WO2019224865A1 - Air conditioner and packaging set for air conditioner - Google Patents

Air conditioner and packaging set for air conditioner Download PDF

Info

Publication number
WO2019224865A1
WO2019224865A1 PCT/JP2018/019456 JP2018019456W WO2019224865A1 WO 2019224865 A1 WO2019224865 A1 WO 2019224865A1 JP 2018019456 W JP2018019456 W JP 2018019456W WO 2019224865 A1 WO2019224865 A1 WO 2019224865A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air conditioner
heat exchanger
sensor
refrigerating machine
Prior art date
Application number
PCT/JP2018/019456
Other languages
French (fr)
Japanese (ja)
Inventor
英明 前山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880093339.7A priority Critical patent/CN112154292B/en
Priority to JP2020520865A priority patent/JP7009624B2/en
Priority to EP21203214.8A priority patent/EP3961119B1/en
Priority to EP18919943.3A priority patent/EP3798527A4/en
Priority to CN202210521435.5A priority patent/CN114777285A/en
Priority to PCT/JP2018/019456 priority patent/WO2019224865A1/en
Publication of WO2019224865A1 publication Critical patent/WO2019224865A1/en
Priority to JP2021195333A priority patent/JP7256248B2/en
Priority to JP2023034595A priority patent/JP2023060225A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/68Containers, packaging elements or packages, specially adapted for particular articles or materials for machines, engines or vehicles in assembled or dismantled form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/60Odour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Definitions

