WO2019223316A1 - 用于确定注水煤层裂隙内部水压力的测试装置及测试方法 - Google Patents

用于确定注水煤层裂隙内部水压力的测试装置及测试方法 Download PDF

Info

Publication number
WO2019223316A1
WO2019223316A1 PCT/CN2018/125191 CN2018125191W WO2019223316A1 WO 2019223316 A1 WO2019223316 A1 WO 2019223316A1 CN 2018125191 W CN2018125191 W CN 2018125191W WO 2019223316 A1 WO2019223316 A1 WO 2019223316A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
coal seam
pressure
test
water pressure
Prior art date
Application number
PCT/CN2018/125191
Other languages
English (en)
French (fr)
Inventor
刘震
杨赫
程卫民
王文玉
赵大伟
张铭芮
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to AU2018424685A priority Critical patent/AU2018424685B2/en
Publication of WO2019223316A1 publication Critical patent/WO2019223316A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means

Definitions

  • the present invention relates to the technical field of pore water pressure testing, and in particular, to a testing device and a testing method for determining water pressure in a fractured structure of a coal body around a water injection borehole of a coal seam.
  • Coal seam water injection is a commonly used comprehensive mine disaster prevention and control technology in the world. After decades of practice and development, so far, nearly 80% of fully mechanized coal mining faces in China have adopted coal seam water injection technology. In recent years, with the continuous progress of this technology and process, the application field of coal seam water injection technology is also expanding. From the beginning of dust reduction, prevention of impact ground pressure, coal and gas outburst, etc., to the present development it can eliminate coal seams. Toxic gases such as hydrogen sulfide are also widely used in the fields of softening hard roofs and mining of top coal.
  • a method for measuring fluid pressure in a coal body around a water injection borehole is as follows: a construction borehole, a pressure-measuring pipeline, a hole, an orifice, and a pressure gauge and a reading are installed, and the pressure gauge displays in this method
  • the pressure is the combined pressure of gas and water, and the pressure of water cannot be accurately measured.
  • the present invention proposes a test device and a test method for determining the water pressure inside the fracture of a water-injected coal seam, which can obtain the diameter of the water inlet hole of the test part through field tests Taking this pore diameter as the intermediate quantity, according to the relationship between the capillary pore diameter and the water pressure in the washbum equation, The relationship can calculate the water pressure in the fractured structure of the coal body around the water injection hole in the coal seam.
  • One of the tasks of the present invention is to provide a test device for determining the water pressure inside a fracture of a water-injected coal seam.
  • the technical solution includes:
  • a test device for determining the water pressure inside a fracture of a water-injected coal seam includes a test mechanism and a display mechanism.
  • the test mechanism includes a housing, a water filter film, a water-permeable steel mesh, a water-absorbing swelling rubber, and a positive electrode connector.
  • a negative electrode connection head and an explosion-proof power supply the shell is cylindrical, a plurality of water inlet holes with different apertures are provided on the shell, and a plurality of partitions are provided in a cylindrical cavity inside the shell A plurality of partitions divides the cylindrical cavity into a plurality of sealed cavities, and a water-resistant rubber tube is arranged at the center of the cylindrical cavity, and the water-resistant rubber tube is used for placing the Lines connected to explosion-proof power;
  • the water-swellable rubber is correspondingly placed in the sealed cavity, and the water-permeable steel mesh and a water filter film are sequentially arranged between the water-swellable rubber and the casing, and the water filter film is used for water
  • the impurities contained are isolated, and when the water-absorbing swelling rubber absorbs water for an expansion reaction, the water-permeable steel mesh is used to protect the water filtering membrane and make the water-absorbing swelling rubber move to one side;
  • the display mechanism includes an external wire, an indicator light, and a switch, and the external wire is connected to a line connected to the explosion-proof power supply;
  • a wire is provided inside the water-swellable rubber, and a positive terminal is provided at one end thereof.
  • a certain expansion space is left between the water-swellable rubber and the sealed cavity, and the expansion space is adjacent to each other.
  • the explosion-proof power supply is provided at the place, and the negative electrode connector is located at the explosion-proof power supply.
  • the positive electrode connector is connected to the negative electrode connector, so that the explosion-proof power supply and the display mechanism are connected at this time.
  • a closed circuit of current is formed and displayed by the indicator light of the display mechanism.
  • the partition is welded in the cylindrical cavity.
  • the water filtration membrane is a RO membrane.
  • Another task of the present invention is to provide a test method for determining water pressure inside a fracture of a water-injected coal seam, which adopts the test device described above, and the test method includes the following steps:
  • test mechanism Before performing coal seam water injection operation, connect the test mechanism to the display mechanism to determine that each sealed cavity is in contact with The connection order of the indicator lights and the reliability of the circuit are verified. After the verification is completed, the test mechanism is pushed into the bottom of the test borehole and the sealing operation is performed;
  • the water inlets with different pore diameters represent capillaries of different sizes.
  • low-pressure water can enter the low-pressure sealed cavity through large holes, and high-pressure water can pass through small holes.
  • the hole enters the high-pressure sealed cavity.
  • indicator light of the display mechanism After a certain indicator light is bright, determine the relevant parameters, and calculate the water pressure by using the size of the water inlet hole of the sealed cavity according to the washbum equation shown in formula (1).
  • the water pressure when two phases of gas and water exist in the fracture of the coal seam, the water pressure can be overcome after the water pressure reaches a certain value.
  • a water pressure test device is designed.
  • the gas pressure can be overcome to enter a smaller one.
