33A guide the oil flowing in from the through hole 28A of the suction side shaft portion 7A to the cooling channel 27A (that is, radially outward).
 複数の支持部32Aは、歯部6Aの吐出側側板部23Aとこれに隣り合う中実部24Aの他方側端部を接続しており、複数の支持部32Aの間には複数の案内流路34A(第2案内流路)が形成されている。複数の案内流路34Aは、冷却流路27Aから流入した油を吐出側軸部8Aの貫通穴29Aへ(言い換えれば、半径方向内側へ)案内する。 The plurality of support portions 32A connect the discharge side plate portion 23A of the tooth portion 6A and the other end portion of the solid portion 24A adjacent thereto, and a plurality of guide flow paths are provided between the plurality of support portions 32A. 34A (second guide channel) is formed. The plurality of guide channels 34A guide the oil flowing in from the cooling channel 27A to the through hole 29A of the discharge side shaft portion 8A (in other words, radially inward).
 本実施形態の雌ロータ1Bは、上記一実施形態と同様、歯部6B、吸入側軸部7B、吐出側軸部8B、中実部24B、及び冷却流路27Bを備える。本実施形態の雌ロータ1Bは、上記一実施形態の支持部26Bに代えて、複数の支持部31B,32Bを備える。 The female rotor 1B of this embodiment includes a tooth portion 6B, a suction side shaft portion 7B, a discharge side shaft portion 8B, a solid portion 24B, and a cooling flow path 27B, as in the above-described embodiment. The female rotor 1B of this embodiment includes a plurality of support portions 31B and 32B instead of the support portion 26B of the above-described embodiment.
 複数の支持部31Bは、歯部6Bの吸入側側板部22Bとこれに隣り合う中実部24Bの一方側端部を接続しており、複数の支持部31Bの間には複数の案内流路33Bが形成されている。複数の案内流路33Bは、吸入側軸部7Bの貫通穴28Bから流入した油を冷却流路27Bへ(すなわち、半径方向外側へ)案内する。 The plurality of support portions 31B connect the suction-side side plate portion 22B of the tooth portion 6B and one end of the solid portion 24B adjacent to the suction-side side plate portion 22B, and a plurality of guide flow paths are provided between the plurality of support portions 31B. 33B is formed. The plurality of guide channels 33B guide the oil flowing in from the through hole 28B of the suction side shaft portion 7B to the cooling channel 27B (that is, radially outward).
 複数の支持部32Bは、歯部6Bの吐出側側板部23Bとこれに隣り合う中実部24Bの他方側端部を接続しており、複数の支持部32Bの間には複数の案内流路34Bが形成されている。複数の案内流路34Bは、冷却流路27Bから流入した油を吐出側軸部8Bの貫通穴29Bへ(言い換えれば、半径方向内側へ)案内する。 The plurality of support portions 32B connect the discharge-side side plate portion 23B of the tooth portion 6B and the other end portion of the solid portion 24B adjacent thereto, and a plurality of guide flow paths are provided between the plurality of support portions 32B. 34B is formed. The plurality of guide channels 34B guide the oil flowing in from the cooling channel 27B to the through hole 29B of the discharge side shaft portion 8B (in other words, radially inward).
 以上のように構成された本実施形態においても、上記一実施形態と同様、雄ロータ1Aの冷却流路27A及び雌ロータ1Bの冷却流路27Bに油(冷却液)を供給するためのポンプを不要とし、その機械動力を削減することができる。また、上記一実施形態と同様、雄ロータ1Aの歯部6A及び雌ロータ1Bの歯部6Bの冷却効率を高めることができる。 Also in the present embodiment configured as described above, a pump for supplying oil (coolant) to the cooling flow path 27A of the male rotor 1A and the cooling flow path 27B of the female rotor 1B is provided as in the above-described one embodiment. It is unnecessary and the mechanical power can be reduced. Moreover, the cooling efficiency of the tooth | gear part 6A of the male rotor 1A and the tooth | gear part 6B of the female rotor 1B can be improved like the said one Embodiment.