  • the present invention relates to an air conditioner having a leakage detection function for a flammable refrigerant and a packaging set of the air conditioner.
  • Patent Document 1 discloses an air conditioner including a refrigerant detecting means for detecting the concentration of a combustible refrigerant in a room.
  • the indoor fan is operated with a preset air volume.
  • Refrigeration oil stored in the compressor is normally discharged from the compressor together with the refrigerant and circulates in the air conditioner. Therefore, when the refrigerant is leaking, the refrigeration oil is also almost leaking. However, in patent document 1, it is not considered about refrigeration oil leaking with a refrigerant
  • the present invention has been made to solve the above-described problems, and an object thereof is to improve the safety of the air conditioner.
  • the combustible refrigerant circulates in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
  • the compressor stores the refrigerating machine oil and discharges the refrigerating machine oil together with the refrigerant.
  • the refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
  • the first heat exchanger is disposed in the first space.
  • the second heat exchanger is disposed in the second space.
  • the air conditioner includes a first sensor, a second sensor, and a control device.
  • the first sensor detects the refrigerant in the first space.
  • the second sensor detects the odor of the refrigerating machine oil in the first space.
  • the control device detects the leakage of the refrigerant using the first detection signal from the first sensor and the second detection signal from the second sensor.
  • the combustible refrigerant circulates in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
  • the compressor stores the refrigerating machine oil and discharges the refrigerating machine oil together with the refrigerant.
  • the refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
  • the first heat exchanger is disposed in the first space.
  • the second heat exchanger is disposed in the second space.
  • the air conditioner includes a sensor, a sample storage unit, and a control device.
  • the sensor detects the refrigerant in the first space.
  • the sample storage unit stores a sample of refrigerating machine oil and can release the odor of the sample to the outside.
  • the control device detects the leakage of the refrigerant using a detection signal from the sensor.
  • An air conditioner packaging set is an air conditioner packaging set in which a combustible refrigerant circulates in the order of a compressor, a first heat exchanger, an expansion valve, and a second heat exchanger. It is.
  • the compressor stores refrigeration oil and discharges the refrigeration oil together with the refrigerant.
  • the refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
  • the first heat exchanger is disposed in the first space.
  • the second heat exchanger is disposed in the second space.
  • the air conditioner includes a sensor and a control device. The sensor detects the refrigerant in the first space.
  • the control device detects the leakage of the refrigerant using a detection signal from the sensor.
  • the packing set includes a sample of refrigeration oil and a packing box.
  • the packaging box contains at least one of a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, a sensor, and a control device and a sample.
  • the air conditioner and the air conditioner packaging set according to the present invention it is possible to detect the refrigerant leaked into the first space even by the odor of the refrigeration oil. Therefore, the detection accuracy of the refrigerant leak in the first space is improved. be able to. As a result, the safety of the air conditioner can be improved.
  • FIG. 2 is a functional block diagram illustrating a configuration of the air conditioner according to Embodiment 1.
  • FIG. It is a schematic external view of the indoor unit of the air conditioner of FIG. It is a flowchart which shows the flow of the refrigerant
  • FIG. 6 is a functional block diagram illustrating a configuration of an air conditioner according to Embodiment 2.
  • FIG. 6 is a functional block diagram illustrating a configuration of an air conditioner according to Embodiment 3.
  • FIG. It is a schematic external view of the indoor unit of the air conditioner of FIG.
  • FIG. 10 is a schematic external view of the sample container of FIG. 9. It is a figure which shows a mode that the indoor unit is packed by the packing set of the air conditioner which concerns on Embodiment 4.
  • FIG. It is a figure which shows a mode that the packing set of FIG. 11 was unpacked.
  • FIG. 1 is a functional block diagram illustrating a configuration of an air conditioner 100 according to Embodiment 1.
  • FIG. 2 is a schematic external view of the indoor unit 10 of the air conditioner 100 of FIG.
  • a refrigerant containing combustible R290 propane
  • the air conditioner 100 includes a heating mode, a cooling mode, and a defrosting mode as operation modes.
  • the air conditioner 100 includes an indoor unit 10 and an outdoor unit 11. Both the indoor unit 10 and the outdoor unit 11 are supplied with power from the main power source Ps1 (first power source).
  • Ps1 first power source
  • the indoor unit 10 is arranged indoors (first space).
  • the indoor unit 10 includes an indoor heat exchanger 1 (first heat exchanger), an indoor fan 2, a refrigerant sensor s1 (first sensor), and an odor sensor s2 (second sensor).
  • the outdoor unit 11 is disposed outside (second space).
  • the outdoor unit 11 includes a compressor 3, a four-way valve 4, an expansion valve 5, an outdoor heat exchanger 6 (second heat exchanger), an outdoor fan 7, and a control device 8.
  • the compressor 3 stores refrigerating machine oil for lubricating the compression mechanism.
  • the refrigerating machine oil is a refrigerating machine oil having a unique odor and includes, for example, PAG (PolyAlkylene Glycol) oil.
  • the control device 8 controls the four-way valve 4 to form a flow path so that the refrigerant circulates in the order of the compressor 3, the indoor heat exchanger 1, the expansion valve 5, and the outdoor heat exchanger 6. .
  • the indoor heat exchanger 1 functions as a condenser
  • the outdoor heat exchanger 6 functions as an evaporator.
  • the control device 8 controls the four-way valve 4 so that the refrigerant circulates in the order of the compressor 3, the outdoor heat exchanger 6, the expansion valve 5, and the indoor heat exchanger 1. Form a road.
  • the indoor heat exchanger 1 functions as an evaporator
  • the outdoor heat exchanger 6 functions as a condenser.
  • the control device 8 controls the amount of refrigerant discharged by the compressor 3 per unit time by controlling the driving frequency of the compressor 3.
  • the control device 8 adjusts the opening degree of the expansion valve 5.
  • the control device 8 controls the air volume per unit time of the indoor fan 2 and the outdoor fan 7.
  • the refrigerant sensor s ⁇ b> 1 and the odor sensor s ⁇ b> 2 are disposed further down than the indoor heat exchanger 1 with respect to the blowing direction by the indoor fan 2.
  • the refrigerant sensor s1 outputs a detection signal (first detection signal) indicating the refrigerant concentration to the control device 8.
  • the odor sensor s2 outputs a detection signal (second detection signal) indicating the odor of the refrigeration oil to the control device 8.
  • the refrigerating machine oil stored in the compressor 3 is normally discharged from the compressor 3 together with the refrigerant and circulates through the air conditioner 100. Therefore, when the refrigerant is leaking, the refrigeration oil is also almost leaking.
  • refrigerant leakage in the room is detected using the refrigerant concentration and the odor of the refrigerating machine oil.
  • the accuracy of refrigerant leakage detection can be improved compared to the case of detecting refrigerant leakage using only the refrigerant concentration, thereby improving the safety of the air conditioner. Can do.
  • FIG. 3 is a flowchart showing the flow of the refrigerant leakage detection process performed by the control device 8.
  • the process shown in FIG. 3 is called regularly or irregularly by a main routine (not shown) that controls the operation of the air conditioner 100.
  • the step is also referred to as S.
  • the detection level L1 represents the level of the detection signal of the refrigerant sensor s1
  • the detection level L2 represents the level of the detection signal of the odor sensor s2.
  • control device 8 determines in S11 whether or not the detection level L1 of the indoor refrigerant concentration is greater than a threshold A1 (first threshold).
  • a threshold A1 first threshold
  • control device 8 returns the process to the main routine after performing the safety ensuring process in S14.
  • the indoor fan 2 is used to stir the indoor air to make the refrigerant distribution in the room uniform, thereby reducing the refrigerant concentration, generating an alarm sound, blinking the lamp, and displaying a message.
  • the control device 8 determines in S12 whether the indoor refrigeration oil detection level L2 is greater than the threshold value B1 (second threshold value). Determine.
  • the control device 8 returns the process to the main routine after performing the safety ensuring process in S14.
  • the control device 8 returns the process to the main routine.
  • the refrigerant leakage determination using the refrigerant concentration (S11) and the refrigerant leakage determination using the odor of the refrigerating machine oil (S12) are performed in different steps.
  • the refrigerant leakage determination may be performed using both the refrigerant concentration and the odor of the refrigerating machine oil in the same step.
  • the process shown in FIG. 4 may be performed instead of the process shown in FIG. In FIG.
  • the detection level L1 is equal to or lower than the threshold value A1 (NO in S11) in the refrigerant leakage determination using the refrigerant concentration
  • the detection level L2 is equal to or lower than the threshold value B1 in the refrigerant leakage determination using the odor of the refrigerating machine oil ( If NO in S12, a refrigerant leakage determination (S13) is performed using the refrigerant concentration and the odor of the refrigerating machine oil together.
  • the detection level L1 is not more than the threshold A1 and the detection level L2 is not more than the threshold B1 at the time when S13 is performed, the detection level L1 is not more than the threshold A1 and the detection level L2 is not more than the threshold B1 in S13. It is necessary to set conditions to be determined as refrigerant leakage in the following range. Therefore, in FIG. 4, the threshold A2 (third threshold) is smaller than the threshold A1, and the threshold B2 (fourth threshold) is smaller than the threshold B1.
  • control device 8 determines that the detection level L1 is larger than the threshold value A2 and is detected in S13. It is determined whether level L2 is greater than threshold value B2. When detection level L1 is greater than threshold value A2 and detection level L2 is greater than threshold value B2 (YES in S13), control device 8 performs a safety ensuring process in S14 and returns the process to the main routine. When detection level L1 is equal to or lower than threshold A2, or detection level L2 is equal to or lower than threshold B2 (NO in S13), control device 8 returns the process to the main routine.
  • the refrigerant leakage determination condition is a condition that the refrigerant concentration detection level L1 or the refrigerating machine oil detection level L2 is greater than a threshold value. Whether the refrigerant leakage determination condition includes a point specified by the detection level L1 and the detection level L2 in the refrigerant leakage region to be determined as refrigerant leakage on the coordinate plane indicating the relationship between the detection level L1 and the detection level L2. It may be determined depending on whether or not.
  • FIG. 5 is a coordinate plane showing the relationship between the detection level L1 and the detection level L2, with the X axis being the refrigerant concentration detection level L1 and the Y axis being the refrigeration oil detection level L2.
  • the refrigerant leakage area shown in FIG. 5 is expressed as the following equation (1).
  • the detection level L1 and the detection level L2 that satisfy Equation (1) are included in the refrigerant leakage region.
  • the threshold value A2 of the detection level L1 and the threshold value B2 of the detection level L2 in FIG. 4 are, for example, the boundary line (point P1 (A1, 0) between the refrigerant leakage region and the non-refrigerant leakage region (region not satisfying the expression (1)). )
  • the point P2 (0, B1) are set to the detection level L1 and the detection level L2 of the point P3 on the line).
  • FIG. 6 is a flowchart showing a flow of processing for determining refrigerant leakage using the equation (1).
  • the flowchart shown in FIG. 6 is a flowchart in which S11 and S12 in FIG. 3 are replaced with S10.
  • the control device 8 determines whether or not the detection level L1 and the detection level L2 satisfy Expression (1).
  • detection level L1 and detection level L2 satisfy Expression (1) (YES in S10)
  • control device 8 performs a safety ensuring process in S14 and returns the process to the main routine.
  • detection level L1 and detection level L2 do not satisfy Expression (1) NO in S10), control device 8 returns the process to the main routine.
  • the safety of the air conditioner can be improved.
  • Embodiment 2 the case where the refrigerant sensor and the odor sensor are supplied with power from the power supply of the air conditioner has been described.
  • the second embodiment a case where at least one of the refrigerant sensor and the odor sensor is supplied with power from a power source different from the power source of the air conditioner will be described. With such a configuration, even when power is not supplied to the air conditioner (when the air conditioner and the power source are not connected or when there is a power failure), at least one of the refrigerant sensor or the odor sensor is Since it is operating, it is possible to detect refrigerant leakage.
  • FIG. 7 is a functional block diagram showing the configuration of the air conditioner 200 according to the second embodiment.
  • the configuration of the air conditioner 200 is that the auxiliary power source Ps2 (second power source) is added to the configuration of the air conditioner 100 of FIG. It is a configuration. Since the other configuration is the same, the description will not be repeated.
  • the auxiliary power supply Ps2 supplies power to the odor sensor s22.
  • Auxiliary power supply Ps2 includes, for example, a battery.
  • the detection level L2 exceeds the threshold value B1
  • the odor sensor s22 notifies the refrigerant leakage by, for example, an alarm sound, a blinking lamp, or a message display.
  • the sensor to which power is supplied from the auxiliary power source Ps2 when the power supply from the main power source Ps1 is stopped (for example, when the outlet of the air conditioner 200 is disconnected from the main power source Ps1 or in the event of a power failure)
  • the sensor s21 may be used.
  • the refrigerant sensor s21 when the detection level L1 exceeds the threshold value A1, the refrigerant sensor s21 notifies the refrigerant leakage by, for example, an alarm sound, blinking of a lamp, or display of a message. Even when the power supply from the main power supply Ps1 is stopped, since at least one of the refrigerant sensor s1 and the odor sensor s22 is operating, the refrigerant leakage can be detected by the operating sensor.
  • the sensor supplied with the power from the auxiliary power source Ps2 normally receives the power from the main power source Ps1 and receives the auxiliary power source. It is preferable that the power of Ps2 is not consumed and the power is received from the auxiliary power source Ps2 in an emergency.
  • both the refrigerant sensor s1 and the odor sensor s2 are operated so that both the refrigerant sensor s1 and the odor sensor s2 operate even when the power supply from the main power supply Ps1 is stopped. It is more preferable to supply power from the auxiliary power source Ps2.
  • the air conditioner according to the second embodiment refrigerant leakage can be detected even when power is not supplied to the air conditioner. Therefore, the safety of the air conditioner is improved compared to the first embodiment. Further improvement can be achieved.
  • Embodiments 3 and 4 In Embodiment 1, 2, the structure which detects the odor of refrigerating machine oil with a sensor was demonstrated. In Embodiments 3 and 4, a configuration will be described in which the user himself / herself can recognize that the refrigeration oil is leaking indoors by making the user recognize the odor of the cooling oil.
  • R290 contained in the refrigerant used in the air-conditioning apparatus according to Embodiment 1 is almost odorless.
  • an odorant is not usually mixed with the refrigerant. Therefore, it is often difficult for the user to notice the odor of the refrigerant leaked into the room.
  • the odor of the refrigerating machine oil is made to be recognized by the user in advance using a sample of refrigerating machine oil used for lubrication in the compressor of the air conditioner.
  • the user feels the odor in the room, the user can notice that the refrigerating machine oil is leaking into the room.
  • the user can notice the odor of the refrigerator oil in the room, so the safety of the air conditioner is better than when the user does not know the odor of the refrigerator oil Can be improved.
  • the odor sensor is unnecessary, and therefore the manufacturing costs of the third and fourth embodiments can be reduced compared to the first and second embodiments.
  • Embodiment 3 an air conditioner in which an indoor unit is provided with a sample storage unit for refrigeration oil will be described.
  • Embodiment 4 a packaging set of an air conditioner in which a sample container of refrigeration oil separate from the air conditioner is packaged together with the air conditioner will be described.
  • FIG. FIG. 8 is a functional block diagram showing the configuration of the air conditioner 300 according to Embodiment 3.
  • the configuration of the air conditioner 300 is a configuration in which the indoor unit 10 of the air conditioner 100 in FIG. 1 is replaced with the indoor unit 30, and the control device 8 of the outdoor unit 11 is replaced with the control device 38.
  • the configuration of the indoor unit 30 is a configuration in which the odor sensor s2 is removed from the configuration of the indoor unit 10 and a sample container 31 (sample storage unit) is detachably attached as shown in FIG.
  • the control device 38 receives the detection signal from the refrigerant sensor s1, and performs refrigerant leakage determination using the refrigerant concentration, but does not perform refrigerant leakage determination using the odor of the refrigerating machine oil.
  • the control device 38 performs safety ensuring processing when the refrigerant concentration detection level L1 is greater than the threshold value A1. Since the configuration other than these is the same, the description will not be repeated.
  • FIG. 10 is a schematic external view of the sample container 31 of FIG.
  • the sample container 31 includes a resin main body 311 and a resin lid 312.
  • the main body 311 accommodates a sponge Spg in which a sample of refrigerating machine oil used for lubricating the compressor 3 of FIG.
  • the lid 312 is attached to the main body 311 (FIG. 10A)
  • the odor of the refrigerating machine oil is sealed inside the sample container 31 and hardly leaks outside the sample container 31.
  • It is attached to the air conditioner 300 in the state shown in FIG.
  • the sample container 31 can release the odor of the sample of the refrigerating machine oil to the outside in a state where the lid 312 is removed from the main body 311 (FIG. 10B).
  • the user removes the sample container 31 from the air conditioner 300, removes the lid 312 from the main body 311 as shown in FIG. 10B, and confirms the odor of the refrigerating machine oil.
  • Embodiment 3 while being able to improve the safety
  • FIG. FIG. 11 is a diagram illustrating a state where the indoor unit 40 is packed by the air conditioner packing set 400 according to the fourth embodiment.
  • the appearance of the indoor unit 40 is the same as that of the indoor unit 10 shown in FIG. Moreover, the indoor unit 40 does not include an odor sensor like the indoor unit 30 shown in FIG.
  • the indoor unit 40 is housed in a packing box 41 with both ends covered with buffering agents 42 and 43. When the packaging box 41 is slid in the longitudinal direction of the indoor unit 40, the packaging set 400 is unpacked.
  • FIG. 12 is a view showing a state where the packing set 400 of FIG. 11 is unpacked.
  • a remote controller Rm an instruction manual packed together with a sample container 31 for refrigerating machine oil, and the like are attached to the rear surface of the indoor unit 40.
  • the sample container 31 is the same as that shown in FIG. 10, and contains a sponge in which refrigeration oil is soaked. The user can check the odor of the refrigerating machine oil using the sample container 31.
  • the safety of the air conditioner can be improved and the manufacturing cost of the air conditioner can be reduced as compared with the first and second embodiments. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Packaging Of Machine Parts And Wound Products (AREA)

Abstract

An air conditioner (100) according to an aspect of the present invention allows a flammable refrigerant to circulate through, in order, a compressor (3), a first heat exchanger (1), an expansion valve (5), and a second heat exchanger (6). The compressor (3) stores a refrigerating machine oil and discharges the same with the refrigerant. The refrigerating machine oil circulates through, in order, the compressor (3), the first heat exchanger (1), the expansion valve (5), and the second heat exchanger (6) with the refrigerant. The first heat exchanger (1) is disposed in a first room. The second heat exchanger (6) is disposed in a second room. The air conditioner (100) is provided with a first sensor (s1), a second sensor (s2), and a control device (8). The first sensor (s1) detects a refrigerant in the first room. The second sensor (s2) detects an odor of a refrigerating machine oil in the first room. The control device (8) detects leaking of a refrigerant using a first detected signal from the first sensor (s1) and a second detected signal from the second sensor (s2).