  • external water inlet holes with different pore diameters representing capillary tubes of different sizes are provided on the casing of the test mechanism, so that low-pressure water can enter the low-pressure sealed cavity inside the test device through the large hole, and high-pressure water can enter through the smaller hole.
  • the R.0 film only allows water molecules to pass through, it can isolate impurities such as sediment and sand in the water.
  • the water-absorbing expansion rubber will expand under the action of water.
  • the water-absorbable and expandable rubber in the sealed cavity can only move to the side of the device.
  • the positive and negative power sources in the sealed cavity are connected to electricity.
  • the head is connected, so that the internal explosion-proof power supply and the external display mechanism form a current closed loop, so that the external display machine
  • the chamber should be sealed for indicator lights. Then, based on the relationship between the capillary pore size and water pressure in the washbum equation, the water pressure in the fracture structure of the coal body around the water injection hole in the coal seam can be calculated.
  • the use of the device of the present invention can accurately and quantitatively calculate the water pressure inside the coal body around the borehole during the coal seam injection process, and the calculation result has an important effect on adjusting the coal seam injection parameters and improving the comprehensive disaster prevention effect of the coal seam injection.
  • FIG. 1 is a schematic structural diagram of a testing mechanism in the present invention
  • FIG. 2 is a schematic cross-sectional view of a test mechanism in the present invention
  • FIG. 3 is a schematic structural diagram of a display mechanism in the present invention.
  • the present invention proposes a test device and a test method for determining the water pressure inside a fracture of a water-injected coal seam,
  • the present invention is described in detail below with reference to specific embodiments.
  • a test device for determining water pressure inside a fracture of a water injection coal seam includes a test mechanism and a display mechanism, and the test mechanism includes a casing 1, a larger water inlet hole 2, and R.0 Water filter membrane 3, Permeable steel mesh 4, Water-absorbing swelling rubber 5, Positive electrical connector 6, Negative electrical connector 7, Small water inlet hole 8, Wire 9, Sealed cavity 10, Explosion-proof power supply 11, Power supply cavity 12, Isolation
  • the water rubber tube 13 and the partition plate 14, the shell 1 has a cylindrical shape, and a plurality of water inlet holes with different apertures are provided on the housing, that is, the larger water inlet hole 2 and the smaller water inlet hole 8, which are cylindrical inside the housing.
  • a plurality of baffles 14 are provided in the cavity, and the plurality of baffles 14 divides the cylindrical cavity into a plurality of sealed cavities 10.
  • a water-proof rubber tube 13 is provided at the center of the cylindrical cavity. Place wiring connected to explosion-proof power.
  • the display mechanism includes an indicator light 15, an external lead 16 and a switch 17.
  • a plurality of indicator lights 15 are provided, and different sealed chambers are connected correspondingly during the test.
  • the shell 1 is made of high-strength steel pipes.
  • Several water inlet holes with different pore diameters represent capillary tubes of different sizes.
  • the gas pressure can be overcome only after the water pressure reaches a certain level. Enter the smaller capillary structure, so low pressure water can enter the low pressure sealed cavity through the larger water inlet hole 2, so that the high pressure water enters the high pressure sealed cavity through the smaller water inlet hole 8, and the sealed cavity is hollowed by the separator 14 in a cylindrical shape.
  • the cavity is welded and isolated, and R.0 water filter membrane 3 and permeable steel mesh 4, R.0 water filter membrane are set outside the sealed cavity to allow only water molecules to pass through, which can isolate impurities such as sediment and water in the water
  • the steel mesh has a certain strength, which can protect the R.0 film and prevent the water inlet hole from being blocked during the expansion reaction of the water-swellable rubber, and ensure that the water-swellable rubber 5 in the sealed cavity can only move to the side of the device. With high elasticity and good mechanical strength, the rubber can expand several times to hundreds of times after absorbing water.
  • a wire is set inside the water absorbing expansion rubber, and a power supply is provided at one end.
  • the positive and negative poles of the power supply in the sealed cavity are connected, so that the internal explosion-proof power supply and the external display mechanism form a current closed loop, so that the external display mechanism corresponds to the indication of the sealed cavity.
  • the light turns on.
  • a test method for determining water pressure inside a fracture of a water-injected coal seam which adopts the above-mentioned test device and includes the following steps: [0033] a According to the coal seam water injection operation plan, design the number of sealed cavities and the corresponding water inlet hole size and process it, and then after the coal seam water injection hole drilling is completed, construct several water pressure test holes around the water injection hole; 0034] b. Before the coal seam water injection operation, connect the test mechanism to the display mechanism, determine the connection order of each sealed cavity and the indicator light, and verify the reliability of the circuit. After the verification is completed, use a drill rod to push the test mechanism into the test drill. Bottom of the hole, and perform sealing operation;
  • the water inlets with different pore sizes represent capillary tubes of different sizes.
  • low-pressure water can enter the low-pressure sealed cavity through the larger hole, allowing high-pressure water to pass through.
  • the smaller hole enters the high-pressure sealed cavity; observe the indicator light of the display mechanism, after a certain indicator light is bright, and after measuring the relevant parameters, use the size of the water inlet hole of the sealed cavity to calculate the water pressure according to the washbum equation shown in equation (1) ;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种用于确定注水煤层裂隙内部水压力的测试装置及测试方法,属于孔隙水压力测试技术领域,其解决了现有技术中注水钻孔周围煤体中水压力无法测试的技术问题。该测试装置包括测试机构和显示机构,外壳(1)上设置有若干个不同孔径的进水孔(2,8),在外壳(1)内部的圆柱形空腔内设置有若干个隔板(14),若干个隔板(14)将空腔分割为若干个密封腔(10)。该测试装置通过测试机构与显示机构相配合获得进水孔(2,8)的孔径,以该孔径为中间量,根据washburn方程中的毛细孔径和水压力之间的关系计算出煤层注水钻孔周围煤体裂隙结构中的水压力,从而对煤层注水过程中钻孔周围煤体内部的水压力进行精确地定量计算,其计算结果对于调整煤层注水参数,提高煤层注水综合防灾效果具有重要的作用。