 なお、上記一実施形態において、雄ロータ1Aは支持部26Aを備え、雌ロータ1Bは支持部26Bを備えた場合を例にとり、上記他の実施形態において、雄ロータ1Aは支持部31A,32Aを備え、雌ロータ1Bは支持部31B,32Bを備えた場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば、雄ロータ1Aは支持部26A,31A,32Aを備え、雌ロータ1Bは支持部26B,31B,32Bを備えてもよい。 In the above-described embodiment, the male rotor 1A includes the support portion 26A, and the female rotor 1B includes the support portion 26B. For example, in the other embodiment, the male rotor 1A includes the support portions 31A and 32A. The female rotor 1B has been described with reference to the case where the support portions 31B and 32B are provided as an example. However, the present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. For example, the male rotor 1A may include support portions 26A, 31A, and 32A, and the female rotor 1B may include support portions 26B, 31B, and 32B.
 また、上記実施形態において、供給ノズル30は、ポンプが介在しない場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば図11で示すように、供給ノズル30は、ポンプ36が介在してもよい。このような変形例では、ポンプ36の動力を軽減することができる。 In the above-described embodiment, the supply nozzle 30 has been described as an example in which no pump is interposed. However, the present invention is not limited to this, and the supply nozzle 30 can be modified without departing from the spirit and technical idea of the present invention. For example, as shown in FIG. 11, a pump 36 may be interposed in the supply nozzle 30. In such a modification, the power of the pump 36 can be reduced.
 また、上記実施形態において、軸受9A,9B,10A,10Bは、油供給系統から油が供給される場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば図11で示すように、雄ロータ1Aの吸入側軸部7Aは、その外周側に配置された吸入側軸受9Aに貫通穴28Aから油を供給する軸受給液穴37を有してもよいし、吐出側軸部8Aは、その外周側に配置された吐出側軸受10Aに貫通穴29Aから油を供給する軸受給液穴38を有してもよい。図示しないものの、同様に、雌ロータ1Bの吸入側軸部7Bは、その外周側に配置された吸入側軸受9Bに貫通穴28Bから油を供給する軸受給液穴37を有してもよいし、吐出側軸部8Bは、その外周側に配置された吐出側軸受10Bに貫通穴29Bから油を供給する軸受給液穴38を有してもよい。 Moreover, in the said embodiment, although bearing 9A, 9B, 10A, 10B demonstrated taking the case where oil was supplied from an oil supply system as an example, it is not restricted to this, The range which does not deviate from the meaning and technical idea of this invention Can be deformed within. For example, as shown in FIG. 11, the suction side shaft portion 7A of the male rotor 1A may have a bearing liquid supply hole 37 for supplying oil from the through hole 28A to the suction side bearing 9A disposed on the outer peripheral side thereof. The discharge side shaft portion 8A may have a bearing liquid supply hole 38 for supplying oil from the through hole 29A to the discharge side bearing 10A disposed on the outer peripheral side thereof. Although not shown, similarly, the suction side shaft portion 7B of the female rotor 1B may have a bearing liquid supply hole 37 for supplying oil from the through hole 28B to the suction side bearing 9B disposed on the outer peripheral side thereof. The discharge-side shaft portion 8B may have a bearing liquid supply hole 38 for supplying oil from the through hole 29B to the discharge-side bearing 10B disposed on the outer peripheral side thereof.