Description

空気調和機および空気調和機の梱包セットAir conditioner and air conditioner packing set
 本発明は、可燃性の冷媒の漏洩検知機能を有する空気調和機および当該空気調和機の梱包セットに関する。 The present invention relates to an air conditioner having a leakage detection function for a flammable refrigerant and a packaging set of the air conditioner.
 従来、可燃性の冷媒の漏洩検知機能を有する空気調和機が知られている。たとえば国際公開第2017/187618号パンフレット(特許文献1)には、室内における可燃性の冷媒の濃度を検知する冷媒検知手段を備える空気調和機が開示されている。当該空気調和機においては、冷媒検知手段によって検知される冷媒濃度が閾値以上である場合に、室内送風ファンが予め設定された風量で運転される。その結果、冷媒が漏洩した場合に、室内に可燃濃度領域が形成されるのを抑制することができる。 Conventionally, an air conditioner having a leakage detection function for a flammable refrigerant is known. For example, International Publication No. 2017/187618 pamphlet (Patent Document 1) discloses an air conditioner including a refrigerant detecting means for detecting the concentration of a combustible refrigerant in a room. In the air conditioner, when the refrigerant concentration detected by the refrigerant detection means is equal to or greater than the threshold value, the indoor fan is operated with a preset air volume. As a result, it is possible to suppress the formation of a combustible concentration region in the room when the refrigerant leaks.
国際公開第2017/187618号パンフレットInternational Publication No. 2017/187618 Pamphlet
 圧縮機に貯留されている冷凍機油は、通常、冷媒とともに圧縮機から吐出されて空気調和機を循環する。そのため、冷媒が漏洩している場合、冷凍機油も漏洩していることがほとんどある。しかし、特許文献1においては、冷媒とともに冷凍機油が漏洩することについては考慮されていない。 Refrigeration oil stored in the compressor is normally discharged from the compressor together with the refrigerant and circulates in the air conditioner. Therefore, when the refrigerant is leaking, the refrigeration oil is also almost leaking. However, in patent document 1, it is not considered about refrigeration oil leaking with a refrigerant | coolant.
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、空気調和機の安全性を向上させることである。 The present invention has been made to solve the above-described problems, and an object thereof is to improve the safety of the air conditioner.
 本発明の一局面に係る空気調和機においては、可燃性の冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する。圧縮機は、冷凍機油を貯留し、冷媒とともに冷凍機油を吐出する。冷凍機油は、冷媒とともに圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する。第1熱交換器は、第1空間に配置される。第2熱交換器は、第2空間に配置される。空気調和機は、第1センサと、第2センサと、制御装置とを備える。第1センサは、第1空間内の冷媒を検知する。第2センサは、第1空間内の冷凍機油の臭気を検知する。制御装置は、第1センサからの第1検知信号および第2センサからの第2検知信号を用いて、冷媒の漏洩を検知する。 In the air conditioner according to one aspect of the present invention, the combustible refrigerant circulates in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger. The compressor stores the refrigerating machine oil and discharges the refrigerating machine oil together with the refrigerant. The refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger. The first heat exchanger is disposed in the first space. The second heat exchanger is disposed in the second space. The air conditioner includes a first sensor, a second sensor, and a control device. The first sensor detects the refrigerant in the first space. The second sensor detects the odor of the refrigerating machine oil in the first space. The control device detects the leakage of the refrigerant using the first detection signal from the first sensor and the second detection signal from the second sensor.
 本発明の他の局面に係る空気調和機においては、可燃性の冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する。圧縮機は、冷凍機油を貯留し、冷媒とともに冷凍機油を吐出する。冷凍機油は、冷媒とともに圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する。第1熱交換器は、第1空間に配置される。第2熱交換器は、第2空間に配置される。空気調和機は、センサと、サンプル収容部と、制御装置とを備える。センサは、第1空間内の冷媒を検知する。サンプル収容部は、冷凍機油のサンプルを収容し、外部に当該サンプルの臭気を放出可能である。制御装置は、センサからの検知信号を用いて、冷媒の漏洩を検知する。 In the air conditioner according to another aspect of the present invention, the combustible refrigerant circulates in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger. The compressor stores the refrigerating machine oil and discharges the refrigerating machine oil together with the refrigerant. The refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger. The first heat exchanger is disposed in the first space. The second heat exchanger is disposed in the second space. The air conditioner includes a sensor, a sample storage unit, and a control device. The sensor detects the refrigerant in the first space. The sample storage unit stores a sample of refrigerating machine oil and can release the odor of the sample to the outside. The control device detects the leakage of the refrigerant using a detection signal from the sensor.
 本発明の他の局面に係る空気調和機の梱包セットは、可燃性の冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する空気調和機の梱包セットである。空気調和機の稼働時において、圧縮機は、冷凍機油を貯留し、冷媒とともに冷凍機油を吐出する。冷凍機油は、冷媒とともに圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する。第1熱交換器は、第1空間に配置される。第2熱交換器は、第2空間に配置される。空気調和機は、センサと、制御装置とを備える。センサは、第1空間内の冷媒を検知する。制御装置は、センサからの検知信号を用いて、冷媒の漏洩を検知する。梱包セットは、冷凍機油のサンプルと、梱包箱とを備える。梱包箱は、圧縮機、第1熱交換器、膨張弁、第2熱交換器、センサ、および制御装置の少なくとも1つおよびサンプルを収容する。 An air conditioner packaging set according to another aspect of the present invention is an air conditioner packaging set in which a combustible refrigerant circulates in the order of a compressor, a first heat exchanger, an expansion valve, and a second heat exchanger. It is. During operation of the air conditioner, the compressor stores refrigeration oil and discharges the refrigeration oil together with the refrigerant. The refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger. The first heat exchanger is disposed in the first space. The second heat exchanger is disposed in the second space. The air conditioner includes a sensor and a control device. The sensor detects the refrigerant in the first space. The control device detects the leakage of the refrigerant using a detection signal from the sensor. The packing set includes a sample of refrigeration oil and a packing box. The packaging box contains at least one of a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, a sensor, and a control device and a sample.
 本発明に係る空気調和機および空気調和機の梱包セットによれば、冷凍機油の臭気によっても第1空間に漏洩した冷媒を検知可能であるため、第1空間内における冷媒漏洩の検知精度を高めることができる。その結果、空気調和機の安全を向上させることができる。 According to the air conditioner and the air conditioner packaging set according to the present invention, it is possible to detect the refrigerant leaked into the first space even by the odor of the refrigeration oil. Therefore, the detection accuracy of the refrigerant leak in the first space is improved. be able to. As a result, the safety of the air conditioner can be improved.
実施の形態1に係る空気調和機の構成を示す機能ブロック図である。2 is a functional block diagram illustrating a configuration of the air conditioner according to Embodiment 1. FIG. 図1の空気調和機の室内機の概略的な外観図である。It is a schematic external view of the indoor unit of the air conditioner of FIG. 制御装置によって行なわれる冷媒漏洩検知処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant | coolant leak detection process performed by a control apparatus. 制御装置によって行なわれる冷媒漏洩検知処理の流れの他の例を示すフローチャートである。It is a flowchart which shows the other example of the flow of the refrigerant | coolant leak detection process performed by a control apparatus. X軸を冷媒センサの検知レベルとし、Y軸を臭気センサの検知レベルとし、冷媒センサの検知レベルと臭気センサの検知レベルとの関係を示す座標平面である。It is a coordinate plane showing the relationship between the detection level of the refrigerant sensor and the detection level of the odor sensor, with the X axis as the detection level of the refrigerant sensor and the Y axis as the detection level of the odor sensor. 冷媒漏洩領域に含まれているか否かによって冷媒漏洩を判定する処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process which determines refrigerant | coolant leakage by whether it is contained in the refrigerant | coolant leakage area | region. 実施の形態2に係る空気調和機の構成を示す機能ブロック図である。6 is a functional block diagram illustrating a configuration of an air conditioner according to Embodiment 2. FIG. 実施の形態3に係る空気調和機の構成を示す機能ブロック図である。6 is a functional block diagram illustrating a configuration of an air conditioner according to Embodiment 3. FIG. 図8の空気調和機の室内機の概略的な外観図である。It is a schematic external view of the indoor unit of the air conditioner of FIG. 図9のサンプル容器の概略的な外観図である。FIG. 10 is a schematic external view of the sample container of FIG. 9. 実施の形態4に係る空気調和機の梱包セットによって、室内機が梱包されている様子を示す図である。It is a figure which shows a mode that the indoor unit is packed by the packing set of the air conditioner which concerns on Embodiment 4. FIG. 図11の梱包セットが開梱された様子を示す図である。It is a figure which shows a mode that the packing set of FIG. 11 was unpacked.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated in principle.
 実施の形態1.
 図1は、実施の形態1に係る空気調和機100の構成を示す機能ブロック図である。図2は、図1の空気調和機100の室内機10の概略的な外観図である。空気調和機100においては、可燃性のR290(プロパン)を含む冷媒が使用される。空気調和機100は、運転モードとして暖房モード、冷房モード、および除霜モードを含む。図1に示されるように、空気調和機100は、室内機10と、室外機11とを備える。室内機10および室外機11は、いずれも主電源Ps1(第1電源)から電力が供給される。
Embodiment 1 FIG.
FIG. 1 is a functional block diagram illustrating a configuration of an air conditioner 100 according to Embodiment 1. FIG. 2 is a schematic external view of the indoor unit 10 of the air conditioner 100 of FIG. In the air conditioner 100, a refrigerant containing combustible R290 (propane) is used. The air conditioner 100 includes a heating mode, a cooling mode, and a defrosting mode as operation modes. As shown in FIG. 1, the air conditioner 100 includes an indoor unit 10 and an outdoor unit 11. Both the indoor unit 10 and the outdoor unit 11 are supplied with power from the main power source Ps1 (first power source).