Description

用于确定注水煤层裂隙内部水压力的测试装置及测试方 法
技术领域
[0001] 本发明涉及孔隙水压力测试技术领域, 具体涉及一种用于确定煤层注水钻孔周 围煤体裂隙结构中水压力的测试装置及测试方法。
背景技术
[0002] 煤层注水是目前世界上普遍使用的矿井灾害综合防治技术, 经历几十年的实践 与发展, 到目前为止, 我国已有接近 80%的综采工作面采用了煤层注水技术。 近 年来, 随着这一技术及工艺的不断进步, 煤层注水技术的应用领域也在不断扩 大, 从开始的减尘、 防治冲击地压、 煤与瓦斯突出等灾害, 到目前发展到可以 消除煤层中的硫化氢等有毒气体, 同时还被广泛地应用于软化坚硬顶板及放顶 煤开采等领域。 煤层注水措施实施过程中, 不同瓦斯赋存、 煤体硬度、 孔隙结 构、 润湿特性、 煤层中水的赋存状态随注水压力变化迥异, 因此及时调整煤层 注水过程中的注水压力对于提高煤层注水防灾效果具有重要的作用, 而能够精 确地获得注水煤层裂隙内部的水压力则成为了调整注水压力的前提条件。
[0003] 5见有技术中测定注水钻孔周围煤体中流体压力的方法为: 施工钻孔一铺设测压 管路一封孔一孔口安设压力表一读数, 该方法中压力表显示的压力为气、 水两 相的综合压力, 而水的压力无法准确测定。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 为了解决上述现有技术中存在的缺陷, 本发明提出了一种用于确定注水煤层裂 隙内部水压力的测试装置及测试方法, 其通过现场试验可以获得测试部分进水 孔的孔径, 以该孔径为中间量, 根据 washbum方程中的毛细孔径和水压力之间的 关系, 可以计算出煤层注水钻孔周围煤体裂隙结构中的水压力。
[0005] 本发明的任务之一在于提供一种用于确定注水煤层裂隙内部水压力的测试装置 , 其技术解决方案包括:
[0006] 一种用于确定注水煤层裂隙内部水压力的测试装置, 其包括测试机构和显示机 构, 所述的测试机构包括外壳、 滤水膜、 透水钢网、 吸水膨胀橡胶、 正极接电 头、 负极接电头及防爆电源, 所述的外壳为圆柱形, 在所述外壳上设置有若干 个不同孔径的进水孔, 在所述外壳内部的圆柱形空腔内设置有若干个隔板, 若 干个隔板将所述圆柱形空腔分割为若干个密封腔, 在所述的圆柱形空腔的圆心 处设置有一隔水橡胶管, 所述的隔水橡胶管内用于放置与所述防爆电源连接的 线路;
[0007] 所述的吸水膨胀橡胶对应放置在所述的密封腔内, 所述吸水膨胀橡胶与外壳之 间依次设置所述透水钢网和滤水膜, 所述的滤水膜用于将水中含有的杂质进行 隔离, 当所述吸水膨胀橡胶吸水进行膨胀反应时, 所述的透水钢网用于保护所 述的滤水膜, 并使得吸水膨胀橡胶向一侧进行运动;
[0008] 所述的显示机构包括外接导线、 指示灯及开关, 所述的外接导线与所述防爆电 源连接的线路连接;
[0009] 所述的吸水膨胀橡胶内部设置有导线, 其一端设置有正极接头, 所述的吸水膨 胀橡胶与所述密封腔之间还留有一定的膨胀空间, 在所述的膨胀空间相邻处设 置所述防爆电源, 所述负极接头位于所述防爆电源处, 当所述吸水膨胀橡胶吸 水进行膨胀反应时, 所述的正极接头与负极接头相连, 此时使得防爆电源与显 示机构之间形成电流闭合回路, 并通过显示机构的指示灯显示。
[0010] 作为本发明的一个优选方案, 所述的隔板焊接在所述圆柱形空腔内。
[0011] 作为本发明的另一个优选方案, 所述的滤水膜为 RO膜。
[0012] 本发明的另一任务在于提供一种用于确定注水煤层裂隙内部水压力的测试方法 , 其采用上述的测试装置, 所述的测试方法包括以下步骤:
[0013] a根据煤层注水作业方案, 设计密封腔个数及对应进水孔大小, 并进行加工, 其后待煤层注水钻孔施工完毕后, 在注水钻孔周围施工若干水压力测试孔;