 また、上記実施形態において、雄ロータ1A及び雌ロータ1Bは、それらの軸方向が水平方向となるように配置されており、供給ノズル30が設けられた場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば図12で示すように、雄ロータ1A及び雌ロータ1Bは、それらの軸方向が鉛直方向となるように、且つ、吸入側軸部7Aの先端及び吸入側軸部7Bの先端が油溜り17に浸かるように配置されてもよい。このように構成することで、供給ノズル30や、供給ノズル30とロータの間のシール等の構成を省略し、油漏れの可能性を低減することができる。 Moreover, in the said embodiment, although the male rotor 1A and the female rotor 1B were arrange | positioned so that those axial directions might turn into a horizontal direction, and demonstrated as an example the case where the supply nozzle 30 was provided, it is not restricted to this. However, modifications can be made without departing from the spirit and technical idea of the present invention. For example, as shown in FIG. 12, the male rotor 1A and the female rotor 1B are such that their axial directions are vertical, and the tip of the suction side shaft portion 7A and the tip of the suction side shaft portion 7B are oil reservoirs 17. It may be arranged so as to be immersed in. By configuring in this way, the configuration such as the supply nozzle 30 and the seal between the supply nozzle 30 and the rotor can be omitted, and the possibility of oil leakage can be reduced.
 また、上記実施形態において、スクリュー圧縮機は、雄ロータ1Aの冷却流路27A及び雌ロータ1Bの冷却流路27Bに冷却液として油を供給するように構成された場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。スクリュー圧縮機は、雄ロータ1Aの冷却流路27A及び雌ロータ1Bの冷却流路27Bに冷却液として例えば水を供給するように構成されてもよい。 In the above embodiment, the screw compressor has been described by way of example in which the screw compressor is configured to supply oil as cooling liquid to the cooling flow path 27A of the male rotor 1A and the cooling flow path 27B of the female rotor 1B. The present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. The screw compressor may be configured to supply, for example, water as a cooling liquid to the cooling flow path 27A of the male rotor 1A and the cooling flow path 27B of the female rotor 1B.
 なお、以上においては、本発明の適用対象として、無給油式のスクリュー圧縮機を例にとって説明したが、これに限られず、給液式(詳細には、作動室に少量の油又は水等の液体を供給する)スクリュー圧縮機であってもよい。そして、作動室に供給する液体とロータの冷却流路に供給する液体が同じであれば、ロータの歯部に貫通穴を形成し、この貫通穴を介してロータの冷却流路から作動室に液体を供給してもよい。その場合、作動室からロータの冷却流路への圧縮気体の流出を回避するため、ロータの冷却流路内の圧力より作動室内の圧力が低くなる位置に貫通穴を形成することが望ましい。 In the above description, an oil-free screw compressor has been described as an example of application of the present invention. However, the present invention is not limited to this, and is not limited to this. A liquid-feed type (specifically, a small amount of oil or water in the working chamber) It may be a screw compressor that supplies liquid. If the liquid supplied to the working chamber and the liquid supplied to the cooling channel of the rotor are the same, a through hole is formed in the tooth portion of the rotor, and the cooling channel of the rotor passes through the through hole to the working chamber. A liquid may be supplied. In that case, in order to avoid outflow of compressed gas from the working chamber to the cooling channel of the rotor, it is desirable to form a through hole at a position where the pressure in the working chamber is lower than the pressure in the cooling channel of the rotor.