 室内機10は、室内(第1空間)に配置されている。室内機10は、室内熱交換器1(第1熱交換器)と、室内ファン2と、冷媒センサs1(第1センサ)と、臭気センサs2(第2センサ)とを含む。室外機11は、室外(第2空間)に配置されている。室外機11は、圧縮機3と、四方弁4と、膨張弁5と、室外熱交換器6(第2熱交換器)と、室外ファン7と、制御装置8とを含む。圧縮機3は、圧縮機構を潤滑するための冷凍機油を貯留している。当該冷凍機油は、独特の臭気を有する冷凍機油で、たとえばPAG(PolyAlkylene Glycol)油を含む。 The indoor unit 10 is arranged indoors (first space). The indoor unit 10 includes an indoor heat exchanger 1 (first heat exchanger), an indoor fan 2, a refrigerant sensor s1 (first sensor), and an odor sensor s2 (second sensor). The outdoor unit 11 is disposed outside (second space). The outdoor unit 11 includes a compressor 3, a four-way valve 4, an expansion valve 5, an outdoor heat exchanger 6 (second heat exchanger), an outdoor fan 7, and a control device 8. The compressor 3 stores refrigerating machine oil for lubricating the compression mechanism. The refrigerating machine oil is a refrigerating machine oil having a unique odor and includes, for example, PAG (PolyAlkylene Glycol) oil.
 暖房モードにおいては、冷媒が圧縮機3、室内熱交換器1、膨張弁5、および室外熱交換器6の順に循環するように、制御装置8は四方弁4を制御して流路を形成する。暖房モードにおいて室内熱交換器1は凝縮器として機能し、室外熱交換器6は蒸発器として機能する。 In the heating mode, the control device 8 controls the four-way valve 4 to form a flow path so that the refrigerant circulates in the order of the compressor 3, the indoor heat exchanger 1, the expansion valve 5, and the outdoor heat exchanger 6. . In the heating mode, the indoor heat exchanger 1 functions as a condenser, and the outdoor heat exchanger 6 functions as an evaporator.
 冷房モードおよび除霜モードにおいては、冷媒が圧縮機3、室外熱交換器6、膨張弁5、および室内熱交換器1の順に循環するように、制御装置8は四方弁4を制御して流路を形成する。冷房モードおよび除霜モードにおいては、室内熱交換器1は蒸発器として機能し、室外熱交換器6は凝縮器として機能する。 In the cooling mode and the defrosting mode, the control device 8 controls the four-way valve 4 so that the refrigerant circulates in the order of the compressor 3, the outdoor heat exchanger 6, the expansion valve 5, and the indoor heat exchanger 1. Form a road. In the cooling mode and the defrosting mode, the indoor heat exchanger 1 functions as an evaporator, and the outdoor heat exchanger 6 functions as a condenser.
 制御装置8は、圧縮機3の駆動周波数を制御することにより、圧縮機3が単位時間あたりに吐出する冷媒量を制御する。制御装置8は、膨張弁5の開度を調節する。制御装置8は、室内ファン2,室外ファン7の各単位時間当たりの送風量を制御する。 The control device 8 controls the amount of refrigerant discharged by the compressor 3 per unit time by controlling the driving frequency of the compressor 3. The control device 8 adjusts the opening degree of the expansion valve 5. The control device 8 controls the air volume per unit time of the indoor fan 2 and the outdoor fan 7.
 室内機10において冷媒センサs1および臭気センサs2は、室内ファン2による送風方向に関して、室内熱交換器1よりも風下に配置されている。冷媒センサs1は、冷媒濃度を表す検知信号(第1検知信号)を制御装置8に出力する。臭気センサs2は、冷凍機油の臭気を表す検知信号(第2検知信号)を制御装置8に出力する。 In the indoor unit 10, the refrigerant sensor s <b> 1 and the odor sensor s <b> 2 are disposed further down than the indoor heat exchanger 1 with respect to the blowing direction by the indoor fan 2. The refrigerant sensor s1 outputs a detection signal (first detection signal) indicating the refrigerant concentration to the control device 8. The odor sensor s2 outputs a detection signal (second detection signal) indicating the odor of the refrigeration oil to the control device 8.
 圧縮機3に貯留されている冷凍機油は、通常、冷媒とともに圧縮機3から吐出されて空気調和機100を循環する。そのため、冷媒が漏洩している場合、冷凍機油も漏洩していることがほとんどある。 The refrigerating machine oil stored in the compressor 3 is normally discharged from the compressor 3 together with the refrigerant and circulates through the air conditioner 100. Therefore, when the refrigerant is leaking, the refrigeration oil is also almost leaking.
 そこで、実施の形態1においては、室内における冷媒漏洩を、冷媒濃度および冷凍機油の臭気を用いて検知する。冷媒濃度に加えて冷凍機油の臭気を用いることにより、冷媒濃度のみを用いて冷媒漏洩を検知する場合よりも冷媒漏洩の検知精度を高めることができるため、空気調和機の安全性を向上させることができる。 Therefore, in the first embodiment, refrigerant leakage in the room is detected using the refrigerant concentration and the odor of the refrigerating machine oil. By using the odor of refrigerating machine oil in addition to the refrigerant concentration, the accuracy of refrigerant leakage detection can be improved compared to the case of detecting refrigerant leakage using only the refrigerant concentration, thereby improving the safety of the air conditioner. Can do.
 図3は、制御装置8によって行なわれる冷媒漏洩検知処理の流れを示すフローチャートである。図3に示される処理は、空気調和機100の運転を制御する不図示のメインルーチンによって定期的あるいは不定期に呼び出される。以下ではステップをSとも記載する。また、検知レベルL1は冷媒センサs1の検知信号のレベルを表し、検知レベルL2は臭気センサs2の検知信号のレベルを表す。 FIG. 3 is a flowchart showing the flow of the refrigerant leakage detection process performed by the control device 8. The process shown in FIG. 3 is called regularly or irregularly by a main routine (not shown) that controls the operation of the air conditioner 100. Hereinafter, the step is also referred to as S. The detection level L1 represents the level of the detection signal of the refrigerant sensor s1, and the detection level L2 represents the level of the detection signal of the odor sensor s2.
 図3に示されるように、制御装置8は、S11において室内の冷媒濃度の検知レベルL1が閾値A1(第1閾値)より大きいか否かを判定する。検知レベルL1が閾値A1より大きい場合(S11においてYES)、制御装置8は、S14において安全確保処理を行なった後、処理をメインルーチンに返す。安全確保処理においては、たとえば、室内ファン2によって室内の空気を攪拌して室内の冷媒分布を均一化して冷媒濃度を薄める処理、アラーム音の発生、ランプの点滅、およびメッセージの表示が行なわれる。 As shown in FIG. 3, the control device 8 determines in S11 whether or not the detection level L1 of the indoor refrigerant concentration is greater than a threshold A1 (first threshold). When detection level L1 is larger than threshold value A1 (YES in S11), control device 8 returns the process to the main routine after performing the safety ensuring process in S14. In the safety ensuring process, for example, the indoor fan 2 is used to stir the indoor air to make the refrigerant distribution in the room uniform, thereby reducing the refrigerant concentration, generating an alarm sound, blinking the lamp, and displaying a message.
 室内の冷媒濃度の検知レベルL1が閾値A1以下である場合(S11においてNO)、制御装置8は、S12において、室内の冷凍機油の検知レベルL2が閾値B1(第2閾値)より大きいか否かを判定する。室内の冷凍機油の検知レベルL2が閾値B1より大きい場合(S12においてYES)、制御装置8は、S14において安全確保処理を行なった後、処理をメインルーチンに返す。室内の冷凍機油の検知レベルL2が閾値B1以下である場合(S12においてNO)、制御装置8は、処理をメインルーチンに返す。 When the indoor refrigerant concentration detection level L1 is equal to or lower than the threshold value A1 (NO in S11), the control device 8 determines in S12 whether the indoor refrigeration oil detection level L2 is greater than the threshold value B1 (second threshold value). Determine. When the detection level L2 of the indoor refrigeration oil is larger than the threshold value B1 (YES in S12), the control device 8 returns the process to the main routine after performing the safety ensuring process in S14. When the detection level L2 of the indoor refrigeration oil is equal to or lower than the threshold value B1 (NO in S12), the control device 8 returns the process to the main routine.
 図3においては、冷媒濃度を用いた冷媒漏洩判定(S11)と冷凍機油の臭気を用いた冷媒漏洩判定(S12)とを互いに異なるステップで行なう。冷媒濃度および冷凍機油の臭気の双方を同じステップで用いて冷媒漏洩判定を行なってもよく、たとえば、図3に示される処理に替えて、図4に示される処理が行なわれても良い。図4においては、冷媒濃度を用いた冷媒漏洩判定において検知レベルL1が閾値A1以下(S11においてNO)であり、かつ、冷凍機油の臭気を用いた冷媒漏洩判において検知レベルL2が閾値B1以下(S12においてNO)である場合に、冷媒濃度および冷凍機油の臭気を一緒に用いる冷媒漏洩判定(S13)が行なわれる。 In FIG. 3, the refrigerant leakage determination using the refrigerant concentration (S11) and the refrigerant leakage determination using the odor of the refrigerating machine oil (S12) are performed in different steps. The refrigerant leakage determination may be performed using both the refrigerant concentration and the odor of the refrigerating machine oil in the same step. For example, the process shown in FIG. 4 may be performed instead of the process shown in FIG. In FIG. 4, the detection level L1 is equal to or lower than the threshold value A1 (NO in S11) in the refrigerant leakage determination using the refrigerant concentration, and the detection level L2 is equal to or lower than the threshold value B1 in the refrigerant leakage determination using the odor of the refrigerating machine oil ( If NO in S12, a refrigerant leakage determination (S13) is performed using the refrigerant concentration and the odor of the refrigerating machine oil together.
 S13が行なわれる時点では、検知レベルL1が閾値A1以下であり、かつ検知レベルL2が閾値B1以下であるため、S13においては、検知レベルL1が閾値A1以下であり、かつ検知レベルL2が閾値B1以下である範囲において冷媒漏洩と判定すべき条件を設定する必要がある。そのため、図4において、閾値A2(第3閾値)は閾値A1より小さく、閾値B2(第4閾値)は閾値B1より小さい。 Since the detection level L1 is not more than the threshold A1 and the detection level L2 is not more than the threshold B1 at the time when S13 is performed, the detection level L1 is not more than the threshold A1 and the detection level L2 is not more than the threshold B1 in S13. It is necessary to set conditions to be determined as refrigerant leakage in the following range. Therefore, in FIG. 4, the threshold A2 (third threshold) is smaller than the threshold A1, and the threshold B2 (fourth threshold) is smaller than the threshold B1.