[0014] b、 进行煤层注水作业之前, 将测试机构与显示机构相连, 确定各个密封腔与 指示灯的连接顺序, 并验证电路可靠性, 待验证完成后, 将测试机构推入测试 钻孔底部, 并进行封孔作业;
[0015] c 煤层注水作业开始后, 不同孔径的进水孔代表不同尺寸的毛细管, 通过设 置不同孔径的进水孔, 以使低压水能够通过大孔进入低压密封腔内, 使高压水 通过小孔进入高压密封腔内; 观测显示机构的指示灯, 待某一指示灯明亮后, 测定相关参数后, 根据式 (1) 所示的 washbum方程, 利用密封腔进水孔大小计 算水压力;
[数]
Figure imgf000005_0001
(1)
[0016] 式 (1) 中,
[数]
-孔径 r相对应的毛管压力;
[数]
[数]
-液体的表面张力和接触角;
[0017] d、 待水压力计算完成后, 根据计算结果, 及时调整注水参数;
[0018] e、 待水压力测试完成后, 回收显示机构, 以便进行循环使用。
发明的有益效果
有益效果
[0019] 本发明所带来的有益技术效果为:
[0020] 本发明利用煤层裂隙中存在气、 水两相时, 当水压力达到一定数值后方可克服 气体压力和毛细管阻力进入更小的毛细管结构这一原理, 设计了一种水压力测 试装置, 当煤层裂隙中存在气水两相时, 只有水的压力达到一定程度后方可克 服气体压力进入更小的毛细管结构中, 因此在测试机构外壳上设置有代表不同 尺寸毛细管的不同孔径外部进水孔, 以使低压水能够通过大孔进入测试装置内 部低压密封腔, 使高压水通过较小的孔进入高压密封腔内; 同时由于 R.0膜只让 水分子通过的特性, 可以将水中的泥沙等杂质隔离在外, 待水进入某一密封腔 后, 吸水膨胀橡胶在水的作用下会发生膨胀反应, 由于在其外部设置有一层透 水钢网, 导致该密封腔内的吸水膨胀橡胶只能向装置一侧进行运动, 待其运动 到一定程度后, 该密封腔内的电源正负极接电头相连, 使内部防爆电源与外部 显示机构形成电流闭合回路, 从而使外部显示机构上对应该密封腔的指示灯变 亮。 其后根据 washbum方程中的毛细孔径和水压力之间的关系, 可以计算出煤层 注水钻孔周围煤体裂隙结构中的水压力。
[0021] 本发明装置的使用可以对煤层注水过程中钻孔周围煤体内部的水压力进行精确 地定量计算, 其计算结果对于调整煤层注水参数, 提高煤层注水综合防灾效果 具有重要的作用。
对附图的简要说明
附图说明
[0022] 下面结合附图对本发明做进一步说明:
[0023] 图 1为本发明中测试机构的结构示意图;
[0024] 图 2为本发明中测试机构的剖面示意图;
[0025] 图 3为本发明中显示机构的结构示意图;
[0026] 图中, 1-外壳, 2 -较大进水孔, 3-R.0滤水膜, 4 -透水钢网, 5 -吸水膨胀橡胶,
6 -正极接电头, 7 -负极接电头, 8 -较小进水孔, 9 -导线, 10-密封腔, 11-防爆电 源, 12 -电源腔, 13 -隔水橡胶管, 14 -隔板, 15 -指示灯, 16 -外接导线, 17 -开关
发明实施例
本发明的实施方式
[0027] 本发明提出了一种用于确定注水煤层裂隙内部水压力的测试装置及测试方法, 为了使本发明的优点、 技术方案更加清楚、 明确, 下面结合具体实施例对本发 明做详细说明。
[0028] 结合图 1至图 3所示, 一种用于确定注水煤层裂隙内部水压力的测试装置, 包括 测试机构和显示机构, 测试机构包括外壳 1、 较大进水孔 2、 R.0滤水膜 3、 透水 钢网 4、 吸水膨胀橡胶 5、 正极接电头 6、 负极接电头 7、 较小进水孔 8、 导线 9、 密封腔 10、 防爆电源 11、 电源腔 12、 隔水橡胶管 13及隔板 14, 外壳 1形状为圆柱 形, 在外壳上设置若干个不同孔径的进水孔, 即较大进水孔 2和较小进水孔 8, 在外壳内部的圆柱形空腔内设置若干个隔板 14, 若干个隔板 14将圆柱形空腔分 割为若干个密封腔 10, 在圆柱形空腔的圆心处设置一隔水橡胶管 13 , 隔水橡胶 管内用于放置与防爆电源连接的线路。