 また、本発明の適用対象として、2つのスクリューロータである雄ロータ1A及び雌ロータ1Bを備えたスクリュー圧縮機を例にとって説明したが、これに限られず、例えば、1つ又は3つ以上のスクリューロータを備えたスクリュー圧縮機であってもよい。また、複数のスクリューロータを備えたスクリュー圧縮機において、複数のスクリューロータの全てが本発明の特徴を有していてもよいし、一部のみが本発明の特徴を有していてもよい。 Moreover, although the screw compressor provided with the male rotor 1A and the female rotor 1B which are two screw rotors was demonstrated to the example as an application object of this invention, it is not restricted to this, For example, one or three or more screws It may be a screw compressor provided with a rotor. Moreover, in the screw compressor provided with the some screw rotor, all the some screw rotors may have the characteristics of this invention, and only one part may have the characteristics of this invention.
 1A…雄ロータ、1B…雌ロータ、2…ケーシング、3…作動室、4…吸入ポート、5…吐出ポート、6A,6B…歯部、7A,7B…吸入側軸部、8A,8B…吐出側軸部、9A,9B…吸入側軸受、10A,10B…吐出側軸受、11…ピニオンギヤ、12A,12B…タイミングギヤ、13…メインケーシング、14…吸入側ケーシング、15…吐出側ケーシング、16…ギヤ室、17…油溜まり、18…排出管、20A,20B…歯部の外周面、21A,21B…歯部の内周面、22A,22B…歯部の吸入側側板部、23A,23B…歯部の吐出側側板部、24A,24B…中実部、25A,25B…中実部の外周面、26A,26B…支持部、27A,27B…冷却流路、28A,28B…吸入側軸部の貫通穴、29A,29B…吐出側軸部の貫通穴、30…供給ノズル、31A,31B…支持部(第1支持部)、32A,32B…支持部(第2支持部)、33A,33B…案内流路(第1案内流路)、34A,34B…案内流路(第2案内流路)、36…ポンプ、37…吸入側軸部の軸受給液穴、38…吐出側軸部の軸受給液穴 DESCRIPTION OF SYMBOLS 1A ... Male rotor, 1B ... Female rotor, 2 ... Casing, 3 ... Working chamber, 4 ... Suction port, 5 ... Discharge port, 6A, 6B ... Tooth part, 7A, 7B ... Suction side axial part, 8A, 8B ... Discharge Side shaft portion, 9A, 9B ... suction side bearing, 10A, 10B ... discharge side bearing, 11 ... pinion gear, 12A, 12B ... timing gear, 13 ... main casing, 14 ... suction side casing, 15 ... discharge side casing, 16 ... Gear chamber, 17 ... Oil sump, 18 ... Drain pipe, 20A, 20B ... Outer peripheral surface of tooth portion, 21A, 21B ... Inner peripheral surface of tooth portion, 22A, 22B ... Suction side plate portion of tooth portion, 23A, 23B ... Discharge side plate part of tooth part, 24A, 24B ... solid part, 25A, 25B ... outer peripheral surface of solid part, 26A, 26B ... support part, 27A, 27B ... cooling flow path, 28A, 28B ... suction side shaft part Through holes, 29A, 29 ... through hole in discharge side shaft part, 30 ... supply nozzle, 31A, 31B ... support part (first support part), 32A, 32B ... support part (second support part), 33A, 33B ... guide flow path (first Guide channel), 34A, 34B ... Guide channel (second guide channel), 36 ... Pump, 37 ... Bearing liquid supply hole in suction side shaft part, 38 ... Bearing liquid supply hole in discharge side shaft part