 図4に示されるように、S11,S12の条件がいずれも成立しない場合(S11においてNO、かつS12においてNO)、制御装置8は、S13において、検知レベルL1が閾値A2よりも大きく、かつ検知レベルL2が閾値B2より大きいか否かを判定する。検知レベルL1が閾値A2よりも大きく、かつ検知レベルL2が閾値B2より大きい場合(S13においてYES)、制御装置8は、S14において安全確保処理を行なって処理をメインルーチンに戻す。検知レベルL1が閾値A2以下であるか、または検知レベルL2が閾値B2以下である場合(S13においてNO)、制御装置8は、処理をメインルーチンに戻す。 As shown in FIG. 4, when neither of the conditions of S11 and S12 is satisfied (NO in S11 and NO in S12), the control device 8 determines that the detection level L1 is larger than the threshold value A2 and is detected in S13. It is determined whether level L2 is greater than threshold value B2. When detection level L1 is greater than threshold value A2 and detection level L2 is greater than threshold value B2 (YES in S13), control device 8 performs a safety ensuring process in S14 and returns the process to the main routine. When detection level L1 is equal to or lower than threshold A2, or detection level L2 is equal to or lower than threshold B2 (NO in S13), control device 8 returns the process to the main routine.
 図3,図4において、冷媒漏洩の判定条件は、冷媒濃度の検知レベルL1あるいは冷凍機油の検知レベルL2が閾値より大きいか否かという条件である。冷媒漏洩の判定条件は、検知レベルL1と検知レベルL2との関係を示す座標平面上で冷媒漏洩と判定すべき冷媒漏洩領域に、検知レベルL1および検知レベルL2によって特定される点が含まれるか否かによって判定してもよい。 3 and 4, the refrigerant leakage determination condition is a condition that the refrigerant concentration detection level L1 or the refrigerating machine oil detection level L2 is greater than a threshold value. Whether the refrigerant leakage determination condition includes a point specified by the detection level L1 and the detection level L2 in the refrigerant leakage region to be determined as refrigerant leakage on the coordinate plane indicating the relationship between the detection level L1 and the detection level L2. It may be determined depending on whether or not.
 図5は、X軸を冷媒濃度の検知レベルL1とし、Y軸を冷凍機油の検知レベルL2とする、検知レベルL1と検知レベルL2との関係を示す座標平面である。図5に示される冷媒漏洩領域は、以下の式(1)として表される。式(1)を満たす検知レベルL1および検知レベルL2は、冷媒漏洩領域に含まれる。なお、図4の検知レベルL1の閾値A2および検知レベルL2の閾値B2は、たとえば冷媒漏洩領域と非冷媒漏洩領域(式(1)を満たさない領域)との境界線(点P1(A1,0)および点P2(0,B1)を結ぶ直線)上の点P3の検知レベルL1および検知レベルL2にそれぞれ設定される。 FIG. 5 is a coordinate plane showing the relationship between the detection level L1 and the detection level L2, with the X axis being the refrigerant concentration detection level L1 and the Y axis being the refrigeration oil detection level L2. The refrigerant leakage area shown in FIG. 5 is expressed as the following equation (1). The detection level L1 and the detection level L2 that satisfy Equation (1) are included in the refrigerant leakage region. The threshold value A2 of the detection level L1 and the threshold value B2 of the detection level L2 in FIG. 4 are, for example, the boundary line (point P1 (A1, 0) between the refrigerant leakage region and the non-refrigerant leakage region (region not satisfying the expression (1)). ) And the point P2 (0, B1) are set to the detection level L1 and the detection level L2 of the point P3 on the line).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図6は、式(1)を用いて冷媒漏洩を判定する処理の流れを示すフローチャートである。図6に示されるフローチャートは、図3のS11,S12が、S10に置き換えられたフローチャートである。図6に示されるように、制御装置8は、検知レベルL1および検知レベルL2が式(1)を満たすか否かを判定する。検知レベルL1および検知レベルL2が式(1)を満たす場合(S10においてYES)、制御装置8は、処理をS14において安全確保処理を行なって処理をメインルーチンに返す。検知レベルL1および検知レベルL2が式(1)を満たさない場合(S10においてNO)、制御装置8は、処理をメインルーチンに返す。 FIG. 6 is a flowchart showing a flow of processing for determining refrigerant leakage using the equation (1). The flowchart shown in FIG. 6 is a flowchart in which S11 and S12 in FIG. 3 are replaced with S10. As shown in FIG. 6, the control device 8 determines whether or not the detection level L1 and the detection level L2 satisfy Expression (1). When detection level L1 and detection level L2 satisfy Expression (1) (YES in S10), control device 8 performs a safety ensuring process in S14 and returns the process to the main routine. When detection level L1 and detection level L2 do not satisfy Expression (1) (NO in S10), control device 8 returns the process to the main routine.
 以上、実施の形態1および変形例1,2に係る空気調和機によれば、空気調和機の安全性を向上させることができる。 As described above, according to the air conditioner according to Embodiment 1 and Modifications 1 and 2, the safety of the air conditioner can be improved.
 実施の形態2.
 実施の形態1においては、冷媒センサおよび臭気センサが空気調和機の電源から電力を供給される場合について説明した。実施の形態2においては、冷媒センサおよび臭気センサの少なくとも一方が空気調和機の電源とは別の電源から電力を供給される場合について説明する。このような構成とすることにより、空気調和機に電力が供給されていない場合(空気調和装置と電源とが接続されていない場合、あるいは停電の場合)でも、冷媒センサあるいは臭気センサの少なくとも一方は動作しているため、冷媒漏洩を検知することができる。
Embodiment 2. FIG.
In Embodiment 1, the case where the refrigerant sensor and the odor sensor are supplied with power from the power supply of the air conditioner has been described. In the second embodiment, a case where at least one of the refrigerant sensor and the odor sensor is supplied with power from a power source different from the power source of the air conditioner will be described. With such a configuration, even when power is not supplied to the air conditioner (when the air conditioner and the power source are not connected or when there is a power failure), at least one of the refrigerant sensor or the odor sensor is Since it is operating, it is possible to detect refrigerant leakage.
 図7は、実施の形態2に係る空気調和機200の構成を示す機能ブロック図である。空気調和機200の構成は、図1の空気調和機100の構成に補助電源Ps2(第2電源)が加えられるとともに、冷媒センサs1および臭気センサs2が冷媒センサs21および臭気センサs22にそれぞれ置き換えられた構成である。それ以外の構成は同様であるため、説明を繰り返さない。 FIG. 7 is a functional block diagram showing the configuration of the air conditioner 200 according to the second embodiment. The configuration of the air conditioner 200 is that the auxiliary power source Ps2 (second power source) is added to the configuration of the air conditioner 100 of FIG. It is a configuration. Since the other configuration is the same, the description will not be repeated.
 図7に示されるように、補助電源Ps2は、臭気センサs22に電力を供給する。補助電源Ps2は、たとえば電池を含む。臭気センサs22は、検知レベルL2が閾値B1を超えた場合、たとえばアラーム音、ランプの点滅、あるいはメッセージの表示により冷媒漏洩を報知する。主電源Ps1からの電力供給が停止している場合(たとえば空気調和機200のコンセントが主電源Ps1から抜かれている場合、あるいは停電の場合)に補助電源Ps2から電力が供給されるセンサは、冷媒センサs21でもよい。この場合、冷媒センサs21は、検知レベルL1が閾値A1を超えた場合、たとえばアラーム音、ランプの点滅、あるいはメッセージの表示により冷媒漏洩を報知する。主電源Ps1からの電力供給が停止している場合でも、冷媒センサs1および臭気センサs22の少なくとも一方は動作しているため、動作しているセンサによって冷媒漏洩の検知が可能である。 As shown in FIG. 7, the auxiliary power supply Ps2 supplies power to the odor sensor s22. Auxiliary power supply Ps2 includes, for example, a battery. When the detection level L2 exceeds the threshold value B1, the odor sensor s22 notifies the refrigerant leakage by, for example, an alarm sound, a blinking lamp, or a message display. The sensor to which power is supplied from the auxiliary power source Ps2 when the power supply from the main power source Ps1 is stopped (for example, when the outlet of the air conditioner 200 is disconnected from the main power source Ps1 or in the event of a power failure) The sensor s21 may be used. In this case, when the detection level L1 exceeds the threshold value A1, the refrigerant sensor s21 notifies the refrigerant leakage by, for example, an alarm sound, blinking of a lamp, or display of a message. Even when the power supply from the main power supply Ps1 is stopped, since at least one of the refrigerant sensor s1 and the odor sensor s22 is operating, the refrigerant leakage can be detected by the operating sensor.
 主電源Ps1からの電力供給が停止する非常時に補助電源Ps2の電力を確実に確保しておくため、補助電源Ps2から電力が供給されるセンサは、通常は主電源Ps1から電力を受けて補助電源Ps2の電力を消費せず、非常時に補助電源Ps2から電力を受ける構成とする方が好ましい。また、冷媒漏洩の検知精度を高めるため、主電源Ps1からの電力供給が停止している場合も冷媒センサs1および臭気センサs2の双方が動作するように、冷媒センサs1および臭気センサs2の双方に補助電源Ps2から電力供給をする方がさらに好ましい。 In order to ensure the power of the auxiliary power source Ps2 in an emergency when the power supply from the main power source Ps1 stops, the sensor supplied with the power from the auxiliary power source Ps2 normally receives the power from the main power source Ps1 and receives the auxiliary power source. It is preferable that the power of Ps2 is not consumed and the power is received from the auxiliary power source Ps2 in an emergency. In order to improve the detection accuracy of the refrigerant leakage, both the refrigerant sensor s1 and the odor sensor s2 are operated so that both the refrigerant sensor s1 and the odor sensor s2 operate even when the power supply from the main power supply Ps1 is stopped. It is more preferable to supply power from the auxiliary power source Ps2.
 以上、実施の形態2に係る空気調和機によれば、空気調和機に電力が供給されていない場合でも冷媒漏洩の検知が可能になるため、空気調和機の安全性を実施の形態1よりもさらに向上させることができる。 As described above, according to the air conditioner according to the second embodiment, refrigerant leakage can be detected even when power is not supplied to the air conditioner. Therefore, the safety of the air conditioner is improved compared to the first embodiment. Further improvement can be achieved.
 実施の形態3および4.
 実施の形態1,2においては、冷凍機油の臭気をセンサによって検知する構成について説明した。実施の形態3および4においては、冷房機油の臭気をユーザに認識させることによって、室内に冷凍機油が漏洩していることをユーザ自身が気づくことができる構成について説明する。
Embodiments 3 and 4.
In Embodiment 1, 2, the structure which detects the odor of refrigerating machine oil with a sensor was demonstrated. In Embodiments 3 and 4, a configuration will be described in which the user himself / herself can recognize that the refrigeration oil is leaking indoors by making the user recognize the odor of the cooling oil.