[0029] 显示机构包括指示灯 15、 外接导线 16及开关 17, 指示灯 15设置有多个, 测试时 分别对应连接不同的密封腔。
[0030] 上述外壳 1由高强度钢管制成, 若干个不同孔径的进水孔代表了不同尺寸毛细 管, 当煤层裂隙中存在气水两相时, 只有水的压力达到一定程度后方可克服气 体压力进入更小的毛细管结构中, 因此低压水能够通过较大进水孔 2进入低压密 封腔, 使高压水通过较小进水孔 8进入高压密封腔内, 密封腔由隔板 14在圆柱形 空腔内焊接隔离而成, 在密封腔外部分别设置 R.0滤水膜 3及透水钢网 4, R.0滤 水膜只让水分子通过, 可以将水中的泥沙等杂质隔离在外, 透水钢网带有一定 强度, 可以在吸水膨胀橡胶进行膨胀反应时保护 R.0膜及防止阻塞进水孔, 并保 证密封腔内的吸水膨胀橡胶 5只能向装置一侧进行运动, 吸水膨胀橡胶带有高弹 性和较好的机械强度, 使得橡胶在吸水后可膨胀几倍至几百倍, 吸水膨胀橡胶 内部设置导线, 一端设置有电源正极接头, 待吸水膨胀橡胶和水发生反应后, 密封腔内的电源正负极接电头相连, 使内部防爆电源与外部显示机构形成电流 闭合回路, 从而使外部显示机构上对应该密封腔的指示灯变亮。
[0031] 待某一指示灯亮后, 根据 washbum方程中的毛细孔径和水压力之间的关系, 可 以计算出煤层注水钻孔周围煤体裂隙结构中的水压力。
[0032] 一种用于确定注水煤层裂隙内部水压力的测试方法, 其采用上述的测试装置, 包括以下步骤: [0033] a根据煤层注水作业方案, 设计密封腔个数及对应进水孔大小, 并进行加工, 其后待煤层注水钻孔施工完毕后, 在注水钻孔周围施工若干水压力测试孔; [0034] b、 进行煤层注水作业之前, 将测试机构与显示机构相连, 确定各个密封腔与 指示灯的连接顺序, 并验证电路可靠性, 待验证完成后, 使用钻杆将测试机构 推入测试钻孔底部, 并进行封孔作业;
[0035] c 煤层注水作业开始后, 不同孔径的进水孔代表不同尺寸的毛细管, 通过设 置不同孔径的进水孔, 以使低压水能够通过较大孔进入低压密封腔内, 使高压 水通过较小孔进入高压密封腔内; 观测显示机构的指示灯, 待某一指示灯明亮 后, 测定相关参数后, 根据式 (1) 所示的 washbum方程, 利用密封腔进水孔大 小计算水压力;
[0036] [数]
Figure imgf000008_0001
(D
[0037] 式 (1) 中,
[数]
Ps
-孔径 r相对应的毛管压力;
[数]
[数]
&
-液体的表面张力和接触角;
[0038] d、 待水压力计算完成后, 根据计算结果, 及时调整注水参数; 例如当测试水 压力过小时, 应该及时增加注水压力等;
[0039] e、 待水压力测试完成后, 回收显示机构, 以便进行循环使用。 [0040]
[0041] 本发明中未述及的部分采用或借鉴已有技术即可实现。
[0042] 尽管本文中较多的使用了诸如 R.0滤水膜 3、 透水钢网 4、 吸水膨胀橡胶 5等术语 , 但并不排除使用其它术语的可能性。 使用这些术语仅仅是为了更方便地描述 和解释本发明的本质; 把它们解释成任何一种附加的限制都是与本发明精神相 违背的。
[0043] 需要进一步说明的是, 本文中所描述的具体实施例仅仅是对本发明的精神所作 的举例说明。 本发明所属技术领域的技术人员可以对所描述的具体实施例做各 种各样的修改或补充或采用类似的方式替代, 但并不会偏离本发明的精神或者 超越所附权利要求书所定义的范围。