Claims (7)

  1.  スクリューロータと、前記スクリューロータを格納するケーシングとを備え、
     前記スクリューロータは、
     螺旋形状の外周面、及び前記外周面の螺旋形状に対応した螺旋形状の内周面を有する歯部と、
     前記歯部の内側に配置され、前記歯部の内周面の螺旋形状に対応した螺旋形状の外周面を有する中実部と、
     前記歯部と前記中実部を接続する複数の支持部と、
     前記歯部の軸方向一方側である吸入側の側板部に接続され、前記歯部と前記中実部との間に形成された冷却流路に連通した貫通穴を有する吸入側の軸部と、
     前記歯部の軸方向他方側である吐出側の側板部に接続され、前記冷却流路に連通した貫通穴を有する吐出側の軸部とを備えており、
     液溜まりから前記吸入側の軸部の貫通穴を介して前記冷却流路に冷却液が供給され、前記冷却流路から前記吐出側の軸部の貫通穴を介して前記液溜まりに冷却液が排出されるように構成されたことを特徴とするスクリュー圧縮機。
    A screw rotor and a casing for storing the screw rotor;
    The screw rotor is
    A tooth portion having a helical outer peripheral surface and a helical inner peripheral surface corresponding to the helical shape of the outer peripheral surface;
    A solid portion disposed inside the tooth portion and having a helical outer peripheral surface corresponding to a helical shape of the inner peripheral surface of the tooth portion;
    A plurality of support portions connecting the tooth portion and the solid portion;
    A suction-side shaft portion connected to a suction-side side plate portion, which is one side in the axial direction of the tooth portion, and having a through hole communicating with a cooling flow path formed between the tooth portion and the solid portion; ,
    A discharge-side shaft portion having a through-hole connected to the discharge-side side plate portion, which is the other axial side of the tooth portion, and communicating with the cooling flow path;
    Cooling liquid is supplied from the liquid reservoir to the cooling flow path through the through hole in the suction-side shaft portion, and the cooling liquid is supplied from the cooling flow path to the liquid reservoir through the through-hole in the discharge-side shaft portion. A screw compressor configured to be discharged.
  2.  請求項1に記載のスクリュー圧縮機において、
     前記複数の支持部は、前記歯部の内周面の複数の歯山の頂部分とそれらに対応した前記中実部の外周面の複数の歯溝の底部分をそれぞれ接続すると共に、軸方向へ螺旋状に延在することを特徴とするスクリュー圧縮機。
    The screw compressor according to claim 1,
    The plurality of support portions respectively connect the top portions of the plurality of tooth crests on the inner peripheral surface of the tooth portion and the bottom portions of the plurality of tooth gaps on the outer peripheral surface of the solid portion corresponding thereto, and in the axial direction. A screw compressor characterized by extending spirally.
  3.  請求項1に記載のスクリュー圧縮機において、
     前記複数の支持部は、
     前記歯部の前記吸入側の側板部とこれに隣り合う前記中実部の一方側端部を接続する複数の第1支持部と、
     前記歯部の前記吐出側の側板部とこれに隣り合う前記中実部の他方側端部を接続する複数の第2支持部とで構成されており、
     前記複数の第1の支持部の間に複数の第1案内流路が形成され、前記複数の第2の支持部の間に複数の第2案内流路が形成されたことを特徴とするスクリュー圧縮機。
    The screw compressor according to claim 1,
    The plurality of support portions are:
    A plurality of first support portions connecting the side plate portion on the suction side of the tooth portion and one side end portion of the solid portion adjacent thereto; and
    It is composed of a side plate portion on the discharge side of the tooth portion and a plurality of second support portions that connect the other end portion of the solid portion adjacent to the side portion,
    A screw characterized in that a plurality of first guide channels are formed between the plurality of first support portions, and a plurality of second guide channels are formed between the plurality of second support portions. Compressor.
  4.  請求項1に記載のスクリュー圧縮機において、
     前記液溜まりから前記吸入側の軸部の貫通穴に冷却液を供給する供給ノズルを備えたことを特徴とするスクリュー圧縮機。
    The screw compressor according to claim 1,
    A screw compressor comprising a supply nozzle for supplying a cooling liquid from the liquid reservoir to a through hole of the shaft portion on the suction side.
  5.  請求項4に記載のスクリュー圧縮機において、
     前記供給ノズルに設けられたポンプを備えたことを特徴とするスクリュー圧縮機。
    The screw compressor according to claim 4, wherein
    A screw compressor comprising a pump provided in the supply nozzle.
  6.  請求項1に記載のスクリュー圧縮機において、
     前記スクリューロータは、前記吸入側の軸部の先端が前記液溜まりに浸かるように配置されたことを特徴とするスクリュー圧縮機。
    The screw compressor according to claim 1,
    The screw compressor, wherein the screw rotor is arranged so that a tip of a shaft portion on the suction side is immersed in the liquid reservoir.
  7.  請求項1に記載のスクリュー圧縮機において、
     前記吸入側の軸部及び前記吐出側の軸部のうちの少なくとも一方は、その外周側に配置された軸受に前記貫通穴から冷却液を供給する軸受給液穴を有することを特徴とするスクリュー圧縮機。
    The screw compressor according to claim 1,
    At least one of the suction-side shaft portion and the discharge-side shaft portion has a bearing liquid supply hole for supplying a coolant from the through hole to a bearing disposed on the outer peripheral side thereof. Compressor.
PCT/JP2018/019839 2018-05-23 2018-05-23 Screw compressor WO2019224943A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/019839 WO2019224943A1 (en) 2018-05-23 2018-05-23 Screw compressor
JP2020520931A JP6924902B2 (en) 2018-05-23 2018-05-23 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019839 WO2019224943A1 (en) 2018-05-23 2018-05-23 Screw compressor