 実施の形態1に係る空気調和装置において用いられる冷媒に含まれるR290は、ほとんど無臭であることが知られている。また、空気調和装置内を循環する冷媒には化学的安定性が求められるため、通常、冷媒に付臭剤が混合されない。そのため、室内に漏洩した冷媒の臭気にユーザが気づくことは困難である場合が多い。 It is known that R290 contained in the refrigerant used in the air-conditioning apparatus according to Embodiment 1 is almost odorless. In addition, since the refrigerant circulating in the air conditioner is required to have chemical stability, an odorant is not usually mixed with the refrigerant. Therefore, it is often difficult for the user to notice the odor of the refrigerant leaked into the room.
 一方、PAG油のような冷凍機油は、独特の臭気を有するため、空気調和機から冷媒と一緒に冷凍機油が漏洩している場合に、室内に通常と異なる臭気が含まれていることにユーザが気づくことは可能である。しかし、当該臭気が冷凍機油の臭気であることはユーザに認識されていない場合が多い。 On the other hand, since refrigeration oil such as PAG oil has a unique odor, when the refrigeration oil leaks from the air conditioner together with the refrigerant, the user may find that the room contains a different odor. It is possible to notice. However, it is often the case that the user is not aware that the odor is that of refrigeration oil.
 そこで、実施の形態3,4においては、空気調和機の圧縮機に潤滑に用いられる冷凍機油のサンプルを用いて、当該冷凍機油の臭気をユーザに予め認識させる。ユーザは、室内において当該臭気を感じたときに、室内に冷凍機油が漏洩していることに気づくことができる。空気調和装置による冷媒濃度を用いた冷媒漏洩判定に加えて、ユーザ自身が室内の冷凍機油の臭気に気づくことができるため、ユーザが冷凍機油の臭気を知らない場合よりも空気調和装置の安全性を向上させることができる。また、空気調和装置に電力が供給されていない場合であっても、冷媒漏洩をユーザ自身が気づくことができる。さらに、実施の形態3,4によれば、臭気センサが不要となるため、実施の形態1,2よりも実施の形態3,4の方が製造コストを低減することができる。 Therefore, in Embodiments 3 and 4, the odor of the refrigerating machine oil is made to be recognized by the user in advance using a sample of refrigerating machine oil used for lubrication in the compressor of the air conditioner. When the user feels the odor in the room, the user can notice that the refrigerating machine oil is leaking into the room. In addition to refrigerant leakage determination using refrigerant concentration by the air conditioner, the user can notice the odor of the refrigerator oil in the room, so the safety of the air conditioner is better than when the user does not know the odor of the refrigerator oil Can be improved. Moreover, even if it is a case where electric power is not supplied to the air conditioning apparatus, the user himself / herself can notice the refrigerant leakage. Furthermore, according to the third and fourth embodiments, the odor sensor is unnecessary, and therefore the manufacturing costs of the third and fourth embodiments can be reduced compared to the first and second embodiments.
 実施の形態3においては、室内機に冷凍機油のサンプル収容部が設けられている空気調和機について説明する。実施の形態4においては、空気調和機とは別個の冷凍機油のサンプル容器が、空気調和機とともに梱包される空気調和機の梱包セットについて説明する。 In Embodiment 3, an air conditioner in which an indoor unit is provided with a sample storage unit for refrigeration oil will be described. In Embodiment 4, a packaging set of an air conditioner in which a sample container of refrigeration oil separate from the air conditioner is packaged together with the air conditioner will be described.
 実施の形態3.
 図8は、実施の形態3に係る空気調和機300の構成を示す機能ブロック図である。空気調和機300の構成は、図1の空気調和機100の室内機10が室内機30に置き換えられているとともに、室外機11の制御装置8が制御装置38に置き換えられた構成である。室内機30の構成は、室内機10の構成から臭気センサs2が除かれているとともに、図9に示されるようにサンプル容器31(サンプル収容部)が着脱可能に取り付けられた構成である。制御装置38は、冷媒センサs1からの検知信号を受けて、冷媒濃度を用いた冷媒漏洩判定を行なう一方、冷凍機油の臭気を用いた冷媒漏洩判定を行なわない。制御装置38は、冷媒濃度の検知レベルL1が閾値A1より大きい場合に、安全確保処理を行なう。これら以外の構成は同様であるため、説明を繰り返さない。
Embodiment 3 FIG.
FIG. 8 is a functional block diagram showing the configuration of the air conditioner 300 according to Embodiment 3. As shown in FIG. The configuration of the air conditioner 300 is a configuration in which the indoor unit 10 of the air conditioner 100 in FIG. 1 is replaced with the indoor unit 30, and the control device 8 of the outdoor unit 11 is replaced with the control device 38. The configuration of the indoor unit 30 is a configuration in which the odor sensor s2 is removed from the configuration of the indoor unit 10 and a sample container 31 (sample storage unit) is detachably attached as shown in FIG. The control device 38 receives the detection signal from the refrigerant sensor s1, and performs refrigerant leakage determination using the refrigerant concentration, but does not perform refrigerant leakage determination using the odor of the refrigerating machine oil. The control device 38 performs safety ensuring processing when the refrigerant concentration detection level L1 is greater than the threshold value A1. Since the configuration other than these is the same, the description will not be repeated.
 図10は、図9のサンプル容器31の概略的な外観図である。図10に示されるように、サンプル容器31は、樹脂製の本体311と、樹脂製の蓋312とを含む。本体311は図8の圧縮機3の潤滑に用いられる冷凍機油のサンプルがしみ込んだスポンジSpgを収容する。蓋312が本体311に取り付けられている場合(図10(a))、冷凍機油の臭気は、サンプル容器31の内部に密閉され、サンプル容器31の外部にほとんど漏れない。図10(a)に示される状態で空気調和機300に取り付けられている。サンプル容器31は、蓋312が本体311から外れた状態(図10(b))において、外部に冷凍機油のサンプルの臭気を放出可能である。ユーザは、サンプル容器31を空気調和機300から取り外し、図10(b)に示されるように蓋312を本体311から外して、冷凍機油の臭気を確認する。 FIG. 10 is a schematic external view of the sample container 31 of FIG. As shown in FIG. 10, the sample container 31 includes a resin main body 311 and a resin lid 312. The main body 311 accommodates a sponge Spg in which a sample of refrigerating machine oil used for lubricating the compressor 3 of FIG. When the lid 312 is attached to the main body 311 (FIG. 10A), the odor of the refrigerating machine oil is sealed inside the sample container 31 and hardly leaks outside the sample container 31. It is attached to the air conditioner 300 in the state shown in FIG. The sample container 31 can release the odor of the sample of the refrigerating machine oil to the outside in a state where the lid 312 is removed from the main body 311 (FIG. 10B). The user removes the sample container 31 from the air conditioner 300, removes the lid 312 from the main body 311 as shown in FIG. 10B, and confirms the odor of the refrigerating machine oil.
 以上、実施の形態3に係る空気調和機によれば、空気調和機の安全性を向上させることができるとともに、空気調和装置の製造コストを実施の形態1,2よりも低減することができる。 As mentioned above, according to the air conditioner concerning Embodiment 3, while being able to improve the safety | security of an air conditioner, the manufacturing cost of an air conditioner can be reduced rather than Embodiment 1,2.
 実施の形態4.
 図11は、実施の形態4に係る空気調和機の梱包セット400によって、室内機40が梱包されている様子を示す図である。室内機40の外観は、図2に示される室内機10と同様である。また、室内機40は、図8に示される室内機30と同様に臭気センサを含まない。図11に示されるように、室内機40は、緩衝剤42,43によって両端部を覆われて、梱包箱41に収容されている。梱包箱41が室内機40の長手方向にスライドされることにより、梱包セット400は開梱される。
Embodiment 4 FIG.
FIG. 11 is a diagram illustrating a state where the indoor unit 40 is packed by the air conditioner packing set 400 according to the fourth embodiment. The appearance of the indoor unit 40 is the same as that of the indoor unit 10 shown in FIG. Moreover, the indoor unit 40 does not include an odor sensor like the indoor unit 30 shown in FIG. As shown in FIG. 11, the indoor unit 40 is housed in a packing box 41 with both ends covered with buffering agents 42 and 43. When the packaging box 41 is slid in the longitudinal direction of the indoor unit 40, the packaging set 400 is unpacked.
 図12は、図11の梱包セット400が開梱された様子を示す図である。図12に示されるように、室内機40の背面には、リモートコントローラRmと、一緒に包装された取扱説明書および冷凍機油のサンプル容器31とが添付されている。サンプル容器31は、図10に示されているものと同様であり、内部に冷凍機油がしみ込んだスポンジを収容している。ユーザは、サンプル容器31を用いて冷凍機油の臭気を確認することができる。 FIG. 12 is a view showing a state where the packing set 400 of FIG. 11 is unpacked. As shown in FIG. 12, a remote controller Rm, an instruction manual packed together with a sample container 31 for refrigerating machine oil, and the like are attached to the rear surface of the indoor unit 40. The sample container 31 is the same as that shown in FIG. 10, and contains a sponge in which refrigeration oil is soaked. The user can check the odor of the refrigerating machine oil using the sample container 31.
 以上、実施の形態4に係る空気調和機の梱包セットによれば、空気調和機の安全性を向上させることができるとともに、空気調和装置の製造コストを実施の形態1,2よりも低減することができる。 As described above, according to the air conditioner packaging set according to the fourth embodiment, the safety of the air conditioner can be improved and the manufacturing cost of the air conditioner can be reduced as compared with the first and second embodiments. Can do.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された各実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are also scheduled to be implemented in appropriate combinations within a consistent range. Each embodiment disclosed this time must be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 室内熱交換器、2 室内ファン、3 圧縮機、4 四方弁、5 膨張弁、6 室外熱交換器、7 室外ファン、8,38 制御装置、10,30,40 室内機、11 室外機、31 サンプル容器、41 梱包箱、42,43 緩衝剤、100,200,300 空気調和機、311 本体、312 蓋、400 梱包セット、A1,A2,B1,B2 閾値、Ps1 主電源、Ps2 補助電源、Rm リモートコントローラ、Spg スポンジ、s1,s21 冷媒センサ、s2,s21 臭気センサ。 1 indoor heat exchanger, 2 indoor fan, 3 compressor, 4 four-way valve, 5 expansion valve, 6 outdoor heat exchanger, 7 outdoor fan, 8, 38 control device, 10, 30, 40 indoor unit, 11 outdoor unit, 31 sample container, 41 packing box, 42, 43 buffer, 100, 200, 300 air conditioner, 311 body, 312 lid, 400 packing set, A1, A2, B1, B2 threshold, Ps1 main power, Ps2 auxiliary power, Rm remote controller, Spg sponge, s1, s21 refrigerant sensor, s2, s21 odor sensor.