Claims

权利要求书
[权利要求 1] 一种用于确定注水煤层裂隙内部水压力的测试装置, 其包括测试机构 和显示机构, 其特征在于: 所述的测试机构包括外壳、 滤水膜、 透水 钢网、 吸水膨胀橡胶、 正极接电头、 负极接电头及防爆电源, 所述的 外壳为圆柱形, 在所述外壳上设置有若干个不同孔径的进水孔, 在所 述外壳内部的圆柱形空腔内设置有若干个隔板, 若干个隔板将所述圆 柱形空腔分割为若干个密封腔, 在所述的圆柱形空腔的圆心处设置有 一隔水橡胶管, 所述的隔水橡胶管内用于放置与所述防爆电源连接的 线路;
所述的吸水膨胀橡胶对应放置在所述的密封腔内, 所述吸水膨胀橡胶 与外壳之间依次设置所述透水钢网和滤水膜, 所述的滤水膜用于将水 中含有的杂质进行隔离, 当所述吸水膨胀橡胶吸水进行膨胀反应时, 所述的透水钢网用于保护所述的滤水膜, 并使得吸水膨胀橡胶向一侧 进行运动;
所述的显示机构包括外接导线、 指示灯及开关, 所述的外接导线与所 述防爆电源连接的线路连接;
所述的吸水膨胀橡胶内部设置有导线, 其一端设置有正极接头, 所述 的吸水膨胀橡胶与所述密封腔之间还留有一定的膨胀空间, 在所述的 膨胀空间相邻处设置所述防爆电源, 所述负极接头位于所述防爆电源 处, 当所述吸水膨胀橡胶吸水进行膨胀反应时, 所述的正极接头与负 极接头相连, 此时使得防爆电源与显示机构之间形成电流闭合回路, 并通过显示机构的指示灯显示。
[权利要求 2] 根据权利要求 i所述的一种用于确定注水煤层裂隙内部水压力的测试 装置, 其特征在于: 所述的隔板焊接在所述圆柱形空腔内。
[权利要求 3] 根据权利要求 i所述的一种用于确定注水煤层裂隙内部水压力的测试 装置, 其特征在于: 所述的滤水膜为 RO膜。
[权利要求 4] 一种用于确定注水煤层裂隙内部水压力的测试方法, 其特征在于, 其 采用权利要求 1所述的一种用于确定注水煤层裂隙内部水压力的测试 装置, 所述的测试方法包括以下步骤:
a根据煤层注水作业方案, 设计密封腔个数及对应进水孔大小, 并进 行加工, 其后待煤层注水钻孔施工完毕后, 在注水钻孔周围施工若干 水压力测试孔;
b、 进行煤层注水作业之前, 将测试机构与显示机构相连, 确定各个 密封腔与指示灯的连接顺序, 并验证电路可靠性, 待验证完成后, 将 测试机构推入测试钻孔底部, 并进行封孔作业;
c、 煤层注水作业开始后, 不同孔径的进水孔代表不同尺寸的毛细管
, 通过设置不同孔径的进水孔, 以使低压水能够通过大孔进入低压密 封腔内, 使高压水通过小孔进入高压密封腔内; 观测显示机构的指示 灯, 待某一指示灯明亮后, 测定相关参数后, 根据式 (1) 所示的 was hbum方程, 利用密封腔进水孔大小计算水压力;
2<TCOS &
4 -
" r
(D
式 ⑴ 中,
H
-孔径 r相对应的毛管压力;
Figure imgf000011_0001
&
-液体的表面张力和接触角;
d、 待水压力计算完成后, 根据计算结果, 及时调整注水参数;
e、 待水压力测试完成后, 回收显示机构, 以便进行循环使用。
PCT/CN2018/125191 2018-05-23 2018-12-29 用于确定注水煤层裂隙内部水压力的测试装置及测试方法 WO2019223316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018424685A AU2018424685B2 (en) 2018-05-23 2018-12-29 Testing device used for determining water pressure in fracture of water injected coal seam and testing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810498213.X 2018-05-23
CN201810498213.XA CN108955989B (zh) 2018-05-23 2018-05-23 用于确定注水煤层裂隙内部水压力的测试装置及测试方法