Publications (1)

Publication Number Publication Date
WO2019224943A1 true WO2019224943A1 (en) 2019-11-28

Family

ID=68615774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019839 WO2019224943A1 (en) 2018-05-23 2018-05-23 Screw compressor

Country Status (2)

Country Link
JP (1) JP6924902B2 (en)
WO (1) WO2019224943A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506904A (en) * 1990-04-27 1993-10-07 スベンスカ・ロツタア・マスキナー・アクチボラグ Rotor for rotary screw machines, rotary screw machines and rotor manufacturing method
JPH08261183A (en) * 1995-03-27 1996-10-08 Tochigi Fuji Ind Co Ltd Hollow rotor for screw fluid machine
JPH08284673A (en) * 1995-04-14 1996-10-29 Tochigi Fuji Ind Co Ltd Screw type supercharger
JP2006097604A (en) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Screw rotor and method for manufacturing the same
US20160123327A1 (en) * 2014-10-31 2016-05-05 Ingersoll-Rand Company Rotary screw compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506904A (en) * 1990-04-27 1993-10-07 スベンスカ・ロツタア・マスキナー・アクチボラグ Rotor for rotary screw machines, rotary screw machines and rotor manufacturing method
JPH08261183A (en) * 1995-03-27 1996-10-08 Tochigi Fuji Ind Co Ltd Hollow rotor for screw fluid machine
JPH08284673A (en) * 1995-04-14 1996-10-29 Tochigi Fuji Ind Co Ltd Screw type supercharger
JP2006097604A (en) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Screw rotor and method for manufacturing the same
US20160123327A1 (en) * 2014-10-31 2016-05-05 Ingersoll-Rand Company Rotary screw compressor

Also Published As

Publication number Publication date
JPWO2019224943A1 (en) 2021-04-22
JP6924902B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP4074886B2 (en) Expander integrated compressor
US9926928B2 (en) Oil pump
JP5701230B2 (en) Scroll compressor
JP5798331B2 (en) Water jet screw compressor
JP5904961B2 (en) Screw compressor
JP4969646B2 (en) Fluid machine and refrigeration cycle apparatus including the same
JP4403670B2 (en) compressor
JP4804437B2 (en) Expander integrated compressor
US9932829B2 (en) Expander
JPS61261694A (en) Scroll fluid machine
WO2019224943A1 (en) Screw compressor
JP2011174453A (en) Scroll compressor
KR20050103954A (en) Rotary piston pump
JP6511321B2 (en) Refueling displacement compressor
KR101948228B1 (en) Gerotor pump having separation plate integrated with housing
JP2008008165A (en) Compressor
CN108934174B (en) Screw fluid machine
JP7072417B2 (en) Screw compressor
WO2020053976A1 (en) Screw compressor
JP2021055553A (en) Internal gear pump
KR101740610B1 (en) Vane pump
WO2024116433A1 (en) Screw compressor
CN214660859U (en) Oil sump oil return structure, compressor and air conditioner
CN114060277A (en) Compressor and have its electrical apparatus
JP2005069062A (en) Oil injection type screw compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920177

Country of ref document: EP

Kind code of ref document: A1