Claims (12)

  1.  可燃性の冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する空気調和機であって、
     前記圧縮機は、冷凍機油を貯留し、前記冷媒とともに前記冷凍機油を吐出し、
     前記冷凍機油は、前記冷媒とともに前記圧縮機、前記第1熱交換器、前記膨張弁、および前記第2熱交換器の順に循環し、
     前記第1熱交換器は、第1空間に配置され、
     前記第2熱交換器は、第2空間に配置され、
     前記空気調和機は、
     前記第1空間内の前記冷媒を検知する第1センサと、
     前記第1空間内の前記冷凍機油の臭気を検知する第2センサと、
     前記第1センサからの第1検知信号および前記第2センサからの第2検知信号を用いて、前記冷媒の漏洩を検知する制御装置とを備える、空気調和機。
    A combustible refrigerant is an air conditioner that circulates in the order of a compressor, a first heat exchanger, an expansion valve, and a second heat exchanger,
    The compressor stores refrigerating machine oil and discharges the refrigerating machine oil together with the refrigerant,
    The refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
    The first heat exchanger is disposed in a first space;
    The second heat exchanger is disposed in the second space,
    The air conditioner
    A first sensor for detecting the refrigerant in the first space;
    A second sensor for detecting an odor of the refrigerating machine oil in the first space;
    An air conditioner comprising: a control device that detects leakage of the refrigerant using a first detection signal from the first sensor and a second detection signal from the second sensor.
  2.  前記制御装置は、前記第1検知信号が第1閾値より大きい場合、前記第2検知信号が第2閾値より大きい場合、および前記第1検知信号が第3閾値より大きく、かつ前記第2検知信号が第4閾値より大きい場合に、前記冷媒の漏洩を検知する、請求項1に記載の空気調和機。 The control device is configured such that the first detection signal is greater than a first threshold, the second detection signal is greater than a second threshold, and the first detection signal is greater than a third threshold, and the second detection signal. The air conditioner according to claim 1, wherein leakage of the refrigerant is detected when the value is larger than a fourth threshold value.
  3.  前記第3閾値は、前記第1閾値よりも小さく、
     前記第4閾値は、前記第2閾値よりも小さい、請求項2に記載の空気調和機。
    The third threshold is smaller than the first threshold,
    The air conditioner according to claim 2, wherein the fourth threshold value is smaller than the second threshold value.
  4.  前記第1センサは、第1電源から電力が供給され、
     前記第2センサは、第2電源から電力が供給され、
     前記制御装置は、前記第1電源から電力が供給され、
     前記第2センサは、前記第2検知信号が前記第2閾値を超えた場合、前記冷媒の漏洩を報知する、請求項2または3に記載の空気調和機。
    The first sensor is supplied with power from a first power source,
    The second sensor is supplied with power from a second power source,
    The control device is supplied with power from the first power source,
    The air conditioner according to claim 2 or 3, wherein when the second detection signal exceeds the second threshold, the second sensor notifies leakage of the refrigerant.
  5.  可燃性の冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する空気調和機であって、
     前記圧縮機は、冷凍機油を貯留し、前記冷媒とともに前記冷凍機油を吐出し、
     前記冷凍機油は、前記冷媒とともに前記圧縮機、前記第1熱交換器、前記膨張弁、および前記第2熱交換器の順に循環し、
     前記第1熱交換器は、第1空間に配置され、
     前記第2熱交換器は、第2空間に配置され、
     前記空気調和機は、
     前記第1空間内の前記冷媒を検知するセンサと、
     前記冷凍機油のサンプルを収容し、外部に前記サンプルの臭気を放出可能なサンプル収容部と、
     前記センサからの検知信号を用いて、前記冷媒の漏洩を検知する制御装置とを備える、空気調和機。
    A combustible refrigerant is an air conditioner that circulates in the order of a compressor, a first heat exchanger, an expansion valve, and a second heat exchanger,
    The compressor stores refrigerating machine oil and discharges the refrigerating machine oil together with the refrigerant,
    The refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
    The first heat exchanger is disposed in a first space;
    The second heat exchanger is disposed in the second space,
    The air conditioner
    A sensor for detecting the refrigerant in the first space;
    A sample storage unit for storing the sample of the refrigerating machine oil and capable of releasing the odor of the sample to the outside;
    An air conditioner comprising: a control device that detects leakage of the refrigerant using a detection signal from the sensor.
  6.  前記サンプル収容部は、前記第1空間に配置されている、請求項5に記載の空気調和機。 The air conditioner according to claim 5, wherein the sample storage unit is disposed in the first space.
  7.  前記第1空間は、室内である、請求項1~6のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 6, wherein the first space is indoors.
  8.  前記冷媒は、R290を含み、
     前記冷凍機油は、ポリアルキレングリコールを含む、請求項1~7のいずれか1項に記載の空気調和機。
    The refrigerant includes R290,
    The air conditioner according to any one of claims 1 to 7, wherein the refrigerating machine oil contains polyalkylene glycol.
  9.  可燃性の冷媒が、圧縮機、第1熱交換器、膨張弁、および第2熱交換器の順に循環する空気調和機の梱包セットであって、
     前記空気調和機の稼働時において、
      前記圧縮機は、冷凍機油を貯留し、前記冷媒とともに前記冷凍機油を吐出し、
      前記冷凍機油は、前記冷媒とともに前記圧縮機、前記第1熱交換器、前記膨張弁、および前記第2熱交換器の順に循環し、
      前記第1熱交換器は、第1空間に配置され、
      前記第2熱交換器は、第2空間に配置され、
     前記空気調和機は、
     前記第1空間内の前記冷媒を検知するセンサと、
     前記センサからの検知信号を用いて、前記冷媒の漏洩を検知する制御装置とを備え、
     前記梱包セットは、
     前記冷凍機油のサンプルと、
     前記圧縮機、前記第1熱交換器、前記膨張弁、前記第2熱交換器、前記センサ、および前記制御装置の少なくとも1つおよび前記サンプルを収容するための梱包箱とを備える、空気調和機の梱包セット。
    A combustible refrigerant is a packaging set of an air conditioner in which a compressor, a first heat exchanger, an expansion valve, and a second heat exchanger circulate in order,
    During operation of the air conditioner,
    The compressor stores refrigerating machine oil and discharges the refrigerating machine oil together with the refrigerant,
    The refrigerating machine oil circulates together with the refrigerant in the order of the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger.
    The first heat exchanger is disposed in a first space;
    The second heat exchanger is disposed in the second space,
    The air conditioner
    A sensor for detecting the refrigerant in the first space;
    Using a detection signal from the sensor, and a controller for detecting leakage of the refrigerant,
    The packing set is
    A sample of the refrigerating machine oil;
    An air conditioner comprising: the compressor; the first heat exchanger; the expansion valve; the second heat exchanger; the sensor; and at least one of the control devices and a packaging box for containing the sample. Packing set.
  10.  前記梱包箱には、少なくとも前記第1熱交換器および前記サンプルが収容される、請求項9に記載の空気調和機の梱包セット。 The air conditioner packaging set according to claim 9, wherein at least the first heat exchanger and the sample are accommodated in the packaging box.
  11.  前記第1空間は、室内である、請求項9または10に記載の空気調和機の梱包セット。 The air conditioner packaging set according to claim 9 or 10, wherein the first space is indoors.
  12.  前記冷媒は、R290を含み、
     前記冷凍機油は、ポリアルキレングリコールを含む、請求項9~11のいずれか1項に記載の空気調和機の梱包セット。
    The refrigerant includes R290,
    The air conditioner packaging set according to any one of claims 9 to 11, wherein the refrigerating machine oil includes polyalkylene glycol.
PCT/JP2018/019456 2018-05-21 2018-05-21 Air conditioner and packaging set for air conditioner WO2019224865A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880093339.7A CN112154292B (en) 2018-05-21 2018-05-21 Air conditioner and packaging set for air conditioner
JP2020520865A JP7009624B2 (en) 2018-05-21 2018-05-21 Air conditioner and air conditioner packing set
EP21203214.8A EP3961119B1 (en) 2018-05-21 2018-05-21 Air conditioner
EP18919943.3A EP3798527A4 (en) 2018-05-21 2018-05-21 Air conditioner and packaging set for air conditioner
CN202210521435.5A CN114777285A (en) 2018-05-21 2018-05-21 Air conditioner and packaging set for air conditioner
PCT/JP2018/019456 WO2019224865A1 (en) 2018-05-21 2018-05-21 Air conditioner and packaging set for air conditioner
JP2021195333A JP7256248B2 (en) 2018-05-21 2021-12-01 Air conditioner packing set
JP2023034595A JP2023060225A (en) 2018-05-21 2023-03-07 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019456 WO2019224865A1 (en) 2018-05-21 2018-05-21 Air conditioner and packaging set for air conditioner