Publications (1)

Publication Number Publication Date
WO2019223316A1 true WO2019223316A1 (zh) 2019-11-28

Family

ID=64499377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125191 WO2019223316A1 (zh) 2018-05-23 2018-12-29 用于确定注水煤层裂隙内部水压力的测试装置及测试方法

Country Status (3)

Country Link
CN (1) CN108955989B (zh)
AU (1) AU2018424685B2 (zh)
WO (1) WO2019223316A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963155A (zh) * 2020-08-19 2020-11-20 山东科技大学 一种煤层注水润湿范围检测装置、检测方法及均化方法
CN113155200A (zh) * 2021-05-16 2021-07-23 天地科技股份有限公司 一种煤矿地下水库煤柱坝体损伤破坏测定装置与方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955989B (zh) * 2018-05-23 2019-07-05 山东科技大学 用于确定注水煤层裂隙内部水压力的测试装置及测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065659A (ja) * 1998-08-17 2000-03-03 Dia Consultant:Kk 間隙水計測装置
CN202693190U (zh) * 2012-06-14 2013-01-23 中国水电顾问集团华东勘测设计研究院 一种手持便携式岩溶裂隙水压力测量仪
CN105190366A (zh) * 2013-03-08 2015-12-23 沙特阿拉伯石油公司 使用饱和度及核磁共振测井数据确定地表下地层的连续毛细管压力曲线
CN105486353A (zh) * 2016-01-19 2016-04-13 山东科技大学 一种岩体裂隙水综合信息传感器及使用方法
CN206338091U (zh) * 2016-11-30 2017-07-18 中国石油天然气集团公司 一种超高深围岩裂隙水自动监测装置
CN206458505U (zh) * 2016-11-30 2017-09-01 中国石油天然气集团公司 一种测量围岩裂隙水压力的压力计孔
CN108955989A (zh) * 2018-05-23 2018-12-07 山东科技大学 用于确定注水煤层裂隙内部水压力的测试装置及测试方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662818B2 (en) * 2002-02-01 2003-12-16 Perseptive Biosystems, Inc. Programmable tracking pressure regulator for control of higher pressures in microfluidic circuits
CN201687507U (zh) * 2010-06-11 2010-12-29 河南理工大学 水压式煤壁注水封孔器
CN102287163B (zh) * 2011-09-08 2013-09-11 重庆市能源投资集团科技有限责任公司 煤矿井下超高压压裂孔的钻孔封孔方法及封孔装置
CN105510396B (zh) * 2015-11-24 2018-06-29 山东科技大学 一种用于煤层注水润湿范围的测试装置以及测试方法
CN205314958U (zh) * 2016-01-13 2016-06-15 河南工业和信息化职业学院 一种瓦斯抽放及注浆用封孔器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065659A (ja) * 1998-08-17 2000-03-03 Dia Consultant:Kk 間隙水計測装置
CN202693190U (zh) * 2012-06-14 2013-01-23 中国水电顾问集团华东勘测设计研究院 一种手持便携式岩溶裂隙水压力测量仪
CN105190366A (zh) * 2013-03-08 2015-12-23 沙特阿拉伯石油公司 使用饱和度及核磁共振测井数据确定地表下地层的连续毛细管压力曲线
CN105486353A (zh) * 2016-01-19 2016-04-13 山东科技大学 一种岩体裂隙水综合信息传感器及使用方法
CN206338091U (zh) * 2016-11-30 2017-07-18 中国石油天然气集团公司 一种超高深围岩裂隙水自动监测装置
CN206458505U (zh) * 2016-11-30 2017-09-01 中国石油天然气集团公司 一种测量围岩裂隙水压力的压力计孔
CN108955989A (zh) * 2018-05-23 2018-12-07 山东科技大学 用于确定注水煤层裂隙内部水压力的测试装置及测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, ZHENGHUA ET AL.: "Determination of Coal Seam Affusion Pressure Based on Pore Characteristic and Wettability", COAL TECHNOLOGY, vol. 31, no. 10, 31 October 2012 (2012-10-31), pages 60 - 62, ISSN: 10088725 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963155A (zh) * 2020-08-19 2020-11-20 山东科技大学 一种煤层注水润湿范围检测装置、检测方法及均化方法
CN111963155B (zh) * 2020-08-19 2023-12-08 山东科技大学 一种煤层注水润湿范围检测装置、检测方法及均化方法
CN113155200A (zh) * 2021-05-16 2021-07-23 天地科技股份有限公司 一种煤矿地下水库煤柱坝体损伤破坏测定装置与方法