Publications (1)

Publication Number Publication Date
WO2019224865A1 true WO2019224865A1 (en) 2019-11-28

Family

ID=68616642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019456 WO2019224865A1 (en) 2018-05-21 2018-05-21 Air conditioner and packaging set for air conditioner

Country Status (4)

Country Link
EP (2) EP3798527A4 (en)
JP (1) JP7009624B2 (en)
CN (2) CN114777285A (en)
WO (1) WO2019224865A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2021-03-31 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777285A (en) * 2018-05-21 2022-07-22 三菱电机株式会社 Air conditioner and packaging set for air conditioner
JP7008658B2 (en) * 2019-03-19 2022-01-25 ダイキン工業株式会社 Refrigerant cycle system
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
CN113007863A (en) * 2021-02-19 2021-06-22 格力电器(合肥)有限公司 Refrigerant leakage alarm sensor assembly, refrigeration equipment and alarm method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230648A (en) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd Refrigerant leakage alarm for freezing apparatus using combustible refrigerant
JP2005016822A (en) * 2003-06-25 2005-01-20 Toshiba Kyaria Kk Refrigerant leakage detecting means for flammable refrigerant air-conditioner
JP2006003079A (en) * 2005-08-08 2006-01-05 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner
JP2010070206A (en) * 2008-09-17 2010-04-02 Sharp Corp Package apparatus
JP2012013348A (en) * 2010-07-02 2012-01-19 Panasonic Corp Air conditioner
JP2014224611A (en) * 2011-09-16 2014-12-04 パナソニック株式会社 Air conditioner
WO2017187618A1 (en) 2016-04-28 2017-11-02 三菱電機株式会社 Refrigeration cycle apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180166A (en) * 1992-12-09 1994-06-28 Toshiba Corp Air-conditioner
KR100509153B1 (en) * 1997-04-17 2005-10-24 산요덴키가부시키가이샤 Air conditioning system
JP2006022984A (en) * 2004-07-06 2006-01-26 Nippon Soken Inc Gas leak detecting method
JP2009198154A (en) * 2007-10-23 2009-09-03 Daikin Ind Ltd Fluid sensor, refrigerant leakage detection device, refrigeration device, and refrigerant leakage detection method
CN102108283A (en) * 2009-12-27 2011-06-29 珠海格力电器股份有限公司 Mixed refrigerant with special smell
JP2014035171A (en) * 2012-08-10 2014-02-24 Mitsubishi Electric Corp Air conditioner, air conditioning method and program
KR20140056965A (en) * 2012-11-02 2014-05-12 엘지전자 주식회사 An air conditioner and a control method thereof
CN114777285A (en) * 2018-05-21 2022-07-22 三菱电机株式会社 Air conditioner and packaging set for air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230648A (en) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd Refrigerant leakage alarm for freezing apparatus using combustible refrigerant
JP2005016822A (en) * 2003-06-25 2005-01-20 Toshiba Kyaria Kk Refrigerant leakage detecting means for flammable refrigerant air-conditioner
JP2006003079A (en) * 2005-08-08 2006-01-05 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner
JP2010070206A (en) * 2008-09-17 2010-04-02 Sharp Corp Package apparatus
JP2012013348A (en) * 2010-07-02 2012-01-19 Panasonic Corp Air conditioner
JP2014224611A (en) * 2011-09-16 2014-12-04 パナソニック株式会社 Air conditioner
WO2017187618A1 (en) 2016-04-28 2017-11-02 三菱電機株式会社 Refrigeration cycle apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3798527A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2021-03-31 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Also Published As

Publication number Publication date
EP3961119A1 (en) 2022-03-02
EP3798527A4 (en) 2021-05-26
EP3961119B1 (en) 2024-01-31
EP3798527A1 (en) 2021-03-31
JPWO2019224865A1 (en) 2021-03-18
CN114777285A (en) 2022-07-22
CN112154292B (en) 2022-06-21
JP7009624B2 (en) 2022-02-10
CN112154292A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2019224865A1 (en) Air conditioner and packaging set for air conditioner
JP2023060225A (en) air conditioner
EP3287720B1 (en) Refrigeration device
JP3414464B2 (en) Air conditioner
EP3604980A1 (en) Freezer
JP3477184B2 (en) Split type air conditioner
US11131470B2 (en) Indoor unit for refrigeration apparatus
JP5511717B2 (en) Air conditioner
JPH04369370A (en) Air conditioner
WO2016067815A1 (en) Air conditioner
JP6498289B2 (en) Refrigeration cycle system
CN110186173A (en) Blower control method, indoor unit, air conditioner and computer readable storage medium
AU2014300308A1 (en) Air-conditioning apparatus
JP2006207932A (en) Air conditioner
JP2005241052A (en) Dehumidifier and package box for dehumidifier
US11940164B2 (en) Vehicle air conditioning system and control method of vehicle air conditioning system
JP7048880B2 (en) Refrigeration and air conditioning equipment
KR20040042089A (en) Air conditioner for economizing power
JP2010133636A (en) Refrigerating device
JP2008162438A (en) Vehicular air-conditioner
WO2020213543A1 (en) Vehicular refrigeration device
JPH07190535A (en) Refrigerating cycle control equipment
JP2005099985A (en) Controller for automatic vending machine
JPH1137575A (en) Air conditioner
JP2005170324A (en) Air-conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018919943

Country of ref document: EP

Effective date: 20201221