Also Published As

Publication number Publication date
AU2018424685B2 (en) 2021-09-30
CN108955989B (zh) 2019-07-05
AU2018424685A1 (en) 2021-01-21
CN108955989A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2019223316A1 (zh) 用于确定注水煤层裂隙内部水压力的测试装置及测试方法
CN105716747B (zh) 矿井下岩层地应力快速测量装备及方法
CN109540734B (zh) 可控水分的含瓦斯煤体高压吸附/解吸试验装置及方法
CN210322723U (zh) 一种长岩心注气驱替实验装置
CN201041029Y (zh) 油井水泥失重和气液窜模拟测试装置
CN104568727A (zh) 高温高压腐蚀氢渗透测试装置及测试方法
WO2020151138A1 (zh) 一种气液两相饱和煤岩样实验装置及饱和度测试方法
CN106959464B (zh) 一种氡析出率的测量装置和测量方法
CN211317660U (zh) 一种燃气管道安装用密封性检测装置
EA024784B1 (ru) Способ определения давления гидропрорыва герметичной зоны контакта цементного камня со стенками испытательной камеры и установка для реализации такого способа
CN110595975A (zh) 混凝土氯离子扩散模拟试验装置及检测方法
CN102636546B (zh) 一种电化学改变煤岩气吸附解吸性能的试验装置
CN103114851B (zh) 不同裂隙发育煤层产气贡献能力大小测试装置
CN211122457U (zh) 一种用于水压环境下混凝土中氯离子传输试验的装置
CN108181149A (zh) 一种含气土的制备装置及方法
CN207111070U (zh) 测量钻孔内负压及流量分布特性的实验装置
CN206016802U (zh) 管柱漏点检测装置
CN206281755U (zh) 透水路面和试件两用透水系数测定仪
CN110454126B (zh) 渗吸采油用渗吸剂评价实验装置及方法
CN208297305U (zh) 一种二氧化碳岩心驱替实验装置
CN210180884U (zh) 一种改变混合气体电场和湿度的三轴渗流装置
CN207540927U (zh) 一种瓦斯解吸速度测定仪
CN109424339B (zh) 采油模拟装置
CN206957703U (zh) 页岩气井中损失气解吸气量的测试装置
CN207964543U (zh) 一种用于测量深井排气效率的实验平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018424685

Country of ref document: AU

Date of ref document: 20181229

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18919746

Country of ref document: EP

Kind code of ref document: A1